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Abstract

Over recent decades, insurance and financial industries have been affected by the volatil-
ity of economic cycles. A severe financial crisis struck the market in the year 2000 and
subsequently between 2007 and 2012. During these economic downturns, financial
businesses (including insurance companies) experienced technical bankruptcy due to
insufficient capital holdings. Therefore, the private sector and, in some cases, national
governments were called upon to provide a means of recovery, in terms of capital,
since their bankruptcy would cause a serious threat to the economy and community
as a whole. In response to this adverse environment, governments and regulators have
since drawn up stringent rules and regulations, within the insurance industry, to pro-
vide a more prudent risk assessment and, in turn, minimise the possibility of future
bankruptcy. These regulations are usually known as ‘directives’ and have been imple-
mented across the EU, USA, Australia and China, among others.

One of the most efficiently employed capital recovery methods, used in practice,
is the provision of capital injections. This injection of capital is usually sourced from
a companies shareholders (as long as it is profitable for them to do so) or, in some
extreme cases, by the national government. Throughout the majority of this thesis,
we employ the classical continuous-time risk model to analyse the financial impact
of capital injections under the regulatory constraints of Solvency II and, further, by
capturing the realistic procedure of financial and administrative processing linked to
raising such funds, consider the risk exposure during the delay between requesting and
receiving a capital injection.

In the final chapter, we move to a discrete-time setting and discuss alternative cap-
ital recovery methods for a different line of business. In this case, where we consider
pharmaceutical and petroleum businesses, the classic insurance risk model of the pre-
vious chapters is unsuitable and the so-called dual risk model is analysed. Moreover, it
is believed that the fall into deficit (bankruptcy) can be recovered within a given time
period from normal trading strategies. That is, capital injections are not required and
the company can recover from deficit without financial assistance.
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Chapter 1
An Overview of Risk and Ruin Theory

‘Risks’ are defined as uncertain events or conditions that, if they occur, have a negative

effect on at least one objective and are broadly categorised into four groups: ‘Pre-

ventable’ risks, which are within an individuals power to stop; ‘Reducible’ risks, the

chances of which can be greatly reduced by intervention; ‘Avoidable’ risks, occurring

from situations that one could stay away from and ‘Unforeseeable’ risks, for which it is

out of anybody’s power to minimise or prevent. The presence of risks in our daily lives

has prompted us to consider ways to mitigate against potential losses and is the cause

for development of insurance markets.

The introduction of insurance - the first form of which dates back to Chinese and

Babylonian traders in the 3rd and 2nd millennia BC, respectively, where merchants

travelling treacherous river rapids would redistribute their wares across many vessels

to limit the loss due to any single vessel capsizing - has since seen the emergence of

competitive, global insurance markets. In such a vast market, competitive premium

pricing is required, whilst ensuring (with maximum probability) that the company stays

solvent, to attract customers and increase revenue. Due to the volatile, and perceiv-

ably random nature of insurance, there are many risks that are inherent within an

insurance firm, which need to be considered when it comes to pricing an individual’s

policy or managing their entire portfolio, such as: the probability of claim occurrences;

the corresponding size of such claims and the financial market as a whole, to name a

few. The mathematical area known as ‘Risk Theory’ has thus been developed in an at-
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CHAPTER 1. AN OVERVIEW OF RISK AND RUIN THEORY 2

tempt to quantify these risks, among others, by combining probability theory, statistics,

stochastic processes and mathematical finance, as a study of designing and managing

the potential liabilities facing a risk enterprise (usually an insurance company). The

main goal is to provide a comprehensive understanding of the risks associated with the

insurance sector and produce methods to facilitate against potential losses.

Risk theory has been one of the most studied research areas within actuarial science

since the beginning of the 20th century due to the emergence of Swedish actuary Filip

Lundberg, who established its building blocks, and Harald Cramér who adapted the

theory to the study of general stochastic processes. The main purpose of the theory

is to analyse the cash flow of an insurance company (over time) and evaluate how the

arrival times and claim sizes may affect its surplus. At the core of the work developed by

Lundberg (1903) and Cramér (1930) lies a risk model - known as the Cramér-Lundberg

risk model - defining the evolution of an insurer’s surplus, which takes on a rather

simple form. Although the model is fundamental in a practical sense, it captures the

main features of an insurance business, in a way that has aided a library of extensive

mathematical results and provided a foundation for further generalisations. In this

classical model, the cash flow of an insurance business assumes income is received,

via premiums, at some constant rate, whilst the liabilities (claims) are modelled by

random losses which occur at random times. Although this classic model describes the

fundamental characteristics of an insurance firms cash flow, in reality, there are many

other factors to be considered. Nevertheless, the basic principles and techniques used

in the classic risk model are adopted in practise to provide a ‘first good view’ of the

risk insights of a non-life insurance portfolio.

Within the Cramér-Lundberg risk model, one of the key features is that the company

is forced to cease trading in the event of negative surplus or, equivalently, when in a

deficit. In reality, this assumption is far from valid. Firstly, there exist solvency based

regulations which require the company to hold, in excess of some, fixed positive level

of capital, at all times, as a means of protection for the policyholders. Moreover, there

are many financial instruments and capital raising techniques that allow a company

to recover from adverse financial situations, which, if successful, allow the company
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to continue trading. The focus of this thesis is to generalise the Cramér-Lundberg

risk model by incorporating well known capital recovery techniques, used in practice,

and investigate their impact on the surplus of an insurance firm and overall solvency

position.

In the remainder of this chapter, we will introduce the basic stochastic processes

used for modelling an insurer’s liabilities and consequently describe the aforementioned

Cramér-Lundberg risk model. Furthermore, a survey of known results, tools, basic

methodologies and classical/advanced techniques, that form the foundations of the work

in this thesis, will be provided. In more detail, we will discuss methods for deriving

integro-differential equations (IDEs) and Integral equations for some risk quantities,

along with methods to obtain explicit solutions and approximations.

1.1 Introduction to insurance risk models

As with any other financial business, an insurance firms solvency heavily depends on

the difference between its income and liabilities (cashflow). In practice, (gross) income

is received at fixed times via policyholder premiums, bonds and other equity. On the

other hand, the liabilities usually consist of operational costs, which are known and

paid at fixed times, and random claim amounts appearing at random times. From this

basic insurance structure, it is clear that modelling the surplus of an insurance firm first

requires the modelling of the claim arrivals and their corresponding amounts, which are

established by the use of stochastic processes.

1.1.1 The arrival of claims via stochastic processes

The randomness of claim arrivals - which can be described by a so-called arrival process

- and claim sizes, represent the most basic risks facing an insurance business and are

the most important aspects of the classical risk model.

Definition 1 (Arrival process). An arrival process, {σn}n∈N, is a sequence of increasing

random variables 0 = σ0 < σ1 < σ2 < . . ., where σi−1 < σi means that the sequence

{τn}n∈N, such that τi = σi − σi−1, are positive random variables. The process {σn}n∈N
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is commonly known as a point process.

The point process, {σn}n∈N, is a sequence of random variables denoting the time of the

n-th claim and is commonly referred to as the sequence of claim epochs, with {τn}n∈N
a sequence of random variables denoting the inter-arrival time between the (n − 1)-

th and n-th claims. An alternative definition of the arrival process is given by the

corresponding ‘counting process’, denoted {N(t)}t>0, which represents the number of

claims up to some deterministic time t > 0, which takes the form

N(t) =

∞∑
n=0

I{σn6t},

where I{·} denotes the indicator function, such that

I{A}(ω) =


1, ω ∈ A,

0, ω /∈ A.

Definition 2 (Counting process). A counting process, {N(t)}t>0, is a stochastic process

with values that are positive, integer valued and increasing. That is, for all t > 0, we

have

1. N(t) > 0,

2. N(t) ∈ N,

3. If s 6 t then N(s) 6 N(t).

The definition of an arrival process is rather general and does not provide any constraint

on the distributions of the arrival times or, respectively, the inter-arrival times. Such a

framework is too broad and would prove almost impossible to implement. If, however,

the sequence of inter-arrival times, {τn}n∈N is assumed to be a sequence of independent

and identically distributed (i.i.d.) random variables, then the arrival process is known

as a ‘renewal process’ and we are able to exploit its so-called ‘renewal property’. In

particular, if the inter-arrival time random variables follow an exponential distribution

with parameter λ > 0, the renewal process is known as a Poisson process - the name
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is given due to the distributional characteristics of the corresponding counting process

{N(t)}t>0.

Definition 3 (Poisson process). The counting process {N(t)}t>0 is called a homoge-

neous Poisson process, with intensity λ > 0, if the following conditions hold:

1. N(0) = 0 almost surely (a.s.),

2. {N(t)}t>0 has independent and stationary increments,

3. For some small time interval h > 0, we have:

P(N(h) = 0) ≈ 1− λh+ o(h),

P(N(h) = 1) ≈ λh+ o(h),

P(N(h) > 2) ≈ o(h),

where o(h) is a function of h > 0, such that limh→0
o(h)
h = 0, which implies that o(h)

converges to zero more rapidly than h itself.

The claims arriving via a Poisson process is the most common assumption made

throughout the actuarial literature and forms the basis of the vital characteristics in

the aforementioned Cramér-Lundberg risk model. That is, the total liability of an in-

surance firm, up to time t > 0, known as the so-called aggregate claims, is modelled as

a compound Poisson process.

Definition 4 (Compound Poisson process). Assume {N(t)}t>0 is a Poisson process

with parameter λ > 0. Further, let {Xk}k∈N+ be a sequence of i.i.d. random vari-

ables denoting the size of the k-th claim with common cumulative distribution func-

tion (c.d.f.)FX(·), corresponding probability density function (p.d.f.) fX(·) and mean

µ = E(X) <∞, such that {Xk}k∈N+ is independent of {N(t)}t>0. Then, the aggregate

claims up to time t > 0, denoted by {S(t)}t>0, is given by

S(t) =

∞∑
i=1

Xi I{σi6t} =

N(t)∑
i=1

Xi, (1.1.1)
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and is known as a compound Poisson process.

Figure 1.1: Example sample path of the compound Poisson process S(t).

1.1.2 Surplus process for insurance portfolios

Now that the liabilities of an insurer have been defined, using stochastic processes

(above), we are in a position to define the entire surplus process (cashflow) in the

Cramér-Lundberg risk model.

Definition 5 (Surplus process). The surplus process of an insurer in the Cramér-

Lundberg risk model, denoted by {U(t)}t>0, is defined by

U(t) = u+ ct− S(t), U(0) = u, (1.1.2)

where u > 0 represents the insurer’s initial capital reserve, c > 0 is the continuously

received premium rate and {S(t)}t>0 is a compound Poisson process denoting the ag-

gregate claims up to time t > 0.

An example of a typical same path for the surplus process can be seen in Fig:1.2.
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Figure 1.2: Example sample path of the Cramér-Lundberg risk process.

1.2 Ruin probabilities and the integro-differential equa-

tion

A crucial requirement for an insurance firm, and other financial businesses, is to remain

solvent - in the majority of the risk theory literature, solvency means that the surplus is

nonnegative, whereas in practice the threshold is much higher - in order for the company

to remain operational and protect their policyholders. If the surplus falls below some

pre-determined level (usually zero) in some time interval (finite or infinite), we call this

event ‘ruin’ and the corresponding probability the ‘probability of ruin’ [see Fig:1.2].

Accurate predictions of such an event, based on current conditions of the business,

provides a tool for pricing premiums based on a tolerance to insolvency (ruin). That is,

if a company has an insolvency tolerance of 0.5%, they will price premiums such that

ruin is acceptable 1 in every 200 years (similar to the current framework within the

Solvency II directive implemented throughout the European Union (EU), where Value

at Risk is considered with a 99.5% confidence level).

Based on the sample path of the surplus process [see Fig: 1.2], in order to define the

probability of ruin, we need first to define the time of ruin.

Definition 6 (Time of ruin). The time of ruin, denoted by T , is as a non-negative
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random variable, defined as

T = inf{t > 0 : U(t) < 0}. (1.2.1)

Definition 7 (Ruin probability). For u > 0, the finite-time ruin probability, which is

a function of the initial capital, denoted ψ(u, t), is defined by

ψ(u, t) = P(T < t
∣∣U(0) = u). (1.2.2)

The infinite-time ruin probability, or simply ruin probability, denoted ψ(u), is defined

by

ψ(u) = lim
t→∞

ψ(u, t) = P(T <∞
∣∣U(0) = u). (1.2.3)

Following from the definition of the ruin probabilities, we define the corresponding

finite and infinite-time survival probabilities, i.e. probability of the event {T > t} and

{T =∞}, respectively, by

φ(u, t) = P(T > t
∣∣U(0) = u) = 1− ψ(u, t) (1.2.4)

and

φ(u) = P(T =∞
∣∣U(0) = u) = 1− ψ(u), (1.2.5)

respectively.

An important criterion for the aforementioned risk model, and business models in

general, is that ruin does not occur a.s., i.e. with probability 1. Thus, we want to

ensure that the company has a positive cashflow (on average), which is achieved by the

assumption of the so called net profit condition.

Definition 8 (Net profit condition). The net profit condition imposes the condition

that the continuously received premium rate is greater, per unit time, than the expected

losses. That is

c > λµ.

In view of the net profit condition (above), a security loading factor, η > 0, is imple-
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mented to guarantee the premiums of the insurance firm will be sufficient to cover the

expected claims per unit time. That is, we define

c = (1 + η)λµ,

where η > 0 is called the positive safety loading factor.

Moreover, if the net profit condition holds, the surplus process, defined in equation

(1.1.2), satisfies the following limiting condition which ensures that ψ(u) < 1 a.s.

Proposition 1. Consider the event {T = ∞}. If the net profit condition holds, then

the surplus process {U(t)}t>0 satisfies

lim
t→∞

U(t) = +∞.

Proof. Consider the limit

lim
t→∞

U(t)

t
= c− lim

t→∞

∑N(t)
i=1 Xi

t

= c− lim
t→∞

N(t)

t

∑N(t)
i=1 Xi

N(t)

= c− λµ,

where the last equality follows from the limiting behaviour of a renewal process and

the strong law of large numbers. Finally, assuming the net profit condition holds, we

have c− λµ > 0 and the result follows.

The infinite-time ruin probability is one of the main measures of interest within the

current literature as it provides crucial information about the expected performance

of an insurance firm. The most common method, among a few, for obtaining such a

quantity is to derive an integro-differential equation (IDE), with respect to ψ(u), and

use standard algorithms in an attempt to derive an explicit expression.

Theorem 1 (Integro-differential equation). Assume the net profit condition holds.
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Then, the ruin probability, ψ(u), satisfies the integro-differential equation

cψ′(u) = λψ(u)− λ
[∫ u

0
ψ(u− x) dFX(x) + FX(u)

]
, (1.2.6)

along with the boundary condition

lim
u→∞

ψ(u) = 0,

where FX(x) = 1− FX(x) is the tail distribution of the claim sizes.

The general solution of the IDE, given in equation (1.2.6), does not exist in the actuarial

or differential equations literature. Over the years a number of different approaches have

been considered in an attempt to derive an explicit solution for the IDE of Theorem 1.

The common consensus within each of these approaches is that the IDE is solvable only

for some special cases (mainly when the form of the distribution of the claim amounts

is known) and therefore, many methods have since been developed to obtain analytic

solutions, each time for a wider family of claim size distributions. In the following

subsections, we will present a brief outline of the aforementioned methodologies.

1.2.1 Differential approach

The differential approach to solving the IDE, given in equation (1.2.6), is a simple

method that works for specific claim size distributions, such as the exponential, Erlang,

and mixtures of the two. The idea is that, due to the exponential forms of these

distribution functions (d.f.), the integral term on the right hand side (r.h.s.) of equation

(1.2.6) can be eliminated by differentiating both sides of the IDE with respect to u and

substituting the resulting equation (which will contain an identical integral term) back

into equation (1.2.6). This process will result in an ordinary differential equation (ODE)

which, along with the boundary conditions of the probability of ruin, can be solved by

standard techniques. The simplest case is given when the claim size random variables

are exponentially distributed.

Proposition 2 (Exponentially distributed claims). Let the claim size random variables

follow an exponential distribution with parameter β > 0, i.e.FX(x) = 1− e−βx. Then,
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the ruin probability, ψ(u), is given explicitly by

ψ(u) =
λ

βc
e−

λη
c
u, u > 0. (1.2.7)

1.2.2 Matrix exponential approach

The differential approach described in the previous section is relatively simple, however,

solutions can only be obtained via this method for a family of distributions with a very

specific form. Furthermore, the method requires individual treatment for all cases and

makes the calculations cumbersome.

Asmussen and Rolski (1992) derive a unified approach by considering a claim size

distribution that belongs to a wider family of distributions, known as phase-type; a

distribution linked to the absorption time of a continuous-time Markov chain (CTMC).

This distribution, and thus the results concerned, cover several types of distributions

including the exponential, Erlang, Coxian and mixtures of them. The method used

to obtain an explicit expression for the ruin probability is known as the exponential

matrix technique [see also Neuts (1981)].

Consider a CTMC, {X(t)}t>0, with finite state space, S, consisting of an absorbing

state SA = {0} and transient states ST = {1, . . . , n}. Furthermore, assume {X(t)}t>0

has an initial probability vector π∗ = {π0,π} with π = {π1, . . . , πn} (it is usually as-

sumed that π0 = 0, i.e. the process can not start in the absorbing state) and infinitesimal

generator Q, given by

Q =

 0 ~0

~d D

 ,
where ~0 = {0, . . . , 0}, ~d is an n-dimensional column vector containing the intensity

rates from the transient states to the absorbing state and D is an n× n sub-intensity

matrix containing the intensity rates between transient states.

Definition 9 (Phase-type distribution). A random variable X is said to have phase-

type distribution, F (x), with representation (π,D, n), if it has identical distribution to
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the absorption time of the CTMC, {X(t)}t>0. Furthermore, the c.d.f.F (x), is given by

F (x) = 1− πeDx~e for x ≥ 0

and its associated p.d.f. by

f(x) = πeDx~d for x ≥ 0,

where eDx is the matrix exponential and ~e is an n-dimensional unit column vector.

Remark 1. The Erlang distribution, denoted Erlang(n, β), is the distribution of a

sum of n i.i.d. exponentially distributed random variables with parameter β > 0. The

Erlang(n, β) distribution can be written in the form of a phase-type distribution by

setting D to be an n × n matrix with diagonal elements −β, sub-diagonal elements β

and the probability of starting in state n equal to 1, i.e. πn = 1.

Using the form of the phase-type d.f., given in Definition 9, Asmussen and Rolski (1992)

obtained (by comparison of the ruin problem to queuing theory) the following closed

form expression for the probability of ruin under a phase-type claim size distribution.

Theorem 2. Assume the claim size random variables follow a phase-type distribution

with representation (π,D, n). Then, for each u > 0, the probability of ruin, ψ(u), is

given by

ψ(u) = π+e
Tu~e,

where T = D + ~dπ+ and π+ = −λπD−1.

The above result for phase-type distributed claim sizes, as already mentioned, covers

a range of distributions. Therefore, Theorem 2 generalises the results of Grandell and

Segerdahl (1971) and Thorin (1973) who derived expressions for gamma distributed

claims with integer shape parameter (Erlang distributions), which were later generalised

by Gerber et al. (1987) who gave a finite series solution for a combination of gamma

distributions with integer valued non-scale parameter - for which exponential, Erlang

and mixtures of them are special cases.
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Recently, the aforementioned results for gamma distributed claim sizes, with integer

shape parameter, have been extended in Constantinescu et al. (2017) to the case of

general gamma distribution with arbitrary real valued shape parameter. In this work,

three equivalent expressions are derived for the probability of ruin by method of Laplace

transforms (LTs) and the aid of Mittag Leffler functions.

1.2.3 Laplace transforms for the ruin probability

The main difficulty in deriving explicit expressions from the IDE, given by equation

(1.2.6), is the convolution structure of the integral term.

Definition 10 (Convolution). The convolution of two functions f and g, supported on

the interval [0,∞), is defined by

(f ∗ g)(x) =

∫ x

0
f(x− y)g(y) dy.

The convolution operation, for d.f’s., allows us to compute the distribution of the sum,

X+Y , of two independent random variablesX and Y from their respective distributions

F and G and corresponding densities f and g.

The n-fold convolution of a distribution F , defining the distribution of a sum of n

i.i.d. random variables with common distribution F , denoted by F ∗n, is defined itera-

tively.

Definition 11 (n-fold convolution). Let F (x) be a d.f. supported on [0,∞). Then, the

n-fold convolution of F (x), denoted F ∗n(x), is defined by

F ∗n(x) =
(
F ∗(n−1) ∗ F

)
(x) = (F ∗ · · · ∗ F︸ ︷︷ ︸

n

)(x),

where F ∗0(x) = I{x>0}.

Based on the theory of differential equations, equations involving convolutions are often

solved by the use of LTs. Thus, in this subsection we present LT techniques used in

the literature to derive a solution for the IDE of Theorem 1.



CHAPTER 1. AN OVERVIEW OF RISK AND RUIN THEORY 14

Definition 12 (Laplace transform). For <(s) > 0, the LTs of the ruin and survival

functions are given by

ψ̂(s) =

∫ ∞
0

e−suψ(u) du and φ̂(s) =

∫ ∞
0

e−suφ(u) du, (1.2.8)

respectively.

Considering the above definition of the LTs for the the ruin quantities, multiplying

equation (1.2.6) through by e−su, integrating over the interval [0,∞) and using the fact

(from the LT properties) that the LT of a convolution is simply the product of the LTs,

i.e. ∫ ∞
0

e−su (ψ ∗ fX) (u) du = ψ̂(s)f̂X(s),

where f̂X(s) =
∫∞

0 e−sufX(u) du denotes the LT of the density function of the claim

size distribution, we have the following theorem.

Theorem 3. For <(s) > 0, the LTs ψ̂(s) and φ̂(s) are given by

ψ̂(s) =
1

s
− c− λµ

cs− λ
(

1− f̂X(s)
)

and

φ̂(s) =
c− λµ

cs− λ
(

1− f̂X(s)
) ,

respectively.

In order to obtain an explicit expression for the ruin (survival) probability, it is nec-

essary to invert the above forms of the corresponding LTs. In general, this inversion

proves difficult (even numerically), however, for specific claim size distributions the

inversion becomes accessible.

Li and Garrido (2004) show that if the claim size distribution belongs to the family

of distributions with a rational LT (i.e. the ratio of two polynomials) which contains a

large variety of distributions, then one can employ partial fraction decomposition and

Lundberg’s fundamental equations (see below), to invert the LTs given in Theorem 3

and obtain an exponential form for the probability of ruin.
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Proposition 3. Let the claim size distribution belong to the family of distributions

with a rational LT, i.e. f̂X(s) is given by

f̂X(s) =
Qm−1(s)

Qm(s)
, <(s) ∈ (hX ,∞),

with Qm(0) = Qm−1(0), for m ∈ N+, hX = inf{s ∈ R : E
(
e−sX

)
< ∞}, and Qm(s),

Qm−1(s) are polynomials of degree m and m − 1, respectively. Moreover, define by

{−Ri}i=1,...,m, with <(Ri) > 0, the (distinct) roots of the Lundberg equation

(
λ

c
− s
)
Qm(s)− λ

c
Qm−1(s) = 0.

Then, the LT of the probability of ruin is given by

ψ̂(s) =
m∑
i=1

ai
s+Ri

,

which has an inversion of the form

ψ(u) =

m∑
i=1

aie
−Riu,

where

ai =
Qm(−Ri)
Qm(0)

m∏
j=1,j 6=i

Rj
(Rj −Ri)

, i = 1, . . .m.

1.2.4 The Pollaczek-Khinchin formula

Due to the complexity of the IDE, given by equation (1.2.6), many authors have con-

sidered an alternative integral equation. Integrating equation (1.2.6) over the interval

(0, u], we arrive at the following integral form for the ruin probability [see Rolski et

al. (1999)].

Theorem 4. The probability of ruin, ψ(u), satisfies the following integral equation

ψ(u) =
λ

c

(∫ ∞
u

FX(x) dx+

∫ u

0
ψ(u− x)FX(x) dx

)
. (1.2.9)
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Although this integral form looks simpler than its associated IDE, it remains difficult

to solve in a closed form. However, an immediate consequence of the expression given

above is the ability to obtain an expression for the ruin probability with zero initial

capital, ψ(0). Setting u = 0 in equation (1.2.9) yields the following lemma.

Lemma 1. Assuming the net profit condition holds, the probability of ruin with zero

initial capital is given explicitly by

ψ(0) =
λ

c

∫ ∞
0

FX(x) dy

=
λµ

c
< 1. (1.2.10)

For the general case u > 0, we can consider the LT of equation (1.2.9), and use the

one-to-one correspondence between functions and their LT, to derive an infinite series

solution (in terms of convolutions) for ψ(u). The following theorem is known in risk

theory as Beekman’s formula and is a special case of the Pollaczek-Khinchin formula

found in queuing theory [see Asmussen (1987)].

Theorem 5 (Pollaczek-Khinchin formula). For u > 0, the ruin probability, ψ(u), is

given by

ψ(u) =

(
1− λµ

c

) ∞∑
n=1

(
λµ

c

)n
(F sX)∗n(u), (1.2.11)

where

F sX(x) =
1

µ

∫ x

0
FX(y) dy, (1.2.12)

is the integrated-tail distribution of the claim sizes and F ∗n(x) = 1− F ∗n(x).

Remark 2. From the above theorem we see that the probability of ruin, namely ψ(u),

is the tail of a compound geometric distribution, with characteristics
(
λµc−1, F sX

)
.

1.3 Bounds and approximations

As discussed in sections 1.2.1-1.2.4, it is generally difficult to determine an explicit

solution for the probability of ruin, ψ(u), from either the IDE, given in equation (1.2.6),

or the integral form of equation (1.2.9). Therefore, in this section, we will discuss some
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of the main results and methodologies used to derive bounds, approximations and

asymptotic results, which can be used to analyse the behaviour of the ruin probability

in the absence of an explicit expression.

Before we explore these results, let us define a quantity that will play a major role

in the derivation of most of the results in the remainder of this section, namely the

adjustment coefficient or Lundberg exponent. Consider the risk reserve process, defined

by

R(t) =

N(t)∑
i=1

Xi − ct, (1.3.1)

which is simply a shifted compound Poisson process and its moment generating function

(m.g.f.), denoted by MR(t)(s), is given by

MR(t)(s) = et(λ(MX(s)−1)−cs), (1.3.2)

where MX(s) = E(esX) denotes the m.g.f. of the claim sizes. Then, if we define

θ(s) := λ(MX(s)− 1)− cs, (1.3.3)

such that the moment generating function MR(t)(s) = exp{tθ(s)}, one can define a

useful exponential martingale in terms of the surplus process {U(t)}t>0.

Definition 13 (Martingale). A real valued stochastic process {X(t)}t>0, adapted to a

filtration {F(t)}t>0, is a martingale if:

1. E
(∣∣X(t)

∣∣) <∞, ∀t > 0,

2. For all 0 6 s 6 t, E
(
X(t)

∣∣F(s)
)

= X(s) a.s.

Lemma 2. Let s ∈ R such that MX(s) <∞. Then, the stochastic process {e−sU(t)−θ(s)t}t>0

is a martingale.

Proof. Let {F(τ)}τ>0 be the filtration generated by the process {e−sU(t)−θ(s)t}t>0.
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Then, by using the Markov property, for τ 6 t, we have

E
[
e−sU(t)−θ(s)t∣∣F(τ)

]
= E

[
e−s(U(t)−U(τ))

]
e−sU(τ)−θ(s)t

= E
[
e
s
∑N(t)
i=N(τ)+1

Xi

]
e−sU(τ)−λ(MX(s)−1)t+scτ

= E
[
es

∑N(t−τ)
i=1 Xi

]
e−sU(τ)−λ(MX(s)−1)t+scτ

= e−sU(τ)−λ(MX(s)−1)τ+scτ

= e−sU(τ)−θ(s)τ .

The martingale property (above) provides a tool for many interesting results in both

the risk and queueing theory settings. However, for simplicity of calculations it would

be convenient to have a martingale that does not depend on the function θ(s) and only

on the surplus process U(t). Therefore, we look to eliminate the function θ(s), and the

explicit time dependence, by considering the non-trivial root of the equation θ(s) = 0.

Then, since

θ′′(s) = λM ′′X(s) = λE
(
X2esX

)
> 0,

it follows that θ(s) is a convex function. For the first derivative, evaluated at s = 0, we

have

θ′(0) = λM ′X(0)− c = λµ− c < 0,

by the net profit condition and it is easy to see that θ(0) = 0. Therefore, by the above

characteristics of the function θ(s), there may exist a second root of the equation

θ(s) = 0, (1.3.4)

known as Lundberg’s fundamental equation. If such a root exists, then it is unique and

strictly positive [see Fig. 1.3]. We call this solution the adjustment coefficient or the

Lundberg exponent and denote it by γ > 0. The existence of this adjustment coefficient

will play an important role in deriving upper and lower bounds, approximations and
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asymptotic results for the ruin function ψ(u).

Figure 1.3: Lundberg’s fundamental equation, θ(s).

1.3.1 Lundberg’s exponential bound

Let us first look at the importance of the adjustment coefficient in determining an upper

bound for the probability of ruin. The first derivation of an upper bound for the ruin

probability was given in Lundberg (1926), where he used the method of Weiner-Hopf

factorisation. However, over the years, many alternative proofs have been established

providing more elegant and simple derivations, such as the martingale approach of

Gerber (1979) and an exponential change of measure [see Asmussen and Albrecher

(2010)], to name a few. In the following fundamental theorem, we give the proof based

on an induction argument.

Theorem 6. Assume the adjustment coefficient, γ > 0, exists. Then, for u > 0, we

have

ψ(u) 6 e−γu. (1.3.5)

Proof. Let us denote by ψn(u), the probability that ruin occurs on or before the n-th

claim. Then, since limn→∞ ψn(u) = ψ(u), it suffices to prove that ψn(u) 6 e−γu, for all

n = 0, 1, . . .. Firstly, for n = 0, we have ψ0(u) = 1 when u < 0 and ψ0(u) = 0 for u > 0
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hence, ψ0(u) 6 e−γu. Now, for the non-trivial part of the induction step, we assume

true for n− 1 and, by the renewal property, we have ψn(u) = E (ψn−1(u+ cσ1 −X1))

[see Feller (1971)], which is equivalent to

ψn(u) =

∫ ∞
0

λe−λt
∫ ∞
−∞

ψn−1(u+ ct− x) dFX(x) dt

6
∫ ∞

0
λe−λt

∫ ∞
−∞

e−γ(u+ct−x) dFX(x) dt

= λe−γu
∫ ∞
−∞

eγx
∫ ∞

0
e−(λ+cγ)t dt dFX(x)

=
λe−γu

λ+ γc

∫ ∞
−∞

eγx dFX(x).

Finally, since γ > 0 was defined as the solution to Lundberg’s fundamental equation,

i.e. θ(γ) = 0, it follows that λ
λ+γc

∫∞
−∞ e

γx dFX(x) = 1, which completes our proof by

induction.

1.3.2 Two-sided Lundberg bounds

In addition to the exponential upper bound, given in Theorem 6, it is possible (assuming

the Lundberg coefficient γ > 0 exists) to derive two-sided bounds for the probability

of ruin. The two-sided bounds are obtained from the two-sided bounds for the tail of

a compound geometric distribution and employing the compound geometric form of

ψ(u), given in equation (1.2.11) [see Rolski et al. (1999)].

Theorem 7. Assume that the adjustment coefficient, γ > 0, exists. Then, for u > 0,

we have

a−e
−γu 6 ψ(u) 6 a+e

−γu, (1.3.6)

where

a− = inf
x∈[0,x0)

eγx
∫∞
x FX(y) dy∫∞

x eγxFX(y) dy
and a+ = sup

x∈[0,x0)

eγx
∫∞
x FX(y) dy∫∞

x eγxFX(y) dy
.
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1.3.3 De Vylder Approximation

As a means to approximate the ruin function, De Vylder (1978) takes advantage of the

explicit expression obtained for ψ(u) under the assumption of exponentially distributed

claims sizes, given in equation (2.4.14). The main idea behind this approximation

method is to replace the surplus process {U(t)}t>0, having general claim size distribu-

tion, with a similar process, denoted {U ′(t)}t>0, which has exponentially distributed

claim sizes, with parameter β′ > 0, such that the first three moments coincide. Then,

the De Vylder approximation is given by

ψapp(u) =
λ′

c′β′
e−

λ′η′
c′ u,

where

β′ =
3µ(2)

µ(3)
, λ′ =

λµ(2)(β′)2

2
, c′ = β − λµ+

λ′

β′
,

with µ(k) = E
(
Xk
)

denoting the k-th moment of the claim sizes.

