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Abstract 
 

To date, over 36 confirmed proteins are implicated in 50 known degenerative 

disorders including Alzheimer’s, Parkinson’s, type 2 diabetes, Huntington’s 

and light chain associated diseases. These debilitating disorders, collectively 

termed the “amyloidoses” arise due to the misfolding of an otherwise native 

protein. Amyloid formation sees the loss of a protein's native state and 

adoption of aberrant conformations which result in the accumulation of 

insoluble fibrils that possess a highly ordered ultrastructure rich in β-sheet. 

The most common form of all systemic amyloidosis, which refers to the 

extracellular accumulation and deposition of the misfolded precursor protein 

at locations distant from the site of production, is Immunoglobulin (Ig) light 

chain (AL) amyloidosis with an incidence of 1 in every 100,000. In AL 

amyloidosis, patients diagnosed with a plasma cell dyscrasia show a 

significantly elevated population of intact or truncated Immunoglobulin light 

chains (LC) in their circulation. A proportion of these LC are able to adopt 

pathological conformations and accumulate as fibrillar aggregates causing 

irreversible damage to virtually all organs and tissues. Each patient presents 

a light chain with a unique amino acid sequence. This makes identifying a 

common theme that underlies AL amyloidosis challenging. A small number of 

publications place focus on SMA, REC and LEN, three 114 amino acid light-

chain variable domains of the kappa 4 IgG family. Despite high sequence 

identity between these three homologs, SMA, and REC are amyloidogenic in 

vivo, but LEN adopts a stable dimer, displaying amyloidogenic properties only 

under destabilising conditions. In this study, we adopt a computational, 

biochemical, and cellular approach to explore the aggregation mechanisms 
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underlying Immunoglobulin light chain amyloidosis and use these three 

human variable domains as a model to address some of the questions 

surrounding light chain amyloidosis.  

Previous structural analysis indicates that both SMA and LEN form 

dimers, however the quaternary arrangement of SMA is unknown. We report 

that SMA has an altered interface that is likely to be rotated 180°. Free 

energy calculations of the LEN dimer interface indicate that two SMA-like 

mutations, Q89H and Y96Q play a role in protein VL dimer stability through 

destabilising the quaternary structural arrangement. In addition, structure-

based pocket detection of this model reveals a cavity suitable for 

accommodating a small-molecule designed to inhibit dimer dissociation into 

aggregation prone monomers. We also combine NMR assessment of 

millisecond timescale protein motions with atomic-level level structural 

assessment to provide a rationale to how a particular mutation leads to 

changes in thermodynamic stability and amyloidogenicity where we show 

the CDR3 loop a key structural region in modulating VL stability. Overall, 

this work supports the data that disruption of the dimer interface is needed 

for amyloid to occur, but also addresses the added complication that 

thermodynamic stability is not an accurate indicator of aggregation 

potential.  

We also present here a refined and reproducible periplasmic 

expression and purification protocol for SMA and LEN that improves on 

existing methods and provides high yields of pure protein, particularly 

suitable for structural studies that demand highly concentrated and pure 

proteins. We confirm that recombinant SMA and LEN proteins have structure 
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and dimerization capability consistent with the native proteins and employ 

fluorescence to probe internalisation and cellular localisation within 

cardiomyocytes. Internalisation of both SMA and LEN as monomers was 

observed in cell culture after 24 hours of incubation where the amyloidogenic 

VL SMA exhibited cytotoxic effects. We propose periplasmic expression and 

simplified chromatographic steps outlined within as an optimised method for 

production of these and other variable light chain proteins to investigate the 

underlying mechanisms of light chain amyloidosis. 
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Abbreviations 
 

Aβ Amyloid βeta 

AL Light chain amyloidosis 

AFM Atomic force microscopy 

ANOVA Analysis of variance 

AUC Analytical ultra-centrifugation 

BMRB Biological Magnetic 

Resonance Bank 

BNP (brain natriuretic peptide), 

CCS Collisional cross section 

CD Circular dichroism 

CDR Complementarity-determining 

region 

C.elegans Caenorhabditis elegans  

CMR Cardiac magnetic resonance 

COSMiCS (Complex Objective 

Structural analysis of Multi-

Component Systems) 

CPHPC((2R)−1-[6-[(2R)−2 

carboxypyrrolidin-1-yl]−6-

oxohexanoyl pyrrolidine-2-

corboxylic acid) 

CV Column volume 

DMSO Dimethyl sulfoxide 

DMEM Dulbecco's Modified 

Eagle's medium  

ECL Enhanced 

chemiluminescence 

ECHO Echocardiography 

EGCG (−)-epigallocatechin 3-

gallate 

EMA Europeans medicine agency 

Fab antigen-binding fragment 

FBS Fetal bovine serum 

FDA food and drug administration 

Fc Crystallisable fragment 

FISH Fluorescent in situ 

hybridization 

FITC Fluorescein isothiocyanate 

FLC Free light chain 

FR Framework region 

FRET Fluorescence resonance 

energy transfer 

FPLC Fast protein liquid 

chromatography  

GAG Glycosaminoglycan 

GAPDH Glyceraldehyde 3-

phosphate dehydrogenase 

GPa Gigapascal 

HC Heavy chain 

hCF Human Cardiac 

Fibroblasts (HCF)  

HRP horseradish peroxidase 

HSQC Heteronuclear single 

quantum coherence spectroscopy 

Ig Immunoglobulin 

IPTG Isopropyl β-D-1-

thiogalactopyranoside 

ISA International society of 

amyloidosis 

LC Light chain 

MALLS Multi-angle laser light 

scattering 
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MAPK Mitogen-activated protein 

kinases 

MCWO Molecular weight cut off 

MD Molecular dynamics 

MDex Dexamethasone 

MGUS monoclonocal gammopathy 

of undetermined significance  

MG132 Carbobenzoxy-Leu-Leu-

leucinal 

MM Multiple myeloma 

MS Mass spectrometry  

ms millisecond  

NMR Nuclear magnetic resonance 

Nrf2 Nuclear-factor-E2-related-

factor-2 

NT-proBNP N-terminal pro-brain 

natriuretic peptide 

PBS Phosphate buffered saline 

PDB Protein data bank 

PCQ Protein quality control  

PCR Polymerase chain reaction 

PFA paraformaldehyde 

POI Protein of interest 

PVDF Polyvinylidene difluoride 

RMS Root mean square 

RMSF Root mean square 

fluctuation 

RP-HPLC Reversed-phase high-

performance liquid 

chromatography  

SAXS  Small Angle X-ray 

Scattering 

SAP Serum albumin protein 

SDS-PAGE Sodium dodecyl 

sulfate polyacrylamide gel 

electrophoresis 

SEC Size exclusion 

chromatography  

SOD1 Superoxide dismutase 1 

TBS Tris buffered saline 

TEM Transmission electron 

microscopy 

Tm melting temperature 

ThT Thioflavin T 

TTR transthyretin 

Vdw Van de Waals force 

VH Heavy chain variable domain 

VL Light chain variable domain

 

 

 

 

 

 

 

 



2 

Contents 
Abstract 2 

Abbreviations 5 

Contents 2 

Acknowledgements 6 

1. Introduction 8 

1.1. Overview 8 

1.2. Protein folding 10 

1.2.1. Protein folding - Funnel Energy landscapes 11 

1.3. Amyloid and Amyloidosis 16 

1.3.1. The Mechanisms of Amyloid Formation 19 

1.3.2. Formation of the amyloid fibril 21 

1.3.3. Structure of the amyloid fibril 24 

1.4. Immunoglobulin light-chain amyloidosis 27 

1.4.1. Overview and clinical presentation 27 

1.4.2. Diagnosis of AL amyloidosis 31 

1.4.3. Cardiovascular manifestations in AL amyloidosis 34 

1.4.4. Amyloid pathophysiology and cardiac involvement in AL 36 

1.4.5. Treatment strategies for AL amyloidosis 38 

1.4.6. Immunoglobulin structure 40 

1.4.6. Structure of the light chain variable domain 43 

1.5. Variable domains pair to form homodimers 45 

1.6. Mechanisms of light chain aggregation 47 

1.7. SMA, REC and LEN as a model system 53 

1.8. Aims of the present investigation 56 

2. Predicting the dimer arrangement of the light chain variable domains 59 

2.1. Introduction 59 

2.2. Methods 64 

2.2.1. In silico mutagenesis as a method of constructing models of SMA 64 

2.2.2. Energy minimisation 65 

2.2.3. Assessing the quality of generated models 66 

2.2.4. Interfacial residue analysis 66 

2.2.5. Calculating changes in binding free energy as a result of mutation 67 

2.2.6. Calculating changes in folding free energy as a result of mutation 68 

2.2.7. Structure rendering 69 



3 

2.2.8. Assessing the druggability of 3-dimensional structures 69 

2.2.8. Molecular dynamics 70 

2.2.9. Prediction of protein aggregation 71 

2.2.9. X-ray crystallography screens 72 

2.2.10. Mass spectrometry 72 

2.3. Results 73 

2.3.1. Comparative modelling: Generating SMA dimers using In silico 

mutagenesis 73 

2.3.2. Can bioinformatics predict which kind of dimers can and cannot form by 

analysis of modelled dimer interfaces? 78 

2.3.3. Molecular dynamics: probing the stability of putative SMA dimers 87 

2.3.4. Experimental analysis of dimer by X-ray crystallography 87 

2.3.5. Experimental analysis of dimer by mass spectrometry 88 

2.3.6. Predicting changes in binding as a result of an SMA-like mutation 91 

2.3.7. A single mutation can dictate the dimer orientation; can this be pinpointed 

using bioinformatics? 98 

2.3.8. Small molecule stabilisation of the SMA homodimer 104 

2.3.9. Main findings and summary 110 

3. Assessing the effects of SMA-like mutations on VL stability 112 

3.1. Introduction 112 

3.2. Results 114 

3.2.1. Assessing the effect of SMA-like somatic mutations on protein stability114 

3.2.2. SMA-like mutations of LEN induces structural changes 119 

3.2.3. Structural perturbations induced by the SMA-like mutants 134 

3.2.4. Chapter summary  137 

4. Predicting the stability effects of REC-like mutations and modelling the structural 

changes 139 

4.1. Introduction 139 

4.2. Results 139 

4.2.1. Predicting changes in binding energy as a result of a REC-like somatic 

mutation 139 

4.2.2. The effect of REC-like mutations on the dimer interface 144 

4.2.3. Changes in VL stability as a consequence of REC-like mutations 148 

4.2.4. Modelling the effect of REC-like mutation L15P on protein structure 152 

4.2.5. Modelling the effect of REC-like mutations on protein structure: CDR1 161 

4.2.6. Modelling the effect of REC-like mutations on protein structure: FR4 and 

CDR3 174 



4 

4.2.7. Main findings and summary 182 

5. The recombinant expression and purification of the light chain variable domains; 

SMA and LEN 184 

5.1. Introduction 185 

5.2. Materials & Methods 186 

5.2.1. Plasmids and cloning 186 

5.2.2. Site directed mutagenesis 187 

5.2.3. Agarose gel electrophoresis 189 

5.2.4. Transformation of bacterial cells 190 

5.2.5. Plasmid DNA purification 190 

5.2.6. Glycerol stock preparation 190 

5.2.7. Expression of light chain variable domains SMA and LEN 191 

5.2.8. Osmotic shock treatment 192 

5.2.9. Dialysis of SMA and LEN and isoelectric precipitation 193 

5.2.10. Purification of light chain variable domains 193 

5.2.11. Gel electrophoresis, RP-HPLC and mass spectrometry 194 

5.2.12. Circular dichroism measurements 195 

5.2.13. Size Exclusion Chromatography with multi-angle Light Scattering 195 

5.2.14. RP-HPLC of SMA and LEN 196 

5.2.15. Two-Dimensional (1H 15N) NMR experiments 196 

5.3. Results and Discussion 197 

5.3.1. Plasmid generation 197 

5.3.2. Recombinant expression of SMA and LEN 201 

5.3.3. Recombinant expression of SMA 204 

5.3.4. Confirmation of recombinant Immunoglobulin light chain identity 206 

5.3.5. Analysis of protein secondary structure 208 

5.3.6. Size exclusion chromatography with multi-angle light scattering 210 

5.3.7. Hairpin molecular A10 binding to SMA and LEN 211 

5.3.8. Main findings and summary 213 

6. Cellular internalisation of light chain variable domains 215 

6.1. Introduction 215 

6.2. Materials & Methods 217 

6.2.1. Preparation of VLs SMA and LEN 217 

6.2.2. Immunoblot for detection of VLs 217 

6.2.3. Immunoglobulin VL labelling by FITC 218 

6.2.4. Cell culture 219 



5 

6.2.5. Protein internalisation assay 220 

6.2.6. Slide preparation 220 

6.2.7. Confocal microscopy 221 

6.2.8. Cell toxicity assay and statistical analysis 222 

6.2.9. Pharmacological inhibition assay 223 

6.3. Results 223 

6.3.1. Immunoblot 223 

6.3.2. Antibody based Immunofluorescence 225 

6.3.3. Purity analysis of SMA and LEN before labelling 228 

6.3.4. Detection of internalised FITC-labelled LEN by Immunofluorescence 229 

6.3.5. Internalised FITC-LEN: Z stack and 3D reconstruction 232 

6.3.6. Detection of internalised FITC-labelled SMA by Immunofluorescence 234 

6.3.7. Internalised FITC-labelled SMA - Z stack 236 

6.3.9. Cytotoxicity assay 240 

6.3.10. Pharmacological Inhibition assay 242 

6.3.11. Main findings and summary 247 

7. Summary and biological implications 250 

7.1. Disease summary 250 

7.2. Major findings 251 

7.1.1. Stabilising the quaternary arrangement of VL-VL homodimers: therapeutic 

promise 253 

7.1.2. Single mutations can dictate the quaternary state of the VL homodimer257 

7.1.2. The thermodynamic analysis of SMA and REC-like mutations 258 

7.1.3. Expression of VLs SMA and LEN and light chain internalisation 259 

7.2. Limitations to the study 260 

7.3. Concluding statement 264 

References 265 

 

 

 

 

 

 

 

 

 

 

 



6 

Acknowledgements 

 

I am truly grateful to my supervisor Dr Jillian Madine (and for Dr David 

Middleton and Dr David Smith for putting in a good word!) for making the call 

and giving me the opportunity to complete my studies within the Amyloid team 

at Liverpool.  

I would like to acknowledge the members of the Amyloid group 

stationed at the University of Liverpool institute of integrative biology. These 

include (past and present) Chris Longmore, James Torpey, Dr Hannah Davies, 

and Dr Marie Phelan. I would also like to extend this thanks to Dr Robert 

Gibson, who became an honorary member of the group in my Masters and 

first year of PhD studies.  

I would also like to thank Dr Mark Wilkinson (for just about everything), 

Dr Edwin Yates (for long conversations on Terahertz, the phylum Tardigrada) 

Dr Mal Horsburgh, Dr Deborah Hogg, Dr Svetlana Antonyuk, Dr Gareth 

Wright, Dr Chris Hill, Dr Mike Speed, Dr Daniel Rigden, Edward Humphries, 

Francesca De Faveri, Dr Dominic Byrne, Dr Alistair Fielding, Professor Claire 

Eyers, Dr Patrick Eyers and Dr Caroline Dart (my internal assessors), Dr Ewan 

Blanche, Prof Roy Goodacre (for both giving me excellent advice when 

applying for PhD projects), Professor Paul Popelier, Dr Diana Penha 

(Liverpool Heart and Chest), Dr Parveen Sharma, Dr Daniel Antoine, and Dr 

David Jones.  

 

I would like to thank the BBSRC for funding this project. 

 

 



7 

Some of the work presented within thesis has been published 

 

Effect of amino acid mutations on the conformational dynamics of 

amyloidogenic immunoglobulin light-chains: A combined NMR and in 

silico study 

Sujoy Mukherjee, Simon P. Pondaven, Kieran Hand, Jillian 

Madine & Christopher P. Jaroniec 

Nature scientific reports, published 04 September 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

1. Introduction 

1.1. Overview  

Proteins comprise a large group of biological molecules that perform an array 

of essential processes in every biological system (Lesk 2004). Genetic data 

stored in the form of nucleic acids, contain all the necessary information for the 

ribosome to synthesise proteins from a library of just 20 essential amino acids 

(Hooper 2000). This seemingly insignificant number nevertheless lays the 

foundation for nature to engineer an overwhelming number of proteins with 

unique three-dimensional shapes. The shape, or tertiary structure also 

determines the biological function in a link termed the structure-function 

relationship (Lesk 2004) and makes each protein perfectly suited to perform a 

specific task (Bruce, Alexander et al. 2002). Such diversity has also made 

proteins important targets for therapeutics, with a large proportion of all drugs 

currently available targeting just one unique class of transmembrane proteins 

(Garland 2013, Cvicek, Goddard et al. 2016).  

Over the past decade, an area of research that has gained much 

interest is the study of protein folding. This interest stems from the link 

between protein misfolding, aggregation and many conformational disorders 

that include Parkinson’s, Alzheimer's, Huntington’s, and Type II diabetes (Soto 

2001). The proteins implicated in these disorders have demonstrated the 

ability to depart from a soluble conformation, and adopt insoluble fibrillar 

conformations termed amyloid (Rambaran and Serpell 2008), which have 

become the hallmark for many of these diseases (Selkoe 2003). Many of the 

36 known amyloid proteins (Sipe, Benson et al. 2016) implicated in human 
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diseases display minimal sequence identity and have large differences in fold 

(Stefani 2004) yet the ultrastructural and histological properties of amyloid 

fibrils, formed at the final stage of the fibrillation reaction are remarkably 

similar. Specifically, they share a common cross-β sheet organisation (Sipe 

and Cohen 2000) and the unique ability to bind the amyloidophillic dye Congo 

red (Westermark GT 1999). Both have become the characteristic features of 

amyloid and are used in their diagnosis. Advances in biochemical and 

biophysical instrumentation have been able to shed light on the complex 

aggregation process, revealing that misfolding follows an ordered multistep 

pathway involving monomer, oligomer, protofibrillar and mature fibrillar species 

(Sarroukh, Goormaghtigh et al. 2013, Woods, Radford et al. 2013, 

Karamanos, Kalverda et al. 2015, Verma, Vats et al. 2015, Wright and Dyson 

2015, Herranz-Trillo, Groenning et al. 2017). However, many prefibrillar 

intermediates that populate this pathway remain largely uncharacterised due 

to their dynamic nature (Hubin, van Nuland et al. 2014) in solution and as a 

consequence, the cytotoxic potential and structure of such invisible conformers 

are unknown. Extensive research into α-synuclein and amyloid β (Aβ), the two 

precursor proteins implicated in the neurodegenerative diseases Parkinson's 

and Alzheimer's respectively (Wirths and Bayer 2003, Murphy and LeVine 

2010) have established that an abundance of factors including, the 

composition of different molecular surfaces (Zhu, Souillac et al. 2002, Meng, 

Fink et al. 2008, Galvagnion, Buell et al. 2015), along with molecular (Beyer 

and Ariza 2013, Barrett and Timothy Greenamyre 2015), and environmental 

factors (Uversky, Li et al. 2001) are able to modulate, and trigger the 

aggregation process (Emamzadeh 2016). For other diseases such a light 
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chain (AL) amyloidosis, a fatal, and currently incurable condition with 

widespread organ damage caused by the misfolding and deposition of 

Immunoglobulin fragments, such an extensive set of factors has not been 

characterised to date. In AL amyloidosis each patient possesses a light chain 

with a unique amino acid composition that governs its stability. Collectively, 

these factors significantly complicate the study of AL amyloidosis. A better 

understanding of the transformation process, the cytotoxic potential and 

structure of pre fibrillar intermediates, including the factors that are able to 

initiate and modulate their aggregation is pertinent to understanding disease 

initiation, progression, and rational drug design with the ultimate goal of 

treating a wealth of conformational disorders that extend beyond AL. 

This chapter first describes the basis of protein folding, protein self-

association, and the characteristics of amyloid fibrils. The chapter then moves 

to the topic of AL including diagnosis, current and novel therapeutic strategies, 

before finally focussing on the light chain variable domains that are at the 

basis of this investigation.  

1.2. Protein folding 

Successful protein folding has traditionally been considered a requirement for 

a protein to be functional (Martin, Fau et al. 1998). In this process, chains 

emerging from the ribosome sample vast conformational space before they 

fold into a compact and stable three-dimensional organisation termed the 

native state (Lesk 2004). For much of the proteome, this highly dynamic event 

occurs cotranslationally (Fedorov and Baldwin 1997, Cabrita, Hsu et al. 2009). 

Techniques such as Fluorescence Resonance Energy Transfer (FRET) 

Microscopy and Nuclear Magnetic Resonance (NMR) spectroscopy have been 
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applied to study this fascinating process in real time (Holtkamp, Kokic et al. 

2015, Cassaignau, Launay et al. 2016). Yet, despite such advances, the 

precise mechanisms of the folding process remain largely enigmatic. Indeed, 

this has been widely termed the “Protein folding problem” since the early 

1960s (Dill, Ozkan et al. 2008, Dill and MacCallum 2012). Over time, several 

models of protein folding have emerged and each have built upon the early 

studies conducted by Christian B Anfinsen (Anfinsen and Haber 1961, 

Anfinsen 1973) and Cyrus Levinthal (Levinthal 1968).  Both Anfinsen and 

Levinthal concluded that all the necessary information required for a protein to 

correctly assume a three-dimensional structure resides within the amino acid 

sequence, and that limitations on conformational freedom imposed by the 

main chain allowed for folding to occur on a biological timescale (Rose, 

Fleming et al. 2006).  

Some of the traditional views of protein folding have however, been 

challenged with the prospect that a large proportion of the eukaryotic proteome 

may fulfil vital biological roles in an intrinsically disordered state (Wright and 

Dyson 2015, Vincent and Schnell 2016). The 140-amino acid protein α-

synuclein for example, lacks any secondary structural elements yet has been 

suggested to play important presynaptic roles (Bendor, Logan et al. 2013, 

Burre 2015).  

1.2.1. Protein folding - Funnel Energy landscapes 

Two recent reviews by F. Ulrich Hartl et al. and Tuomas P. J. Knowles et al. 

detail the present understanding of protein folding, with regards to the complex 

energy landscape model, the formation of protein aggregates, and the 

importance of molecular chaperones in maintaining a functional proteome 
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(Hartl, Bracher et al. 2011, Knowles, Vendruscolo et al. 2014).  F. Ulrich Hartl 

first highlights that, for a proportion of small protein molecules, folding is able 

to take place without energy cost or folding aids, relying solely, on the amino 

acid sequence to dictate the native state (Dobson, Šali et al. 1998, Rose, 

Fleming et al. 2006). It would seem that, for these proteins, a two-state folding 

model such as the idealised smooth energy landscape first proposed by Ken 

Dill (illustrated in Figure 1A) reflects the folding landscape for these proteins 

(Dill and Chan 1997, Horwich 2002) where point I is the unfolded state and 

point II is the folded state, and the protein does not adopt any intermediates 

between these two points. However, it has become clear that for much of the 

proteome, many proteins are unable to reach the native state without the 

presence of molecular chaperones. These observations, in combination with 

significant leaps made in theoretical methods of predicting protein folding has 

led to the rugged energy folding funnel depicted in Figure 1B (Bryngelson, 

Onuchic et al. 1995, Onuchic, Luthey-Schulten et al. 1997, Horwich 2002, 

Onuchic and Wolynes 2004, Dill and MacCallum 2012, Chen, Lu et al. 2017) 

to be the most widely accepted theory used to describe protein folding. In this 

model, an ensemble of unfolded polypeptides possessing both high energy 

and high hydration (Robinson and Cho 1999, Jerson and Debora 2009, Chen, 

Lu et al. 2017) collapse into the energy landscape shaped as a tapering 

funnel. As the unfolded chains proceed down multiple parallel pathways 

towards the native state, located at the bottom of the energy funnel, the 

flexible chain samples many different conformations and become 

progressively more organised (Rose, Fleming et al. 2006, Dill, Ozkan et al. 

2008). The formation of favourable intramolecular contacts leads to secondary 



13 

structure formation such as the -helix and -sheet, which restricts the 

sampling space, and lowers the free energy (Srinivasan and Rose 1999, 

Chikenji, Fujitsuka et al. 2006, Hamelryck, Kent et al. 2006). This is indicated 

by a downwards arrow and narrowing of the energy funnel. Eventually, the 

chain packs into a compact, unstrained arrangement that possess both low 

free energy, and low hydration. This particular conformation is termed the 

native state, and represents a number of conformational sub-states rather than 

one particular conformation (Campioni, Monsellier et al. 2010). This process is 

often termed the “on-pathway” route of protein folding (Clark 2004) (Figure 1B 

left) and the entire process usually occurs on the microsecond to second 

timescale (Chen, Lu et al. 2017). The native fold is maintained and stabilised 

by many co-operative interactions that include hydrogen bonds, electrostatic 

interactions, van der Waals forces (VdW) and disulfide bonds (Lesk 2004, 

Yasuda, Yoshidome et al. 2010).  
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Figure 1 Schematic illustration of idealised (A) energy landscape and (B) 

rugged energy landscape models of protein folding. At the top of the funnel 

exists an ensemble of unfolded conformations which have both high free energy and 

high hydration (shown on the vertical axis of the funnel). Collapse of the polypeptide 

chain into the funnel shaped energy landscape is energetically driven, and as 

favourable intramolecular contacts form, the free energy drops. The idealised energy 

funnel (A) represents a two-state folding process during which unfolded chains 

rapidly adopt the native structure that represents that of the lowest energy located at 

the bottom of the funnel. In the rugged energy funnel model (B) the landscape is 

decorated with deep energy troughs termed local minima. Proteins can become 

kinetically trapped in this state which delays the time taken to reach the native state. 

Proteins can also access a region of the landscape that has low energy (highlighted 

red) which can lead to the formation of amorphous aggregates and amyloid 

assemblies. Folding energy funnel is based on that illustrated by F. Ulrich Hartl et al.  

and Arthur Howich (Horwich 2002, Hartl, Bracher et al. 2011).  

 

 

 

 

 

 

 

 

Unique to the rugged energy model are secondary funnels that decorate the 

landscape (Figure 1B). These funnels represent deep energy minima, and are 

able to trap the protein in an intermediate molten globule state (existing 

between the unfolded and folded conformation of a protein) (Horwich 2002, 

Jahn and Radford 2008, Milanesi, Waltho et al. 2012).  In this form, regions of 

the protein are more exposed to the solvent than in the native, folded state. 
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The exposure of short complementary amyloidogenic segments, hydrophobic 

patches, or particular residues that favour to-sheet formation (aromatic and 

hydrophobic) (Del Pozo-Yauner, Becerril et al. 2015, Chen, Lu et al. 2017, 

Graña-Montes, Pujols-Pujol et al. 2017) which would normally be buried in the 

globular state, here, may become solvent-exposed (Goldschmidt, Teng et al. 

2010, Graña-Montes, Pujols-Pujol et al. 2017). This can lead to undesirable 

intermolecular interactions (Turoverov, Kuznetsova et al. 2010, Brummitt, 

Andrews et al. 2012) where the protein is vulnerable to forming aggregated 

species that possess extremely low global free energy (Figure 1B shaded red) 

(Brummitt, Andrews et al. 2012, Knowles, Vendruscolo et al. 2014, Graña-

Montes, Pujols-Pujol et al. 2017). These protein aggregates (illustrated in 

Figure 1B right side) are normally both non-functional but can be divided into 

two categories based on their morphology. The first, is amorphous aggregates 

that lack order and are generally considered non-toxic (Bieschke, Russ et al. 

2010, Stefani and Rigacci 2013, Kumar, Namsechi et al. 2015). In stark 

contrast, proteins can form highly ordered pathogenic amyloid structures that 

are resistant to proteolytic degradation (Rambaran and Serpell 2008). This 

process of aggregation is often termed the “off-pathway” route of folding (Clark 

2004). 

As illustrated in Figure 1B, the amyloid structure has lower free energy 

than the native state of the protein. This is due to the greater stability that the 

cross -sheet architecture (found within amyloid) provides (Graña-Montes, 

Pujols-Pujol et al. 2017). Yet, proteins generally avoid this state. The 

physico—chemical features of the protein chain and the presence of 

accessory molecules such as molecular chaperones (Del Pozo-Yauner, 



16 

Becerril et al. 2015, Graña-Montes, Pujols-Pujol et al. 2017) allow for proteins 

to fold correctly and reach their native state (Anfinsen 1973, Hartl, Bracher et 

al. 2011).  An example of a small number of these accessory components 

include heat shock proteins 40, 60, 70, 90, and 100, co-chaperones, protein 

isomerases, a number of chaperone related-proteases, and the proteasome 

complex. Together, these comprise the highly coordinated cellular protein 

quality control (PQC) mechanism. (Gilbert 1997, Hinault, Ben-Zvi et al. 2006, 

Douglas, Summers et al. 2009, Chakraborty, Chatila et al. 2010, Voisine, 

Pedersen et al. 2010, Hartl, Bracher et al. 2011, Del Pozo-Yauner, Becerril et 

al. 2015). Dysfunction in anyone of these tightly regulated systems, as a result 

of age, or specific conditions where the rate of protein synthesis overwhelms 

the system, such in the case of plasma cell dyscrasias (later documented in 

this thesis) can lead to the undesirable intramolecular interactions that 

promote self-association, and the formation of toxic aggregates that can have 

devastating cellular consequences observed in amyloid diseases (Del Pozo-

Yauner, Becerril et al. 2015).  

1.3. Amyloid and Amyloidosis  

Historically, the name amyloid, meaning “starch-like” was first used by botanist 

Matthias Jakob Schleiden in 1838 to name plant sections that demonstrated 

blue staining in a reaction using a solution of iodine and sulfuric acid 

(Rambaran and Serpell 2008). In 1854 Rudolph Virchow observed a similar 

staining pattern in the human nervous system (Cohen 1986). Both interpreted 

the positive reaction to suggest that the observed material was carbohydrate in 

composition (Sipe and Cohen 2000). A similar procedure later conducted by 

Friedrich and Kekulé on tissue from a liver biopsy disproved these early 
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observations, and found that the deposits were actually made of protein 

(Eberth 1881, Kisilevsky, Raimondi et al. 2016). Despite these initial 

inaccuracies, “amyloid” is used today to refer to the insoluble deposits of 

misfolded protein that have accumulated in the extracellular and, the more 

recently recognised; intracellular space of tissue (Selkoe 2003, Stefani 2004, 

Rambaran and Serpell 2008). The defining features of amyloid is its unique 

ability to bind both Congo red, a commonly used amyloidophilic dye, originally 

created for the textile industry (Kisilevsky, Raimondi et al. 2016) that presents 

an apple-green birefringence when observed under cross polarised light 

(Westermark GT 1999, Westermark 2005), and a cross β-spine arrangement 

when examined by X-ray fibre diffraction (Nelson, Sawaya et al. 2005, 

Eisenberg and Jucker 2012). The accumulation of amyloid in fibrillar deposits 

typically consists of the precursor protein in large quantities (95%), and a 

number of coagulation agents including glycosaminoglycans (GAGs), and 

serum albumin protein (SAP) (Sipe and Cohen 2000) (the remaining 5%) the 

removal of which, remain promising therapeutic strategies (Fikrle, Paleček et 

al. 2013, Gillmore and Hawkins 2013). Identification of amyloid fibrils in this 

state serves as the pathological hallmark for many well-known protein-

misfolding disorders collectively termed “amyloidoses” (Lee, Lim et al. 2011).  

From a historical perspective the ability for a protein to form amyloid 

was first thought to be accessible, only, to a small percentage of the proteome 

(Selkoe 2003). However, it is now clear that accessing the amyloid state is not 

limited merely by the amino acid composition of the precursor protein rather; 

adopting the β-sheet conformation, in which amyloid structures are enriched in, 

is a generic structure which is accessible to all proteins, and is mediated by 
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specific intermolecular backbone interactions formed by short complementary 

amino acid stretches within the protein rather than the entire protein chain 

(Esteras-Chopo, Serrano et al. 2005, Eisenberg and Jucker 2012, Graña-

Montes, Pujols-Pujol et al. 2017). It is even suggested that, under specific 

conditions that favour partially unfolded states all proteins are capable of 

amyloid formation, and all that is necessary for this to occur is the exposure of 

complementary segments that allow for the formation of the amyloid spine 

(Eisenberg and Jucker , Brumshtein, Esswein et al. 2014, Graña-Montes, 

Pujols-Pujol et al. 2017).  

Many proteins possess segments of high aggregation propensity and to 

date, the International Society of Amyloidosis recognises 36 proteins to be 

implicated in 50 known conformational disorders (Sipe, Benson et al. 2016). 

Amyloid deposition can be categorised as localised, affecting a specific tissue, 

or systemic, in which it affects multiple tissues and organs (Westermark 2012, 

Lin, Seldin et al. 2015). For an example, a selection of the known 

conformational disorders and related precursor protein are documented below 

in Table 1.  
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Table 1  Examples of amyloid related disease, the associated precursor protein 

and the site of deposition. The protein or precursor listed refers to the wild type. 

Information was adopted from amyloid nomenclature 2016 (Sipe, Benson et al. 2016) 

 

DISEASE PRECURSOR PROTEIN / PEPTIDE SYSTEMIC / LOCAL 

Parkinson’s disease α-synuclein  Local 

Alzheimer's disease amyloid beta (Aβ) wild-type Local 

AL (primary) amyloidosis Immunoglobulin light chain Systemic & Local 

AA (secondary) amyloidosis  Immunoglobulin heavy chain Systemic & Local 

Type II diabetes  Amylin (Islet amyloid) Local 

Haemodialysis-related amyloidosis β2 microglobulin   Local 

Creutzfeldt-Jakob disease Prion protein wild type Local 

Cystic Fibrosis Transthyretin wild type Systemic 

Familial Amyloid Polyneuropathy Transthyretin wild-type Systemic 

 

1.3.1. The Mechanisms of Amyloid Formation 

 

The widely accepted hypothesis of amyloid formation suggests that conversion 

of the native precursor protein (found at the start of the reaction) into β-

stranded fibrils (found at the end of the fibrillation reaction) occurs in a multi-

step process (Figure 2) consisting of monomer, oligomer, protofibrillar and 

mature fibrillar species (Rochet and Lansbury 2000, Blancas-Mejía, Horn et al. 

2015, Blancas-Mejia, Misra et al. 2017). Interestingly, many independent 

studies have revealed that despite the enormous differences in sequence 

identity between many precursor proteins, there are common similarities in 

some of the protein conformers that are found along the pathway en route to 

the formation of mature amyloid fibrils (Verma, Vats et al. 2015). There is also 

the possibility for the precursor protein to progress down “off-pathway” routes 

that result in the formation of amorphous aggregations rather than the 

formation of amyloid structures (Blancas-Mejía, Horn et al. 2015) (previously 

described in Figure 1B and illustrated below in Figure 2).  
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Figure 2 Schematic illustration of a simplified linear pathway of protein 

aggregation in amyloid formation with a focus on light chain aggregation. 

Native proteins undergo conformational alterations that ultimately result in mature 

fibrils possessing highly ordered β-sheet rich quaternary structure. Partially unfolded 

intermediates expose regions of the protein that are crucial for formation of the 

amyloid spine (highlighted red), where much of the protein is peripheral to the fibril 

core. These intermediates associate forming structured and unstructured oligomers 

of diverse morphologies that lead into the formation of -sheet rich protofibrils. At the 

end of the pathway are mature fibrils. Shown are possible mechanisms that trigger 

the fibrillation reaction which includes dissociation of amyloid resistant quaternary 

structures such as Transthyretin (TTR), or cleavage of the native protein such as Aβ.  

 

 

As protein folding usually occurs on the microsecond to second timescale 

(Chen, Lu et al. 2017), many of the transient, non-native species that populate 

the folding, and misfolding pathways remain uncharacterised. Many 

conventional spectroscopies are simply unable to directly detect transient lowly 

populated conformers on this short timescale. Given the implication of some of 

these species in misfolding diseases, there is on-going international effort by 
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the scientific community to understand this process and characterise the 

different protein states using many different approaches. David P Smith and 

co-workers harnessed the ability of electrospray ionisation - ion mobility mass 

spectrometry to first, discriminate between the many co-populated 

conformational states of β2-microglobulin during the early stages of its 

aggregation and later, to identify oligomers of different morphologies by 

analysis of their collision cross-section, separating species by their mass to 

charge ratio, and shape (Smith, Radford et al. 2010, Smith, Woods et al. 

2011).  There have also been a number of investigations using NMR 

spectroscopy, and small angle X-ray scattering (SAXS) coupled with novel 

software COSMiCS (Complex Objective Structural analysis of Multi-

Component Systems) to characterise transient, (Herranz-Trillo, Groenning et 

al. 2017) intermediate species, of low population number even in structurally 

heterogeneous samples (Karamanos, Kalverda et al. 2015, Karamanos, 

Pashley et al. 2016, Herranz-Trillo, Groenning et al. 2017). Collectively these 

investigations, are amongst growing evidence which highlight that misfolding 

does not proceed along a linear pathway rather, many structurally diverse 

oligomers, are able to proceed through multiple pathways towards fibril 

formation (Eichner and Radford 2011). 

1.3.2. Formation of the amyloid fibril  

The kinetics of amyloid formation is heavily dependent on protein 

concentration, and a number of intrinsic and extrinsic factors that include the 

physicochemical properties of the precursor protein, pH, ionic strength, 

temperature, metal ion content, different surface compositions (such as the 

difference in phospholipid head groups) tissue composition (elastin, collagen 
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types) and the presence of other co-factors (Hane and Leonenko 2014, Marin-

Argany, Guell-Bosch et al. 2015, Kastritis and Dimopoulos 2016, Graña-

Montes, Pujols-Pujol et al. 2017). Under specific experimental conditions, 

protein aggregation can be induced by destabilising the native state, enabling 

a range of modulating factors to be examined in vitro. Advances in techniques 

such as two-colour super-resolution microscopy (Pinotsi, Buell et al. 2014), 

and total internal reflection fluorescence microscopy (Ban and Goto 2006) 

provide high resolution methods of monitoring amyloid formation and fibril 

growth, but the most widely accessible method of quantifying fibrillation 

kinetics in vitro is Thioflavin T (ThT) fluorescence (Biancalana and Koide 

2010). ThT is a benzothiazole dye containing two coplanar aromatic rings 

(Figure 3), (benzothiazole and N,N-dimethylaniline) that in solution, are in free 

rotation around the axial bond (Taniguchi, Shimizu et al. 2016). The exact 

mechanisms by which ThT binds are unclear, but evidence proposes a cavity, 

present only within fibrillar species that possess a cross-β-sheet spine are able 

to quench the aromatic rotation that gives rise to an increase in fluorescence 

upon photo-irradiation when compared to an unbound ThT molecule (Khurana, 

Coleman et al. 2005, Biancalana and Koide 2010, Qin, Sun et al. 2017).  
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Figure 3 Three-stage sigmoidal growth curve representing a ThT fluorescence 

experiment. Curve is used to illustrate both ThT reactive and nonreactive species in 

the aggregation pathway (A) lag phase (B) elongation phase (C) plateau phase. The 

presence of fibrillar species that contain cross-β architecture results in an increase in 

ThT fluorescence (Y axis).  Preformed seeds are able to reduce the lag phase 

(highlighted, blue). Schematic based on information from (Wilson, Yerbury et al. 

2008) 

 

The most widely accepted concept for the in vitro formation of amyloid 

proceeds through a nucleation dependent polymerisation procedure (Lee, 

Nayak et al. 2007, Kumar and Walter 2011, Blancas-Mejia, Misra et al. 2017).  

The kinetics of this reaction, which can be observed in a typical ThT 

fluorescence assay fit a sigmoidal growth function (illustrated in Figure 3) and 

can be divided into three distinct stages (Lee, Nayak et al. 2007): the lag 

phase (A), the elongation phase (B) and the plateau phase (C). At the start of 

the fibrillation reaction, a solution that contains proteins in their monomeric 

state can associate to form an oligomeric nucleus that is enriched in -sheets 
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(Baden, Sikkink et al. 2009, Arosio, Knowles et al. 2015, Blancas-Mejia, Misra 

et al. 2017). The lag phase (illustrated in Figure 3 as phase A) is used to 

represent the time that is taken for the gradual formation of this amyloid 

nucleus. This is the rate-limiting step of the reaction, and can be accelerated 

by the presence of pre-formed fibrillar aggregates from the same precursor 

protein (self-seeding) or proteins that have an entirely different amino acid 

composition (cross-seeding) (illustrated in Figure 3 blue line) (Merlini and 

Bellotti 2003, Wall, Kennel et al. 2012, Arosio, Knowles et al. 2015) (Ghosh, 

Vaidya et al. 2016). Once the amyloid nucleus is established, free monomers 

are able to bind to complementary ends of the aggregates, which elongates 

them (Phase B). As illustrated in Figure 3, this occurs much more rapidly than 

the formation of the amyloid nucleus (indicated by time x axis)(Kumar and 

Walter 2011). Fibrils may also break up into smaller fragments, that extend the 

number of complementary ends where monomers can bind (Knowles, 

Vendruscolo et al. 2014, Arosio, Knowles et al. 2015). In the final phase, which 

is referred to as the plateau phase, available monomers have been consumed 

during the fibrillation reaction, and so there is no further increase in ThT signal 

(Scheinost, Boldt et al. 2012) 

1.3.3. Structure of the amyloid fibril  

Amyloid fibrils are the stationary, end stage assembly component for all 

amyloid aggregation pathways. As a result, there is arguably a more 

developed understanding of their structural properties in comparison to the 

transient species mentioned earlier. Historically, the protein found within 

amyloid deposits was first thought to be amorphous, that is, lacking in any of 

the highly ordered structural elements that are described here (Ross and 
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Figure 4 Illustration of fibril architecture. A) Molecular model of mature fibril 

adopted from (Jiménez, Nettleton et al. 2002) with negative stain electron micrograph 

image of Transthyretin synthetic peptide (residues 105-115 termed TTR1) inset 

adopted from (Gras, Waddington et al. 2011). B) Illustration of parallel or antiparallel 

running β-strands that stack in-register, and are orientated perpendicular to the fibril 

axis. D) Section of fibril taken from Aβ shows that monomers adopt a β-turn, and 

form individual β-strands that stack in register to form β-sheets which run parallel to 

the fibril axis.  (C) Cross-β spacing can be measured by X-ray fibre diffraction that 

gives rise to distinct bands at 4.7 Å and 10 Å. 

Poirier 2005, Yoshimura, Lin et al. 2012). This view was altered in 1935 where, 

X-ray diffraction analysis of aggregated lysozyme revealed a cross β diffraction 

pattern (Astbury, Dickinson et al. 1935). Over the years, the study of fibrils 

generated from many amyloid proteins and synthetic fibrils have revealed that 

all share a similar ultrastructure despite low sequence identity (Eanes and 

Glenner 1968, Geddes, Parker et al. 1968, Rambaran and Serpell 2008).  
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On a microscopic level, electron and atomic force microscopy have revealed 

that mature fibrils are often straight, elongated, unbranched rope-like 

structures (Figure 4A) (Serpell 2000), that are ~ 100-200 Å in height and 

around 1-10 microns in length (Serpell 2000, Rambaran and Serpell 2008, Xu, 

Paparcone et al. 2010, Fitzpatrick, Debelouchina et al. 2013).  At a molecular 

level, amyloid fibrils are built from thousands of individual self-associated 

monomers, that during the course of the fibrillation reaction (previously 

illustrated in Figure 2) stack on top of one another to form arrays of elongated 

β-sheets (Figure 4B)  (Riek and Eisenberg 2016). These sheets are positioned 

parallel or anti-parallel (less common) to each other, (Rambaran and Serpell 

2008, Toyama and Weissman 2011, Arosio, Knowles et al. 2015) but are 

orientated perpendicular against the main axis of the fibre (Figure 4 B). The 

characteristic feature of the amyloid fibril is a cross β diffraction that has 

meridional and equatorial reflections of 4.7 Å and 10 Å respectively (Figure 

4C) (Rambaran and Serpell 2008, Fandrich, Schmidt et al. 2011). The origin of 

these reflections is shown in Figure 4D, where a segment of the Aβ fibre is 

illustrated. Here, individual monomers have adopted a β-turn-β motif with two 

opposite running β- sheets (Toyama and Weissman 2011) The inter- β strand 

and intra- β sheet spacings (highlighted in Å) which arise due to hydrogen 

bond and side chain arrangements (Toyama and Weissman 2011) correspond 

to the aforedescribed reflections acquired in a typical X-ray diffraction 

experiment (Del Pozo-Yauner, Becerril et al. 2015). In the core of the fibrils, 

side chains of neighbouring monomers point inwards, and interdigitate to 

create an anhydrous zipper-like arrangement (Sawaya, Sambashivan et al. 

2007, Toyama and Weissman 2011, Graña-Montes, Pujols-Pujol et al. 2017) 
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which, along with the extensive hydrogen bonding network of the cross- 

conformation contributes to the incredible rigidity of the fibril (Sawaya, 

Sambashivan et al. 2007, Toyama and Weissman 2011). Analysis of 

microcrystals using small synthetic peptides that possess this structure has 

revealed tensile strengths in the Gigapascal (GPa) range (Smith, Knowles et 

al. 2006, Knowles, Fitzpatrick et al. 2007, Fitzpatrick, Park et al. 2013, 

Knowles, Vendruscolo et al. 2014), which are comparable to that of steel and 

spiders silk (Fitzpatrick, Debelouchina et al. 2013).  

Sets of β-sheets assemble to form protofilaments, which can be 

described as “sub fibrils” that wind around one another in a helical-like 

arrangement. This often leaves the mature fibril with a hollow tube-like core 

(Serpell 2000, Toyama and Weissman 2011, Fitzpatrick, Debelouchina et al. 