1.3.4 Beekman-Bowers approximation

A second method, based on moment fitting and leading to a more accurate approx-

imation, is the so-called Beekman-Bowers approximation [see, for example Beekman

(1969)].

Consider the distribution function

F (x) = 1− cψ(x)

λµ
. (1.3.7)

Then, by equation (1.2.10) it follows that F (0) = 0 and F (x) is the d.f. of some positive

random variable, Z, with moment generating function MZ(s), defined by

MZ(s) =

∫ ∞
0

esx
c

λµ
φ′(x) dx.

Noting that the moment generating function is simply a LT with negative argument,

we can use integration by parts and employ the results of Theorem 3 to obtain an
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expression for MZ(s). Then, to obtain an approximation for ruin probability, ψ(u),

we first consider an approximation to the d.f.F (x) using a gamma d.f., denoted F ′(x),

with parameters (a′, b′), such that the first two moments coincide. Using the moment

generating function MZ(s), we can obtain explicit expressions for the first two moments

of the random variable Z and thus, matching these with the corresponding moments of

the gamma distribution and using equation (1.3.7), the Beekman-Bowers approximation

is given by

ψapp(u) =
λµ

c
F ′(u),

where F ′(x) = 1− F ′(x) is the tail of the gamma distribution with parameters (a′, b′),

such that

a′

b′
=

cµ(2)

2µ(c− λµ)
,

a′(a′ + 1)

(b′)2
=
c

µ

(
µ(3)

3(c− λµ)
+

λ
(
µ(2)

)2
2(c− λµ)2

)
.

1.4 Asymptotic behaviour of the ruin probability (light

and heavy tailed)

In the previous sections, we presented approximations to the ruin function, ψ(u), via

the method of moments. The results obtained provide an approximation for each

value of the initial capital u > 0, and the accuracy depends on the distribution being

observed. In this section, we consider a different method for obtaining an approximation

by considering the tail (asymptotic) behaviour of the ruin probability, i.e. as u → ∞.

Once the tail has been identified, that is, we have obtained a function, h(u), such that

ψ(u) = h(u) for u > u0, we approximate ψ(u) by the function h(u) for all u > 0.

Clearly, for this method, the error between the approximated value and the true value

of ψ(u) decreases as u > 0 increases.

1.4.1 Cramér-Lundberg approximation

Here we will present arguably the most well known and fundamental method for ob-

taining an approximation for the ruin probability known as the Cramér-Lundberg ap-

proximation. This approximation will be based on the use of the general theory of
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defective renewal equations and more specifically, the Key Renewal Theorem.

Theorem 8 (Key Renewal Theorem). Assume that a function z1 : R+ → (0,∞) is

increasing and let z2 : R+ → R+ be decreasing, such that

∫ ∞
0

z1(x)z2(x) dx <∞

and

lim
h→0

sup

{
z1(x+ y)

z1(x)
: x > 0, 0 6 y 6 h

}
= 1.

Then, z(x) = z1(x)z2(x) is directly Riemann integrable and for each proper distribution

F on R+, the equation

g(u) = z(u) +

∫ u

0
g(u− v) dF (v), u > 0,

admits a unique locally bounded solution such that

lim
u→∞

g(u) =


µ−1
F

∫∞
0 z(u) du µF <∞,

0 µF =∞.

where µF is the mean value of the distribution F .

Theorem 9. Assume the adjustment coefficient, γ > 0, exists. If M ′X(γ) <∞, then

lim
u→∞

ψ(u)eγu =
c− λµ

λM ′X(γ)− c
. (1.4.1)

If M ′X(γ) =∞, then limu→∞ ψ(u)eγu = 0.

Proof. Let us begin by recalling the integral equation for the ruin probability, given in

equation (1.2.9), that is

ψ(u) =
λ

c

∫ ∞
u

FX(x) dx+
λ

c

∫ u

0
ψ(u− x)FX(x) dx. (1.4.2)

Now, since
∫∞

0
λ
cFX(x) dx = λµ

c < 1 (by the net profit condition), the above equation

is known as a defective renewal equation [see Feller (1971)]. The result is obtained



CHAPTER 1. AN OVERVIEW OF RISK AND RUIN THEORY 24

by application of the so called Key Renewal Theorem, given in Theorem 8. However,

before the theorem can be applied, the renewal equation (1.4.2) must be transformed

into a proper renewal equation. To do this, we will follow the method as described in

Feller (1971, p. 376). That is, assume there exists a constant, s > 0, such that

1 =
λ

c

∫ ∞
0

esxFX(x) dx =
λ

c

∫ ∞
0

esx
∫ ∞
x

dFX(y) dx

=
λ

c

∫ ∞
0

∫ y

0
esx dx dFX(y)

=
λ

cs

∫ ∞
0

(esy − 1) dFX(y)

=
λ(MX(s)− 1)

cs
. (1.4.3)

This condition is equivalent to finding the nonzero solution to Lundberg’s fundamental

equation, given by equation (1.3.4), i.e. θ(s) = 0. The only non zero solution to this

equation (which we will assume exists), as seen previously, is the adjustment coefficient

γ > 0.

It follows, from the above condition, that the function λ
c e
γxFX(x) forms the density

of a proper probability distribution and thus, multiplication of equation (1.4.2) by eγu,

yields a proper renewal equation of the form

eγuψ(u) =
λ

c
eγu
∫ ∞
u

FX(x) dx+
λ

c

∫ u

0
ψ(u− x)eγ(u−x)FX(x)eγx dx. (1.4.4)

Using Theorem 8, it is easy to see that for a finite mean µF <∞, i.e.

∫ ∞
0

xeγx
λ

c
FX(x) dx <∞

which is equivalent to M ′X(γ) < ∞ (this, along with the existence of the root γ > 0,

form the so-called Cramér conditions), equation (1.4.4) admits an asymptotic solution,

given by

lim
u→∞

eγuψ(u) = µ−1
F

∫ ∞
0

eγu
∫ ∞
u

λ

c
FX(x) dx du. (1.4.5)
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Finally, it remains to evaluate the r.h.s. of the above equation. Firstly,

∫ ∞
0

eγu
∫ ∞
u

λ

c
FX(x) dx du =

λ

c

∫ ∞
0

FX(x)

∫ x

0
eγu du dx

=
λ

cγ

∫ ∞
0

(eγx − 1)FX(x)dx

=
λ

cγ

∫ ∞
0

eγxFX(x)dx− λ

cγ

∫ ∞
0

FX(x)dx

=
1

γ
− λµ

cγ
=

1

cγ
(c− λµ), (1.4.6)

by equation (1.4.3) and the fact that the claim sizes are non-negative random variables.

The mean value of the distribution, namely µF , is given by

µF =

∫ ∞
0

x
λ

c
FX(x)eγx dx =

d

dγ

(
λ

c

∫ ∞
0

FX(x)eγx dx

)
=

d

dγ

(
λ(MX(γ)− 1)

cγ

)
=
λ(M ′X(γ)cγ − c(MX(γ)− 1))

(cγ)2

=
λM ′X(γ)γ − λ(MX(γ)− 1)

cγ2

=
λM ′X(γ)γ − cγ

cγ2

=
λM ′X(γ)− c

cγ
, (1.4.7)

if M ′X(γ) <∞, and ∞ otherwise. Finally, by combining equations (1.4.5), (1.4.6) and

(1.4.7) we obtain the result.

Remark 3. Theorem 9 can be written alternatively in its asymptotic form by

ψ(u) ∼ c− λµ
λM ′X(γ)− c

e−γu,

and thus, the Cramér-Lundberg approximation is given by

ψapp(u) =
c− λµ

λM ′X(γ)− c
e−γu, u > 0.

Remark 4. We point out that for exponentially distributed claim sizes, i.e.FX(x) =
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1 − e−βx, β > 0, it follows from the form of the moment generating function of an

exponential random variable, given by MX(s) = β
β−s , that

M ′X(γ) =
β

(β − γ)2
<∞, for γ > 0.

Then, we have

ψapp(u) =
c− λ

β

λβ
(β−γ)2

− c
e−γu =

λ

βc
e−γu.

Finally, by solving θ(s) = 0 with exponentially distributed claim sizes, we obtain that

γ = λη/c and the Cramér-Lundberg approximation gives

ψapp(u) =
λ

βc
e−

λη
c
u,

which is equivalent to equation (2.4.14). That is, the Cramér-Lundberg approximation

is exact under exponential claim sizes.

1.4.2 Asymptotic behaviour for heavy tailed claim size distributions

In reality some claims incurred by an insurance company are ‘extreme’ - a concept that

cannot be captured under the assumption of ‘light tailed’ claim size distributions, as

considered in the previous section (Cramér conditions hold only for light tailed distri-

butions). A transparent example can be seen in the case of insurance against natural

disasters. This type of claim may not appear as frequently as other claims, however,

by the nature of such disasters, any claims that are reported would be large in size.

Typical examples of such insurance coverage include lines of business concerned with

earthquakes, floods or, in general, with CAT bonds. In mathematical terms, these ‘large

claims’ are described by heavy tailed distributions, which have been shown to more ac-

curately represent insurance risks - since such distributions provide a more appropriate

fit to actual claim data. In particular, Pareto, lognormal, log-gamma and Burr distri-

butions are popular in actuarial mathematics. Recently, more and more attention has

been directed towards heavy tailed distributions since it has been postulated that only
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extreme claims dramatically affect the surplus of an insurer and can realistically cause

ruin.

There are several mathematical definitions for a heavy tailed distribution, however,

the following will be sufficient for the purpose of this thesis.

Definition 14. Let F (x), x > 0 be a d.f. with support on the positive real line [0,∞).

Then, F is said to be heavy tailed if its moment generating function does not exist, i.e.

∫ ∞
0

esxdF (x) =∞, for all s > 0.

The general definition of a heavy tailed distribution is too broad to allow for an ef-

fective analysis of their impact in the aforementioned risk model. Thus, the majority

of results have been concentrated on a subclass of heavy-tailed distributions known as

sub-exponentials, the set of which is denoted by S, for which Embrechts and Veraver-

beke (1982) prove that the exponential behaviour of the ruin function, proposed by

the Cramér-Lundberg approximation, no longer holds. In more detail, for heavy-tailed

distributions, the Cramér conditions no longer hold and the ruin probability behaves

asymptotically like the integrated tail of the claim size distribution, which decays slower

than that of a light tailed distribution (by definition).

Theorem 10 (Heavy tailed asymptotics). Suppose that the integrated tail of the claim

size distribution is in the class of sub-exponentials i.e. F sX ∈ S. Then, the ruin proba-

bility behaves asymptotically as

ψ(u) ∼ ρ

1− ρ
F sX(u), u→∞,

where ρ = λµ/c.

In addition to the general asymptotic expression given above, there exist some explicit

results which have been derived for some special cases of heavy tailed distributions.

Ramsay (2003) uses LT techniques for a shifted Pareto claim size distribution, with

integer valued parameter, to derive an exact expression for the ruin probability con-

taining a single integral, which is later generalised in Ramsay (2007) to a shifted Pareto
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distribution with non-integer valued parameter. Later, Albrecher and Kortschak (2009)

consider a similar method to that of Ramsay [(2003),(2007)] to derive an exact expres-

sion for the classic (non-shifted) Pareto distribution.

1.5 The surplus prior and the deficit at ruin

The vast amount of attention spent on deriving results for the ruin probability shows

the level of interest such a quantity has created, however, many people argue that deter-

mining the probability of such an event does not provide enough practical information

to be of value. It is of much more use to consider closely related quantities that allow

for a much deeper analysis of an insurer’s surplus.

One of the first extensions to the classic ruin quantity was proposed by Gerber et

al. (1987), where the severity (deficit) of ruin, as well as its probability, is considered

by means of a d.f.G(u, y). This quantity not only captures the probability of ruin, but

also by ‘how much’ deficit the firm is exposed to.

Definition 15 (Deficit at ruin). Let T be the time of ruin in the Cramér-Lundberg

risk model. Then, the joint probability distribution of ruin and the deficit at the time

of ruin, denoted by G(u, y) for y > 0, is defined by

G(u, y) = P
(
T <∞, |U(T )| 6 y

∣∣U(0) = u
)
, (1.5.1)

and ∂
∂yG(u, y) = g(u, y) denotes its corresponding density function.

We point out that if the net profit condition holds, this quantity is a defective proba-

bility d.f., since

lim
y→∞

G(u, y) = ψ(u) < 1. (1.5.2)

Therefore, it is sometimes convenient to consider the corresponding conditional distri-

bution function

Gu(y) = P(|U(T )| < y
∣∣T <∞, U(0) = u) =

G(u, y)

ψ(u)
, (1.5.3)

which is in the form of a proper d.f.
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The deficit at ruin is of particular interest, in practice, due to the unrealistic notion

that a company will experience ‘ruin’ if their surplus drops slightly below zero (a

company would have prudent measures in place to help them recover such small losses).

Due to the fact that ruin, and thus a deficit, can only occur due to a claim, it is natural

to consider that the claim size distribution has a significant impact on the value of this

quantity. In fact, it is a well known result [see Bowers et al. (1997)] that the density

g(u, y), with zero initial capital, i.e. g(0, y), is proportional to the tail of the claim size

distribution.

Theorem 11. Consider the density function for the probability and deficit of ruin,

namely g(u, y), with initial capital U(0) = 0. Then, we have

g(0, y) =
λ

c
FX(y). (1.5.4)

Using the result of Theorem 11, Gerber et al. (1987) show that the joint d.f., G(u, y),

satisfies a familiar renewal equation of the form

G(u, y) =
λ

c

∫ u

0
G(u− x, y)FX(x) dx+

λ

c

∫ u+y

u
FX(x) dx, (1.5.5)

which is a generalisation of the renewal equation derived for the ruin probability, ψ(u),

given in equation (1.2.9). Instead of solving the above renewal equation directly, as in

the case of the ruin probability, they first consider a corresponding renewal equation

for the density, g(u, y), found by differentiating both sides of equation (1.5.5) with

respect to y, from which they derive an explicit expression for the transform γ(r, y) =∫∞
0 erug(u, y) dy. It then remains to invert this form of the transform to obtain explicit

expressions for the density g(u, y) and thus G(u, y), which they show can be easily

found for a combination of exponentials and a combination of gamma distributions.

Proposition 4 (Exponential claim sizes). Let the claim sizes be exponentially dis-

tributed with parameter β > 0, i.e.FX(x) = 1−e−βx. Then, the joint d.f. for the deficit
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at ruin, G(u, y), is given by

G(u, y) = ψ(u)
(

1− e−βy
)

=
λ

βc
e−

λη
c
u(1− e−βy), (1.5.6)

with corresponding density function, g(u, y), given by

g(u, y) = βψ(u)e−βy

=
λ

c
e−

λη
c
ue−βy. (1.5.7)

On the other hand, there exists a unique, locally bounded solution to the renewal

equation, given by (1.5.5), for general claim size distribution, in terms of its convolutions

[see Lemma 6.1.2, Rolski et al. (1991)], given by

G(u, y) =

∫ u

0

∞∑
n=0

h∗n(x)

∫ u−x+y

u−x
h(z) dz dx, (1.5.8)

where h∗n(x) is the n-fold convolution of the function h(x) = (λ/c)FX(x).

Remark 5. We point out, by taking the limit y → ∞ in the above result, we recover

Beekman’s formula for the ruin probability, ψ(u), given in equation (1.2.11).

Following from the introduction of the deficit at ruin, Dufresne and Gerber (1988)

investigate the distribution of the amount of surplus immediately prior to the time of

ruin and derive a rather surprising symmetry between these two quantities when the

initial capital of the insurer is zero. Later, Dickson (1992) provides explicit solutions to

the function described in Dufresne and Gerber (1988) when the probability and severity

of ruin are known and discusses the analytic properties of their relationship, see also

Dickson and Waters (1996), Dickson and Dos Reis (1996), Willmot and Lin (1998) and

Schmidli (1999), among others.

A further quantity of interest is the time to ruin, for which Delbaen (1990) considers

its distribution and proves that the p-th moment of the time to ruin exists if and only

if the (p + 1)-th moment of the claim sizes exists. Later, Picard and Lefèvre (1998)
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derive exact expressions for these moments for any arithmetic claim size distribution.

1.6 Expected discounted penalty function

In an attempt to unify these relevant quantities Gerber and Shiu (1997) generalise the

results of Dickson (1992) and derive a renewal equation for the joint distribution of the

time of ruin (represented by its LT), the surplus immediately prior to ruin and the deficit

at ruin. Later, in the seminal paper of Gerber and Shiu (1998), a unified approach to

deal with all the ruin related quantities, in the form of one elegant function denoting

the expected discounted penalty at ruin (also known as the Gerber-Shiu function), is

considered. We point out that the Gerber-Shiu function provides, not only a unified

modelling of many ruin based quantities, but also introduces a ‘penalty’ at ruin, which

may be incurred by an insurance firm in practice.

Definition 16 (Gerber-Shiu function). Let T be the time to ruin and w(x, y) be a non-

negative function for x > 0 and y > 0. Then, the expected discounted penalty function

is defined by

mδ(u) = E
(
e−δTw(U(T−), |U(T )|)I{T<∞}|U(0) = u

)
, (1.6.1)

where δ > 0 is considered to be a force of interest and w(x, y), x, y > 0 is a non-negative

function denoting the penalty at ruin.

We point out that although δ > 0 is interpreted as a force of interest, it can also

be considered as a dummy variable in the context of LTs and thus, the Gerber-Shiu

function can be used to analyse the time to ruin via its LT.

1.6.1 Integro-differential equation for the Gerber-Shiu function

In a similar way to the probability of ruin, Gerber and Shiu (1998) show that the

expected discounted penalty function satisfies an integro-differential equation and a

renewal equation which generalise equations (1.2.6) and (1.2.9), respectively.
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Theorem 12. For δ > 0 and u > 0, the expected discounted penalty function, mδ(u),

satisfies the integro-differential equation

cm′δ(u) = (δ + λ)mδ(u)− λ
[∫ u

0
mδ(u− x) dFX(x) + ω(u)

]
, (1.6.2)

where ω(u) =
∫∞
u w(u, y − u)dFX(y), with boundary condition

lim
u→∞

mδ(u) = 0.

The emergence of this result has seen a shift in the risk theory literature from the ruin

function to the newly defined expected discounted penalty function, due to the broader

analysis such a quantity provides and also, since the aforementioned results for the ruin

related quantities can be recovered as special cases. For example:

• Setting δ = 0 and w(x, y) ≡ 1, for all x, y > 0, we obtain the probability of ruin,

i.e.

mδ(u) = E(I{T<∞}
∣∣U(0) = u)

= P(T <∞
∣∣U(0) = u) = ψ(u),

and the IDE given in equation (1.6.2) reduces to the IDE given for ψ(u) in equa-

tion (1.2.6).

• Setting δ = 0 and w(x, y) ≡ I{|U(T )|6y}, for all x, y > 0, we obtain the joint d.f. of

ruin and the deficit at ruin, i.e.

mδ(u) = E(I{T<∞}I{|U(T )|6y}
∣∣U(0) = u)

= P(T <∞, |U(T )| 6 y
∣∣U(0) = u) = G(u, y).

• Setting δ = 0 and w(x, y) ≡ I{U(T−)6x}, for all x, y > 0, we get the joint d.f. of
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ruin and the surplus immediately prior to ruin, i.e.

mδ(u) = E(I{T<∞}I{U(T−)6x}
∣∣U(0) = u)

= P(T <∞, U(T−) 6 x
∣∣U(0) = u).

• Setting δ = 0 and w(x, y) ≡ I{U(T−)6x}I{|U(T )|6y}, for all x, y > 0, we obtain the

joint d.f. of ruin, the surplus immediately prior to ruin and the deficit at ruin, i.e.

mδ(u) = E(I{T<∞}I{|U(T )|6y}I{U(T−)6x}
∣∣U(0) = u)

= P(T <∞, |U(T )| 6 y, U(T−) 6 x
∣∣U(0) = u).

• For δ > 0 and w(x, y) ≡ 1, for all x, y > 0, we obtain

mδ(u) = E(eδT I{T<∞}
∣∣U(0) = u),

which denotes the LT of the time to ruin.

• Setting δ = 0 and w(x, y) = I{U(T−)+|U(T )|6x} for x > 0, we obtain

mδ(u) = E(I{T<∞}I{U(T−)+|U(T )|6x}
∣∣U(0) = u)

= P(T <∞, U(T−) + |U(T )| 6 x
∣∣U(0) = u).

which denotes the d.f. of the amount of the claim causing ruin.

As in the case of the ruin probability, the problem remains to solve the IDE, given

in equation (1.6.2), to derive explicit results for the Gerber-Shiu function. Similar

techniques/methodologies as in subsection 1.2.1-1.2.4 have been applied, as well as al-

ternative methods, in order to derive explicit expressions, see among others Lin and

Willmot (1999) and Li and Garrido (2004), (2005). However, as a matter of succinct-

ness, we only present a few results in the following.
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1.6.2 Algebraic operator approach

The algebraic operator approach, employed in Albrecher et al. (2010), provides an op-

erator based method of solving the IDE, given in equation (1.6.2). Application of this

method results in an explicit solution to the Gerber-Shiu function, in terms of Green’s

operators, for a general class of claim size distributions with rational LTs, or equiv-

alently density functions satisfying the following linear ordinary differential equation

(LODE):

pX

(
d

dx

)
fX(x) = 0, (1.6.3)

with homogeneous boundary conditions

f
(k)
X (0) = 0, k = 0, 1, . . . , n− 2,

f
(n−1)
X (0) = b0,

where pX(x) = xn + bn−1x
n−1 + · · · + b0 is a polynomial with real coefficients bj ,

j = 0, . . . , n and b0 6= 0. The solution is derived by reducing the IDE to a lin-

ear boundary value problem, with appropriate boundary conditions and employing

symbolic methods developed in Rosenkranz (2005) and Rosenkranz and Regensburger

(2008) for computing the Green’s integral operator that maps the penalty function to

the corresponding Gerber-Shiu function. The method relies on the factorisation of the

differential operator using the roots of a generalised Lundberg’s fundamental equation.

Theorem 13. Assume the claim size density function, fX(x), for x > 0, satisfies

equation (1.6.3). Then, the Gerber-Shiu function, mδ(u), is given by

mδ(u) = GσGρf(u) +mp
δ(u),

where Gσ, Gρ denote the Green’s operators with respect to the roots {σi}i∈N and {ρi}i∈N
of the generalised Lundberg’s fundamental equation with negative and positive real parts,

respectively. The function f(u) is given by

f(u) = λb0pX

(
d

dx

)∫ ∞
x

w(u, y − u) dFX(y),
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and mp
δ(u) is the particular solution of the form

mp
δ(u) =

m∑
i=1

aie
σiu,

with co-efficients {ai}i∈N dependening on the boundary conditions m
(k)
δ (0) for k =

0, . . . , n− 1.

Remark 6. We point out that the algebraic operator results, obtained in Albrecher et

al. (2010), are derived for a more general renewal risk model, with inter-arrival dis-

tribution satisfying a similar LODE as given in equation (1.6.3). The result stated in

Theorem 13 corresponds to the the special case of the compound Poisson risk model.

1.6.3 Volterra integral equation for the Gerber-Shiu function

As already discussed, as well as satisfying the IDE, given in equation (1.6.2), Gerber

and Shiu (1998) show that the expected discounted penalty function also satisfies a

renewal equation similar to that given in (1.2.9), known as a Volterra equation.

Theorem 14. The expected discounted penalty function, mδ(u), satisfies the Volterra

equation

mδ(u) =
λ

c

(∫ ∞
u

eξ(x−u)ω(x)dx+

∫ u

0
mδ(u− x)

∫ ∞
x

eξ(y−x) dFX(y) dx

)
, (1.6.4)

where ξ ≡ ξ(δ) 6 0 is the unique nonpositive solution to the modified Lundberg equation

given by

θ(s)− δ = 0, (1.6.5)

where θ(s) is given in equation (1.3.4).

Alternatively, if we define the functions

h(u) =
λ

c

∫ ∞
u

eξ(x−u)ω(x)dx

and

g(u) =
λ

c

∫ ∞
u

eξ(y−u) dFX(y)
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the Volterra equation, given in (1.6.4), reduces to

mδ(u) = h(u) + (mδ ∗ g) (u), (1.6.6)

which can be easily seen, by successive substitution (or by method of LTs), has the

so-called Neumann series solution [see Gerber and Shiu (1998)], of the form

mδ(u) =

∞∑
n=0

(h ∗ g∗n)(u).

The Neumann series solution, given above, is in fact a generalisation of the convolution

series given in equation (1.5.8) and thus a generalisation of Beekman’s formula given

in equation (1.2.11) for the ruin probability.

Alternatively, Lin and Willmot (1999) provide a solution to a general defective

renewal equation (of which equation (1.6.4) is a special case) in terms of the tail of a

compound geometric d.f. Consider the defective renewal equation

mδ(u) =
1

1 + β

∫ u

0
mδ(u− x) dG(x) +

1

1 + β
H(u), u > 0, (1.6.7)

where β > 0, G(x) = 1−G(x) is a d.f. with G(0) = 0, and H(u) is continuous for u > 0.

Now, define the associated compound geometric d.f. K(u) = 1−K(u) by

K(u) =
∞∑
n=1

β

1 + β

(
1

1 + β

)n
G
∗n

(u), u > 0,

where G
∗n

(u) is the tail of the n-th fold convolution of G(u).

Theorem 15. The solution, mδ(u), to equation (1.6.7) may be expressed as

mδ(u) =
1

β

∫ u

0
H(u− x) dK(x) +

1

1 + β
H(u), u > 0.

Proof. Let ĝ(s) =
∫∞

0 e−su dG(u) be the Laplace-Stieltjes transform of G(x). Then,
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the Laplace-Stieltjes transform of K(x), is given by

k̂(s) = K(0) +

∫ ∞
0

e−su dK(u)

= K(0) +
β

1 + β

∞∑
n=1

(
1

1 + β

)n ∫ ∞
0

e−su dG∗n(u)

= K(0) +
β

1 + β

∞∑
n=1

(
1

1 + β

)n ∫ ∞
0

e−sug∗n(u) du

= K(0) +
β

1 + β

∞∑
n=1

(
ĝ(s)

1 + β

)n
=

β

1 + β + ĝ(s)
.

Also, let m̂δ(s) =
∫∞

0 e−sumδ(u) du and Ĥ(s) =
∫∞

0 e−suH(u) du. Then, from equation

(1.6.7), we have

m̂δ(s) =
Ĥ(s)

1 + β − ĝ(s)
=

1

β
Ĥ(s)k̂(s),

which, upon inversion of the LT, yields the result.

1.6.4 Asymptotic results for the Gerber-Shiu function

In a similar way as for the ruin probability, Gerber and Shiu (1998) derive the asymp-

totic behaviour of the expected discounted penalty function, as u→∞.

Firstly, from the renewal equation given in equation (1.6.4), since ξ 6 0, it follows

that

∫ ∞
0

g(x) dx =
λ

c

∫ ∞
0

∫ ∞
x

eξ(y−x) dFX(y) dx

6
λµ

c
< 1,

by the net profit condition and thus, equation (1.6.4) is a defective renewal equation.

Then, following a similar method to that in the proof of Theorem 9, we seek an s > 0,
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such that

1 =

∫ ∞
0

esxg(x) dx =
λ

c

∫ ∞
0

esx
∫ ∞
x

eξ(y−x) dFX(y) dx

=
λ

c(s− ξ)

∫ ∞
0

(
e(s−ξ)y − 1

)
eξydFX(y)

=
λ

c(s− ξ)
(MX(s)−MX(ξ)) ,

which, since ξ ≡ ξ(δ) < 0 is the nonpositive root satisfying θ(ξ)− δ = 0, reduces to

1 =
λMX(s)− (δ + cξ + λ)

c(s− ξ)
.

If such a solution exists, we call it γ(δ) > 0. Note that, for δ = 0, it follows that

ξ(δ) = 0 and the above equation reduces to the form of equation (1.4.3), from which it

follows that γ(0) = γ > 0 is the Lundberg coefficient discussed previously.

Now, multiplying equation (1.6.4) through by eγ(δ)u, yields

eγ(δ)umδ(u) =
λ

c

(
eγ(δ)u

∫ ∞
u

eξ(x−u)ω(x)dx

+

∫ u

0
eγ(δ)(u−x)mδ(u− x)

∫ ∞
x

eγ(δ)xeξ(y−x) dFX(y) dx

)
,

(1.6.8)

which is a proper renewal equation and thus, by Key Renewal Theorem [see Theorem

8] we have the following theorem, as given in Gerber and Shiu (1998).

Theorem 16. Assume the adjustment coefficient, γ(δ) > 0, exists. Then

lim
u→∞

mδ(u)eγ(δ)u =
λ
∫∞

0

∫∞
0 w(x, y)

(
eγ(δ)x − eξx

)
fX(x+ y) dx dy

−λM ′X(γ)− c
, (1.6.9)

where ξ ≡ ξ(δ) 6 0 is the nonpositive solution to the modified Lundberg equation

θ(s)− δ = 0.
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1.7 Extensions of the classical risk model

In recent years the classical risk model has been the cause of much debate between

those studying mathematical theory and practitioners in the actuarial industry - since

it does not accurately reflect the reality - which has been the catalyst for the expansion

of much more general models, a few of which will be discussed in the following.

1.7.1 Renewal and the Markov-modulated risk model

The first major development to the classic risk model was introduced in Sparre An-

derson (1957). In this work, the underlying assumption regarding the distribution of

the claim arrivals is weakened such that the inter-arrival times between claims are still

i.i.d. but with arbitrary distribution. Then, under this relaxed setting, the counting pro-

cess, namely {N(t)}t>0, becomes a renewal process, as discussed in Section 1.1. This

renewal model, now known as the Sparre Anderson model, allows for a more flexible

analysis of an insurer’s surplus, with weaker assumptions in terms of the claim arrival

distribution and has been extensively studied in the actuarial literature. Detailed stud-

ies of the ruin probability and the Gerber-Shiu function can be found, among others

in Dickson and Hipp (1998, 2000), Li and Garrido (2004), Gerber and Shiu (2005) and

Chadjiconstantinidis and Papaioannou (2009). Although the Sparre Andersen model

generalises the classic risk process, the i.i.d. property of the inter-arrival times still limits

its capability to accurately reflect the reality.

In practice, there exist periods of time where the arrival intensity may fluctuate

due to external factors, such as the weather, natural disasters and economic condi-

tions. Thus, the assumption of i.i.d. inter-arrival times becomes unfavourable and a

model which incorporates the volatility of arrival intensities is convenient. Reinhard

(1984) presented such a model by introducing a class of semi-Markov risk models, where

the claim inter-arrival times are assumed to be exponential, with parameter λi > 0,

i ∈ E, when an external environmental Markov process is in some state i ∈ E. Under

this setting, Reinhard (1984) obtained explicit expressions for the infinite-time survival

probabilities of a special case. The ruin (survival) probabilities and Gerber-Shiu func-

tions have since been extensively studied under this setting, see Asmussen et al. (1995),
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Bäuerle (1996), Jasiulewicz (2001), Lu and Li (2005), Li and Lu (2008), and references

therein.

1.7.2 Dividends

Over the years the ruin probability has been criticised as being an ‘artificial’ measure

and can cause ‘economically strange decisions’ [see Eisenberg and Schmidli (2011)].

For example, in the Cramér-Lundberg model, it is assumed that the surplus of an

insurance company can increase indefinitely without bound, which is unrealistic. De

Finetti (1957) proposed that dividend payments need to be factored into the model and

an alternative measure of risk was introduced to reflect the value of a dividend stream

in a portfolio. A ‘dividend’ is a sum of money paid regularly (typically annually) by

a company to its shareholders out of its reserves and thus, the success of a company

can be measured by the maximal future dividend payments. This naturally leads to

the question of what is the optimal strategy to maximise dividend payments whilst

minimising the probability of insolvency? De Finetti (1957) found such a strategy to be

a barrier strategy, where any excess income above the constant dividend barrier is paid

out continuously to the shareholders, whilst below, the process evolves as in the classical

model. The constant dividend barrier problem, in the Poisson process framework, has

been studied in Bühlmann(1970), Segerdahl(1970), Paulsen and Gjessing (1997), Lin et

al. (2003), Dickson and Waters (2004), Lin and Pavlova (2006) and references therein.