2013). The number of associated protofilaments (documented to be 2-4-6 

(Jimenez, Nettleton et al. 2002, Jiménez, Nettleton et al. 2002, Fandrich, 

Schmidt et al. 2011) ultimately leads to different levels of periodicity (the twist 

of the full amyloid fibril) (Adamcik, Jung et al. 2010) which is observed when 

using electron or atomic force microscopy (Figure 4A). 

1.4. Immunoglobulin light-chain amyloidosis  

1.4.1. Overview and clinical presentation  

AL amyloidosis (previously termed primary amyloidosis) is the most frequent 

systemic conformational disorder, with an incidence of 1:100,000 (Dispenzieri, 

Buadi et al. 2015). It is currently incurable, and requires a rapid diagnosis 

followed by appropriate treatment for any increase in life expectancy.  The 

median survival for a patient with advanced-stage cardiac damage (which is 
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common clinical manifestation in this disease) is just 6 months (Grogan, 

Dispenzieri et al. 2017). AL amyloidosis has some similarities to multiple 

myeloma (MM). Both disorders are associated with an underlying plasma cell 

dyscrasia (Martin, Williams et al. 2017) where plasma B cells proliferate 

abnormally, and synthesise enormously high levels of light chain (Figure 5A) 

(Geddes, Parker et al. 1968, Wei and Juneja 2003). In MM, the light chain is 

not amyloidogenic, instead forming amorphous aggregates which commonly 

leads to cast nephropathy (formation of urinary casts, within the renal tubules) 

(Korbet and Schwartz 2006). This disorder is mainly characterised by the 

aggressive plasma cell clone that infiltrates the bone marrow, forming lytic 

bone lesions that lead to the osteoporosis and fracturing (Kristinsson, Minter et 

al. 2011, Tosi 2013). By comparison, the plasma cell clone in AL is less 

aggressive (lower tumour burden), instead,  light chains can be amyloidogenic 

(Sanchorawala 2006). Amyloidogenic LCs that evade the tightly regulated 

PQC mechanisms of the plasma B cell (Cooley, Ryno et al. 2014) enter the 

bloodstream and can form amyloid fibrils (Rajkumar, Dispenzieri et al. 2006, 

Martin and Ramirez-Alvarado 2010).  

Deposition of the amyloidogenic LC can occur in virtually every organ, 

including circumventricular organs (tissue distribution illustrated in Figure 5) 

(Schroder and Linke 1999), the light chain is however unable to traverse the 

blood brain barrier (Martin and Ramirez-Alvarado 2010). Sites of deposition 

vary between patients, but is most commonly found in the heart (75%), liver 

(75%) and kidney (65%) (Baden, Sikkink et al. 2009, Melmed 2009, Martin and 

Ramirez-Alvarado 2010, Basnayake, Stringer et al. 2011, Palladini and Merlini 

2016). The exact reasons to why there are differences in organ involvement 



29 

between patients is not entirely clear, but several lines of evidence point 

towards the amino acid composition of each light chain as the crucial 

determinant to organ tropism (Comenzo, Zhang et al. 2001). For example, light 

chains of the IGLV6S1/Vλ6a group has been previously associated with renal 

involvement (Ramirez-Alvarado, De Stigter et al. 2007). Light chains of the Vλ 

and λII 2b2 have shown to be predominantly cardiac involvement, and λIII 3r 

germ-line gene has been correlated with soft tissue involvement (Comenzo, 

Wally et al. 1999, Abraham, Geyer et al. 2003).  

AL is largely non-symptomatic until the latter stages of disease 

progression.  There are recent indications to suggest that the underlying 

plasma B cell clone can be active, synthesising large quantities of light chain 

for years without detection (Chaulagain & Comenzo 2015). As a result, many 

patients display severe organ dysfunction when AL is diagnosed, and 

unfortunately, 30% of patients die within just 12 months following this 

diagnosis (Dispenzieri and Merlini 2016, Grogan, Dispenzieri et al. 2017). The 

presenting features of AL are mostly dependent on the levels of amyloid 

deposition in the patient, and the organ involved (Melmed 2009). Some of the 

common symptoms of AL (seen in 90% of patients) include weight loss, stiff 

macroglossia (tongue), edema (swelling of limbs), fatigue and light-

headedness. These are however,  commonly mistaken for more benign 

conditions and are not a clear indication of AL amyloidosis (Baker and Rice 

2012).  
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Other, organ specific symptoms include distal sensory neuropathy when there 

is nervous system involvement, (Sanchorawala 2006) proteinuria and reduced 

glomerular filtration rates, with renal involvement (Dember 2006, Basnayake, 

Stringer et al. 2011) and fatigue, dyspnea (breathing difficulties) and orthostaic 

hypertension (increase in blood pressure upon standing) (Mahmood, Palladini 

et al. 2014, Lin, Seldin et al. 2015) for patients with cardiac involvement. 

Figure 5 Origin and distribution of Immunoglobulin free light chain. (A) The 

small, indolent plasma B cell clone responsible for secretion of excess of full LC and 

truncated fragments is located within the bone marrow (B). The self-assembly and 

deposition of unstable LC is systemic, occurring in virtually all organs and tissues 

outside of the central nervous system and the blood brain barrier. Frequent sites of 

deposition include heart, kidneys, liver, gastrointestinal tract, and the peripheral 

nervous system. (C) Shows hematoma on chest well in patient diagnosed with AL 

(left panel) adopted from (Muchtar, Buadi et al. 2016) where right panel shows 

example of 73 year old patient diagnosed with AL with periorbital purpura (adopted 

from (Eder  and Bitterman 2007). 
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Symptoms may also be more visual, such as the skin hematoma (Muchtar, 

Buadi et al. 2016), or periorbital purpura illustrated in Figure 5. This occurs in 

approximately 1/3rd of all patients (Mahmood, Palladini et al. 2014). 

1.4.2. Diagnosis of AL amyloidosis 

Several techniques are used to confirm diagnosis. Usually, this begins 

with the demonstration of monoclonal immunoglobulin free light chain (FLCs) 

in the blood or urine using protein and immunofixation electrophoresis 

(Dember 2006, Kastritis and Dimopoulos 2016). An example of a serum 

protein electrophoresis experiment is shown in Figure 6A, where elevated FLC 

levels are seen as a spike in the gamma globulin (also termed immune 

globulin) region of the densitometric trace. Following the identification of a 

spike in this region, which is commonly termed a paraprotein or monoclonal M 

spike, quantification of total FLC levels are made using patient serum (Jenner 

2014). In healthy individuals, normal concentrations of free light chain are ~3.3 

mg/L – 19.4 mg/L for kappa and ~5.71–26.3 mg/L for lambda isotypes 

(Sanchorawala 2006).  
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Figure 6 Simplified schematic of steps taken towards diagnosis of AL. 

Suspicion of AL is followed by routine electrophoresis and immunofixation of urine 

and serum samples. (A) Example of serum protein electrophoresis and 

corresponding gel shows separation of major serum proteins albumin,  1,  2  and 

 globulin. Normal levels are shown in blue, and patients with an underlying MGUS 

have a spike at gamma globulin region. (B) Accurate subtyping of amyloid is made 

by laser dissection of amyloid deposit. This procedure is designed to elucidate the 

precursor protein. Image adopted from (Vrana, Gamez et al. 2009).(C) Assessment 

of Plasma B cell burden by immunohistochemical stain (CD138) (top panel) is 

followed by confirmation of amyloid presence (bottom panel). Congo red staining 

shows cardiac tissue, under fluorescent and polarising light, displaying characteristic 

apple green birefringence (image adopted from (Mohty, Damy et al. 2013).  

In patients with AL amyloidosis, immunoglobulin synthesis is 

dramatically increased and so, free light chain levels can be astonishingly 

high, documented to be in hundreds of milligrams (Melmed 2009, Kumar, 

Dispenzieri et al. 2010) grams (Imamura, Ogata et al. 2006, Martin and 

Ramirez-Alvarado 2010, Hajra and Bandyopadhyay 2016) and kilograms per 

litre (Knowles, Vendruscolo et al. 2014). Monitoring the ratio of free light chain 

is also important in recognising the disease, where, the normal κ/λ ratio of 2:1 

observed in healthy individuals is altered to a λ/κ ratio of 3:1 (Gertz, Lacy et al. 

2002) (Sanchorawala 2006, Baden, Owen et al. 2008, Jenner 2014, Le Bras, 

Molinier-Frenkel et al. 2017). Elevated FLC levels, abnormal κ/λ ratios, or the 

detection of monoclonal light chain by electrophoretic, or immunofixation 
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methods signifies any number of haematological disorders, that include the 

benign monoclonal gammopathy of undetermined significance (MGUS), to the 

more severe plasma cell dyscrasias that include multiple myeloma, 

Waldenström’s macroglobulinemia , smouldering multiple myeloma, non-

Hodgkin’s lymphoma, and light chain amyloidosis (Boccadoro and Pileri 1995, 

Jenner 2014, Singh 2017).  

To distinguish AL from other gammopathies, both immunohistochemical 

classification (using kappa and lambda antibodies) and laser microdissection 

mass spectrometry (MS) is performed on tissue taken from the symptomatic 

organ, salivary gland, fat aspirates, or other subcutaneous tissue (Figure 6B) 

(Vrana, Gamez et al. 2009, Mohty, Damy et al. 2013, Kastritis and Dimopoulos 

2016, Muchtar, Buadi et al. 2016).  

Another important step to ensure the correct diagnosis of AL 

amyloidosis is assessing the plasma cell burden.  In AL amyloidosis, there is 

typically a much lower number of malignant plasma cells within the bone 

marrow than that of multiple myeloma and Waldenström’s 

macroglobulinemia (Wei and Juneja 2003, Rajkumar, Dispenzieri et al. 2006, 

Sanchorawala 2006, Sanchorawala, Blanchard et al. 2006, Dinner, Witteles et 

al. 2013). Detection is performed by fluorescence in situ hybridisation (FISH) 

or CD138 (plasma cell marker) immunohistochemistry on bone marrow 

sections, that are usually obtained from percutaneous trephine biopsy (Figure 

6C) (O'Connell, Pinkus et al. 2004, Selkoe 2013, Falk 2014). Finally, 

confirmation of AL also requires the presence of amyloid to be made 

histologically. Here, tissue sections are evaluated for Congo red positivity, 

where in the presence of amyloid, tissue will exhibit characteristic apple-green 
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birefringence when visualised under cross polarised light (Figure 6C) (Kastritis 

and Dimopoulos 2016). 

1.4.3. Cardiovascular manifestations in AL amyloidosis 

As preserving cardiac function is key to patient survival, assessing the 

involvement of this organ has now become a critical part in establishing 

diagnosis and methods for assessment became standardised at the 10th 

Annual Meeting of the International Society of Amyloidosis (ISA) (Gertz, 

Comenzo et al. 2005, Cohen and Comenzo 2010, Mohty, Damy et al. 2013). In 

addition to some of the clinical presentations of cardiac involvement described 

earlier (dyspnea and orthostaic hypertension) (Cohen and Comenzo 2010) 

detection of elevated presymptomatic cardiac biomarkers such as BNP (brain 

natriuretic peptide), N-terminal portion of its pro-hormone (NT-proBNP), 

troponins I or T (Palladini, Campana et al. 2003; Merlini, Seldin et al. 2011; 

Panagopoulou, Deftereos et al. 2013) as well as performing a number of 

electrophysiological, morphological and hemodynamic assessments have 

become part of the diagnostic procedure (Shin, Ward et al. 2012)  

Typical examples of cardiac involvement include a low voltage 

electrocardiogram which is seen in ~45-70% of patients (Falk 2005, 

Chaulagain and Comenzo 2015). Cardiac magnetic resonance (CMR) and 

echocardiography (ECHO) are used to detect structural abnormalities and 

functional impartments (Cohen and Comenzo 2010, Fikrle, Paleček et al. 

2013, Muchtar, Buadi et al. 2016). Typical structural abnormalities detected by 

ECHO imaging are exemplified in Figure 7 and include myocardium deposition 

of amyloid which results in a speckled myocardium, myocardial wall and 
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Figure 7  Example of cardiac involvement in AL amyloidosis. (A) shows cross 

section of heart isolated from patient diagnosed with AL. Arrows indicate enlarged 

right vetricular wall, with nodules, significantly enlarged ventricular septum (dark 

blue) and enlarged ventricular wall (orange). Image adapted from (Falk 2005). (B) 

Echocardiogram shows enlargement of right and left atrium (white arrow) and 

presence of a pericardial effusion (fluid collection around heart, light blue arrow). 

The speckled appearance of the septum shown in the ECG image (orange arrow) is 

indicative of amyloid infiltration. Image adopted from (Falk and Dubrey 2010). 

Echocardiogram (C) show septum thickness in healthy patient (green arrow) in 

comparison to patient diagnosed with AL (D green arrow) that shows enlarged atrial 

septum. Image adopted from (Care 2017).  

 

septum thickening, and ventricular hypertrophy (increased ventricular wall 

thickness) (Mohty, Damy et al. 2013). 
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1.4.4. Amyloid pathophysiology and cardiac involvement in AL  

Sudden death, arrhythmias, syncope, and diastolic dysfunction are common 

consequences of myocardial amyloid infiltration (Brenner, Jain et al. 2004, 

Hassan, Al-Sergani et al. 2005, Mohty, Damy et al. 2013). Despite the urgency 

in preserving cardiac function to enhance patient survival, the precise 

mechanism in which toxic variable domains lead to fatal cardiomyopathy is 

uncertain. In truth, the mechanisms that underlie amyloid toxicity for all 

conformational disorders are still unclear.   

Historically, the mature amyloid fibril was once thought to represent the 

cytotoxic species after numerous demonstrations of fibrillar Aβ to impair many 

critical cellular processes (Lorenzo and Yankner 1996, Verma, Vats et al. 

2015). Early notions suggested that amyloid deposits could form a barrier 

around cells, and physically impair many fundamental cellular processes 

(Blancas-Mejía and Ramirez-Alvarado 2013). Other works have shown fibrils 

to disrupt the cell membrane (Ow and Dunstan 2014). For AL amyloidosis, the 

physical presence of amyloid fibrils is still held responsible for many of the 

cardiac manifestations described above. The displacement of parenchymal 

(functional) tissue, such as the contractile elements and muscle of the heart 

with rigid amyloid fibrils (Hassan, Al-Sergani et al. 2005, Grogan, Dispenzieri 

et al. 2017) has been previously demonstrated to restrict ventricular filling 

(Pepys 2006). However, differences in cardiac outcomes have been noted 

between patients despite very similar levels of amyloid deposition (Hassan, Al-

Sergani et al. 2005, Fikrle, Paleček et al. 2013, Mishra, Guan et al. 2013). 

Furthermore, elevated levels of NT-proBNP (the biomarker used to indicate 

cardiac involvement) has also been detected in patients despite the absence 
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of amyloid fibril deposits (Grogan, Dispenzieri et al. 2017). A number of studies 

using animal models (Zebrafish, mouse and Caenorhabditis elegans 

(C.elegans) have also detected functional impairments that reflect the 

manifestations found in human amyloid cardiomyopathy, without any evidence 

of fibrillar light chain deposition (negative for Congo red staining and electron 

microscopy) (Shin, Ward et al. 2012, Mishra, Guan et al. 2013, Diomede, 

Rognoni et al. 2014, Diomede, Rognoni et al. 2014, Guan, Mishra et al. 2014). 

The ability of soluble light chains to internalise into primary heart cardiac 

fibroblasts (hCFs), cardiomyocytes and renal cells and alter cellular 

metabolism and cellular ultrastructure has also been documented (and is an 

aspect that is further explored within this thesis) (Brenner, Jain et al. 2004, 

Baden, Sikkink et al. 2009, Shi, Guan et al. 2010, Sikkink and Ramirez-

Alvarado 2010, Lavatelli, Imperlini et al. 2015, Marin-Argany, Lin et al. 2016). 

Collectively, these findings suggest that in addition to insoluble mature amyloid 

fibrils, soluble oligomers play a significant role in disease pathology (Knowles, 

Vendruscolo et al. 2014). In truth, this is reflected across all the amyloidoses, 

however, the exact mechanisms whereby cytotoxicity is accomplished for 

oligomers (also referred to as prefibrillar aggregates) is still a matter of debate.  

There are documented examples of annular and wreath shaped 

oligomers permeabilising the plasma membrane, and creating pores that 

disrupt cellular ion homoeostasis which leads to apoptosis (Knowles, 

Vendruscolo et al. 2014, Ow and Dunstan 2014). The ability to adopt a pore-

like conformation is noted in a number of protein precursors including κ1 light 

chains (Monis, Schultz et al. 2006), alpha synuclein and Aβ suggesting there 

may be a common molecular mechanism of proteotoxicity (Di Scala, Yahi et al. 
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2016). In AL, soluble oligomers are believed to cause diastolic dysfunction by 

inducing oxidative stress through activation of non-canonical p38 mitogen-

activated protein kinase (MAPK) pathway which also leads to cellular apoptosis 

(Brenner, Jain et al. 2004) (Brenner, Jain et al. 2004, Shi, Guan et al. 2010, 

McWilliams-Koeppen, Foster et al. 2015, Kastritis and Dimopoulos 2016, 

Palladini and Merlini 2016). Quite interestingly, activation of this pathway 

promotes NT-proBNP synthesis; the presymptomatic cardiac biomarker 

mentioned earlier.  

1.4.5. Treatment strategies for AL amyloidosis   

Light chain amyloidosis is currently incurable. To date, there is no 

European Medicines Agency (EMA), or Drug Administration (FDA) approved 

treatment that addresses AL specifically (Bayliss, McCausland et al. 2017). 

Treatment strategies are constantly changing based on the results of clinical 

trials, but a widely adopted strategy used in the treatment of multiple myeloma 

(Reece, Sanchorawala et al. 2009) involves the administration of high dose 

cyclic melphalan (an alkylating agent) in combination with autologous blood 

stem cell transplantation and chemotherapy (Sanchorawala 2006, Roy 2012, 

Mahmood, Palladini et al. 2014, Grogan, Dispenzieri et al. 2017). This is an 

anti-plasma cell therapy that is designed to eradicate the underlying plasma B 

cell dyscrasia. Suppression of the plasma cell clone has a knock-on effect, 

leading to a reduction in light chain synthesis, and a lower quantity of light 

chain in circulation. From clinical evaluation studies, patient survival under this 

treatment has increased dramatically, from a median of 6 months without 

treatment, to 5 years (Dispenzieri, Seenithamby et al. 2013, Muchtar, Buadi et 

al. 2016). In one study, the 40% of patients who demonstrated a complete 
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haematological regression following treatment (an assessment criterion that 

refers to no detectable plasma B cells in the bone marrow, no detectable 

levels of free light chain in serum and urine, and normal free light chain levels 

(Muchtar, Buadi et al. 2016)) a survival rate of 13.2 years was documented 

(Cibeira, Sanchorawala et al. 2011, Dispenzieri, Seenithamby et al. 2013, 

Mahmood, Palladini et al. 2014, Chaulagain and Comenzo 2015, Muchtar, 

Buadi et al. 2016). There are however, several downsides to this therapy. 

Mainly, the treatment is highly toxic. Early studies had a treatment related 

mortality of 15-40% (Sanchorawala 2006) and as a result, had  risk adopted 

doses of melphalan (doses altered dependent on patient age and severity of 

renal and cardiac involvement) to try and limit the toxic effects (Cibeira, 

Sanchorawala et al. 2011, Chaulagain and Comenzo 2015). The eligibility for 

this treatment is also very low, accessible to only 20-25% of patients that have 

preserved organ function (Poshusta, Katoh et al. 2013). Patients that do not 

satisfy the eligibility criteria for ASCT (cardiac involvement in advanced 

stages) are simply too weak to survive the treatment (Fikrle, Paleček et al. 

2013, Grogan, Dispenzieri et al. 2017) and instead, combination therapies that 

include high-dose melphalan, dexamethasone (Mdex), cyclophosphamide and 

bortezomib (proteasome inhibitor) are a commonly used alternatives 

(Wechalekar, Lachmann et al. 2008, Simpson, Herold et al. 2009, Cohen and 

Comenzo 2010, Mikhael, Schuster et al. 2012, Mahmood, Palladini et al. 2014, 

Palladini, Milani et al. 2014, Huang, Wang et al. 2016, Palladini and Merlini 

2016, Le Bras, Molinier-Frenkel et al. 2017). These methods do not however, 

address the resident amyloid. Emerging therapies that aim to remove the 
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existing amyloid deposits or prevent aggregation are described below in Table 

2. 

Table 2 Emerging strategies for the treatment of AL amyloidosis. The name, 

type, clinical stage and mechanism of action for each therapeutic is shown below.  

Information for each therapy was adopted from the following sources; NEOD001 

(Gertz, Landau et al. 2016), (2R)−1-[6-[(2R)−2-carboxypyrrolidin-1-yl]−6-oxohexanoyl] 

pyrrolidine-2-corboxylic acid (CPHPC) (Richards, Cookson et al. 2015), 

Epigallocatechin-3-gallate (ECGC) (Stefani and Rigacci 2013, Pelaez-Aguilar, 

Rivillas-Acevedo et al. 2015, Merlini 2016), Doxycycline (Grogan, Dispenzieri et al. 

2017). 

 

Name Stage Mechanism Type 

NEOD001 Phase I/II Promote amyloid 

clearance - resorption 

by macrophage 

Monoclonal antibody 

Anti-sap and 

CPHPC 

Phase I Remove co-localised 

SAP and promote 

amyloid clearance 

Combined small molecule 

and monoclonal antibody 

EGCG Phase II Inhibit fibrillogenesis 

Direct protein into off-

pathway non-toxic 

species 

Small molecule 

Doxycycline Phase II Inhibit fibrillogenesis Small molecule 

 

1.4.6. Immunoglobulin structure 

Structurally, the complete Immunoglobulin (Ig) molecule is a 150 kDa 

heterotetramer comprising of four subunits: two identical light chains (LC) of 

~25 kDa in complex with two identical ~50 kDa heavy chains (HC) (Carter 

2006) that are linked by an intermolecular disulphide bond which gives rise to 

the familiar “Y-shape” morphology depicted in Figure 8. Under normal 

conditions, the light and heavy chains are synthesised at near equivalent ratios 

within the plasma B cell, where the complete Immunoglobulin molecule is 
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Figure 8  Diagram of single Immunoglobulin IgG molecule. The Ig molecule is a 

~150 kDa heterotetrameric complex composed of four main components; two 

identical heavy chains (HC) covalently linked to two identical light chains (LC). The 

HC contains a single variable domain (VH) and three constant domains termed CH1 

CH2, and CH3. The expanded region (Left) shows the VL (circled) and CL (blue) 

bound to the VH and CH1 domain (cyan). Five heavy chain isotypes (α, δ, ε, γ, and 

μ) denote which five classes the Ig will belong to following synthesis; IgG, IgA, IgM, 

IgD and IgE respectively (Schroeder and Cavacini 2010). Disulfide bridges are 

indicated in orange. Regions that comprise the fragment antigen-binding (Fab) and 

fragment crystallisable (Fc) are highlighted. The antigen binding site (red) and 

carbohydrate binding site are also highlighted. Each domain contains the highly 

conserved Ig fold, a homologous β-barrel (Ramirez-Alvarado 2011). 

secreted into circulation (Randles, Thompson et al. 2009). In addition to the 

expansion of the plasma B cell population, control of chain synthesis is lost 

(Brumshtein, Esswein et al. 2014). This leads to the disproportionate synthesis 

of unbound LC, which is subsequently secreted into the circulation. The heavy 

chain component is retained by the endoplasmic reticulum and degraded 

(Cooley, Ryno et al. 2014). 
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The light chain component spans 214-220 residues and consists of an N-

terminal variable domain (VL) (residues 1-108), a junction (J) and a constant 

domain (CL) spanning residues 109-214 (often displayed as VL-J-CL)  which 

pair non-covalently to the heavy (VH and CH1) (Figure 8 expanded, left) 

(Baden, Owen et al. 2008). This LC can be of lambda (λ) or kappa (κ) family, 

and is formed from a total of 33 λ and 40 κ available germlines genes 

(Ramirez-Alvarado 2012). A collection of studies have revealed that in AL 

amyloidosis, there is an overrepresentation of germline genes: VκI O18/O8, λ 

1, Vλ II 2a2, Vλ III 3r, and λ VI 6a, where λ VI 6a and VκI account for the 

majority of all monoclonal light chains found in patients with AL amyloidosis 

studied (Comenzo, Zhang et al. 2001, Abraham, Geyer et al. 2003, Prokaeva, 

Spencer et al. 2007, Poshusta, Sikkink et al. 2009). Astonishingly a possible 

3000 different light chain sequences (Ramirez-Alvarado 2012) can be 

generated, which is further diversified by somatic hypermutations, a process 

that occurs in the maturation stage of the antibody to confer high antigen 

specificity (Ara Celi DiCostanzo 2011, Kastritis and Dimopoulos 2016). This 

means that every LC isolated from a patient has a unique amino acid 

sequence, and is a factor that several complicates the study of AL amyloidosis 

(Ara Celi DiCostanzo 2011).  

The full-length LC (consisting of components VL-J-CL) has been found 

in a number of patients diagnosed with AL, yet, mass spectrometric analysis of 

fat aspirates, has revealed that the VL (circled in figure 8) domain has been the 

main fibrillar component for the majority (85%) of patients (Glenner, 

Cuatrecasas et al. 1969, Olsen, Sletten et al. 1998).  As a result of these 
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findings, the majority of all studies to date focus on the light chain variable 

domain of the full-length LC (Randles, Thompson et al. 2009, Ara Celi 

DiCostanzo 2011, Blancas-Mejía, Horn et al. 2015). 

1.4.6. Structure of the light chain variable domain 

Structurally, the VL is a Greek key β-sandwich that comprises nine tightly 

packed β-strands (A, B, C, C’, C’’, D, E, F, G) in a four and five arrangement 

(Figure 9) (Simpson, Herold et al. 2009, Hernández-Santoyo, del Pozo Yauner 

et al. 2010).  These strands are split into two anti-parallel β-sheets, and are 

stabilised be an inter-chain disulphide bond which is formed between β strands 

B and F (Randles, Thompson et al. 2009, Ramirez-Alvarado 2012). Strand A 

corresponds to the N-terminus and strand G corresponds to the C-terminus 

(illustrated in Figure 9). Strands C, C’, F and G usually form interactions with 

the variable domain of the heavy chain which together comprise the antigen 

binding site of the full immunoglobulin molecule (Figure 8) (Ramirez-Alvarado, 

De Stigter et al. 2007). 
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Figure 9  Structure and schematic of variable domainImmunoglobulin molecule 

and expanded monomeric VL is shown in ribbon format (A) with the complementarity 

determining regions highlighted. Schematic of -strand arrangement (B) shows 4-5 

anti-parallel sheet arrangement. Arrows indicate direction of chain in each strand.  

 

 

 

 

 

The VL also harbours four highly conserved framework regions (FR) (β-sheet 

structure shown in figure 9) that act as scaffolds for three unstructured 

hypervariable loop regions (Koenig, Lee et al. 2017) referred to as the 

complementarity-determining regions (CDR). The CDR regions are located 

between strands C’-C’’ (CDR2 residues 23-34) strands B-C (CDR1 residues 

50-56) and strands F-G (CDR3 residues 89-95) (Blancas-Mejia, Tischer et al. 

2014) (highlighted Figure 9) (Ara Celi DiCostanzo 2011). The CDR regions are 

responsible for antigen binding (Randles, Thompson et al. 2009), and so, 

accumulate antigen-driven somatic mutations much more than the FR regions 

which are more highly conserved (Baden, Sikkink et al. 2009). 
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Figure 10  Alternative quaternary structure arrangements of VL homodimer. 

Surface representation of (A) LEN (PDB ID: 1LVE), (B) AL-T05 (PDB ID: 5T93) and 

(C) AL-09 (PDB ID: 2Q1E) show canonical and non-canonical dimer interfaces with 

180 o and 90 o orientation respectively. Arrows indicate orientation of the two 

monomers which can also be referred to as parallel, antiparallel and perpendicular, 

arrangements respectively.  

 

1.5. Variable domains pair to form homodimers  

In solution VL coexist as monomers and as stable VL-VL homodimers, termed 

Bence Jones proteins (Arosio, Owczarz et al. 2012), (Baden, Owen et al. 

2008). Many of the homodimers that have been isolated from patients 

diagnosed with either AL, or multiple myeloma have been crystallised in a 

structural arrangement similar to the light and heavy variable domains (VL and 

VH) of the antigen-binding fragment (Figure 8 and Figure 10A) (Padlan 1994, 

Stevens and Schiffer 1995, Peterson, Baden et al. 2010). In this arrangement, 

both VL monomers are orientated in the same direction. This is termed the 

canonical dimer arrangement and is illustrated in Figure 10A (Brumshtein, 

Esswein et al. 2014).  
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Several lines of evidence have shown that the introduction of somatic 

mutations to the dimer interface can destabilise the canonical dimer, inducing 

its dissociation (Baden, Owen et al. 2008, Randles, Thompson et al. 2009, 

DiCostanzo, Thompson et al. 2012, Brumshtein, Esswein et al. 2014) or, they 

can cause the dimer to adopt a number of different quaternary structural 

arrangements, that are less stable than the canonical counterpart (Brumshtein, 

Esswein et al. 2014). These dimers are termed non-canonical. It is also 

interesting to note that these alterations are achieved without any large 

rearrangements to the tertiary structure of the VL. 

Alterations to the quaternary state can be quite minor, seen in the 1.9 Å 

structure of the amyloidogenic λ6a VLs Wil (PDB ID: 2CD0), which adopts a 

dimer that has just an 11 o rotation in comparison to the non-amyloidogenic 

homologus VL Jto (PDB ID: 1CDO). Alternatively, these changes can be much 

more pronounced, as depicted in Figure 10B and C, where the individual 

subunits relative to one another are twisted into anti-parallel and perpendicular 

orientations. Figure 10B shows the arrangement observed within the crystal 

structure of the amyloidogenic VL AL-T05 (PDB ID: 5T93) that belongs to the 

Vλ1 1b (IGLV 1-51) family. An identical arrangement is also seen in the 

amyloidogenic VL domain REC (PDB ID: 1EK3) that belongs to the κIV family. 

Here, each monomer is twisted 180 o in comparison to the canonical dimer 

(Figure 10A). The last arrangement (Figure 10C) is seen in the amyloidogenic 

VL domain AL-09, where the individual monomers are twisted 90 o relative to 

one another (Peterson, Baden et al. 2010). Through site-directed mutagenesis 

based methods, such dramatic dimer arrangements have been shown to arise 

from just a single point mutation. In AL-09, Luis M Blancas-Mejia et al revealed 
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that the single mutant H87Y located within the dimer interface was able to 

dictate the orientation of this dimer (Peterson, Baden et al. 2010). For the non-

amyloidogenic kIV light chain LEN, single mutants K30T, Q38E, Q89A and 

Q89L have also been able to cause flipped dimer arrangements (Pokkuluri, 

Huang et al. 1998, Pokkuluri, Cai et al. 2000). New evidence provided by 

solution state NMR suggests that these dimer arrangements may not be static, 

and instead interconvert between the different conformations described above 

(Figure 10). As this has only been demonstrated for the VL κI O18/O8 that 

harbours a single mutation (Y87H) it is not clear if this is a common feature of 

all VL domains, or if this is just an isolated case (Peterson, Baden et al. 2010) 

1.6. Mechanisms of light chain aggregation  

Due to the different quaternary states of the variable domain that are present 

in solution (monomer, canonical dimer and non-canonical dimer, Figure 10), 

there has been some uncertainty to which species is responsible for triggering 

the aggregation cascade in AL amyloidosis. Recently, Boris Brumstein and 

colleagues have demonstrated that the aggregation in AL amyloidosis may 

follow similar steps to the aggregation of transthyretin (TTR), where the native 

tetramer has to dissociate into the monomer for aggregation to occur 

(Saelices, Johnson et al. 2015). Using the light chain variable domain of Mcg 

(PDB ID: 3MCG) in both its native dimer state, and a dimer reinforced with 

disulfide bonds, the authors demonstrated in a series of denaturation 

experiments that, dissociation of the dimer into a monomer was a necessary 

prerequisite for fibrillation to occur (schematic of this process illustrated in 

Figure 11).   
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Figure 11 Schematic of amyloid formation. Diagram shows possible mechanisms 

of amyloid formation described by Brumshtein et al., (Brumshtein, Esswein et al. 

2014). Early hypotheses suggested that dimers with different quaternary structural 

arrangements (canonical blue (left) and non-canonical (red)) could stack to form 

amyloid fibrils. A second hypothesis suggested that dissociation into the monomer 

was a requirement for aggregation to occur. It is now believed that dimers perform a 

protective role, and dissociation in the monomeric form is key to triggering 

aggregation. Mutations that occur within the dimer interface are able to dictate the 

orientation, or weaken the dimer leading to its dissociation into the aggregation 

prone monomer. In the monomeric state, these same mutations can lower the 

thermodynamic stability of the monomer, and allow it to access the partially unfolded 

states which favour aggregation.  

 

 

 

 

 

 

 

 

 

 

Based on these findings we can now consider that the aggregation 

cascade in AL occurs in a multi-step process, and the somatic mutations can 

contribute to the aggregation potential of the VL in a number of different ways 

(Brumshtein, Esswein et al. 2014). Firstly, the VL homodimer is much more 

stable than the monomeric state, and dissociation of this amyloid resistant 

structure is required for aggregation to occur. Mutations that occur within the 

dimer interface may weaken the dimer and lead to its dissociation into 
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individual VL monomers (mentioned earlier) (Figure 11) (Brumshtein, Esswein 

et al. 2014). In the monomeric state, somatic mutations are able to globally 

destabilise the VL, rendering it thermodynamically unstable and more liable to 

aggregation. Although the monomer is far less stable than the dimer, 

aggregation does not occur while the monomer retains its native Ig fold; 

neither does it occur when the protein is completely unfolded. Rather, partially 

unfolded conformations, that exist somewhere between the native and 

unfolded state are responsible for triggering the fibrillation reaction in AL 

amyloidosis. To support this hypothesis, a number of studies using the VL 

domains AL-09, 6aJL2 and SMA of the κIV family have shown that fibrillation 

can be induced in conditions (acidic pH, presence of chemical denaturants) 

which favour the dissociation of the dimer and unfolding of the VL (Blancas-

Mejia, Tellez et al. 2009, Hernández-Santoyo, del Pozo Yauner et al. 2010, 

Blancas-Mejía and Ramirez-Alvarado 2013, Brumshtein, Esswein et al. 2014). 

Mutations that render a variable domain thermodynamically unstable (routinely 

assessed by equilibrium unfolding experiments) are more liable to unfolding 

(requires less energy input to unfold) (Ramirez-Alvarado 2012, Marin-Argany, 

Guell-Bosch et al. 2015) and sample the partially unfolded states which favour 

aggregation than a protein that is thermodynamically stable. The 

thermodynamic stability of a protein refers to its physical stability, and is 

defined as the free energy between the folded (native) and unfolded state 

(Ohage, Graml et al. 1997).  

This new-found evidence contrasts the early notions of light chain 

aggregation which proposed a possible stacking mechanism (Figure 11).  

(Brumshtein, Esswein et al. 2014). Now, the dimer is seen to perform a 
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protective role (Baden, Owen et al. 2008), and stabilising this arrangement is 

highly regarded as a target for therapeutic intervention. This follows a similar 

mechanism to the current treatment of wild type transthyretin, where the drug 

Tafamidis (Pfiezer) stabilises the amyloid resistant tetramer preventing its 

dissociation. In a follow up study to this investigation, Brumshtein and co-

workers employed the use of ThT, Electron Microscopy (EM), Analytical ultra-

centrifugation (AUC), crystallographic and ligand binding experiments, and 

highlighted the ability of two small molecules; the palindromic molecule 

methylene blue, and the anti-rheumatic drug sulfasalazine (from an original 

library of 27) to stabilise the homodimer Mcg, and inhibit its dissociation into 

the aggregation prone monomer (Brumshtein, Esswein et al. 2015). This is an 

area that is investigated within this thesis.  

Recently however, there have been some slight exceptions to the 

thermodynamic stability and increased aggregation propensity relationship. 

Tanya L. Poshusta found that the variable domain AL-T03, quite unusually, is 

too unstable to form amyloid fibrils, instead forming non-toxic amorphous 

aggregates (Poshusta, Katoh et al. 2013). This is also reflected in a study 

conducted by Marta Marin-Argany and co-workers who found that the 

introduction of certain mutations into the kI family VL AL-12, were able to 

reduce the thermodynamic stability of the protein too significantly that it 

actually precluded the domain from amyloid formation. In these scenarios it is 

believed that partially unfolded intermediates, the species that are key for 

triggering aggregation are sampled too infrequently as the mutations cause the 

VL domains to populate mostly unfolded states (Ramirez-Alvarado, De Stigter 

et al. 2007, Del Pozo Yauner, Ortiz et al. 2008, Blancas-Mejia, Tellez et al. 
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2009, Randles, Thompson et al. 2009, Ramirez-Alvarado 2012, Poshusta, 

Katoh et al. 2013, Marin-Argany, Guell-Bosch et al. 2015).  

Another layer of complexity is added to the study of VL aggregation with 

the finding that mutations can have a local structural effect, causing subtle 

conformational alterations that lead to enhanced aggregation propensity in a 

mechanism that is completely independent to alterations in thermodynamic 

stability (Del Pozo Yauner, Ortiz et al. 2008, Blancas-Mejia, Tellez et al. 2009, 

Marin-Argany, Guell-Bosch et al. 2015). A growing body of evidence actually 

suggests that the quantity or intrinsic property of a mutation actually plays a 

less significant role in dictating aggregation propensity than the specific 

structural location to which it is introduced (Stevens 2000, Poshusta, Sikkink et 

al. 2009, Marin-Argany, Guell-Bosch et al. 2015). An example of this can be 

seen in two mutations of the VL LEN, P40L and Q89H (which are studied later 

in this thesis). These mutations were able to independently destabilise the 

domain by +0.7 kcal/mol and 1.0 kcal/mol respectively, yet only P40L formed 

amyloid (Raffen, Dieckman et al. 1999, Blancas-Mejia, Tellez et al. 2009). It is 

suggested that a loss in stabilising contacts between neighboring loops were 

the source of the enhanced aggregation potential (Davis, Raffen et al. 2000). 

Assessing the consequence of a mutation that exceeds merely the changes to 

stability and other physicochemical properties is however, not a trivial task. 

The Ig-like fold of the variable domain is highly conserved and so circular 

dichroism (CD) and intrinsic fluorescence measurements of mutants 

harbouring somatic mutations often do not display any significant alterations to 

the protein backbone (Marin-Argany, Guell-Bosch et al. 2015). Higher 

resolution techniques such as X-ray crystallography and solution state NMR 
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have been used to pick out changes that range from minor side chain 

alterations (Randles, Thompson et al. 2009; DiCostanzo, Thompson et al. 

2012) to the rather dramatic alterations in dimer arrangement we describe 

earlier (Figure 11).  

The amino acid composition of the pathogenic VL also varies 

considerably between patients, and assessing the result of each and every 

mutation by such methods as those described above are quite challenging. 

Several studies have turned to bioinformatics in order to identify trends 

amongst known light chain sequences. Stevens and co-workers analysed 121 

κI light chains and found that the loss or gain of particular mutations could lead 

to specific sequence changes that rendered a light chain more or less 

aggregation prone. Specifically, the introduction of an isoleucine at position 27 

or substitution of any residue at position 31 to an aspartic acid could increase 

aggregation propensity. In addition, a loss of proline residues in certain β-turns 

and the introduction of a glycosylation site were also contributing factors to 

increased aggregation (Stevens 2000, Ramirez-Alvarado, De Stigter et al. 

2007, Ramirez-Alvarado 2012, Blancas-Mejía and Ramirez-Alvarado 2013). A 

more recent study of a similar nature was conducted by Poshusta et al., who 

found, through the analysis of 141 κ and λ AL light chain sequences that 

accumulation of non-conservative mutations in β-strand A, loop C–C′ 

(commonly referred to as the proline 40 loop) are crucial mediators in 

aggregation potential (Poshusta, Sikkink et al. 2009, Ramirez-Alvarado 2012).  

Such a detailed analysis is particularly useful in uncovering alterations 

that confer amyloidogenicity, however despite the 1000’s of possible light 

chain combinations; the outcome of a particular mutation has been studied at 
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a structural level in only a handful of VLs. In addition, very few studies assess 

the outcome of a mutation on a molecular level, and take into account the 

structural changes can alter both tertiary and quaternary structural 

arrangements (Baden, Owen et al. 2008).  

In summary, it is important to consider the multi-step process that lead 

to VL aggregation and the interplay of multiple factors that together determine 

protein stability and aggregation potential.  Not only can a somatic mutation 

destabilise the dimer, leading to its dissociation into aggregation prone 

monomers, but the aggregation of the VL can be as a result of enhanced 

thermodynamically instability and a loss in structural integrity. Cataloguing the 

outcome of a mutation, and understanding how it confers enhanced 

aggregation propensity requires both assessment of changes to the folding 

(folded to unfolded state) and binding (dissociation of dimer to monomer) 

energies in addition to any structural changes. Such values are important in 

highlighting trends between previously uncharacterised VLs, and are an area 

that we investigated within this thesis using structural bioinformatics. 

1.7. SMA, REC and LEN as a model system  

In this study, we place focus on three homologous light chain variable 

domains termed SMA REC and LEN (referring to the patient initials). These 

three 114 amino acid (108 in kabat nomenclature) variable domains belong to 

the the kappa κIV family of IgG light chains (Meng, Fink et al. 2008). SMA was 

originally extracted post-mortem as amyloid fibrils from the lymph node of a 

patient suffering from AL amyloidosis (Pras, Schubert et al. 1968). Patient-

REC was diagnosed with AL, where the VL was isolated from the urine 

(Stevens, Raffen et al. 1995). The VL LEN was isolated from the urine as a 
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Bence Jones protein of a patient diagnosed with multiple myeloma. No 

incidence of neuropathy or amyloid deposition was reported for LEN, despite 

significantly elevated levels of circulating light chain (50 g/L) in the urine 

(Solomon 1985). In addition to these original in vivo observations, 

characterisation of these proteins in vitro (largely performed by three key 

studies which are referred to and built upon throughout this work) reveals that 

SMA and REC are significantly less stable than LEN (Stevens, Raffen et al. 

1995, Raffen, Dieckman et al. 1999, Davis, Raffen et al. 2000), displaying 

enhanced fibrillation kinetics and lower stability under destabilising conditions. 

Such dramatic differences arise only from a few amino acid substitutions, 

where SMA is altered by 8 residues (S29N, K30R, P40L, Q89H, T94H, Y96Q, 

S97T and I106L) and REC 14 (L15P, S27aN, V27bL, Y27dD, S27eA, N28F, 

S29D, K30T, Y32T, T53S, Y96P, S97T, Q100G, and L104V) (Figure 12) in 

comparison to LEN, which differs from the kIV germline protein by just one 

position (N29S) (Stevens, Raffen et al. 1995).  
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Figure 12  Structural overview and multi-sequence alignments between the 

pathogenic VL proteins REC, SMA and the non-pathogenic LEN. A) X-ray crystal 

structure of LEN (PDB: 1LVE) is used to illustrate the locations of the SMA like 

mutations. B) X-ray crystal structure of REC dimer (PDB ID: 1EK3) shows an altered 

dimer interface. The positions of residues that differ from LEN are highlighted (red).  C) 

Multiple amino acid sequence alignment of LEN, SMA and REC show a difference of 8 

and 14 residues to LEN respectively. Conserved residues are highlighted by solid 

green backgrounds. Residue changes indicating somatic mutations are in white. 

Secondary structure elements are indicated; β-pleated sheet arrows ( ) and α-

helices as coils ( ). Total residue differences are shown (centre triangle). Residue 

numbering, are labelled to those as defined by Kabat et al. Uniprot sequence P01625 

for LEN and sequences noted by Stevens et al. for SMA and REC were used and 

aligned using the program clustalW (Larkin, Blackshields et al. 2007). The structure of 

SMA has not been experimentally determined, and is not presented.  
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1.8. Aims of the present investigation 

In this present work, we use a combination of computational, biochemical and 

cellular methods to build upon the existing knowledge of AL amyloidosis and 

investigate two main topics. The first is the impact a mutation has on the 

structural integrity and thermodynamic stability of a normally non-

amyloidogenic light chain variable domain. The second is the ability of VLκ 

domains SMA and LEN to internalise into cardiomyocytes, and affect cell 

viability. 

To date, no crystallographic information of SMA is present, and so the 

orientation of the dimer (canonical or non-canonical example in Figure 10) is 

currently unknown. The first aim was to decipher the orientation of SMA using 

the crystal structure of known homologs as a reference structure, and 

employing structural informatics to assess the favourability of each model. The 

first experimental chapter (Chapter 2) documents this process and also 

includes the use of X-ray screening conditions and mass spectrometry in the 

attempt to experimentally verify our findings. As the VL-VL homodimer confers 

structural stability and precludes amyloid formation, the second aim was to 

assess the druggability of REC using the crystal structure and the model of 

SMA generated by computational methods to see if a cavity suitable of 

accommodating a small molecule stabiliser is present.  This process is also 

documented in chapter 2. 

Single mutations have demonstrated the ability to destabilise one 

particular VL dimer conformation, leading to others to be favoured (Figure 10). 

We hypothesised that introducing SMA or REC-like symmetry mutants into the 

structure of dimeric LEN would destabilise the native quaternary state of this 
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protein, and in turn stabilise LEN that had been posed in a non-native (and 

thus normally unfavourable) altered 180 o quaternary state. We hypothesised 

that the more favourable conformation would be reflected, positively in the 

energetic and geometrical properties of each interface allowing us to decipher 

the outcome of each mutation.  

Several lines of evidence suggest that AL proteins are less stable than 

their non-amyloidogenic counterparts due to the accumulation of somatic 

mutations in CDR and FR regions of the VL. Mutations are able to stabilise/ 

destabilise the monomer, but they can also independently stabilise/destabilise 

the dimer leading to its dissociation into aggregation prone monomers. 

Changes to the binding free energies for each SMA-like and REC-like mutation 

are largely undetermined by experimental methods. This motivated us to 

assess the ability of a number of digital platforms to recognise changes to the 

intermolecular (binding) free energies. While any calculated changes cannot 

be benchmarked against any experimental methods, co-ordinance between 

the multiple programs used and providing a structural link to these mutations, 

i.e assessing their ability to destabilise any known highly conserved 

intermolecular contacts would add confidence to findings.  

The next aim was to take again an informatics approach, and assess 

the accuracy of a number of digital platforms to calculate changes to the 

folding free energy as a consequence of a SMA-like or REC-like mutation 

(chapter 2, 3, 4). Firstly, the existing experimental data available for SMA 

(previously conducted by (Raffen, Dieckman et al. 1999)) would be compared 

to the digitally calculated values (presented within this thesis). Agreement 

between experimental and computational data would give validity to the 
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computational methods, and allow for the remaining REC-like mutations that 

have not been assessed by experimental methods to be calculated using this 

approach. 

Recently, the ability of VL from the λ family to internalise into 

cardiomyocytes and induce toxic effects has been confirmed by imaging 

methods and toxicity assays (respectively). The purpose of chapter 5 is to 

build upon the existing work of Immunoglobulin LC by E.coli synthesis, and 

provide a refined and a reproducible protocol of SMA and LEN expression that 

provides high yields suitable for experiments that are demanding of high 

protein concentrations. Using these recombinant VLs, the goal was to then 

assess the ability of VLκ4 domains to internalise which is currently unknown. 
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2. Predicting the dimer arrangement of the light 

chain variable domains 

2.1. Introduction 

The process of light chain formation includes the recombination of multiple-

gene segments (Bruce, Alexander et al. 2002) and somatic mutations (Baden, 

Owen et al. 2008) that give rise to a highly diverse repertoire of proteins, where 

each patient presents a VL with a unique sequence (Marin-Argany, Guell-

Bosch et al. 2015). It has become increasingly evident that the variations in 

amino acid composition between many of the VLs studied to date, largely 

equate for their observed differences in aggregation propensity (Ramirez-

Alvarado 2012, Blancas-Mejía and Ramirez-Alvarado 2013, Marin-Argany, 

Guell-Bosch et al. 2015). Mutations occurring within the VL-homodimer 

interface are able to induce altered quaternary structural arrangements, and 

also lead to weakened dimer affinities and as a result, increase the population 

of the aggregation prone monomer in solution (Baden, Owen et al. 2008, 

Poshusta, Sikkink et al. 2009, Bhavaraju and Hansmann 2015). The 

accumulation of non-conservative mutations can also alter the thermodynamic 

stability of the monomer, defining its aggregation potential by allowing the 

protein to access partially folded conformations which are believed to be key in 

initiating the aggregation process (Qin, Hu et al. 2007, Randles, Thompson et 

al. 2009, Ara Celi DiCostanzo 2011, Blancas-Mejia, Tischer et al. 2014).  

It is important to consider that not all mutations destabilise the dimer, 

and not all mutations destabilise the monomer. In fact, some mutations can 

increase VL stability, and compensate for the destabilising effects of others 
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(Baden, Sikkink et al. 2009; Del Pozo-Yauner, Becerril et al. 2015). Acquiring 

detailed information on changes for every mutation is no trivial task, and 

routinely employs the use of site directed mutagenesis, recombinant protein 

expression, equilibrium unfolding and refolding experiments (Raffen, 

Dieckman et al. 1999, Blancas-Mejía and Ramirez-Alvarado 2013, Poshusta, 

Katoh et al. 2013), analytical ultracentrifugation in combination with fibrillation 

based assays and high resolution techniques such as X-ray crystallography 

and, NMR (Raffen, Dieckman et al. 1999, Ramirez-Alvarado, De Stigter et al. 

2007, Baden, Owen et al. 2008, Baden, Randles et al. 2008).  

However, these methods have limitations. Many of the mutations 

studied can substantially destabilise the protein to a point where it can be toxic 

to the bacterial host, or lead to the formation of insoluble inclusion bodies that 

require many difficult steps to acquire soluble, pure protein suitable for 

analysis (Redler, Das et al. 2016). The high resolution techniques described 

above are low-throughput, and often require significant quantities of protein for 

analysis to be performed. This means that rationalising observed changes in 

aggregation potential with protein stability and structural alterations is time 

consuming and is presumably why the number of studies that provide a 

complete structural – stability relationship for a complete set of mutations 

observed between amyloidogenic and non-amyloidogenic VLs are scarce.  

There is evidence to suggest that crystallographic analysis of VLs may 

not be completely suitable where, tertiary and quaternary conformations are 

becoming trapped in states that would not necessarily be populated in solution 

(Peterson, Baden et al. 2010, Ahlstrom, Vorontsov et al. 2017). Due to these 

shortcomings, we are employing a computational approach to study how a 
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somatic mutation can affect both intermolecular and intermolecular energies 

that would otherwise be unresolved by routinely available experimental 

methods.  Understanding the consequences of each somatic mutation and 

identifying trends amongst all known VL sequences has particular importance 

in a disease where each patient presents a VL with a unique amino acid 

composition.  The raison d'être for studying the impact of each mutation is 

however, to highlight a putative therapeutic target, with the aim of preventing 

aggregation.  

Recently, the ability of a repurposed anti-rheumatic drug named 

sulfasalazine was shown to occupy a conserved hydrophobic cavity that is 

present within the lambda Mcg VL homodimer (PDB 5ACL), and stabilise the 

protein in a mechanism similar to that of wildtype TTR (O'Dell , Haire  et al. 

1996, Brumshtein and Esswein 2015). It is yet unclear if such a mechanism is 

applicable to other VL that have unique interfacial residues and dimer 

arrangements such as those highlighted in Figure 10.  

Accordingly, the present chapter aims to first determine the orientation 

of the SMA dimer by assessing the energetic features of multiple dimer 

conformations known to be populated by other, closely related VLs. 

Subsequent chapters then go on to evaluate the effect of each SMA-like and 

REC-like (amyloidogenic) mutations to independently affect intradomain 

(folding) and interdomain (binding) energies of the non-amyloidogenic protein 

LEN. To rationalise any observed changes to experimentally derived values, 

and increased aggregation propensity we manually annotate, at atomic-level 

detail, changes in the tertiary and quaternary structure. 
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The scheme of this work is summarised below (Figure 13). Firstly, 

dimers of LEN and REC are mutated using two independent methods (Rosetta 

& PyMol) (Figure 13A) so they contain the amino acid sequence that 

corresponds to SMA. Resulting structures are then energy minimised and their 

overall stereo chemical quality assessed (Figure 13B) before the energetic 

features of each interface are calculated, and used to decipher the most 

plausible arrangement of the SMA dimer (Figure 13C). In addition, changes in 

binding and unfolding energies of LEN as a result of a single REC-like or SMA-

like mutation is calculated using a number of digital platforms (Figure 13C) in 

order to assess the outcome of each mutation by its ability to perturb binding 

or unfolding free energies.  
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Figure 13  Computational analysis pipeline. (A) Dimers of LEN (Dimer A) and 

REC (Dimer B) were mutated so they contained the primary amino acid sequence 

corresponding to SMA using two methods (Rosetta and PyMol). All structures were 

subject to energy minimisation using the macromolecular suite Rosetta. (B) The 

stereochemical quality of the most optimal models was assessed before the features 

of the dimer interfaces were acquired using PISA. (C) Multiple platforms were used 

to assess changes in both binding and folding energies as a consequence of 

mutation.  



64 

2.2. Methods 

The methods documented here are applicable for chapters 2, 3 and 4. 

2.2.1. In silico mutagenesis as a method of constructing models of 

SMA  

The structures of LEN and REC were retrieved from the PDB (PDB ID: 1LVE 

and 1EK3 respectively) as their biological assemblies and used as template 

structures for the 3D structure prediction of SMA. LEN and REC are 

crystallised as dimers, with resolutions of 1.95 Å and 1.90 Å respectively. To 

date, REC has no publication associated with the deposition. For both 

template models, Yasara (Van Durme, Delgado et al. 2011) was used to 

remove kabat nomenclature, re-numbering the amino acid sequence to 1-114 

(from 108), and relabel chains of the dimer to A and B when necessary. Next, 

in silico mutagenesis was performed using two methods (Rosetta and PyMol). 

This was used as an internal validation check to identify any differences that 

were caused by the method of mutagenesis, and did not arise as a 

consequence of the residue substitution. 

1) The PyMOL (Schrodinger 2015) mutagenesis tool was used to 

introduce the eight SMA-like mutations (S29N, K30R, Q89H, T94H, 

Y96Q, S97T P40L and 106L) into the structure of LEN. In an identical 

manner, REC was mutated to SMA by altering residues at the following 

positions; P15L, N27aS, L27bV, D27dY, A27eS, F28N, D29N, T30R, 

P40L, T32Y, S53T, P96Q, G100Q, V104L and I106L. Where steric 

clashes arose as a result of substitutions, rotamers were chosen from 

the Dunbrack and Cohen backbone-dependent rotamer library 
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implemented in PyMol (Dunbrack and Cohen 1997). These were 

chosen in the effort to minimise steric clash rather than the frequency in 

which they occur within proteins in nature, otherwise the most prevalent 

was favoured. As the backbone atoms of the templates are defined 

from crystallographic studies, rotamers were all selected with backbone 

dependency.  

2) The second method (entirely Rosetta based) involved side chain 

replacement by editing the coordinate file (PDB format). For each 

residue to be modified, all associated side chain atomic coordinates 

were removed (for example Cβ, Cγ, C𝛿, Cε and Nζ) leaving only the 

complete set of heavy backbone atoms (N, Cα, C and O). Introduction 

of the mutation was performed by altering the associated 3 letter amino 

acid type in the main chain to the 3-letter code of the new residue.  

2.2.2. Energy minimisation   

Mutated structures were subject to global energetic minimisation using 

Rosetta’s Abrelax function. Backbone and side chain symmetry of the dimer 

was preserved during the simulation by inclusion of symmetry definition files 

(DiMaio, Leaver-Fay et al. 2011). Symmetry was checked by matching the 

coordinates of randomly chosen residues of chains A to chain B. Run time for 

each VL dimer (228 amino acids in total) was approximately 90 minutes on a 

system equipped with a Xeon E3-1200 v3 processor clocked at 3.4GHz, and 

16 gigabyte random accessory memory running at a speed of 1600MHz 

running Ubuntu v14.04.5. 
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2.2.3. Assessing the quality of generated models 

In total, 100 decoy models (equalling one cluster) were generated for each 

mutated structure. To assess the quality of these models, the lowest 10 

scoring structures from each cluster were superimposed using a maximum 

likelihood (ML) method as part of the program THESEUS (Theobald and 

Wuttke 2006). Here, models were checked to see if they converge to a similar 

end point, indicating that the models preserve sampling density, and do not 

represent a high energy conformation (Bradley, Misura et al. 2005). The lowest 

scoring model, representing the most optimal, was taken for further analysis. 

Superpose (Krissinel and Henrick 2004), as part of the comprehensive 

computing suite for protein crystallography (CCP4) (Winn, Ballard et al. 2011) 

package was used to calculate Cα-Cα deviations between template PDB and 

generated structures. The stereo chemical quality of the lowest energy scoring 

models was assessed using RAMPAGE (Lovell, Davis et al. 2003). As a 

control, the unaltered template structures were subject to the same energy 

minimisation process as those harbouring the mutation in order to ensure that 

any changes within each of the structures were as a result of mutation and not 

merely a result of movement away from the crystal contacts. 

2.2.4. Interfacial residue analysis 

The Proteins, Interfaces, Structures and Assemblies (PISA) service (Krissinel 

and Henrick 2005, Krissinel and Henrick 2007) was used to discriminate 

between significant and insignificant interfaces of each protein dimer, and 

retrieve energetic values of the highest scoring models. When using PISA to 

acquire values using “No-crystal” analysis of the VL dimers, a CRYST1 card 
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containing unit cell dimensions (1.000 1.000 1.000 90.00 90.00 90.00 P 1 1), a 

remark containing details on unit cell dimensions was included in line with 

PISA documentation.  

2.2.5. Calculating changes in binding free energy as a result of 

mutation 

Changes in the binding free energy (∆∆Gbind) as a consequence of a single 

mutation were calculated by FoldX (Schymkowitz, Borg et al. 2005), 

BeAtMuSic (Dehouck, Kwasigroch et al. 2013), ELASPIC (Witvliet, Strokach et 

al. 2016), MutaBind (Li, Simonetti et al. 2016), and mCSM-PPI (Pires, Ascher 

et al. 2014). The energy minimised LEN crystal structure was used as the 

query structure for all analyses. The ∆∆Gbind in this case is the change in 

binding free energy between the wildtype protein dimer (LEN) and the dimer 

harbouring a single SMA-like or REC-like mutation. The ∆∆Gbind is calculated 

by the formula presented below (Eq.1). 

 

 ∆∆Gbind = (∆Gmutant − ∆Gwildtype) (Eq.1) 

 

Results are expressed as ∆∆G kcal/mol, where negative values (∆∆G<0 

kcal/mol) indicate favourable interactions and are stabilising, and mutations 

that result in positive values (∆∆G>0 kcal/mol) are destabilising, (Peng, Norris 

et al. 2016). For FoldX, Rosetta energy minimised dimer of LEN (PDB ID: 

crystal structure) was subject to the “RepairPDB” process In line with the 

FoldX steps detailed previously in the following publications (Schymkowitz, 

Borg et al. 2005, Tokuriki, Stricher et al. 2007, Tokuriki, Stricher et al. 2008, 
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Van Durme, Delgado et al. 2011). Invoking the “BuildModel” function within 

FoldX enables a structure to be generated harbouring a single mutation, where 

the software then calculates the ∆∆G (Yu, Wang et al. 2015).  

2.2.6. Calculating changes in folding free energy as a result of 

mutation 

Changes in the free energy of unfolding (∆∆Gstability) as a consequence of a 

single mutation were calculated by FoldX, DUET (that encompassed mCSM 

and SDM) (Pires, Ascher et al. 2014), ERIS ()(Yin, Ding et al. 2007) and 

the structure based version of I-mutant 3.0 (Capriotti, Fariselli et al. 2008). 

Protein thermodynamic stability changes between the wildtype (LEN 

homodimer) and structure harbouring a single SMA-like or REC-like mutation 

is calculated in the formula presented below (Eq.2). 

 

 ∆∆𝐺𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑐ℎ𝑎𝑛𝑔𝑒) = (∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − ∆𝐺𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒) (Eq.2) 

 

For FoldX, all structures were subject to the software's internal minimisation 

function (RepairPDB) to correct for poor stereo chemical quality. Single 

mutations were introduced using the “mutate residues” command with 

parameters (5 runs, temperature (310 K), ionic strength (0.05 M) and pH (7) 

that best matches the experimental conditions described previously (Raffen, 

Dieckman et al. 1999). For ERIS, substitutions were made using the medusa 

forcefield and flexible backbone options as previously described (Yin, Ding et 

al. 2007, Redler, Das et al. 2016). Other programs were used under default 
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parameters. For each mutation, the location (CDR or FR), and the solvent 

accessibility (calculated by mCSM) is presented.  

2.2.7. Structure rendering 

All protein structures were rendered using PyMol v1.7.5.0 (Schrodinger 2015), 

and imported into CorelDRAW X6 (Corel) for final processing.  

2.2.8. Assessing the druggability of 3-dimensional structures 

Identification of pockets that may be capable of binding small-molecule 

stabilisers were assessed by DogSiteServer (Volkamer, Kuhn et al. 2012). 

This was performed using VL homodimers. All structures were energy 

minimised using the Rosetta abrelax algorithm (both wildtype crystal and 

mutant computationally generated structures) before assessment. The 

druggability score given by DogSiteServer provides an estimation of how 

druggable a potential binding cavity is based on a number of characteristics. 

Here, the scoring method evaluates geometric and physico-chemical 

properties that include the volume, surface, and chemical properties (lipophilic 

nature and overall hydrophobicity of each individual pocket.  A machine 

learning method specifically, a support vector machine (which is evaluated to 

be 88% on a druggability dataset database of 1069 structure) (Volkamer, Kuhn 

et al. 2012) is used to discriminate each detected binding pocket between 

druggable and non-druggable where a score between 0 and 1 is provided. A 

higher druggability score (nearer 1) for a predicted pocket is estimated to be 

more druggable than a pocket scoring 0 (Zhang, Martiny et al. 2014).  The 

geometric properties of each highlighted pocket were also extracted from the 
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server. Sites are presented mapped onto the query structure and colour 

coded.  

2.2.8. Molecular dynamics 

Simulations of VL homodimers (both wildtype and mutant structures) were 

performed using either CABS-FLEX (Jamroz, Kolinski et al. 2013) or where 

indicated, the AMBER99SB force field with the TIP3P water model 

(Jorgensen, Chandrasekhar et al. 1983, Hornak, Abel et al. 2006) in Gromacs 

v5.1.4 (Abraham, Murtola et al. 2015). Sufficient ions were added to neutralise 

the system before dimers were subject to energy minimisation (500 steps), 

equilibrated using both NVT dynamics at a temperature of 310 K (37 oC), or 

400 K (126.85 oC) (indicated in results) and NPT dynamics at an atmospheric 

pressure of 1.0 bar, each for 100.0 picoseconds. Full atom production 

simulations were performed for 150 ns (75000000 steps). Snapshots of 

structure trajectory and root mean square fluctuations (RMSF) were extracted 

from molecular dynamics simulations. Run time for each VL dimer was 

approximately 13 days (11.5 ns/day) on a system equipped with an Intel Xeon 

E3-1240 v3 processor clocked at 3.40GHz or approximately 6.8 days (25.996 

ns/day) on a system equipped with an Intel I7 5960X processor clocked at 3.0 

GHz, and 16 gigabyte random accessory memory at a speed of 1600 MHz. 

Both systems use Ubuntu v14.04.5 as the operating system. 
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2.2.9. Prediction of protein aggregation  

Location of aggregation hotspots were identified by a number of computational 

platforms. 

1. Aggregscan3D. The Aggrescan server calculates the aggregation 

propensity of the query structure (3D). Query structures were assessed 

using a  5 Å radius, specifically for the assessment of the contribution of 

individual acids to aggregation prone regions (Zambrano, Jamroz et al. 

2015).  

2. AmylPred2. AmylPred2 combines a number of different algorithms 

(Aggrescan2D, AmyloidMutants, Amyloidogenic Pattern, Average 

Packing Density, Beta-strand contiguity, Hexapeptide Conformational 

Energy, NetCSSP, PaFig, SecStr, Tango, and Waltz) to  perform a 

consensus prediction of amyloidogenic regions within a queried 

sequence (Tsolis, Papandreou et al. 2013). Agreement between 5 or 

more programs for a specific sequence is defined as a hit and is 

presented.  Detailed descriptions for each of the software used are 

presented in the following link (http://aias.biol.uoa.gr/AMYLPRED2). 

3. FISH amyloid.  Recognises amyloidogenic segments in proteins using 

a machine learning approach. A detailed description for this software is 

presented in the following publication  (Gasior and Kotulska 2014) 

4. PASTA 2.0. The PASTA algorithm predicts which portion of the query 

sequence will participate in stabilising the cross β-strand of the amyloid 

fibril.  A detailed description for this software is presented in the 

following publication  (Walsh, Seno et al. 2014) 



72 

2.2.9. X-ray crystallography screens 

Purified SMA was buffer exchanged into 20 mM sodium phosphate 20 mM 

NaCl pH 7.4 and concentrated to either 10 mg/mL or 30 mg/mL using a 10 

kDa MWCO filter (Merck). Crystallisation screens were performed using, 

PEGRx (Hampton), PACT PREMIER, MIDAS, JCSG+, MORPHEUS 

(Molecular Dimensions), Wizard classic, and Wizard Cryo (Rigaku) screens. 

Crystallisation trays were stored and imaged in a Rigaku crystal mation Intelli-

plate system at either 4 oC or at 20 oC. Crystals were cryoprotected with a 10% 

glycerol solution and stored in liquid nitrogen for transportation. Collection of 

diffraction data was attempted at the beamline of SOLEIL synchrotron.   

2.2.10. Mass spectrometry 

Collision cross-section determination of recombinant SMA was performed by 

mass spectrometry. Protein samples were dialysed into 100 mM ammonium 

acetate using HPLC grade water and spectra acquired using a Waters 

SYNAPT G2-Si HDMS. (Waters synapt, Manchester, U.K) All Mass 

spectrometry was performed by Dr Matthias Vonderach in the Centre for 

Proteome research located at the University of Liverpool. Determination of 

collisional section (CCS) was performed using the software MassLynx and the 

exact hard sphere scattering model. 
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2.3. Results 

2.3.1. Comparative modelling: Generating SMA dimers using In 

silico mutagenesis 

The deposited crystal structures of LEN (PDB: 1LVE) and REC (PDB 1EK3) 

show different dimer assemblies. LEN crystallised as a dimer possessing the 

canonical quaternary structural arrangement, whereas the amyloidogenic REC 

crystallised with a non-canonical altered dimer conformation. In this state, the 

interface of REC is twisted by 180 °, where each monomer sits in an 

antiparallel orientation, as illustrated previously (Figure 10). Presumably, 

owing to the high solubility of SMA at high concentrations (Qin, Hu et al. 2007) 

high resolution crystallisation data of this particular VL have not been 

successful to date. As a result, information on the dimer arrangement and the 

interfacial residues of this structure are unknown. The absence of such 

information for SMA was the motivation here to see if the orientation of this VL 

could be predicted computationally by generating two models of SMA, using 

both LEN and REC dimers in their different orientations as templates, followed 

by a detailed examination of each putative interface. The hypothesis here was 

that the most plausible orientation of SMA could be inferred by statistical 

analysis of the most energetically favourable out of the two likely alternatives.  

As the light chains variable domains in this study contain only minor 

amino acid differences between them (SMA has 8 residue difference to LEN 

and REC has 14) (sequence alignment performed in FoldX), and the Ig fold is 

highly conserved (structure of VL) a homology modelling approach (typically 

requiring only ~30% identity (Xiang 2006) was deemed unnecessary. Instead, 

the X-ray crystal structures of LEN and REC were mutated so they contained 
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the amino acid sequence of SMA. Mutagenesis was followed by an energy-

based refinement step as part of the Rosetta molecular modelling suite 

(DiMaio, Leaver-Fay et al. 2011).  The first approach was to create VLs in a 

monomeric form, where dimers could be assembled by superimposing 

individual monomers onto the template structures which would act as a 

scaffold. However, a steric clash was encountered in all structures exhibiting a 

canonical dimer interface where, Phenylalanine 104 (Figure 14) of the 

neighbouring monomers would show considerable van der Waals overlap. Of 

course, a clash would mean a particular dimer orientation would be sterically 

implausible; however, this particular observation was not a result of mutation. 

The clash arises due to the enhanced freedom of the residue in a monomer, 

where it can access a rotamer that was not accessible in the dimer. Attempts 

to optimise the geometry were unsuccessful, and also resulted in a loss of 

homodimer symmetry (Figure 14).  

 

 

 

 

 

 

 

 

 

 

Figure 14 Steric clash example of SMA modelled on REC dimers. REC (red) and 

modelled SMA) (blue) side chains (minus hydrogens) of phenylalanine 104 (F96 in 

kabat nomenclature) reveals the close proximity of aromatic side chain that presents 

a steric clash.  
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To overcome this issue, the crystallographic structures of REC and LEN as 

their biological assemblies (dimer state) were extracted from the PDB, where 

they were each mutated to match the sequence of SMA and minimised under 

symmetry constraints. Here, mutagenesis was performed by two different 

methods to ensure that the procedure had no effect on the end structure. The 

first was performed by removing the atomic coordinates of the residue to be 

mutated side chain and relabelling the backbone to the desired residue (see 

materials and methods). The second was performed using the PyMOL in silico 

mutagenesis tool. Mutated structures were subject to Rosetta energy-based 

refinement where, to ensure convergence, 100 models were generated. For 

clarity, SMA models generated from directly editing the PDB files of LEN and 

REC are termed SMA.1lveCLUS1, and SMA.1ek3CLUS2 respectively, where 

1lve and 1ek3 refer to the template model PDB ID. Those mutated by the 

PyMOL in silico mutagenesis tool are termed SMA.1lveCLUS3, and 

SMA.1ek3CLUS4. From these models, a series of validation checks were 

performed before any analysis was made towards predicting the orientation of 

the SMA dimer. Firstly, we assessed if the generated models converged to a 

similar end point. Here, the ten best-ranking models from each cluster were 

superimpositioned using a maximum likelihood method as part of the software 

THESEUS. The finalised alignment was visualised in PyMOL (v 1.7.0.0). 
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Figure 15 Conformational ensemble of lowest energy models. Each cluster 

represents the 10 best ranking models obtained from the Rosetta Abrelax function. 

Each model is a C-alpha atom trace and each cluster is coloured based on the 

template it was modelled from (LEN is blue, REC is RED). Panel A and B (CLUS1, 

and CLUS2) show models generated by directly editing the structure coordinate file, 

while Panels C and D show those edited using PyMOL mutagenesis tool. Figure is 

used to illustrate the conformation that is most populated, and see if structures 

during minimisation process converge to a common end point. Each coloured 

ensemble (Panel A-D) is aligned to the 10 best-ranking starting structure (Yellow) 

using a maximum likelihood method calculated in the program THESEUS (version 

3.3.0). The location of mutated residues is shaded (coloured spheres).  Shown also, 

are the locations of each CDR region.  
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As evidenced from the low energy ensembles displayed in Figure 15 the 

structures using LEN as their template show consistent movement away from 

the starting structure (Yellow). This suggests that the observed topology is 

likely to be the most native low energy structure. For models based on REC, 

the lowest 3 energy scoring structures do ultimately converge to a similar end 

point (indicated Figure 15) which suggests there are sufficient sampling steps 

to reach the most likely native structure. Some models do however, favour 

alternative conformations along the way. This is most noticeable in the CDR1 

loop (indicated Figure 15) of SMA.1ek3clus2 and clus4 which contains a 

number of SMA-like somatic mutations. It is interesting to note that, performing 

the same relaxation protocol for the crystal structure that act as the template 

structures moved in the same way as the models harbouring the mutations 

(not displayed). This suggests that the mutations have not triggered any major 

structural changes in the main chain, which is consistent with experimental 

data in a number of separate studies (Randles, Thompson et al. 2009, 

Bhavaraju and Hansmann 2015, Blancas-Mejia and Ramirez-Alvarado 2016) 

that have consistently shown low backbone deviations when superimposing 

the structures of VL monomers. This also indicates that, any differences that 

could lead to the way in which the dimers forms or alterations in stability for 

SMA are likely to be as a result of small differences in side chain 

rearrangements rather than main chain alterations. This possibility is 

investigated further on within this thesis. 

Regarding differences in the mutagenesis procedure, a comparison 

made between structures from each method (PyMol and Rosetta) do reveal 

minor differences that are mostly situated in the loop regions that have 
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undergone a change in sequence. We would expect that under the Relax 

application, Rosetta would repack all side chains into the most favourable 

rotamer, regardless of the mutagenesis procedure and starting point of the 

structure which appears not to be the case. However, the results of 

stereochemical quality assessment of each of the final models; 

SMA.1lveCLUS1, (96.4% residues in allowed, 3.6% in favoured and zero in 

disallowed regions) SMA1ek3CLUS2 (96.4% residues in allowed, 3.6% in 

favoured and zero in disallowed regions) SMA.1lveCLUS3, (95.5% residues in 

allowed, 4.5% in favoured and zero in disallowed regions) SMA.1ek3CLUS4. 

(94.6% residues in allowed, 5.4% in favoured and zero in disallowed regions) 

which is comparable to the template structure LEN (96.4% residues in allowed, 

3.6% in favoured and 0.0% in disallowed regions) and REC (96.9% residues in 

allowed, 3.1% in favoured and 0.0% in disallowed regions), assessed by 

RAMPAGE server (Lovell, Davis et al. 2003) (software used to generate a 

Ramachandran plot and assess ϕ,ψ angles of each residue within the 

structure), indicate that neither method can be considered more accurate. 

Instead, the lowest scoring model (best ranking) from each of the four clusters, 

suggesting the most optimal was taken for further analysis.  

 

2.3.2. Can bioinformatics predict which kind of dimers can and 

cannot form by analysis of modelled dimer interfaces? 

 

The mechanisms that dictate VL homodimer orientation are complex, and 

appear to be defined by a number of protein-protein interactions that include 

hydrogen bond number, shape complementarity, electrostatic interactions, 

hydrophobic interactions, that each contribute to the binding energy of the 
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interface. (Kaplan, Livneh et al. 2011, Sowmya and Ranganathan 2015) 

Disruption in any number of such interactions could lead to one particular 

arrangement being more favourable than another. Commonly occurring 

mutations and identifying trends between already characterised VL can be 

used to infer the likely structural consequences of another novel mutation 

(Stevens 2000, Poshusta, Sikkink et al. 2009). This vastly narrows down the 

evaluation of structural consequences. However, considering that the 

sequence similarity and identity between many different patient isolated VLs is 

low, and the structural consequence of many mutations us unknown, analysis 

of all variables for each case is somewhat time consuming and unwieldy.  

Pertinent to this investigation are three studies that use LEN as a model 

protein. Firstly, Rosemarie Raffen and colleagues demonstrated through 

chromatographic techniques in a proof of principle assay, that non-naturally 

occurring single mutations of LEN at positions Q38R, Q38D, and Q38K could 

reduce the dimerisation constant of the protein, most likely through disruption 

of conserved hydrogen bonds situated in the dimer interface (Raffen, Stevens 

et al. 1998).  

In a follow up study, it was found that substitution of Gln for Glu at this 

same position in LEN surprisingly lead to an increase in dimer association. 

Structural data of the Q38E mutation revealed that this single mutation 

induced a flipping of the LEN dimer by 180 ° (Pokkuluri, Huang et al. 1998). 

The authors suggested that this observed increase in dimer affinity could be 

attributable to an increase in the number of salt bridges, hydrogen bond and 

total buried surface area found in this particular arrangement. Despite being 

more energetically favourable than the canonical arrangement, the authors 
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concluded that LEN cannot adopt this interface naturally as the excess positive 

electrostatic potential of the dimer interface is not compensated by any other 

forces (Pokkuluri, Huang et al. 1998). 

 In an independent study, the single mutant K30T, a mutation that 

occurs in REC also achieved the same result, causing the LEN dimer to adopt 

an altered interface (Pokkuluri, Huang et al. 1998). An additional factor 

governing VL dimerisation is also noted by PR Pokkuluri and colleagues who 

demonstrated that the substitution of Glu at position 89, (a residue that forms 

hydrogen bonds both inter and intramolecularly to Tyr36) for an alanine or 

leucine (non-naturally occurring in these proteins), also resulted in LEN 

adopting an altered 180 ° dimer arrangement due to the unsatisfied hydrogen 

bonding potential that was satisfied in an alternate arrangement (Pokkuluri, 

Cai et al. 2000).  

We hypothesised that destabilisation of one dimer orientation would 

lead to an altered 180 o to be preferential, and such an arrangement would be 

reflected in the energetic features of that dimer interface, which could be 

calculated using computational methods, specifically using PISA, software 

designed for the analysis of macromolecular interfaces with a reported 80-90% 

accuracy (Krissinel and Henrick 2007).  

As a control for this hypothesis, we included a structure of LEN that is 

posed into a flipped 180 o dimer, an arrangement that as highlighted above, is 

reputed to be non-physiological where it has consistently crystallised as a 

canonical dimer (Stevens, Raffen et al. 1995, Huang, Chang et al. 1997, 

Pokkuluri, Huang et al. 1998). In order to identify the most favourable 

quaternary arrangement of SMA out of the two possible alternatives, the 
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geometric and energetic features of each finalised SMA model 

(SMA.1lveCLUS1, SMA1ek3CLUS2, SMA.1lveCLUS3, and SMA.1ek3CLUS4) 

were compared to the experimentally resolved template structures LEN and 

REC. For greater comparison, all published X-ray crystal structures of LEN 

from the aforementioned studies which show an altered, 180 o interfaces as a 

result of a single amino acid mutation (Q38E, K30T, Q89A, and Q89L which 

corresponds to PDB ID’s 3LVE, 4LVE, 5LVE and 1QAC respectively) were 

also included. All structures were energy minimised so they were directly 

comparable, and the interfaces analysed by PISA. The energetic and 

geometric features of each interface are shown below Table 3.  

 

Table 3  Statistical analysis of protein-protein dimer interface of VL domains 

using PISA. The PISA program was used to calculate the energetic features of the 

homodimer dataset presented below.  

 

INTERFACIAL ANALYSIS OF VL HOMODIMERS 

 LEN LEN MUTANTS REC COMPUTATIONAL MODELS Control 

Based on LEN Based on REC 

Struc 1LVE 3LVE 4LVE 5LVE 1QAC 1EK3 SMA.1lv
eCLUS1 

SMA.1lv
eClus3 

SMA.1e
k3Clus2 

SMA.1e
k3Clus4 

LEN FALSE 
POSE 

Ori
a
 A⇈B X-ray crystal determined A⇅B PUTATIVE A⇅B PUTATIVE A⇅B A⇅B 

IA
b 747.2 800.5 833.6 852.5 811.3 843.4 796.8 811.3 900.4 898.8 635.6 

iNres
c
 24 24 26 24 26 26 24 26 24 26 20 

BE
d
 -13.6 -2.8 -15.0 -14.6 -13.6 -14.5 -10.5 -12.1 -12.9 -14.1 -11.2 

∆G
disse 2.1 1.4 3.5 3.1 2.1 3.0 -1.0 0.6 1.4 2.6 -0.2 

∆i
G

f
 -10.4  -8.8 -8.4 

 
-11.2 -10.2 -10.9 -9.6 -11.3 -9.7 

 
-10.9 -10.0 

HB
g
 6 6 10 8 6 4 2 2 4 4 2 

SB
h
 0 2 4 4 4 4 0 0 4 4 0 

Amyloid
i
 

✘ ? ? ? ? ✓ ? ? ? ? - 
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Struc: The name of the structure. This is either the PDB ID of the dimer, names of 

models generated earlier in this chapter (SMA.1lveCLUS1 and 4 and SMA.1ek3Clus2 

and 4) or LEN FALSE POSE for the control structure.  

a: The orientation (Ori) of the homodimer. Each monomer of the dimer is labelled A 

and B. In a canonical dimer both monomers (A and B) are orientated in the same 

direction (A⇈B). In non-canonical structures, B is rotated 180o relative to A (A⇅B) 

b: Interfacial area (IA) = This is the calculated buried surface area between 

monomers A and B and is measured in square angstrom (Å²). 

c: iNres = The number of amino acids that lay within the interface of A and B. In the 

case of non-canonical dimers, where symmetry is lost, one monomer may contribute 

a different amount of residues (higher or lower number) to the dimer interface.  

d: Binding energy (shown as BE in the table) = is the binding, or interaction energy 

(∆Gint) between individual VL monomers. The ∆Gint is calculated as the difference in 

total solvation energies ∆Gs , the contact ∆Gcontact and electrostatic ∆Ges interactions 

between individual VL monomers in isolation and upon their complexation. The 

equation (3,4) used to calculate this value can be found in the following publication 

(Krissinel and Henrick 2007). This value also takes into account the effect of 

hydrogen bonds, salt bridges and disulphide bonds, although these homodimers do 

not contain any intermolecular disulphide bonds. Values are presented in kcal/mol−1.  

e: ∆iG = Represents the solvation free energy gain upon formation of the homodimer.  

(Sowmya, Breen et al. 2015). Negative ∆iG values indicate a stronger more 

hydrophobic interface and contribute to positive protein affinity (Aeschimann, Staats 

et al. 2017).  Unlike the calculation for the BE, ∆iG is calculated by the difference in 

total solvation energies between the homodimer and isolated monomers (Sowmya, 

Breen et al. 2015). However, this value does not consider hydrogen bond, or salt 

bridges that occur across the interface which the BE value does.  Values are 

presented in kcal/mol−1.  

f: ∆Gdiss = The calculated Gibbs free energy of dissociation. The dissociation pattern 

in this study if dimer to monomer. The ∆Gdiss (given in kcal mol−1) can be used to infer 

the stability of the VL homodimer. Dimers that possess a low ∆Gdiss in PISA are likely 

to have a low dissociation constants (Kd) which indicates a weak assembly 

(Hashimoto and Panchenko 2010, Krissinel 2011). Substitution of an amino acid that 

results in a dimer with a lower ∆Gdiss than the control (LEN) are likely to be less stable 

and more prone to dissociation. Homodimers that possess dissociation free energies 

below zero ∆Gdiss however are considered thermodynamically unstable and are 

coloured red. (Ravn, Madhurantakam et al. 2013). Values are expressed in kcal/mol. 
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The equations (1,9 and 17) used to calculate this value can be found in the following 

publication (Krissinel and Henrick 2007). 

g: Hydrogen bond (HB) = The total number of hydrogen bonds that lay across the 

interface of the VL homodimer 

h: Salt bridge (SB) = The total number of salt bridges that lay across the interface of 

the VL homodimer 

i: Amyloid = If the structure is deemed amyloidogenic (✓) or non-amyloidogenic (✘) 

based on previous work (Stevens, Raffen et al. 1995). Structures where this data is 

unavailable are indicated (?) 

 

Firstly, we used PISA to calculate the energetic properties of LEN (1LVE) in its 

native orientation (determined by crystallography), and compared these values 

to LEN in a non-native orientation, where we had twisted one monomer 180 o 

relative to one another, forming a non-canonical dimer. PISA calculated that 

native LEN is a stable assembly (Table 3) with a solvation free energy gain 

upon solvation (∆iG) of -10.4 kcal/mol-1 and a free energy of assembly 

dissociation (∆Gdiss) of  +2.1  kcal/mol−1 (Capitani, Duarte et al. 2016, Gandini, 

Reichenbach et al. 2017). These values have been previously used as an 

indication of complex stability (Sowmya and Ranganathan 2015), where the 

strength of the hydrophobic interaction can be estimated from  the ∆iG (Boyko, 

Rakitina et al. 2016). The more negative the ∆iG, the more hydrophobic the 

dimer interface is estimated to be, which leads to a greater affinity of the dimer 

(Aeschimann, Staats et al. 2017).  The free energy of dissociation, here 

describes the transition from a dimer to a monomer (Baden, Owen et al. 2008) 

where a positive ∆Gdiss (greater than 0) is indicative of a stable dimer (Krissinel 

2011).   
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Comparing native LEN to our non-native control model reveals that there is 

little difference in the strength of hydrophobic interactions between the native 

LEN dimer and non-native LEN dimer, where each show high hydrophobic 

interactions (∆iG of -10.4 and -10 kcal/mol-1respectively) (Krissinel 2011, 

Boyko, Rakitina et al. 2016). This suggests that hydrophobic interactions in 

this scenario do not play a large part in defining how the LEN dimer forms. 

Non-native LEN does however, possess fewer intermolecular interactions 

(only 2 hydrogen bond in comparison to the 6 present in native LEN) and less 

extensive surface area in comparison to the native LEN structure. This 

manifests into an overall weaker binding energy than native LEN (∆Gint  = -13.6 

kcal/mol−1 for native LEN and -11.2 kcal/mol−1 for the non-native structure)   

If there were no factors preventing the formation of a particular dimerization 

state (canonical or non-canonical) such as steric hindrance, we would 

expect the dimer to adopt the most energetically favourable conformation, 

which, based on binding energies alone, is the canonical state. Interestingly, 

the estimated ΔGdiss
 of the non-native LEN state model (-0.2 kcal/mol−1) 

indicates that this complex is unstable (Krissinel and Henrick 2007, Tomovic 

and Oakeley 2008, Gopavajhula, Chaitanya et al. 2013, Ravn, 

Madhurantakam et al. 2013). Together these values (∆Gint   and ΔGdiss
) indicate 

that LEN is most favourable in the native state, which based on 

crystallographic analysis that shows this to be the case, provides a reference 

point for us to now assess the likely dimerization mode of SMA.  

Having established the ability of PISA to discriminate stable and 

unstable associations on our control models, we next turned our attention to 

the computational models of SMA. While there are slight differences between 
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SMA models that were generated using different methods (Table 3) several 

conclusions can be drawn. The estimated ∆iG alone, again provides little 

indication which orientation is likely to be more favourable however where the 

strength of hydrophobic interactions are quite similar. However, the greater 

number of intermolecular interactions (hydrogen bonding and salt bridges) 

observed in both models of non-canonical SMA (SMA.1ek3Clus2 and 

SMA.1ek3Clus4 contribute to a marginally overall stronger binding energy of 

∆Gint = -12.9 and -14.1 kcal/mol-1 in comparison to ∆Gint = -10.5 and -12.1 

kcal/mol-1 possessed by canonical models of SMA (SMA.1ek3Clus1 and 

SMA.1ek3Clus3) indicating that SMA is more favourable in a non-canonical 

state.  

The most substantial difference between SMA models again is reflected 

in the free energy of assembly dissociation (Table 3). Both canonical SMA 

models (SMA.1ek3Clus1 and SMA.1ek3Clus3) are predicted to be less stable 

than their non-canonical counterparts (SMA.1ek3Clus2 and SMA.1ek3Clus4) 

with ∆Gdiss values of -1.0 kcal/mol−1 and 0.6 kcal/mol−1, and ∆Gdiss= 1.4 

kcal/mol−1 and 2.6 kcal/mol−1 respectively.  The PISA calculated values of 

∆Gdiss for these canonical models suggest that SMA.1lveClus3 is only 

marginally stable (with a ∆Gdiss= 0.6 kcal/mol−1) where SMA.1lveClus1 is 

predicted to be unstable (∆Gdiss= -1.0 kcal/mol−1).  

To further derive more details from PISA which could indicate which 

interface SMA is more likely to adopt, we included a number of LEN structures 

that had crystallised with an altered interface due to amino acid substitutions 

(4LVE, 5LVE, 1QAC which possess single amino acid substitutions from LEN 

and REC which contains 14). At first glance we can similarities between these 
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dimers and the non-canonical SMA models of our study.  Enhanced binding 

energies, positive ∆Gdiss values and a greater number of salt bridges are 

reflected in both experimentally derived and our computationally predicted 

models, where in one case (SMA.1ek3Clus2 and 3LVE) identical values are 

demonstrated.  

As a final experiment, we used FoldX to calculate the overall stability 

(∆G) of a canonical SMA model (SMA.1ek3Clus3) and compared it to a non-

canonical SMA (model SMA.1ek3Clus4). FoldX predicted the stability of the 

non-canonical SMA dimer to be similar to native LEN with values of ∆G = -3.34 

kcal/mol−1 and ∆G -3.06 kca/mol−1 respectively. The stability of the SMA 

dimer was predicted to be much higher (∆G + 17.00 kcal/mol−1) suggesting 

this assembly is not stable. As a further method for validation, we also used 

FoldX to calculate the interaction energies (ΔGint) of these final models, 

where we again found the non-canonical model (SMA.1ek3Clus4) to be more 

favourable (ΔGint = -20.21 kcal/mol and ΔGint = -18.19 kcal/mol respectively). 

While the calculated free energy binding of the homodimer is different in 

FoldX than in PISA the differences between the two models for each 

program is remarkably similar (2.00 kcal/mol for PISA between models 

SMA.1ek3Clus3 and SMA.1ek3Clus4) and 2.02 kcal/mol for FoldX between 

models SMA.1ek3Clus3 and SMA.1ek3Clus4). Combined together, the data 

presented in this section suggests that SMA is likely to favour a 180 ° rotated 

dimer conformation, similar to that adopted by REC rather than the 

arrangement adopted by LEN.  
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2.3.3. Molecular dynamics: probing the stability of putative SMA 

dimers  

An additional measure was taken to probe the two putative orientations of the 

SMA dimer by using the molecular dynamics package Gromacs (Abraham, 

Murtola et al. 2015). Here, the tip3p water solvation model and the force field 

AMBER99 SB (Cornell, Cieplak et al. 1995) were used to observe each 

structure over a 150-ns timeframe. As the canonical models of SMA were 

predicted to be unstable in comparison to non-canonical SMA models we 

hypothesised here that this made lead to dissociation of the dimer which could 

be detectable in molecular dynamics simulations. Unfortunately, very little 

differences between models of SMA in both orientations were observed. 

Although we believe the timescale to be sufficient, external pulling motions 

may be required to initiate dissociation of the dimer.  

 

2.3.4. Experimental analysis of dimer by X-ray crystallography  

In the attempt to acquire experimental results to support our computational 

investigations, recombinant SMA (method is detailed in Chapter 5 of this 

thesis) was purified to homogeneity and subject to a number of commercially 

available crystallisation screens (Figure 16).  
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Figure 16  Example of crystal formation in condition screen. A) Sample well 

containing crystals under visible light, B) sample well under UV light. 

A total of 962 screens were trialled at a protein concentration of 10 mg/mL and 

30 mg/mL (see materials and methods for full screen listings). Despite both 

room temperature (25 °C) and 4 °C incubation, only 2 conditions revealed UV 

positive crystals.  Unfortunately, crystals did not diffract at the SOLEIL 

beamline. Thank you to Dr. Michael Capper for attempting data collection.  

 

2.3.5. Experimental analysis of dimer by mass spectrometry  

In the attempt to experimentally validate the orientation of the SMA dimer 

using a different technique, drift tube ion mobility-mass spectrometry was used 

to derive information on the collisional cross section (CCS) of the SMA dimer. 

This procedure has the ability to separate the molecule both on mass (by 

analysis of the mass to charge ratio), but also on the size of the molecule. 

Visual analysis of the published crystal structures of the light chain variable 

domains LEN and REC), led us to hypothesise that  the non-canonical dimers 
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may be more tightly packed in comparison to their canonical counterpart, 

where a more tightly packed molecule would  typically display a lower CCS.  