Although it was shown that the constant dividend barrier is optimal, De Finetti (1957)

also described how such a strategy - even under the net profit condition - causes ruin

with probability one, thus, further strategies have been studied to determine their

efficiency within an insurance portfolio. Gerber (1981) considers a linear dividend

strategy, such that the dividend barrier changes (linearly) with time, i.e. the level of

the barrier at time t > 0 is given by b(t) = b+at. The actuarial literature has since seen

an explosion of research for optimal dividend strategies, which will not be discussed

here, but the reader is directed to Avanzi (2009) for a comprehensive review of these

results.
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1.7.3 Stochastic investment

Within the insurance market, companies not only rely on income from premiums, since

a significant percentage of their wealth is gained from returns on investment. Originally,

Sergerdahl [(1942), (1959)] and Gerber [(1973), (1979)], among others, considered this

important factor and modelled deterministic returns from investment - this type of

‘riskless’ return comes from derivatives such as bonds. Modelling investment portfolios

solely with derivatives of deterministic return is unrealistic. In practice, an insurer’s

portfolio will comprise of a delicate mixture of both ‘riskless’ and ‘risky’ assets, where

the term ‘risky’ refers to the random returns/losses received on stocks in the financial

market. The generalisation to stochastic returns on investment was first proposed in

Paulsen (1993), as an extension to the previously analysed deterministic returns, as

a way of capturing the inherent risks associated with investing in the financial equity

markets. In this work, the author initially considers a rather general form of both the

risk model and the returns from investment, by proposing both are contained in the

broad set of semi-martingales. In order to conduct a more tractable analysis Paulsen

restricts the model from this general setting and is able to derive several results.

Since the appearance of this work the risk model with stochastic investment became

a ‘hot topic’ and has produced a library of results. Paulsen and Gjessing (1997) show

that, under the restricted setting of Paulsen (1993), the ruin probability can be found, in

general, by solving boundary value problems involving IDEs and derive some results for

special cases. Frolova et al. (2001) consider a slightly more refined version of the work

in Paulsen and Gjessing (1997), and assume that the price of the risky asset follows

a geometric Brownian motion - this is one of the main assumptions for the market

conditions in Black and Scholes (1973) where the famous Black-Scholes model for option

pricing was first derived - and show that, under exponentially distributed claim sizes,

the asymptotic behaviour of the ruin probability no longer decays exponentially, but as

a power function depending solely on the parameters of the investment, which indicates

the potential dangers of investing in financial derivatives.
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1.7.4 Capital injections

One fundamental characteristic of the hitherto defined ruin probability is the assump-

tion that the surplus (company) stops once a deficit below zero is realised. All businesses

(not just in the insurance market) have stringent measures in place to help protect them

against such an event as having to completely cease its operation due to insolvency.

One example of such safeguarding measures prevalent in practice, is capital injections.

Capital injections are, as the name suggests, an injection of capital into the company

(which may appear in several forms) with the main sources usually coming from the

shareholders, national government or from a pre-arranged re-insurance agreement. In

fact, in connection with dividend payments mentioned above, Dickson and Waters

(2004) propose “As the shareholders benefit from the dividends income until ruin, it is

reasonable to expect that the shareholders provide the initial surplus u and take care

of the deficit at ruin.”. In this thesis we will consider that the primary source of capital

injections is from such an agreement, but the results and methods applied still make

sense under government funding or re-insurance contracts. Pafumi (1998) considers the

latter, where the contract is as follows: whenever the surplus is negative, the reinsurer

makes the necessary payment to bring the surplus back to zero, instantaneously. In this

set up it is clear that ‘ruin’, in the classical sense, can no longer occur and the company

can continue indefinitely, thus it becomes of interest to find the net single premium

of this contract, which is the expected sum of discounted future injections. A similar

model is considered by Eisenberg and Schmidli (2011), where a retention level reinsur-

ance contract is analysed whilst the insurer is forced to inject capital to keep company

solvent. There exists a broad literature on reinsurance within risk theory, however we

will not discuss it in details in this thesis [for more details, see Dickson (2005) and

references therein]. Although the addition of such injections, which eliminate the event

of ruin, seems to be another extreme, it presents a basis for further application and

detailed analysis of capital injections. Nie et al. (2011) introduce a model where the

capital injections are required to bring the surplus back to some level k > 0, when the

surplus falls below this level, and ruin occurs if the surplus ever falls below the zero

barrier. In this model the concept of ruin has been reintroduced and provides a more
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realistic application of capital injections (this two barrier model can be easily adapted

such that the ruin barrier is below zero if required). In this work the ruin probability

is again the measure of interest and the method for solving is similar to the method

of deriving expected discounted capital injections in the aforementioned articles. More

details on this derivation and other results regarding capital injections will be given in

the proceeding chapter.

1.8 Summary and thesis breakdown

In this thesis, we will consider three separate models analysing the capital recovery

plans of insurance firms and other lines of business. Within each model, it is assumed

that a company is allowed to continue when in a deficit, however, during this pe-

riod, the company is required to recover their capital requirements subject to different

regulatory constraints. If these regulations are not met, the company experiences ulti-

mate ruin/insolvency and is no longer authorised to continue trading. In more details,

within Chapter 2, we generalise the classical risk model to comply with the recently

enforced capital requirement regulations under the Solvency II directive. Under this

modification, where we introduce three constant barriers to model capital requirement

thresholds under the Solvency II framework, we derive an expression for the probabil-

ity of insolvency in terms of the ruin quantities of the classic Cramér-Lundberg risk

model, defined above. Moreover, we show that the moment generating function of a

risk quantity related to the accumulated capital injections, required to keep the com-

pany solvent, is a mixture of a degenerate and continuous distribution. We further

show that the inclusion of a fourth constant dividend barrier produces similar results,

where the probability of insolvency is given in terms of ruin quantities for the classic

risk model with a constant dividend barrier strategy and is ultimately equal to 1, as

to be expected in such a setting. In Chapter 3, we revert back to a classic risk model

(without Solvency II constraints) and analyse the ultimate ruin probability for a risk

model with capital injections. In this model, it is assumed that the capital injections

are received after some time delay, from the moment of a deficit, which depends on the

size of the deficit and corresponding capital injection. Under this setting, we show that
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the ultimate ruin probability, defined in a slightly different way to the classical sense,

satisfies an inhomogeneous Fredholm integral equation of the second kind, which under

certain dependency structures can be solved explicitly, in terms of classic ruin quantities

or given by a Neumann series when a more explicit dependence is assumed. Moreover,

we consider two risk related quantities, namely the expected discounted accumulated

capital injections and the expected discounted accumulated time in red (deficit) up to

the time of ultimate ruin, which are shown to also satisfy a similar Fredholm integral

equation and are solved explicitly. Finally, in Chapter 4, we analyse the so-called dual

risk model in discrete-time. In this model, which better captures the risk portfolio

of different business lines, such as pharmaceutical or petroleum businesses, we assume

that the company is allowed to continue trading when in a deficit for a fixed amount

of time. If the company is unable to recover from a deficit, within this pre-specified

time interval, from normal trading strategies, the company experiences ultimate ruin.

This event of ultimate ruin is known in the literature as Parisian ruin. Using the

strong Markov property of the risk process, we derive a recursive expression for the

finite-time Parisian ruin probability, which can be used to obtain an explicit expression

for the corresponding infinite-time case, in terms of the classical dual ruin probability

in discrete-time. We further provide an alternate derivation of the classic dual ruin

probability, which we use to analyse some specific examples, including an extension to

the well known gambler’s ruin problem.



Chapter 2
Ruin Probabilities Under Solvency II

Constraints

A fundamental characteristic of the classic Cramér-Lundberg risk model is that the

surplus of an insurance firm is allowed to evolve freely until the event of down crossing

the zero level (theoretical ruin). This (unrestricted) behaviour does not capture the

dynamics of insurance undertakings in reality.

In practice, financial institutions such as banks and insurance companies, have to

continuously maintain a surplus level, known as capital requirements, subject to a

solvency rule. The main objective of the solvency rule is to help avoid insolvency (ruin)

and thus create more protection, and confidence, for the consumers and for economic

stability. That is, for example, an insurance business must hold a minimum level of

available funds to cover any expected future liabilities and a drop (in funds) below such

a level may result in the withdrawal of their trading license and liquidation of assets to

pay outstanding debts. In the context of risk theory, this ‘solvency level’ is equivalent

to a theoretical ruin barrier much higher than the zero level considered throughout the

actuarial literature.

The original European solvency directives were introduced in the 1970’s as an initial

step towards a single market for insurance throughout the European Union (EU). After

a review of those directives, performed by the European Commission in the 1990’s, it

45
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was identified that some areas were in need of updating, especially those related with

capital requirements. A new solvency rule, known as Solvency I, was subsequently

implemented in 2004. This directive used a simple robust model to calculate capital

requirements using mainly ratios, in a sort of ‘one model fits all’ plan. These calculations

only focused on certain risks and, therefore, the model was not sufficiently risk sensitive

and didn’t capture new or merged risks. The simple formula approach disregards the

complete risk profile of the business, leading to lower capital requirements and in turn a

greater chance of insolvency. Therefore, in January 2016, a new legislation known as the

Solvency II directive (Directive 2009/138/EC, see EU Commission) was implemented

throughout all insurance companies within the EU to create a more sophisticated and

harmonised solvency framework.

2.1 Solvency II

Solvency II (SII) is the new prudential regulatory regime with the objectives of: pro-

viding an enhanced and more consistent level of protection for policyholders across the

EU, improving the firm’s understanding and management of its risks (by accurately

directing capital throughout the business) and allowing the prudential authorities (reg-

ulators), and EIOPA (European Insurance and Occupational Pensions Authority), to

effectively monitor the insurance institutions. The Solvency II framework encompasses

a three pillar structure:

1. Pillar 1 contains the quantitative capital requirements that the firm will be re-

quired to meet based on a market consistent value basis. In more details, Pillar 1

sets two capital requirements providing an upper and lower level of a supervisory

intervention ladder. The Solvency Capital Requirement (SCR) forms the upper

level, above which the insurance firm is considered to be sufficiently capitalised

and no intervention is necessary. The SCR has to be fulfilled by insurance insti-

tutions to assure a theoretical ruin probability of 0.005 (ruin occurs on average

no more often than once in every 200 years). The Minimum Capital Requirement

(MCR) is the lower level below which the regulator’s strongest actions are taken
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(e.g. removal of the insurer’s authorisation).

2. Pillar 2 comprises the qualitative risk management and governance requirements.

Within Pillar 2, insurers are required to carry out an Own Risk and Solvency

Assessment (ORSA), which is reviewed by the regulator. The main objective

of an ORSA is to understand and manage risk exposure that the regulatory

capital requirements of Pillar 1 may not capture and are difficult to quantify. For

example, some insurance firms may be exposed to long-term effects of climate

change which are not necessarily significant over the one year time horizon used

in the calibration of the SCR (see below). Thus, the ORSA provides further

understanding and helps manage all risks to which the firm may be exposed.

3. Pillar 3 concerns the reporting and disclosure requirements, with the aim of im-

proving the availability of information to the market. This improved market

transparency should increase the participants understanding of an insurer’s busi-

ness and risks, therefore strengthening market discipline.

In this chapter, we will be mostly concerned with the capital requirements, and ladder

of supervisory intervention, introduced under Pillar 1. The capital requirements, with

regards to the required ‘eligible’ capital that needs to be held by the insurer under SII,

are calculated using a layered system (see Figure: 2.1). The bottom layer comprises the

Technical Provisions (TP) which is expressed as the sum of the best estimate liabilities,

valued as the discounted expected future liability cash flow, and a risk margin which

is the cost to transfer its commitments to another company, that is able to fulfil such

obligations, if the insurer cannot continue its business. The top layer corresponds to

the aforementioned SCR. The SCR is calibrated using the Value at Risk (VaR) of the

basic own funds of an insurance or reinsurance undertaking, subject to a confidence

level of 99.5 % over a one-year period. This calibration is applied to each individual

risk module and sub-module an insurance firm faces, which is then combined using a

specified correlation matrix and matrix multiplication. The same kind of calibration

lies in the heart of regulatory regimes for capital requirements applied in the US (Risk

Base Capital, RBC, see Cofield et al. (2012)), China (China Risk Oriented Solvency
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System, C-ROSS, see The Actuarial Magazine, Feb/April (2014)), and Switzerland

(Swiss Solvency Test, see FINMA (2006)). Finally, the MCR, which must lie in be-

tween 25%-45% of the SCR, is calculated for each individual business line given by

pre-specified (business line dependent) factors, applied to technical provisions and/or

written premiums.

Figure 2.1: Solvency II balance sheet

In spite of its popularity, VaR has been criticised over recent years since it ignores

events occurring in the tails, which creates an incentive to take excessive but remote

risks [see Einhorn and Brown (2008)]. Moreover, Trufin et al. (2011) argue that since

VaR is usually defined in terms of a given time horizon (one year under SII), it does not

reflect the possible adverse financial situations between or beyond the specified time

interval (as explained above in regards to ORSA). On the other hand, in an insurance

context, the ruin probability, which can be interpreted as the continuous alternative to

VaR, is considered as a somewhat more robust measure which can reflect the risk in a

random environment. The strong connection between VaR and the ruin probability, as

a risk measure, has been considered by Cheridito et al. (2006), Trufin et al. (2011), Ren

(2012), Loisel and Gerber (2012), Gatto and Baumgartner (2014) and the references

therein. According to Loisel and Gerber (2012) “ruin theory provides a more sustainable

valuation principle (than the single use of the VaR approach) since it takes into account

liquidity constraints and penalises large position sizes”. In view of this connection, we
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will apply the capital requirement constraints of the SII framework to ruin theory,

allowing us to utilise the vast array of mathematical tools within the literature to

derive and analyse the performance of the business. In particular, the probability

that the surplus of an insurer breaches the MCR level, i.e. experiences insolvency/ruin.

Although SII regulation is the framework under which insurance firms now operate, it

appears that only a few papers have been written in the risk theory context. Ferriero

(2016) derives practical estimators for the capital requirements in a fractional Brownian

motion risk model. Floryszczak et al. (2016) confirm that the least-squares Monte-Carlo

method is relevant to SII framework, for the capital requirements of an insurance firm,

and Asimit et al. (2015) propose optimal allocations for the premium and the liabilities

in order to reduce the MCR level.

2.2 Capital Injections

The SII balance sheet (described above) requires that ‘eligible’ capital is (at all times)

in excess of the SCR. If at any point the firm breaches the SCR, it must consider a

plan to restore its capital back to the SCR level as soon as possible. If the financial

situation of the insurer continues to deteriorate, the level of supervisory intervention

will be progressively intensified and, if despite intervention, the available capital falls

below the MCR, ‘ultimate supervisory action’ will be triggered and the insurer’s trading

license may be revoked (ruin).

There exist many different approaches to re-capitalisation under the SII framework,

however, it can be seen from market studies, that one of the most popular, and efficient

methods, is provided by capital injections. Capital injections are a re-capitalisation

mechanism often implemented by the shareholders, see for example, among others, the

report of the ING group insurance in the Netherlands [see Annual Report of (2010)], the

case of Liberty Insurance in Ireland [see Insurance Times Report (2017)], or MOODY’S

report of April 2016 [see MOODY’s Report (2016)], but in some cases can be provided

by government or reinsurance contracts.

The introduction of capital injections, within the risk theory context, was first

proposed by Pafumi (1998). In a discussion of Gerber and Shiu (1998), Pafumi (1998)
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proposes a reinsurance type contract, such that whenever the surplus of the insurer is

negative, the reinsurer makes the necessary payment (capital injection) to bring the

surplus back to the zero level. Under this amended surplus process, ruin can no longer

occur and the company continues indefinitely. The question that then arises is; How

can the premium of such a reinsurance contract be calculated? Pafumi (1998) considers

the answer of such a question to be an (unloaded) net single premium calculated as

the expected discounted sum of all future capital injections, which is a function of the

initial capital u > 0, denoted by A(u).

For the case u = 0, the following simple and explicit formula is obtained.

Proposition 5. Let A(u), for u > 0, denote the expected discounted sum of future

capital injections and let ξ ≡ ξ(δ) be the non-positive root to the generalised Lundberg

equation given by equation (1.6.5). Then, for u = 0, we have

A(0) =
1

ξ
− c− λµ

δ
.

Moreover, for u > 0, when the surplus of the insurer is negative for the first time, the

reinsurer has to make an immediate capital injection, say Y1, and reserve the amount

A(0) for future payments. Thus, it follows that the single net premium, namely A(u),

is a special case of the Gerber-Shiu function, i.e.

A(u) = mδ(u),

with corresponding penalty function w(x, y) = y +A(0), y > 0.

An alternative, and more realistic, source of capital injections come from the com-

panies shareholders. Since it is within their interest to keep the company solvent, the

shareholders may be willing to raise the necessary capital to keep the firm operating,

as long as it remains profitable for them to do so. However, in exchange for this risk

exposure, the shareholders may require some financial incentive in the form of dividend

payments. Dickson and Waters (2004) propose the counter argument and assume that

“As the shareholders benefit from the dividend income until ruin, it is reasonable to

expect that the shareholders provide the initial surplus u and take care of the deficit at
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ruin.” In this work, it is considered that in exchange for the dividend payments, which

are paid according to a constant barrier strategy, the shareholders cover the initial

capital and the deficit at ruin. It turns out that, under such an agreement, the optimal

constant dividend barrier, which maximises the expected discounted dividends minus

the initial capital and expected discounted capital injections, is at the zero level. That

is, the optimal strategy is for the shareholders to take control of the company and act

as the insurer directly, i.e. receive all premiums as dividend payments in exchange for

covering all claims. For further results on the connection between dividends strategies

and capital injections, with particular emphasis on the optimal strategies, see among

others Kulenko and Schmidli (2008), Scheer and Schmidli (2011) and Li and Liu (2015)

in the Cramér-Lundberg risk model, Dai et al. (2010), Avanzi et al. (2011) and Yao et

al. (2011) in the dual risk model and Wu (2013) for the diffusion approximation risk

model. We point out that in these papers, the ‘value’ of the strategy to be optimised is

the expected discounted dividends minus penalised discounted capital injections. The

reason for the penalty factor is to avoid the trivial solution found in Dickson and Waters

(2004).

Eisenberg and Schmidli (2009) consider a model where the capital injections are

provided by the shareholders in the absence of dividend payments. Alternatively, their

goal is to find a reinsurance strategy, for a diffusion approximation, that minimises

the expected discounted future capital injections. In this model, the insurer is allowed

to take out a reinsurance contract, r(X, b), with (potentially) dynamic retention level

b ≡ bt to cover some amount of the claim X. For example, r(X, b) = bX corresponds

to proportional (quota-share) reinsurance and r(X, b) = min(X, b) to excess of loss

reinsurance. In exchange for this cover, the insurer is required to pay a premium to the

reinsurer which is calculated via a (loaded) expected premium principle. It is assumed

that the loading factor of the reinsurer, say ηR, is greater than the safety loading of the

insurer, η, to avoid trivial solutions. The optimal reinsurance strategy is obtained and is

given by a constant retention level, dependent on the contract r(X, b). Later, Eisenberg

and Schmidli (2011) consider a similar strategy for the Cramér-Lundberg risk process.

As a particular example they consider the case where no reinsurance can be purchased
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and express the expected discounted capital injections as the linear combination of two

Gerber-Shiu functions. For the general case of a (potentially) dynamic retention level

b ≡ bt, the optimal strategy is not necessarily a constant strategy, as for the diffusion

approximation, and depends heavily on the model parameters. Interestingly, it is shown

that the optimal strategy in this model is different to the optimal reinsurance strategy

minimising the ruin probability. However, as in the case of the ruin probability, it is

shown that for capital close to zero, the optimal strategy is not to purchase reinsurance.

For more details on the optimal reinsurance models and a further consideration of

optimal investment strategies with capital injections see Eisenberg (2010).

In contrast to capital injections funded by the shareholders, Nie et al. (2011) revisit

the problem introduced by Pafumi (1998), and consider a reinsurance type contract

that provides the necessary capital to restore the surplus whenever it falls below some

constant level, k > 0. However, unlike the model proposed by Pafumi (1998), if the

insurer is exposed to a large enough claim, such that the surplus becomes negative,

ultimate ruin occurs at this point. The premium issued by the reinsurer, denoted by

Q(u, k), is calculated based on the expected (non)discounted capital injections until

the time of ruin. It is assumed that the insurer has an initial amount of funds U , which

is split to fund an initial capital u > k and premium Q(u, k) = U − u. The aim of the

paper is to find the optimal combination of u and k, with 0 6 k 6 u, that minimises

the probability of ultimate ruin, denoted ψk(u).

In more details, Nie et al. (2011) define ψk(u) to be the ultimate ruin probability,

for this modified surplus process with capital injection barrier 0 6 k 6 u, with corre-

sponding survival probability defined by φk(u) = 1− ψk(u). Then, by conditioning on

the amount of the first drop below the level k > 0, the ultimate ruin probability, for

u = k, satisfies

ψk(k) =

∫ k

0
g(0, y)ψk(k) dy +

∫ ∞
k

g(0, y) dy,

where g(u, y) is the density of the distribution of the deficit at ruin, G(u, y), given by

equation (1.5.1). After some algebraic manipulations, an expression for ψk(k), in terms
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of the classic probability of ruin (without capital injections), is given by

ψk(k) =
ψ(0)−G(0, k)

1−G(0, k)
.

Then, for the more general situation of u > k > 0, by considering the amount of the

first drop below the level k > 0, we have

φk(u) = φ(u− k) +G(u− k, k)φk(k),

or equivalently

ψk(u) = ψ(u− k)−G(u− k, k)
1− ψ(0)

1−G(0, k)
, (2.2.1)

where ψ(u) is the classic ruin probability defined in equation (1.2.3).

Remark 7. The advantage of expressing the ultimate ruin probability, ψk(u), in terms

of the classic ruin probability is that the classic quantities have been extensively studied

and explicit expressions can be found for many claim size distributions.

The premium principle for the reinsurance premium, Q(u, k), is calculated based on the

moments of the expected (non)discounted capital injections until ruin. Using a similar

argument as in Pafumi (1998), Nie et al. (2011) obtain explicit expressions for the first

and second moments of the expected (non)discounted capital injections, as follows: Let

the total accumulated capital injections, up to time t > 0, be denoted by the pure jump

process {Z(t)}t>0 and consider E(Zu,k), where Zu,k = Z(T ) is the accumulated capital

injections up to the time of ultimate ruin, given the initial capital level u > k. Then,

for u = k, using a similar argument as in Pafumi (1998), E(Zk,k) satisfies

E(Zk,k) =

∫ k

0
(y + E(Zk,k)) g(0, y) dy, (2.2.2)

which yields the solution

E(Zk,k) =

∫ k
0 yg(0, y) dy

1−G(0, k)
. (2.2.3)
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Employing a similar argument as above, it is shown that E(Zu,k), for u > k satisfies

E(Zu,k) =

∫ k

0
(y + E(Zk,k)) g(u− k, y) dy

=

∫ k

0
yg(u− k, y) dy + E(Zk,k)G(u− k, k). (2.2.4)

The second moment, E(Z2
u,k) is calculated using a similar methodology, however, for the

necessity of this thesis, we omit the calculations. In addition to the explicit expressions

for the first and second moments of the expected (non)discounted capital injections,

using the renewal property of the process and the independence between successive

capital injections (provided they occur), they derive the moment generating function

for this quantity. Starting from the case u = k, the probability that there exists a capital

injection is the probability that the surplus process drops, due to a claim, within the

interval [0, k), which happens with probability G(0, k) and the process restarts from

the level k > 0. Hence, if we let N denote the number of capital injections up to the

time of ultimate ruin, by the above reasoning, N has a geometric distribution with

probability mass function (p.m.f.), for n = 0, 1, 2, . . ., given by

P(N = n) = G(0, k)n (1−G(0, k)) ,

and, since the capital injection sizes, denoted by the sequence {Vi}∞i=1, are i.i.d. random

variables, Zk,k has a compound geometric form given by

Zk,k =
N∑
i=1

Vi,

where the common random variable V has p.d.f.

fV (y) =
g(0, y)

G(0, k)
, 0 6 y < k.

Therefore, it follows that the moment generating function of Zk,k, denoted by MZk,k(s),

is given by

MZk,k(s) =
1−G(0, k)

1−
∫ k

0 e
sxg(0, x) dx

. (2.2.5)
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Remark 8. We point out that in the paper of Nie et al. (2011), there is a small error in

the remaining calculations. As you will see in the following, for the general case Zu,k,

for u > k, it is necessary to consider a distribution, which is a mixture of a degenerate

distribution and a continuous distribution. In their paper, they forget to consider the

degenerate part of this distribution. Therefore, in the following, we present the corrected

version of their derivation.

In order to find the moment generating function for the case u > k, we first note that

Zu,k is equivalent in distribution to (Yu +Zk,k)I{A}, where Yu is the amount of the first

capital injection, starting from initial capital u > k and I{A} is the indicator function

with respect to the event that a capital injections occurs from initial capital u, denoted

A, with probability

P(A) = G(u− k, k).

Then, by definition, the p.d.f. of Yu is given by fY (y) = g(u − k, y)/G(u − k, k) and,

since Yu and Zk,k are independent, the moment generating function of Zu,k, is given by

MZu,k(s) = E
(
es(Yu+Zk,k)I{A}

)
= P(A)

(
MYu(s)MZk,k(s)

)
+ P(Ac).

Then, since

MYu(s) =

∫ k
0 e

syg(u− k, y) dy

G(u− k, k)
,

we have

MZu,k(s) = 1 + (1−G(0, k))

(∫ k
0 e

syg(u− k, y) dy

1−
∫ k

0 e
sxg(0, x) dx

)
−G(u− k, k). (2.2.6)

More recently, Nie et al. (2015) generalise the capital injection model, considered above,

to the Sparre Andersen (renewal) setting. They show that the density of the time to

ultimate ruin, in the capital injection amended surplus process, can be expressed in

terms of the density of the time to ruin in the ordinary Sparre Andersen risk model.

Finally, Dickson and Qazvini (2016) construct a Gerber-Shiu like function for the model
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proposed in Nie et al. (2011), incorporating the number of claims until ultimate ruin,

and derive an explicit expression for its LT. Although the result is not as efficient for

finding an expression for the ultimate ruin probability, compared to the derivation in

Nie et al. (2011), it provides an effective way to study ruin related quantities in finite

time. In particular, they derive a general expression for the joint distribution of the

time to ruin and the number of claims until ruin.

In the next section, we introduce a compound Poisson risk model that complies

with the SII capital requirements described above, where a graphical interpretation of

the model is given and the probability of insolvency is defined and explained.

2.3 The Solvency II risk model

In this section, we will consider the classical compound Poisson risk model, given in

equation (1.1.2), amended to incorporate capital recovery plans that are required under

the SII regulatory framework. In order to introduce the SII characteristics discussed

above, we assume the following:

1. If the surplus falls below the SCR (≡ k) level, due to the occurrence of a claim,

then the shareholders in the company inject capital instantaneously to cover this

fall, given that the MCR (≡ b̃) level has not been crossed. The sum of total capital

injections, up to time t > 0, is defined by the pure jump process {Z(t)}t>0.

2. Additionally, motivated by practice, we assume that there exists an intermediate

capital level barrier, in between the SCR and MCR, which indicates the confidence

level for which the shareholders are prepared to inject capital to restore the surplus

to the SCR level. If this intermediate level is breached, then the recovery action

of the insurance firm is to borrow capital from a third party, which needs to be

repaid subject to debit interest, until the confidence level of the shareholders is

reached and hence, the SCR can be restored by a capital injection. We call this

intermediate barrier the ‘confidence’ level and denote it by b, where k > b > b̃ > 0.

That is, if there exists a drop, due to a claim, of the surplus below the confidence

level b, the insurance firm is required to borrow an amount of money equal to the
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size of the deficit below b, at a debit force δ > 0, given that the (MCR) level b̃

has not been crossed.

3. When the surplus is within the debit interval (b̃, b), debts are repaid continuously

from the premium income. During this period of time, the insurance firm can

either recover back to level b (where the shareholders have renewed confidence

and will instantaneously inject the amount k − b in order to restore the surplus

to the SCR level) or becomes insolvent by falling, due to further claims, below

the MCR level [see Fig: 2.2].

Remark 9. The classic risk model, with the addition of debit interest on a negative

surplus, was originally studied in Gerber (1971), with further generalisations considered

in Dassios and Embrechts (1989), Embrechts and Schmidli (1994) and Cai (2007) to

name a few. Throughout the aforementioned papers, since the classical event of ruin no

longer holds, a new definition of ruin is given, known as ‘absolute ruin’, which occurs

at the point where the premiums are no longer sufficient to repay the interest payments

on the loan. By similar reasonings, we point out that the value of the confidence level,

b, must lie in the interval [b̃, b̃+ c
δ ], since the MCR level, namely b̃, is fixed. In order to

emphasise the effects of the debit environment and for simplicity of calculations, in the

remainder of this chapter we consider the case where b = b̃+ c/δ, which corresponds to

the absolute ruin level defined in the literature.

Considering the above features, the surplus process under the SII environment, denoted

by {UZδ (t)}t>0, has dynamics of the following form

dUZδ (t) =


cdt− dS(t), UZδ (t) > k,

k −
(
UZδ (t−)−∆S(t)

)
, b 6 UZδ (t−)−∆S(t) < k,[

c+ δ(UZδ (t)− b)
]
dt− dS(t), b̃ < UZδ (t) < b,

(2.3.1)

where ∆S(t) = S(t) − S(t−) and {S(t)}t>0 is a compound Poisson process as defined

in Definition 4.

The crucial features of the proposed risk model, under SII regulations, are the

capital management tools employed to reduce the probability of insolvency. Thus, it
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Figure 2.2: Typical sample path of the surplus process under SII constraints.

follows that for the surplus process {UZδ (t)}t>0, we should define the time to insolvency,

denoted by TZδ , as

TZδ = inf
{
t > 0 : UZδ (t) 6 b̃

}
,

with TZδ =∞ if UZδ (t) > b̃ for all t > 0. Then, the probability of insolvency, which we

denote ψSII(u), is given by

ψSII(u) = P
(
TZδ <∞

∣∣UZδ (0) = u
)
,

with ψSII(u) = 1 for u 6 b̃ and φSII(u) = 1−ψSII(u) is the corresponding solvency (sur-

vival) probability, denoting the probability that the insurance firm never experiences

insolvency.

Note that for b̃ = 0, the time of insolvency, TZδ , corresponds to the classical time of

ruin (in a risk model with capital injections and debit interest), which indicates that

in reality, the ruin level is greater than zero.

Although the SII regulation employs a one-year VaR risk measure (due to the

balance sheet approach), in this paper we analyse the infinite-time probability of insol-

vency. The main reason for focusing on the analysis of the probability of insolvency,

namely ψSII(u), is that we establish a closed form expression for the aforementioned
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risk quantity in terms of the ruin probability of the classical Cramér-Lundberg risk

model, for which numerous powerful results exist in the actuarial literature, as seen in

Chapter 1.

Finally, we point out, similar to Cai (2007), that ψSII(u) has different sample paths

for u > k and b̃ < u < b. Therefore, we distinguish between the two situations by

denoting ψSII(u) = ψ+
SII(u) for u > k and ψSII(u) = ψ−SII(u) for b̃ < u < b. Due to

the instantaneous capital injection when the surplus lies within the interval [b, k) we

say that for b 6 u < k, ψSII(u) = ψ+
SII(k). It follows that the corresponding solvency

(survival) probabilities are given by φSII(u) = 1 − ψSII(u) = φ+
SII(u), for u > k, and

φSII(u) = φ−SII(u) for b̃ < u < b. Finally, in order to ensure that insolvency is not

certain, we assume the net profit condition, given in Definition 8, holds.