Using this procedure, the CCS for recombinant SMA (the expression and 

purification of this VL is detailed in chapter 5 of thesis) was acquired using a 

Waters Synapt G2-Si instrument Waters Synapt, Manchester U.K.).  CCS 

values for both experimentally determined values and those derived from 

computational analysis were calculated using MOBCAL using the exact hard 

sphere scattering model (Shvartsburg and Jarrold 1996, Mesleh, Hunter et al. 

1997). Crystal structures were subject to Amber 16 geometry optimization 

using the ff14SB force field prior to any analysis (Maier, Martinez et al. 2015).  

The results of this experiment were compared to calculated CCS values of 

published crystal structures (REC that is a non-canonical dimer and LEN 

which is a canonical dimer).  
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Figure 17  Intact mass spectra of SMA conformers. The molecular ion peaks M7+ 

and M6+ correspond to monomeric (M= monomer) SMA. D9+ indicates the presence 

of an SMA dimer (D= Dimer). The inset (right panel) shows analysis of the Ω 

(collision cross-sectional area, units are presented in nm2). Analysis of SMA 

indicates the Ω is 22.6 nm2 where REC (1EK3) and LEN (1LVE) have theoretical  Ω 

values of 23.0 nm2 and 22.9 nm2 respectively which were acquired following structure 

geometry optimisation using Amber (Hornak, Abel et al. 2006)  Mass spectrometry 

was performed by Dr Matthias Vonderach in the Centre for proteome research at the 

University of Liverpool . The spectrum was acquired using 40 μM SMA in 100 mM 

ammonium acetate (pH 7.2).  

 

 

 

 

 

 

 

 

 

 

Despite our best efforts, the attempts to derive the orientation of the dimer 

were unsuccessful using this technique (Figure 17). CCS derived values for 

SMA were calculated to be more compact (Ω of 22.6 nm2) than all structures, 

where such minor changes in Ω between the known crystal structures of LEN 

and REC make it difficult to be confident in the orientation of the SMA dimer.  
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2.3.6. Predicting changes in binding as a result of an SMA-like 

mutation  

Comparisons made between amyloidogenic and non-amyloidogenic VLs have 

identified the ability of a somatic mutation to alter the stability and enhance 

aggregation potential by three independent mechanisms; 1) by weakening the 

homodimer interface leading to an increased number of aggregation prone 

monomers (Bhavaraju and Hansmann 2015), 2) or causing dimers to adopt 

altered conformations that are less stable 3) or by altering the thermodynamic 

stability of the monomer, where partially unfolded species favour aggregation. 

Deciphering the outcome of each mutation and highlighting trends between 

VLs is important in a disease where each patient harbours a VL with a unique 

amino acid composition, and a unique set of mutations. However, routine 

methods of acquiring such information are not trivial.  In this section we seek 

to address point 1 and evaluate the impact that each SMA-like (S29N, K30R, 

Q89H, T94H, Y96Q, S97T P40L and I106L) mutation has on the stability of the 

LEN dimer.  

We use the empirical force field implemented in FoldX (Schymkowitz, 

Borg et al. 2005) to calculate changes to the binding affinity of the VL 

homodimer (∆∆Gbind) upon mutation (Dourado and Flores 2016). FoldX was 

chosen due to a number of studies that have described the programs high 

accuracy in test cases (Thiltgen and Goldstein 2012, Studer 2015, Kumar, 

Rahman et al. 2017) and reported high levels of accuracy when compared to 

experimental data (Guerois, Nielsen et al. 2002).  We also chose FoldX as a 

benchmark for several other well cited software including; mCSM-PP, 

ELASPIC, Mutabind, and BeAtMuSic as FoldX has been directly compared to 
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these programs previously (Berliner, Teyra et al. 2014, Li, Simonetti et al. 

2016, Kumar, Rahman et al. 2017). Here, we ask if these digital platforms are 

able to highlight destabilising and stabilising residues, where agreement 

between calculations made between different methods would add confidence 

to the findings.  

FoldX calculations were made with a total of five runs for each mutation. 

This is to allow for residues with larger side chains that may sample different 

rotamers on different runs to adopt the lowest energy conformation (detailed in 

the supplemental note of the following papers (Studer, Christin et al. 2014, 

Studer 2015). The reported value (Table 4) is the average of these runs. 

Calculations were conducted using parameters that best match the 

experimental conditions in the study of single point mutations of LEN 

performed by Raffen et al temperature (37 °C (performed at 310K) and ionic 

strength (performed at 50 mM) (Raffen, Dieckman et al. 1999). For clarity, the 

results from each platform are categorised into destabilising, neutral and 

destabilising based on the programs cut-off value.   
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Table 4  The effects of 8 SMA-like mutations on the protein-protein interaction 

energies of the LEN homodimer. Residues that FoldX indicated were part of 

interface are highlighted (✓ ). Units for energy calculations (∆∆Gbind) are expressed in 

kcal/mol. Software and their associated cut-off for a neutral mutation (indicated by +-) 

are as follows: FoldX +-0.46 kcal/mol; ELASPIC +-0.46 kcal/mol; MutaBind +-0.86 

kcal/mol; mCSM-PPI +-0.5 kcal/mol; BeAtMuSiC (+-0.47 kcal/mol). Colours are used 

to indicate no change (blue) increase to dimer stability (green) and decrease to dimer 

stability (red). Residues previously shown to dictate the orientation of the LEN dimer 

(Q38E, K30T, Q89A, Q89L were also calculated for comparison).  

 

 FoldX BeAtMuSiC MutaBind mCSM-
PPI 

ELASPIC Location Interface 

Q38E 2.47 0.93 1.98 0.22 0.18 FR2 ✓ 

K30T 0.00 0.07 0.91 1.24 1.33 CDR1 ✘ 

Q89A 2.35 -0.11 2.40 0.43 0.88 CDR3 ✓ 

Q89L 0.21 -2.45 2.12 0.55 0.60 CDR3 ✓ 

        

S29N 0.00 -0.34 -0.10 0.36 n/a CDR1 ✘ 

K30R 0.01 -0.29 0.48 0.70 0.43 CDR1 ✘ 

P40L 0.01 0.03 0.11 0.09 n/a FR2 ✘ 

Q89H 3.01 -2.04 2.78 0.29 1.44 FR3 ✓ 

T94H 0.42 0.43 0.84 0.74 -0.10 CDR3 ✓ 

Y96Q 1.27 4.22 2.73 2.49 0.55 CDR3 ✓ 

S97T 0.07 -0.56 0.62 0.67 0.30 CDR3 ✓ 

I106L 0.00 -0.16 1.01 0.57 n/a FR4 ✘ 
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To first test the ability of FoldX to recognise mutations that have previously 

been able to alter the dimerization state of LEN (causing it to adopt flipped 

dimers) we introduced the following mutations; Q38E, K30T, Q89A and Q89L 

into the native structure of LEN in four separate sets of analysis. Surprisingly, 

only Q38E and Q89A were predicted to reduce dimer affinity (∆∆Gbind = 2.47 

kcal/mol and 2.35 kcal/mol respectively) where K30T and Q89L were 

predicted to be neutral (∆∆Gbind = 0.00 kcal/mol and 0.21 kcal/mol 

respectively. Mutabind and BeAtMuSic also predicted this mutation to be 

neutral (∆∆Gbind of 0.91 kcal/mol and (∆∆Gbind 0.07 kcal/mol respectively). On 

the other hand, ELASPIC, and mCSM-PPI both estimated this mutation to be 

deleterious to dimer binding affinity with binding free energies of +1.33 and 

+1.24 kcal/mol (respectively).  

A likely explanation for the discrepancies in these values lays in how 

the programs work. ELASPIC is the most modern software from this selection, 

and while the program still uses FoldX at its core, it is trained on a modified. 

SKEMPI dataset (database that details how missense mutations affect protein-

protein complexes) (Moal and Fernandez-Recio 2012, Pires, Ascher et al. 

2014) which FoldX is not (instead using FOLDEF (FoldX energy function) and 

a selection of 10 different databases consisting of over 1088 mutations to base 

its energy predictions (Guerois, Nielsen et al. 2002). This reportedly gives 

ELASPIC a greater degree of accuracy than FoldX, with a correlation 

coefficient of 0.77, and standard deviation of σ = 0.002 in comparisons to 

FoldX’s 0.83 and σ = 0.46 (in the software’s latest iteration which was 0.81 

previously) between the experimental values (provided by the database which 

they were trained upon) and predictions made by the software (Guerois, 
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Nielsen et al. 2002, Berliner, Teyra et al. 2014). ELASPIC also benefits from 

an enhanced method of being able to discriminate between interface and non-

interfacial residues with improvements over BeAtMuSiC (Berliner, Teyra et al. 

2014). For the K30T mutation the latter point is certainly explains the findings, 

where FoldX, BeAtMuSic and Mutabind do not recognise this mutation to be 

part of the dimer interface, and so, its substitution has no impact on the 

stability ∆∆Gbind.  

For Q38E, there is also a mismatch in the predictions. While FoldX, 

Mutabind and BeAtMuSic predicted this mutation to be destabilising (∆∆Gbind 

of 2.47, 0.93 and 1.98 kcal/mol respectively) mCSM-PPI and ELASPIC were 

unable to predict the deleterious nature of this mutation. This outcome is 

slightly harder to explain as each program recognised glutamine to be part of 

the dimer interface. Substitution of a glutamine to glutamic acid results in no 

perceivable structural changes (as the amino acids structures are almost 

identical) when closely examined in the software’s visualisation panel. We 

would expect that the introduction of a charged residue at this position 

however would be disruptive, given the ability of this mutation to destabilise 

the dimer interface of LEN leading to altered conformations in this study, and a 

recent publication that documents a large lab scale analysis of 34,373 

mutations where the authors also found introducing Glutamic acid at protein 

interfaces be highly destabilizing (Gray, Hause et al. 2017). The atom 

classification systems incorporated into mCSM-PPI (one, binary and Pmapper 

pharmacophoric) and the ability to consider the different properties of amino 

acids and their local 3d- structural environment should be able to detect this 

change based on the information provided within the software’s documentation 
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(Pires, Ascher et al. 2014) yet this is not the case. For ELASPIC, which we 

mention here again, is trained on the SKEMPI database (Moal and Fernandez-

Recio 2012) it is conceivable that thermodynamic information for such a 

mutation, located within a protein-protein complex and deposited within the 

PDB (which SKEMPI is based upon) is limited enough to prevent accurate 

predictions (2317 mutations for 150 proteins that contain experimental data) 

(Pires, Ascher et al. 2014).  

Q89A, Q89L and the SMA mutation Q89H also provide a set of mixed 

results. BeAtMuSic was consistently unable to predict the destabilising nature 

of any mutation at position 89 and in two cases predicted the mutation to be 

stabilising to the dimer interface (Q89L and Q89H with a ∆∆Gbind of -2.47, and 

-2.04 respectively. A clear limitation of this software which is arguably a reason 

for these observations, is that BeAtMuSic is trained on a subsection of the 

complete SKEMPI dataset, achieving a correlation coefficient of 0.47, and a 

standard deviation of σ = 1.80 (when comparing to  experimentally determined 

∆∆G values)  (Dehouck, Kwasigroch et al. 2013, Pires, Ascher et al. 2014). 

The results for the Y96Q mutation are quite interesting. There was much more 

consistency between platforms with a calculated ∆∆Gbind of +1.27 4.22, 2.73 

2.49, and 0.55 kcal/mol for FoldX, BeAtMuSic, Mutabind, mCSM-PPI and 

ELASPIC respectively suggesting that this mutation is able to significantly 

destabilise the dimer and is a key residue we wish to investigate in further 

analysis.  

We recognise these discrepancies to be a weakness of the programs 

presented here. Inconsistencies between these predictors have also been 

noted before (Kumar, Rahman et al. 2017). It is also important to document 
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that in the original FoldX publication the authors provide a list of possible 

reasons to why discrepancies between experimental values and calculated 

values were observed in their test data, but are unable to answer this for all 

mutations (Guerois, Nielsen et al. 2002). For this reason, we go onto assess 

using a different procedure, conducting further structural analysis and combine 

these results with experimental data in subsequent chapters to reach a more 

educated conclusion into the destabilising, neutral or stabilising nature of each 

mutation. 

We conclude here that while the predictions performed using different 

platforms are not in agreement, the consistency between programs (that are 

trained on different datasets) demonstrated for mutation Y96Q (of the CDR3 

region) suggests that out of this set of mutations, this residue may be key for 

altering dimer stability.  
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2.3.7. A single mutation can dictate the dimer orientation; can this 

be pinpointed using bioinformatics? 

 

Having demonstrated the inconsistencies in the programs FoldX, BeAtMuSiC, 

MutaBind, mCSM-PPI and ELASPIC to predict the destabilising/ stabilising 

effect of a mutation on the LEN dimer, we opted for a different approach.  

Instead of using the programs listed above to assess changes to ∆∆G based 

on the datasets which they were trained, we wished to assess if introducing a 

mutation directly into the crystal structure of LEN and performing a series of 

energetic minimisation steps could provide these answers. We also asked that 

if one mutation was shown to destabilise the native LEN dimer (canonical) 

could this same residue stabilise the non-canonical arrangement? This could 

indicate which mutations lead to “flipped dimers” (those with altered quaternary 

arrangements) and which mutations may completely abolish dimerization 

capability.  

To assess this possibility we used in silico mutagenesis to introduce 

double SMA-like mutations (a single mutation introduced into each monomer 

of the dimer) into the native LEN dimer (canonical) and into the structure of 

LEN that is posed into a flipped 180 o arrangement (this quaternary 

arrangement is illustrated in Figure 10B and was previously used as a control 

in Table 3) which does not occur natively (Stevens, Raffen et al. 1995, Huang, 

Chang et al. 1997, Pokkuluri, Huang et al. 1998). The energetic features of the 

best-ranking structure were calculated by PISA. 

 

 

.  
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Table 5  Interfacial analysis of LEN harbouring a single SMA-like mutation. A 

single SMA-like mutation was incorporated into the dimer of LEN (PDB ID: 1LVE). 

Structures were posed into two orientations (canonical A⇈B and non-canonical A⇅B 

with arrows indicating the direction of the monomer) and the energetic features of 

each interface calculated by PISA. Descriptions and their abbreviations are shown 

previously in Table 3. Colours are used to indicate no change (blue) values that 

stabilise the homodimer (green) and values that destabilise the homodimer (red). In 

the case of non-canonical dimers, where symmetry is lost, one monomer may 

contribute a different amount of residues (higher or lower number) to the dimer 

interface. 

 

A: INDIVIDUAL RESIDUE CONTRIBUTIONS 

 LEN S29N K30R P40L Q89H T94H Y96Q S97T I106L 

Ori
a
 X-ray crystal determined canonical dimer A⇈B 

IA
b 747.2 742.3 745.2 776.7 728.1 744.6 693.1 723.7 753.3 

iNres
c
 24 24 24 26 22 22 22 20 24 

BE
d
 -13.6 -13.8 -13.6 -14.5 -12.2 -14.4 -10.4 -13.6 -13.6 

∆iG
e
 -10.9 -10.2 -11.0 -11.8 -10.5 -12.6 -8.7 -10.0 -10.9 

∆G
dissf 2.1 2.3 2.2 3.0 0.8 2.9 -1.0 2.1 2.1 

HB
g
 6 8 6 6 4 6 4 8 6 

SB
h
 0 0 0 0 0 0 0 0 0 

 

B: INDIVIDUAL RESIDUE CONTRIBUTIONS 

 LEN S29N K30R P40L Q89H T94H Y96Q S97T I106L 

Ori
a
 Non-canonical “flipped” dimer A⇅B 

IA
b 635.6 699.6 809.4 720.6 717.5 878.0 776.2 802.5 698.8 

iNres
c
 20 19 23 21 20 25 22 23 19 

BE
d
 -11.2 -10.4 -14.0 -11.7 -13.0 -14.5 -11.3 -12.0 -8.1 

∆iG
e
 -10.3 -8.0 -10.7 -8.4 -10.6 -11.2 -7.1 -9.7 -10.5 

∆G
dissf -0.2 -0.5 2.5 0.3 1.5 3.0 -0.2 -0.6 -1.0 

HB
g
 2 2 4 4 2 4 6 2 2 

SB
h
 0 4 4 4 4 4 4 4 4 
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Firstly, we assessed which mutations were unable to destabilise the native 

LEN dimer. As illustrated, (Table 5 part A) structures harbouring mutants 

S29N, K30R, S97T, and I106L show either a minor increase, or no substantial 

difference in the energetic features of the dimer (judged by changes to ∆iG, 

the binding energy and the ∆Gdiss) and so are unlikely to have any effect on the 

stability of the LEN (A⇈B) dimer.  

The mutations P40L and T94H demonstrate an increase in some of the 

energetic features of the canonical dimer interface (increase in BE of 14.5 and 

-14.4 kcal/mol over the native LEN structure which has a calculated BE of -

13.6 kcal/mol  and increase in free dissociation energies ∆Gdiss 3.0 and 2.9 

kcal/mol). Substitution of a threonine for a histidine at position 94 results in a 

loss of interfacial residues, and as a consequence there is diminished 

interfacial area (744.6 kcal/mol) however, there is an increase in the strength 

of hydrophobic interaction (∆iG= -12.6 kcal/mol) and binding energy (14.4 

kcal/mol) over the native LEN structure (∆iG = -10.9 kcal/mol and -13.6 

kcal/mol respectively) suggesting that this mutation is likely to be 

neutral/stabilising to the dimer. Edward G. Randles et al. and colleagues 

suggested that the P40L mutation may be able to dictate the orientation of the 

dimer (Randles, Thompson et al. 2009). However, we predict overall that 

neither of these mutations is compromise the stability of the native LEN dimer.   

In previous work P40L has demonstrated a profound impact on the 

stability and aggregation of the protein, and was able to promote fibril 

formation under physiological conditions, without the need for addition of 
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preformed misfolded protein templates or ‘seeds’ (Raffen, Dieckman et al. 

1999, Davis, Raffen et al. 2000). These original experiments however were 

performed in conditions where the protein is in its monomeric state. 

Dissociation of the dimer into monomers is believed to be a necessary pre-

requisite for aggregation to occur ((Brumshtein and Esswein 2015)). It is 

important to clarify there then, that the results presented in Table 5 do not 

assess the ability of this mutation to destabilise the monomer, only the dimer 

interface and all energetic and geometric values calculated reflect this. This 

ability of the P40L mutation to destabilise the monomer – independent of the 

dimer is later investigated in this thesis where we document an alternative 

explanation to the destabilising nature of this residue to that currently 

published. The observations here (PISA and those presented in Table 4 

despite the overall inconsistencies in other mutations the programs 

unanimously agreed P40L to be neutral) indicate that P40L is unlikely to 

destabilise the native dimer.  

The mutation Q89H was calculated to destabilise the native LEN dimer, 

leading to a reduction in the BE (-12.2 kcal/mol) ∆iG (-10.5 kcal/mol) and more 

substantially, the ∆Gdiss (-0.8 kcal/mol) which was reduced 1.3 kcal/mol over 

the native LEN structure. We note here again that a dimer with a low ∆Gdiss 

would likely have a low Kd, suggesting this assembly is only marginally stable 

(Hashimoto and Panchenko 2010; Krissinel 2011). These values may indicate 

that Q89H has the ability to destabilise the native LEN dimer.  

By and large, Y96Q is the most destabilising of all SMA-like mutations 

to the native LEN dimer. Introduction of this mutation substantially diminishes 

the BE, the ∆iG and has a ∆Gdiss of -1.0 kcal/mol suggesting this assembly is 
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unstable (Krissinel and Henrick 2005). Out of all mutations this corresponds to 

the values previously presented in Table 4 and may be a true indication to the 

destabilising nature of this mutation.  

Having now assessed the ability of each SMA-like mutation to 

destabilise the native canonical LEN dimer (Table 5 part A - A⇈B) and 

narrowed down our search to just two residues (Q89H and Y96Q that can 

destabilise the native dimer), we asked if these same residues could stabilise 

the non-native LEN dimer.  Based on the calculations of PISA (Table 5 B), it 

appears that Q89H is able to stabilise the altered dimer arrangement leading 

to an increase in BE, ∆iG and ∆Gdiss  over the non-native LEN structure, and 

having more favourable values than the LEN structure harbouring this 

mutation. The outcome of this mutation on dimer stability has not been tested 

experimentally, however it is interesting to note that a single mutation located 

just 2 residues apart, Y87H was able to dictate the orientation of I light chain 

which crystallised as a dimer with a 180 ° rotated interface (Peterson, Baden 

et al. 2010). It is therefore arguable that Y89H may be responsible for forming 

dimers with an altered interface. Y96Q on the other hand is poorly tolerated 

in this alternative dimer orientation. The mutation is slightly better tolerated 

in this interface than the native LEN dimer (based on a higher BE) however 

the structure is still classed as unstable with a calculated ∆Gdiss of -0.2 

kcal/mol.  
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In a similar mechanism to the aggregation of TTR, mutations that 

destabilise the quaternary state leading to dissociation into monomeric 

species is believed to be a necessary pre-requisite in the aggregation of 

light chain variable domains (Baden, Owen et al. 2008, Brumshtein, Esswein 

et al. 2014). Our data suggests that Q89H may induce flipped dimers that 

possess reduced stability over the native LEN dimer. Y96Q on the other hand 

could abolish dimerization ability. This has not been shown previously, and 

could indicate that these mutations are able to increase the likelihood of dimer 

dissociation into the aggregation prone monomer. 

We acknowledge that these computational methods are energy model 

approximations and such values would need experimental validation using a 

technique such as analytical ultra-centrifugation however the data provides an 

insight to which residues can alter destabilise the LEN dimer which has 

previously been unknown.  
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Figure 18  Overlaid ligand bound Crystal structure of VL-Mcg. Structure and 

Image was adopted from Brumshtein et al., and used here to highlight the binding of 

a single methylene (blue) and two sulfasalazine molecules (orange) at three sites 

located within the Mcg interfacial cavity labelled A-B-C (Brumshtein and Esswein 

2015).  

 

 

 

2.3.8. Small molecule stabilisation of the SMA homodimer  

In the introduction to this thesis, the ability of the small molecule, sulfasalazine 

to bind within the dimer interface of the light chain variable domain of Mcg was 

highlighted. This stabilised the native dimer and inhibited its dissociation into 

the aggregation prone monomer (Brumshtein, Esswein et al. 2015). Co-

crystallisation of the Mcg dimer in complex with sulfasalazine (PDB ID: 5ACL) 

and methylene blue (PDB ID: 5MCG) in this study revealed that both agents 

were able to occupy the concave shaped intermolecular cavity at three distinct 

locations (illustrated in Figure 18 (Brumshtein and Esswein 2015).   
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This cavity is maintained amongst many VLs, suggesting the findings could 

have a wider breadth for therapeutic application. However, as Mcg has a 

canonical dimer interface (Figure 10) it is yet unclear if such a strategy is 

applicable to other VL-homodimers which possess an alternate, flipped dimer 

arrangement, where the interfacial residues and intermolecular landscape are 

vastly different. This gap in the literature motivated us to assess the 

druggability of SMA, which possesses minimal sequence identity to Mcg 

(52.75% assessed by Mustang sequence alignment algorithm (Konagurthu, 

Whisstock et al. 2006) and as our computationally generated models suggest 

a 180 ° flipped dimer arrangement similar to that of REC, AL-T05, and kI Y87H 

variant, rather than a canonical Mcg dimer. To this end, we employed the grid-

based pocket detection system of DoGSiteScorer, a digital platform that 

identifies potential binding sides, and assess the druggability of structures 

based on geometric properties (size and shape) as well as their 

physiochemical composition such as amino acid composition, hydrophobicity 

and the solvent accessible lipophilic surface (for full description see (Volkamer, 

Kuhn et al. 2012, Zhang and Li 2017)). To first assess the accuracy of this 

software for this case, we used Mcg (PDB ID: 5ACL) as the query structure, 

where any similarities between pockets detected by DoGSiteScorer and the 

experimentally (X-ray crystallography) determined binding site of methylene 

and sulfasalazine would add confidence to our findings. This is a similar tactic 

employed by Zhang et al., (Zhang and Li 2017) (Table 6 Figure 19). 
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Table 6  Predicted druggable sites for the canonical Mcg dimer (5ACL) 

calculated by DogSiteServer.  Identified pockets of the Mcg structure, pocket 

properties and scores are presented in best ranking order. Drug scores range from 0-

1 where 1 indicates a more druggable pocket. Table colours correspond to mesh in 

Figure 19. 

Pocket Volume Å3 Surface Å2 Drug score 

P0 1095.94 1205.44 0.78 

P1 552.13 647.39 0.71 

P2 306.11 663.21 0.36 

P3 110.08 296.16 0.16 

 

 

Table 6 shows the calculated pockets, their descriptors and associated 

druggability scores for the Mcg structure which were identified by 

DogSiteScorer. Druggability scores range from 0–1, where higher values 

indicating a more druggable pocket (Volkamer, Kuhn et al. 2012, Sivakumar 

and Niranjali Devaraj 2014). In total, DogSiteScorer server was able to identify 

4 pockets (orange P0, green P1, purple P2, and red P3). As illustrated in 

Figure 19, pockets P0, P1 and P2 are located within the dimer interface 

(orange, green, and purple respectively). Site P3 however (red) is located too 

far from the dimer interface for it to have any meaningful use, any small, 

molecules that bound to this pocket would be unable to stabilise the dimer. 

Remarkably, the two pockets with the highest druggability scores (P0 orange 

0.78 and P1 green mesh 0.71 Figure 19) correspond well to the ligand binding 

sites of the Mcg structures (Figure 18) (Brumshtein and Esswein 2015).  
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Overlaying the DogSiteServer predicted cavities (orange and green mesh) with 

ligand bound crystal structures of Mcg (Figure 19) reveal the extent of this 

accuracy. As illustrated, the co-crystalised ligands (a single methylene 

molecule bound to the top of the cavity and two sulfalazine molecules bound 

within the central cavity of the dimer interface) fit within the calculated binding 

Figure 19  Predicted druggable sites for the canonical Mcg dimer (3mcg). 

DogSiteScorer was used to predict pockets of the Mcg dimer. The server was 

able to predict a total of 4 sites (all shown). The top scoring sites (P0 orange, and P1 

green) both occur within the hydrophobic cavity of the Mcg dimer. Pocket P01 

possesses a drug-score of 0.78, a simple score of 0.71 and occupies the largest 

volume of 1095.94 Å3. Pocket P1 (green) possesses a drug-score of 0.71, a simple 

score of 0.42 and occupies the second largest volume of 552.13 Å3. As indicated by 

the superimposition of Mcg structures in complex with sulfasalazine (5ACL purple), 

and methylene (3ACL blue) the best ranking pockets (P0 and P1) match well with 

the actual ligand binding site found within the crystal structures.  



108 

sites (green and orange mesh). Confident in the performance of 

DogSiteServer, we next used the software to probe the druggability of SMA. 

 

Table 7 Predicted druggable sites for the non-canonical SMA model calculated 

by Dogsiteserver.  Identified pockets of the SMA structure, pocket properties and 

scores are presented in best ranking order. Drug scores range from 0-1 where 1 

indicates more a druggable structure. Table colours correspond to mesh in Figure 20.  

Pockets Volume Å3 Surface Å2 Drug score 

P0 776.32 938.69 0.84 

P1 425.09 747.88 0.67 

P2 424.19 722.51 0.68 

P3 360.32 513.24 0.60 

 

 

Table 7 shows the calculated pockets and their descriptions for the SMA 

structure. Manual inspections of these pockets on the queried SMA structure 

show that none occur within the dimer interface (Figure 20). In comparison to 

the Mcg structure, SMA does not possess such a deep concave interface 

(Figure 20 top). Instead, the highest scoring pocket (P0 blue mesh Figure 20 

with a drug score of 0.84) is located on the surface of the dimer, and involves 

a total of 20 residues, specifically 35YQQK40 41QPPKLL48 54EVP58 60RFED65 

Y86 and H89 and F98 (identical residues involved in each subunit). 

Interestingly, pocket P0 in the SMA structure scores higher than in Mcg (P0 

0.84 Table 7) in comparison to P0, drug score of 0.78 (Table 6). However, the 

surface coverage of this pocket is substantially less, in addition, covering only 

938.69 cubic angstroms (Å3) in comparison to 1205.44 Å3. Each of the other 

sites, also span the two protein chains, and score reasonably well (0.67, 0.68, 
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Figure 20  Calculated druggable sites for the non-canonical SMA dimer. Models 

of SMA generated using computational methods were used as query structure for 

the DogSiteScorer. Here, the server was able to predict a total of 4 sites. A) shows 

cartoon and space fil model of SMA (from front) with calculated pockets P0 (blue) P1 

(yellow) P2 (orange) P3 (purple). B) shows structure rotated 180 ° on x-axis.   

 

0.60 drug score) suggesting there may be multiple sites to accommodate 

small-molecule stabilisers (Figure 20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, the data presented here suggests that the small molecule stabilisers 

(methylene and sulfasalazine) shown to bind to Mcg and prevent its 

aggregation would not be applicable for VL-homodimers that possess a dimer 

interface rotated 180 ° with respect to the canonical dimer. Instead, several 



110 

new pockets have been identified. However, the large cavity suitable to 

accommodate such larger molecules like sulfasalazine is not present in SMA; 

this is likely to be the case for other VL-homodimers that possess a non-

canonical dimer interface. Inspection of the native crystal structure of REC 

reveals a cavity of 832.96 Å3 (volume), 1135.83 Å3 (surface), and a drug score 

of 0.79. Here, the software was able to successfully predict binding pockets 

that match well to the ligand bound crystal structures of Mcg. Thus, the results 

demonstrate the validity of performing druggablity assessment using structure-

based computational tools in order to highlight protein-protein interaction 

targets that are suitable for molecular intervention.  

 

2.3.9. Main findings and summary  

Summary 

Within this chapter, a three-dimensional structure of SMA was generated using 

the deposited crystal structures of LEN and REC. By assessing the energetic 

features of two putative dimer orientations we conclude that SMA is most 

favourable in the non-canonical dimer orientation. As there is currently no high 

resolution three-dimensional structure of SMA, its orientation has gone 

unknown until now.  Structure-based pocket detection of this model has 

revealed a cavity that is suitable to accommodate a small-molecule. 

 

Highlights 

 

In this chapter, we have used a computational approach to obtain a model of 

SMA, and have established its orientation by assessing the energetic features 

of two putative dimer interfaces. This model of SMA then served as a query 

structure for DoGSite Scorer, an online server that assesses the druggability of 
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a given structure. The software was able to identify a cavity that spans both 

domains, suggesting the structure could possible accommodate a small-

molecule that is capable of stabilising the homodimer and prevent its 

dissociation into aggregation prone monomers. A cavity with similar features 

was also identified in REC. Although each of the identified pockets (in SMA 

and REC) are somewhat shallower than the large hydrophobic cavity usually 

found within the canonical dimer, it scored well by DoGSiteScorer (drug score 

of 0.84 for SMA and 0.79 for REC), and bettered the drug score of Mcg (0.78), 

which has been previously shown to accommodate the small molecule 

sulfasalazine and methylene blue by crystallographic methods.  

In addition, by using a number of digital platforms to assess, 

specifically, the changes in binding free energies between 2 monomers as a 

consequence of mutation, it has shed light on which of the SMA-like 

mutation(s) that may be responsible for disrupting key interactions. We 

document that 5 predictive software mCSM-PP, ELASPIC, Mutabind, and 

BeAtMuSic as FoldX were unable to consistently indicate residues to be 

destabilising/ neutral or stabilising however Q89H and Y96Q of the CDR3 

region (also known as the Proline 95 loop) (Randles, Thompson et al. 2009) 

were able to significantly reduce the binding affinity and stability of the dimer 

based on the estimated free energy of dimer dissociation, the strength of 

hydrophobic interactions, and the binding energy which were each calculated 

by the PISA algorithm. This has not been shown previously, and could indicate 

that these mutations are able to increase the likelihood of dimer dissociation 

into the aggregation prone monomer.  
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We hope that the methods presented here may be applicable in 

defining both the orientation of VL dimers, and elucidate the consequence of a 

particular mutation on the dimer interface in new and retrospective studies 

when a protein source is no longer available from a patient or is difficult to 

acquire by recombinant methods. 

3. Assessing the effects of SMA-like mutations 

on VL stability 

3.1. Introduction 

Destabilisation of a proteins native state is proposed to have a major 

impact on its ability to adopt pathological structural conformations that underlie 

a number of human disorders (Tokuriki, Stricher et al. 2008, Redler, Das et al. 

2016, Kumar, Rahman et al. 2017). In AL amyloidosis, the accumulation of 

somatic mutations at key structural positions of the VL renders the protein 

more likely to form amyloid. This can happen by two mechanisms. Firstly, 

mutations that occur within the dimer interface weaken the dimer and increase 

the chance of dissociation into aggregation prone monomers. In the 

monomeric state, mutations can decrease the folding stability allowing the 

protein to sample partially unfolded states that favour aggregation (Poshusta, 

Sikkink et al. 2009, Brumshtein, Esswein et al. 2014).  

In chapter 2 we evaluated the ability of each SMA-like somatic mutation 

to alter the stability of the native LEN dimer using a computational-based 

strategy in the aim of identifying which residues(s) could potentially destabilise 

the dimer, an experiment that has not been conducted previously. 
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Unfortunately, there were inconsistencies between the 5 predictors used which 

ultimately prevent us from unequivocally stating that a particular amino acid 

substitution had a particular effect, and so, we built on these results by 

adopting a different in silico, structural based strategy which pinpointed two 

residues in particular (Q89H and Y96Q) that could potentially destabilise the 

dimer interface (2.3.7.).  

In this chapter we turn our attention to the effect of these same 8 

mutations on the folding stability (Gibbs free energy of folding ΔGfold) of the 

LEN monomer (Li, Simonetti et al. 2016). In comparison to prediction of 

binding energies (which proved to be quite variable) predicting changes to the 

Gibbs free energy upon folding (ΔΔG) is reportedly more accurately due to the 

higher number of available datasets from which programs can be developed 

and trained   Acquiring such values using in vitro experimental methods is a 

timely process, requiring site-directed mutagenesis, followed by the expression 

and purification of the mutant structure before such values can be determined 

using thermal denaturation methods (Poshusta, Katoh et al. 2013, Miller, Lee 

et al. 2014, Blancas-Mejia, Hammernik et al. 2015).  

Given the sheer number of possible mutations that can occur in variable 

domains, the time it takes to acquire experimental values – and the possibility 

that substitution of a single amino acid in a protein sequence can have 

devastating consequences on stability, preventing its expression by 

recombinant methods the ability to predict these values, or at the very least 

narrow down a large selection of substitutions to a few which can be assessed 

using experimental methods carries many benefits. In this chapter we use 

FoldX, mCSM, SDM, DUET, ERIS and I-mutant 3.0, six protein stability 
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predictors that reportedly high levels of accuracy (Guerois, Nielsen et al. 2002, 

Kumar, Rahman et al. 2017) to calculate the change in Gibbs free energy 

upon folding of the LEN monomer. These values were compared to 

experimental values. In addition, a structural link to the outcome of each 

mutation is demonstrated where we manually annotate, at atomic-level detail 

the conformational changes and including loss or gain of crucial intra and/or 

intermolecular interactions that occur upon mutation.  

  A portion of this chapter has been submitted for publication in 

collaboration with Dr. Sujoy Mukherjee (Indian Institute of Chemical Biology), 

Dr. Simon Pondaven, Dr. Christopher Janoreic (The Ohio State University)  

and Dr. Jillian Madine (University Of Liverpool) (Mukherjee, Pondaven et al. 

2017)  

3.2. Results 

3.2.1. Assessing the effect of SMA-like somatic mutations on 

protein stability 

Firstly, we used FoldX, mCSM, SDM, DUET, ERIS and I-mutant 3.0 to 

calculate changes to the folding free energy (ΔΔG) of the LEN monomer upon 

a single point mutation. Mutations that are destabilising to the protein fold will 

contribute positively to the ΔG (ΔG >0 kcal/mol) where mutations that remove 

energy  (ΔG <0 kcal/mol)  will be stabilising SMA-like mutations that severely 

destabilise the LEN monomer may indicate which are more likely to form 

amyloid.  The results of our analysis are shown in Table 8. For comparison, 

stability changes acquired by experimental methods (chemical induced 

equilibrium unfolding experiments and monitoring changes to spectra using 
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circular dichroism and tryptophan fluorescence) and the ability of a mutation to 

lead to fibril formation (ThT) previously performed by Raffen et al (Raffen, 

Dieckman et al. 1999) is also included.  

 

Table 8  Structure-based energy calculations of SMA like mutations. FoldX, 

mCSM, SDM, DUET, ERIS and I-mutant 3.0 was used to calculate changes to the ΔG 

upon mutation. Software and their associated cutoff for a neutral mutation (indicated 

by +-) are as follows: FoldX +-0.46 kcal/mol; mCSM, SDM and DUET +-0.5 kcal/mol; 

ERIS (not reported) I-mutant 3.0 +- 0.5 kcal/mol. experimentally determined 

calculations of changes to folding stability are shown  (displayed as ∆∆Gunf ). The 

ability of a mutation protein structure to forma amyloid for each mutation is also 

indicated (✘= does not form amyloid ✓ = forms amyloid).  These experimental 

values are taken from the following publication (Raffen, Dieckman et al. 1999). Values 

are colour coded according to their ability to stabilise (green) or destabilise (red) the 

structure where blue is neutral.  

 

 Computational Methods Experimental 
Methods 

  

Mutation FoldX mCSM SDM DUET Eris  



I-mutant 
3.0 

∆∆Gunf 

 

Ability to 
form 

amyloid 

Location Solvent 
accessibili

ty % 

LEN - - - - - - - - - - 

S29N -0.55 -0.20 2.43 0.01 3.54 -0.56 -1.0 ✘ CDR1 81.2% 

K30R 0.30 -0.56 1.22 -0.23 -1.19 -0.69 0.1 ✘ CDR1 46.0% 

P40L 1.02 -0.27 4.89 0.08 -0.77   -0.44 0.7 ✓ FR2 74.7% 

Q89H 8.19 -1.39 -0.21 -1.48 8.34 -0.82 1.0 ✘ CDR3 14.8% 

T94H 0.27 -0.88 1.31 -0.74 1.69 -1.21 -0.7  ✘ CDR3 72.8% 

Y96Q 0.61 -0.57 -0.92 -0.41 0.96 -1.03 3.2 ✓ CDR3 53.7% 

S97T 0.77 -0.82 0.34 -0.78 -1.04 -0.66 -0.6 ✘ CDR3 32.5% 

I106L 0.83 -0.79 -0.78 -0.68 5.10 -0.51 -0.2 ✘ FR3 14.6% 

SMA - - - - - - 2.6 ✓ - - 
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We immediately focus on the accuracy of each program, where unfortunately 

we notice inconsistencies. One example can be found in the two most 

destabilising residues of this set; Q89H and Y96Q (by experimental methods 

of ΔΔGunf = of +1.00 and +3.20 kcal/mol respectively) were consistently 

flagged as destabilizing mutations by the majority of the predictive software 

presented here (Table 8 colour coded).  However FoldX, mCSM, DUET, and 

ERIS, calculated Y96Q to be only be mildly destabilising (ΔΔGfold + 0.61, 0.57, 

0.41, 0.96 kcal/mol respectively) yet this residue was the most destabilising of 

the set by in vitro measurements set (ΔΔGunf +3.20 kcal/mol) (Raffen, 

Dieckman et al. 1999). In comparison, Q89H was shown to be much more 

destabilising using these platforms (ΔΔGfold + 8.19, 1.391, 1.48, 8.34 kcal/mol 

respectively) yet, this mutation was only mildly destabilising in vitro (Raffen, 

Dieckman et al. 1999). The solvent accessibility between these two mutations 

(Q89H 14.8% solvent exposure and (Y96Q solvent exposed 53.7%) may be 

an explanation for this difference, where a mutation is usually more 

destabilising if it is located within the protein core (Tokuriki, Stricher et al. 

2008).  

For other residues that show inconsistencies either between 

themselves or between experimental values, the answer to why this occurs 

arguably lies within how the programs calculate the prediction where each 

software will have a particular bias to the database/ dataset it is trained on 

(Pandurangan, Ochoa-Montano et al. 2017). 

 

 



117 

 

Next, we place focus on the following three substitutions; P40L, Q89H and 

Y96Q due to their highly destabilising nature (both in vitro and in silico) and 

address a larger limitation of this study, which we overcome in subsequent 

analysis- specifically by combining our analysis with NMR . Interestingly, P40L 

was shown to be neutral /stabilising in all programs apart from FoldX (+1.02 

kcal/mol) which corresponds somewhat to the stability values that were 

calculated (∆∆Gunf -1.0 kcal/mol) experimentally. Q89H was shown to be 

destabilising by the majority of programs which corresponds to the 

experimental value of (∆∆Gunf = 1.0 kcal/mol) and Y96Q was also shown to be 

destabilising (∆∆Gunf = 3.2 kcal/mol).  

Both Y96Q and P40L were able to enhance aggregation potential 

leading to fibril formation (Davis, Raffen et al. 2000, Joob and Wiwanitkit 2014)  

Q89H on the other hand, was unable to promote aggregation (negative for ThT 

fluorescence) despite the ability of this mutation to significantly reduce the 

folding stability of LEN (more than P40L) with experimental calculations of 

ΔΔGunf of +1.00 kcal. The answer to this puzzling outcome circulates around 

an emerging concept that thermodynamic stability is not always an indication 

of aggregation propensity where it has been typically associated ((Marin-

Argany, Guell-Bosch et al. 2015)). 

 It appears that P40L promotes fibril formation by a different 

mechanism, potentially altering structural integrity of a local region such as 

loop it is positioned, rather than having any global destabilising effects which 

could lead to unfolding of the monomer. Indeed, Davis et al., has previously 

suggested that the substitution of the Proline at this position (a residue that is 
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conserved in 98% of kappa and lambda germlines) may disrupt the 

intramolecular interactions between residue Gln38 and intramolecular 

interactions between Lys 39 and Glu91, Arg61 and Asp 82 of neighbouring 

strands (Ramirez-Alvarado 2012, Joob and Wiwanitkit 2014). The precise 

structural changes for this mutation however, have not been experimentally 

tested to date and are later investigated in this thesis where we consider the 

residues position and the unique properties of proline (fixed torsion angles) 

and leucine (hydrophobicity) (Raffen, Dieckman et al. 1999). It is therefore 

important to take into account specific structural changes what assessing the 

consequence of a mutation and attempting to assess the ability of a mutation 

to increase aggregation cannot be taken on face value, rather a more 

sophisticated approach, (presented in the next section) is required to acquire a 

more firmer understanding of an outcome of a particular mutation.  
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3.2.2. SMA-like mutations of LEN induces structural changes 

To provide a structural link to how certain SMA-like mutations confer a 

profound or negligible effect on the folding free energy ΔGfold (presented in 

Table 8 or binding free energy ΔGbind (presented last chapter Table 4), 

structural changes were elucidated at atomic-level. To provide a more in-depth 

analysis, and elucidate the dynamic behaviour of single mutant proteins in 

solution, which may overcome our limitation described previously, NMR 

relaxation exchange (Rex) data, values which are indicative of motional 

fluctuations and intrinsic conformational flexibility over a milli-second (ms) 

timescale (Chapman, Davulcu et al. 2015) were matched with our own 

computational analysis of each mutant in the attempt to understand how 

intramolecular changes could enhance aggregation propensity. The work 

presented here, along with NMR Rex data collected by Simon P. Pondaven at 

Ohio State University has been accepted for publication (Mukherjee, 

Pondaven et al. 2017). Where indicated, ΔΔGunf values are taken from the 

original analysis of structures harbouring individual mutants (Raffen, Dieckman 

et al. 1999) 

Mutants were generated in silico, using the LEN crystal structure as 

template with Rosetta based energy-minimisation. The lowest energy structure 

for each mutation, assessed by the Rosetta energy function was taken for 

further analysis. In this first section, SMA-like mutants K30R, P40L, Q89H, 

T94H or Y96Q, were chosen for molecular-level analysis to further investigate 

changes observed in 15N-1H heteronuclear single quantum coherence (HSQC) 

spectra or Rex profiles (Mukherjee, Pondaven et al. 2017). For clarity, Rex 
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profiles have been mapped onto the structure of LEN, SMA, and individual 

SMA-like mutants of LEN and is illustrated in Figure 21. 

 

As previously highlighted, P40L displays enhanced aggregation 

propensity relative to LEN (Raffen, Dieckman et al. 1999). It also displays 

decreased thermodynamic stability, with an experimentally derived ΔΔGunf 

value of 0.7 kcal/mol (Table 8). Yet, it is not as destabilising as the Q89H 

mutation, (ΔΔGunf value of 1.0 kcal/mol) which did not show the propensity to 

aggregate. To determine the molecular-level changes following this mutation, 

in silico analysis was used.   

In silico analysis of mutant structure K30R indicate that the 

conformational changes induced by the conservative substitution of Lysine for 

Arginine at position 30 are quite subtle with overall root mean square (RMS) 

Figure 21 Surface representations of LEN, SMA and the eight SMA-like mutants 

of LEN in dimer form, depicting the locations of the most dynamic residues. 