2.4 Ruin probabilities for the SII risk model

In this section, we derive a closed form expression for the probability of insolvency

when u > k, namely ψ+
SII(u), in terms of the infinite-time ruin probability of the clas-

sical risk model and an exiting (hitting) probability between two barriers. Note that

ψ+
SII(u), is the risk quantity of primary interest as it is assumed (in compliance with SII

regulation) that the insurance firm starts from a solvent level, i.e.u > k. Ultimately,

we show that the probability of insolvency is proportional to the classical ruin function.

Corresponding formulae for ψ−SII(u), b̃ < u < b, are also derived.

Before we proceed, we first define some ruin related quantities that will be exten-

sively used in the following. First, let us define the first time the surplus process crosses

the barrier k, for u > k, denoted by T k, such that

T k = inf{t > 0 : UZδ (t) < k}, (2.4.1)

with the corresponding probability of down-crossing the barrier k, defined by

ξ(u, k) = P
(
T k <∞

∣∣UZδ (0) = u > k
)
.
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Recalling the behaviour of the surplus process, {UZδ (t)}t>0, given in equation (2.3.1),

it is clear that the dynamics above the barrier k are identical to that of the classical

surplus process under a barrier free environment, i.e. for u > k, we have dUZδ (t) ≡ dŨ(t)

where

Ũ(t) = ũ+ ct− S(t), t > 0,

with Ũ(0) = ũ = u− k. Then, it should be clear that T k, defined by equation (2.4.1),

is equivalent to the time of ruin in the classical Cramér-Lundberg risk model with no

barrier modification and initial capital ũ > 0, i.e.

T k = inf{t > 0 : Ũ(t) < 0| Ũ(0) = ũ},

where T 0 ≡ T as defined in equation (1.2.1). Hence, the function ξ(u, k) is identical

to the classic ruin probability with initial capital ũ and can be expressed as ψ(ũ) =

P(T k <∞) = 1− φ(ũ).

Extending the arguments of Nie et al. (2011), by conditioning on the occurrence and

size of the first drop below k, for u > k, and using the fact that dUZδ (t) ≡ dŨ(t) above

the barrier k, we obtain an expression for the solvency probability, φ+
SII(u), given by

φ+
SII(u) = φ(ũ) +

∫ k−b

0
g(ũ, y)φ+

SII(k) dy +

∫ k−b̃

k−b
g(ũ, y)φ−SII(k − y) dy

= φ(ũ) +G(ũ, k − b)φ+
SII(k) +

∫ k−b̃

k−b
g(ũ, y)φ−SII(k − y) dy, (2.4.2)

where

G(ũ, y) = P
(
T k <∞, |Ũ(T k)| 6 y

∣∣Ũ(0) = ũ
)
,

is the joint distribution of down-crossing the barrier k and experiencing a deficit (below

k) of at most y, with g(ũ, y) = ∂
∂yG(ũ, y) the corresponding density function. This risk

quantity is simply the deficit at ruin, given in Definition 15, with a shifted initial capital.

Note that, in the above expression, φ+
SII(u) is given in terms of φ−SII(u). In order

to derive an analytic expression for φ+
SII(u), independent of φ−SII(u), we introduce the

following hitting probability.
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Let χ
δ
(u, b, b̃) ≡ χ

δ
(u) be the probability that the surplus process hits the upper

barrier b, before hitting the lower barrier b̃ from initial capital b̃ < u < b, when subject

to a debit force δ > 0, defined by

χ
δ
(u) = P

(
T b < TZδ

∣∣UZδ (0) = u
)
, b̃ < u < b, (2.4.3)

where

T b = inf
{
t > 0 : UZδ (t) = b

}
.

Then, by conditioning on which of the barriers the surplus hits first, from initial capital

b̃ < u < b, we are able to express the solvency probability, φ−SII(u), in terms of the hitting

probability χ
δ
(u), however, before we can employ such a conditioning argument, it is

necessary to prove that the surplus process hits one of these two barriers a.s.. In order

to prove this, we will need the following Lemma.

Lemma 3. (Second Borel-Cantelli Lemma) Let E1, E2, . . . be a sequence of independent

events in some probability space. If the infinite sum of the probabilities of En diverges,

i.e.
∞∑
n=1

P(En) =∞,

then, the probability that infinitely many of them occur is 1, that is,

P
(

lim sup
n→∞

En

)
= 1.

Proposition 6. For b̃ < u < b, the surplus process, {UZδ (t)}t>0, will hit one of the two

barriers b̃ or b, over an infinite-time horizon, a.s..

Proof. Using similar arguments as in Cai (2007), we first note that when the surplus

process is within the interval (b̃, b), it is driven by the debit interest force δ > 0, until

the surplus returns to level b (or experiences insolvency). Therefore, for initial capital

b̃ < u < b, the process is immediately subject to debit interest on the amount b−u > 0

and the evolution of the surplus process (assuming no claims appear up to time t > 0),
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due to the dynamics of the process below the barrier b, can be expressed by

h(t;u, b) = b+ (u− b)eδt + c

∫ t

0
eδs ds, t > 0. (2.4.4)

Let us further define t0 ≡ t0(u, b) to be the solution to h(t;u, b) = b. Then

t0 = ln

(
c

δ(u− b) + c

)1/δ

<∞, for b̃ < u < b, (2.4.5)

is the time taken for the surplus to reach the upper level b, i.e.h(t0;u, b) = b, in

the absence of claims and h(t;u, b) ∈ (b̃, b) for all t < t0. Therefore, it is clear that

the surplus process will recover to the upper level b, if no claims occur before time

0 6 t0 <∞.

Now, consider the events En = {τn > t0}, where {τn}n∈N is a sequence of i.i.d. random

variables denoting the inter-arrival time between the (n− 1)-th and n-th claim and t0

is defined above. Then, since the inter-arrival times are i.i.d and it is assumed that the

claims occur according to a Poisson process, it follows that, for all n ∈ N, the events

En are independent and we have

P(En) = P(τn > t0) = e−λt0 > 0.

Therefore, it follows that
∞∑
n=1

P(En) =∞,

and thus, by Lemma 3, it follows that

P
(

lim sup
n→∞

{τn > t0}
)

= 1.

That is, the event {τn > t0} occurs infinitely often with probability 1 (a.s.).

Now, by conditioning on which of the barriers the surplus hits first, using Proposition

6 and noticing that φ−SII(x) = 0 for x 6 b̃, from the law of total probability it follows

that
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φ−SII(u) = χ
δ
(u)φ+

SII(k). (2.4.6)

Substituting the above expression into equation (2.4.2), we obtain

φ+
SII(u) = φ(ũ) + φ+

SII(k)

[
G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y) dy

]
. (2.4.7)

To complete the above expression for φ+
SII(u), the boundary condition, φ+

SII(k), and the

hitting probability, χ
δ
(u), need to be determined. Setting u = k in equation (2.4.7),

and solving the resulting equation for φ+
SII(k), yields

φ+
SII(k) =

φ(0)

1−
(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) , (2.4.8)

and thus, equation (2.4.7) may be expressed, for u > k, as

φ+
SII(u) = φ(ũ) +

φ(0)
[
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, y)χ

δ
(k − y) dy

]
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) .
Now, recalling that φ+

SII(u) = 1 − ψ+
SII(u), for u > k, and using the result of Theorem

11 for the joint density function g(0, y), the probability of insolvency, namely ψ+
SII(u),

has the form

ψ+
SII(u) = ψ(ũ)−

φ(0)
[
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, y)χ

δ
(k − y) dy

]
1− λ

c

(
µF sX(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

) , (2.4.9)

where F sX(x) is the integrated tail distribution defined in equation (1.2.12).

Finally, by considering the proper d.f.Gũ(y) = G(ũ, y) (ψ(ũ))−1, as defined in equa-

tion (1.5.3), with corresponding density gũ(y) = g(ũ, y) (ψ(ũ))−1, we obtain the follow-

ing theorem for the probability of insolvency. Note that similar arguments as above

can be applied to obtain an expression for ψ−SII(u), from equation (2.4.6).
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Theorem 17. For u > k, the probability of insolvency, ψ+
SII(u), is given by

ψ+
SII(u) = ψ(ũ)

1−
φ(0)

[
Gũ(k − b) +

∫ k−b̃
k−b gũ(y)χ

δ
(k − y) dy

]
1− λ

c

(
µF sX(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

)
 , (2.4.10)

where ψ(ũ) is the ruin probability of the classical risk model and ũ = u− k.

For b̃ < u < b, ψ−SII(u) is given by

ψ−SII(u) = 1− φ(0)χ
δ
(u)

1− λ
c

(
µF sX(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

) . (2.4.11)

From equations (2.4.10) and (2.4.11), it follows that the two types of insolvency prob-

abilities are given in terms of the (shifted) ruin probability and deficit of the classical

risk model, as well as the probability of exiting between two barriers. Thus, ψ+
SII(·) and

ψ−SII(·) can be calculated by employing the well known results, with respect to Gũ(·)

and ψ(·) [see Chapter 1 and the references therein], whilst the latter exiting probability,

χ
δ
(u), can be determined from the following proposition:

Proposition 7. For b̃ < u < b, the probability of the surplus process, {UZδ (t)}t>0,

hitting the upper barrier, b, before hitting the lower barrier, b̃, (under a debit force

δ > 0), denoted χ
δ
(u), satisfies the following integro-differential equation

(δ(u− b) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u−b̃

0
χ
δ
(u− x) dFX(x), (2.4.12)

with boundary conditions

lim
u↑b

χ
δ
(u) = 1,

lim
u↓b̃

χ
δ
(u) = 0.

Proof. Recalling the definition of the function h(t;u, b) and the hitting time t0, defined

in equations (2.4.4) and (2.4.5) respectively, and noting that the claims occur according

to a Poisson process, by conditioning on the time and amount of the first claim, it follows
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that

χ
δ
(u) = e−λt0 +

∫ t0

0
λe−λt

∫ h(t;u,b)−b̃

0
χ
δ

(
h(t;u, b)− x

)
dFX(x) dt.

Using the change of variable y = h(t;u, b) and the form of t0 given in equation (2.4.5),

we have that

χ
δ
(u) =

(
δ(u− b) + c

c

)λ
δ

+ λ (δ(u− b) + c)
λ
δ

[∫ b

u
(δ(y − b) + c)−

λ
δ
−1

×
∫ y−b̃

0
χ
δ
(y − x) dFX(x) dy

]
.

(2.4.13)

Differentiating the above equation, with respect to u, and combining the resulting equa-

tion with equation (2.4.13), we obtain equation (2.4.12). Moreover, the first boundary

condition can be found by letting u→ b in equation (2.4.13).

Now, for the second boundary condition, one can see that if

lim
u↓b̃

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dFX(x)

]
dy <∞,

then

lim
u↓b̃

λ
(
δ(u− b) + c

)λ
δ

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dFX(x)

]
dy = 0,

since b = b̃+ c
δ . Alternatively, if

lim
u↓b̃

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dFX(x)

]
dy =∞,

then, by L’Hopital’s rule, we have

lim
u↓b̃

λ
(
δ(u− b) + c

)λ
δ

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dFX(x)

]
dy = 0.

Hence, using the above limiting results and taking the limit u→ b̃, in equation (2.4.13),
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we obtain the second boundary condition.

Recalling the forms of the insolvency probabilities, given by Theorem 17, it can be seen

that both depend heavily on the solution of the IDE (2.4.12), which is discussed in the

next subsection.

2.4.1 Explicit expressions for exponential claim size distribution

In this subsection, we derive exact expressions for the two types of insolvency proba-

bilities, given in Theorem 17, under the assumption of exponentially distributed claim

sizes. Then, by comparing these expressions with the classical ruin probability un-

der exponentially distributed claims, we identify that the probability of insolvency is

proportional to the probability of ruin in the classical model.

Let us assume the claim sizes are exponentially distributed with parameter β > 0

i.e.FX(x) = 1− e−βx, x > 0. Then, equation (2.4.12) can be written as

(δ(u− b) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u

b̃
βe−β(u−x)χ

δ
(x) dx, b̃ < u < b.

The above IDE can be solved as a boundary value problem, since, from Proposition 7,

the boundary conditions at b̃ and b are given. Differentiating the above equation with

respect to u, yields a second-order homogeneous ODE of the form

χ′′
δ
(u) + p(u)χ′

δ
(u) = 0, (2.4.14)

where

p(u) =
δ − λ+ β(δ(u− b) + c)

δ(u− b) + c
=

δ − λ
δ(u− b) + c

+ β. (2.4.15)

Employing the general theory of differential equations, the above ODE has a general

solution of the form

χ′
δ
(u) = Ce−

∫
p(u) du,

where C is an arbitrary constant that needs to be determined. Recalling the form of
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p(u), given in equation (2.4.15), the above solution reduces to

χ′
δ
(u) = Ce−βu (δ(u− b) + c)

λ
δ
−1 .

Then, integrating the above equation from b̃+ε to u, for some small ε > 0 and b̃ < u < b,

we have that

χ
δ
(u)− χ

δ
(b̃+ ε) = C

∫ u

b̃+ε
e−βw (δ(w − b) + c)

λ
δ
−1 dw,

which, after letting ε → 0 and using the second boundary condition of Proposition 7,

the general solution of equation (2.4.14) is given by

χ
δ
(u) = C

∫ u

b̃
e−βw (δ(w − b) + c)

λ
δ
−1 dw

= Cc
λ
δ
−1

∫ u

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw. (2.4.16)

Finally, in order to complete the solution we need to determine the constant C, which

can be obtained by using the first boundary condition for χ
δ
(u) of Proposition 7, i.e.

limu→b χδ(u) = 1. Letting u→ b in equation (2.4.16), we obtain

C−1 = c
λ
δ
−1

∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw

= c
λ
δ
−1C−1

1 ,

where C−1
1 =

∫ b
b̃ e
−βw

(
δ(w−b)

c + 1
)λ
δ
−1

dw.

Proposition 8. For b̃ < u < b and exponentially distributed claim sizes with parameter

β > 0, the probability of the surplus process, {UZδ (t)}t>0, hitting the upper barrier b,

before hitting the lower barrier b̃, under a debit force δ > 0, is given by

χ
δ
(u) = C1

∫ u

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw, (2.4.17)
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where

C−1
1 =

∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw. (2.4.18)

Using Theorem 17 and Proposition 8, the two types of insolvency probabilities, namely

ψ+
SII(u) and ψ−SII(u), under exponentially distributed claim amounts, are given in the

following theorem.

Theorem 18. Let the claim amounts be exponentially distributed with parameter β > 0.

Then, for u > k, the probability of insolvency, ψ+
SII(u), is given by

ψ+
SII(u) =

(1 + η)e
λη
c
k

1 + λη
c C
−1
1 eβk

ψ(u), (2.4.19)

where ψ(u) is the classic ruin probability and, for b̃ < u < b, ψ−SII(u) is given by

ψ−SII(u) = 1−
λη
c e

βk
∫ u
b̃ e
−βw

(
δ(w−b)

c + 1
)λ
δ
−1

dw

1 + λη
c C
−1
1 eβk

, (2.4.20)

where C−1
1 is given in Proposition 8.

Proof. Considering the numerator of equation (2.4.10), which is of the form

φ(0)

[
Gũ(k − b) +

∫ k−b̃

k−b
gũ(y)χ

δ
(k − y) dy

]
.

Assuming that the claim amounts are exponentially distributed, employing the corre-

sponding forms for Gũ(y) and gũ(y), which can be found from equation (1.5.3) and

Proposition 4, and using equation (2.4.17) of Proposition 8, it follows that the above

equation may be written as

φ(0)

[(
1− e−β(k−b)

)
+ C1β

∫ k−b̃

k−b
e−βy

∫ k−y

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dwdy

]
.

(2.4.21)

Changing the order of integration, evaluating the resulting inner integral and after some
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algebraic manipulations, equation (2.4.21) can be re-written in the form

φ(0)

[
1− e−β(k−b)

(
1− C1

∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw

)
− C1

c

λ
e−βk

]
,

which, after recalling the definition of the constant C1 given in Proposition 8, reduces

to the concise form

φ(0)
[
1− C1

c

λ
e−βk

]
. (2.4.22)

By considering a similar methodology as above, the corresponding denominator of

equation (2.4.10) reduces to the form

1− 1

1 + η

(
1− C1

c

λ
e−βk

)
. (2.4.23)

Now, replacing the numerator and denominator, in equation (2.4.10) by equations

(2.4.22) and (2.4.23), respectively, it follows that the insolvency probability, for u > k,

is given by

ψ+
SII(u) = ψ(ũ)

(
1− φ(0)A

1− 1
1+ηA

)
, (2.4.24)

where

A =
(

1− C1
c

λ
e−βk

)
.

Re-arranging equation (2.4.24), substituting φ(0) = η(1 + η)−1 [see Lemma 1] and

noticing that ψ(ũ) = ψ(u− k) = e
λη
c
kψ(u), by equation (2.4.14), we obtain our result.

For ψ−SII(u), given by equation (2.4.20), one can apply similar arguments and thus the

proof is omitted.

Remark 10. (i) From equation (2.4.19), we conclude that the constant (1+η)e
λη
c k

1+λη
c
C−1

1 eβk

plays the role of a ‘measurement of protection’ for the insurer. Thus, given a

set of parameters, the above factor could lead to a lower/higher value of ψ+
SII(u),

compared to the classical ruin probability ψ(u), in the sense that the insurer is

more/less protected by the SII regulations.
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(ii) Under SII, the SCR is calibrated to ensure a theoretical ruin of 0.5% [see Section

2.1]. Therefore, since equation (2.4.19) can be written as

ψ+
SII(u) =

1

1 + λη
c C
−1
1 eβk

e−
λη
c

(u−k), (2.4.25)

it follows that, by setting ψ+
SII(u) = 0.5%, and given a set of parameters, we can

obtain the value of the SCR, simply by solving equation (2.4.25) with respect to

k. This provides a quick and convenient approximation to the SCR under SII

requirements.

Remark 11. If we set k = b = 0 such that b̃ = − c
δ , then equation (2.4.19) becomes

ψ+
SII(u) =

e−
λη
c
u

1 + λη
c C
−1
1

u > 0,

where C−1
1 =

∫ 0
− c
δ
e−βw

(
δw
c + 1

)λ
δ
−1

dw and thus we retrieve Theorem 12 of Dassios

and Embrechts (1989) for the ruin probability in the classical risk model with debit

interest, under exponentially distributed claim sizes.

Example (Comparison of SII insolvency versus the classical ruin probability). In order

to compare the insolvency probability ψ+
SII(u), u > k, with the classical ruin probability,

ψ(u), recall that under exponentially distributed claim sizes, ψ(u) is given by

ψ(u) =
1

1 + η
e−

λη
c
u, u > 0.

In addition, we consider the following set of parameters λ = β = 1, η = 5%, which

due to the net profit condition, fixes our premium rate at c = 1.05. We further set

the debit force δ = 0.05 and the fixed MCR barrier b̃ = 3, which in turn gives b = 24,

since b = b̃+ c
δ . Table 2.1 (below) shows the comparison of the classical ruin probability

and the SII insolvency probability for several values of u and SCR level k such that

u > k > b = 24.
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k = 25 k = 30 k = 50

u ψ(u) ψ+
SII(u) ψ(u) ψ+

SII(u) ψ(u) ψ+
SII(u)

k 0.290 0.509 0.228 6.933× 10−3 0.088 1.439× 10−11

k + 5 0.228 0.401 0.180 5.464× 10−3 0.069 1.134× 10−11

k + 10 0.180 0.316 0.142 4.306× 10−3 0.055 8.938× 10−12

k + 15 0.142 0.249 0.112 3.394× 10−3 0.043 7.044× 10−12

k + 20 0.112 0.196 0.088 2.675× 10−3 0.034 5.552× 10−12

Table 2.1: Classical ruin against SII insolvency probabilities, exponential claims.

Furthermore, in Table 2.2 (below), numerics for the required initial capital are given in

the case of a fixed probability of insolvency and SCR level.

u

ψ+
SII(u) k = 25 k = 26 k = 27

0.1 59.17 47.32 31.34

0.05 73.72 61.87 45.90

0.025 88.28 76.43 60.46

0.01 107.52 95.67 79.70

Table 2.2: Initial capital required for varying insolvency probabilities and SCR levels.

Remark 12. Numerical results for the ruin probability ψ−SII(u) are not given, for reasons

explained in Section 3.

2.4.2 Asymptotic results for the probability of insolvency

In the previous section, we derived an expression for the insolvency probability, ψ+
SII(u),

in terms of the classic ruin quantities. Therefore, this result provides us with an ex-

plicit expression, provided explicit expressions exist for the corresponding classic ruin

quantities for different claim size distributions. However, we can exploit the form of

this expression, using the fact that ψ+
SII(u) is given in terms of ψ(·) and G·(·), to derive

the asymptotic behaviour, for the probability of insolvency, under a general claim size

distribution. Note that an asymptotic expression for the ruin probability ψ−SII(u) cannot
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be considered since the initial capital is bounded, i.e. b̃ < u < b.

In order to do this, we first need to obtain the asymptotic behaviour of the functions

Gũ(y) and gũ(y). Recall, from equation (1.5.5), that the deficit at ruin function, G(u, y),

satisfies the defective renewal equation

G(u, y) =
λ

c

∫ u

0
G(u− x, y)FX(x) dx+

λ

c

∫ u+y

u
FX(x) dx. (2.4.26)

Then, following a similar methodology as in Section 1.4.1, we assume there exists a

constant γ > 0, known as the adjustment coefficient, such that

λ

c

∫ ∞
0

eγxFX(x) dx = 1,

and it follows, from algebraic manipulations and application of the Key Renewal The-

orem [see Theorem 8], that

lim
u→∞

eγuG(u, y) =

∫∞
0 eγt

∫ t+y
t FX(x) dxdt∫∞

0 teγtFX(t) dt
.

Now, using the expression for the asymptotic behaviour of the ruin function, ψ(u),

given by equation (1.4.5), and since Gu(y) = G(u,y)
ψ(u) , we have

lim
u→∞

Gu(y) =

∫∞
0 eγt

∫ t+y
t FX(x) dxdt∫∞

0 eγt
∫∞
t FX(x) dxdt

,

from which it follows, by differentiating the above equation with respect to y, that

lim
u→∞

gu(y) =

∫∞
0 eγtFX(t+ y)dt∫∞

0 eγt
∫∞
t FX(x) dxdt

.

Finally, by combining the above asymptotic expressions for Gu(y), gu(y) and the form of

the insolvency probability, ψ+
SII(u), given in equation (2.4.10), the asymptotic behaviour

of ψ+
SII(u), as u→∞, is given by the following Proposition.

Proposition 9. The probability of insolvency, ψ+
SII(u), behaves asymptotically as

ψ+
SII(u) ∼ Kψ(u), u→∞,
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where ψ(u) is the classical ruin probability of the Cramér-Lundberg risk model and K

is a constant given by

K = 1−
φ(0)

[∫∞
0 eγt

∫ t+(k−b)
t FX(x) dxdt+

∫ k−b̃
k−b

∫∞
0 eγtFX(t+ y)χ

δ
(k − y) dt dy

]
µη
γ

(
1− λ

c

(
µF sX(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

)) .

2.5 Probability characteristics of the accumulated capital

injections

In this section we analyse the probabilistic characteristics of the accumulated capital

injections up to the time of insolvency, where we derive an explicit expression for

the first moment and an analytic form of the moment generating function. For the

latter, we show that the distribution of the accumulated capital injections up to the

time of insolvency is a mixture of a degenerate distribution at zero and a continuous

distribution.

2.5.1 Expected accumulated capital injections up to the time of in-

solvency

The main source of capital injections, in reality, comes from the companies shareholders

who are willing to inject capital up to some level. This confidence level could correspond

to a maximum limit for any one transaction, or alternatively, could be determined

depending on their expected risk exposure and performance of the business. In the

latter case, the shareholders require information about their expected liabilities in terms

of capital injections contributed to the company. That is, the accumulated capital

injections up to the time of insolvency. An alternative motivation to analyse such

a quantity is discussed in Nie et al. (2011), where the injections are provided via a

reinsurance agreement, for which the premium principle is based on the accumulated

capital injections up to the time of ruin [see Section 2.2].

We point out that in the above set up, the confidence level of the shareholders has

been fixed at b = b̃ + c
δ , however, in general, this level can vary within the interval

[b̃, b̃+ c
δ ] for which the following analysis holds.
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Let us denote the accumulated capital injections up to the time of insolvency, from

initial capital u > 0, by Zu,k = Z(TZδ ). Then, we are interested in the quantity

E(Zu,k). Due to similar reasons as for the insolvency probability, it is necessary to

decompose E(Zu,k) depending on the size of the initial capital. Therefore, we define

E(Zu,k) = E(Z+
u,k) when u > k and E(Zu,k) = E(Z−u,k), when b̃ < u < b. Using a similar

argument as in the previous section (conditioning on the amount of the first drop below

the SCR barrier k), it follows that E(Z+
u,k), for u > k, satisfies

E(Z+
u,k) =

∫ k−b

0

(
y + E(Z+

k,k)
)
g(ũ, y) dy +

∫ k−b̃

k−b

(
(k − b) + E(Z+

k,k)
)
g(ũ, y)χ

δ
(k − y)dy

=

∫ k−b

0
yg(ũ, y) dy + (k − b)

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y)dy

+ E(Z+
k,k)

[
G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y)dy

]
,

(2.5.1)

where χ
δ
(u), is given by Proposition 7. In order to complete the calculation for E(Z+

u,k),

given by the above expression, we need to determine the boundary value E(Z+
k,k), which

represents the expected accumulated capital injections up to the time of insolvency from

initial capital u = k and can be obtained by setting u = k in equation (2.5.1). Then,

we have

E(Z+
k,k) =

∫ k−b

0
yg(0, y) dy + (k − b)

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y)dy

+ E(Z+
k,k)

[
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y)dy

]
,

from which, it follows that E(Z+
k,k) is given explicitly by

E(Z+
k,k) =

∫ k−b
0 yg(0, y) dy + (k − b)

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

1−
(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

) . (2.5.2)

On the other hand, to compute E(Z−u,k), for b̃ < u < b, we first note that for there

to exist a first capital injection (which will be of size k − b) the surplus has to hit the



CHAPTER 2. SOLVENCY II CONSTRAINTS 75

upper confidence level b, before experiencing insolvency. Thus, it follows that E(Z−u,k),

satisfies

E(Z−u,k) = χ
δ
(u)
(

(k − b) + E(Z+
k,k)
)
, b̃ < u < b, (2.5.3)

with E(Z+
k,k) given by equation (2.5.2). Combining equations (2.5.1), (2.5.2) and (2.5.3)

leads to the following lemma.

Lemma 4. Let Zu,k = Z(TZδ ) denote the accumulated capital injections up to the time

of insolvency. Then, the expected value E(Zu,k), for u > k, denoted E(Z+
u,k), is given

by

E(Z+
u,k) =

∫ k−b

0
yζ(ũ, k, y) dy + (k − b)

∫ k−b̃

k−b
ζ(ũ, k, y)χ

δ
(k − y)dy, (2.5.4)

where

ζ(ũ, k, y) = g(ũ, y) +
g(0, y)

(
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, x)χ

δ
(k − x)dx

)
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, x)χ

δ
(k − x)dx

)
and, for b̃ < u < b, denoted E(Z−u,k), by

E(Z−u,k) = χ
δ
(u)

(k − b) +

∫ k−b
0 yg(0, y) dy + (k − b)

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

1−
(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

)
 .

(2.5.5)

To illustrate the applicability of the results for E(Z+
u,k) and E(Z−u,k), given in the above

lemma, we consider the case of exponentially distributed claim sizes and present the

explicit results in the following proposition.

Proposition 10. Let the claim amounts be exponentially distributed with parameter

β > 0, i.e. FX(x) = 1−e−βx, x > 0. Then, the expected accumulated capital injections,

E(Z+
u,k) for u > k, is given by

E(Z+
u,k) = K1ψ

+
SII(u), (2.5.6)
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where

K1 =
1

1 + η

(
λ

cβ
C−1

1 eβk
(

1− e−β(k−b)
)
− (k − b)

)
,

and ψ+
SII(u) is the probability of insolvency, for u > k, given in Theorem 18.

For b̃ < u < b, E(Z−u,k) is given by

E(Z−u,k) = K2φ
−
SII(u) (2.5.7)

where

K2 =
1

βη

(
1− e−β(k−b)

)
+ (k − b),

and φ−SII(u) is the solvency (survival) probability, for b̃ < u < b, which can be obtained

from equation (2.4.20) of Theorem 18.

Proof. Substituting the forms for G(·, ·), g(·, ·) and χ
δ
(·) , under exponentially dis-

tributed claim amounts [see Section 2.4.1 and equation (2.4.17), respectively], into the

results of Lemma 4, then, after some algebraic manipulations and recalling the forms

of ψ+
SII(u) and ψ−SII(u) = 1− φ−SII(u), from Theorem 18, the results follow.

2.5.2 The distribution of the accumulated capital injections up to the

time of insolvency

In practice, the expected value alone does not provide enough information to make

financial and strategical decisions. Usually the second moments, and hence the variance,

or higher moments are important in determining premium principles or evaluating risk

exposure. Therefore, in this subsection, we derive the moment generating function

of the risk quantity introduced in the previous section, namely Zu,k, and show that

its distribution is a mixture of a degenerative distribution at zero and a continuous

distribution.

Extending the arguments of Nie et al. (2011), we first consider the case where u = k.

The event of a first capital injection can be seen as the union of the event that the

surplus process drops, due to a claim, in the interval [b, k), which occurs with probability
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G(0, k− b), and the event that the surplus process drops, due to a claim, in the interval

(b̃, b) and then recovers back up to the level b before crossing b̃, which occurs with

probability
∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy.

Given that there exists a first capital injection, the process restarts from the level k.

Hence, if we let N denote the number of capital injections up to the time of insolvency,

by the above reasoning, N has a geometric distribution with p.m.f., for n = 0, 1, 2, . . .,

given by

P(N = n) =

(
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy

)n

×

(
1−

[
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy

])
,

with a probability generating function of the form

E(zN ) = PN (z) =
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

)
1− z

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) .
Then, the accumulated capital injections up to the time of insolvency, with initial

capital u = k, namely Z+
k,k, has the compound geometric form

Z+
k,k =

N∑
i=1

Vi,

where N is the geometric random variable defined above and {Vi}∞i=1 is a sequence of

i.i.d. random variables, denoting the size of the i-th injection, with p.d.f. given by

fV (y) =


g(0,y)

G(0,k−b)+
∫ k−b̃
k−b g(0,x)χ

δ
(k−x) dx

0 < y < k − b,∫ k−b̃
k−b g(0,x)χ

δ
(k−x) dx

G(0,k−b)+
∫ k−b̃
k−b g(0,x)χ

δ
(k−x) dx

y = k − b.

It follows, from independence, that the moment generating function of Z+
k,k can be
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expressed as

MZ+
k,k

(z) = PN (MV (z)),

where

MV (z) = E(ezV ) =

∫ k−b
0 ezyg(0, y) dy + ez(k−b)

∫ k−b̃
k−b g(0, x)χ

δ
(k − x) dx

G(0, k − b) +
∫ k−b̃
k−b g(0, x)χ

δ
(k − x) dx

.

In order to find the moment generating functions of the accumulated capital injections

up to the time of insolvency with general initial capital, namely Z+
u,k, when u > k, and

Z−u,k, when b̃ < u < b, we first note that Z+
u,k and Z−u,k are equivalent in distribution to

(Y +
u +Z+

k,k)I{A+} and (Y −u +Z+
k,k)I{A−}, respectively, where Y +

u is the amount of the first

capital injection, starting from initial capital u > k, Y −u from initial capital b̃ < u < b

and I{·} is the indicator function with respect to the event that a capital injections

occurs from initial capital u. Note that the event that a capital injections occurs from

initial capital u can be decomposed to the sub events depending on the value of the

initial capital and thus we denote by A+ and A− the events that a capital injections

occurs from initial capital u > k and b̃ < u < b, respectively, with probabilities

P(A+) = G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y) dy,

and

P(A−) = χ
δ
(u).

Based on the above notation, for ũ = u− k, the density of Y +
u is given by

fY +
u

(y) =


g(ũ,y)

G(ũ,k−b)+
∫ k−b̃
k−b g(ũ,x)χ

δ
(k−x) dx

0 < y < k − b,∫ k−b̃
k−b g(ũ,x)χ

δ
(k−x) dx

G(ũ,k−b)+
∫ k−b̃
k−b g(ũ,x)χ

δ
(k−x) dx

y = k − b,
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while Y −u has a p.m.f. of the form

P(Y −u = i) =


1, i = k − b

0 otherwise.