The proteins are arranged in the order of decreasing thermodynamic stability with 

respect to LEN as reported by Raffen et al.,(Raffen, Dieckman et al. 1999) with LEN 

S29N (A) being the most stable and Y96Q (J) the most unstable. Rex values were 

obtained at 600 MHz 1H frequency is mapped onto the X-ray structure of LEN with 

colour coding. Text adopted from manuscript (Mukherjee, Pondaven et al. 2017).  
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value of 0.057 (Figure 22A). This is most likely due to swapping like for like of 

positively charged basic residues at the surface-exposed CDR1. This position 

is documented to tolerate substitution well without much impact on structure, 

as observed for a Serine to Asparagine mutation at the same position (S30N) 

in AL-09, an amyloidogenic member of the κI O18:O8 germline (Martin and 

Ramirez-Alvarado 2010). This particular mutation also shows no ability to 

cause any changes in binding energies of the dimer (Table 4), the 

thermodynamic stability (Table 8) and was unable to perturb the geometric or 

energetic features of the interface of models harbouring this mutation (Table 

5). As seen in Figure 22A, the only detectable changes include minor 

alterations in hydrogen bond length between residues Tyrosine 25 and Serine 

29 and the addition of a hydrogen bond of 2 Å between the long flexible chain 

of the Arginine where the residue forms a hydrogen bond with the adjacent 

backbone carbonyl of Serine 29. This corresponds to minimal alterations in 

dynamics of the ms timescale observed in NMR experiments (Figure 21) 

(Jorgensen, Chandrasekhar et al. 1983, Pondaven 2012). 
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Figure 22  Computational analysis of mutation-induced structural changes of 

K30R and P40L. Dimer structure of native LEN is shown as cartoon overlaid with 

mutant K30R (A) and P40L (B) with mutated residue side-chains shown as sticks. 

RMS values between control LEN and mutant are indicated. Colour coded expanded 

regions highlight key areas of interest in greater detail.  Control (C) monomers are 

shown in pink (monomer A) and blue (monomer B), with mutant (M) structures in 

green (monomer A) and orange (monomer B). Hydrogen bonds are shown as yellow 

dashed lines with lengths given, changes in lengths are shown in red text on mutant 

images. Framework regions (FR) 2 and 3 are shown to help to locate positions 

within the structure. P40 is predicted to be outside of the dimer interface before 

mutation. 
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In previous work, P40L has demonstrated a profound impact on the stability 

and aggregation of the protein, and was able to promote fibril formation under 

physiological conditions, without the need for addition of preformed misfolded 

protein templates or ‘seeds’ (Raffen, Dieckman et al. 1999, Davis, Raffen et al. 

2000). The importance of this residue is also emphasised by noting that 

Proline 40 is a highly conserved residue present in 98% of all κ and λ germline 

sequences (Ramirez-Alvarado 2012). The Rex profile (Figure 21) (Jorgensen, 

Chandrasekhar et al. 1983) is not consistent with the previously proposed 

suggestion that the P40L mutation increases backbone mobility over LEN in 

the FR2 loop. We use computational analysis to confirm a lack of increased 

dynamics in the FR2 loop, with a low RMS value of 0.023 Figure 22B 

consistent with the observed similar Rex profiles between P40L and LEN 

(Pondaven 2012). In the previous study, it was also proposed that the mutation 

of Proline 40, a residue residing in a β turn within the FR2 loop between β-

strands C and C’ (CDR2 region) facilitates interactions between residues of 

neighbouring FR3 region, specifically by displacing interchain interactions 

between Glutamine 38 across the dimer interface, and interrupting the 

hydrogen bonding between Lys39-Glu81 and Arg61-Asp82 (Davis, Raffen et 

al. 2000, Baden, Randles et al. 2008, Poshusta, Sikkink et al. 2009). To 

investigate this possibility, we used computational analysis to predict that 

these inter and intrachain hydrogen bonds are not perturbed by this mutation 

(Figure 22B).  To gain an insight into the dynamics of VL LEN harboring the 

P40L mutation that extend further than that can be probed by Rex (which was 

conducted at concentrations where the protein is a dimer and showed 

essentially no difference to the Rex profile of wildtype LEN), CABS-FLEX 
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(Jamroz, Kolinski et al. 2013) was used to perform a 10 nanosecond MD 

simulation. A comparison between Cα-Cα fluctuations between LEN and the 

mutant structure (Figure 23) reveals that for the majority of the protein, 

motions of the backbone are near identical. There are however, 2 regions 

(CDR1 and CDR3) that exhibit enhanced fluctuations in the mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23  Residue fluctuation profile and structural ensemble of LEN 

containing REC-type mutant P40L calculated using CABS-FLEX. (A) A single 

leucine to proline mutation in the β-turn of the FR2 region affects loop dynamics at 

three distinct regions; CDR1 (orange) and CDR 2 (blue). B) The root mean square 

fluctuations (RMSF) of α-carbon atoms per residue plotted as a function of residue 

against fluctuation in Å acquired from a 10 nanosecond timescale.  
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Figure 24  Aggrescan3D prediction profile. Aggrescan3D was used to assess the 

aggregation propensity of LEN (blue) and SMA (pink).  The Y axis of the profile 

corresponds to the prediction scores. Positive scores indicate regions that calculated 

to be aggregation-prone. Only a single mutation (P40L) was calculated to increase 

aggregation potential. Analysis was performed using a 5 Å radius to pinpoint the 

individual residue contributions to overall aggregation potential. 

The removal of a proline is likely to be accountable for the decreased 

thermodynamic stability, give than a proline is entropically stabilising, and 

limits the transition between one particular conformation to another. It is 

surprising to observe enhanced motions of the CDR1 and CDR2 region given 

the location of the mutation. Aside from the calculated decrease in stability 

(ΔGfold 1.024 kcal/mol) calculated by FoldX, and enhanced motions in CDR 

regions another interesting feature of this mutation is in illustrated in where, it 

is the only mutation to be predicted to enhance aggregation potential by 

Aggrescan3D (Figure 24).  This is consistent with the observation that this 

SMA-like mutation is the only one which can form fibrils without seeding 

(Davis, Raffen et al. 2000). 
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In addition, analysis of dimer contacts using PISA revealed that residue 40 is 

the only residue out of all of the mutations found in SMA that is outside of the 

dimer interface prior to mutation, but becomes incorporated into the dimer 

interface following mutation (Figure 25). This observed change is presumably 

due to the inherent properties of Leucine, a highly hydrophobic residue (3.8 

based on the Kyte and Doolittle hydrophilicity scale (Kyte and Doolittle 

1982) which prefers to be buried within the interface rather than surface 

exposed.  

 

 

 

 

 

 

 

Figure 25  Protein sequence alignment of LEN, SMA and the eight SMA-like 

mutants of LEN. PISA was used to identify residues involved within the dimer 

interface of each structure within its 1 Å2 cutoff. The alignment highlights residues 

common to both interfaces (sand). Residues involved in hydrogen bonding are 

highlighted in blue. White space indicates residues that were not involved in the 

dimer interface. Mutants highlighted in blue (S29N) and red (Y96Q) indicate the most 

and least stable (respectively) based on experimentally derived values from thermal 

unfolding experiments (Raffen, Dieckman et al. 1999). The number of interfacial 

residues (IR) and hydrogen interfacial hydrogen bonds (HB are indicated. In the case 

where N-terminal residue D1 was detected to be part of the interface, it was omitted 

from analysis, as performed previously by Baden et al (Baden, Owen et al. 2008).   

Residue and region annotation were taken from Stevens et al (Stevens, Raffen et al. 

1995) and are presented according to Kabat nomenclature (Kabat, Te Wu et al. 

1992).  
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Overall, the removal of a proline at this position and its substitution to a leucine 

may be sufficient in allowing the protein to access the amyloidogenic 

landscape by a number of mechanisms described here (Padlan 1994, Graña-

Montes, Pujols-Pujol et al. 2017). 

Next, we analysed mutations that displayed larger differences in 15N-1H 

HSQC and CD spectra (Pondaven 2012), T94H, Y96Q and Q89H, suggesting 

conformational rearrangement within these mutants. Out of these mutants, 

Q89H and Y96Q display ΔΔGunf stabilities of +1.0 kcal/mol and +3.2 kcal/mol 

relative to LEN, and both have been shown to be capable of forming fibrils 

upon the addition of pre-formed ‘seeds’ (Davis, Raffen et al. 2000). In contrast, 

T94H is stabilising (-0.7 kcal/mol ΔΔGunf), and shows no propensity to 

aggregate in vitro under non-destabilising conditions (Raffen, Dieckman et al. 

1999, Davis, Raffen et al. 2000). This residue is also calculated to reduce the 

aggregation propensity of LEN (Figure 24). To investigate the differences 

between these mutants we performed an exhaustive analysis of inter and 

intrachain interactions. 

For T94H, a number of changes in hydrogen bond length and a loss of 

hydrogen bonding between main and side chain atoms are observed, 

consistent with the largest RMS value of 0.5 out of all of the mutations studied 

(Figure 26A). The most profound alteration is the loss of a hydrogen bond 

between interfacial residues Threonine 94 and Glutamate 55 on opposite sides 

of the dimer (Figure 26, expanded region, top panel). However, despite this 

loss, the increase in stability seen in T94H mutant and in binding properties of 

a structure harbouring this mutation (Table 9) could be attributable to the 

creation of new intersubunit contacts between the resulting Histidine at 
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position 94, and Tyrosine 90 on the adjacent monomer (Figure 26A, expanded 

region, top panel and Figure 26B). T94H displayed one of the least changes in 

ms timescale dynamics (in comparison to LEN), with a quenched Rex profile 

(Mukherjee, Pondaven et al. 2017), suggesting a less dynamic structure 

possibly due to restraints from the hydrogen bond formed between His94-

Tyr90 across the dimer interface (Figure 26B). 
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Figure 26  Computational analysis of mutation-induced structural changes of 

T94H. (A) Dimer structure of native LEN is shown as cartoon overlaid with mutant 

T94H with mutated residue side-chains shown as sticks. (B) Top view reveals 

hydrogen bond formed between His94 and Tyr 90 across the interface. RMS values 

between control LEN and mutant are indicated. Colour coded expanded regions 

highlight key areas of interest in greater detail. Direction of view for these regions is 

indicated. Control (C) monomers are shown in pink (monomer A) and blue 

(monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths 

given; changes in lengths are shown in red text on mutant images. Red spheres 

indicate loss of hydrogen bond. 
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Figure 27 Computational analysis of mutation-induced structural changes of 

Q89H of the CDR3. Dimer structure of native LEN is shown as cartoon overlaid with 

mutant Q89H (A) with mutated residue side-chains shown as sticks. Top view (B) 

reveals dramatic loss of hydrogen bond between interfacial residues. RMS values 

between control LEN and mutant are indicated. Colour coded expanded regions 

highlight key areas of interest in greater detail. Direction of view for these regions is 

indicated. Control (C) monomers are shown in pink (monomer A) and blue (monomer 

B), with mutant (M) structures in green (monomer A) and orange (monomer B). 

Hydrogen bonds are shown as yellow dashed lines with lengths given; changes in 

lengths are shown in red text on mutant images. Red spheres indicate loss of 

hydrogen bond. 

 

For Q89H, losses of multiple intra and interchain hydrogen bonds are 

observed (Figure 27). There is substantial alteration of most of the hydrogen 

bonds within the CDR3 loop (Figure 27, expanded region, top). Glutamine 89 

in LEN forms a network of hydrogen bonds with neighbouring residues on the 

adjacent monomer that is lost upon mutation to Histidine (Figure 27, expanded 

region, top). 
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For Y96Q, residue-specific altered dynamics between LEN and the mutant 

structure extends further than the CDR3 loop containing the site of mutation 

(Figure 28A), giving a large RMS of 0.391, consistent with large changes in 

dynamics (Figure 21) (Mukherjee, Pondaven et al. 2017). Interaction between 

the CDR2 and 3 loops, through a hydrogen bond between Glutamic acid 55 - 

Threonine 94 are lost upon mutation (Figure 28A, expanded region, top and 

Figure 28B). This would result in both CDR2 and 3 loops having increased 

flexibility, explaining the excessive exchange broadening and loss of detection 

observed in these regions (Pondaven 2012). Further intramolecular changes 

are noted in several residues along the β-strands that form the core of the Ig, 

shown as coloured regions within Figure 28A. One of these changes is loss of 

another hydrogen bond between Serine 52 and Glycine 64 following mutation 

(Figure 28A, expanded region, bottom). There are also subtle changes in the 

hydrogen bond distance involving residue Y91 (Figure 28A expanded region), 

a residue that is part of the tyrosine cluster (DiCostanzo, Thompson et al. 

2012). 

 

 

 

 

 



132 

 

Figure 28  Computational analysis of mutation-induced structural changes of 

Y96Q. Dimer structure of native LEN is shown as cartoon overlaid with mutant Y96Q 

(A) with mutated residue side-chains shown as sticks. Top view (B) reveals dramatic 

loss of hydrogen bond between residues E55 and T94 as a result of the mutation. 

RMS values between control LEN and mutant are indicated. Colour coded expanded 

regions highlight key areas of interest in greater detail. Direction of view for these 

regions is indicated. Control (C) monomers are shown in pink (monomer A) and blue 

(monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images. Red spheres indicate 

loss of hydrogen bond. 
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The three mutations (T94H, Q89H and Y96Q) perturb a consistent set 

of residues surrounding the mutation within the CDR3 region, and interactions 

with surrounding loops. Y96Q loses all interactions between this loop and 

surrounding regions, through the loss of a hydrogen bond between Glutamate 

55 and Threonine 94 of adjacent monomers, whereas in T94H a similar loss is 

observed between E55-T94, however Histidine 94 forms a new hydrogen bond 

with Tyrosine 90 on the adjacent monomer re-stabilising the CDR3 loop 

(Figure 26). Q89H also loses hydrogen bonds at the base of this loop (at the 

termini of FR3 and FR4, strands H and I respectively) (Figure 27), Taken 

together, disrupted hydrogen bonds appear to contribute to decreased 

thermodynamic stability (and ability to form fibrils under seeded conditions) for 

Q89H and Y96Q, whereas, in T94H the lost hydrogen bond is replaced to 

show increased stability and reduced amyloidogenicity. This suggests that the 

CDR3 loop, for this VL domain is key to regulating thermodynamic stability and 

amyloidogenicity. It is also interesting to note that, while Q89H is highlighted to 

be part of an amyloidgenic prone region by a number of digital platforms 

(Amylpred2 and PASTA) (Figure 29) T94H was not predicted to be part of an 

aggregation prone region by Amylpred2 or AmyloidFISH. This is again 

consistent that this residue may prevent aggregation and stabilise both the 

dimer and the VL monomer.  
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3.2.3. Structural perturbations induced by the SMA-like mutants  

For this thesis, we also wished to extend our analysis to cover the remaining 

three SMA-like mutants (S29N, S97T and I106L) that were not covered by 

such detailed structural analysis within the associated publication, but have 

NMR Rex profiles recorded (Pondaven 2012). In a previous study each of 

these mutations S29N, S97T and I106L were shown to be stabilising (ΔΔGunf -

1.0 kcal/mol, -0.6 kcal/mol -0.2 kcal/mol respectively (Raffen, Dieckman et al. 

1999). LEN harboring these single mutants yielded Rex profiles that were 

almost indistinguishable from control structure (LEN). High resolution analysis 

of a structure harboring the S29N mutation (Figure 30) revealed that the 

solvent exposed residue (81.2% determined by mCSM), located within the 

CDR1 region shows no major perturbations with a minimal backbone 

Figure 29  Identification of aggregation prone regions of benign LEN and 

amyloidogenic REC and SMA. A total of 11 different algorithms (under Amylpred 2) 

were used to predict aggregation prone regions using the primary sequence of SMA 

REC and LEN. Highlighted segments (Pink) show where different algorithms (see 

materials and methods AmylPred2) consistently highlighted regions of high 

aggregation propensity. AmyloidFISH (blue) and PASTA 2.0 (orange) were also 

used to highlight aggregation prone regions in addition. The location of CDR and FR 

are highlighted. Secondary structure content is also indicated.  
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perturbation (RMS 0.103), which corresponds to the lack of any significant 

changes reflected in the NMR Rex data (Figure 21) which was almost 

indistinguishable from LEN. No large differences were noted for a structure 

harbouring I106L (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30  Computational analysis of mutation-induced structural changes of 

S29N and I106L Dimer structure of native LEN is shown as cartoon overlaid with 

mutant (S29N and I106L) with mutated residue side-chains shown as sticks RMS 

values between control LEN and mutant are indicated. Colour coded expanded 

regions highlight key areas of interest in greater detail. The direction of view for these 

regions is indicated.  Control (C) monomers are shown in pink (monomer A) and blue 

(monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). 
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For LEN harbouring S97T, a number of interesting observations were made. 

Small changes in hydrogen bond length are observed at the site of mutation 

(Figure 31A), and a loss of interaction is noted between residues Methionine 4 

and Threonine 97, occurring directly at the site of mutation. There are multiple 

changes to hydrogen length at the site of each mutation but the most profound 

change is observed between residue Y92 (this is part of the important Tyrosine 

cluster of the CDR3 region) where subtle changes in the CDR3 region allow 

for this residue to adopt new intramolecular hydrogen bonds of (1.8 Å) 

between Y96 and Y49 of the opposite monomer.  

 

 

 

 

 

Figure 31  Computational analysis of mutation-induced structural changes of 

S97T and I106L. Dimer structure of native LEN is shown as cartoon overlaid with 

mutant (S97T or I106L) with mutated residue side-chains shown as sticks. RMS 

values between control LEN and mutant are indicated. Colour coded expanded 

regions highlight key areas of interest in greater detail. The direction of view for 

these regions is indicated.  Control (C) monomers are shown in pink (monomer A) 

and blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images. Red spheres indicate 

loss of hydrogen bond. 



137 

3.2.4. Chapter summary  

Summary 

In this chapter, we have used a computational approach to assess the 

contribution of an individual somatic mutation to the folding stability of the non-

amyloidogenic VL domain LEN. Inconsistencies between the ability of different 

algorithms used to calculate the destabilising and stabilising nature of a 

mutation (Table 8 colour coded) means that these programs have failed to 

provide a reliable benchmark from which effect of a mutation on the stability of 

LEN can be assessed. Instead, a more sophisticated structural approach was 

needed.  An exhaustive analysis of both binding (presented last chapter) 

folding stability (experimental values this chapter) and structural analysis of 

each mutation performed in combination with previously (unpublished) NMR 

data has revealed that the CDR3 loop, for this VL domain is key to regulating 

the stability and amyloidogenicity.  

 

Highlights 

NMR data reveals that out of all 8 SMA-like mutations of LEN only Q89H, 

T94H and Y96Q are responsible for enhanced main chain dynamics over the 

control structure (LEN). Sequence-specific NMR relaxation exchange data 

(mapped onto the LEN structure Figure 21) indicate that these enhanced 

dynamics were largely restricted to the CDR3. The dynamics of structures 

harbouring the remaining mutants (S29N, K30R, P40L, S97T and I106L) were 

not substantially altered in comparison to the control structure (LEN).  

Computational structure-based assessment of these three mutations (Q89H, 

T94H and Y96Q) indicate that each are able disrupt the hydrogen bonding 
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network within the CDR3 loop and surrounding regions which provides an 

explanation to the increased motions observed in NMR experiments.  While 

Q89H and Y96Q have also shown to be destabilising by CD thermal 

denaturation experiments, the T94H mutation has previously shown to be 

stabilising. Further computational analysis of this mutant revealed that new 

intermolecular hydrogen bonds are formed which are likely to compensate for 

the disruption of intramolecular hydrogen bonds directly at the site of mutation.  

In this analysis, disrupted hydrogen bonds appear to contribute to enhanced 

conformational dynamics and decreased thermodynamic stability (and ability 

to form fibrils under seeded conditions) for Q89H and Y96Q, suggesting that 

these residues are key for regulating the thermodynamic stability and 

amyloidogenicity of LEN.  
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4. Predicting the stability effects of REC-like 

mutations and modelling the structural 

changes 

4.1. Introduction 

In chapters 2 and 3 the ability of an individual SMA-like mutation to alter the 

structure and stability of LEN was characterised by calculating both, changes 

in the binding and folding free energies (ΔGbind and ΔGfold) as well as 

evaluating the consequence of a mutation at a structural level. For the most 

part, were unable to indicate which program was the most accurate due to 

various errors of different computational methods. However, we found the 

most consistency in mutations Q89H and Y96Q which correlated with NMR 

data.  Seeking to extend the investigation and trial a new, larger much data set 

where the results could be validated by experimental means at a later 

opportunity this chapter assesses the contribution of individual REC-like 

somatic mutations (what has not been entirely covered to date by experimental 

methods) to the stability and structure of the non-amyloidlogenic VL LEN dimer 

and monomer.  

4.2. Results  

4.2.1. Predicting changes in binding energy as a result of a REC-

like somatic mutation 

 

The goal of this section is to examine the ability of each individual REC-like 

mutation to weaken the binding affinity and destabilise the LEN homodimer. 
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Changes to the binding free energy (ΔΔGbind) induced by a single mutation 

were calculated by FoldX, BeAtMusic, Elaspic, Mutabind and mCSM-PPI.  

 

Table 10 The effects of 14 REC-like mutations on the binding stability of the 

homodimer LEN. Residues located at the interface are highlighted (✓). Units for 

energy calculations (∆∆Gbind) are expressed in kcal/mol. FoldX supports the ability of 

simultaneous mutations in each side of the homodimer and was performed this way. 

Software and their associated cutoff for a neutral mutation (indicated by +-) are as 

follows: FoldX +-0.46 kcal/mol; ELASPIC +-0.46 kcal/mol; MutaBind +-0.86 kcal/mol; 

mCSM-PPI +-0.5 kcal/mol; BeAtMuSiC (error values not reported). Values are colour 

coded according to their ability to stabilise (green) or destabilise (red) the structure. 

Neutral mutations are shown in blue. 

 

 FoldX mCSM: 
PPI 

ELASPIC MutaBind BeAtMuSiC Location Interface? 

L15P 0.00 0.10 0.35 1.63  -0.37 FR1 ✘ 

S27aN 0.00 0.54 0.54 0.68 0.21 CDR1 ✘ 

V27bL 0.00 0.96 -0.35 1.05 -0.38 CDR1 ✘ 

Y27dD 0.00 0.98 0.25 0.81 -0.35 CDR1 ✘ 

S27eA 0.00 0.00 0.14 0.48 0.31 CDR1 ✘ 

N28F 0.00 0.98 0.90 0.87 -0.01 CDR1 ✘ 

S29D 0.00 0.04 -0.07 0.3 -0.04 CDR1 ✘ 

K30T 0.07 1.24 1.33 0.96 0.07 CDR1 ✘ 

Y32T 2.52 0.07 1.14 1.75 0.68 CDR1 ✘ 

T53S -0.04 0.32 0.33 0.76 -0.01 CDR2 ✘ 

Y96P 0.59 1.98 1.32 3.0 4.99 CDR3 ✓ 

S97T 0.07 0.67 0.30 0.61 -0.56 CDR3 ✓ 

Q100G -0.06 0.00 -0.69 1.23 0.33 FR4 ✓ 

L104V 0.00 0.71 0.67 1.39 -0.32 FR4 ✘ 

 
 

Examining the changes in binding energies (ΔΔGbind) calculated by FoldX ( 
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Table 10) indicate that the majority of solvent accessible residues are unable 

to destabilise the LEN homodimer (L15P, S27aN, V27bL, Y27dD, S27eA N28f, 

S29D, K30T, T53S, Q100G and L104V). While, FoldX and BeAtMuSiC 

calculated these mutants to be largely neutral, mCSM, ELASPIC and Mutabind 

indicated some of these mutants to be quite destabilising. For Mutabind, all but 

three (L15P, K32T, Y96P) of the mutations calculated to be destabilising 

(V27bL, N28F, K30T, Q100G, and L104V) were scored with low confidence 

(ΔΔGbind greater than 0.86 but below 1.57 kcal/mol).  

Interestingly, the most consistently destabilising mutants (Y96P and 

Y32T (highlighted by the majority of programs) have been previously 

highlighted as key residues for modulating stability in light chain variable 

domains. Through the analysis of 17 I Bence Jones proteins, Fred Stevens 

and colleagues have previously demonstrated the important contribution of the 

hypervariable CDR3 region to the formation of VL-VL homodimers (Fred J. 

Stevens 1980). Specifically, an aromatic, or a hydrophobic residue located at 

position 96 is essential for maintaining self-association. Stevens notes that, 

while kappa type variable domains AU and REI form Bence Jones dimers 

contain a Tryptophan and Tyrosine located at position 96 respectively. In 

contrast,  AG and GAL possess a arginine (basic) at this position (Goni and 

Frangione 1983), and are found almost exclusively as monomeric species, 

suggesting that removal of the aromatic residues is able to abolish the 

dimerisation capability of these two VL completely (Fehlhammer, Schiffer et al. 

1975).  While the substitution of a Tyrosine (aromatic) for a proline 

(hydrophobic) is calculated to be slightly destabilising by FoldX (ΔΔGbind +0.46 

kcal/mol < ΔΔG ≤ +0.92 kcal/mol where the calculated value is 0.59 kcal/mol) 
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the substitution of this residue with the SMA mutation Y96Q is far more 

destabilising (ΔΔGbind +1.27 kcal/mol) which agrees with the observations 

made by Stevens (Fred J. Stevens 1980).  

Y32T in particular is shown to substantially reduce binding affinity 

(FoldX ΔΔGbind +2.52 kcal/mol) which may suggest this mutation can 

destabilise the canonical LEN dimer. The observed decrease in stability is also 

reflected in ELASPIC, MutaBind and BeAtMuSIC, (ΔΔGbind +1.14, 1.75, and 

0.68 kcal/mol respectively). This gives confidence to the findings; however, 

mCSM-PPI was unable to calculate the destabilising nature of this mutation 

(ΔΔGbind 0.07 kcal/mol neutral) which is likely a result of this program to not 

take into account symmetry related double mutants (only able to mutate one 

subunit at a time). To our knowledge, the ability of Y32T to perturb any 

intermolecular contacts has not been documented. This mutation does 

however occur in AL-09 and AL103 (Figure 32) and is highlighted to be part of 

a highly conserved cluster of tyrosine residues that comprise Y32 of the CDR1 

region and Y91 and Y96 of the CDR3 region that is termed the tyrosine corner 

(Hemmingsen, Gernert et al. 1994).  
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Here, tyrosine residues that are situated at opposite ends of antiparallel 

β-strands participate in stabilising interactions (DiCostanzo, Thompson et al. 

2012). While Y32T is not directly located within the dimer interface (Figure 32), 

changes to this residue may propagate between neighbouring Tyrosine 91 and 

96 and cause perturbation to these residues that are part of the interface 

region. Similar long-range effects that are able to alter interfaces are noted for 

superoxide dismutase 1 (SOD1) and TTR (Johnson, Connelly et al. 2012, 

Broom, Rumfeldt et al. 2015). This is presumably the underlying reason to how 

such a destabilising effect was calculated for this mutation by FoldX, 

ELASPIC, MutaBind and BeAtMuSiC. Indeed high-resolution analysis of this 

Figure 32  Location of key tyrosine residues in VL AL-103. Location of Tyrosine 

32, 91 and 96 are shown (red) as side chains in each protein chain of the AL-103 

(purple) dimer structure. While Y32 is located away from the interface, Y96 occupies 

a key position within the dimer interface. Figure adopted from (DiCostanzo, 

Thompson et al. 2012) 
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mutation presented later on in this chapter reveals changes involving these 

residues (Figure 43). 

4.2.2. The effect of REC-like mutations on the dimer interface 

 

Having highlighted the ability of a number of REC-like mutations to reduce the 

binding affinity of the LEN dimer, specifically Tyrosine residues 32, and Y96, 

we next wished to identify which mutations could possibly dictate the 

orientation of LEN (control dimer). To assess this, the differences in the 

geometrical and energetic properties of both canonical and non-canonical LEN 

dimers harbouring a single REC like mutation were compared (Table 11). As a 

control, we also include a structure of LEN that is posed into a 180 o non-

canonical arrangement that is reputed to be non-physiological, as this 

structure was found to form a canonical dimer upon crystallisation in multiple 

studies (Stevens, Raffen et al. 1995, Huang, Chang et al. 1997, Pokkuluri, 

Huang et al. 1998). 
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Table 11 Interfacial analysis of LEN harbouring a single REC-like mutation. A 

single REC-like mutation was incorporated into the dimer of LEN (PDB ID: 1LVE). 

Structures were posed into two orientations (canonical ⇈ and non-canonical ⇅ with 

arrows indicating the direction of the monomer) and the energetic features of each 

interface calculated by PISA. Descriptions and their abbreviations are presented 

earlier in Table 3 and are taken from PISA documentation. Residues located at the 

interface are highlighted (✓). 

 

A: INDIVIDUAL RESIDUE CONTRIBUTIONS 

 LEN L15P S27a
N 

V27b
L 

Y27d
D 

S27e
A 

N28F S29D K30T Y32T T53S Y96P 
 

S97T 
 

Q100
G 
 

L104
V 

Ori 
X-ray crystal determined canonical dimer A⇈B 

IA
 

747.
2 

746.
5 

753.
5 

687.
1 

721.
2 

730.
5 

720.
9 

692.
2 

725.
4 

729.
0 

745.
6 

653.
7 

723.
7 

729.
2 

727.
9 

iNres 24 24 22 21 22 22 21 19 21 22 24 23 20 24 23 

BE -13.6 -13.6 -12.0 -10.0 -13.2 -13.8 -12.9 -10.7 -13.0 -13.0 -13.5 -13.0 -13.6 -13.1 -10.6 

∆iG -10.9 -10.9 -13.8 -13.3 -11.4 -11.1 -10.3 -8.3 -10.3 -10.4 -11.7 -10.4 -10.0 -10.4 -13.3 

∆G
dis

 2.1 2.1 2.1 2.1 1.8 1.8 2.3 1.5 -0.8 1.6 1.6 1.1 2.1 1.6 1.8 

HB 6 6 4 4 4 6 6 2 6 6 4 6 8 6 6 

SB 0 0 0 4 0 0 0 4 0 0 0 0 0 0 0 

 

 

B: INDIVIDUAL RESIDUE CONTRIBUTIONS 

 LEN L15P S27a
N 

V27b
L 

Y27d
D 

S27e
A 

N28F S29D K30T Y32T T53S Y96P S97T Q100
G 

L104V 

Ori 
Non-canonical “flipped” dimer A⇅B 

IA
 

635.
6 

717.
0 

747.
7 

753.
9 

738.
5 

698.
5 

734.
3 

709.
8 

808.
9 

840.
3 

692.
1 

612.
8 

802.
5 

757.
5 

833.0 

iNres 20 22 22 20 24 19 21 20 22 23 19 18 23 22 22 

BE -
11.2 

-12.9 -13.4 -13.0 -13.8 -12.7 -13.8 -13.3 -12.4 -13.4 -11.4 -10.1 -12.0 -11.6 -13.6 

∆iG -
10.3 

-10.2 -10.8 -12.0 -11.2 -10.9 -12.9 -10.6 -10.1 -10.0 -8.1 -7.7 -9.7 -9.2 -10.4 

∆G
dis

s
 

-0.2 1.4 2.0 2.3 2.4 1.6 2.3 1.9 1.0 2.0 -0.1 -1.3 -0.6 0.1 2.1 

HB 2 6 6 4 6 4 2 6 2 6 4 2 2 2 4 

SB 0 0 0 0 0 0 0 0 4 2 4 4 4 4 4 
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A previous comparison between LEN dimers harbouring individual SMA-like 

mutations revealed that only a fraction was able to destabilise the canonical 

dimer of LEN (Table 5). These mutations (namely Q89H and Y96Q) were also 

restricted to the CDR3 region of the protein. In contrast, PISA identified that 

almost all of the REC-like mutations shown here (Table 11) have destabilising 

effects that extend further than merely the binding energy shown in  

Table 10, and are not confined to a specific CDR or FR. Interestingly, 

substantial differences emerge even between mutations that occur at identical 

positions in SMA which suggests it is not only the location but also the intrinsic 

properties of the mutation. For example, the canonical LEN dimer harbouring 

SMA-like mutation K30R had no effect on any property of the dimer interface 

(Table 5) and S29N had only marginally destabilising effects (IA of 742.3 Å² in 

comparison to 747.2 Å² of the control structure (Table 5). REC-like mutants 

S29D and K30T however, are able to decrease the Interfacial area, the 

number of interfacial residues, the binding energy and the free energy of 

dissociation in comparison to control structure (Table 11 A).  Whilst the K30T 

LEN canonical model (Table 11 A) has only marginal differences in a number 

of energetic and geometrical properties in comparison to the control structure, 

it is characterised by a significantly lower free energy of dissociation (ΔGdiss -

0.8 kcal/mol in comparison to 2.1 kcal/mol), where a negative value is 

indicative of an unstable structure (Krissinel and Henrick 2007, Tomovic and 

Oakeley 2008, Gopavajhula, Chaitanya et al. 2013, Ravn, Madhurantakam et 

al. 2013). This mutation is however, able to stabilise the non-canonical LEN 

structure (Table 11 B) which is in agreement with experimental data, where 

LEN harbouring the K30T mutant crystallised as a non-canonical dimer (PDB 
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ID: 4LVE (Pokkuluri, Huang et al. 1998). Unexpectedly, even residues situated 

outside of the canonical-dimer interface (assessed by PISA) (highlighted (✘) in 

Table 11 A) are able to alter a number of energetic and geometrical properties 

and inter-domain interactions (which was also reflected in some of the values 

presented in  

Table 10, yet were not identified by FoldX). This may suggest that these 

mutations may be able to induce downstream effects that lead to alterations 

within the interface, a feature that is probed further by structural analysis later.  

As previously mentioned, an aromatic or a hydrophobic residue at 

position 96 is key in maintaining dimerisation ability (Fred J. Stevens 1980). In 

SMA, the tyrosine at this position is mutated to a glutamine. As calculated by 

FoldX and a number of other platforms, this mutation was particularly 

destabilising to the dimer interface (Table 4). Generating a structure 

harbouring this mutation also revealed its ability to destabilise not only the 

canonical LEN interface, but also the altered interface, where negative ∆Gdiss 

values (-0.2 kcal/mol) indicate that this was an unstable association (Table 5). 

(Krissinel and Henrick 2007, Tomovic and Oakeley 2008, Gopavajhula, 

Chaitanya et al. 2013, Ravn, Madhurantakam et al. 2013). Here, the REC-like 

mutation Y96P is also able to destabilise the canonical dimer (estimated free 

energy of dissociation), but this is to a lesser extent than Y96Q. Unlike Y96Q, 

this residue is unlikely to dictate the orientation of the dimer as it is also not 

stable in the non-canonical structure of LEN. It is worth noting that overall most 

of the REC-like mutations actually disfavour the canonical structure and favour 

the non-canonical form, where REC crystallised in non-canonical state. 
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4.2.3. Changes in VL stability as a consequence of REC-like 

mutations 

A recent publication by Priyabrata Panigrahi et al., employs the use of iRDP, 

(a web server that houses iMutants, iCAPS, and iStability) to elucidate 

stabilising and destabilising mutations by assessing their individual 

contributions to protein thermodynamic stability. Pertinent to investigation is 

their attempt to match the highly destabilising nature of L15P, which was 

previously shown to be destabilising (ΔΔGunf +1.7 kcal/mol) by chemical 

induced equilibrium unfolding methods, and also tested positive for fibril 

formation (Table 12) (Raffen, Dieckman et al. 1999). Unfortunately, the digital 

platforms used within this study were not able to accurately predict the highly 

destabilisation nature of this mutation, which actually calculated the mutation 

to be stabilising (Panigrahi, Sule et al. 2015). We have experienced 

inconsistencies within other chapters, we combine these results along with 

current literature and structural information (later document in this thesis) to 

reach a more educated conclusion into the destabilising, neutral or stabilising 

nature of each mutation rather than taking the predicted values on face value 

alone. The ability of the remaining six REC-like mutations (S27aN, S27eA, 

S29D, Y32T, T53S, Q100G) to alter the thermodynamic stability of LEN were 

not investigated in the original study performed by Raffen et al (Raffen, 

Dieckman et al. 1999), and to our knowledge, have not been assessed by 

either experimental or computational methods to date. Here, we assessed the 

ability of a particular mutation to alter the folding stability (∆Gfold) of the 

reference structure (LEN monomer) using FoldX and a number of other 

complementary digital platforms.  
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Table 12 Structure-based energy calculations of REC like mutations. 

Monomeric LEN (PDB:ID 1LVE) was subject to the Rosetta based energy 

minimisation procedure and mutated using FoldX, SDM, DUET,  and I-mutant 

3.0.  Software was used to calculate the changes in free energy of unfolding (∆∆Gfold) 

and is expressed as kcal/mol. Software and their associated cutoff for a neutral 

mutation (indicated by +-) are as follows: FoldX +-0.46 kcal/mol; mCSM, SDM and 

DUET +-0.5 kcal/mol;  (not reported) I-mutant 3.0 +- 0.5 kcal/mol. Calculations of 

thermodynamic stability (displayed as ∆∆Gunf made from experimental methods and 

the ability of each mutant structure to form amyloid fibrils is experimental data 

extracted from the following publication (Raffen, Dieckman et al. 1999). Values are 

colour coded according to their ability to stabilise (green) or destabilise (red) the 

structure. Neutral mutations are highlighted in blue. ND = not determined.  

Mutation FoldX mCSM-
stability 

SDM DUET Eris  

 

I-mutant 
3.0  

CD - 

∆∆Gunf 

Ability 
to form 
amyloid 

Location 

LEN - - - -  - - ✘ - 

L15P 0.82 0.59 -0.80 -0.53  6.91 -1.34 1.7 ✓ FR1 

S27aN 0.64 -0.11 -0.08 0.09 5.05 -1.12 ND ND CDR1 

V27bL 0.88 -0.33 0.73 -0.15 -6.93 -1.12 -0.7 ✘ CDR1 

Y27dD -0.03 -0.37 -2.9 -0.34 -0.86 -1.04 -2.7 ✘ CDR1 

S27eA -0.07 -0.48 0.16 -0.35 -1.07 -0.56 ND ND CDR1 

N28F -0.98 1.17 0.62 -1.30 0.86 -0.17 1.7 ✓ CDR1 

S29D -0.25 -0.24 0.62 0.49 -2.34 -0.21 ND ND CDR1 

K30T 1.31 1.32 -0.40 -1.14 2.28 -0.73 1.4 ✓ CDR1 

Y32T 6.77 2.29 -1.07 -2.33 9.35 -1.38 ND ND CDR1 

T53S 0.69 1.10 -0.97 -0.99 3.12 -0.45 ND ND CDR2 

Y96P 0.10 1.18 -3.80 -1.26 6.11 -0.78 1.2 ✓ CDR3 

S97T 0.89 0.82 -0.15 -0.78 -1.04 -0.66 -0.6 ✘ CDR3 

Q100G 1.64 0.59 -3.00 -0.77 4.10 -1.13 ND ND FR4 

L104V 0.81 1.80 -0.39 -1.81 -1.47 -1.91 ND ND FR4 

REC - - -   - 4.4 ✓ - 
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The single mutants L15P, N28F, K30T and Y96P have previously 

demonstrated (experimentally) the ability to globally destabilise the LEN 

monomer (∆∆Gunf +1.70, 1.70, 1.40 and 1.20 kcal/mol respectively) and tested 

positive for fibril formation. In agreement with these experimental values, 

L15P, K30T and Y96P were shown to consistently destabilise the monomer by 

all digital platforms. N28F however was shown to be stabilising by FoldX, SDM 

and I-mutant 3.0. In contrast to the software iRDP (mention previously) all 

programs described here were able to consistently highlight the destabilising 

nature of L15P.  

For single mutation Y96P, FoldX was unable to predict the highly 

destabilising nature of this mutation (∆∆Gfold + 0.10 kcal/mol) in comparison to 

experimental values (∆∆Gunf 1.2 kcal/mol). However, Eris was able to highlight 

the destabilising nature of this mutation (∆∆Gfold + 6.11 kcal/mol), and overall 

proved to be the most sensitive platform, by its ability to consistency predict 

stabilising and destabilising mutations in comparison to experimental data. 

Interestingly, the Y96P mutation was consistently shown by each platform to 

weaken the stability of the dimer (∆∆Gbind + 0.39, 1.98, 1.32, 3.00, 4.99 by 

FoldX, mCSM:PPI, ELASPIC, MutaBind and BeAtMuSIC respectively ( 

Table 10). This data suggests that the mutation possesses the ability to 

simultaneously alter the binding and folding energy.  

Out of all REC-like mutants, Y32T is predicted to be the most 

destabilising mutation by FoldX (referring back to our original program used for 

a benchmark) with a value of ∆∆Gfold + 6.77 kcal/mol. This is shared amongst 

all platforms aside from SDM (which suggests Y96P is the most destabilising).   
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Based on the observation presented here, this suggests that Y32T is 

able to simultaneously destabilise binding of the dimer (ΔΔGbind 2.50 kcal/mol 

by FoldX  

Table 10) and the stability of the monomer (ΔΔGbind 6.77 kcal/mol by 

FoldX). Analysis of changes to the folding energy of mutants that are located 

within the CDR1 region that have no associated experimental data (S27aN, 

S27eA, S29D) shows it is unlikely that they are able to destabilise the native 

fold of the protein sufficiently to promote aggregation.  

Mutants T53S and Q100G were consistently shown to alter the folding 

energy by FoldX (ΔΔGfold of +0.69 and 1.64 kcal/mol) and ERIS (ΔΔGfold of 

+3.12 and 4.1 kcal/mol). Specifically, ERIS considers both of these mutations 

to be more destabilising than K30T which had a calculated ΔΔGfold of 2.22 

kcal/mol (calculated by ERIS). This mutation has shown to be destabilizing by 

experimental methods (∆∆Gunf + 1.40 kcal/mol) and tested positive for fibril 

formation. Based on this information, (where T53S and Q100G significantly 

exceed the calculated destabilizing value for K30T) it is possible then, that 

these mutations destabilise the native fold of LEN sufficiently enough to 

promote formation, and are later explored on a structural level. Unfortunately, 

a disagreement between the programs used to calculate the free energy 

burden for the mutant L104V means this mutation needs to be probed further 

by structural analysis.  
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4.2.4. Modelling the effect of REC-like mutation L15P on protein 

structure  

 

To provide a structural link to how certain REC-like mutations confer a 

profound or negligible effect on the folding free energy ΔGfold (presented in 

Table 8) or binding free energy ΔGbind (Table 12), this section performs an 

exhaustive analysis to assess the consequences of each mutation at atomic-

level. Firstly, the REC-like P15L mutation was examined. This mutation, is a 

solvent accessible residue (52.80% calculated by mCSM-interface) located 

within a β-turn that links strands A and B. Similar to the SMA-like P40L 

mutation, this substitution also occurs within a highly conserved framework 

region, a portion of the variable domain that is not particularly susceptible to 

somatic mutations in comparison to CDR regions that regularly undergo 

somatic mutation to provide high antigen specificity (Poshusta, Sikkink et al. 

2009). A previous investigation performed by Raffen and co-workers found 

that LEN harbouring the L15P mutation was dramatically less stable (∆∆Gunf 

1.7 kcal/mol) and tested positive for fibril formation (Raffen, Dieckman et al. 

1999) which is in agreement with our own computational analysis of this 

mutation (Table 12). 

To provide a rationale to the highly destabilising nature of this mutation, 

the authors drew attention to a previous study that compared McPC603, a 

murine κ light chain that differs in 23 residues to LEN with two other proteins of 

similar structure; 2IMM immunodeficiency virus-type 1 (1ACY), and Fab17-IA 

(1FOR) (Huang, Chang et al. 1997). The native structure of McPC603 contains 

an Alanine at position 15, where 1FOR contains a proline. 1ACY on the other 

hand contains a Leucine at this position. Alanine, proline and Leucine are the 
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most common residues to occur at this position (as documented in the Ig 

database (Hutchinson and Thornton 1994) yet Leucine at this position is the 

only one of these three to participate in long-range interactions which are 

believed to contribute positively to protein stability (Ohage, Graml et al. 1997).  

To explore if the loss in thermodynamic stability seen in the L15P of 

LEN mutant could indeed be attributable to a loss in the stabilising interactions 

highlighted by Ohage et al., the unaltered crystal structure of LEN (1LVE.pdb) 

was directly compared to a structure of LEN, harbouring the L15P mutant. 

Surprisingly, neither display interactions that resemble those highlighted by 

Ohage et al., in the crystal structure of 1ACY. Alternative crystal packing 

arrangements could be an explanation to the visual differences observed 

between the structures, i.e. a loop may become trapped in one particular 

conformation (Rapp and Pollack 2005), but we also noticed a lack of 

interactions even when performing Rosetta based geometry optimisation of the 

LEN crystal structure and examining the best ranking model. We acknowledge 

that Rosetta is unlikely to predict dramatic changes of protein structure in 

comparison to a dedicated molecular dynamics suite however, the program is 

able simulate a 3 Å movement (Rocco Moretti 2012), and so, we would expect 

the hydrophobic side chain of Leucine 15 to occupy this cavity and participate 

in aforedescribed interactions if the conformation was deemed energetically 

favourable. In this scenario, it is then difficult to correlate a loss in stabilisation 

energy with lost interactions. This suggests that the interactions observed by 

Ohage and colleagues may be unique to 1ACY. Seeking an explanation to the 

loss in stability, and increase in aggregation propensity specific to this 
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mutation, the crystal structure of LEN was mutated to L15P followed by energy 

minimisation protocol as detailed in the materials and methods section.  

 

 

Figure 33 Computational analysis of mutation-induced structural changes of 

L15P. Dimer structure of native LEN is shown as cartoon overlaid with mutant L15P 

with mutated residue side-chains shown as sticks. RMS values between control LEN 

and mutant are indicated. Expanded regions show an overlay of LEN and LEN 

harbouring the L15P mutant in order to highlight key areas of interest in greater detail. 

Control (C) monomers are shown in pink (monomer A) and blue (monomer B), with 

mutant (M) structures in green (monomer A) and orange (monomer B). No changes in 

hydrogen bonding were detected. 