Then, since Y +
u and Z+

k,k are independent, the moment generating function of Z+
u,k is

given by

MZ+
u,k

(z) =
(
MY +

u
(z)MZ+

k,k
(z)
)
P(A+) + P((A+)c), (2.5.8)

where

MY +
u

(z) = E(ezY
+
u ) =

∫ k−b
0 ezyg(ũ, y) dy + ez(k−b)

∫ k−b̃
k−b g(ũ, x)χ

δ
(k − x) dx

G(ũ, k − b) +
∫ k−b̃
k−b g(ũ, x)χ

δ
(k − x) dx

,

whilst, following a similar argument as above, the moment generating function of Z−u,k

is given by

MZ−u,k
(z) =

(
MY −u

(z)MZ+
k,k

(z)
)
P(A−) + P((A−)c), (2.5.9)

where

MY −u
(z) = E(ezY

−
u ) = ez(k−b).

From equations (2.5.8) and (2.5.9), it should be clear that the distribution of the ac-

cumulated capital injections up to the time of insolvency, is mixture of a degenerative

distribution at zero and a continuous distribution.

2.6 Constant dividend barrier strategy with SII constraints

As discussed at the start of this chapter, the shareholders of the company will only

inject capital if it is profitable for them to do so and, in exchange for bearing some

of the risks, they expect to receive some financial incentive in the form of dividend

payments.

Dividend strategies have been extensively studied, within risk theory, since their

introduction by De Finetti (1957) [see Section 1.7.2], with a main focus on optimisation
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of the companies utility. In the next section we will provide some of the basic models

and results for dividend strategies, within the ruin theory context, that will be used in

the final section of this chapter.

2.6.1 Dividend barrier strategies in risk theory

Throughout the risk theory literature, a number of different dividend strategies have

been considered, with the aim of maximising the expected discounted dividend pay-

ments up to the time of ruin. For example, De Finetti (1957) proposed a constant

barrier strategy, Gerber (1981) a linear barrier strategy and, more recently, Albrecher

and Hartinger (2007) considered a multilayered strategy, where the dividend rate varies

depending on the surplus level, to name a few. For a comprehensive review of the div-

idend strategies within risk theory see Avanzi (2009) and the references therein.

The constant dividend barrier strategy, as was first shown in De Finetti (1957),

provides the optimal distribution of dividends with regards to maximising the expected

discounted dividend payments until ruin. In such a model, any excess income above

the dividend barrier is paid out continuously to the shareholders, whilst below, the

process evolves as in the classical model. That is, if we let d ∈ [0,∞) denote the level

of a constant dividend barrier, then the surplus process with dividend payments under

a constant dividend barrier strategy, denoted {Ud(t)}t>0, has dynamics

dUd(t) =


−dS(t), Ud(t) > d

cdt− dS(t), 0 6 Ud(t) < d,

(2.6.1)

where {S(t)}t>0 is a compound Poisson process as described in equation (1.1.2). The

constant dividend barrier problem, in the compound Poisson framework, has been

studied in Bühlmann (1970), Segerdahl (1970), Paulsen and Gjessing (1997), Lin et

al. (2003), Dickson and Waters (2004), Lin and Pavlova (2006) and references therein.

Although it was shown that the constant dividend barrier is optimal, De Finetti (1957)

also described how such a strategy, even under the net profit condition, causes ruin

with probability one. That is, if we define the time to ruin in the model described
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above, denoted by T d, such that

T d = inf{t > 0 : Ud(t) < 0},

then, the probability of infinite-time ruin, denoted by ψd(u) = P(T d <∞
∣∣Ud(0) = u),

satisfies

ψd(u) = 1, for all u > 0.

Although the event of ruin is certain under a constant dividend barrier strategy, the

properties of the event itself still contain information of interest, e.g. the deficit at ruin,

the surplus prior to ruin and the event causing ruin, among others. Lin et al. (2003),

show that the well known Gerber-Shiu function, for which many risk quantities, in-

cluding the ruin probability and deficit at ruin, are special cases (see Section 1.6.1 of

Chapter 1), under a constant divided barrier strategy, denoted by md
δ(u), satisfies an

IDE, from which the general solution can be expressed as a linear combination of the

corresponding Gerber-Shiu function without the presence of dividends and a secondary

function v(u). That is, the Gerber-Shiu function under a constant dividend barrier

strategy, namely md
δ(u), with initial capital 0 6 u 6 d, can be expressed as

md
δ(u) = mδ(u)−

m′δ(d)

v′(d)
v(u), 0 6 u 6 d, (2.6.2)

where mδ(u) is the classic Gerber-Shiu function without dividend constraints, given by

equation (1.6.1), and v(u) is a function satisfying a homogeneous IDE, from which the

general solution is given by

v(u) =
1−Ψ(u)

1−Ψ(0)
,

for some auxiliary function Ψ(u), the details of which are not needed for this thesis.

However, we point out that when the Gerber-Shiu function is reduced to the special

cases of the ruin probability or the deficit at ruin, for which equation (2.6.2) holds, the

auxiliary function above is equivalent to the classic ruin function, i.e. Ψ(u) = ψ(u).

In the remainder of this chapter, we will consider the SII risk model, proposed in

the previous sections, with the addition of a constant dividend barrier d > k, such that
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when the surplus reaches the level d, dividends are paid continuously at rate c until a

new claim appears (see Fig: 2.3). Under this modified setting, we will show that the

probability of insolvency can be expressed in terms of the classical risk quantities with

a constant dividend barrier strategy and, as in the case of the classic ruin probability,

is certain.

2.6.2 The Solvency II risk model with a constant dividend barrier

strategy

The surplus process of a SII risk model under a constant dividend barrier strategy,

denoted {UZδ,d(t)}t>0, has dynamics of the following form

dUZδ,d(t) =



−dS(t), UZδ,d(t) > d,

cdt− dS(t), k 6 UZδ,d(t) < d,

k −
(
UZδ,d(t−)−∆S(t)

)
, b 6 UZδ,d(t−)−∆S(t) < k,[

c+ δ(UZδ (t)− b)
]
dt− dS(t), b̃ < UZδ,d(t) < b.

Figure 2.3: Typcial sample path of the surplus process under SII constraints with a constant
dividend barrier.
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The time to insolvency, in the dividend amended model, can be defined by

TZδ,d = inf
{
t > 0 : UZδ,d(t) 6 b̃

}
and the probability of insolvency, which we denote by ψSII,d(u), is defined as

ψSII,d(u) = P
(
TZδ,d <∞

∣∣UZδ,d(0) = u
)
,

with the corresponding solvency probability defined by φSII,d(u) = 1− ψSII,d(u).

We once again note that the insolvency probability, as in the previous sections, can

be decomposed for k 6 u 6 d and b̃ < u < b, for which we define ψSII,d(u) = ψ+
SII,d(u)

and ψSII,d(u) = ψ−
SII,d(u), for the two separate cases with corresponding solvency prob-

abilities φ+
SII,d(u) and φ−

SII,d(u), respectively.

In order to derive an expression for the solvency probability for k 6 u 6 d, namely

φ+
SII,d(u), (or equivalently the insolvency probability ψ+

SII,d(u)) we will need to define the

crossing probability of the surplus below the SCR level k (as in Section 3), given by

ξd(u, k) = P(T k,d <∞
∣∣ k 6 UZδ,d(0) = u 6 d),

where T k,d = inf{t > 0 : UZδ,d(t) < k} is the first time the process down crosses the

barrier k.

Using a similar argument as in Section 3, it follows that the dynamics of the surplus

process UZδ,d(t) above the SCR level are equivalent to that of the classic surplus process

with a constant dividend barrier d̃ = d− k (i.e. no capital injections or debit borrowing

barriers). That is, for k 6 UZδ,d(t) 6 d, we have dUZδ,d(t) ≡ dŨd̃(t) where

Ũd̃(t) = ũ+ ct− S(t), 0 6 Ũd̃(0) = ũ 6 d̃,

with dynamics

dŨd̃(t) =


−dS(t), Ũd̃(t) > d̃,

cdt− dS(t), 0 6 Ũd̃(t) < d̃.
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Therefore, it is clear that T k,d, defined above, is equivalent to the time of ruin in

the classical risk model with a constant dividend barrier strategy and initial capital

0 6 ũ 6 d̃, given by

T k,d = T d̃ = inf{t > 0 : Ũd̃(t) < 0},

and the probability ξd(u, k) is identical to the probability of ruin, namely ψd̃(ũ) =

P(T d̃ <∞
∣∣0 6 Ũd̃(0) = ũ 6 d̃) = 1−φd̃(ũ), for the classical risk model with a constant

dividend barrier strategy.

To obtain an expression for the insolvency probability under a constant dividend

barrier strategy, we use the fact that dUZδ,d(t) ≡ dŨd̃(t), when the surplus is above the

level k, and condition on the occurrence and amount of the first drop below the SCR

barrier, k. Then for k 6 u 6 d, the respective solvency probability φ+
SII,d(u), satisfies

φ+
SII,d(u) = φd̃(ũ) +

∫ k−b

0
gd̃(ũ, y)φ+

SII,d(k) dy +

∫ k−b̃

k−b
gd̃(ũ, y)φ−

SII,d(k − y) dy

= φd̃(ũ) +Gd̃(ũ, k − b)φ
+
SII,d(k) +

∫ k−b̃

k−b
gd̃(ũ, y)φ−

SII,d(k − y) dy,

where

Gd̃(ũ, y) = P
(
T d̃ <∞, |Ũd̃(T

d̃)| 6 y
∣∣0 6 Ũd̃(0) = ũ 6 d̃

)
,

is the distribution of the deficit below k at the time of crossing the barrier, under the

constant dividend barrier strategy, and gd̃(ũ, y) = ∂
∂yGd̃(ũ, y) its corresponding density.

For b̃ < u < b, we have

φ−
SII,d(u) = χ

δ
(u)φ+

SII,d(k),

where χ
δ
(u) is the probability of hitting the upper barrier b before the lower barrier b̃,

in a debit environment, as studied in Section 3. We point out that the function χ
δ
(u)

is unaffected by the addition of the dividend barrier and therefore the IDE given in

Proposition 7 still holds, along with the corresponding boundary conditions. Following

similar arguments as in Section 2.4 we obtain the following theorem.
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Theorem 19. For k 6 u 6 d, the probability of insolvency under a constant dividend

barrier strategy, ψ+
SII,d(u), satisfies

ψ+
SII,d(u) = ψd̃(ũ)−

φd̃(0)
[
Gd̃(ũ, k − b) +

∫ k−b̃
k−b gd̃(ũ, y)χ

δ
(k − y) dy

]
1−

(
Gd̃(0, k − b) +

∫ k−b̃
k−b gd̃(0, y)χ

δ
(k − y) dy

) . (2.6.3)

For b̃ < u < b, ψ−
SII,d(u) is given by

ψ−
SII,d(u) = 1−

φd̃(0)χ
δ
(u)

1−
(
Gd̃(0, k − b) +

∫ k−b̃
k−b gd̃(0, y)χ

δ
(k − y) dy

) . (2.6.4)

We again point out, from equations (2.6.3) and (2.6.4) that the two types of insolvency

probabilities, for the risk model under SII constraint with the addition of a constant

dividend barrier, are given in terms of the (shifted) ruin probability and the deficit at

ruin of the classical risk model with constant dividend barrier, as well as the probability

of exiting between two barriers. Thus, ψ+
SII,d(·) and ψ−

SII,d(·) can be calculated by em-

ploying known results, with respect to Gd(·, ·) and ψd(·) (see Lin et al. (2003), among

others), whilst the latter exiting probability, χ
δ
(u), can be evaluated by Proposition 7.

Finally, by considering the forms of the insolvency probabilities given in the above

theorem and recalling that the infinite-time ruin probability for the classical risk model

with a constant dividend barrier strategy, namely ψd(u) = 1, for all u > 0, it follows

that the ultimate-time survival probability φd(u) = 0, for all u > 0 and we have the

following Corollary.

Corollary 1. For u ∈ R, the probability of insolvency under a constant dividend barrier

strategy, namely ψSII,d(u), satisfies

ψSII,d(u) = 1, a.s. (2.6.5)

In this chapter, we considered the constraints of current insurance legislation, with

particular emphasis on the capital requirement regulations under SII, on the theoretical

Cramér-Lundberg risk model. It was assumed that upon breaching the SCR level, at

which point the company is forced to re-capitalise under the SII directive, the firm
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looks to its shareholders for a capital injection necessary to keep the business from

insolvency. In the proposed SII risk model, and within the majority of capital injection

models in the risk theory literature, the receipt of the capital injections is assumed to

occur instantaneously from the moment of a deficit below a pre-specified level. In the

next chapter, we revert back to a more theoretical risk model (without SII constraints)

and analyse how the introduction of a delayed receipt of capital injections, which occurs

naturally in practice, impacts the performance of an insurance firm.



Chapter 3
Capital Injections with Deficit

Dependent Delayed Receipt

An important assumption made throughout the previous chapter, and in the majority

of literature dealing with capital injections, is their instantaneous receipt. However, in

the real world markets, when an insurance firm is required to raise capital after a fall

below the SCR level, by means of capital injections (as seen in Chapter 2), they are

not usually received instantaneously. Time delays for the capital injections may occur

naturally in insurance business due to decision-making problems or regulatory delays

(for example, preparatory and administrative work) and must be taken into account

since, during this delay time, the company remains subject to risk and may experience

further losses before being recapitalised.

The concept of delayed capital injections has been introduced in Jin and Yin (2014),

for a pure diffusion risk model without jumps. In the aforementioned work, the au-

thors study optimal dividend strategies by means of a stochastic control problem, with

mixed singular and delayed impulse controls, assuming that random injections occur

at random stopping times throughout the time horizon.

In this chapter, we generalise the present capital injection risk models by introducing

a time delay from the moment of a deficit below zero (or below the SCR barrier) to

the time when the capital injection is received. Additionally, it is assumed that the

87
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delay time is dependent on the size of the deficit, and thus the corresponding capital

injection size, to reflect the increase in time required to raise a larger amount of funds.

Initially, we will propose a relatively simple dependence structure, based on a single

critical level k > 0, which enables us to derive explicit expressions for numerous risk

related quantities and is described in the next section.

3.1 Delayed capital injections under a single critical value

Consider the Cramér-Lundberg risk model, {U(t)}t>0, defined in equation 1.1.2. At

the time of ruin T (assuming it occurs), the surplus process, {U(t)}t>0, experiences a

deficit below zero of size |U(T )| and we assume a capital injection, equal to the size of

the deficit, is required to restore the surplus back to the zero level. If the deficit and

thus the required capital injection, is less than a critical value k > 0, i.e. |U(T )| 6 k, it

is assumed that the shareholders are in a position to inject the required capital from

readily available funds and thus, the injection is received instantaneously (similar to

the models of Nie et al. (2011), (2015) and Dickson and Qazvini (2016)). On the other

hand, if the deficit of the insurance firm is larger than the critical value, i.e. |U(T )| > k,

then the shareholders need time to raise the required capital for an injection of amount

|U(T )|. Therefore, there exists a dependency between the magnitude of the deficit and

the time delay between the moment of deficit and the receipt of the required capital

injection. Intuitively, the critical value can be interpreted as the size of the deficit below

which the injection is considered small enough to be covered by available funds and

thus received instantaneously, whilst a deficit greater than the critical value requires

time for the firm to raise the necessary funds and thus, a delay for financial processing

is required.

Note that, throughout this chapter we assume that the critical value k > 0 is

connected with the deficit below zero, i.e. when the surplus process becomes negative,

however, for an environment with capital requirement regulations (see Chapter 2),

k > 0 may be associated with the deficit below the SCR of an insurance firm.

Under the delay time setting, described above, there exist two different possibilities

at the moment the surplus process, namely {U(t)}t>0, first becomes negative (which
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occurs at time T ):

a) The deficit is at most k > 0, i.e. |U(T )| 6 k, which occurs with probability

G(u, k). Then, a capital injection of size |U(T )| 6 k is required to restore the

surplus back to the zero level which occurs instantaneously, since the amount of

the capital injection is of a size that can be covered by readily available funds.

b) The deficit is larger than the critical value k > 0, i.e. |U(T )| > k, which occurs

with probability

G(u, k) = ψ(u)−G(u, k). (3.1.1)

In this case, the available funds are unable to cover the required capital injection of

size |U(T )| > k and thus, the injection is received after some delay time, denoted

by the random variable L, having d.f.FL(·), to account for the administration

and processing time (see Fig: 3.1 for the two cases, respectively).

Based on the above set up, it is clear that the company is allowed to continue when in

deficit and will receive premium income during this time. However, it is assumed that

if a subsequent claim occurs before the capital injection is received, i.e. τ < L, where

τ denotes the common inter-arrival time under a Poisson process, then the company is

exposed to too much risk at any one time and is declared as ‘ruined’. We call this time

‘ultimate ruin’ to distinguish from the classical ruin time defined in equation (1.2.1).

We can now consider the surplus process under a delayed capital injection setting,

denoted by {UL(t)}t>0, defined by

UL(t) = U(t) +

∞∑
i=1

|UL(Ti)|I({|UL(Ti)|6k}∪{(|UL(Ti)|>k)∩ (Ti+L6t)}), (3.1.2)

where

Ti = inf{t > Ti−1 : UL(t) < 0, UL(t−) > 0}, i = 1, 2, . . . ,

is the i -th time the surplus falls below zero, due to a claim, with T0 = 0. Note that

T1 = T is the classic ruin time defined in equation (1.2.1). We can now define the time
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(a) Delayed capital injection arriving before
subsequent claim in deficit.

(b) Subsequent claim arriving before delayed
capital injection, resulting in ultimate ruin.

Figure 3.1: Possible cases following a fall into deficit.

of ultimate ruin by

TL = inf
{
σi > 0 : UL(σi−1) < −k, σi < σi−1 + L

}
, (3.1.3)

for some i = 1, 2, . . ., where {σi}i∈N is the sequence of claim arrival epochs for the

Poisson process, as defined in Definition 1. Then, it follows that the ultimate ruin

probability can be defined by

ψL(u) = P(TL <∞
∣∣UL(0) = u), u > 0,

with the corresponding ultimate survival probability, given by

φL(u) = 1− ψL(u).

3.1.1 Ultimate ruin probabilities for a single critical value

In this section, we consider three separate cases for the delay time variable, L, and in

each case, by using a conditioning argument and the Markov property, we derive and

solve integral equations to obtain explicit expressions for the ultimate ruin probability,

ψL(u), for u > 0.
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Capital injections with discrete time random delays

Let us first consider the case where the capital injection delay time random variable,

namely L, can take finitely many discrete values. That is, L ∈ {m1, . . . ,mN}, for

N ∈ N+, with probability pi = P(L = mi) > 0, where mi > 0, for all i = 1, . . . , N and∑N
i=1 pi = 1. Then, by conditioning on the amount of the first drop below zero, the

delay time random variable, L, and the subsequent claim inter-arrival time, the law of

total probability gives

φL(u) = φ(u) +G(u, k)φL(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

fτ (s)

N∑
i=1

piφL(cmi)I{mi<s} ds dy,

(3.1.4)

where φ(u) is the survival probability for the Cramér-Lundberg risk process, defined in

equation (1.2.5), and fτ (·) is the p.d.f. of the claim inter-arrival time. Following from

the definition of an indicator function, the above equation can be re-written as

φL(u) = φ(u) +G(u, k)φL(0) +

∫ ∞
k

g(u, y)

N∑
i=1

pi

∫ ∞
mi

fτ (s)φL(cmi) ds dy

= φ(u) +G(u, k)φL(0) +G(u, k)
N∑
i=1

piF τ (mi)φL(cmi), (3.1.5)

where, since the claims arrive according to a Poisson process, F τ (t) = 1−Fτ (t) = e−λt,

for t > 0. Thus, equation (3.1.5) reduces to the form

φL(u) = φ(u) +G(u, k)φL(0) +G(u, k)
N∑
i=1

pie
−λmiφL(cmi). (3.1.6)

In order to complete the expression for φL(u), in equation (3.1.6), (since the risk quan-

tities φ(u) and G(u, y) are known for the Cramér-Lundberg risk model under certain

claim size distributions) we need to determine the boundary value φL(0) and particular

values φL(cmi), for i = 1, . . . , N .

Setting u = 0, in equation (3.1.6), and solving with respect to φL(0), yields

φL(0) =
φ(0) +G(0, k)

∑N
i=1 pie

−λmiφL(cmi)

1−G(0, k)
, (3.1.7)
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which, after substituting this form for φL(0) back into equation (3.1.6) and re-arranging,

yields

φL(u) = w(u, k) + v(u, k)

N∑
i=1

pie
−λmiφL(cmi), (3.1.8)

where

w(u, k) = φ(u) +
G(u, k)φ(0)

1−G(0, k)
> 0, (3.1.9)

and

v(u, k) =
G(u, k)G(0, k)

1−G(0, k)
+G(u, k),

= ψ(u)− G(u, k)φ(0)

1−G(0, k)
< 1, (3.1.10)

such that w(u, k) + v(u, k) = 1, for all u, k > 0. The strict inequalities in equations

(3.1.9) and (3.1.10), for the functions w(u, k) and v(u, k), follow from the fact that,

under the net profit condition, the classical ruin function ψ(u) < 1, for all u > 0 [see

Chapter 1].

Remark 13. The function w(u, k) > 0, defined in equation (3.1.9), corresponds to the

infinite-time survival probability in the capital injection risk model without delays of

Nie et al. (2011). Moreover, the function v(u, k) = 1− w(u, k) < 1 is equivalent to the

corresponding ruin probability, defined in equation (2.2.1).

Now, in order to uniquely determine φL(u) in equation (3.1.8), it remains to determine

the values φL(cmi), for i = 1, . . . , N .

To do this, we will construct and solve N linear simultaneous equations. Setting

u = cmj , for j = 1, . . . , N , in equation (3.1.8), results in the simultaneous equation

system

φL(cmj) = w(cmj , k) + v(cmj , k)

N∑
i=1

pie
−λmiφL(cmi), for j = 1, . . . , N,
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or equivalently

(
1− v(cmj , k)pje

−λmj
)
φL(cmj) = w(cmj , k) + v(cmj , k)

N∑
i=1,i 6=j

pie
−λmiφL(cmi),

which can be written as a first order matrix equation, of the form

A~φ∗ = ~w,

where

A =



(
1− v(cm1, k)p1e

−λm1
)

−v(cm1, k)p2e
−λm2 · · · −v(cm1, k)pNe

−λmN

−v(cm2, k)p1e
−λm1

(
1− v(cm2, k)p2e

−λm2
)
· · · −v(cm2, k)pNe

−λmN

...
...

. . .
...

−v(cmN , k)p1e
−λm1 −v(cmN , k)p2e

−λm2 · · ·
(
1− v(cmN , k)pMe

−λmN
)

 ,

(3.1.11)

is an N -dimensional square matrix, ~φ∗ = (φL(cm1), . . . , φL(cmN ))> and

~w = (w(cm1, k), . . . , w(cmN , k))>, are both N -dimensional column vectors, where (·)>

denotes the transpose of a vector/matrix. In order to evaluate the vector of unknowns,

namely ~φ∗, we will show, in the following lemma, that the matrix A is non-singular

and thus invertible.

Lemma 5. For u > 0, 0 < pi 6 1, for i = 1, . . . , N and
∑N

j=1 pj = 1, the matrix A is

non-singular.

Proof. To show that A is a non-singular matrix, it suffices to prove, by the Lévy-

Desplanques Theorem [see Horn and Johnson (1990)], that A is a strictly diagonally

dominant matrix.

Definition 17 (Strictly diagonally dominant). An N -dimensional square matrix, A =

{aij}Ni,j=1, is called strictly diagonally dominant if |aii| >
∑

j 6=i |aij | for all i ∈ N .

It follows from the form of the matrix A, given in equation (3.1.11), and the definition
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of strict diagonal dominance, that we need to prove

|1− v(cmi, k)pie
−λmi | >

∑
j 6=i
| − v(cmi, k)pje

−λmj |,

for all i = 1, . . . , N , or equivalently

1− v(cmi, k)pie
−λmi > v(cmi, k)

∑
j 6=i

pje
−λmj ,

since, from equation (3.1.10), we have 0 6 v(u, k) < 1, for all u > 0, which guarantees

that 0 6 v(u, k)pje
−λmj 6 1 for every j = 1, . . . , N and u > 0.

Employing the fact that v(u, k) < 1, for all u > 0 (under the net profit condition),

we have that

1 > v(cmi, k) = v(cmi, k)

N∑
j=1

pj > v(cmi, k)

N∑
j=1

pje
−λmj , for all i = 1, . . . , N,

from which it follows that A is strictly diagonally dominant and thus, the result follows.

Now, since the matrix A is non-singular, and thus invertible, the forms of φL(cmi),

i = 1, . . . , N , can be determined by

~φL = A−1 ~w,

where A−1 is the inverse of the matrix A. Finally, from equation (3.1.8), the ultimate

survival probability for capital injections with a discrete random time delay is given by

the linear expression

φL(u) = w(u, k) + v(u, k)
N∑
i=1

pie
−λmi

[
A−1 ~w

]
i

where
[
A−1 ~w

]
i

is the i-th element of the vector A−1 ~w and we have the following

theorem.
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Theorem 20. For u > 0, the ultimate ruin probability for capital injections with

discrete time random delays, namely ψL(u), is given by

ψL(u) = v(u, k)

(
1−

N∑
i=1

pie
−λmi

[
A−1 ~w

]
i

)
, (3.1.12)

where

v(u, k) = ψ(u)− ηG(u, k)

1 + η − F sX(k)
,

with F sX(x) the integrated tail distribution of the claim sizes, defined in equation (1.2.12).

Capital injections with deterministic delay times

In practice, market studies indicate that the delay times for capital injections may not

be random, but instead a fixed amount of time, i.e. the number of days, or months,

required to gather the necessary funds due to financial or regulatory purposes. Thus, a

natural consideration is to consider the case of deterministic delay times. Let the delay

time L = ρ > 0. Note that this is equivalent to the discrete time case with N = 1 and

random time delay m1 = ρ, with p1 = 1. Thus, equation (3.1.8) reduces to

φL(u) = w(u, k) + v(u, k)e−λρφL(cρ). (3.1.13)

and from Theorem 20, we have the following corollary.

Corollary 2. For u > 0, the ultimate ruin probability under capital injections with

deterministic time delay L = ρ > 0, namely ψL(u), is given by

ψL(u) = v(u, k)

(
1− e−λρ

1− v(cρ, k)e−λρ

)
, (3.1.14)

where

v(u, k) = ψ(u)− ηG(u, k)

1 + η − F sX(k)
.

Remark 14 (ρ → ∞). Consider the case where ρ → ∞. Then, for a deficit larger

than the critical value k > 0, a subsequent claim will appear before the capital injec-
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tion is received a.s. (since Fτ (·) is a proper distribution function) and ultimate ruin is

certain. This scenario reduces the model to one similar to Nie et al. (2011), where an

instantaneous capital injection is received for a deficit less than k > 0 but we experience

ultimate ruin if the deficit is larger than k > 0. Then, since limρ→∞ e
−λρ = 0, equation

(3.1.14) reduces to

ψL(u) = v(u, k)

= ψ(u)−G(u, k)
φ(0)

1−G(0, k)
,

which is a shifted analogue of the results given in equation (2.2.1).

Remark 15 (ρ → 0). Now, consider the opposing case that ρ → 0. Then, the capital

injection is received instantaneously, regardless of the size of the deficit and the sub-

sequent claim after a fall into a deficit greater than k > 0 will never occur before the

capital injection a.s. In this case, ultimate ruin is never experienced and the surplus

continues indefinitely, as in the models of Pafumi (1998) and Eisenberg and Schmidli

(2011), among others. From equation (3.1.14), and recalling that v(u, k) < 1, for all

u > 0, since limρ→0 e
−λρ = 1, we have ψL(u) = 0, for all u > 0, as expected.

Capital injections with continuous time random delays

Finally, we will consider the case where the delay time random variable, L, is a con-

tinuous time random variable having p.d.f. fL(·) and finite mean E(L) < ∞. If we

apply a similar conditioning argument as in the discrete time case, i.e. conditioning

on the amount of the first drop below zero, the delay time and the subsequent claim

inter-arrival time, we obtain the continuous time analogue of equation (3.1.4), given by

φL(u) = φ(u) +G(u, k)φL(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

fL(t)

∫ ∞
0

fτ (s)φL(ct)I{t<s} ds dt dy

= φ(u) +G(u, k)φL(0) +G(u, k)

∫ ∞
0

fL(t)F τ (t)φL(ct) dt,
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or equivalently, since F τ (t) = e−λt, for t > 0, by

φL(u) = φ(u) +G(u, k)φL(0) +G(u, k)

∫ ∞
0

fL(t)e−λtφL(ct) dt. (3.1.15)

Now, as in the discrete case, in order to complete the expression for φL(u), in equation

(3.1.15), we first need to determine the boundary value φL(0).

Setting u = 0, in equation (3.1.15), and solving with respect to φL(0), we have that

φL(0) =
φ(0) +G(0, k)

∫∞
0 fL(t) e−λtφL(ct) dt

1−G(0, k)
,

which is simply the continuous analogue of the expression given in equation (3.1.7).

Substituting this form of the boundary value, φL(0), into equation (3.1.15), yields

φL(u) = w(u, k) + v(u, k)

∫ ∞
0

fL(t)e−λtφL(ct) dt, (3.1.16)

where w(u, k) and v(u, k) are defined as in equations (3.1.9) and (3.1.10), respectively.

At this point, we cannot employ the same methods as in the discrete case, however, by

using a change of variables, the above equation can be written as

φL(u) = w(u, k) +
1

c
v(u, k)

∫ ∞
0

fL

(
t

c

)
e−

λt
c φL(t) dt, (3.1.17)

which is the form of an inhomogeneous Fredholm integral equation of the second kind

over a semi-infinite interval, with degenerate kernel

K(u, t) = v(u, k)fL

(
t

c

)
e−

λt
c , (3.1.18)

[see Definition 4.5.2 of Appendix].

Following the general theory of integral equations for deriving a closed form expres-

sion for the inhomogeneous Fredholm equation with degenerate kernel [see Polyanin

and Manzhirov (2008)], we point out that the integral in equation (3.1.17) evaluates to

a constant, say C1, provided it exists.

Proposition 11. The constant C1 =
∫∞

0 fL
(
t
c

)
e−

λt
c φL(t) dt is finite and bounded by
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the premium rate c > 0.

Proof. The function φL(·) is a probability measure, hence e−
λt
c φL(t) 6 1, for all t > 0.

Therefore, it follows that

C1 =

∫ ∞
0

fL

(
t

c

)
e−

λt
c φL(t) dt 6

∫ ∞
0

fL

(
t

c

)
dt = c,

since fL(·) is a proper density function.

Then, it follows that the general solution to equation (3.1.17) is given by the linear

combination

φL(u) = w(u, k) +
C1

c
v(u, k), (3.1.19)

where C1 is some constant to be determined.

To complete the solution for φL(u), in equation (3.1.19), it remains to calculate

explicitly the constant C1. In order to do this, let us first replace the variable u, in

equation (3.1.19), by t, then multiply through by fL
(
t
c

)
e−

λt
c and integrate over the

interval [0,∞), to obtain the expression

∫ ∞
0

fL

(
t

c

)
e−

λt
c φL(t) dt =

∫ ∞
0

fL

(
t

c

)
e−

λt
c w(t, k) dt+

C1

c

∫ ∞
0

fL

(
t

c

)
e−

λt
c v(t, k) dt.

Note that, the left hand side (l.h.s.) of the above equality is simply the constant C1 and

thus, can be re-written in the form

C1 =

∫ ∞
0

fL

(
t

c

)
e−

λt
c w(t, k) dt+

C1

c

∫ ∞
0

fL

(
t

c

)
e−

λt
c v(t, k) dt. (3.1.20)

Moreover, since we have that w(u, k) 6 1 and v(u, k) < 1, from equations (3.1.9) and

(3.1.10), we can use a similar argument as in the proof of Proposition 11 to show that

both
∫∞

0 fL
(
t
c

)
e−

λt
c w(t, k) dt and

∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt exist and are bounded by

c > 0. Therefore, we can solve equation (3.1.20), with respect to C1, to obtain

C1 =

∫∞
0 fL

(
t
c

)
e−

λt
c w(t, k) dt

1− 1
c

∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt

,
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where 1
c

∫∞
0 fL

(
t
c

)
e−

λt
c v(t, k) dt 6= 1, since v(u, k) < 1, for all u > 0.