 

Visual examination of the superimposed mutant and template structures ( 

Figure 33) reveal that the mutation has minimal effect on the monomeric fold 

indicated by an RMS deviation of their α-carbons of 0.021 Å. The backbone 

coordinates of the starting, and mutated residue occupy identical positions, 

and there are no perceivable changes in hydrogen bonding at the site of 

mutation, or between neighbouring residues. We also considered the fixed ϕ 

ψ values of the proline residue and used the software RAMPAGE (Lovell, 

Davis et al. 2003) to generate a Ramachandran plot to see if this residue fall 
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into a disallowed region, however it appears that the mutation does not occupy 

any unfavourable torsion angles and revealed no discernible differences in 

comparison to the control structure (no residues in outlier regions). This 

mutation is not part of an aggregation prone region (assessed by Amylpred2, 

AmyloidFISH and PASTA Figure 29), but surprisingly, Aggrescan3D 

suggested that the structure of LEN harbouring this mutation was less 

aggregation prone (mutant -0.22) than the control structure (control +1.46) 

LEN (Figure 34). 

 

 

 

 

 

 

 

 

 

Further inspection of the crystal structure of LEN reveals that the native 

Leucine forms interactions with the solvent in the crystal structure, but these 

are preserved following mutation. These observations collectively suggest that 

Figure 34  Aggrescan3D prediction profile. Aggrescan3D was used to assess the 

aggregation propensity of LEN (blue) and REC (orange).  The Y axis of the profile 

corresponds to the prediction scores. Positive scores indicate regions that calculated 

to be aggregation-prone. Analysis was performed using a 5Å radius to pinpoint the 

individual residue contributions to overall aggregation potential. 
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the mutation is well tolerated, which is unusual given the destabilising effect of 

the mutation calculated by Raffen et al (Raffen, Dieckman et al. 1999). 

To test if the presence of Glycine 16, a residue neighbouring the 

mutation (13VSLGER18) was accommodating the introduction of proline by 

preventing distortion of the loop, we also created a structure harbouring a 

G16A mutation in addition to L15P. Again, the double mutant displayed only 

minimal differences (data not shown). Unfortunately, the data up to this point 

does not account for the highly destabilising nature of this mutation. Given that 

the removal of a hydrophobic residue from the solvent (Leucine) and 

introduction of proline are both entropically advantageous, and the frequency 

in which prolines are found within loops and β-turns both in nature and in light 

chain variable domains, with proline, alanine and leucine occupying this 

position in 98% of VLs (Ramirez-Alvarado 2012) the experimentally derived 

values of this mutation were puzzling.  

Seeking a more definitive answer, we next considered if the plasticity of 

this β-turn could be altered due to the intrinsic conformational rigidity of the 

Proline. In order to approximate the motion of this loop by simulating its 

motions in solution, a structure harbouring the mutation was subject to 

simulations over a 10-nanosecond timescale using the CABS-FLEX (Jamroz, 

Kolinski et al. 2013) molecular dynamics software (Figure 35).  
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Figure 35  Residue fluctuation profile and structural ensemble of LEN 

containing REC-type mutant L15P calculated using CABS-FLEX.  A single 

leucine to proline mutation in the β-turn of the FR1 region effects loop dynamics at 

three distinct regions; the FR1 (red), CDR1 (orange) and CDR 2 (green). 

Superimposition of all structures acquired from snapshots of time frame. (A) The 

location of the mutation is highlighted (*). (B) The root mean square fluctuations 

(RMSF) of α-carbon atoms per residue plotted as a function of residue against 

fluctuation in Å acquired from a 10 nanosecond timescale.  

 

From the superimposition of alpha carbon fluctuations from control and mutant 

structures the data reveals that the majority of residues remain close to the 

starting conformation (Figure 35). 
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There are however, distinct differences in a minority of residues that are 

limited to three chain segments. Firstly, a decrease in loop mobility over the 

timescale is seen directly at the site of mutation (~1.5 Å), suggesting that 

proline is able to constrain the motions in this FR1 located β-turn. Strikingly 

however, the mutant structure also conveys a decrease in loop motions of the 

CDR1 and (L26c Y27d, S27e and N28F and CDR2 region (E55 and S56) to a 

greater effect of ~  5 Å and ~  2 Å respectively in comparison to the control 

structure. The regions contain residues that would be directly involved in the 

dimer interface. It is interesting to observe changes in loop dynamics that not 

only extend to regions distant to the site of mutation, but seemingly do so 

without severely disrupting core structural elements (as seen for the SMA-like 

P40L mutation (Figure 23) (Saccon, Bunton-Stasyshyn et al. 2013, Broom, 

Rumfeldt et al. 2015).  

Although the difference in energy barriers between structures 

containing each mutation is unknown, it can be argued that a more flexible 

structure should be able to transition through the intermediate state (point b 

Figure 36), into different conformations more easily than a more rigid structure 

(Figure 36). The presence of a proline residue imposes constraints on the 

conformational freedom of the backbone (due to its fixed ϕ, ψ values) re-

arrangement that leucine (a more flexible residue by comparison) otherwise 

permits. Furthermore, the best transition state (energetically) may involve 

disallowed angles which are not accessible with proline, yet are within the 

leucine mutation and so, proline at this position could be expected to present a 

higher energy barrier to folding in comparison to leucine. 
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Figure 36  Schematic illustrating one-dimensional energy surface and energy 

barrier between two protein conformations. In order to adopt a different 

conformation, the protein must traverse an energy barrier that separates two 

separate conformations. The figure shows two minima between two folded states. In 

order for the protein to transition from one state (left, a) to another conformation 

(right, c) it must transition across the energy barrier (middle, b).   

 

 

 

 

 

 

 

 

 

 

 

 

In addition to a change in thermodynamic stability as a consequence of a 

substitution, the location of the mutation also made us consider the potential 

impact on fibrillation kinetics. Previously, Marina Ramirez-Alvarado and co-

workers noted that the intermolecular packing contents of the VL BRE seem to 

resemble the structure of the mature amyloid fibril (Ramirez-Alvarado, De 

Stigter et al. 2007). Similarly, an analysis of the crystal packing of λ6 protein 

6aJL2 containing a P7S mutation performed by Alejandra Hernández-Santoyo 

and colleagues noted that strand B and the N-terminus participate in 

intermolecular interactions that allow for VL monomers to stack (Figure 37 A). 

The P7S mutation in this study appears to override an evolutionary developed 

http://www.sciencedirect.com.liverpool.idm.oclc.org/science/article/pii/S0022283609014326#!
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structural motif, termed the β-bulge which prevents intermolecular interactions 

that may lead to self-association (Hernández-Santoyo, del Pozo Yauner et al. 

2010).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 37 Schematic of VL monomer stacking.  A) Crystal-packing of 6aJL2 

mutant harbouring P7S mutation. Expanded region shows non-canonical orientation 

of dimer with strands A (harbouring the P7S mutation) and strand B labelled.  Image 

adopted from (Hernández-Santoyo, del Pozo Yauner et al. 2010) B) shows 

proposed model of stacking in LEN harbouring L15P mutation. In the canonical 

dimer β -strands A and B do not form any intermolecular contacts. In the non-

canonical dimer, monomers are able to stack. The location of the L15P mutation 

(highlighted red) may facilitate β -strand interactions in a similar manner to P7S. 

Expanded region shows β -strand interactions between LEN monomers harbouring 

mutation.  
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Given the ability of this mutation to subdue the motions of this loop, it may 

present a complementary binding interface that can facilitate β-β strands 

interactions, which was not existent before the L15P mutation. Although 

speculative, the location of this mutation and its ability to form fibrils with 

marginally destabilising effects in comparison to other mutants (Y96 was far 

more destabilising and had a more profound affect in the loss of intermolecular 

contacts) could suggest it has a local structural effect that leads to self-

association, rather than any large global changes that leads to protein 

unfolding and subsequent aggregation. Taken together these observations 

provide a more detailed explanation into the structural perturbations induced 

by the L15P mutation than existing studies.  

 

4.2.5. Modelling the effect of REC-like mutations on protein 

structure: CDR1 

 

Next, we address three of the mutations located within the CDR1 loop region; 

S27aN, V27bL, and Y27dD. The CDR1 region of REC has accumulated the 

largest number of somatic mutations than any other region, but out of all the 

REC like mutants of LEN that occur within this region discussed further on in 

this chapter, Y27dD and V27bL are the only ones so far to experimentally 

demonstrate increased folding stability of ∆∆Gunf -2.7 and -0.7 kcal/mol 

respectively (illustrated in Table 12). For S27aN, such empirical values of 

stability have not been experimentally determined. In silico analysis of the 

mutant structure reveals that the serine to asparagine substitution results in 

small changes in hydrogen bond lengths that are located directly around the 

mutation site. For example, the NH of S27a is hydrogen bonded to the OH 
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Figure 38  Computational analysis of mutation-induced structural changes of 

S27aN. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(S27aN) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Colour coded expanded regions highlight key 

areas of interest in greater detail. The direction of view for these regions is indicated.  

Control (C) monomers are shown in pink (monomer A) and blue (monomer B), with 

mutant (M) structures in green (monomer A) and orange (monomer B) Asterisk 

indicates location of mutation. Perturbation of distal loop that corresponds to 

residues S52-G64 is highlighted (blue oval).  Hydrogen bonds are shown as yellow 

dashed lines with lengths given; changes in lengths are shown in red text on mutant 

images. Red spheres indicate loss of hydrogen bond. 

 

group of the nearby Y27d at a distance of 2.0  Å in the control structure and 

2.2  Å in the mutant (Figure 38).  

 

 

 

 

 

 

It is interesting that such minor structural alterations to the light chain variable 

domain caused by a single mutation (such as that illustrated in Figure 38) can 

potentially alter the hydrogen bonding. However, single mutations in variable 

domains have shown to dramatically change hydrogen bonding networks 

without inducing any large structural changes (Pokkuluri, Raffen et al. 2002). It 

is important to highlight that the cut-off for identifying a hydrogen bond in the 

software used within this thesis is set at 3.5 Å. This is to prevent losing any 
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information where the mean length between donor and acceptor in nature is 

3.0 Å (Dannenberg 1998). It is also important to consider that the 

computational methods described within this work provide us with 

hypothesised changes in hydrogen bonding, the techniques of NMR, X-ray 

crystallography; CD (if there are large structural alterations) and neutron 

scattering would permit these to be confirmed experimentally.  

Visual inspection of the mutant structure allowed us to map changes in 

residues that propagate further than the site of mutation where a change in 

hydrogen bond length between the CO group of Tryptophan 50, and the NH 

group of Serine 52 located on the top of sheet C’’ of the CDR2 region 

respectively in the control (2.2 Å) and mutant (1.8 Å) is observed. However the 

bond between the CO group of Serine 52 and the NH group of Glycine 64 is 

lost, which most likely accounts for the perturbations of Arginine 54- 

Phenylalanine 62 that lay on the loop connecting these two regions (Figure 38 

blue oval).The circular inset (*) shows the extent of the perturbation at the site 

of mutation (values taken from OH group of S27a to the OH group of Y27d – 

illustrated Figure 38) indicating that the slightly larger size of Asparagine side 

chain is easily accommodated in this solvent accessible loop of the CDR1 

region. Given the displacements in hydrogen bond length at the site of 

mutation, the ability to perturb a region located away from the mutation site 

combined with our computational predictions of folding and binding free energy 

changes in the protein ( 

Table 10), slight decrease to the  binding energy in a structure 

harbouring this mutant (Table 11), and slightly more substantial changes in 

folding energies (Table 12), it is likely that this mutation is a moderately 
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destabilising mutation that would have a negligible effect on the folding and 

stability of the protein. In addition to thermodynamic stability changes, 

Aggrescan3D suggests that the mutation decreases aggregation propensity of 

the protein, indicated by a value of -1.33 (in comparison to control of -0.35) 

(Figure 34).  

Next, we inspected the structural differences between the control and 

REC-type V27bL mutant. The conservative substitution of a Valine to Leucine 

residue results in a rather minute displacement of the CDR1 loop (Figure 39 

panel A), and only small movement of residues within the neighbouring CDR3 

region (Figure 39 panel B), most likely to accommodate the slightly larger size 

of the Leucine side chain. Again, this mutation is accompanied with slight 

perturbations in hydrogen bonds between residues local to the mutation site, 

and alike the S27aN mutation a loss in hydrogen bonding between S52 and 

G64 causes movement of the loop that is located between β-strands D and E.   
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Figure 39  Computational analysis of mutation-induced structural changes of 

V27bL. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(V27bL) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Colour coded expanded regions highlight key 

areas of interest in greater detail. Bottom panel shows a side view of the same 

region of the dimer structure that has been rotated by 90o on the x-axis. The direction 

of view for these regions is indicated.  (C) monomers are shown in pink (monomer A) 

and blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B) Asterisk indicates location of mutation. Perturbation of distal loop that 

comprises residues S52-G64 is highlighted (blue oval).  Hydrogen bonds are shown 

as yellow dashed lines with lengths given; changes in lengths are shown in red text 

on mutant images. Red spheres indicate loss of hydrogen bond. In this case, blue 

sphere indicates formation of new hydrogen bond concerning Tyrosine 25. 

 

 

There is however a slightly more dramatic rearrangement involving Tyrosine 

27d. Movement in the CDR1 loop as a result of the Valine to Leucine 

substitution results in a loss of hydrogen bonding with S27a, leaving the Y27d 

to adopt an alternative rotamer, where the residues side chain forms a 

hydrogen bond with the CO group of the main chain of Y92, a residue located 

within the F-G loop of the CDR3 region (within close proximity of residues 

involved within the tyrosine cluster). The close proximity of these aromatics 

may facilitate pi stacking between the residues (Figure 39) which may tether 

the CDR1 loop to the CDR3 preventing any increased motions which may 

expose aggregation prone regions, an important consideration given that the 

CDR1 region in its entirety and a portion of the CDR3 region are predicted to 

be part of an aggregation prone stretch (Figure 29). The resulting Leucine also 

establishes new hydrogen bonds between residues G68. These observations 

may account for the slight increase in stability shown in thermal denaturation 
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experiments where a structure harbouring the V27bL mutation was stabilised 

by -0.7 kcal/mol (Table 12). The most pronounced stabilising effects of any of 

the mutations within this study is Y27dD. The substitution of an aromatic 

Tyrosine for the charged Aspartic acid leads to a large addition of hydrogen 

bonds directly at the site of mutation (Figure 40) which also extends, again to 

the CDR3 region. Such a dramatic increase in the number of hydrogen bonds 

is likely to account for the significant increase in folding stability (ΔΔGunf -2.7 

kcal/mol) demonstrated previously (Table 12) (Raffen, Dieckman et al. 1999).  

To add greater confidence to these results, the predictions here are 

also supported by a former crystallographic study, where a crystal structure 

harbouring the Y27dD mutation (along with a M4L substitution) also revealed 

an increase in hydrogen bonding between S27f (Figure 40) (Pokkuluri, Raffen 

et al. 2002).  

Of particular interest is that the three mutations covered here (S27aN, 

V27bL, and Y27dD corresponding to Figure 38 Figure 39 Figure 40 

respectively) each possess the ability to induce structural changes that 

propagate from the site of mutation to residues that are distant both in 

sequence and structure. Such a “cascade” mechanism is described for other 

REC-like mutations further on in this study, but unique to these three mutants 

is their ability alter structural elements within the CDR3 region, which was 

previously identified to be a key area from analysis of all SMA-like mutations, 

and also their ability to cause movements in the loop located between β-

strands D and E.  Together, these changes largely account for an increased 

RMS over other mutations that occur within a similar region of the protein.  
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An additional LEN to REC mutation that introduces an aspartic acid into 

the hypervariable CDR1 region is S29D. The small polar side chain Serine 29 

forms hydrogen bonds with several surrounding residues (Figure 41) which are 

not disrupted once replaced with an aspartic acid, indicated by a low RMS of 

0.103. There are no experimentally derived values to how this mutation alters 

the stability and aggregation potential of LEN. However, based on our own 

Aggrescan 3D result (Figure 34) and changes to stability (Table 12) it is likely 

that this mutation is stabilising.  

 

Figure 40  Computational analysis of mutation-induced structural changes of 

Y27dD. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(Y27dDL) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Colour coded expanded regions highlight key 

areas of interest in greater detail. Bottom panel shows a side view of the same 

region of the dimer structure that has been rotated by 90o on the x-axis. Control (C) 

monomers are shown in pink (monomer A) and blue (monomer B), with mutant (M) 

structures in green (monomer A) and orange (monomer B). Perturbation of distal 

loop that comprises residues S52-G64 is highlighted (blue oval). Hydrogen bonds 

are shown as yellow dashed lines with lengths given; changes in lengths are shown 

in red text on mutant images. Red spheres indicate loss of hydrogen bond. 
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A comparison between the control and another REC-type mutant of the CDR1 

region, S27eA (Figure 42), shows there are very minor structural changes 

induced by the substitution (RMS 0.223). Alike S27aN, no experimental values 

have been achieved for this mutation, although based on the rather 

insignificant changes, the mutation is likely to be neutral, in its ability to alter 

the binding free energies ( 

Table 10) and was found to be slightly stabilising (for the monomer) in our own 

computational analysis of (ΔΔGfold -0.252, 0.246, 0.62, 0.493, 2.34 kcal/mol by 

FoldX, mcSM-stability, SDM, DUET and ERIS respectively) (Table 12). 

 

Figure 41  Computational analysis of mutation-induced structural changes of 

S29D. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(S29D) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Expanded regions highlight key areas of 

interested in greater detail. Control (C) monomers are shown in pink (monomer A) 

and blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images.  
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In contrast to the aforementioned CDR1 region mutations (S27aN, V27bL, 

S27eA, Y27d, S29D), the remaining mutants of the same region; N28F, and 

K30T demonstrate destabilising effects of +1.37, 1.45, kcal/mol respectively 

(ΔΔGfold experimental calculations). Unfortunately, there was inconsistency 

between the results acquired for N28F in our own computational analysis 

(which showed stabilising and destabiling outcomes) yet, changes to the 

folding free energy for K30T were largely in agreement with experimental data 

(Table 12) where each program was able to calculate the destabilising nature 

of this residue. In addition, Y32T has no accompanying experimental data, but 

was shown largely to be highly destabilising (more so than K30T by our own 

computational analysis (ΔΔGfold +6.7 , 2.29, 1.07, 2.33, 9.35, 1.38 kcal/mol 

Figure 42  Computational analysis of mutation-induced structural changes of 

S27eA. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(S27eA) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Expanded regions highlight key areas of 

interested in greater detail. Control (C) monomers are shown in pink (monomer A) 

and blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images.  
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(Table 12) and was also shown to affect the binding energy of the dimer 

(ΔΔGbind + 2.52 1.14, 1.75, 0.68 kcal/mol) ( 

Table 10). For N28F the decrease in stability (ΔΔGunf +1.7 kcal/mol shown in 

Table 12 is likely to be attributable to the non-conservative replacement of 

asparagine to an aromatic moiety. It is also worth mentioning that this mutation 

granted a significant increase in aggregation propensity (-0.53 for control and 

1.57 for the mutant structure, as assessed by Aggrescan3D (Figure 34). As 

illustrated in Figure 43 the side chain of Asparagine 28 participates in 

hydrogen bonding of 2.2 Å with Y32, a residue located near  β-strand C of the 

CDR3 region and is part of the aforementioned Tyrosine cluster  (DiCostanzo, 

Thompson et al. 2012). Upon mutation, the interaction between these two 

regions is lost Figure 43. This also causes alterations to the hydrogen bond 

length, and angle between residue Y32, and Y91, another residue of the 

tyrosine cluster that was mentioned previously (Figure 32) (DiCostanzo, 

Thompson et al. 2012). Equally, this observation is mirrored in Y32T where 

there are alterations in bond length and angle involving Y91. Despite the distal 

location of the residue to the dimer interface, perturbation to the interactions 

between residues that occur within the CDR3 region, which is involved within 

the dimer interface presumably account for the changes seen to the binding 

free energies documented earlier Table 12. K30T however, does not display 

the downstream changes involving the tyrosine cluster in comparison to the 

other two mutations. Instead, this mutation causes local changes.  
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4.2.6. Modelling the effect of REC-like mutations on protein 

structure: FR4 and CDR3 

 

Next, the structural alterations caused by REC like substitution T53S were 

explored. Inconsistencies between platforms that assessed the changes to the 

binding free energy as a consequence of this mutation motivated us to explore 

this mutation at a structural level ( 

Table 10). Visual inspection reveals that the conservative substitution of 

threonine to serine at position 53 results in a loss of hydrogen bonding that 

extends far from the site of mutation both in sequence and structure (Figure 

Figure 43  Computational analysis of mutation-induced structural changes of 

N28F, K30T and Y32T. Dimer structure of native LEN is shown as cartoon overlaid 

with mutant (N28F, K30T and Y32T) with mutated residue side-chains shown as 

sticks. RMS values between control LEN and mutant are indicated. Colour coded 

expanded regions highlight key areas of interest in greater detail. The direction of 

view for these regions is indicated. Control (C) monomers are shown in pink 

(monomer A) and blue (monomer B), with mutant (M) structures in green (monomer 

A) and orange (monomer B). Hydrogen bonds are shown as yellow dashed lines with 

lengths given; changes in lengths are shown in red text on mutant images. Red 

spheres indicate loss of hydrogen bond. 
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44). Specifically, changes at the site of mutation lead to perturbations that 

extend to the CDR1, CDR3 and FR region (residues used as example 

highlighted in Figure 44). 
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Figure 44  Computational analysis of mutation-induced structural changes of 

T53S. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(T53S) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Colour coded expanded regions highlight key 

areas of interest in greater detail. The direction of view for these regions is 

indicated. For clarity, regions of the structure have additional labelling and have 

been shaded by a coloured sphere (green, pink, blue purple, green orange) which 

match zoomed region. Control (C) monomers are shown in pink (monomer A) and 

blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths 

given; changes in lengths are shown in red text on mutant images. Red spheres 

indicate loss of hydrogen bond. 

 

 

While this mutation causes a loss in interchain hydrogen bond, (between E55 

and residue T94), the interfacial analysis of the dimer harbouring this mutation 

also showed on minimal loss in binding energies (BE of 13.5 kcal/mol in 

comparison to control of -13.6 kcal/mol) (Table 11). Therefore, it is unlikely that 

it would be able to confer any dramatic loss in dimer stability.  

There was much more consistency between programs when calculating 

the ability of this mutation to alter the folding energy, where in every case 

(ΔΔGfold = 0.691, 1.107, 0.97. 0.993, 3.12 and 0.45 kcal/mol assessed by 

FoldX, mCSM, SDM, DUET, ERIS and I-mutant 3.0 respectively) was 

calculated to be destabilising (Table 12). 

Given such profound changes to the intrachain contacts that propagate 

throughout the VL monomer, and the calculated values, this residue is likely to 

alter the stability of the monomer. It is interesting to note that, the 

accumulation of non-conservative mutations at specific structural locations are 

suggested to be key determinants for light chain amyloidogenicity (rather than 
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the quantity of non-conservative mutations) based on a recent investigation 

(Poshusta, Sikkink et al. 2009, Ramirez-Alvarado 2012). Yet, the observations 

here present a unique case where a conservative mutation is able to induce 

quite dramatic effects that may confer increased aggregation potential.  

As documented previously (chapter 2 and 3), the SMA like mutation 

Y96Q resulted in a significant decrease in both binding and folding energies. 

Based on the PISA analysis of canonical and non-canonical dimers harbouring 

this mutation (Table 5), the low energetic values suggested that this mutation 

could in fact destabilise both interfaces (negative ΔGdiss). Examination of 

structures harbouring this mutation revealed dramatic changes in NMR Rex 

value (Figure 21), and both a rearrangement in intra molecular hydrogen 

bonds, and a loss of intermolecular contacts (Figure 28). This residue then, 

may dictate the dissociation of the dimer into aggregation prone monomers, 

and in this state, make them more liable to unfolding. 

 

Here, we further examined the impact of the Y96P mutation (Figure 45) 

and found that even though the substitution occurs in an identical position; the 

mutation is better tolerated than Y96Q. This is not only evidenced by our 

previously calculated changes to inter and intramolecular energies, but there 

are much fewer changes to the structure of LEN harbouring this mutation.  
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The remaining two mutations, Q100G and L104V (S97T also a mutation of 

SMA and was covered in previous chapter) are located in the highly conserved 

FR4 region.  Neither mutation has any associated experimental derived values 

of binding or folding free energies. Introducing mutant Q100G into the 

structure of LEN was accompanied by mostly low values for ΔΔGbind (-0.06, 

0.007, 0.692 kcal/mol by FoldX, mCSM, ELASPIC, where MutaBind predicted 

this mutation to be destabilising 1.23 kcal/mol) despite its interfacial location 

(Table 12). PISA interfacial analysis suggested this mutation also had only a 

Figure 45  Computational analysis of mutation-induced structural changes of 

Y96P. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(Y96P) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Colour coded expanded regions highlight key 

areas of interest in greater detail. Bottom panel shows view of structure rotated by 

~45o on Y-axis Control (C) monomers are shown in pink (monomer A) and blue 

(monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths 

given; changes in lengths are shown in red text on mutant images.  
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minor effect on the binding energy of the canonical interface (BE 13.1 kcal/mol 

in comparison to control of BE 13.6 kcal/mol) (Table 11). Visual inspection of 

this structure (Figure 46) revealed no discernible changes between interfacial 

contacts; collectively suggesting that the mutation is unlikely to alter the 

stability of the dimer. This mutation was however, consistently computed to 

reduce folding free energies (Table 12) and was calculated to have a more 

destabilising effect than K30T (which tested positive for fibril formation) 

(Raffen, Dieckman et al. 1999).  

One consideration for this glutamine to glycine mutation is the 

increased conformational freedom, which arises through the less restricted 

phi/psi angles of the protein backbone, potentially resulting in a more 

favourable entropy change for the unfolded state.  In addition, inspection of the 

control structure reveals that Gln in this position participates in hydrogen 

bonding between residues of neighbouring β-strands which contribute to 

overall stability. Upon substitution to a glycine these hydrogen bonds are no 

longer formed (Figure 46) which is presumably due to the small size of the 

residue (lack of side chain). Interactions between residues Thr102 of β -strand 

G and Tyrosine 86 of β -strand F (Figure 46) are also altered. This loss of 

hydrogen bonding in a highly conserved FR4 region of the protein that rarely 

undergoes mutation, may increase chain flexibility and also remove the 

enthalpic contribution that these hydrogen bond provide to overall stability. The 

net result of these effects in the model is not dramatic, however these 

observations in combination with the computed ΔΔGfold, suggests that it is 

possible that this mutation has a destabilising outcome.  
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Finally, we inspect the modelled structure of LEN L104V. The inconsistencies 

in calculated ΔΔGbind values acquired for this mutation (ΔΔGbind + 0.713, 0.678, 

1.39 by mCSM, ELASPIC and Mutabind yet was shown to be neutral by 

FoldX, and stabilising (-0.32 kcal/mol) by BeAtMuSIC) ( 

Table 10) again prompted us to assess the structural changes of this mutation 

in order to provide a more sophisticated understanding into the consequences 

of this mutation merely than taking the calculations at face value.  

 

Figure 46  Computational analysis of mutation-induced structural changes of 

Q100G. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(Q100G) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Expanded regions highlight key areas of 

interest in greater detail. Control (C) monomers are shown in pink (monomer A) and 

blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images. Red spheres indicate 

loss of hydrogen bond. 
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Inspection of the control and mutated structure shows that there are no major 

perturbations between the structures at the site of mutation, and overall the 

structure remains largely unaltered (RMS 0.112). Given the location of the 

mutation, it is unlikely to play any significant part in weakening the dimer, there 

are however noticeable losses and alterations to the hydrogen bonding 

network between β-sheets. Based on these observations and the 

computational values (ΔΔGfold 0.810, 1.805, 1.813, 1.91 of FoldX, 

Figure 47  Computational analysis of mutation-induced structural changes of 

L104V. Dimer structure of native LEN is shown as cartoon overlaid with mutant 

(L104V) with mutated residue side-chains shown as sticks. RMS values between 

control LEN and mutant are indicated. Expanded regions highlight key areas of 

interested in greater detail. Control (C) monomers are shown in pink (monomer A) 

and blue (monomer B), with mutant (M) structures in green (monomer A) and orange 

(monomer B). Hydrogen bonds are shown as yellow dashed lines with lengths given; 

changes in lengths are shown in red text on mutant images. Red spheres indicate 

loss of hydrogen bond. 
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mCSMstability, Duet and I-mutant 3.0) it is possible that this mutation has a 

destabilising effect. 

 

4.2.7. Main findings and summary 

Summary 

Using a number of individual platforms to assess the binding and folding free 

energies as a consequence of REC-like mutations, has highlighted 

destabilising and stabilising mutations that not only complement in vitro 

experiments performed by other groups, but also highlight new residues that 

have previously been uncharacterised. Complementing the calculated inter 

and intra molecular free energy changes with an associated structure may 

help reveal how mutations cause a loss, or gain of intra-domain/protein 

contacts which can be linked to a change in stability in novel mutations of 

other VL previously uncharacterised.  

Highlights 

In silico analysis of each REC-like mutation revealed that Y32T and Y96P, 

residues located within the CDR1 and CDR3 region were the two most 

strongly destabilising mutations that led to large reduction in binding energies 

in a number of software (Table 11). Changes to ΔΔGbind from the remaining 12 

REC-like mutations were largely minimal by comparison. In the previous 

chapter, Y96Q was able the only SMA-like residue to disrupt the energetic 

features of both canonical and non-canonical dimers significantly enough that 

that the structure was indicated as unstable based on the predictions by PISA. 

By comparison, Y96P discussed in this chapter was unable to destabilise the 

interface to the same level (Table 11). This prediction agrees with the 
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observation made by Stevens et al., and reaffirm the fact, that an aromatic or 

hydrophobic residue at position 96 is integral to maintaining a stable dimer 

(Fred J. Stevens 1980). Unusually, Y32T, a residue located away from the 

dimer interface was also able to alter ΔΔGbind. We suggest that its close 

proximity to Y91 and Y96, aromatics that are part of a conserved tyrosine 

cluster may account for the observed changes. As the amyloid formation in AL 

amyloidosis is recognized to be a two-state process where dimer dissociation 

precedes aggregation, it is likely that Y96 is a key residue in this process and 

may shift the equilibrium from dimers to more aggregation prone monomers in 

solution.  

Earlier findings have shown the L15P mutation was able to reduce the 

thermodynamic stability (ΔΔGunf +1.7 kcal/mol) and induce fibril formation 

(Raffen, Dieckman et al. 1999) but molecular level rationale for this finding has 

gone unknown. Interestingly, no changes were observed in our own 

computational analysis; however the nature of the residue (fixed phi, psi 

angles of the protein) and position of this mutation also made us consider local 

alterations rather than global destabilising effects where we found this solvent 

exposed residue to possibly allow for intermolecular -strand interactions to 

form.  

For the work conducted by Davis et al., who assessed the changes in 

stability of many of the REC-like mutations in conditions where the light chain 

variable domain is largely in the monomeric state, the results in this chapter 

complement these original findings with high resolution structural models, but 

also reveal that Q100G and T53S, two mutations that were previously 

unobtainable by experimental methods are likely to be destabilising to the 
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monomer, but not the dimer. A significant loss in hydrogen bonding at highly 

conserved β-sheet regions may be critical to maintaining stability and the fold 

of the monomer, allowing it to transition from the native Ig domain and sample 

states that are more aggregation prone more easily. Overall, these results 

suggest that it is likely that the CDR3 region is a key mediator in dimer 

stability, where mutations that occur in the conserved framework regions play 

a more significant role in the stability of the light chain monomer. It is also 

important to consider not only the location of the mutation, but also the nature 

– conservative to non-conservative substitutions.   

 

 

 

 

 

 

 

 

 

 

 

5. The recombinant expression and purification 

of the light chain variable domains; SMA and 

LEN 
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5.1. Introduction 

The 114-amino acid immunoglobulin light chain variable domain SMA and LEN 

were originally isolated from patients suffering from either multiple myeloma or 

light chain amyloidosis (Stevens, Raffen et al. 1995). SMA is amyloidogenic in 

vivo but LEN adopts a stable dimer, displaying amyloidogenic properties under 

destabilising conditions only in vitro. A recombinant E. coli protein expression 

system was previously established for these VL proteins, employing lysosyme 

cell disruption and purification using a multi-step chromatographic strategy of 

strong anion and cation exchange followed by gel filtration (Stevens, Raffen et 

al. 1995). For LEN, yields were reported to be around 10 mg/L, while SMA was 

reported to be less. Rognoni et al., 2013 reported an optimised procedure for 

obtaining light chain variable domains through recombinant expression and 

refolding from inclusion bodies (Rognoni, Lavatelli et al. 2013). After numerous 

trials, we found that this method was not successful for SMA and LEN 

resulting in a lower recovery from refolding, and elution with many co-

contaminants. In addition, refolding is renowned to result in variable 

isomerisation undesirable for subsequent structural analysis (Vallejo and 

Rinas 2004, Berkmen 2012, Singh, Upadhyay et al. 2015). We also found that 

previous reports for expression of these proteins have sparse details, use 

expensive or out-of-date equipment and cell lines (e.g. JM83). We present 

here an alternative strategy exploiting periplasmic expression of the two light 

chain proteins SMA and LEN that improve on previous methods, employing a 

modern cell line optimised for the synthesis of toxic proteins. (Stevens, Raffen 

et al. 1995, Khurana, Souillac et al. 2003). Periplasmic expression can result in 

suboptimal yields and incomplete removal of peptide leader sequences 
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(Rognoni, Lavatelli et al. 2013), however we show that in our system we have 

improved yields, comparable with those obtained through the more complex 

refolding process and have complete removal of the leader sequence 

confirmed by mass spectrometry. We propose a simplified purification process 

and avoid the use of lysozyme which can cause complications in purification. 

We confirm with CD, multi-dimensional NMR and SEC-MALLS that the 

proteins produced here have secondary structure consistent with other VLs.  

5.2. Materials & Methods  

5.2.1. Plasmids and cloning 

 

The LEN and SMA genes (Table 13) were synthetically produced by Life 

Technologies and inserted into pOPINO plasmids by the Oxford Protein 

Production Facility. pOPINO comprises a signal sequence based on OmpA 

prior to the protein of interest (POI), followed by a lysine residue and 

polyhistidine tag with ampicillin resistance (Figure 48). To remove the 

polyhistidine tag at the C-terminus, a premature stop codon was introduced 

directly upstream of the oligonucleotide containing lysine and 8 histidines by 

mutagenesis using the Site-directed, Ligase-Independent Mutagenesis (SLIM) 

method (Chiu, March et al. 2004) to generate the plasmid named LEN and 

SMApOPIN_ompAstop. All plasmids were sequenced prior to use (Source 

Bioscience). A detailed procedure for the generation of the plasmids is 

described in the following sections. 

Table 13  Biochemical properties of SMA and LEN. Amino acid sequence of the VL 

domains were acquired from the Amyloid Light Chain Database (ALBase Boston 

university) using the patient ID’s as search. Isoelectric point (pI) and molecular weight 

were derived using Expasy (Wilkins, Gasteiger et al. 1999)  
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Variable 
domain 

Molecular 
weight (Da) 

Isoelectric 
point (pI) 

Amino acid sequence 

SMA 12735.19  7.96  DIVMTQSPDSLAVSLGERATINCKSSQSVLY
SSNNRNYLAWYQQKLGQPPKLLIYWASTRE
SGVPDRFSGSGSGTDFTLTISSLQAEDVAV
YYCHQYYSHPQTFGQGTKLELKR  

LEN 12640.08  7.92 DIVMTQSPDSLAVSLGERATINCKSSQSVLY
SSNSKNYLAWYQQKPGQPPKLLIYWASTRE
SGVPDRFSGSGSGTDFTLTISSLQAEDVAV
YYCQQYYSTPYSFGQGTKLEIKR 

5.2.2. Site directed mutagenesis 

To remove the polyhistidine tag at the C-terminus, a premature stop codon 

was introduced directly upstream of the oligonucleotide coding for this region. 

SLIM protocols for a PCR-mediated mutagenesis were used to introduce the 

premature stop codon. This procedure uses a form of Inverse PCR, where the 

primers used to amplify the template DNA strand are in the reverse direction 

(Ochman, Gerber et al. 1988) A total of four primers; two forward and two 

reverse are used in the reaction. Each primer pair contains a long tailed primer 

and a short set of primer (FT, RT and RS, RL) where the tailed primers are 

designed to carry the mutation on their complementary sequences, located at 

the 5’ end. A full description for this procedure can be found in the original 

publication (Chiu, March et al. 2004). Primers used for the mutagenesis 

procedure were designed in Bioedit (Hall 1999) and synthesised (Sigma 

Aldrich)  

 

Table 14  Biochemical properties of primers used for mutagenesis. Modifications 

to introduce a stop codon to prevent the transcription of nucleotides encoding for a C-

terminal polyhistidine tag were performed using the SLIM mutagenesis procedure. 

Two sets of primers (FT, Rs and RT and RL described below) were used in the Inverse 
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PCR reaction (SLIM) where the tailed primers harbour the mutation. The stop codon 

“taa” located in the tailed (reverse and long) is underlined.  

 

Primer Nucleotide 
sequence (5’ to 

3’) 

Length GC content (%) Melting 
temperature (In 

o
C) 

Information 

Forward long 5’ TAAACGCtaaA
AACATCACCA
TCACCATCAC 

31 38 59 Forward primer 
for site-directed 

mutagenesis 
engineered to 

introduce a 
premature stop 

codon 

Forward short 5’ CACCATCACC
ATCACTAAGT

GATT 

24 41 54 Forward primer 
for site-directed 

mutagenesis 
engineered to 

introduce a 
premature stop 

codon 

Reverse long CACCAAACTG
GAAATTAAAC
GCtaaAAACAT

C 

32 34 58 Shown in 
reverse 

complement 

Reverse short  GTCAGGGCAC
CAAACTGGAA

ATT 

23 47 51 Shown in 
reverse 

complement 

 

To start the SLIM procedure, KOD Hot Start polymerase (0.5 μL (0.02 units/μL-

1) Millipore) was added to a mixture of 0.5 μL (5 ng) plasmid; 2.5 μL (10 mM) 

Betaine; 2.5 μL (0.2 mM final concentration) dnTPs (Novagen); 1.5 μL (1.5 

μM) MgSO4; 2.5 μL 10x buffer KOD buffer (Novagen) and nuclease-free water 

(final volume 24.5 μL), and the reaction was performed using a mastercycler 

personal (eppendorf) with a polymerase chain reaction (PCR) programme 

consisting of: 25 cycles of denaturation 98 oC, 2 min 30 s; one cycle 98 oC for 

25 seconds, annealing 50 oC, 35 s and extension 68 oC, 7 m before the 

temperature was held at 4 oC.  A 5 μL sample was retained for analysis by 

agarose gel electrophoresis. PCR samples were purified by a PCR Clean-Up 

kit (GenElute Sigma-Aldrich) according to manufacturer's guidelines, 

employing a cooling centrifuge where necessary. Template DNA was removed 
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from the mixture (50 μL) by the addition of DpnI (1 μL) and 6 μL 4-CORE 10x 

buffer (New England Biolabs) and the reaction volume made up to 60 μL with 

nuclease-free water and incubated at 37 oC for 90 min. Digested product and 

remaining restriction enzyme were removed from the mixture (GenElute 

Sigma-Aldrich) according to manufacturer's guidelines with a minor 

modification in the elution volume (35  μL). 25 μL of buffer (25 mM Tris pH 8 

and 150 mM) were added to reach a final volume of 60 μL. The reaction 

mixture was subject to an annealing step of the generated overhangs using a 

PCR programme consisting of 2 cycles of denaturation (98 oC, 3 min ), 

extension (65 oC, 5 min) and cooling (30 oC, 1 min) before storage ( - 20 oC). 

The newly generated constructs, named SMA_ompAstop and LEN_ompAstop 

were used as integration plasmid for the production of recombinant VL. 1 μL 

(100 ng/μL) of each plasmid was transformed into E.coli XL1 cells for plasmid 

stock preparation or E.coli C41 cells for protein production. DNA sequencing 

and assessment of purity was performed as previously described.  

5.2.3. Agarose gel electrophoresis 

Agarose gels cast at 0.8% were used to confirm that PCR reactions and DNA 

digestions were successful. Agarose (0.6g Bioline) was dissolved in 75 mL 

tris-acetate-EDTA (TAE) by heating, supplemented with 1 μg/mL of ethidium 

bromide, and the gel loaded with 5 μL of PCR product containing 2 μL of 

loading buffer (6x gel loading dye purple New England Biolabs) and run at 90 v 

for ~ 60 min. A 1 kb DNA ladder (Hyperladder 1kb).  
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5.2.4. Transformation of bacterial cells  

1 μL (100 ng/μL) of the plasmid; SMApOPIN_ompAstop or 

LENpOPIN_ompAstop were transformed into ~50 μL of E. coli XL1 (DE3) 

using the available protocol supplied by Addgene (Addgene 2017). 

Transformation occurred via heat shock at 42 oC for 45 s followed by, a 5 min 

4 oC incubation step before the transformation mixture were incubated in an 

outgrowth step for ~ 45 min in SOC medium (Super Optimal broth with 

Catabolite repression) before plating onto ampicillin (100 μg/mL) containing 

LB-agar plates to select for plasmid-bearing cells and incubated for 14 hours in 

a stationary incubator at 37 oC.  

5.2.5. Plasmid DNA purification  

 

A single colony harbouring the pOPINO plasmid was used to inoculate 5 mL of 

LB broth containing 100 μg/mL ampicillin. Cells were grown for ~ 16 h at 37 oC 

with agitation (200 rpm) before pelleting by centrifugation (4000 x g for 5 min). 

The plasmid was extracted and purified from the host cell using the QIAprep 

Spin Miniprep kit according to the manufacturer's protocols (QIAGEN). Plasma 

DNA was sequenced (Source bioscience) and stored at - 20 oC in DNA free 

water at ~ 500 μg/μL concentrations (determined spectrophotometrically using 

a NanoDrop ND-1000 Thermo scientific).  

5.2.6. Glycerol stock preparation  

The LEN or SMA (pOPIN_ompAstop) plasmids were transformed into E. coli 

C41 cells and incubated overnight at 37 oC. A single colony was used to 

inoculate 5 mL of LB supplemented with ampicillin (100 μg/mL final 
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concentrations) and the culture grown for ~16 h at 37 oC and 180 rpm. The 

culture was diluted 50:50 (v/v) with sterile 50% v/v glycerol and stored in 2 mL 

cryo valves for storage at - 80 oC.  

5.2.7. Expression of light chain variable domains SMA and LEN 

 

For protein expression, LB agar plates containing ampicillin (100 μg/mL) were 

streaked with E. coli C41 (DE3) cells transformed with either the LEN or SMA 

plasmid (pOPIN_ompAstop) and grown overnight at 37 oC. A single colony 

was used to inoculate 50 mL of Luria Broth (LB) supplemented with 100 μg/mL 

ampicillin and grown ~16 h at 37 oC with agitation (200 rpm). This culture was 

used inoculate 1 L of LB media at a starting optical density (OD600) of 0.06 - 

0.1. The culture was incubated at 30 oC with shaking (110 rpm) until an OD600 

~ 0.75 – 0.85 was achieved. The addition of 1 mM (final concentration) 

isopropyl β-D-1-thiogalactopyranoside (IPTG), was added to the culture and 

the culture incubated for no longer than 16 h at 30 oC for LEN, and 25 oC for 

SMA, (SMA was found to aggregate at higher temperatures) with shaking (110 

rpm). IPTG, (an analog of allolactose) induces protein expression by releasing 

the lac repressor from the lac operator (which normally inhibits transcription of 

the lac operon) (Bell and Lewis 2000). Upon its release two changes occur; 1) 

T7 polymerase is transcribed and translated and 2) a conformational change 

allows the polymerase to subsequently bind to the T7 promoter region (located 

directly upstream of the target sequence as shown later in Figure 49). Binding 

of this polymerase leads to the subsequent transcription and translation of 

DNA located directly downstream of the promoter. Within the pOPINO 

expression system used in this study, this includes the ompA leader sequence 
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and our protein of interest (the immunoglobulin light chain variable domains 

SMA or LEN). After IPTG induction cells were harvested by centrifugation 

(3360 x g for 10 min at 4 oC). For NMR experiments, the 50 mL overnight 

culture was centrifuged (3360 x g) and the pellet resuspended in 1 L of M9 

minimal media (90 mM Na2HPO4, 22 mM KH2PO4, 8.56 mM NaCl and 18.7mM 

NH4Cl (final concentrations) pH 7.4 substituted with (0.2% v/v) 15N glucose for 

the remainder of the growth and induction period.  

5.2.8. Osmotic shock treatment 

Osmotic shock was used to liberate the recombinant VLs from the periplasmic 

space of the host E.coli cell. Cell pellets were resuspended in a hypotonic 

osmotic shock solution (TES buffer) comprising 200 mM Tris, 5 mM EDTA, 

and 200 g w/v sucrose pH 8. Bacterial pellets were resuspended in 100 mL 

TES buffer (at 4 oC) and incubated on ice for 30 min, with inversion at intervals 

of ~ 5 min to prevent sedimentation. Pellets were centrifuged again, at a higher 

centrifugal speed of 8000 x g for 10 min at 4 oC, to sediment the pellet now in 

sucrose. It is important to note here that lower speed does not result in a firm 

pellet. The supernatant was discarded and the pellet rapidly resuspended in 

MilliQ (35 mL/L of initial culture, 4 oC) supplemented with one protease 

inhibitor tablet (cOmplete, Mini Protease Inhibitor Cocktail, ROCHE) acting as 

a hypertonic solution. Solutions were again incubated for 30 min on ice before 

centrifugation at 23, 000 x g, 30 min at 4 oC to remove cellular debris. 

Periplasmic proteins were found to be released from the periplasmic space in 

this final stage. 
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5.2.9. Dialysis of SMA and LEN and isoelectric precipitation 

 

Hypertonic fractions containing LEN, or SMA were loaded into a 3500 

Molecular weight cut-off (MWCO) presoaked dialysis membrane (Pierce) and 

the 35 mL dialysed against 3 L of 10 mM sodium acetate pH 5.0 at 4 °C for ~ 

36 h with 3 buffer changes. This resulted in the precipitation of a large 

proportion of host cell contaminants (assessed by SDS-PAGE) which were 

removed by centrifugation at 8000 x g for 15 min at 4 °C. The supernatant 

containing the VL of interest was used for further purification.  

5.2.10. Purification of light chain variable domains 

A combination of cation exchange and size exclusion was used as a 

chromatographic step to purify the VLs to high levels of homogeneity. For each 

VL, supernatants following dialysis and centrifugation steps were loaded 

directly onto dedicated 5 mL HiTrap SPFF columns (GE Healthcare) mounted 

to an ÄKTA purifier chromatography system (GE Healthcare) at a flow rate of 

0.75 mL per minute. A post load wash consisting of three column volumes 

(CV) of 10 mM acetate buffer, pH 5.0 was made before LEN was eluted using 

a 0-250 mM NaCl gradient over 120 mL. For SMA, which contained more 

contaminants than LEN, the protein was eluted with 5 CV’s of 10 mM Tris pH 

8. At this point, the purity degree of LEN fractions was deemed to be 95 % 

pure, as judged by SDS-PAGE (Figure 55) and reverse-phase high-

performance liquid chromatography (RP-HPLC). At this stage SMA containing 

fractions displayed minor higher molecular contaminants which were not 

removed by microfiltration. For further purification of SMA, fractions were 

pooled and concentrated down to a volume of ~ 50 μL (from 4 L growth 
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culture) using a 0.5 mL 10 kDa (MWCO) filter (Millipore) and applied to a 

HiLoad 16/60 Superdex 75 prep grade (GE Healthcare life sciences) size 

exclusion column pre-equilibrated with 20 mM Tris-HCl pH 7.5, 150 mM NaCl. 

Samples were injected through a 100 μL loop, flushed for 3 sample loop 

volumes and the chromatographic profile recorded at a flow rate of 1 mL/min. 

Proteins were eluted isocratically (0% B, over 1 column volume) and the purity 

degree evaluated by SDS-PAGE (Figure 55) and RP-HPLC. Pure proteins 

(SMA and LEN) were concentrated and filtered into phosphate buffered saline 

(PBS) using a 10 kDa MCWO filters. Protein concentration was quantified 

spectrophotometrically (UV280nm) using the theoretical protein extinction 

coefficients ɛ of 0.1% of 1.71 and 1.82 for SMA and LEN respectively which 

were adopted from publications that first characterised these proteins (Raffen, 

Dieckman et al. 1999, Kim, Cape et al. 2001, Khurana, Souillac et al. 2003, 

Qin, Hu et al. 2007). Samples were stored at > 3 mg/mL at 4 °C where they 

showed no signs of degradation over a 12-month period (assessed by 

UV280nm, no visible precipitation, no degraded product on SDS-PAGE). Typical 

yields from 1 L of culture were ~ 10 mg for SMA and ~ 50 mg for LEN.  

5.2.11. Gel electrophoresis, RP-HPLC and mass spectrometry 

The expression and purification of LEN and SMA were analysed by SDS-

PAGE using 12% Tris-Tricine gels in a Bio-Rad gel electrophoresis system. 

Samples were solubilised in 4x Laemmli sample buffer (Laemmli 1970) for 5 

min at 90 oC prior to loading. The Pierce unstained protein MW marker (Life 

technologies) was loaded as molecular mass markers in electrophoresis 

studies. Gels were run for 60 min at 165 V, stained with Coomassie Brilliant 

Blue G-250 0.25% (w/v) and destained with H2O, methanol, and acetic acid in 
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a ratio of 45/45/10 (v/v/v). Identification of the intact recombinant protein and 

the removal of the N-terminal ompA tag was confirmed by mass spectrometry. 

Protein samples were dialysed into 50 mM ammonium bicarbonate using 

HPLC grade water and spectra acquired using an ESI-Q-TOF micro 

spectrometer (Micromass). 

5.2.12. Circular dichroism measurements 

 

CD was performed on a JASCO J1100 spectropolarimeter (JASCO UK, Ltd). 

Far UV-CD spectra (250-180nm) were acquired using a 0.2 mm cuvette, at 4 

oC using 10 μM proteins in 5 mM phosphate buffer, pH 7.5. Secondary 

structure content values were acquired using BeStSel (Micsonai, Wien et al. 

2015).  

5.2.13. Size Exclusion Chromatography with multi-angle Light 

Scattering  

 

Immunoglobulin variable light chains typically exist as homodimers. The 

dimerisation ability of the recombinant proteins were characterised by Size 

Exclusion Chromatography - Multi-Angle Laser Light Scattering. Purified SMA 

and LEN at concentrations of 1 mg/mL were applied directly to a HiLoad 16/60 

Superdex 75 attached to ÄKTA pure fast protein liquid chromatography 

(FPLC) system equilibrated in 10 mM Tris-HCl pH 7.5, 150 mM NaCl. A 

DAWN 8+ and optilab T-rex Helios 8 (WYATT) scattering detector was 

directed downstream flowpath of the SEC column. As a control lysozyme was 

run under identical conditions. Chromatograms were acquired at a flow rate of 
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0.75 mL/min at 25 °C. Data was analysed using ASTRA v6.1 software 

(WYATT). 

5.2.14. RP-HPLC of SMA and LEN 

Analytical RP-HPLC was used as a technique for impurity profiling of samples 

containing recombinant variable domains. For both proteins, 10 μL samples 

were centrifuged at 10,000 x g for 5 minutes, and applied to a Phenomenex 

Aeris Widepore C4 column (150 x 2.1 mm) equilibrated in 0.08% 

Trifluoroacetic acid (TFA) attached to a Dionex ICS3000 HPLC system. 

Proteins were eluted with a linear gradient of 5-65% acetonitrile in 0.08% TFA: 

0-40% over 60 min.  

5.2.15. Two-Dimensional (1H 15N) NMR experiments  

 

To determine that the recombinant VLs had correctly folded, two-dimensional 

heteronuclear correlation experiments with 1H 15N enriched LEN were 

performed. Spectra of 180 μM LEN was acquired at 30 oC in 20 mM sodium 

phosphate, 100 mM NaCl and 10% (v/v) D2O for lock using a Bruker AVANCE 

III 600 MHz, spectrometer (Bruker BioSpin) equipped with a cryogenically 

cooled 5 mm 1H [15N 13C] probe. Acquired spectra were processed using 

Topspin 3.1.7 (Bruker) and analysed using the Collaborative Computational 

Project for NMR ccpNMR software v2.2.2. Backbone resonances of LEN were 

assigned by transferring the Biological Magnetic Resonance (BMRB) 

deposited assignment of LEN (BMRB ID: 16463 (Mukherjee, Pondaven et al. 

2009)  
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5.3. Results and Discussion 

5.3.1. Plasmid generation   

A system for the production of the recombinant VLs SMA and LEN was 

established previously (Stevens, Raffen et al. 1995), however, this study has 

been difficult to replicate in recent years due to the use of out-of-date cell lines 

and specialised equipment. Here, we employ periplasmic expression of our 

POI using the ompA leader peptide fused to the amino termini 

(MKKTAIAIAVALAGFATVAQA) of each individual VL, where the protein is 

targeted by the SEC translocase pathway to the oxidising compartment of the 

periplasmic space (Figure 48). It is here where the ompA signal sequence is 

cleaved by a signal peptidase which leaves an unmodified amino terminus. 

This strategy has several attractions; the prokaryotic periplasm contains lower 

quantities of endogenous proteases and contaminating bacterial proteins (Park 

and Lee 1998) which negates the use of many initial purification steps. This 

compartment also contains the foldases; disulfide oxidoreductase (DsbA) and 

disulfide isomerase (DsbC) that are localised to the periplasmic space 

(Dartigalongue, Nikaido et al. 2000, de Marco 2009, Nozach, Fruchart-Gaillard 

et al. 2013, Goemans, Denoncin et al. 2014) and assist in correct folding and 

disulfide bond formation.  
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Figure 48  Simplified representation of the post-translational Sec translocase 

and ompA bacterial export mechanism of fusion protein. The protein of interest 

(POI), is expressed fused to an authentic N-terminal signal sequence (SS orange) that 

is required for the translocation of the protein to the periplasmic space. Following 

synthesis, the nascent chain is transported by cytoplasmic chaperone SecB (yellow 

PDB ID; 1QYN) chain to SecA ATPase (blue PDB ID: 3DIN) that is directly bound to 

the SecYEG (orange PDB ID: 3DL8) translocation channel which spans the 

membrane and facilitates the successful transport across the cytosolic membrane. 

The membrane bound SecDF (red PDB ID; 3AQP) protein complex orchestrates the 

process, and utilising transmembrane proton-motive force (PMF) facilitates the final 

stages of translocation.  Now in the periplasmic compartment, the OmpA signal 

sequence associates with the membrane spanning, outer membrane protein A (navy 

PDB ID: 1BXW) and is cleaved by a signal peptidase before its export into the growth 

media. The protein of interest, now absent of its leader sequence is left in the 

periplasm where it can be isolated experimentally by osmotic shock extraction 

methods.  
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We employed the pOPINO plasmid from OPPF (linearised plasmid shown in  

Figure 49), which encompasses an inducible T7 promoter, ampicillin resistance 

cassette and an N-terminal ompA leader sequence allowing for diffusion of the 

protein into the periplasmic space. However, in early experiments we found 

that the His tag seemed to prevent the successful translocation of the POI into 

the periplasmic space. 

 

Figure 49 Schematic representation of the pOPINO (Linearised). In this construct, 

the C-terminal polyhistidine-tag (blue) was removed by insertion of the stop codon 

“taa” (circular insert) into the recombinant DNA sequence of each construct (shown in 

expanded region of promoter and gene insert. Other key features of the plasmid are 

highlighted.  
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We therefore introduced a premature “taa” stop codon directly upstream of the 

nucleotides encoding the his-fusion tag using the SLIM mutagenesis 

procedure (Chiu, March et al. 2004). The success of the procedure was 

determined by successful amplification of the template DNA, analysed by 

agarose gel electrophoresis (Figure 50) and sequencing. Bands migrating to ~ 

5500 base show successful amplification of the PCR product. Sequencing of 

the generated plasmids confirmed the successful incorporation of a “taa” stop 

codon.  

 

Figure 50  Agarose gel electrophoresis analysis of SLIM PCR products. The 1% 

agarose gels were cast with in the presence of ethidium bromide and photographed. 

Lanes M – Quick-load 1 kb ladder; 1 – linearised construct. The labelled arrows 

denote Template (T) non-specific PCR product (N) and the dye front (D).  
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5.3.2. Recombinant expression of SMA and LEN 

This modified plasmid was then used to transform E.coli C41 (DE3) cells and 

protein expressed with IPTG induction until an OD 600 of ~0.8 was reached, 

with shaking at 110 rpm at 30 oC for LEN and 25 oC for SMA (reduced 

temperature to prevent aggregation). Osmotic shock using sucrose was used 

to liberate proteins from the periplasmic space and SDS-PAGE analysis 

showed detectable levels of soluble protein expression, with a monomeric 

band of approximately ~13 kDa corresponding to the calculated theoretical 

molecular weights (MW) of LEN and SMA (Table 13) (Figure 51 A and B). The 

liberated protein mixture was then dialysed into 10 mM sodium acetate buffer 

pH 5, with multiple changes over a 36 hour period to remove sugar and lower 

pH. This resulted in the precipitation of a large amount of host cell 

contaminants (Figure 51 C).  
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Figure 51  SDS-PAGE analysis of the expression and isolated of LEN and SMA.  

Both VLs were expressed and isolated from the periplasmic space of the host cell 

using osmotic shock. The success of the procedure was assessed by SDS-PAGE 

(Panels A and B). The gel lanes are marked as follows: Lane M Pierce™ Unstained 

Protein MW Marker; Lane 1- Uninduced total bacterial proteins; Lane 2 – IPTG 

Induced total bacterial protein extract; Lane 3 - the hypertonic solution. The target 

proteins LEN and SMA are indicated (dashed box). (C) A number of host cell 

contaminants were then removed using an isoelectric precipitation step. 
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Figure 52  Representative chromatogram and SDS-PAGE analysis of the 

purification of LEN by ion exchange chromatography using a gradient elution. 

The LEN in sodium acetate pH 5.0 was applied to a 5 ml HiTrap SP HP column (GE 

healthcare life sciences) at a flow rate of 0.75 ml/min. A post load wash of 5 CV 

sodium acetate pH 5.0 was followed by the elution of recombinant VL using a salt 

gradient of 0-250 mM in a volume of 28 ml over a run time of 30 min. The purity 

degree of fractions (2 ml) corresponding to the elution peak were assessed by SDS-

PAGE. Lane “L” shows load fraction, the remaining lanes are fractions 1-30 fractions 

that correspond to the elution profile. Target proteins were isolated as a single band 

which corresponds to the increased UV trace shown on the ÄKTA FPLC 

chromatogram.  

 

Following removal of these precipitated contaminants cation exchange 

chromatography was used, purifying recombinant protein to high levels of 

homogeneity by a single-step process. A linear salt gradient in the mobile 

phase eluted LEN as a single peak with high purity (Figure 52) where host 

organism contaminants remained bound.  
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5.3.3. Recombinant expression of SMA 

 

Expression in C41 cells, following a 16 h IPTG induction at an OD 600 of ~0.8, 

with 110 rpm shaking at 25 oC produced soluble SMA in the periplasmic space 

liberated by osmotic shock as described for LEN above. SMA required 

expression at a lower temperature than LEN to prevent aggregation 

(mentioned earlier). In addition, expression exceeding 16 h resulted in the 

formation of SMA in inclusion bodies or SDS-resistant oligomers 

(experimentally verified by western blot). As for LEN, isoelectric precipitation 

removed contaminating proteins prior to cation exchange chromatography.  

SMA was eluted from the S column using Tris pH 8 (Figure 53). Analysis of all 

fractions by SDS-PAGE confirmed the presence of SMA and host organism 

contaminants in the eluates, thus requiring further purification steps. 
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Figure 53  SDS-PAGE analysis of the purification of SMA by ion exchange 

chromatography using a pH step elution. SMA that had been dialysed into sodium 

acetate pH 5.0 was applied to a 5 mL HiTrap SP HP column (GE healthcare life 

sciences) at a flow rate of 0.75 mL/min. No loss of protein on the cation exchanger 

was detected (Panel A, Lane 2, flow through). A post-load column was followed by 

elution of SMA using 10 mM Tris pH 8 (Panel A, Lanes 3-12). Panel B shows before 

(Lane 1) and after (Lane 2) further dialysis into sodium acetate buffer pH 5.0 that 

resulted in the removal of a large number of host cell contaminants. Target protein is 

highlighted (orange box). Estimated position for the 14.4 kDa marker based on gels 

shown in Figure 50 is shown. 

 

Prior to gel filtration, fractions containing SMA were again dialysed into sodium 

acetate pH 5.0 which resulted in a further crash of contaminants (Figure 53) 

before passing through a 0.22-micron syringe filter to remove any aggregates, 

concentrated using a 10 kDa MWCO with multi exchanges of buffer (to match 

column equilibration buffer) before being applied to a size exclusion column 

equilibrated in 10 mM Tris-HCl pH 7.5, 150 mM NaCl. Figure 54 shows the 

successful separation of the contaminants to leave pure SMA. 
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Figure 54  Final purification strategy for SMA isolated from C41 cells. SDS-

PAGE analysis of SMA following ion exchange chromatography revealed upon 

concentration, higher molecular weight contaminants. SEC chromatography was 

used as a polishing step to separate the recombinant protein from host cell 

contaminants. Protein fractions were dialysed into 10 mM Tris-HCl pH 7.5, 150 mM 

NaCl, passed through a 0.22 micron filter, then concentrated using a 10 kDa MWCO 

(millipore) before application to a prepacked Superdex 16/60 superdex 75 (GE 

healthcare). As shown, the protein elutes at ~ 82ml and displays the typical 

asymmetric peak characteristic of the VLs which indicates the simultaneous 

dissociation and binding of the protein and the column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4. Confirmation of recombinant Immunoglobulin light chain 

identity  

The end purity degree of LEN and SMA containing fractions following all 

chromatographic procedures were assessed by SDS-PAGE and RP-HPLC, 

where the chromatogram reveals a single peak for each protein (LEN and 

SMA) indicating high levels of purity and no other visible contaminants.  
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Figure 55  SDS-PAGE analysis and mass spectra of LEN and SMA. VLs that had 

been expressed and undergone purification using ion exchange chromatography and 

gel filtration to isolate it from contaminating E.coli proteins were dialysed into 5 mM 

sodium phosphate pH 7.5 before analysis. (A) Purity degree of SMA and LEN was 

assessed by SDS-PAGE analysis and deemed >95% pure, where the proteins can 

be seen migrating as a single band below the estimated position for the 14.4 kDa 

marker based on gels shown in Figure 50. (B)  The molecular ion peaks with the 

highest intensities correspond to the theoretical molecular weight of (15N) monomeric 

protein LEN (m/z 12780) and monomeric SMA.  Both spectra confirm that the ompA 

leading sequence has been successfully removed following translocation into the 

periplasmic space.  Predictions were performed by peptidemass (Wilkins, Lindskog 

et al. 1997). All mass spectrometry was performed by Dr Mark Wilkinson on a 

micromass Q-Tof micro (waters) in positive ion mode.  (C) Reverse-phase HPLC 

profile of purified LEN and SMA. UV absorption was measured at 280 nm. Purity 

degree for each protein was estimated to be >98% and continued for use in 

fluorescent labelling and cell internalisation assays documented in chapter 6. The 

differences in elution time are a combination of lower protein concentration and 

column availability.  

 

The isolated proteins were confirmed to be products of recombinant 

expression, by mass spectrometric analysis (Figure 55).  
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5.3.5. Analysis of protein secondary structure  

Affirmation of correct protein folding for LEN was performed by NMR 

spectroscopy. LEN was expressed in minimal media producing isotopically 

labelled protein and 2D 1H 15N Heteronuclear single quantum coherence 

spectroscopy (HSQC) spectra acquired under conditions matching those 

described previously (Mukherjee, Pondaven et al. 2009). The resonance 

frequencies provided by amides of the protein backbone were compared to the 

assigned chemical shift of LEN performed by our collaborators 

(BioMagResBank accession: 16463) and confirms that the protein was 

correctly folded (Figure 56).  

 

Figure 56  1H-15NHSQC spectra of LEN. Spectra of the recombinant LEN (180 μM) 

obtained  at 600 MHz, 30 oC in 20 mM sodium phosphate, 100 mM NaCl, and 10% 

(v/v) D2O. Backbone chemical shifts are assigned using the resonances of 

deposition 16463 within the BioMagResBank.  

 



209 

Matching the experimental conditions to the deposited BMRB allowed for all 

(114 amino acid) residues of LEN backbone resonances to be able to be 

assigned unambiguously. Unfortunately, full assignment of SMA is not 

possible due to signal overlap, described by our collaborator who attempted 

assignment previously in unpublished work (Pondaven 2012). As the spectra 

indicate the protein is correctly folded, a sample of LEN from the same protein 

batch was used as a reference for SMA in circular dichroism experiments, 

used to determined secondary structure (Figure 57).  

 

 

 

 

 

 

 

 

 

 

Figure 57  Far UV CD spectra of VL confirms correctly folded recombinant 

protein, displaying native β-sheet structure. CD spectra obtained for LEN (green) 

and SMA (orange) indicate a minimum around 220 nm. BEST-SEL analysis of CD 

spectra indicates the protein to possess an Ig like fold through its fold recognition 

software (Micsonai, Wien et al. 2015). CD experiments were performed with 20 μM 

protein in 5 mM sodium phosphate (pH 7.5) at 4°C. Units are presented as mean 

residue ellipticity.  
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5.3.6. Size exclusion chromatography with multi-angle light 

scattering  

 

To experimentally assess the ability of recombinant LEN and SMA to form 

dimers, their oligomerisation state was assessed by SEC-MALLS (Figure 58). 

Both proteins had near identical retention times and had calculated molecular 

weights of 24.32 kDa (LEN) and 25.46 kDa (SMA) that correspond well to the 

theoretical calculated molecular weights of (25.28 kDa and 25.46) respectively. 

This confirms that each recombinant protein retained their dimerisation 

capability.   

 

 

 

 

 

 

 

 

 
 
 
 

Figure 58  SEC-MALS chromatogram confirming the dimerisation state of LEN 

and SMA Both VLs elute as single asymmetrical peaks at a volume of ~18.5 mL and 

~19.5 mL on a Superdex gel filtration column (GE Healthcare) showing that a single 

species is present. The unique shape of the peak is consistent with other VLs 

characterised by gel filtration based methods (Fred J. Stevens 1980, Stevens and 

Schiffer 1981, Raffen, Stevens et al. 1998). Based on the calculated molecular 

weight of 24.31 kDa (LEN) and 25.46 kDa (SMA) both proteins are homodimers, 

corresponding to the theoretical molecular weights of dimers. Concentration of each 

protein was 1 mg/ml.  
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5.3.7. Hairpin molecular A10 binding to SMA and LEN 

Having determined the fold and purity degree of each recombinant VL, 

samples were subject to a number of binding experiments using the β-wrapin 

AS10. Where amyloidogenic proteins display the high propensity to adopt a 

quaternary structure rich in β-sheet, the AS10 molecule is designed to arrest 

the aggregation cascade by binding to β-hairpins, the structural motif 

commonly present in amyloid structures (Shaykhalishahi, Mirecka et al. 2015). 

The β-wrapin AS10 has previously demonstrated the ability to bind to specific 

regions that display β-sheet propensity within monomeric islet amyloid 

polypeptide (type 2 diabetes) amyloid b peptide (Alzhiemer’s disease) and 

alpha synuclein, the 140 kDa intrinsically disordered protein implicated in 

Parkinson’s disease and abolish their aggregation (Shaykhalishahi, Mirecka et 

al. 2015). For demonstration purposes, a structure showing the binding of 

AS69 (a β-wrapin that differs from AS10 by just one mutation Le34Val 

(Shaykhalishahi 2015) to a region of alpha-synuclein (residues 37-54) is 

shown (Figure 59).  
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Figure 59 shows β-wrapin AS69 in complex with a region of α-syn that adopts a 

β-turn. A) Shows NMR structure (PDB ID: 4BXL) of α-syn region in complex with two 

AS69 subunits. B) Shows structure with 90 o rotation on the x-axis. C) Shows cartoon 

representation of how the binding of AS69 may sequester the free β-hairpin 

monomer, thus preventing the association of free monomers required for elongation 

and extension of the amyloid fibre. Figure was based on the publication (Mirecka, 

Shaykhalishahi et al. 2014) with modifications.   

 

Here, we investigate the ability of AS10 to bind the light chain variable 

domains of this study. Experiments were performed by Wolfgang Hoyer 

(University of Dusseldorf). The results of the preliminary study are shown 

below in the HSQC-NMR spectra (Figure 60) where unfortunately, in this 

experiment there was no evidence of binding. Binding would be demonstrated 

by a chemical shift where the LEN control (blue) would demonstrate peaks in 

different parts of the spectrum to the peaks (red) that were incubated with 

AS10.  
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5.3.8. Main findings and summary 

Summary 

We present here a periplasmic expression method, with purification employing 

a controlled osmotic shock procedure free of lysozyme or other chemical lysis 

methods that disrupts only the periplasmic space leaving the cytoplasmic 

space undisturbed. Furthermore, the addition of an isoelectric precipitation 

step dramatically reduces the level of contaminating host cell proteins reducing 

chromatographic steps, required for large-scale production and improving 

purity and yield. Purity was deemed > 95% as confirmed by SDS-PAGE, and 

reverse phase HPLC (documented in chapter 6) with correct protein 

Figure 60  1H-15N HSQC spectra of SMA. Spectra was obtained at 800 MHz, 30 oC 

in 20 mM sodium phosphate, 100 mM NaCl, and 10% (v/v) D2O. Overlayed spectra 

are as follows: LEN no inhibitor (control) is shown in blue, LEN plus inhibitor is 

shown in red. Inhibitor is shown in green. 
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sequences, and full cleavage of the ompA leader sequence confirmed using 

mass spectrometry. Evaluated protein yields were ~ 50 mg/L for LEN and ~ 10 

mg/L for SMA with little variations between preparations which improve 

significantly on previous work for these proteins. In addition, we perform 

secondary structure analysis by circular dichroism spectroscopy, and use 

SEC-MALLS to confirm the ability of recombinant products to dimerise. We 

believe the more detailed methods described here will be applicable to other 

VL domains that may not be amenable to refolding techniques previously 

proposed (Rognoni, Lavatelli et al. 2013) to produce high quality protein in 

sufficient quantities for functional and structural analysis when a protein source 

is no longer available from the AL diagnosed patient. Sources of SMA and 

LEN will be continued in further experiments for use with collaborators 

(including Wolfgang Hoyer at the University of Dusseldorf and UCB slough).  

Highlights 

In this chapter, the variable domains SMA and LEN have been successfully 

expressed and purified. Both SMA and LEN were successfully isolated from 

the periplasmic space of E.coli expression hosts and shown to be correctly 

refolded by CD and NMR. SEC-MALLS experiments have revealed that the 

recombinant protein possesses the ability to form dimers. SDS-PAGE analysis 

of each recombinant protein has revealed that the proteins were purified to 

high levels and are now suitable for further biochemical analysis. 
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6. Cellular internalisation of light chain variable 

domains 

6.1. Introduction 

The accumulation of amyloid plaques is a pathological hallmark of many 

conformational disorders. What remains part of an ongoing investigation is 

whether the initial site of fibrillation takes place intracellularly or extracellularly 

(Meng, Fink et al. 2008). Recent publications have highlighted the presence of 

intracellular fibrillar deposits in Alzheimer's and Parkinson’s disease (Glabe 

2001, Ross and Poirier 2004, Bosco, Fowler et al. 2006, LaFerla, Green et al. 

2007, Friedrich, Tepper et al. 2010, Jucker and Walker 2013) providing 

evidence to support an intracellular hypothesis. For AL amyloidosis, detection 

of upregulated p38 mitogen-activated protein kinase (MAPK) levels found in 

patient extracts and animal models which is indicative of oxidative stress and 

cellular apoptosis has been the initiating factor for a small number of studies 

aiming to shed light on the ability, and consequences of VL internalisation (Shi, 

Guan et al. 2010, Mishra, Guan et al. 2013, Spencer and Engelhardt 2014, 

Grogan, Dispenzieri et al. 2017). In a selection of studies using primary rat 

cardiac fibroblasts, HL-1 mouse cardiomyocytes and AC10 and AC16 human 

ventricular cardiomyocytes both soluble VLs, full length LC and fibrillar forms of 

VL have been confirmed to internalise under a proposed mechanism of 

pinocytosis (Levinson, Olatoye et al. 2013, McWilliams-Koeppen, Foster et al. 

2015). Tissue specific uptake has also been recognised where, renal 

mesangial cells; appear to facilitate the active transport of VLs using a receptor 

based mechanism (Teng, Russell et al. 2004, Levinson, Olatoye et al. 2013). It 
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Figure 61  Possible mechanism of VL internalisation. Monomeric or homodimeric 

VL of different orientations (A B C) may be internalised. Proteins internalised by 

endocytosis which may proceed through a microtubule-mediated endosomal and 

lysosomal pathway. This process is accompanied by stages of pH acidification 

(illustrated). 

 

is an interesting concept that, depending on the mechanism of internalisation, 

the VL may be subject to acidic components of the endosome and lysosome 

(Hu, Dammer et al. 2015). While low pH has been shown to accelerate light 

chain aggregation (Ramirez-Alvarado 2012, Blancas-Mejía and Ramirez-

Alvarado 2013), it is yet unclear if the conditions present in these 

compartments promote the partial unfolding required for aggregation to occur. 

Such mechanisms for other amyloidogenic precursor proteins however, has 

been noted previously (Su and Chang 2001). A summary of these 

mechanisms is shown below (Figure 61).  
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In this chapter, we aim to explore the current working hypothesis, and 

investigate the mechanisms of VL internalisation and associated cytotoxicity 

surrounding the kappa IV light chain variable domains SMA and LEN which 

has not been addressed before. We use the H9c2 rat cardiomyoblast cell line, 

and monitor the internalisation of Fluorescein isothiocyanate (FITC) labelled 

VLs by fluorescence microscopy. Cytotoxicity assays reveals that SMA 

possesses greater cytotoxic effects in an unusual dose dependant manner. In 

the attempt to devise a therapeutic strategy, a study using the proteasome 

inhibitor MG132 is described herein.  

6.2. Materials & Methods 

6.2.1. Preparation of VLs SMA and LEN 

Recombinant VLs SMA, and LEN were expressed and purified as reported 

previously in chapter 5. Pure VLs were dialysed against 10 mM PBS pH 7.4 

before concentration in a 0.5 mL 10 kDa MWCO (Millipore) after rinsing in 

MilliQ and PBS to a 10 mg/mL stock solution. 

6.2.2. Immunoblot for detection of VLs 

Recombinant LEN and SMA were resolved by gel electrophoresis (60 min at 

165 V) and transferred (60 min at 100 v) onto polyvinylidene difluoride (PVDF) 

membranes (0.45 μm, Hybond-P Amersham bioscience) using a Bio-Rad gel 

electrophoresis system. For immunoblots, both proteins were single blotted 

onto PVDF membranes and air dried. Both membranes were blocked in Tris-

buffered saline (TBS) supplemented with 0.1% Tween 20 and 5% non-fat dried 

milk for 4 h at room temperature with gentle agitation. For the detection of 
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recombinant VLs (SMA and LEN), membranes were incubated with primary 

monoclonal anti-human kappa light chain (1:1000 K4377 Sigma) in TBS, 5% 

nonfat dry milk and 1% Tween 20 overnight at 4oC with gentle agitation. 

Following the primary incubation period, Horseradish peroxidase (HRP) 

conjugated secondary antibody (#A10668 goat anti-mouse IgG Sigma-Aldrich 

1:5000) was incubated with the membrane in the presence of 5% w/v nonfat 

dry milk, and 0.1% Tween 20 for 1 h with gentle agitation. Enhanced 

chemiluminescence (ECL) methods were used to detect bound antibodies 

according to manufacturer's protocols (Immobilon Western Chemiluminescent 

HRP). Membranes were exposed to Amersham Hyperfilm (GE Healthcare) for 

~ 60 seconds.  As a negative control for the reaction the intrinsically 

disordered 14.46 kDa protein alpha synuclein was used.  

 Immunoblots associated with the MG132 pharmacological inhibition 

assay were processed under identical conditions as described above, but 

include the use of Nrf2 and GAPDH antibodies (cell signalling) both at dilutions 

of 1:1000.  Total protein concentration of cell lysate in these assays was 

determined by a BCA assay performed according to manufacturer’s guidelines 

(Pierce).  

6.2.3. Immunoglobulin VL labelling by FITC 

 

In a similar method to the procedure of labelling light chains with Oregon green 

described previously (Levinson, Olatoye et al. 2013), purified LEN and SMA 

were labelled with FITC, a fluorescent probe that is said to bind selectively to 

all solvent  ε- and N-terminal amines exposed amines (Jobbagy and Kiraly 

1966, Hermanson 2013) were each dialysed into 10 mM PBS pH 7.4 overnight 
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with multiple changes using a 3000 MWCO (Slide-A-Lyzer) Mini Dialysis unit 

(Thermo Scientific). Membranes were presoaked in MilliQ to remove the 

storage glycerol solution. Labelling of VL proteins with Fluorescein 

isothiocyanate (FITC) (Sigma) was performed according to manufacturer's 

guidelines with minor modifications to protein concentration (20 μM of each VL 

protein used per reaction). Following incubation, samples were buffer 

exchanged into PBS by application to a NAP-5 column (GE biosciences) to 

remove a proportion of unbound FITC and Dimethyl sulfoxide (DMSO) present 

from the FITC storage solution. Buffer exchange was followed by diafiltration 

into 10 mM Tris pH 7.4 using a 10,000 MWCO centrifugal filter (Millipore).  

Around ~10 series of dilution and concentration were performed until both the 

dialysate appeared clear, and showed no measurement at 495 nm (assessed 

by nanodrop), indicating there was no unbound FITC remaining. The amount 

of bound FITC was determined experimentally (nanopore) according to the 

manufacturer's guidelines. Protein samples were only used when a FITC 

labelling ratio of 1 and above was achieved as this proved to be easily 

detectable under the microscope.  

6.2.4. Cell culture 

H9c2 rat cardiomyocytes were kindly gifted from Dr Parveen Sharma. For use, 

cells stored in 90% fetal bovine serum (FBS) and 10% DMSO were rapidly 

thawed (37 oC (~ 1 min), and the vial contents diluted with in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Invitrogen) supplemented with 10% FBS, 

and 5% penicillin.  Cells were pelleted by centrifugation (1000 x g for 5 min) 

the supernatant discarded, and the pellet resuspended in 7 mL DMEM with the 

above supplements. Cells were transferred to an uncoated T-25 culture flask 
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(Corning) and cultured as a monolayer in a humidified atmosphere incubator at 

37 oC, 95% air and 5% CO2 and nourished at 2-3 day intervals. At the desired 

confluency (70-80%), cells were rinsed twice with PBS sub cultivated by 

trypsinisation and transferred into an uncoated T-75 culture flask (Corning), or 

prior to internalisation experiments, seeded into 24-well plates (Corning, 

Costar) containing a 12 mm (diameter) 0.16-0.19 mm (depth) glass coverslip 

(Academy sciences) at a density of 40,000 cells/well (500 μL per well). Cells 

were left to adhere for 16 hours prior to experimentation.  

6.2.5. Protein internalisation assay 

 

Before protein administration, cell confluency was estimated by microscopy. 

Recombinant VL proteins were administered at a confluency judged to be 

below ~ 50% to prevent overgrowth. In this experiment, different 

concentrations (indicated at results section) of soluble recombinant SMA and 

LEN were administered in PBS. Negative controls (PBS alone) that were free 

of FITC labelled VL domains were also performed. Plates were imaged 24 

hours after VL addition.  

6.2.6. Slide preparation  

 

After 23 hours, cell media was replaced with fresh media containing 

lysotracker (RED DND-99 Thermofisher final concentration of 50 nM) for a 

final one hour incubation period. Slides were rinsed twice in PBS (room 

temperature for 10 mins) incubated for an additional hour in PBS (4 oC for 30 

min) fixed in 4% paraformaldehyde (PFA) for 30 min at room temperature and 

quenched (33 mM glycine in PBS).  
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For antibody based detection methods, cells were rinsed in PBS (twice, 

15 min, room temperature) permeabilised (0.2% tween 20, 0.5% Triton X-100 

for 10 min at 4 oC) and blocked (5% bovine serum albumin (BSA), 0.2% Triton 

X-100 in PBS for 30 min, room temperature) before incubation with the primary 

antibody (KP53 1:50 (Sigma), in 5% BSA 0.2% Triton X-100 in PBS overnight 

at 4 oC).  

For detection of internalised VLs, cells were washed in permeabilisation 

buffer (3 x 15 min) and incubated with secondary antibody (anti-mouse 

conjugated to Alexa Fluor 488 green 1:1000 Abcam). A further PBS wash step 

(10 min, room temperature) was followed by incubation of PBS containing 

Hoechst stain (33258 (SIGMA) 1:5000) and Phalloidin (1:250) for 20 min at 

room temperature. A final wash step (PBS, twice, 10 min room temperature) 

was conducted prior to mounting. For internalisation assays using FITC 

labelled proteins, cells following incubation with VLs were fixed (4% PFA, 30 

min, room temperature) the reaction quenched (33 mM glycine in PBS 10 min, 

room temperature) and washed in PBS (2 x 15 min, room temperature).  

In all studies, cells were mounted in the presence of ProLong Antifade 

(Thermo), sealed using lacquer, stored at 4 oC and visualised within 48 hours 

of fixing to prevent fade and maximise signal intensity. At all possible stages, 

cells were kept in the dark to avoid light exposure.  Control slides containing 

cells that were free of VLs were included for all assays and used to match 

exposure levels on the 488 nanometer channel.  

6.2.7. Confocal microscopy  

VL internalisation experiments were imaged using an Axio observer z1 

microscope (Zeiss) equipped with ApoTome and a 40x Plan-Neoflaur oil 
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immersion objective (Zeiss). Wavelengths of 488nm, 568nm and 680nm were 

used to visualise FITC/Alexafluor conjugated antibody, Phalloidin/ 

LysoTracker-Red and Hoechst respectively. For Z-stack, ~20 images were 

taken at 0.28 μm intervals. Analysis of Z-slice and 3D reconstruction of images 

was performed using Zeiss Zen blue v2.3. Exposure levels were kept 

consistent between experiments to allow for direct comparison with control 

slides. 

6.2.8. Cell toxicity assay and statistical analysis  

The toxicity of VL in cell culture was assessed by using a cell counting kit-8 

(CCK-8). The CCK-8 assay is a colorimetric assay, and uses a water-soluble 

tetrazolium salt that in a viable cell is reduced by dehydrogenases to produce 

a formazan dye. The quantity of this dye is proportional to the number of living 

cells present in the culture, and so cells treated with different concentrations of 

light chain variable domains can be directly compared to cells free of light 

chain (treated with CCK-8 solution only) which serve as a control (description 

adopted from manufacturer’s technical manual (Dojindo laboratories 

(Kumamoto, Japan). Rat H9c2 cardiomyocytes were seeded into a 96-well 

plate at a density of 8,000 cells per well in a total of 80 μL DMEM media that 

was free of phenol red. After 24 hours, cells were treated with SMA or LEN at 

concentrations 1, 5 and 10 μM for an additional 24 hours. As a control, live 

cells were cultured in media substituted with 20% VL storage buffer (to match 

protein samples, 10 mM Tris pH 7.4), or as control of dead cells, media 

supplemented with 1% Triton (final concentration). All culture volumes totalled 

100 μL. Following the incubation period, CCK-8 solution was added at 10 μL 

per well and incubated at 37 oC for 2 hours before the absorbance measured 
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at 450 nm. Wells containing VLs were performed in triplicate. For live and dead 

cell controls, experiments were repeated six times. The results are expressed 

as the standard error of the mean. Group differences were assessed by a one-

way analysis of variance (ANOVA) in conjunction with dunnett's post-hoc 

analysis. Results are expressed as the mean ± s.e.m and any differences 

deemed statistically significant (P value <0.05) are indicated (*). Statistical 

analyses were performed using PRISM (v7). 

6.2.9. Pharmacological inhibition assay 

At the desired confluency Rat H9c2 cardiomyocytes were seeded into 24-well 

plates (Corning, Costar) containing a 12 mm (diameter) 0.16-0.19 mm (depth) 

glass coverslip, (Academy sciences) at a density of 40,000 cells/well (500 μL 

per well). Cells were left to adhere for 16 hours prior to experimentation. Cells 

were treated with 5 μmol/L MG132 for 2 hours (for western blot experiment for 

detection of nrf2 to confirm efficiency of inhibitor) or for 24 hours for the 

inhibition assay, which was also conducted in the presence of SMA at 10 µM.   

6.3. Results 

6.3.1. Immunoblot 

Both SMA and LEN were expressed, purified and their secondary structure 

determined previously (Chapter 5). To confirm the ability of kappa-specific 

antibody KP53 (Sigma) to bind both SMA and LEN, immunoblots containing 

VLs were incubated in the presence of the antibody and developed using ECL 

based methods. Successful Immunoreactivity was noted for both SMA and 

LEN (Figure 62). Here, SMA was loaded in a crude state, designed to evaluate 
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the presence of a higher molecular weight SMA species previously observed 

in periplasmic extraction experiments presented in Chapter 5 (Figure 51). This 

was however, later purified by SEC, confirmed by SDS-PAGE electrophoresis 

and RP-HPLC. 

Interestingly, the immunoreactivity of LEN was influenced by the denatured 

state of the protein (Figure 62) where -+ and ++ indicate the presence or 

absence of beta-mercaptoethanol, and heating respectively. This suggests 

that the epitope (which is not documented in manufacturer’s notes) is more 

accessible in a denatured state. Positive reaction of crude SMA fraction 

suggests the presence of SDS-resistant higher molecular species. This was 

only apparent in liquid growth cultures that exceeded 16 hour growth time 

Figure 62 Validation of antibody specificity to recombinant VL domains using 

Immunoblotting procedures. Left hand panel shows western blot of alpha-

synuclein (14.46 kDa, Lane A) used a negative control, LEN (Lane B), crude state of 

SMA (Lane C) and a mixture of kappa and lambda antibody (Sigma I5381) derived 

from mouse serum used as positive control. Right hand panel shows immunoblot of 

identical samples. Samples of LEN were blotted in native (--), in the presence of 

beta-mercaptoethanol (+-) and the presence of beta-mercaptoethanol and heating 

at 90 °C (++) for 10 minutes.  
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post-IPTG induction. Overall, the results indicate that the antibody is able to 

detect both VLs without detecting the negative control (alpha synuclein). As a 

positive control, we used a mixture of Ig acquired from mouse serum (Sigma 

I5381)  were immunoreactivity was detected. 

6.3.2. Antibody based Immunofluorescence 

 

Current studies investigating the trafficking of VLs have used mouse, human 

and rat derived cells. Here, we use the H9c2 rat cardiomyocyte cell line 

originally isolated from rat ventricular tissue (Kimes and Brandt 1976) to 

assess the ability of kappa light chain variable domains SMA and LEN to 

internalise. The cell line is commonly used in cardiovascular research (Lenco, 

Lencova-Popelova et al. 2015, Peter, Bjerke et al. 2016, Witek, Korga et al. 

2016), and has been found to mimic cell signalling pathways found in animal-

derived primary cardiomyocyte cell lines (Watkins, Borthwick et al. 2011, 

Kuznetsov, Javadov et al. 2015) supporting the validity of using such cell line 

as a model system. 

In an initial study designed to evaluate the ability of commercially 

available antibody (KP53) screened in the immunoblot (Figure 62) to detect 

internalised LEN in cell culture, H9c2 cells were incubated with purified LEN at 

two different concentrations for 24 hours. Cells were then fixed, probed with 

the appropriate antibodies and visualised using 2D immunofluorescence 

microscopy. LEN was administered at two different concentrations; low LEN at 

0.05 mg/mL (3.96 μM) and High LEN at 3 mg/mL (237 μM) final concentration 

which correspond to the concentrations where monomeric and dimeric species 

are in their abundance (i.e very little dimeric LEN exists at 3.96 μM), as 
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discussed in the following publication (Qin, Hu et al. 2007).  Primary antibody 

was administered at dilutions of 1:50 and 1:100 to determine the appropriate 

concentration, and any internalisation detected by species-specific Alex 

Fluor488 conjugated secondary antibody.  
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Figure 63  VL internalisation into evaluated by anti-kappa antibody KP53. H9c2 

cardiomyocytes were incubated in the presence of LEN at concentrations that 

correspond to monomeric and dimeric species (H-LEN 3.0 mg/ml and L-LEN 0.05 

mg/ml) for 24 hours. Cells were permeabilised and internalised proteins detected using 

a primary anti-human kappa light chain antibody (Sigma) with an Alexa Fluor 488 

conjugated secondary antibody. Detection of signal was made by maximum intensity 

projections of z-stack. A control experiment (Ctrl) that was free of LEN was conducted. 

All slides were treated in an identical manner. Combined shows all channels (blue 

hoechst - nuclei, red phalloidin - f-actin and green – secondary antibody used to detect 

LEN). White arrow used to indicate intense fluorescent pixels. Scale bar is 20 μm. 
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Analysis of confocal images reveal that LEN cultured cardiomyocytes using 

primary antibody dilution of 1:50 have only marginal enhanced brightness in 

comparison to control slides (Figure 63). While discrimination between the 

fluorescence (green) in control and LEN cultured cells is improved in 

experiments using lower primary antibody dilutions (1:100) which may indicate 

the presence of internalised LEN, the long exposure times (~1.2 ms) used to 

reach observable levels of fluorescence and presence of intense fluorescent 

pixels (white arrow) similar to that visualised by (McWilliams-Koeppen, Foster 

et al. 2015),  may indicate aggregated fluorescent antibody). Overall, this 

made discriminating between cellular auto fluorescence and internalised VL 

quite difficult. Confocal images also reveal a diffuse, granular staining rather 

than the punctate cellular staining pattern observed in other studies of similar 

nature (Levinson, Olatoye et al. 2013) which made us question again, the 

validity of using antibody detection methods for visualisation of internalised VL. 

Overall, we concluded that the secondary antibody in this crowded intracellular 

environment appears to exhibit large levels of cross reactivity, and was found 

to be overall, rather insensitive for the detection of VL. 

6.3.3. Purity analysis of SMA and LEN before labelling 

To overcome the observed pitfalls in antibody based detection methods, each 

VL was directly labelled with FITC, a dye that is commonly used in protein 

labelling procedures (Koniev and Wagner 2015). An important consideration 

here is the purity degree of the material to be labelled.  As FITC binds to all 

solvent exposed amines (The and Feltkamp 1970, Hermanson 2013), the 

recombinant VL protein sample has to be free of all host bacterial cell 

impurities that may be undesirably labelled. As the variable domains would 
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also be used in cell cytotoxicity assay (described later on in this chapter) we 

also took this opportunity to ensure that samples were free of bacterial 

contaminants that may give false positives (contaminants themselves causing 

cytotoxic effects rather than the protein of interest).  The purity of each sample 

was previously assessed by SDS-PAGE and RP-HPLC (Figure 55). Both 

techniques show that no contaminants are present.  