Substituting this form of C1 back into equation (3.1.17), we obtain an explicit

expression for the survival probability, of the form

φL(u) = w(u, k) +

∫∞
0 fL

(
t
c

)
e−

λt
c w(t, k) dt

c−
∫∞

0 fL
(
t
c

)
e−

λt
c v(t, k) dt

v(u, k). (3.1.21)

Finally, defining the Laplace-Stieltjes transform of the delay time distribution by f̂L(s) =∫∞
0 e−sx dFL(x) and recalling that w(u, k) = 1−v(u, k), we have the following theorem.

Theorem 21. For all u > 0, the ultimate ruin probability for capital injections with

continuous time delays, namely ψL(u), is given by

ψL(u) = v(u, k)

(
1− f̂L(λ)

1−
∫∞

0 fL(t)v(ct, k)e−λt dt

)
, (3.1.22)

where f̂L(s) is the Laplace-Stieltjes transform of the delay time distribution and

v(u, k) = ψ(u)− ηG(u, k)

1 + η − F sX(k)
. (3.1.23)

In order to illustrate the applicability of Theorem 21, in the next proposition we give

an exact expression for the ultimate ruin probability, namely ψL(u), in the case where

both the delay time of the capital injections and the individual claim sizes follow an

exponential distribution with parameters α > 0 and β > 0, respectively.

Proposition 12. Assume that the delay time, L, follows an exponential distribution

with parameter α > 0. Further, assume that the claim sizes also follow an exponential

distribution with parameter β > 0. Then, the probability of ultimate ruin for delayed

capital injections is given by

ψL(u) = Ke−
λη
c
u, u > 0, (3.1.24)

where K is a constant given by

K =
λ(α+ βc)

(α+ λ) (βc+ (α+ βc)ηeβk)
.
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Proof. For a delay time, L, which is exponentially distributed with parameter α > 0,

we have that FL(x) = 1 − e−αx, with corresponding density fL(x) = αe−αx and LT

f̂L(s) = α
α+s . In addition, the forms of the quantities G(u, y) and G(u, y), for the

classical Cramér-Lundberg risk model, are known explicitly for the case of exponentially

distributed claim sizes, i.e. when FX(x) = 1−e−βx, β > 0, and are given in Proposition

4. Thus, from equation (3.1.23), it follows that

v(u, k) = e−
λη
c
u

(
1

1 + ηeβk

)
,

and ∫ ∞
0

fL (t) v(ct, k)e−λt dt =
α

(1 + ηeβk)(α+ βc)
.

Substituting these expressions into equation (3.1.22) of Theorem 21 and after some

algebraic manipulations, the result follows.

In the rest of this chapter, we consider further generalisations to the aforementioned

risk model, by considering stricter dependency structures between the amount of the

deficit and the corresponding delay time and studying other risk related quantities. We

point out that all of the following results are given for the case of continuous delay

times, however, the methodologies presented can be easily adapted to the discrete and

deterministic time cases as well.

3.2 Extension to a model with N critical values

In this section, we generalise the dependence structure of the previous section to allow

for N > 1 independent deficit critical values, introducing a stricter dependence between

the size of the deficit and the corresponding delay time of the capital injections.

Let ki, i = 0, 1, . . . , (N + 1), be ordered, positive constants denoting the critical

values, between which the magnitude of the deficit may lie (deficit thresholds) such

that 0 = k0 < k1 < . . . < kN < kN+1 = ∞. Then, we can define the joint probability

function of ruin and a deficit size within the critical value interval (ki, ki+1] by Gi(u) =

P(T <∞, ki < |U(T )| 6 ki+1

∣∣U(0) = u) which can be expressed in terms of the classic
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deficit at ruin functions, G(u, y), since

Gi(u) =

∫ ki+1

ki

g(u, y) dy

= G(u, ki+1)−G(u, ki),

with G0(u) = G(u, k1) and GN (u) = G(u, kN ) = P(T < ∞, |U(T )| > kN
∣∣U(0) = u)

being the probability that ruin occurs with a deficit larger than the greatest deficit

critical value, namely kN .

In a similar way to the previous section, we assume that if ruin occurs with a

deficit less than the smallest barrier k1, which occurs with probability G(u, k1), then

the required capital injection can be covered by available funds and is received instan-

taneously. On the other hand, if ruin occurs and the deficit has magnitude |U(T )| =

y ∈ (ki, ki+1], i = 1, 2, . . . , N , which occurs with probability Gi(u), then the capital

injection (of size y) is received after some random time delay, Li, having d.f.FLi(·)

and corresponding density fLi(·). Finally, it is assumed that the delay time random

variable Li is ‘less than’ the time delay random variable Li+1, in the sense of stochastic

ordering, i.e.Li 6st Li+1, such that there exists a positive correlation between the size

of the required injection and the corresponding delay time.

Using a similar conditioning argument as in Section 3.1.1, i.e. conditioning on the

amount of the first drop below zero, the corresponding delay time and the subsequent

inter-arrival time of a claim, we obtain an integral equation for the ultimate survival

probability, under N > 1 deficit threshold barriers and continuous delay times, given

by

φL(u) = φ(u) +G(u, k1)φL(0) +

N∑
i=1

∫ ki+1

ki

g(u, y)

∫ ∞
0

fLi(t)

×
∫ ∞

0
fτ (s)φL(ct)I{t<s} ds dt dy

= φ(u) +G(u, k1)φL(0) +
N∑
i=1

Gi(u)

∫ ∞
0

fLi(t)F τ (t)φL(ct) dt,
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or equivalently

φL(u) = φ(u) +G(u, k1)φL(0) +
N∑
i=1

Gi(u)

∫ ∞
0

fLi(t)e
−λtφL(ct) dt. (3.2.1)

To complete the solution for φL(u), in equation (3.2.1), as in the previous sections, we

need to determine the boundary value φL(0). Setting u = 0, in the above equation,

and solving with respect to φL(0), yields

φL(0) =
φ(0) +

∑N
i=1Gi(0)

∫∞
0 fLi(t)e

−λtφL(ct) dt

1−G(0, k1)
,

which, after substitution back into equation (3.2.1), gives

φL(u) = w(u, k1) +
N∑
i=1

vi(u)

∫ ∞
0

fLi(t)e
−λtφL(ct) dt, (3.2.2)

where w(u, k) is defined as in equation (3.1.9) and vi(u), for i = 1, 2, . . . , N , is defined

as

vi(u) =
G(u, k1)Gi(0)

1−G(0, k1)
+Gi(u), (3.2.3)

with
∑N

i=1 vi(u) = 1− w(u, k1).

It now remains for us to solve the integral equation (3.2.2). Employing a change of

variables, equation (3.2.2) can be written in the form of an inhomogeneous Fredholm

equation of the second kind, given by

φL(u) = w(u, k1) +
1

c

N∑
i=1

vi(u)

∫ ∞
0

fLi

(
t

c

)
e−

λt
c φL(t) dt, (3.2.4)

with degenerate kernel of the form

K(u, t) =
N∑
i=1

vi(u)fLi

(
t

c

)
e−

λt
c .

Then, following similar arguments as in Section 3.1.1 and the proof of Proposition 11,

we note that the integral terms on the right hand side of the Fredholm integral equation,
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given in equation (3.2.4), evaluate to some constants, say Ci =
∫∞

0 fLi
(
t
c

)
e−

λt
c φL(t) dt <

∞. Thus, the general solution to equation (3.2.4) is given by the linear combination

φL(u) = w(u, k1) +
1

c

N∑
i=1

Civi(u). (3.2.5)

In order to calculate explicitly the constants Ci, for i = 1, 2, . . . , N , similarly to Section

3.1.1, we can replace the variable u, in equation (3.2.5), by t, multiply through by

fLj
(
t
c

)
e−

λt
c , for j = 1, 2, . . . , N , and integrate over the interval [0,∞), to obtain a

system of N simultaneous equation, given by

∫ ∞
0

fLj

(
t

c

)
e−

λt
c φL(t) dt =

∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt

+
1

c

N∑
i=1

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt,

which, after recalling the definition of the constants Ci, i = 1, 2, . . . , N , reduces to the

form

Cj =

∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt+

1

c

N∑
i=1

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt, j = 1, 2, . . . , N,

or equivalently

∫ ∞
0

fLj

(
t

c

)
e−

λt
c w(t, k1) dt =

(
1− 1

c

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vj(t) dt

)
Cj

− 1

c

N∑
i 6=j

Ci

∫ ∞
0

fLj

(
t

c

)
e−

λt
c vi(t) dt, j = 1, 2, . . . , N.

In a more concise matrix form, the above linear system of equation for Cj , j =

1, 2, . . . , N , can be expressed by

M~C = ~w,
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where M is an N -dimensional square matrix given by

M =


1− 1

c

∫∞
0 fL1

(
t
c

)
e−

λt
c v1(t) dt · · · −1

c

∫∞
0 fL1

(
t
c

)
e−

λt
c vN (t) dt

...
. . .

...

−1
c

∫∞
0 fLN

(
t
c

)
e−

λt
c v1(t) dt · · · 1− 1

c

∫∞
0 fLN

(
t
c

)
e−

λt
c vN (t) dt

 ,

~C = (C1, . . . , CN )> and ~w =
(∫∞

0 fL1

(
t
c

)
e−

λt
c w(t, k1) dt, . . . ,

∫∞
0 fLN

(
t
c

)
e−

λt
c w(t, k1) dt

)>
are both N -dimensional column vectors. In order to evaluate the vector of unknowns,

~C, we will show in the following lemma that the matrix M is non-singular and thus

invertible.

Lemma 6. The N -dimensional square matrix M is non-singular.

Proof. As in the proof of Lemma 5, in order to prove the matrix M is non-singular, it

suffices to prove it is a strictly diagonally dominant matrix [see Definition 17]. That is,

the i-th diagonal element of M, for all i = 1, . . . , N , satisfies

∣∣∣∣1− 1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vi(t) dt

∣∣∣∣ >∑
j 6=i

∣∣∣∣−1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt

∣∣∣∣ ,
or equivalently

1− 1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vi(t) dt >

∑
j 6=i

1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt,

since (similarly to the proof of Lemma 5) vi(u) < 1, for u > 0, which guarantees that

0 6 1
c

∫∞
0 fLi

(
t
c

)
e−

λt
c vi(t) dt < 1, for all i = 1, . . . , N .
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Now, since
∑N

i=1 vi(u) = 1− w(u, k1) < 1, for all u > 0, we have that

1 =

∫ ∞
0

fLi(t) dt >

∫ ∞
0

fLi(t)(1− w(ct, k1)) dt

>

∫ ∞
0

fLi(t)e
−λt

N∑
j=1

vj(ct) dt

=
N∑
j=1

1

c

∫ ∞
0

fLi

(
t

c

)
e−

λt
c vj(t) dt,

which completes the proof.

Using the results of Lemma 6, it follows that the matrix M is invertible and the

constants Ci, for i = 1, 2 . . . , N , can be evaluated by

~C = M−1 ~w,

where M−1 is the inverse of the matrix M. Now, since the constants Ci, for i =

1, . . . , N , are uniquely determined, we can employ the form of the general solution

to the Fredholm integral equation, given by equation (3.2.5), to obtain the following

theorem for the corresponding probability of ultimate ruin.

Theorem 22. For u > 0, the ultimate ruin probability for capital injections with

continuous-time random delays and N > 1 critical values, namely ψL(u), is given by

ψL(u) =
1

c

N∑
i=1

(
c−

[
M−1 ~w

]
i

)
vi(u), (3.2.6)

where
[
M−1 ~w

]
i

is the i-th element of the vector M−1 ~w and

vi(u) =
G(u, k1)Gi(0)

1−G(0, k1)
+Gi(u).

3.3 Further risk related quantities

In the previous chapter, we discussed the necessity of analysing further risk related

quantities, namely the accumulated capital injections up to the time of insolvency (see
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Section 2.5) to provide an indication of the risk profile of the insurance firm and/or

related parties contributing to its solvency via capital injections, i.e. the shareholders

and reinsurance firms. Therefore, in this section, we consider the effects of a delay in

the receipt of capital injections on a discounted version of this quantity, namely the

expected discounted accumulated capital injections up to the time of ultimate ruin,

which gives an indication of the (discounted) amount of funds needed to keep the

company solvent during its lifetime.

In addition, since the company is allowed to continue whilst in deficit (during the

delay time of a capital injection), we consider the expected discounted overall time in

red (deficit), up to the time of ultimate ruin. This is a natural consideration, since

the firm may be subject to some penalty during the time in which it is in a deficit

and thus, the expected discounted overall time in red up to the time of ultimate ruin,

provides the present value of this penalised time in red, allowing the company to more

accurately calculate its capital requirements. There exist many papers concerned with

the time/duration in a negative surplus, see for example Dos Reis (1993), (2000) and

Dickson and Dos Reis (1996), among others, however, such a quantity has yet to be

considered in connection with capital injections.

For simplicity of calculations, we revert back to the simplest model of a single critical

value, given by k > 0 as in Section 3.1, but point out that the following results hold for

the N barrier setting, by employing a similar method to that discussed in Section 3.2.

3.3.1 The expected discounted accumulated capital injections up to

the time of ultimate ruin

Let {ZL(t)}t>0 be a pure jump process denoting the accumulated capital injections

in a continuous delay time setting, up to time t > 0, for the risk process {UL(t)}t>0,

defined in equation (3.1.2). We are interested in the expected discounted accumulated

capital injections up to the time of ultimate ruin, from initial capital u > 0, denoted

zLδ (u) = E
(
e−δT

L
ZL(TL)

∣∣UL(0) = u
)

, where δ > 0 is a constant discount rate and TL

is the time of ultimate ruin, defined in equation (3.1.3).

In order to derive the discounted value zLδ (u), we introduce the joint probability
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d.f. of the time to ruin and the deficit at ruin, denoted W (u, y, t).

Definition 18. Let T be the time to ruin for the Cramér-Lundberg risk process, {U(t)}t>0,

defined in equation 1.1.2. Then, the joint probability function of the time to ruin and

the deficit at ruin, with initial capital u > 0, denoted by W (u, y, t), is defined by

W (u, y, t) = P
(
T 6 t, |U(T )| 6 y

∣∣U(0) = u
)
,

having corresponding joint density function, denoted by w(u, y, t), given by

w(u, y, t) =
∂2

∂t∂y
W (u, y, t).

The joint probability function W (u, y, t) is a generalisation to the deficit at ruin func-

tion, defined in equation (1.5.1), where limt→∞W (u, y, t) = G(u, y), which has been

studied in Dickson and Drekic (2006), Landriault and Willmot (2009) and Nie et

al. (2011), (2015) and explicit expressions exist for certain claim size distributions.

Moreover, we define by

g
δ
(u, y) =

∫ ∞
0

e−δtw(u, y, t) dt, (3.3.1)

and

Gδ(u, y) =

∫ y

0
g
δ
(u, x) dx, (3.3.2)

the (defective) discounted density function and distribution function, respectively, of

the deficit at ruin, with initial surplus u > 0 and force of interest δ > 0, with g0(u, y) =

g(u, y) and G0(u, y) = G(u, y).

Now, using a similar conditioning argument as in the previous sections, that is by

conditioning on the time and amount of the first fall into deficit and the subsequent

delay and claim inter-arrival times, it follows that zLδ (u) satisfies an integral equation
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of the form

zLδ (u) =

∫ ∞
0

∫ k

0
e−δtw(u, y, t)[y + zLδ (0)] dy

+

∫ ∞
0

∫ ∞
k

e−δtw(u, y, t)

∫ ∞
0

e−δsfL(s)

∫ ∞
0

fτ (v)[y + zLδ (cs)]I{s<v} dv ds dy dt.

(3.3.3)

Employing the notation introduced in equations (3.3.1) and (3.3.2), for the discounted

deficit at ruin functions, the above equation can be re-written as

zLδ (u) =

∫ k

0
yg

δ
(u, y) dy +Gδ(u, k)zLδ (0)

+

∫ ∞
k

g
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s)[y + zLδ (cs)] ds dy

=

∫ k

0
yg

δ
(u, y) dy +Gδ(u, k)zLδ (0) +

∫ ∞
k

yg
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+Gδ(u, k)

∫ ∞
0

e−s(δ+λ)fL(s)zLδ (cs) ds.

(3.3.4)

To complete the solution for zLδ (u), in equation (3.3.4), we need to determine an explicit

expression for the boundary value zLδ (0). Setting u = 0, in equation (3.3.4), and solving

with respect to zLδ (0), yields

zLδ (0) =
1

1−Gδ(0, k)

(∫ k

0
yg

δ
(0, y) dy +

∫ ∞
k

yg
δ
(0, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+ Gδ(0, k)

∫ ∞
0

e−s(δ+λ)fL(s)zLδ (cs) ds

)
,

and thus, equation (3.3.4), can be written in the form

zLδ (u) = hδ(u, k) + vδ(u, k)

∫ ∞
0

e−(δ+λ)tfL(t) zLδ (ct) dt, (3.3.5)
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where

hδ(u, k) =

∫ k

0
yg

δ
(u, y) dy +

∫ ∞
k

yg
δ
(u, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

+
Gδ(u, k)

1−Gδ(0, k)

(∫ k

0
yg

δ
(0, y) dy +

∫ ∞
k

yg
δ
(0, y)

∫ ∞
0

e−s(δ+λ)fL(s) ds dy

)
,

(3.3.6)

and

vδ(u, k) =
Gδ(u, k)Gδ(0, k)

1−Gδ(0, k)
+Gδ(u, k) < 1, (3.3.7)

such that, when δ = 0, we have v0(u, k) = v(u, k) given by equation (3.1.10).

Note that, equation (3.3.5) is of a similar form to equation (3.1.16). Thus, by a

change of variable in the integral term, we have that

zLδ (u) = hδ(u, k) +
1

c
vδ(u, k)

∫ ∞
0

e−
(δ+λ)t
c fL

(
t

c

)
zLδ (t) dt, (3.3.8)

which is an inhomogeneous Fredholm equation of the second kind and of a similar form

to equation (3.1.17). Hence, provided that both
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
zLδ (t) dt and∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
hδ(t, k) dt exist and are finite, the general solution of equation (3.1.17),

given by equation (3.1.21), can be employed to solve equation (3.3.8).

Proposition 13. Let g(x) be a continuous function defined on the positive half line

[0,∞), which is bounded by its finite maximum M = maxx∈[0,∞){g(x)} <∞. Then,∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
g(t) dt is finite and we have

∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
g(t) dt < cM .

Proof. Firstly, by dividing
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
g(t) dt through by M , we obtain the nor-

malised integral
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
ω(t) dt, where ω(t) = g(t)

M 6 1 for all t > 0. Now,

applying similar arguments as the proof of Proposition 11, we have

∫ ∞
0

e−
(δ+λ)t
c fL

(
t

c

)
ω(t) dt < c.

The result follows by multiplying the above inequality through by the maximum value

M <∞.

Then, under the assumption that the expected deficit at ruin is finite, i.e.
∫∞

0 yg(u, y) dy <
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∞, it can be seen from equation (3.3.6) that h
δ
(u, k), and thus zLδ (u), are finite, for all

u > 0. Hence, by Proposition 13, we have the following theorem.

Theorem 23. Let zLδ (u) denote the expected discounted accumulated capital injections,

in the continuous-time delayed capital injection setting, up to the time of ultimate ruin

with initial capital UL(0) = u > 0. Then, if
∫∞

0 yg(u, y) dy < ∞, the solution to the

Fredholm integral equation (3.3.8) is given by

zLδ (u) = hδ(u, k) +

∫∞
0 fL

(
t
c

)
e−

(δ+λ)t
c hδ(t, k) dt

c−
∫∞

0 fL
(
t
c

)
e−

t(δ+λ)
c vδ(t, k) dt

vδ(u, k), (3.3.9)

where hδ(u, k) and vδ(u, k) are given by equation (3.3.6) and (3.3.7), respectively.

3.3.2 Expected overall time in red up to the time of ultimate ruin

The expected discounted time in red, which reflects the expected discounted duration in

deficit up to the time of ultimate ruin, can also be obtained using similar methodologies

as above. That is, let {V L(t)}t>0 be a stochastic process denoting the overall time in

red up to time t > 0, defined by

V L(t) =

∫ ∞
0

I{UL(s)<0} ds.

Then, we are interested in the expected discounted overall time in red up to the time of

ultimate ruin, from initial capital u > 0, denoted νLδ (u) = E
(
e−δT

L
V L(TL)

∣∣UL(0) = u
)

.

Using a similar conditioning argument to the previous subsection, that is conditioning

on the time and amount of the first fall into deficit, the subsequent delay and claim

inter-arrival time, we have the following possibilities:

1. The deficit is less than the critical value, i.e. |U(T )| 6 k, and thus the capital

injection is received instantaneously. Then, the duration of time in a deficit is

zero, and the process renews from initial capital u = 0,

2. The deficit is larger than the critical value, i.e. |U(T )| > k and:

(a) The inter-arrival time, w > 0, of the subsequent claim occurs before the
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capital injection is received. Then, our overall duration in deficit up to the

time of ultimate ruin is w > 0, or,

(b) The delay time, s > 0, of the capital injection is smaller than the subsequent

inter-arrival time. Thus, the duration of time in deficit is s > 0 and the

process renews from initial capital cs > 0.

Considering the above possibilities, after a fall into deficit, we have

νLδ (u) =

∫ ∞
0

∫ k

0
e−δtw(u, y, t)νLδ (0) dydt+

∫ ∞
0

∫ ∞
k

e−δtw(u, y, t)

∫ ∞
0

fL(s)

∫ ∞
0

fτ (w)

×
[
e−δwwI{w<s} + e−δs

(
s+ νLδ (cs)

)
I{s<w}

]
dw ds dy dt

= Gδ(u, k)νLδ (0) +Gδ(u, k)

(∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

+

∫ ∞
0

e−δsfL(s)F τ (s)ν∗
δ
(cs) ds

)
,

(3.3.10)

where

Gδ(u, k) =

∫ ∞
k

g
δ
(u, y) dy.

To complete the solution for νLδ (u), in equation (3.3.10), we need to determine an

explicit expression for the boundary value νLδ (0). Setting u = 0, in the above equation,

and solving with respect to νLδ (0), yields

νLδ (0) =
Gδ(0, k)

1−Gδ(0, k)

(∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

+

∫ ∞
0

e−δsfL(s)F τ (s)vL
δ

(cs) ds

)
,

and thus, equation (3.3.10), can be written in the form

νLδ (u) = bδ(u, k) + vδ(u, k)

∫ ∞
0

e−(δ+λ)tfL(t)νL
δ

(ct) dt, (3.3.11)

where

bδ(u, k) = vδ(u, k)

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds, (3.3.12)
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and vδ(u, k) is defined in equation (3.3.7).

Now, equation (3.3.11) is again of a similar form to equation (3.1.16) and thus the

general solution of equation (3.1.16) can be employed to solve the Fredholm integral

equation in equation (3.3.11), provided both
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
νL
δ

(t) dt and∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt exist and are finite.

In order to show that these conditions are satisfied, let us consider the behaviour of

the function bδ(u, k), given by equation (3.3.12) and recall that the function vδ(u, k) < 1,

for all u > 0. Then, we have

bδ(u, k) = vδ(u, k)

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

<

∫ ∞
0

s
[
λFL(s) + fL(s)

]
e−(δ+λ)s ds

6 λ

∫ ∞
0

se−λs ds+

∫ ∞
0

sfL(s) ds

= 1 + E(L) <∞,

since it is assumed that the delay time distribution has finite mean E(L) < ∞ [see

Section 3.1.1]. Using this result, the fact that the function νLδ (u) is finite (by the

net profit condition) and applying the result of Proposition 13 to show the two inte-

grals
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
νL
δ

(t) dt and
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt are finite, we have the

following theorem.

Theorem 24. Let νLδ (u) denote the expected discounted time in red, in the continuous

time delayed capital injection setting, up to the time of ultimate ruin with initial capital

UL(0) = u > 0. Then, the solution to the Fredholm integral equation (3.3.11) is given

by

νLδ (u) = bδ(u, k) +

∫∞
0 e−

(δ+λ)t
c fL

(
t
c

)
bδ(t, k) dt

c−
∫∞

0 e−
(δ+λ)t
c fL

(
t
c

)
vδ(t, k) dt

vδ(u, k), (3.3.13)

where vδ(u, k) and bδ(u, k) are given by equations (3.3.7) and (3.3.12), respectively.
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3.4 Capital injections with explicit delay time dependence

In this chapter, the dependency structure between the deficit at ruin and corresponding

delay time of the capital injection has been hitherto based on a deficit falling between

certain threshold barriers. In this section, we generalise the dependence such that,

when the deficit is greater than the critical value k > 0, the random delay time depends

explicitly on the size of the deficit (y > 0).

Let the delay time be denoted by a continuous random variable, L, which depends

on the size of the deficit via the conditional distribution FL|Y=y(·) =: FL|Y (·; y) and

corresponding density fL|Y (·; y), where Y = |U(T )| is a random variable denoting

the size of the deficit having d.f.G(·, ·)/ψ(·). Intuitively, if the insurance company

experiences a deficit of Y = y > k, then the delay time, L, increases as Y increases

(the more capital the firm requires through a capital injection, the more time that will

be needed to gather and process the funds), hence it is assumed that the conditional

distribution, FL|Y (·; y), is a decreasing function of y > 0.

Then, conditioning on the size of the deficit, the subsequent delay time and claim

inter-arrival time, the ultimate survival probability satisfies an integral equation of the

form

φL(u) = φ(u) +G(u, k)φL(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

∫ ∞
0

fL|Y (t; y)fτ (s)φL(ct)I{t<s} ds dt dy

= φ(u) +G(u, k)φL(0) +

∫ ∞
k

g(u, y)

∫ ∞
0

e−λtfL|Y (t; y)φL(ct) dt dy. (3.4.1)

In order to determine the boundary value, φL(0), we set u = 0, in equation (3.4.1), and

solve for φL(0), to obtain

φL(0) =
φ(0) +

∫∞
k g(0, y)

∫∞
0 e−λtfL|Y (t; y)φL(ct) dt dy

1−G(0, k)
.

Substituting this form of φL(0), into equation (3.4.1), and changing the order of inte-

gration in the resulting integral, yields

φL(u) = w(u, k) +

∫ ∞
0

e−λt
(∫ ∞

k
z(u, k, y)fL|Y (t; y) dy

)
φL(ct) dt, (3.4.2)
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where w(u, k) is given by equation (3.1.9) and

z(u, k, y) =
G(u, k)g(0, y)

1−G(0, k)
+ g(u, y). (3.4.3)

We note that, since
∫∞
k z(u, k, y) dy = v(u, k), defined in equation (3.1.10), it is not

difficult to show that the right hand side of equation (3.4.2) is less than equal to 1 and

thus, the integral equation is well defined.

Now, using a change of variables, equation (3.4.2) can be transformed to

φL(u) = w(u, k) +
1

c

∫ ∞
0

e−
λt
c

(∫ ∞
k

z(u, k, y)fL|Y

(
t

c
; y

)
dy

)
φL(t) dt, (3.4.4)

which is an inhomogeneous Fredholm integral equation of the second kind with kernel

K(u, t) = e−
λt
c

(∫ ∞
k

z(u, k, y)fL|Y

(
t

c
; y

)
dy

)
. (3.4.5)

The kernel K(u, t), given above, is non-degenerate and a closed form solution is no

longer obtainable. However, it is possible to derive a solution in terms of the Neumann

series. For details of the following method of solution see Zemyan (2012).

To derive the Neumann series solution, let us first rewrite equation (3.4.4) in the

following form

φL(u) = w(u, k) + α

∫ ∞
0

K(u, t)φL(t) dt, (3.4.6)

where α = c−1 > 0 and K(u, t) is given in equation (3.4.5). Then, by the method of

successive substitution (see Chapter 2 of Zemyan (2012)), i.e. substituting the form of

φL(u), given in equation (3.4.6), back into the integral itself, we obtain

φL(u) = w(u, k) + α

∫ ∞
0

K(u, t)

[
w(t, k) + α

∫ ∞
0

K(t, s)φL(s) ds

]
dt

= w(u, k) + α

∫ ∞
0

K(u, t)w(t, k) dt+ α2

∫ ∞
0

∫ ∞
0

K(u, t)K(t, s)φL(s) ds dt,

which, after changing the order of integration in the last term, yields

φL(u) = w(u, k) + α

∫ ∞
0

K(u, t)w(t, k) dt+ α2

∫ ∞
0

K2(u, t)φL(t) dt,
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where

K2(u, t) =

∫ ∞
0

K(u, s)K(s, t) ds.

Repeating the above iterative process, n times, yields

φL(u) = w(u, k) +
n∑

m=1

αm
∫ ∞

0
Km(u, t)w(t, k) dt+ αn+1

∫ ∞
0

Kn+1(u, t)φL(t) dt,

where K1(u, t) = K(u, t) and

Km(u, t) =

∫ ∞
0

Km−1(u, s)K(s, t) ds,

or equivalently

φL(u) = w(u, k) + αΓn(u) + ρn(u), (3.4.7)

with

Γn(u) =
n∑

m=1

αm−1

(∫ ∞
0

Km(u, t)w(t, k) dt

)
(3.4.8)

and

ρn(u) = αn+1

∫ ∞
0

Kn+1(u, t)φL(t) dt. (3.4.9)

Following the theory of Fredholm integral equations of the second kind with general

kernels, equation (3.4.7) has a unique solution as long as the sequence {Γn(u)}n∈N+ of

continuous functions converges uniformly to a continuous limit function on the interval

[0,∞), and the sequence ρn(u)→ 0, as n→∞ [see Zemyan (2012) for more details].

Definition 19 (Uniform convergence). Let D be a subset of R and let fn be a sequence

of real valued functions defined on D. Then, fn is said to converge uniformly to f if,

given any ε > 0, there exists a natural number N = N(ε), such that

|fn(x)− f(x)| < ε, for every n > N and for every x ∈ D.

In order to prove that the sequence of functions, {Γn(u)}n∈N+ , converges uniformly

to some limit function, say Γ(u), for u > 0, it suffices to show that it is a uniformly

Cauchy sequence [see Theorem 25 below].
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Definition 20 (Uniformly Cauchy sequence). A sequence of real valued functions fn :

D → R is uniformly Cauchy on D if, for every ε > 0, there exists N ∈ N such that

n, p > N implies that |fn(x)− fp(x)| < ε for all x ∈ D.

Theorem 25. A sequence of functions fn : D → R converges uniformly on D if and

only if it is uniformly Cauchy on D.

To show that the sequence {Γn(u)}n∈N+ is a uniformly Cauchy sequence on [0,∞), let

M = max{fL|Y (x; y) : x ∈ [0,∞), y ∈ [k,∞)} be the maximum value of the conditional

delay time density, for all y > k. Then, it follows that

|K(u, t)| = e−
λt
c

∫ ∞
k

z(u, k, y)fL

(
t

c
; y

)
dy

6Me−
λt
c

∫ ∞
k

z(u, k, y) dy, for all t > 0,

= Me−
λt
c v(u, k)

< Me−
λt
c , for all u > 0,

since v(u, k) < 1. Now, using the bound for K(u, t) = K1(u, t), we can determine a

bound for |K2(u, t)|, given by

|K2(u, t)| =
∫ ∞

0
K(u, s)K(s, t) ds

< M2e−
λt
c

∫ ∞
0

e−
λs
c ds

=
cM2

λ
e−

λt
c .

Repeating this argument it is not hard to show that

|Km(u, t)| <
(
cM

λ

)m−1

Me−
λt
c ,

for each m ∈ N+ and all u > 0. Now, by recalling the form of the functions Γn(u), for

n ∈ N+, given in equation (3.4.8), and using the bound for |Km(u, t)| given above, it
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follows that each summand within the summation of Γn(u), satisfies the inequality

∣∣∣∣αm−1

(∫ ∞
0

Km(u, t)w(t, k) dt

)∣∣∣∣ < (αcMλ
)m−1

M

∫ ∞
0

e−
λt
c w(t, k) dt

6

(
αcM

λ

)m−1 cM

λ
, (since w(u, k) 6 1)

= c

(
M

λ

)m
,

since α = c−1. Therefore, provided λ > M , we have

|σn(x)− σp(x)| < c
n∑

m=p+1

(
M

λ

)m
<

c(M/λ)p

1− (M/λ)

< ε,

for large enough p and hence, by Definition 20, the sequence {Γn(u)}n∈N+ is a uniformly

Cauchy sequence on [0,∞) and, by Theorem 25, the sequence converges uniformly to

a continuous limit function, Γ(u), given by

Γ(u) =
∞∑
m=1

αm−1

(∫ ∞
0

Km(u, t)w(t, k) dt

)
.

Finally, it follows that

|ρn(u)| = αn+1

∫ ∞
0

Kn+1(u, t)φL(t) dt

< αM

(
αcM

λ

)n ∫ ∞
0

e−
λt
c φL(t) dt,

6 (M/λ)n+1 → 0, as n→∞,

if λ > M , and we have the following theorem.

Theorem 26. Assume that the conditional delay time density fL|Y (·; y) is bounded for

all y > k and let M = max{fL|Y (x; y) : x ∈ [0,∞), y ∈ [k,∞)} be its maximum value.

Then, the ruin probability under an explicit delay time dependence, namely ψL(u), is
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given by

ψL(u) = v(u, k)−
∞∑
m=1

c−m
(∫ ∞

0
Km(u, t)w(t, k) dt

)
, (3.4.10)

provided

λ > M,

where w(u, k) and v(u, k) are given by equations (3.1.9) and (3.1.10), respectively, and

Kn(u, t) is the n-th iterated kernel of K(u, t), given in equation (3.4.5).

Example (Conditional exponential delay time). Assume that the conditional distri-

bution of the delay time random variable, given a deficit size |U(T )| = y, follows an

exponential distribution, with parameter y−1, i.e. fL|Y (x; y) = y−1e
−x
y , y > k. Then,

since a delay occurs only when the deficit is larger than k > 0, we have that

M = max{y−1e
−x
y : x ∈ [0,∞), y ∈ [k,∞)}

= k−1.

Then, by Theorem 26, the ultimate ruin probability is given by

ψL(u) = v(u, k)−
∞∑
m=1

c−m
(∫ ∞

0
Km(u, t)w(t, k) dt

)
, (3.4.11)

as long as λk > 1.



Chapter 4
Parisian Ruin for the Dual Risk Process

in Discrete-Time

In the previous chapters we have seen that deriving, and solving, differential/integral

equations for the ruin probability, and other ruin related quantities, proves difficult

and requires complex methodologies in continuous time. Therefore, in this final chap-

ter, we will move away from risk models in the continuous time setting and concern

ourselves with an analogous discrete-time model, where the probabilistic reasoning and

methodologies for analysis are more attainable.

The discrete-time risk model was first proposed by Gerber (1988), with the intro-

duction of the compound binomial risk process, which is a discrete-time analogue of the

classic Cramér-Lundberg risk model, given by equation (1.1.2), and provides a more

realistic interpretation of the cash flows for an insurance firm. In this compound bino-

mial risk model, with discrete time periods n ∈ N, it is assumed that income is received

via a periodic premium of size one, whilst the initial reserve and the claim amounts are

assumed to be non-negative integer valued. We point out that a unit premium does not

restrict the model assumptions, since a general premium can be considered by scaling

the time periods.

Definition 21 (Discrete-time compound binomial process). The surplus process of

an insurer in the discrete-time compound binomial risk model, denoted {U(n)}n∈N, is

119
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defined by

U(n) = u+ n−
n∑
i=1

Yi, (4.0.1)

where u ∈ N is the insurers initial capital and the sequence of random, non-negative

claim amounts, namely {Yi}i∈N+, are i.i.d. random variables with p.m.f. pk = P(Y1 =

k), for k ∈ N, and finite mean E(Y1) <∞.

In the compound binomial risk model, defined in Definition 21, it is assumed that

in any period of time, no claim appears with probability p0 = (1 − q) ∈ [0, 1], or a

claim appears with probability q ∈ [0, 1], where the occurrence of claims in different

time periods are independent events. Thus, it follows that the sequence of i.i.d. claim

inter-arrival times, denoted {τi}i∈N+ , follows a geometric distribution with parameter

q ∈ [0, 1] and the corresponding counting process, {N(n)}n∈N, is a binomial process,

with parameter n ∈ N and q ∈ [0, 1], with N(0) = 0. Moreover, the generic claim size

random variables, Yi, for i ∈ N+, have the form Yi = Ii · Xi and their p.m.f. can be

written as

pk =


1− q, k = 0

qfk, k ∈ N+,

(4.0.2)

where fk = P(X = k) = pkq
−1 is the p.m.f. of the i.i.d. strictly positive claim size

random variables {Xi}i∈N+ . Thus, the compound binomial process can be expressed

alternatively in the form

U(n) = u+ n−
N(n)∑
i=1

Xi, n ∈ N. (4.0.3)

Finally, it is assumed that the premiums contain a safety loading, where

E(Y1) = qE(X1) < 1,

such that the event of ruin (defined below) is not certain. Note that, since the geometric
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distribution of the claim inter-arrival times has the memoryless property, it is considered

the discrete analogue of the exponential distribution and thus, it is easy to see the

similarities between the compound binomial process, given in equation (4.0.3), and the

compound Poisson process in the continuous time Cramér-Lundberg risk model, given

in equation (1.1.2). Such a model is of independent interest, due to its more intuitive

reflection of the trading periods within in an insurance firm and due to the ability

to obtain recursive formulas without assuming a claim severity distribution. On the

other hand, it can also be used as an approximation to the continuous time compound

Poisson model [see Dickson (1994)].

Early works in the risk theory literature, concerning the binomial risk process,

cover several different probabilistic methods to obtain a common expression for the

probability of ruin, the definition of which alters slightly between different authors,

and other ruin related quantities, such as those described in Chapter 1. To explain

these results in some more detail, we need first to define the event of ruin in the

discrete-time model.

Definition 22 (Time to ruin in discrete-time). The time to ruin in the discrete-time

risk model, denoted by T , is a non-negative random variable, defined as

T = inf{n ∈ N+ : U(n) 6 0},

where T =∞ if U(n) > 0, for all n ∈ N+.

Note that this definition is consistent with Gerber (1988) and alters from the classical

ruin time in the continuous-time model by the inclusion of zero, whilst other authors

define the ruin time when the reserve takes strictly negative values [see Shiu (1989) and

Willmot (1993) among others].

Definition 23 (Discrete-time ruin probability). For u ∈ N, the finite-time ruin prob-

ability, denoted ψ(u, t), is defined by

ψ(u, t) = P(T < t
∣∣U(0) = u), t ∈ N,
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with finite-time survival probability, denoted φ(u, t), defined as

φ(u, t) = P(T > t
∣∣U(0) = u)

= 1− ψ(u, t). (4.0.4)

The corresponding infinite-time ruin probability for the discrete time risk model, denoted

by ψ(u), is defined by

ψ(u) = lim
t→∞

ψ(u, t) = P(T <∞
∣∣U(0) = u),

with infinite time survival probability φ(u) = 1− ψ(u).

We point out that although the ruin time is defined at the first time of a non-positive

surplus, ruin does not occur at time zero for an initial capital u = 0. In this case, the

ruin time is defined as the first time the surplus revisits the zero level, or drops below,

and ψ(0, t) 6= 1, for any t ∈ N. Then, using the definition of the infinite-time ruin

probability (above) and conditioning on the possible events in the first time period,

from the law of total probability, we have

ψ(0) = (1− q)ψ(1) + q, (4.0.5)

and

ψ(u) = (1− q)ψ(u+ 1) + q

u∑
j=1

ψ(u+ 1− j)fj + q

∞∑
j=u+1

fj , for u ∈ N+. (4.0.6)

Notice that, if the value of the ruin probability with zero initial surplus, namely ψ(0),

is known, then the above equation can be used to calculate the ruin probabilities ψ(u),

for u ∈ N+, recursively.

In the original paper of Gerber (1988), explicit expressions are derived for the

infinite-time ruin probability and other ruin related quantities such as the the number

of visits to a given level, the probability of reaching a given level and the surplus

immediately prior and deficit at ruin, to name a few, when the initial capital u =
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0. In fact, all these expressions follow readily from a key result (Theorem 1, Gerber

(1988)), where an expression involving the expected value of the aggregate claims can be

expressed as a simple function of the mean claim size, E(Y1), and the claim occurrence

probability, namely q ∈ (0, 1). The infinite-time probability of ruin with initial capital

u = 0, for the compound binomial risk process, is given in the following lemma.

Lemma 7. For u = 0, the discrete-time ruin probability for the compound binomial

risk process is given by

ψ(0) = qE(X1). (4.0.7)

Remark 16. Comparing the result of Lemma 7 with Lemma 1 of Chapter 1, we can

see further evidence of the similarities between the discrete-time binomial model and

the continuous-time Poisson risk model.

Finally, using a similar argument as for the case of zero initial capital, i.e.u = 0, Gerber

(1988) derives an explicit expression for the ruin probability with general initial capital

u ∈ N.

Shortly after the original work of Gerber (1988), Shiu (1989) considers a similar

model and derives an equivalent expression to that of Gerber (1988), in terms of the

infinite-time survival probability φ(u), for general u ∈ N, using alternative methods.

That is, by considering the definition of discrete convolutions, he is able to re-write the

recursive equation for the ultimate-time survival probability, corresponding to equation

(4.0.6), in the form of a Volterra equation of the second kind, obtaining a Neumann

series solution, which is equivalent to the result found in Gerber (1988).

Later, Dickson (1994) proposes a third method and derives a simple recursive equa-

tion for the infinite-time survival probability, in terms of the tail d.f. of the claim sizes

and, by using the discrete version of the deficit at ruin function, obtains the initial

value, ψ(0), given in Lemma 7. In order to obtain an explicit expression for the ruin

probability, with general initial capital u ∈ N, Dickson (1994) considers the so-called

Binomial/Geometric model, which is the discrete analogue of the Poisson/Exponential

risk model considered in Proposition 2. In this model, it is assumed that the pos-

itive claim size distribution, namely fk, is geometrically distributed with parameter
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(1− α) ∈ (0, 1), such that

fk = (1− α)αk−1, k ∈ N+,

or equivalently, the p.m.f. of the generic claim size random variable Y1, namely pk, for

k ∈ N+, is given by

pk = q(1− α)αk−1, k ∈ N+,

where q/(1 − α) < 1, by the net profit condition. Employing these forms of the prob-

ability functions, Dickson (1994) shows that the recursive expression satisfied by the

survival probability, reduces to a difference equation (of order 1) in terms of the ruin

probability, the solution of which is given in the following proposition.

Proposition 14. Let the individual claim size random variable be geometrically dis-

tributed with parameter (1 − α) ∈ (0, 1). Then, the ruin probability for the compound

binomial risk model, namely ψ(u), is given by

ψ(u) = ψ(0)

(
α

1− q

)u
, u ∈ N,

where

ψ(0) =
q

1− α
< 1.

In addition to obtaining a recursive expression for the ruin probability, Dickson (1994)

investigates the method for approximating the continuous-time compound Poisson

model by the compound binomial model, as discussed in Gerber (1988). The main

idea behind this approximation is to first approximate a discrete-time compound Pois-

son with the compound binomial, then employ the approximation algorithm of Dickson

and Waters (1991), which approximates the continuous-time compound Poisson with

a discrete-time compound Poisson under which the Poisson parameter and the mean

individual claim amounts are unitary. For further references on ruin related results,

such as; the discounted probability of ruin, the deficit and surplus prior to ruin and

the well known Gerber-Shiu function, to name a few, see Cheng et al. (2000), Cossette

et al. (2003, 2004), Boudreault et al. (2006), Dickson (1994), Li and Garrido (2002),



CHAPTER 4. DISCRETE DUAL PARISIAN RUIN 125

Pavlova and Willmot (2004), Wu and Li (2009), Yuen and Guo (2006), and references

therein.

The finite-time ruin probability for the discrete-time risk model was first studied

in Willmot (1993), where an explicit formula is derived for the finite-time survival

function, φ(u, t), by deriving a bivariate difference equation, which is solved using

bivariate generating functions and analytical techniques such as Lagrange’s expansion.

Later, Lefèvre and Loisel (2008) derive a seal-type formula based on the ballot theorem

[see Takács (1962)] and a Picard-Lefèvre-type formula for the corresponding finite-time

survival probability. More recently, Li and Sendova (2013) derived a technical result

connected to generating functions, by which the inverse of a generating function, with

a particular argument, can be obtained if we know the inverse of the same generating

function when the argument is the solution to the discrete-Lundberg equation (see

below). Using this result, they derive an expression for the first hitting time for the

surplus process, {U(n)}n∈N with initial capital u = 0, of a pre-specified level x ∈ N.

Proposition 15 (First hitting time). Let T x = inf{n ∈ N+ : U(n) = x} be the first

time the surplus process {U(n)}n∈N hits the level x ∈ N+. Then, the probability mass

function of the hitting time T x, with initial capital U(0) = 0, is given by

P(T x = n
∣∣U(0) = 0) =

x

n
p∗nn−x, n > x,

where {p∗nk }n∈N denotes the n-th fold convolution of Y1.

In addition, they employ this relationship between generating function to derive the

probability function of the time to ruin and the duration of the negative surplus. For

a comprehensive review of the earlier results on the discrete-time risk model, we refer

the reader to Li et al. (2009), and references therein.

4.1 Parisian ruin for the dual risk model in discrete-time

The compound binomial risk model, defined in (4.0.1), and the corresponding continuous-

time compound Poisson risk model, are well suited for describing the cash flows of an
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non-life insurance firm which receives constant premium as income and incurs losses due

to random claims. However, as pointed out by Avanzi et al. (2007) for the continuous-

time model, depending on the line of business there exist companies for which an

alternative model may be better suited. For instance, pharmaceutical or petroleum

companies receive income as random gains from new invention or discoveries, whilst

facing continuous/constant expenses in terms of labour and utilities. For this case, the

classical risk models are no longer sufficient and an alternative model is required. In

discrete-time, this alternative model, denoted {U∗(n)}n∈N, can be defined by

U∗(n) = u− n+
n∑
i=1

Yi, (4.1.1)

where u ∈ N is the initial capital and the sequence of non-negative random variables

{Yi}i∈N+ , denoting the random income gains, has p.m.f. pk, for k ∈ N, as defined in

Definition 21. This model is known as the dual compound binomial risk model. The

continuous analogue of the dual risk model has been considered by various authors, with

the majority of focus in dividend problems [see Avanzi et al. (2007), Bergel et al. (2016),

Cheung and Drekic (2008), Ng (2009) and references therein]. Additionally, Albrecher

et al. (2008) considered the continuous-time dual risk model under a loss-carry forward

tax system, where, in the case of exponentially distributed jump sizes, the infinite-time

ruin probability is derived in terms of the ruin probability without taxation. However,

the dual risk problem in discrete-time remains to be studied.

The finite-time ruin probability, for the dual risk process given in equation (4.1.1),

is defined in a similar way to that of the compound binomial risk model, defined in

equation (4.0.1). That is, the finite-time ruin probability is the probability that the

dual risk process {U∗(n)}n∈N attains a non-positive level before some pre-specified

time horizon t ∈ N, from initial capital u ∈ N. Note that, since the dual risk model is

downward skip free, in terms of claims, and experiences deterministic losses of one per

period, it follows that the probability of experiencing a non-positive level is equivalent

to the probability of hitting the zero level. Thus, let us denote the time to ruin for the
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dual risk model, given in equation (4.1.1), by T ∗, which is defined by

T ∗ = inf{n ∈ N : U∗(n) = 0}.

Then, the finite-time dual ruin probability from initial capital u ∈ N, denoted by

ψ∗(u, t), is defined by

ψ∗(u, t) = P(T ∗ < t
∣∣U∗(0) = u), t ∈ N, (4.1.2)

with ψ∗(0, t) = 1, for all t ∈ N, and corresponding finite-time dual survival probability,

denoted φ∗(u, t), given by

φ∗(u, t) = P(T ∗ > t
∣∣U∗(0) = u), (4.1.3)

with φ∗(0, t) = 0, for all t ∈ N.

Remark 17. We point out that our boundary condition, ψ∗(0, t) = 1, for t ∈ N+,

differs slightly from that of the compound binomial risk process - in the compound

binomial definition, ruin does not occur immediately, for initial capital u = 0, but is

defined as the first strictly positive time that the process attains the zero level - however,

the reason for this deviation will become apparent in the following.

The infinite-time dual ruin probability, denoted by ψ∗(u), is defined as the limiting case

of the finite-time dual ruin probability as t→∞, for t ∈ N, i.e.

ψ∗(u) = lim
t→∞

ψ∗(u, t)

= P(T ∗ <∞
∣∣U∗(0) = u), (4.1.4)

with corresponding infinite-time dual survival probability

φ∗(u) = lim
t→∞

φ∗(u, t)

= 1− ψ∗(u). (4.1.5)
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Remark 18. From the definition of the time to ruin, for the dual risk model, and the

fact that the process is downward skip free, i.e. downward movements only occur due to

the deterministic losses of one per period, it is clear that from initial capital U∗(0) = u,

we have T ∗ > u.

Finally, similarly to the compound binomial risk model, it is assumed that a net profit

condition holds. That is, E(Y1) > 1, such that U∗(n)→ +∞ as n→∞ and ruin does

not occur a.s.

In the remainder of this chapter, for convenience, we will employ the notation

Pu(·) := P(·
∣∣U∗(0) = u).

In the previous sections, we discussed capital injections as a recapitalisation method

of recovery for an insurance firm in deficit, which usually has an associated cost,

e.g. premiums for a reinsurance contract, dividends to the shareholders in exchange

for a capital injections etc. On the other hand, if there is confidence within a company

that this fall into deficit can be recovered quickly, by its usual trading strategy, a more

economic alternative would be to simply allow the company to continue when in a

deficit. However, if the company fails to recover before some pre-specified time period

r ∈ N+, then the confidence is lost and ultimate ruin occurs at this point. That is,

the time of ultimate ruin is no longer defined as the time of falling into a deficit, as

in the classical sense, but if the surplus experiences a continuous excursion below zero

for some fixed time period. This is known in the literature as Parisian ruin and follows

from Parisian stock options, where prices are activated or cancelled when underlying

assets stay above or below a barrier long enough [see Chesney et al. (1997) and Das-

sios and Wu (2008)]. The time of Parisian ruin, in the discrete-time dual risk model,

denoted T r with r ∈ N+, is defined as

T r = inf{n ∈ N : U∗(n) < 0, n− sup{s < n : U∗(s) = −1, U∗(s− 1) = 0} = r ∈ N+ },

(4.1.6)

with finite and infinite-time Parisian ruin probabilities defined by

ψ∗r (u, t) = Pu(T r < t), t ∈ N, (4.1.7)
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and

ψ∗r (u) = lim
t→∞

ψ∗r (u, t), (4.1.8)

respectively. We further define the corresponding finite and infinite-time Parisian sur-

vival probabilities by

φ∗r(u, t) = Pu(T r > t)

= 1− ψ∗r (u, t), t ∈ N, (4.1.9)

and

φ∗r(u) = 1− ψ∗r (u). (4.1.10)

The generalisation from classical ruin to Parisian ruin was first proposed, in a continu-

ous time setting, by Dassios and Wu (2008) for the compound Poisson risk process with

exponential claim sizes. In this setting, they derive expressions for the LT of the time

and probability of Parisian ruin. In a more general setting, Czarna and Palmowski

(2011) and Loeffen et al. (2013) derived results for the Parisian ruin probability for

spectrally negative Lévy processes. More recently, Czarna et al. (2016) adapted the

Parisian ruin problem to a discrete-time risk model, as in equation (4.0.1), where finite

and infinite-time expressions for the ruin probability are derived, along with the light

and heavy-tailed asymptotic behaviour. To obtain such results, the authors first derive

the following joint probability function of the time to ruin and the deficit at ruin for

the discrete model defined in Definition 21, using a generalised ballot type theorem of

Lefèvre and Loisel (2008).

Lemma 8. For s ∈ N+, we have

P(T = s,−U(T ) = z
∣∣U(0) = u) =

u+s−2∑
k=0

P

(
T > s− 1,

s−1∑
i=1

Yi = k

∣∣∣∣U(0) = u

)
pu+s−k+z

=

u+s−2∑
k=0

p
∗(s−1)
k pu+s−k+z −

u+s−2∑
k=u+1

k∑
j=u+1

s− 1 + u− k
s− 1 + u− j

p
∗(s−1+u−j)
k−j p

∗(j−u)
j pu+s−k+z.

(4.1.11)
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In this chapter, we consider the alternative dual model of that in Czarna et al. (2016),

for which the results and analysis differs due to the lack of downward jumps.

4.2 Finite-time Parisian ruin probability

In this section, we derive an expression for the finite-time Parisian survival probability,

φ∗r(u, t), for the dual risk model given in equation (4.1.1), with general initial capital

u ∈ N.

First note that, since the dual risk process, {U∗(n)}n∈N, experiences only positive

random gains and losses occur at a rate of one per period, it follows that φ∗r(u, t) = 1,

when t 6 u+ r + 1. Now, for t > u+ r + 1, by conditioning on the time to ruin for a

dual risk process, namely T ∗, we have

φ∗r(u, t) =

∞∑
k=0

Pu(T ∗ = k)φ∗r(0, t− k)

=
t−r−2∑
k=u

Pu(T ∗ = k)φ∗r(0, t− k) +
∞∑

k=t−r−1

Pu(T ∗ = k)

=
t−r−2∑
k=u

Pu(T ∗ = k)φ∗r(0, t− k) + φ∗(u, t− r − 1), (4.2.1)

since Pu(T ∗ = k) = 0, for k < u and
∑∞

k=t Pu(T ∗ = k) = φ∗(u, t) is the finite-time

survival probability (non-Parisian) of the dual risk process with initial capital u ∈ N.

Then, from the form of equation (4.2.1), in order to obtain an explicit expression for the

Parisian survival probability, φ∗r(u, t), it suffices to derive expressions for Pu(T ∗ = k)

and the Parisian survival probability with zero initial capital, namely φ∗r(0, t).

Lemma 9. In the discrete-time dual risk model, the probability of hitting the zero level

from initial capital u ∈ N, in n ∈ N periods, namely Pu(T ∗ = n), is given by

Pu(T ∗ = n) =
u

n
p∗nn−u, n > u. (4.2.2)

Proof. Consider the discrete-time dual risk process, {U∗(n)}n∈N, defined in equation
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(4.1.1), where

U∗(n) = u−R∗(n), (4.2.3)

with R∗(n) = n −
∑n

i=1 Yi. The ‘increment’ process, {R∗(n)}n∈N, is equivalent to a

discrete-time risk process, given by equation (4.0.1), with initial capital zero. Therefore,

it follows that the dual ruin time, namely T ∗, is equivalent to the first hitting time for

the increment process, {R∗(n)}n∈N, of the level u ∈ N (see Fig:4.1). That is, T ∗ ≡ T u

of Proposition 15, from which the result follows.

(a) Typical sample path of surplus process
U∗(n), with initial capital u ∈ N.

(b) Corresponding sample path of the increment
process R∗(n) with initial capital 0.

Figure 4.1: Equivalence between dual risk process and classic risk process.

Now that we have an expression for Pu(T ∗ = k) and consequently for the finite-time

dual survival probability, φ∗(u, t), given by

φ∗(u, t) =
∞∑
k=t

Pu(T ∗ = k) =
∞∑
k=t

u

k
p∗kk−u, (4.2.4)

it remains to derive an expression for the finite-time Parisian survival probability with

zero initial reserve, i.e.φ∗r(0, t). Before we begin with deriving an expression for φ∗r(0, t),

note that in order to avoid Parisian ruin, once the reserve process becomes negative,

it is necessary to return to the zero level (or above) in r ∈ N+ time periods or less.

Considering this observation, we will introduce another random stopping time, denoted

by τ−, which we name ‘recovery time’, that measures the number of periods it takes to
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recover from a deficit to a non-negative reserve and is defined by

τ− = inf{n ∈ N+ : U∗(n) > 0, U∗(s) < 0, ∀ 0 6 s < n}.

Moreover, since the recovery time only occurs at the time of an upward jump, we

introduce the joint probability distribution of the time of recovery and the overshoot

at recovery from initial capital x < 0, denoted by Px (τ− = n,U∗(τ−) = z), which will

prove convenient for the subsequent derivations.

Now, consider the dual risk process defined in equation (4.1.1), with initial capital

u = 0. If no gain occurs in the first period of time, the surplus becomes U∗(1) = −1

at the end of the period. On the other hand, if there is a random gain of amount

k ∈ N+, in the first period, the surplus becomes U∗(1) = k − 1. Hence, by the law

of total probability, we obtain a recursive equation for the finite-time Parisian survival

probability, with initial capital zero, i.e.φ∗r(0, n), for n > r + 1 (with φ∗r(0, n) = 1 for

n 6 r + 1), of the form

φ∗r(0, n) = p0 φ
∗
r(−1, n− 1) +

∞∑
k=1

pkφ
∗
r(k − 1, n− 1)

= p0

r∑
s=1

∞∑
z=0

P−1

(
τ− = s, U∗(τ−) = z

)
φ∗r(z, n− s− 1) +

∞∑
k=0

pk+1φ
∗
r(k, n− 1),

(4.2.5)

where P−1(τ− = ·, U∗(τ−) = ·) is the joint probability of the recovery time and the size

of the overshoot at recovery, given initial capital x = −1.

By exploiting the distributional similarities between the reflected dual risk process

and the compound binomial model, we obtain an explicit expression for this joint

probability, given in the following lemma.

Lemma 10. For, n ∈ N+ and k ∈ N, the joint distribution of the recovery time and
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(a) Typical sample path of risk reserve process
U∗(n) with initial capital u = −1.

(b) Sample path of the reflected risk reserve pro-
cess −U∗(n) with initial capital u = 1.

Figure 4.2: Equivalence between dual and the compound binomial risk processes.

the overshoot at recovery, from initial capital u = −1, is given by

P−1(τ− = n,U∗(τ−) = k) =

n−1∑
j=0

p
∗(n−1)
j p1+n−j+k −

n−1∑
j=2

j∑
i=2

n− j
n− i

p
∗(n−i)
j−i p

∗(i−1)
i p1+n−j+k,

(4.2.6)

Proof. Consider the dual risk process, {U∗(n)}n∈N defined in equation (4.1.1), with

initial capital u = −1. Then, the corresponding ‘reflected’ dual risk process, denoted

{−U∗(n)}, is given by

−U∗(n) = 1 + n−
n∑
i=1

Yi,

which is equivalent to the compound binomial risk process, {U(n)}n∈N, defined in

equation (4.0.1), with initial capital u = 1. Therefore, it follows that the distribution

of the time to cross the time axis and the overshoot of the process at this hitting time

are equivalent for both processes (see Fig: 4.4). It follows that the joint distribution,

P−1(τ− = n,U∗(τ−) = k), for the dual risk model can be found by employing the

discrete ruin related quantity for the compound binomial risk model of Lemma 8. That

is, by setting u = 1 in equation (4.1.11), the result follows.

Finally, in order to make equation (4.2.5) dependent only on an unknown in terms
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of the boundary value, φ∗r(0, n), we substitute the form of φ∗r(u, t), given in equation

(4.2.1), into equation (4.2.5), to obtain

φ∗r(0, n) = p0

r∑
s=1

∞∑
z=0

P−1(τ− = s, U∗(τ−) = z)φ∗(z, n− s− r − 2)

+ p0

r∑
s=1

∞∑
z=0

n−s−r−3∑
i=z

P−1(τ− = s, U∗(τ−) = z)Pz(T ∗ = i)φ∗r(0, n− s− i− 1)

+
∞∑
k=0

pk+1φ
∗(k, n− r − 2) +

∞∑
k=0

n−r−3∑
i=k

pk+1Pk(T ∗ = i)φ∗r(0, n− i− 1).

(4.2.7)

Remark 19. An explicit expression for φ∗r(0, n), based on equation (4.2.7), proves dif-

ficult to obtain. However, due to the form of equation (4.2.7), a recursive calculation

for φ∗r(0, n) can be employed and is given by the following algorithm:

Step 1. Substituting n = r+2, in equation (4.2.7), and using the fact that φ∗(u, t) = 1

for t 6 u, we have that

φ∗r(0, r + 2) = p0

r∑
s=1

∞∑
z=0

P−1(τ− = s, U∗(τ−) = z) + 1− p0

= 1− p0

(
1−

∞∑
z=0

P−1(τ− 6 r, U∗(τ−) = z)

)

= 1− p0φ(1, r + 1),

where φ(1, t) is the classic finite-time survival probability in the compound binomial risk

model, with initial capital u = 1, which has been extensively studied in the literature,

[see Li and Sendova (2013) and references therein] and alternatively can be evaluated

using the results of Lemma 10, since

φ(1, t) =

∞∑
n=t

∞∑
k=0

P−1

(
τ− = n,U∗(τ−) = k

)
.

Step 2. Based on the recursive nature of equation (4.2.7) and using the result of Step
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1, we can compute φ∗r(0, n), for n = r + 3, since

φ∗r(0, r + 3) = p0

r∑
s=1

∞∑
z=0

P−1(τ− = s, U∗(τ−) = z) +

∞∑
k=1

pk+1 + p1φ
∗
r(0, r + 2)

= 1− (1 + p1)p0φ(1, r + 1).

Step 3. Using similar arguments as in the previous steps, for n = r + 4, we have

φ∗r(0, r + 4) = p0

( ∞∑
z=1

P−1(τ− = 1, U∗(τ−) = z) +
r∑
s=2

∞∑
z=0

P−1(τ− = s, U∗(τ−) = z)

)

+ p0P−1(τ− = 1, U∗(τ−) = 0)φ∗r(0, r + 2) + p2φ
∗(1, 2)

+

∞∑
k=2

pk+1 + p1φ
∗
r(0, r + 3) + p2P1(T ∗ = 1)φ∗r(0, r + 2)

= p0

(
ψ(1, r + 1)− P−1(τ− = 1, U∗(τ−) = 0)

)
+ p0P−1(τ− = 1, U∗(τ−) = 0)φ∗r(0, r + 2) + p2 (1− p0)

+ 1− (p0 + p1 + p2) + p1φ
∗
r(0, r + 3) + p2p0φ

∗
r(0, r + 2).

Employing the results of steps 1 and 2 and using the fact that P−1(τ− = 1, U∗(τ−) =

0) = p2, by Lemma 10, after some algebraic manipulations we obtain

φ∗r(0, r + 4) = 1− [1 + 2p0p2 + p1(1 + p1)] p0φ(1, r + 1).

Thus, based on the above steps, φ∗r(0, r+k), for k = 2, 3, . . ., can be evaluated recursively

for each value of k in terms of the mass functions, pn, and the classic ruin quantity

φ(1, r + 1).

Theorem 27. For u ∈ N, the finite-time Parisian ruin probability ψ∗r (u, t) = 0 for

t 6 u+ r + 1 and for t > u+ r + 1, is given by

ψ∗r (u, t) =
t−r−2∑
k=u

u

k
p∗kk−uψ

∗
r (0, t− k), (4.2.8)

where ψ∗r (0, n) can be found recursively from equation (4.2.7).
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In the next section, we use the above expressions to derive results for the infinite-time

Parisian ruin probabilities, for which, as will be seen, a more analytic expression can

be found.

4.3 Infinite-time Parisian ruin probability

In this section, we derive an explicit expression for the infinite-time Parisian survival

(ruin) probabilities using the arguments of the previous section. First, let us recall that

the infinite-time Parisian survival probability is defined as φ∗r(u) = limt→∞ φ
∗
r(u, t),

with the infinite-time dual ruin quantities being defined in a similar way, i.e. φ∗(u) =

limt→∞ φ
∗(u, t). Then, it follows, by taking the limit t → ∞ with t ∈ N, equation

(4.2.1) reduces to

φ∗r(u) = ψ∗(u)φ∗r(0) + φ∗(u), (4.3.1)

where φ∗r(0) is the infinite-time Parisian survival probability with initial capital u = 0,

defined by φ∗r(0) = limt→∞ φ
∗
r(0, t) and φ∗r(0, t) satisfies equation (4.2.5). Therefore it

follows, by taking the limit n→∞ in equation (4.2.5), that φ∗r(0) satisfies

φ∗r(0) = p0

∞∑
z=0

P−1(τ− 6 r, U∗(τ−) = z)φ∗r(z) +
∞∑
j=0

pj+1φ
∗
r(j),

or equivalently

φ∗r(0) =
∞∑
k=0

akφ
∗
r(k), (4.3.2)

where

ak :=
(
p0P(τ− 6 r, U∗(τ−) = k) + pk+1

)
, (4.3.3)

can be obtained from the result of Lemma 10, since

P(τ− 6 r, U∗(τ−) = k) =
r∑
s=1

P(τ− = s, U∗(τ−) = k).

Considering the first term of the summation in the r.h.s. of equation (4.3.2) and solving
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with respect to φ∗r(0), we get an explicit representation for φ∗r(0), of the form

φ∗r(0) = C−1
∞∑
k=1

akφ
∗
r(k), (4.3.4)

where

C = 1− p0P−1(τ− 6 r, U∗(τ−) = 0)− p1. (4.3.5)

Finally, substituting the general form of the infinite-time Parisian survival probability,

φ∗r(u), given by (4.3.1), into equation (4.3.4) and solving with respect to φ∗r(0), we

obtain

φ∗r(0) =
C−1

∑∞
k=1 akφ

∗(k)

1− C−1
∑∞

k=1 akψ
∗(k)

. (4.3.6)

Note that, the above equation provides an explicit expression for the boundary condi-

tion, φ∗r(0), unlike the finite-time case, which is given in terms of the infinite-time dual

ruin probabilities φ∗(·) and ψ∗(·). Combining equations (4.3.1) and (4.3.6) and after

some algebraic manipulations, we obtain an explicit expression for the infinite-time

Parisian survival probability, with general initial reserve u ∈ N, which is given in the

following theorem.

Theorem 28. For u ∈ N, the infinite-time Parisian ruin probability, ψ∗r (u), is given

by

ψ∗r (u) = ψ∗(u)

(
C −

∑∞
k=1 ak

C −
∑∞

k=1 akψ
∗(k)

)
, (4.3.7)

where the coefficients ak, for k ∈ N+, are given by

ak = p0P(τ− 6 r, U∗(τ−) = k) + pk+1, (4.3.8)

and

C = 1− p0P−1(τ− 6 r, U∗(τ−) = 0)− p1.
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4.4 Alternative methods for deriving the infinite-time dual

ruin probability

In Lemma 9, we derived an expression for the p.m.f. of the dual ruin time, namely

Pu(T ∗ = k), in terms of convolutions of the claim size distribution. This result, as

discussed previously, can be used to obtain an expression for both the finite-time dual

ruin probability and consequently, the infinite-time dual ruin probability, since

ψ∗(u) =
∞∑
k=0

Pu(T ∗ = k)

=
∞∑
k=u

Pu(T ∗ = k) =
∞∑
k=u

u

k
p∗kk−u.

Although the above expression is explicit, this representation does not give much insight

into the behaviour of the dual ruin probability and thus a closed form expression would

be more favourable.

In this section, we implement alternative methods for deriving an explicit expression

for the infinite-time dual ruin probability.

Difference equation

The first method is based on the fact that the dual ruin probability, ψ∗(u), satisfies

a difference equation, for which a particular form of the solution is employed. In the

following, we show that this solution is indeed an analytical solution for ψ∗(u) and is

unique.

Consider the dual risk process given in equation (4.1.1), with initial reserve u+ 1,

for u ∈ N. Then, conditioning on the possible events in the first period of time and

using the law of total probability, we obtain a difference equation for the infinite-time

dual ruin probability, namely ψ∗(·), of the form
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ψ∗(u+ 1) = p0ψ
∗(u) +

∞∑
j=1

pjψ
∗(u+ j)

=

∞∑
j=0

pjψ
∗(u+ j), (4.4.1)

with boundary conditions ψ∗(0) = 1 and limu→∞ ψ
∗(u) = 0.

Equation (4.4.1) is in the form of an infinite-order difference (recursive) type equa-

tion. Thus, by adopting the general methodology for solving difference equations, we

search for a solution of the form

ψ∗(u) = cAu,

where c andA are constants to be determined. Using the boundary conditions ψ∗(0) = 1

and limu→∞ ψ
∗(u) = 0, it follows that the constant c = 1 and 0 6 A < 1. That is, the

general solution to the recursive equation (4.4.1) is of the form

ψ∗(u) = Au, (4.4.2)

for some 0 6 A < 1, which, after substitution into equation (4.4.1), yields

Au+1 =

∞∑
j=0

pjA
u+j , u ∈ N. (4.4.3)

Dividing the above equation through by Au and defining the probability generating

function (p.g.f.) of Y1 by PY (z) =
∑∞

i=0 piz
i, yields

A = PY (A), 0 6 A < 1. (4.4.4)

That is, 0 6 A < 1 is a solution (if it exists) to the discrete-time dual analogue of

Lundberg’s fundamental equation, given by

θ(z) = 0, (4.4.5)
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Figure 4.3: Graph of the function θ(z) := PY (z)− z.

where θ(z) := PY (z)− z.

Proposition 16. In the interval [0, 1), there exists a unique solution to the equation

PY (z)− z = 0.

Proof. It follows from the properties of a p.g.f. that

θ(0) = p0 > 0,

θ′(0) = p1 − 1 6 0,

θ(1) = 0,

θ′(1) = E(Y1)− 1 > 0,

θ′′(z) > 0, for all z ∈ [0, 1).

From the above conditions, which show the characteristics of the function θ(z) :=

PY (z) − z (see Fig: 4.3), it follows that there exists a root of θ(z) = 0 at z = 1 and a

second solution z = A, which is unique in the interval [0, 1).

Finally, from equations (4.4.2), (4.4.4) and Proposition 16, we obtain a closed form

expression for the infinite-time dual ruin probability, given by the following lemma.

Lemma 11. The infinite-time dual probability of ruin, namely ψ∗(u) for u ∈ N, is
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given by

ψ∗(u) = Au, (4.4.6)

where A is the unique solution in the interval [0, 1) to the Lundberg equation PY (z)−z =

0, with PY (z) the p.g.f. of Y1.

Remark 20. We note that the p.g.f.,PY (z), converges for all |z| 6 1 and thus, in the

interval z ∈ [0, 1] the p.g.f. and thus A, exists (finite) for all probability distributions,

i.e. light and heavy-tailed. Therefore, it follows that Theorem 11 holds for a general

gain size distribution.

Exponential martingale and random walks

The second method is to consider the hitting probability of the increment process (ran-

dom walk), R∗(n) = n−
∑n

i=1 Yi, using exponential martingales and Optional Stopping

Theorem. That is, we want to find an s > 0, such that the sequence {esR∗(n)}n∈N forms

a discrete-time martingale.

Definition 24 (Discrete-time martingale). A discrete-time stochastic process X =

{Xn}n∈N is called a martingale (with respect to some filtration F = {Fn}n∈N) if for

each n ∈ N, we have

1. X is adapted to F ; that is, Xn is Fn-measurable,

2. Xn is in L1; that is, E(|Xn|) <∞, and

3. E(Xn+1

∣∣Fn) = Xn a.s.

From Definition 24, it follows that we require an s > 0, such that

1 = E
(
esR

∗(0)
)

= E
(
esR

∗(1)
)

= esE
(
e−sY1

)
= esMY1(−s),

or equivalently

e−s = MY1(−s).



CHAPTER 4. DISCRETE DUAL PARISIAN RUIN 142

Setting z = e−s, in the above equation, yields z = PY (z), as in the previous derivation

and thus, it follows that the solution to the above Lundberg equation, namely the

adjustment coefficient, denoted by γ > 0, is given by γ = ln(A−1) > 0.

Now that we have found an exponential martingale (with respect to the natural

filtration), given by {eγR∗(n)}n∈N, we want to define the hitting time for the random

walk, {R∗(n)}n∈N, of the level u ∈ N, denoted T u as in Proposition 15, i.e.R∗(T u) = u,

and is defined by

T u = inf{n ∈ N : R∗(n) = u} = inf{n ∈ N : U∗(n) = 0} = T ∗. (4.4.7)

Finally, if the hitting time T u, defined above, is a stopping time with respect to the

natural filtration, we can employ Optional Stopping Theorem from which, as will be

seen, the result follows.

Definition 25 (Stopping time). A random variable τ , with support on the non-negative

integers, is called a stopping time if

{τ 6 n} ∈ Fn, for every n ∈ N.

Theorem 29 (Optional stopping). Let X = {Xn}n∈N be a discrete-time martingale

and τ a stopping time with values in the non-negative integers, both with respect to a

filtration F . Further, assume that there exists a constant c such that |Xτ∧n| 6 c a.s. for

all n ∈ N, where τ ∧n denotes the minimum of τ and n. Then, Xτ is an almost surely

well defined random variable and

E[Xτ ] = E[X0].

It is clear to see, by definition, that the hitting time T u is indeed a stopping time, with

respect to the natural filtration and, since

∣∣∣eγR∗(Tu∧n)
∣∣∣ 6 eγu, for all n ∈ N,
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by the Optional Stopping Theorem, we have

1 = E
(
eγR

∗(0)
)

= E
(
eγR

∗(Tu)
)

= eγuP (T u <∞) ,

from which, by recalling that the hitting time T u for the increment process {R∗(n)}n∈N
of the level u ∈ N, is equivalent to the time of ruin in the dual risk model, we have the

following lemma.

Lemma 12. The infinite-time dual probability of ruin, namely ψ∗(u) for u ∈ N, is

given by

ψ∗(u) = e−γu, (4.4.8)

where γ > 0 is the non-trivial solution of the Lundberg equation E
(
es(1−Y1)

)
= 1.

Exponential change of measure

For the final method, we derive a similar result as above, using an exponential change of

measure which provides the discrete analogue of Theorem 2.1, Chapter VI, of Asmussen

and Albrecher (2010).

Definition 26 (Exponential change of measure). Let X be a discrete random variable

with probability measure P and cumulant generating function (c.g.f.), denoted by κ(α),

given by

κ(α) = lnE
(
eαX

)
= ln

( ∞∑
k=−∞

eαkP(X = k)

)
= ln (MX(α)) .

Then, a change of measure via the exponential family, denoted Pθ is given by

Pθ = eθx−κ(θ)P,

or equivalently, in terms of the c.g.f. of Pθ denoted κθ(α), by

κθ(α) = κ(α+ θ)− κ(θ),
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where θ is any number such that κ(θ) is well defined.

Consider the dual risk process, defined in equation (4.2.3), i.e. U∗(n) = u − R∗(n),

where R∗(n) = n−
∑n

i=1 Yi, and denote the c.g.f. of R∗(1), by κ∗(α), with α > 0, where

κ∗(α) = lnE
(
eαR

∗(1)
)

= α+ lnE
(
e−αY1

)
. (4.4.9)

Now, if E(Y1) < 1, then by the strong law of large numbers we have that the incremental

process, R∗(n) → +∞ and it follows that ψ∗(u) = P(T u < ∞) = 1, for all u ∈

N. Moreover, if E(Y1) = 1, such that the random walk {R∗(n)}n∈N has mean zero,

i.e.E(R∗(n)) = 0, for all n ∈ N, then the process {R∗(n)}n∈N will visit every accessible

integer a.s. and thus, it follows that if p0 > 0, we have ψ∗(u) = 1, for all u ∈ N. Assume

now that E(Y1) > 1. Then, the c.g.f., κ∗(α), has the following characteristics (for

details see Lemmas 4.5.2 and 4.5.2 of Appendix):

κ∗(0) = 0,

κ∗′(0) = 1− E(Y1) < 0,

κ∗′′(α) > 0, for all α > 0,

κ∗(α)→∞, as α→∞ iff p0 > 0,

which implies a typical shape of Fig: 4.4a. Hence, there exists a γ > 0, known as the

adjustment coefficient, such that κ∗(γ) = 0, which is unique. Note that, the adjustment

coefficient here is equivalent to that of the previous method, hence γ = ln(A−1) > 0.

Recall that the probability measure governing the claim sizes {Yi}i∈N, and thus

the entire increment process {R∗(n)}n∈N, is denoted by P and consider an exponential

change of measure, as defined in Definition 26, Pθ with corresponding expectation

operator Eθ, such that

Pθ(R∗(1) = k) = eθk−κ
∗(θ)P(R∗(1) = k).

Then, it follows that the c.g.f. of R∗(1) under Pθ, denoted κθ(α), is given by κθ(α) =

κ∗(α + θ) − κ∗(θ) and we have the following theorem [see Asmussen and Albrecher
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(2010)].

Theorem 30. Let τ be a stopping time and let G ∈ Fτ , G ⊆ {τ <∞}. Then,

P(G) = Eθ
(
e−θR

∗(τ)+τκ∗(θ)I{G}
)
.

If we let θ = γ > 0, be the adjustment coefficient, then by definition, the c.g.f. kγ(α) =

κ∗(α+γ) and has typical shape given in Fig: 4.4b. From Fig: 4.4b, it can be easily seen

κ′γ(0) = Eγ(R∗(1)) > 0 and it follows that, under the probability measure Pγ , we have

R∗(n)→ +∞ and hence, the hitting time T u is finite a.s., i.e.Pγ(T u <∞) = 1, for all

u ∈ N.

Finally, by noting that T u is indeed a stopping time with respect to the natural

filtration [see Definition 25], we can employ Theorem 30 with the event G = {T u <∞},

which yields

ψ∗(u) = P(T u <∞) = Eγ
(
e−γR

∗(Tu)I{Tu<∞}
)

= e−γuPγ(T u <∞)

= e−γu,

and we have the following lemma.

(a) Typical shape of c.g.f. κ∗(α). (b) Typical shape of c.g.f. κ̃(α).
Figure 4.4: Relationship of c.g.f.’s under original measure and exponential change of measure
with parameter γ > 0.
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Lemma 13. For E(Y1) 6 1, we have ψ∗(u) = 1 for all u ∈ N. For E(Y ) > 1, we have

ψ∗(u) = e−γu, (4.4.10)

where γ > 0 is the unique solution of

κ∗(α) = logE
(
eαR

∗(1)
)

= α+ logE
(
e−αY1

)
= 0. (4.4.11)

Remark 21. From Lemmas 11, 12 and 13 we see that the infinite-time dual ruin

probability, ψ∗(u), decays exponentially fast for any gain size distribution. Hence, we

cannot expect to observe the classical heavy-tailed asymptotic behaviour, by which we

mean a power law decay, of the dual ruin probability or, by the result of Theorem 28,

the Parisian ruin probability, ψ∗r (u).

4.5 Examples

4.5.1 Binomial/Geometric model

In this section, we consider the Binomial/Geometric model as studied in Dickson (1994),

among others, and we derive an exact expression for the infinite-time dual probability

of ruin, namely ψ∗(u). Consequently, from Theorem 28 we can obtain an expression

for the corresponding infinite-time Parisian ruin probability, ψ∗r (u).

We recall that in the Binomial/Geometric model, it is assumed that the gain size

random variables, {Yi}i∈N+ , have the form Yi = Ii · Xi, where Ii, for i ∈ N+, are

i.i.d. random variables following a Bernoulli distribution with parameter q ∈ [0, 1], i.e.

P(I1 = 1) = 1−P(I1 = 0) = q and the sequence of random gain amounts, {Xk}k∈N+ , are

i.i.d. random variables following a geometric distribution fk, with parameter (1− α) ∈

[0, 1], i.e. P(Y1 = 0) = p0 = 1−q and P(Y1 = k) = pk = qfk = q(1−α)αk−1 for k ∈ N+.

Proposition 17. For u ∈ N, the infinite-time dual ruin probability, ψ∗(u), in the

Binomial/Geometric model, with parameters q ∈ [0, 1] and (1 − α) ∈ [0, 1] such that

q + α > 1, is given by

ψ∗(u) =

(
1− q
α

)u
. (4.5.1)
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Proof. From Lemma 11, the infinite-time dual ruin probability, ψ∗(u), has the form

ψ∗(u) = Au, where 0 6 A < 1 is the solution to θ(z) := PY (z)− z = 0, where

PY (z) = 1− q + qPX(z), (4.5.2)

and PX(z) is the p.g.f. of a geometric distribution, which takes the form

PX(z) =
(1− α)z

1− αz
, |z| 6 1. (4.5.3)

Combining equation (4.5.2) and (4.5.3) and after some algebraic manipulations, Lund-

berg’s fundamental equation, θ(z) = 0, yields a quadratic equation of the form

z2 + k1z + k2 = 0,

where

k1 =
q − 1

α
− 1,

k2 =
1− q
α

.

The above quadratic equation has two roots z1 = (1−q)/α and z2 = 1. Finally, from the

positive drift assumption in the the model set up, we have that E(Y1) = q/(1−α) > 1,

from which it follows that q + α > 1 and the root z1 ∈ [0, 1). Thus, we have A = z1,

since this root is unique in the interval [0, 1) (see Proposition 16).

In order to illustrate the behaviour of the dual ruin probability under geometric claim

sizes, given in Proposition 17 and the corresponding Parisian ruin probability of The-

orem 28, we consider the set of parameters, q = 0.3, α = 0.9. Then, the dual ruin

probability and the Parisian ruin probabilities, for r = 1, 2, 3, 4, are given in the follow-

ing plot.



CHAPTER 4. DISCRETE DUAL PARISIAN RUIN 148

Figure 4.5: Plot of dual ruin and Parisian ruin probabilities under geometric claim size distri-
bution, for different values of r.

4.5.2 Parisian ruin for the gambler’s ruin problem

Finally, in this section, we derive an exact expression for the infinite-time Parisian ruin

probability for one of the most fundamental ruin problems, namely the gambler’s ruin

problem. In this model a player makes a bet on the outcome of a random game, with

a chance to double their bet with probability q ∈ [0, 1]. Ruin in this model is defined

as being the event that the player runs out of money (bankrupt) at some point in the

future [see Feller (1968)].

Mathematically, the gambler’s ruin model can be described by the discrete-time

compound binomial process or equivalently by the discrete dual risk model, considered

in the previous sections, with a loss probability p0 = 1 − q and corresponding win

probability p2 = q, with pk = 0 otherwise. Further, in order to satisfy the net profit

condition, and consequently avoid definite ruin over an infinite-time horizon, it follows

that q > 1/2. Under these assumptions Lundberg’s fundamental equation, namely
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θ(z) = 0, produces a quadratic equation of the form

z2 − 1

q
z +

1− q
q

= 0,

which has solutions z1 = 1 and z2 = 1−q
q . From the net profit condition, i.e. q > 1/2,

it follows that z2 = 1−q
q < 1. Thus, from Lemma 11, we have that A = 1−q

q and the

classic gambler’s ruin probability is given by

ψ∗(u) =

(
1− q
q

)u
, (4.5.4)

as seen in Feller (1968).

Now, let us assume that the gambler is allowed to continue playing after going

bankrupt (he borrows money from another player, or friend, which is not subject to

interest), but is declared ultimately ruined if he does not recover to a positive surplus

in r ∈ N+ bets, or less, after bankruptcy. Then, since the definition of Parisian ruin

is defined by the number of periods with a strictly negative surplus (where as for the

gambler, ultimate ruin is defined by the number of periods with non-positive surplus),

the probability that the gambler experiences ultimate ruin, from initial capital u ∈ N+,

is equivalent to the infinite-time Parisian ruin probability of Theorem 28, with initial

capital (u− 1) ∈ N and is given explicitly by the following Proposition.

Proposition 18. The infinite-time Parisian ruin probability to the Gambler’s ruin

problem for initial capital u ∈ N+, with win probability q > 1/2, is given by

ψ∗r (u− 1) =
1− qC1

1− (1− q)C1

(
1− q
q

)u
, (4.5.5)

where

C1 =
r∑

n=1

p
∗(n−1)
n−1 −

r∑
n=1

n−1∑
i=2

1

n− i
p
∗(n−i)
n−1−i p

∗(i−1)
i . (4.5.6)

Proof. Using the result of Theorem 28, and the form of the classic gambler’s ruin prob-

lem given by equation (4.5.4), it remains to find explicit expressions for the coefficients

ak, for k = 1, . . . ,∞ and the constant C−1. Let us first consider the coefficients ak,
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given by equation (4.3.8), of the form

ak =
(
p0P−1(τ− 6 r, U∗(τ−) = k) + pk+1

)
.

Recalling that in the gambler’s ruin problem the p.m.f’s of the random gain sizes,

pk = 0 for k 6= 0, 2, it follows that only positive jumps of size Yi = 2, for i ∈ N+, can

occur (with probability q) and thus, the joint distribution of recovery and the overshoot

at the time of recovery, namely P−1(τ− 6 r, U∗(τ−) = k) = 0, for all k 6= 0. Then, it

follows that ak = pk+1, for k = 1, . . . ,∞, which yields

ak =


q, k = 1,

0 otherwise.

Substituting this into the result of Theorem 28 and after some algebraic manipulations,

we obtain

ψ∗r (u− 1) =
C − q

C − (1− q)

(
1− q
q

)u−1

,

where C = 1 − (1 − q)P−1(τ− 6 r, U∗(τ−) = 0). Finally, by setting k = 0 in equation

(4.2.6) and noticing that, since pk = 0, for k = 3, 4, . . ., only the term j = n−1 remains

in both summation terms, we obtain

P−1(τ− 6 r, U∗(τ−) = 0) =

r∑
n=1

P−1(τ− = n,U∗(τ−) = 0)

= q

(
r∑

n=1

p
∗(n−1)
n−1 −

r∑
n=1

n−1∑
i=2

1

n− i
p
∗(n−i)
n−1−i p

∗(i−1)
i

)
,

and it follows that C = 1− q(1− q)C1, where C1 is given by equation (4.5.6). Finally,

the result follows after some algebraic manipulations.



Summary

The classical event of ruin is defined as the moment an insurer’s surplus process, defined

as the difference between incoming premium and losses due to claims, drops below

zero or, equivalently, the surplus becomes negative. This notion of ruin is unrealistic

in practice, since insurance companies (and other financial businesses) are subject to

capital requirement legislation (Solvency II for insurance companies within the EU)

which requires the classic risk model to be updated.

In order to provide adequate protection for the policy holders, the Solvency II frame-

work imposes a so-called ‘ladder of supervisory intervention’. This supervisory ladder

provides an early indication of any deterioration, in terms of capital, to the regulators.

If the company falls below a fixed level, known as the Solvency Capital Requirement,

the company is not considered as ruined, as in the classical model, and is allowed to

continue trading under the agreement that they develop a capital recovery plan. If the

company continues to deteriorate, following the implementation of the recovery plan,

and falls below the Minimum Capital Requirement, the company is defined as insolvent

and the regulators strongest actions are enforced, resulting in potential withdrawal of

the companies trading license.

In this thesis, we considered three separate risk models analysing the potential

capital recovery plans of insurance firms (and other lines of business) and considered

their effect on the ruin probability and other risk related quantities. Within each model,

it is assumed that the company is allowed to continue below the SCR, however, during

this period, the company is required to recover their capital requirements subject to

151
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different regulatory constraints.

In more details, in Chapter 2, we introduced two constant barriers to model the cap-

ital requirement thresholds under the Solvency II framework (SCR and MCR), where

the companies recovery method is to request a capital injection from the sharehold-

ers or, if the shareholders are not willing to inject due to a lack of confidence in the

company, take out a loan from a lender subject to some debit interest. Under this

setting, we derived an explicit expression for the probability of insolvency (dropping

below the MCR) in terms of the ruin quantities of the classic Cramér-Lundberg risk

model. By doing so, under the assumption of exponentially distributed claim sizes, we

showed that depending on the model parameters, the capital requirements under SII

may in fact provide less protection to the policyholders and increase the probability

of insolvency/ruin compared to the classical case. In addition, we obtained an explicit

expression for the moment generating function of the expected accumulated capital

injections up to the time of insolvency, from which we determined is a mixture of a

degenerate distribution at zero and a continuous distribution. In the last section of

this chapter, we incorporated the dividend payments to the shareholders, by means of

a constant barrier strategy, and proved that the probability of insolvency under this

modification can also be given in terms of classic ruin quantities.

In Chapter 3, we reverted back to a classic risk model (without Solvency II con-

straints) and analysed the ultimate ruin probability for a risk model with capital in-

jections. We point out that the results obtained in this section can easily be applied

to the SII model of the previous chapter. In this model, it is assumed that the capital

injections are no longer received instantaneously, but received after some time delay

from the moment of a deficit, which depends on the size of the deficit and correspond-

ing capital injection. Under this setting, we showed that the ultimate ruin probability,

defined in a slightly different way to the classical sense, satisfies an inhomogeneous

Fredholm integral equation of the second kind, which under certain dependency struc-

tures can be solved explicitly, in terms of classic ruin quantities, or given by a Neumann

series when a more general dependence is assumed. Moreover, we considered two risk

related quantities, namely the expected discounted accumulated capital injections and
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the expected discounted accumulated time in red (deficit) up to the time of ultimate

ruin, which were also shown to satisfy a similar Fredholm integral equation and were

solved explicitly.

Finally, in Chapter 4, we analysed the so-called dual risk model in discrete-time. In

this model, which better captures the risk portfolio of different business lines, such as

pharmaceutical or petroleum businesses, we considered that the fall into deficit could

be recovered by means of normal trading strategies. That is, the recovery plan is simply

to allow the business to continue as usual. This could be the case if the fall into deficit

(below the SCR) is due to a ‘one off’ large claim. This recovery plan is preferable for

the companies shareholders as it doesn’t require any capital injections, however, they

would only allow the company a fixed amount of time to recover their surplus to a

non-negative level before their confidence is lost. This event of ultimate ruin is known

in the literature as Parisian ruin. Using the strong Markov property of the risk process,

we derived a recursive expression for the finite-time Parisian ruin probability, in terms

of classic dual ruin quantities, which was then used to obtain an explicit expression for

the corresponding infinite-time case. Moreover, since the known result for the classical

dual ruin probability (in discrete-time) is given in terms of convolutions of the gain

size probability function, we derived three equivalent exponential expressions for this

quantity, providing a more analytic interpretation. Using these results, we obtained an

explicit expression for a generalisation to the famous gambler’s ruin problem.

The Cramér-Lundberg risk model has received a lot of criticism over the years for

its simplicity and model assumptions. However, this ‘simplicity’ has allowed for a vast

library of results, in terms of the ruin probability and other risk related quantities,

and provides a foundation to understanding the key risks associated with the insurance

sector. All of the models discussed in this thesis generalise this classic model, by

incorporating market legislation and more realistic trading strategies, however, it is

shown that all the results related to these more realistic models are given in terms of

the classical risk quantities. Therefore, although the Cramér-Lundberg risk model is

thought to be theoretical and somewhat unrealistic, it is fundamental to understanding

the risk profile of the global insurance markets.



Appendix

Definition A1 (Fredholm integral equation). An equation of the form

φ(x) = f(x) + λ

∫ b

a
K(x, t)φ(t) dt,

is known as a Fredholm integral equation of the second kind, where

• The unknown function, φ(x), is assumed to be integrable in the sense of Riemann

so that the integral equation itself makes sense,

• The free term, f(x), is assumed to be complex-valued and continuous on the

interval [a, b],

• The complex constant λ(6= 0) is a parameter that should not be absorbed into the

kernel K(x, t),

• The kernel K(x, t) is assumed to be complex-valued and continuous on the square

Q(a, b) = {(x, t) : a 6 x 6 b, a 6 t 6 b}.

Moreover, a kernel is called separable or degenerate, if it assumes the specific form

K(x, t) =
n∑
i=1

ai(x)bi(t),

where the functions ai(x) and bi(t) are complex valued and continuous on the interval

[a, b].
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Lemma A1. The c.g.f.κ∗(α) is a convex function for all α > 0.

Proof. The second derivative of the c.g.f.κ∗(α), as defined in equation (4.4.11), is given

by

κ′′(α) =
E
(
Y 2

1 e
−αY1

)
E
(
e−αY1

)
− E2

(
Y1e
−αY1

)
E2 (e−αY1)

,

which is positive if and only if

E
(
Y 2

1 e
−αY1)E (e−αY1)− E2

(
Y1e
−αY1) > 0.

Recalling that the p.m.f. of Y1 is given by the sequence {pk}k∈N, then the l.h.s. of the

above equation can be re-written as

( ∞∑
k=0

k2e−αkpk

)( ∞∑
n=0

e−αnpn

)
−

( ∞∑
k=0

ke−αkpk

)2

,

which, by Cauchy product rule [see Riley et al. (2006)], is equivalent to

∞∑
k=0

k∑
j=0

j2e−αkpjpk−j −
∞∑
k=0

k∑
j=0

j(k − j)e−αkpjpk−j ,

or alternatively, by combining both terms

∞∑
k=0

e−αk
k∑
j=0

(
j2 − j(k − j)

)
pjpk−j .

At this point we note that within the inner sum, the product pjpk−j will result in

repeating terms (due to commutativity of pk) and thus the above equation can be

re-written as

∞∑
k=0

e−αk
b k−1

2
c∑

j=0

(
j2 − j(k − j) + (k − j)2 − (k − j)j

)
pjpk−j =

∞∑
k=0

e−αk
b k−1

2
c∑

j=0

(2j − k)2 pjpk−j ,

which is clearly positive for all α > 0. The result follows from the definition of convexity.

Lemma A2. The c.g.f.κ∗(α)→∞ as α→∞ if and only if P(Y1 = 0) = p0 > 0.
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Proof. We note that if the exponential of a function f(x), i.e. exp{f(x)}, tends to

infinity as x → ∞, then it follows necessarily that the function f(x) → ∞ as x → ∞.

Therefore, it suffices to prove that the exponential of the c.g.f., i.e. exp(κ∗(α))→∞ as

α → ∞. The exponential of the c.g.f. κ∗(α), as defined in equation (4.4.11), has the

form

eκ
∗(α) = E

(
eαR

∗(1)
)

=
∞∑
k=0

eα(1−k)pk

= p0e
α + p1 +

∞∑
k=1

e−αkpk+1.

Thus, it follows that eκ
∗(α) →∞ as α→∞ provided p0 > 0.
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[87] Lefèvre, C., and Loisel, S. On finite-time ruin probabilities for classical risk
models. Scandinavian Actuarial Journal 2008, 1 (2008), 41–60.

[88] Li, S., and Garrido, J. On the time value of ruin in the discrete time risk
model.



BIBLIOGRAPHY 163

[89] Li, S., and Garrido, J. On ruin for the Erlang (n) risk process. Insurance:
Mathematics and Economics 34, 3 (2004), 391–408.

[90] Li, S., and Garrido, J. On a general class of renewal risk process: analysis of
the Gerber-Shiu function. Advances in Applied Probability 37, 3 (2005), 836–856.

[91] Li, S., and Lu, Y. The decompositions of the discounted penalty functions and
dividends-penalty identity in a Markov-modulated risk model. ASTIN Bulletin:
The Journal of the IAA 38, 1 (2008), 53–71.

[92] Li, S., Lu, Y., and Garrido, J. A review of discrete-time risk models. Re-
vista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A.
Matematicas 103, 2 (2009), 321–337.

[93] Li, S., and Sendova, K. P. The finite-time ruin probability under the com-
pound binomial risk model. European Actuarial Journal 3, 1 (2013), 249–271.

[94] Li, Y., and Liu, G. Optimal dividend and capital injection strategies in
the Cramer–Lundberg risk model. Mathematical Problems in Engineering 2015
(2015).

[95] Lin, X. S., and Pavlova, K. P. The compound Poisson risk model with
a threshold dividend strategy. Insurance: Mathematics and Economics 38, 1
(2006), 57–80.

[96] Lin, X. S., and Willmot, G. E. Analysis of a defective renewal equation
arising in ruin theory. Insurance: Mathematics and Economics 25, 1 (1999),
63–84.

[97] Lin, X. S., Willmot, G. E., and Drekic, S. The classical risk model with a
constant dividend barrier: analysis of the Gerber–Shiu discounted penalty func-
tion. Insurance: Mathematics and Economics 33, 3 (2003), 551–566.

[98] Loeffen, R., Czarna, I., and Palmowski, Z. Parisian ruin probability for
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