6.3.4. Detection of internalised FITC-labelled LEN by 

Immunofluorescence 

H9c2 cardiomyocytes were incubated with concentrations of FITC labelled 

LEN at 1, 5, and 10 μM (final concentrations) for 24-hours. Based on the 

observations of Qin et al., LEN is mostly monomeric at these concentrations 

(Kd of LEN is 10 μM. 88% of the protein is monomeric at 40 μM and 10% of the 

protein monomeric at 237 μM) (Souillac, Uversky et al. 2002, Souillac, Uversky 

et al. 2003). For an accurate comparison between samples incubated with or 

without FITC labelled LEN, all images were taken using identical exposure 

levels. 
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Figure 64 Internalisation of FITC conjugated LEN monitored by 

immunofluorescent microscopy. In three independent experiments, FITC labelled 

LEN (green) at concentrations of 1, 5 and 10 μM (indicated) were incubated with rat 

H9c2 cardiomyocytes for 24 hours. Detection of the FITC signal was made by 

maximum intensity projections and Z-stack analysis. A control experiment (Ctrl) that 

was free of LEN was conducted. Combined shows all channels (blue hoechst - nuclei, 

red phalloidin - F-actin and green – FITC labelled LEN). Scale bar is 20 μm. Asterisk 

indicates image that was taken for further processing.  

 

In contrast to antibody based methods (Figure 63), the detection of FITC 

conjugated LEN by confocal microscopy was much improved (Figure 64). 

Notably, there was no detectable fluorescence in control slides even under 

identical exposure levels.  FITC signals were clearly distinguishable against 

the background and this fluorescence was detected under much lower 

exposure time (350-600 millisecond exposure using Apotome (Zeiss)) to our 

previous experiment (high exposure times >1.2 sec).  
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Confident with this procedure, a number of interesting observations 

were made. Firstly, FITC conjugated LEN appears to be internalised in all 

experiments, with no visible differences between the different concentrations 

used. The distribution of LEN appears to be sparse, where some regions of 

the slide were completely absent of signal in the 488 channel. Such an 

observation is consistent with the analysis of AL-09 in HL-1 cardiomyocytes 

(Levinson, Olatoye et al. 2013).  Although, it is worth noting that in comparison 

to the three-colour confocal images published in this study, the quantity of 

internalised LEN, on visual inspection alone is noticeably lower than that of 

amyloidogenic AL-09. One striking observation is seen in H9c2 cells that were 

incubated with LEN at 5 μM. In one field of view, strong staining is observed in 

a cell that gives the appearance of apoptotic staging. This observation is 

based on the cells unusual morphological features, where it does not display 

the typical striated morphology of F-actin filaments that other cells within the 

culture display and instead shows blebbing of the membrane, which is a 

feature of apoptosis (Noritake, Aki et al. 2012) (Figure 64). Surrounding cells 

(past the field of view for this image) did not display any green signal. As we 

did not see any changes to cell viability in the presence of LEN administered at 

this concentration (later presented in this chapter as a CCK8 ssay) this may 

indicate that LEN has greater affinity for cells undergoing apoptotic staging. At 

this magnification, overall cell morphology appears largely unaffected by the 

addition of LEN, where stained F-actin (red- Phalloidin) has a similar structure 

to control slides with the exception of the aforementioned 5 μM LEN slide. 
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6.3.5. Internalised FITC-LEN: Z stack and 3D reconstruction 

Next, we wished to determine the subcellular origin of the FITC signals. 

Here, optical sections of the experiment using 1 μM FITC Labelled LEN 

(marked asterisk taken from previous figure (Figure 64) was analysed further.  

 

Figure 65 Subcellular localisation of Internalised FITC conjugated LEN 

assessed by analysis of Z-stack. Optical sectioning of complete z-stacks reveals 

FITC-labelled LEN (green) is on the same focal plane as the cell nucleus (hoescht – 

blue) indicating the VL is inside the cells and not surface bound. Top right panel 

shows enlarged image of z-slice 13 marked asterisks. Scale bar is 20 μm.  

 

As illustrated in the two-colour z-stack image (Figure 65), the most intense 

FITC (green fluoresce) signal is found on the focal planes (12,13, and 14) that 

are occupied by the cell nucleus (hoescht – blue) suggesting that the VL is not 

surface bound, and the observed signal originates from inside the cell. 
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Figure 66. Internalisation and localisation of FITC conjugated LEN assessed by 

3D reconstruction. 1 μM FITC labelled LEN (green) that was previously incubated 

with rat H9c2 cardiomyocyts for 24 hours was taken for further analysis in order to 

decipher the location of the signal.  Combined shows all channels (blue hoechst - 

nuclei, red phalloidin - F-actin and green – FITC labelled LEN). Scale bar is 20 μm. A 

and B show 3D reconstruction of three colour z-stacked image of internalisation of 

FITC conjugated LEN rotated on x and y-axis. C and D show zoomed-in image with 

(C) and without (D) Phalloidin channel engaged (Red) to demonstrate that the FITC 

signal is not surface bound. Scale in μm is indicated. 

 

Although extracellular fluorescent material is present, the majority of green 

signal is intracellular (illustrated in z-slice 13). To complement this analysis, we 

again used the 1 μM LEN 2D confocal image shown in Figure 64, but here 

performed three-dimensional reconstruction of the entire z-stack.  

 

A complete 3D construction that covers the entire depth of the cell (Figure 66) 

illustrates that the FITC signal is not surface bound. This is most clear in 

panels C and D where FITC signal can be seen surrounding the cell nuclei.  
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6.3.6. Detection of internalised FITC-labelled SMA by 

Immunofluorescence 

In a procedure identical to the detection of LEN in cell culture, pure SMA 

fractions (determined by RP-HPLC Figure 55) conjugated with FITC were 

incubated with H9c2 cardiomyocytes for a 24-hour period before fixing and 

visualised using 2D fluorescent microscopy. SMA has a dimer dissociation 

constant of 40 μM (in comparison to the 10 μM LEN) and so both variable 

domains are monomeric at the concentrations used in these experiments (1, 5, 

10 μM) (Kolmar, Frisch et al. 1994, Qin, Hu et al. 2007, Baden, Owen et al. 

2008)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 

 

 

As illustrated, FITC labelled SMA is detectable in all experiments (aside from 

control). However, the level of internalisation for SMA at a concentration of 10 

μM is most noteworthy. Despite this level of internalisation, the overall 

morphology appears unaffected where stained F-actin (Phalloidin, red) retains 

Figure 67 Internalisation of FITC conjugated SMA monitored by 

immunofluorescent microscopy In multiple independent experiments, FITC  

conjugated SMA (green) at concentrations of 1, 5 and 10 μM (indicated) were 

incubated with rat H9c2 cardiomyocytes for 24 hours. Detection of the FITC signal was 

made by maximum intensity projections and Z-stack analysis. A control experiment 

(Ctrl) that was free of SMA was conducted. Combined shows all channels (blue 

hoechst - nuclei, red phalloidin - F-actin and green – FITC labelled LEN). Scale bar is 

20 μm. Asterisk (*) in SMA 10 μM indicates data that was taken for further analysis. 
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the striated pattern in both control and variable domain incubated slides similar 

to experiments with H9c2 cells incubated with LEN. 

6.3.7. Internalised FITC-labelled SMA - Z stack 

To show that the origin of the FITC-SMA signal was present within the cell and 

not on the surface, z-stack images of cardiomyocyte cells incubated with  

10 μM SMA (previous Figure 67) were analysed by maximum intensity 

projection (Figure 68). The z-slice containing the most intense FITC-signal is 

shown in Z-13 (marked with asterisk, also shown in top right panel as 

zoomed-in) and clearly indicates the localisation of the fluorescent signal to be 

within the cell and not surface bound, where individual confocal sections z1 

and z20 indicate outside of the cell, and top the of the cell respectively. 
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Figure 68 Subcellular localisation of Internalised FITC conjugated SMA 

assessed by analysis of Z-stack. Optical sectioning of complete Z-stacks reveals 

FITC-labelled LEN (green) is on the same focal plane as the nuclei (hoescht – blue) 

indicating the VL is inside the cells and not surface bound. Top right panel shows 

enlarged image of z-slice 13 marked asterisks. Scale bar is 20 μm. 

 

 

For a clearer depiction to the origin of the FITC signal, z-stacked images 

underwent 3D reconstruction (Figure 69). Orthogonal cross section of the z-

projection (panel C) clearly indicates the protein to localise to the perinuclear 

region of the cell and is not bound to the surface. Interestingly, it appears that 

some of the FITC conjugated SMA (green) is associated with the nucleus 

(Figure 69 panel C) where FITC signal can be seen to originate within the 

nuclear space. While the ability of light chains to localise to perinuclear 
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Figure 69 Internalisation and localisation of FITC conjugated SMA assessed by 

3D reconstruction. 3D reconstructions of H9c2 rat cardiomyocytes incubated with 5 

μM FITC labelled SMA (green) were performed in Zeiss Zen blue software. A and B 

show 3D reconstruction of three colour z-stacked image of internalisation of FITC 

conjugated SMA rotated on x and y-axis. Cells are stained with hoechst (nuclei - 

blue) phalloidin (f-actin red).  C (right side) shows cross section of cell nucleus (blue) 

with FITC on same plane indicating that SMA is not localised to cell surface. Scale 

in μm is indicated. 

 

 

compartments have been noted (Marin-Argany, Lin et al. 2016), to the best of 

our knowledge a demonstration of intranuclear localisation of  light chain 

variable domain has not been documented by such methods presented here 

previously. Similar staining patterns have however, been documented 

previously for other fluorescently tagged proteins and small molecules (Lux, 

Goerlitz et al. 2005, Huang, Mackeyev et al. 2013).  
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In a final set of imaging experiments, we wished to assess the possibility that 

variable domains are able to enter the cell via endocytosis. FITC conjugated 

LEN (at concentrations of 0.05 mg/ml L-LEN, 0.5 mg/ml M-LEN and 3 mg/ml  

H-LEN) were incubated with H9c2 cells for 24 hours. Lysotracker red 

(endosome stain) was added to the cells 30 minutes before fixation and 

imaging.   

Figure 70 Internalisation of FITC conjugated LEN into lysosomes monitored by 

immunofluorescent microscopy In multiple independent experiments, FITC 

conjugated LEN (green) were incubated with rat H9c2 cardiomyocytes for 24 hours. 

Detection of the FITC signal was made by maximum intensity projections. A control 

experiment (Ctrl) that was free of SMA was conducted. Combined shows all 

channels (red lysotracker- endosome and lysosome, blue hoechst - nuclei, purple 

phalloidin - F-actin and green – FITC labelled LEN). Scale bar is 20 μm. 
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In all experiments, there was no detection of light chains in lysosomal or 

endosomal compartments. The lysotracker dye is acidophilic, preferentially 

staining the acidic compartments of the early and late endosome that have pH 

of ~ 6.3, 5.5 (respectively) as well as the lysosome (pH 4.7) (Figure 61). If the 

variable domains were to be trafficked in this pathway, co-localisation would 

be indicated by a yellow signal, a product of green signals of the FITC 

conjugated protein and red of the lysotracker being merged. An example of 

this is documented for light chain variable domain AL-09 (Levinson, Olatoye et 

al. 2013). Overall, the data presented here suggests VL enter the cell in a 

mechanism of trafficking.   

6.3.9. Cytotoxicity assay  

Having, determined the ability of both SMA and LEN to internalise by 2D 

fluorescence microscopy, we next sought to determine the cytotoxic potential 

of each VL H9c2 rat cardiomyocytes were cultured in vitro and incubated with 

different concentrations of SMA and LEN (1, 5 and 10 μM) that correspond to 

conditions used in fluorescence experiments.  The results of a CCK-8 cell 

toxicity assay where, each variable domain was incubated with cells for 24 

hour (plus 2 further hours after CCK 8 dye addition) are shown in Figure 71.    
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As illustrated (Figure 71) there were no statistically significant changes 

between live cells and cells treated with LEN. However, there was a significant 

decrease in the percentage viability of cells treated with SMA at concentrations 

of 5 μM (P<0.05). SMA is notably less thermodynamically stable than LEN 

(Raffen, Dieckman et al. 1999) which may account for the enhanced toxicity 

demonstrated. Interestingly however, this was not mirrored in SMA doses of 1 

μM or 10 μM. The reason for this unusual dose response is unclear. However, 

it is worth considering that 12% of the protein is dimeric at 40 μM, it may be 

therefore possible that at 10 μM there is a slight increase in the number of 

dimeric species present in solution in comparison to SMA at 5 μM (where there 

would be more monomers) ((Souillac, Uversky et al. 2002, Souillac, Uversky et 

Figure 71 The effect of VLs SMA and LEN on rat cardiomyocyte toxicity.  

Different concentrations of light chain proteins (1, 5, and 10 μM shown as 1,5,10 on 

the figure) were incubated with H9c2 cell lines for 24 hours before analysis by CCK-8 

assay at 450 nm. A one-way analysis of variance (ANOVA) with dunnett's post-hoc 

analysis was performed. *P<0.05.  CCK-8 assays of H9c2 cell toxicity after 24 hour 

incubation (n=6 for controls and Triton treated cells, n=3 for LC incubated cells, 

mean ± s.e.m). Dead and live cell wells correspond to 0% and 100% cell viability 

(respectively). 
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al. 2003). As discussed previously in this thesis dimeric species are suggested 

to be non amyloidogenic, instead perform a protective role, hence less toxicity 

is observed at 10 μM compared to 5 μM. Under the same rationale for this 

observation then, at concentrations of 1 μM, there is simply not enough 

monomeric VL present to induce a statistically significant cytotoxic effect.  

6.3.10. Pharmacological Inhibition assay  

 

Proteasomal inhibition has emerged as a promising strategy for the treatment 

of AL amyloidosis. The plasma B clones, found in patients with multiple 

myeloma and AL amyloidosis have shown they are particular susceptible to 

the agents bortezomib, carfilzomib, and ixazomib (Driscoll and Girnius 2016, 

Jelinek, Kryukova et al. 2016). These agents are designed to inhibit 

proteasome function, thereby preventing the degredation and clearance of 

intracellular proteins through the ubiquitin-proteasome pathway (Lü and Wang 

2013, Kubiczkova, Pour et al. 2014, Driscoll and Girnius 2016). Bortezomib for 

example, has demonstrated its ability to induce apoptosis through binding to 

the β5 subunit located within in the 26S proteasome, a component which is 

responsible for chymotypic-like activity (Jelinek, Kryukova et al. 2016). Several 

studies have documented other beneficial effects of bortezomib including its 

ability to inhibit angiogenesis and suppress cellular adhesion molecules, 

preventing the growth and spread of malignant plasma B cells residing within 

the bone marrow (Hideshima, Richardson et al. 2011, Kubiczkova, Pour et al. 

2014, Jelinek, Kryukova et al. 2016).  
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For MM, the goal of proteasomal inhibition is to prevent the infiltration of the 

malignant plasma cell clone into bone marrow (Kristinsson, Minter et al. 2011, 

Tosi 2013). By comparison, the plasma cell clone in AL is less aggressive 

(lower tumour burden) and does not pose a significant problem. Rather, these 

cells are able to produce enormous quantities of light chain fragments that are 

able to cause widespread organ damage and dysfunction enter the 

bloodstream and can form amyloid fibrils (Rajkumar, Dispenzieri et al. 2006, 

Martin and Ramirez-Alvarado 2010). While proteasome inhibitors are routinely 

used for the treatment of MM, the underlying plasma cell dyscrasia common to 

both disorders means that such inhibitors can also have a positive effect in 

treating AL amyloidosis. In AL, these same inhibitors are used to induce 

apoptosis in the plasma B cell population which leads to a dramatic reduction 

in circulating toxic light chain fragments chain. In addition to these effects, the 

proteasome inhibitor MG132 has also demonstrated the ability to perturb the 

uptake of light chains in rat primary cardiac fibroblasts (Monis, Schultz et al. 

2006). Given that the possibility of aggregation to start intracellularly (Walsh, 

Tseng et al. 2000) the  intracellular environment may provide conditions to 

promote aggregation of light chain variable domains (Monis, Schultz et al. 

2006), and preventing their internalisation could act as an additional 

mechanism to inhibiting the cytotoxic potential of light chain fragments to those 

described above.  To our knowledge, there has been no progression on this 

study using this particular agent for the study of AL amyloidosis since. This 

motivated us to investigate the ability of MG132 to arrest the internalisation of 

light chain variable domain SMA into rat H9c2 cells. As a positive control for 

MG132 efficiency, the nuclear factor E2 related factor 2 (Nrf2) was used. Nrf2 
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is a highly conserved transcription factor that regulates a number of 

antioxidant response elements (Zhou, Sun et al. 2014). Under normal 

conditions, cytoplasmic Nrf2 is rapidly degraded (half-life of 15 minutes) by the 

ubiquitin proteasome dependent degradation pathway (Li, Paonessa et al. 

2012, Malloy, McIntosh et al. 2013). Failure to establish ubiquitination, 

promotes Nrf2 retention in the cytoplasmic space where it is subsequently 

translocated to the nucleus (Cui, Li et al. 2013). In the presence of the 

proteasomal inhibitor MG132, degradation of Nrf2 is inhibited, and has shown 

to be significantly elevated in a number of studies (He, Chen et al. 2008, Li, 

Paonessa et al. 2012). As Nrf2 is no longer degraded its presence should be 

detectable, therefore giving a positive control for MG132 efficiency. In this 

experiment, detectable levels of Nrf2 in cells treated with MG132 in 

comparison to untreated would act as indication that MG132 was having an 

effect. (Li, Paonessa et al. 2012, Cui, Bai et al. 2013, Zhou, Sun et al. 2014)  
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As illustrated in Figure 72C, Nrf2 was completely undetectable in untreated 

H9c2 cells. A marked increase in detectable levels of Nrf2 is noted following a 

2 hour treatment with MG132. This observation is in agreement with the 

previous studies mentioned above. It is important to note here, that while Nrf2 

has a calculated molecular weight of Nrf2 68 kDa, it has been consistency 

shown to migrate at 95-100 kDa due poly ubiquitination within the cell (Lau, 

Figure 72 MG132 induced Nrf2 activation detected by western blot analysis. 

Upregulation of Nrf2 was detected in H9c2 rat cardiomyocytes following 2 hour 

incubation. Lanes show Marker (M), lane 1 (1) control (whole cell lysate absent of 

inhibitor) and lane 2 (2) (whole cell lysate incubated with inhibitor). Total protein 

content was assessed by a BCA assay to ensure equal loading. Image shows same 

step process of gels resolved by electrophoretic methods and stained with coomassie 

blue (A) indicating equal load (qualitative) ponceau S of the same gel following destain 

(B) to show equal transfer to the PVDF membrane (C) X-ray film to show upregulated 

Nrf2 in comparison to control (1) using antibody 1, where equal loading was confirmed 

by detection of housekeeping gene Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (antibody 2). No cross contamination was detected as there 

were no detectable levels of Nrf2 in the control lane (lane1 X-ray film).  
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Figure 73 2D confocal microscopy of H9c2 cells incubated with SMA, and 

MG132.  In two independent experiments (indicated as n1 and n2), FITC labelled 

SMA (green) at 10 μM were incubated with rat H9c2 cardiomyocytes in the presence 

of 5 μmol/L MG132 for 24 hours. Detection of the FITC signal was made by 

maximum intensity projections and Z-stack analysis. A control experiment (Ctrl) that 

was free of MG132 (still in the presence of SMA aimed to assess the ability of 

MG132 to alter cell morphology) was conducted. Combined shows all channels (blue 

hoechst - nuclei, red phalloidin - F-actin and green – FITC labelled LEN). Scale bar 

is 20 μm. Asterisk indicates image that was taken for further processing. Arrows 

show intense fluorescent pixels.  

Tian et al. 2013). Equal loading amounts were confirmed by Immunoblotting 

GAPDH. Overall these results confirm the efficiency of the inhibitor.  

Having determined the efficacy of MG132 (Figure 72), and already 

determined the ability of SMA to internalise (Figure 69) we next wished to 

assess if internalisation of SMA could be abolished in the presence of this 

inhibitor. Here, 10 μM SMA was incubated with H9c2 cells in the presence of 

MG132 for 24 hours.  Unfortunately, internalisation of SMA appears in 

perturbed by the presence of MG132 at this concentration (Figure 71).  
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6.3.11. Main findings and summary 

Summary 

The mechanisms by which VLs are able to internalise remain largely unknown, 

and to date only a handful of light chains have been demonstrated to 

internalise into a number of different cell types. In this chapter, we sought to 

establish if the amyloidogenic SMA and the non-amyloidogenic LEN could 

internalise into H9C2 rat cardiomyocytes. We demonstrate that the 

recombinant sources of protein are suitable for fluorescent detection of κIV 

variable domains by conjugating highly pure fractions of SMA and LEN with 

FITC and that this cell line internalises both light chains where they appear to 

localise to the perinuclear area, assessed by z-stack confocal microscopy.  

 

Highlights 

At concentrations where each light chain is mostly monomeric, we 

demonstrate that each is able to internalise after a period of 24 hours where 

they appear to localise to the perinuclear area, as assessed by z-stack 

confocal microscopy possibly associating with the endoplasmic reticulum. Cell 

viability data derived from a CCK8 assay indicates that SMA at a concentration 

of 5 μM is the most toxic (Figure 71). This is presumably due to the larger 

population of monomers (which are documented to be more aggregation prone 

than dimers) in solution at this concentration. We do not detect any differences 

in the morphology of cells (no observable changes to the F-actin cytoskeleton 

of the H9C2 cardiomyocytes) which could indicate that these proteins are 

inducing cell death. However, as the results of the CCK8 assay indicate that 

SMA is cytotoxic there could be changes to the cellular ultrastructure which 
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are undetectable at this magnification (Monis, Schultz et al. 2006, Levinson, 

Olatoye et al. 2013). Aside from one cell that appears to be undergoing 

apoptosis (Figure 64 LEN- 5 μM) which cannot be associated with the 

presence of light chain, there were no changes in cellular architecture, where 

blebbing of the membrane has been previously associated with internalisation 

(Trinkaus-Randall, Walsh et al. 2005). High magnification techniques such as 

TEM could provide a more detailed insight into structural changes (Lavatelli, 

Imperlini et al. 2015) and further studies using metabolomics or proteomic 

approaches could shed light on changes to the cellular proteome and other 

biochemical alterations as a consequence of light chain internalization 

(Imperlini, Gnecchi et al. 2017).  

The intracellular location of these proteins is consistent with other light 

chain internalisation studies (Trinkaus-Randall, Walsh et al. 2005, Monis, 

Schultz et al. 2006) and there is also evidence to suggest possible lysosomal 

expansion (Figure 70 high Len) which is a similar observation to those made 

by Levinson et al., ((Levinson, Olatoye et al. 2013)). However, cells did not 

display any signs of clustering in comparison to control (untreated) which was 

also observed in this same study (Levinson, Olatoye et al. 2013).  

Earlier work has shown that internalisation of amyloidogenic light chains 

in rat cardiac fibroblasts and human cardiomyocyte proceeds through 

pinocytosis (Monis, Schultz et al. 2006, Marin-Argany, Lin et al. 2016). The 

study conducted by Levinson et al., using mouse cardiomyocytes confirms this 

hypothesis, demonstrating that Oregon green conjugated AL-09 

(amyloidogenic) and κI O18/O8 (non-amylodigeonic) were internalised after a 

24 hour exposure using live cell imaging. The distribution of punctate signals in 
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our study is consistent with previous observations (Levinson, Olatoye et al. 

2013) however, we were unable to demonstrate any association with endo-

lysosomal vesicles, where there was no co-localisation between FITC and 

lysotracker signals. Any endocytic pathway the light chain may be 

internalised through (clathrin mediated and clathrin independent, caveolae, 

transerin, macro pinocytosis) would be expected to proceed through vesicles 

of low pH and so, we would expect to see co-localisation signals with acidic 

pH markers – in this case lysotracker red. This however is not the case. 

There are multiple possibilities for this observation. Since subtle changes to 

the primary amino acid sequence of a variable domain is able to perturb the 

rates of internalisation, it is possible that SMA and LEN exhibit slower 

internalisation kinetics in comparison to AL-09 and κI O18/O8 which did show 

co-localisation, and so the quantities of internalised protein may be 

insufficient to facilitate the staining patterns shown in other publications. 

Alternatively, FITC, the pH sensitive fluorophore used in this study may not 

be as stable as other fluorophores such as Oregon green, and so (WHAT).   

An additional possibility is that the uptake of these light chains may be 

interfering with normal endocytotic pathways causing the premature release of 

endo-lysomal contents into the cellular cytosol (Repnik, Česen et al. 2013). 

Another possible explanation is that following the 24-hour incubation and 2 

hour processing time before paraformaldehyde fixation, is that these light 

chains have already been processed through the endo-lysosomal pathway. 

Therefore it would be of interest to monitor the internalisation of these light 

chains in a time-resolved manner.  
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7. Summary and biological implications 

7.1. Disease summary  

AL amyloidosis is often viewed as a rare disorder (Sanchorawala 2006). 

Yet, the incidence (1 in every 100,000) (Pelaez-Aguilar, Rivillas-Acevedo et al. 

2015)  is not too dissimilar from motor neurone disease which has received far 

more attention in recent years (McDermott and Shaw 2008). A wide spectrum 

of clinical manifestations, and general clinical unawareness, means that the 

average life expectancy of this disorder without treatment can be as little as 6 

months (Kastritis and Dimopoulos 2016, Grogan, Dispenzieri et al. 2017).  The 

disease is characterised by an underlying plasma cell clone that moderately 

infiltrates the bone marrow and synthesises light chain fragments in enormous 

quantities. Some of these light chain fragments are able to misfold, and 

deposit in multiple organs leading to dysfunction and death. Not all light chains 

are however amyloidogenic. Comparisons made between amyloidogenic and 

non-amylogideonic VLs have shown that somatic mutations occurring in 

specific structural locations are a crucial factor in determining 

amyloidogenicity. Cataloguing the thermodynamic burden of a mutation, and 

important structural changes that are likely contributors to an increased 

aggregation potential is of particular importance in a disease that has such 

enormous sequence and mutational diversity (Randles, Thompson et al. 

2009). Yet, very few studies provide the much-needed structural link to how a 

mutation confers enhanced aggregation propensity.  As a consequence, the 

exact molecular mechanisms that render a VL amyloidogenic are remain 

poorly understood (Hernández-Santoyo, del Pozo Yauner et al. 2010).  
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On a separate, but equally as important issue, is the accumulating 

evidence that suggest that variable domains can internalise and cause 

cytomorphological and biochemical changes within cells. In this thesis, we 

focus on both of these topics and adopt a multidisciplinary approach, to work 

towards a better understanding of AL amyloidosis using the three κIV VL 

domains SMA, REC, and LEN as model proteins.  

7.2. Major findings  

To date, no crystallographic information of SMA is available, and so the 

orientation of the dimer (canonical or non-canonical example in Figure 10) is 

currently unknown. The first experimental chapter (Chapter 2) takes a 

computational approach to decipher the orientation of SMA, by generating 

dimer models based on the crystal structure of known homologs. Interfacial 

analysis of generated structures indicates that SMA is more favourable as a 

non-canonical dimer. As preventing dissociation of the dimer is of key 

therapeutic interest, the druggability of the newly generated SMA homodimer 

was calculated by DogSiteScorer. A shallow cavity present in both SMA and 

REC that scored well may accommodate small molecule stabilisers as future 

therapeutic avenues.  

 To pinpoint which SMA or REC-like mutation(s) are capable of dictating 

the orientation of the dimer, each were introduced into the native structure of 

LEN by in silico mutagenesis and the changes in the energetic and 

geometrical properties were compared to the native structure of LEN. We 

found that out of all mutations, only residues K30T (REC-like), Q89H and 

Y96Q (SMA-like) were able to dictate the orientation of the dimer.  
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Several lines of evidence suggest that AL proteins are less stable than 

their non-amyloidogenic counterpart’s due to the accumulation of somatic 

mutations in CDR and FR regions of the VL. The way in which a somatic 

mutation can destabilise the native VL can proceed through multiple 

independent mechanisms that include a) destabilise the dimer which may lead 

to an increased population of aggregation prone monomer in solution b) 

globally destabilise the thermodynamic stability of the native VL monomer 

which may allow the protein to sample partially unfolded states which are 

suggested to be critical for aggregation c) inducing structural changes that are 

localised to segments of the protein which can enhance aggregation 

propensity independent of thermodynamic stability. The latter point is slightly 

more challenging, and requires a more sophisticated approach than merely 

calculating the change in the Gibbs free energy of binding and folding. As the 

outcome of each SMA and REC-like mutation remain largely unknown, 

chapters 2, 3 and 4 describe the use of numerous digital platforms aimed to 

assess the nature of a mutation where, we find that the CDR3, a loop located 

at the dimer interface and harbouring residues Q89 and Y96 is key to 

modulating the aggregation potential of the protein, the results of these 

chapters have been published (Mukherjee, Pondaven et al. 2017).  

Another goal (documented in Chapter 5) was to build upon the existing 

work of Immunoglobulin LC by E.coli synthesis, and provide a refined and a 

reproducible protocol of SMA and LEN expression that provides high yields 

suitable for experiments that are demanding of high protein concentrations. 

Recent publications and correspondence with collaborators have discussed 

the sub-optimal yields and low levels of purity in expression trials which did not 
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match the original study. Using a limited step chromatographic technique, we 

are able to obtain VL’s of high purity, and include data on secondary structure 

and fold assessment. This process is thoroughly documented, and we believe 

may be applicable to other difficult to expression light chain variable domains. 

Recently, the ability of VL from the λ family to internalise and induce 

toxic effects has been confirmed. The purpose of chapter 6 is to adopt the 

process of these studies to assess the ability of VLκ4 domains to internalise 

which is currently unknown. In this chapter (6) we demonstrate using z-stack 

confocal microscopy that Fluorescein conjugated VLs SMA and LEN are 

internalized in H9C2 rat cardiomyocytes within 24 hours. Internalized protein 

exhibits a punctate reminiscent of pinocytosis and appears to be located in the 

peri-nuclear region of the cell. Out of these two proteins, only SMA exhibited 

cytotoxicity. The results of this chapter in combination with chapter 5 are 

forming an additional publication.  

 

The following sections further detail interesting aspects of this work. 

 

7.1.1. Stabilising the quaternary arrangement of VL-VL homodimers: 

therapeutic promise 

 

The majority of VL-VL homodimers have crystallised in a structural 

arrangement similar to the light and heavy variable domains (VL and VH) of the 

antigen-binding fragment (Figure 8 and Figure 10A) (Padlan 1994, Stevens 

and Schiffer 1995, Peterson, Baden et al. 2010). From the VLs in this study, 

only REC and LEN have been crystallised, forming non-canonical and 
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canonical dimers respectively. By using these structures as templates for in 

silico mutagenesis, each were converted so they contained the primary 

sequence of SMA, subject to geometry optimisation to allow for the best fit of 

the newly introduced side chain rotamer, and the energetic features of dimer 

interface calculated. From this analysis, SMA (which has not been solved by 

high resolution techniques such as X-ray crystallography or NMR) 

preferentially adopts a twisted 180 o altered dimer interface that is similar to 

REC. 

This procedure has several distinct advantages over the routinely used 

methods (NMR and X-ray crystallography) of acquiring quaternary structural 

arrangements of VL-VL homodimers. Firstly, it bypasses the main hurdle 

associated with high-resolution techniques, which is the demand for high 

quantities of pure target protein. This is particular challenging in AL 

amyloidosis, where each patient possesses a VL with a unique amino acid 

sequence. When a protein source is no longer available directly from the 

patient, recombinant procedures are used. A number of publications have 

demonstrated that the VL is often found in inclusion bodies and methods of 

refolding often provide suboptimal yields. Secondly, there are examples where 

the harsh conditions present in X-ray crystal screens have been able to falsely 

dictate the dimer orientation (Peterson, Baden et al. 2010).  

Aside from bypassing some of the commonly encountered hurdles 

associated with these experimental methods described above, from a 

bioinformatics point of view, the procedure is not computationally demanding, 

can be performed locally, and requires only freely available open source 

software. Secondly, it does not require a large library of information with 
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known outcomes. Rather, this method takes a structural approach and simply 

identifies the energetic favourability of a particular pose.  

Current AL therapies focus only on supressing the plasma cell 

dyscrasia (Pelaez-Aguilar, Rivillas-Acevedo et al. 2015) and the majority of 

emerging strategies aim to remove resident amyloid (Grogan, Dispenzieri et al. 

2017). Yet it is important to note that removing amyloid from the affected organ 

results in the formation of non-functional scar tissue. We mention here again, 

that stabilisation of the VL homodimer presents arguably the most promising 

alternative to the current strategies of treatment in AL amyloidosis, which often 

have high toxicity and an associated poor quality of life. 

 The process documented within this thesis of generating an SMA 

model, establishing its orientation and identifying druggable pockets within the 

structure that may be able to accommodate small molecule stabilisers in an 

entirely computational approach raises the interesting and exciting possibility 

such a scheme may be applicable to other uncharacterised VL homodimers 

where only the amino acid sequence is available. Given the ability of mass 

spectrometry to rapidly identify the amino acid sequence of a patient derived 

VL from serum or fat aspirate samples, there is also the prospect that such a 

strategy, may allow for the future development of personalised medicines. At 

the very least, it would allow for some of the hurdles of acquiring experimental 

data to be circumvented and significantly narrow down screening trials to more 

relevant small molecules.  

The focus should now be, assessing other non-canonical VL-

homodimers to see if druggable pockets with high druggability scores 

(assessed by DogSiteScorer) such as the ones highlighted in this thesis are 
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conserved. Further data sets are needed to confirm the efficacy of the 

process, specifically; performing blind tests to see if this method can confirm 

the orientation of the dimer using patient derived sequences where the 

structure has been solved using a high-resolution technique would be 

particularly useful and add confidence to these findings. Once a significant 

data set has been reached, then the use of docking programs would be the 

next logical step in the progression of this work. 

Recent data suggests that VL homodimers can interconvert between 

different quaternary states that lay within a global energy minima. It is yet 

unclear if this is common amongst all homodimers, if the local environmental 

conditions can dictate orientation (Novotny and Haber 1985, Baden, Owen et 

al. 2008), and what proportion of VL present in solution occupies a particular 

state at any given time. To the best of our knowledge, It seems that no study 

other has addressed this dynamic nature of VH and VL domains. An additional 

advantage of using a structural bioinformatics approach for this scenario is the 

ability to rapidly assess the energetic features of each quaternary state, 

determine the most preferential, and choose to identify pockets that can 

accommodate small molecules that aimed to stabilise this energetically 

favourable form, rather than attempting to stabilise an energetically less stable 

state.  

In further studies, we aim to pursue identifying the orientation of SMA 

by further crystallographic screening trials although, with this information in 

mind an alternative method such as small-angle X-ray scattering (SAXS) may 

allow the orientation of the SMA dimer (amongst other VL-VL dimers) to be 

resolved in a more physiologically relevant setting. The results of this study will 
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either confirm or refute our analysis, but fundamentally assesses the accuracy 

of this computational strategy, and the predictive power of tools available to 

date. 

7.1.2. Single mutations can dictate the quaternary state of the VL 

homodimer  

The present in silico strategy is able to predict which of the SMA or REC-like 

mutants are able to dictate the arrangement of the LEN dimer. By using the 

experimentally resolved structure of LEN in two different quaternary states 

(canonical and 180 o twisted) as a scaffold, single SMA or REC like mutations 

were incorporated, and the consequence of each mutation to the geometric 

and energetic features of the mutation calculated. While many of the mutations 

were incapable of significantly destabilising the canonical LEN interface, PISA 

was able to identify those interfacial interactions and energetic values were 

markedly lower in structures harbouring single mutants K30T (REC-like), 

Q89H and Y96Q (SMA-like) than that in the homodimeric complex of LEN. In 

the non-canonical structure of LEN (which is said to be non-physiologically 

relevant) K30T and Q89H were able to stabilise this form suggesting these are 

key residues that can dictate the dimer orientation. Y96Q however, showed to 

impair the non-canonical structure as well as destabilising the canonical form. 

By comparing ΔGunfolding (acquired from previous experimental values) and 

ΔGdissociation values (acquired from PISA) as well as a structural assessment for 

Y96Q (both by Rosetta and NMR based) this mutation may dictate dissociation 

of the dimer into the monomeric form (Fred J. Stevens 1980, Blancas-Mejia, 

Misra et al. 2017). In this state, the mutation may result in a poorly packed 
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monomer that has enhanced conformational dynamics and is more liable to 

unfolding and subsequent aggregation.  

Despite the inconsistency of the 5 programs (FoldX, mCSM PPI, 

ELASPIC, MutaBind and BeAtMusic) used to detect changes in binding 

energies as a consequence of the mutations, we report that mutations 

occurring at position Y96 were consistently shown to be destabilising. This 

provides rationale for using PISA as a predictive tool for assessing the impact 

of a mutation on the energetic features of the dimer interface. The ability of 

PISA to identify the destabilising nature of Q89H and Y96Q was strongly 

supported by its ability to also detect the destabilising nature of K30T, which 

has shown to dictate the orientation of the dimer by experimental methods 

(Pokkuluri, Cai et al. 2000). As dimerisation confers resistance to the more 

amyloid prone monomer form, the procedure documented here could be used 

a starting point for rapidly assessing the outcome of a single mutation, not only 

on the structural integrity and thermodynamic stability, but also its ability to 

dictate the orientation of dimer with a focus on stabilising this state.  

7.1.2. The thermodynamic analysis of SMA and REC-like mutations   

 

Changes to the folding free energies of the variable domain LEN for each 

SMA-like and REC-like mutation has not been completely determined by 

experimental methods and is why it is a focus of this thesis. During the 

assessment of changes to the folding free energies as a consequence of 

mutation, we encountered several residues that had ambiguous calculations 

from the digital platforms used. To get a reliability estimate, calculations were 

compared to existing experimental data, where discrepancies were also 
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apparent. We conclude here, that unfortunately, these platforms are unable to 

accurately assess the outcome of a particular mutation.  

Instead, assessing the outcome of a mutation requires a more 

sophisticated approach. Compiling existing experimental data (for the VL 

domains at the basis of this study amongst other VL domains), and using a 

combined application of in silico methods and 1H-15N NMR spectroscopy to 

acquire Rex values of SMA-like mutations presented within this study has 

provided a thorough and complete analysis of the thermodynamic stability, 

conformational flexibility and the ability to identify structural changes at atomic 

level detail. This work has not been published (see (Mukherjee, Pondaven et 

al. 2017) 

We hypothesised that some of the changes in thermodynamic stability 

may originate from the disruption of one or more intra, and inter molecular 

hydrogen bonds. Indeed, we noted that removing Q89 and the highly 

conserved Y96 of the (FR3 and CDR3 respectively) lead to disruptions in 

conserved hydrogen bonds across the interface as well as conformational 

changes in the structure near to the mutation and additional sites in key 

regions distal to the mutation. 

7.1.3. Expression of VLs SMA and LEN and light chain 

internalisation    

Herein, a fully documented and reproducible protocol for the expression 

and purification SMA and LEN is made, overcoming previously documented 

difficulties that included low yields and low purity. Protein produced using 

these methods will be continued to be used as test for anti-fibrillation 

molecules by Dr Wolfgang Hoyer as well as a model set of VLs for assess the 
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ability of catalytic antibodies to reduce amyloid deposition in a recent 

partnership with UCB pharma.    

From this, we investigated another topic much in the spotlight of AL 

amyloidosis, which is the ability of light chain variable domain to internalise 

and induce cytomorpholoical and biochemical changes that cause toxicity. 

There are a limited number of studies that assess this possibility, and so the 

goal of this chapter was to evaluate the internalisation ability of two light chain 

variable domains of the kappa isotype which have not been explored 

previously. Using, FITC conjugated SMA and LEN and the popular rat cardiac 

cell line, the main discovery was that internalisation was demonstrated for both 

proteins. Now established, we aim to move to live cell imaging methods using, 

human cardiac cells, and finally human 3D culture models, providing higher 

degrees of physiological relevance to our findings, where we will continue to 

assess preventing internalisation using pharmacological inhibition assays.  

7.2. Limitations to the study 

 

Less stable proteins (by measurement of their thermodynamic stability) are 

reputed to be more susceptible to fibril formation (Hurle, Helms et al. 1994, 

Ramirez-Alvarado 2007, Ramirez-Alvarado, De Stigter et al. 2007). Mutations 

that reduce the thermodynamic stability of a protein may compromise its fold 

and allow it to sample partially unfolded states that are key in amyloid 

formation (Rochet and Lansbury 2000, Ramirez-Alvarado, De Stigter et al. 

2007, Del Pozo-Yauner, Becerril et al. 2015). In nature, destabilisation of the 

native structure is a likely consequence of all mutations (DePristo, Weinreich 

et al. 2005, Tokuriki, Stricher et al. 2008, Bromberg and Rost 2009, Soskine 
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and Tawfik 2010, Araya, Fowler et al. 2012, Studer, Christin et al. 2014). 

Immunoglobulins are commonly subject to mutations during maturation, 

specifically complementarity determining regions, sections of the variable 

domain that undergoes hyper mutation in order to enhance their antigen 

affinity (Kastritis and Dimopoulos 2016). Mutations in these CDR regions are 

often negligible to antibody stability, or acquire stabilising mutations to 

compensate for the destabilising nature of another (Jolly, Wagner et al. 1996, 

Julian, Li et al. 2017). However, In AL amyloidosis, the light chain variable 

domain is synthesised independent from any other Immunoglobulin subunit. 

Thus, the effect of a single mutation is likely to be amplified on this 12.8 kDa 

molecule in comparison to the full antibody that has a molecular weight of 

~150 kDa. It is however, becoming apparent that a decrease in 

thermodynamic stability does not necessarily indicate enhanced aggregation 

potential. For example, Marta Marin-Argany  et al., (previously mentioned in 

this thesis) revealed that  H32Y was less stable than one of the most 

destabilising mutations in this set, yet this mutation was unable to form 

amyloid fibrils instead forming nontoxic amorphous aggregates (Marin-Argany, 

Guell-Bosch et al. 2015).  Interestingly, other variable domains that have been 

relatively insensitive to mutations (leading to only small changes to unfolding 

free energies) have demonstrated the ability to form amyloid, suggesting that 

local structural changes may increase aggregation propensity independent of 

large global destabilising effects (Raffen, Dieckman et al. 1999). These factors 

make it incredibly challenging to apply a thermodynamic stability threshold or 

cut-off to predict whether a mutation can lead to amyloid formation or not.  
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 We use a number of predictors in this study to infer which mutation may 

be able to increase/ decrease aggregation potential by predicting changes to 

binding or folding free energies. Unfortunately, we were unable to 

unambiguously infer the stability effects of these mutations, which we 

acknowledge as a limitation of this study. Furthermore, the algorithms used for 

these predictions themselves, also have limitations that have been described 

previously in chapters and inaccuracies in predictors previously described in 

the literature (Guerois, Nielsen et al. 2002, Kumar, Rahman et al. 2017) To 

evaluate the predictive accuracy of each and every program used in this thesis 

with the aim of highlight the most accuracy (which this study does not focus 

on, rather we wish to assess which mutations likely contribute to increased 

aggregation potential) a far more extensive set than the mutations presented 

here, an expanded number of different programs that used vastly different 

datasets, and a number of different 3 dimensional structures of different 

resolutions that had been acquired in different conditions (evaluate structural 

sensitivity) would be needed to more accurate assumptions, similar to the 

following publication (Kumar, Rahman et al. 2017). Alternatively, a molecular 

dynamics approach could be used to how single substitutions effect dimer and 

monomer stability.  

In the attempt to overcome these limitations and avoid placing 

assumptions on how changes to the net stability influences protein 

aggregation we proceeded to dissect each SMA and REC-like mutation in the 

attempt to find key “gatekeeper residues”, those that are critical for maintaining 

not only the stability of the monomer, but also of the VL homodimer. To one 

extent, this has been successful. By calculating changes to the 3d-dimensional 
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structure and combining this work with previously unpublished NMR data, we 

have  indicated that the CDR3 is a key region within the variable domains in 

thus study which mediate their aggregation potential (Mukherjee, Pondaven et 

al. 2017).  

Limitations in a technical aspect include the work described in chapter 

6. This chapter wishes to assess the internalisation of SMA and LEN in to 

H9C2 rat cardiomyocytes. Internalisation was noted however one possible 

caveat to this study is the possibility that FITC (the fluorophore that enabled us 

to detected internalised VL) may perturb the kinetics of cellular uptake, and 

even dictates the subcellular localisation of internalised material (Mulcahy, 

Pink et al. 2014). Rather than express each VL to a fusion protein such as 

green fluorescent protein which may have impeded dimerization, stability, and 

native properties of each VL due to its large size (26.9 kDa) we chose to label 

each variable domain post-translationally. FITC and the analog Oregon green 

488 have been extensively used in internalisation studies (Monis, Schultz et al. 

2006, Wang, Li et al. 2006, Perera, Zoncu et al. 2007, Morris, Craig et al. 

2009, Levinson, Olatoye et al. 2013, Marin-Argany, Lin et al. 2016) yet there 

have been evidence showing that some Fluoresceins are able to alter the 

subcellular localisation of some molecules upon uptake (Puckett and Barton 

2009).  Given the ability of minor modifications to the primary structure has 

shown to perturb internalisation rates of variable domains (Levinson, Olatoye 

et al. 2013), FITC labelling could also have appreciable changes to the rate of 

internalisation within this study. Further experiments using fluorescein 

alternatives would elucidate the influence of FITC on internalisation and 

location. Having demonstrated these cells to internalise into a monoculture of 
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rat H9C2 cardiomyocytes, the use of human and 3-dimensional cultures would 

also provide greater physiological relevance to this study.  

7.3. Concluding statement 

Currently no drug has received regulatory approval for AL amyloidosis. In 

taking a multi-dimensional approach and complementing experimental 

methods with computational work, we address some of the gaps in current 

literature. Specifically, we sought to enhance our understanding on the 

underlying mechanisms of LC VL amyloid formation that include internalisation, 

and the contributions of somatic mutations to pathogenesis. By focussing on 

two emerging hot topics of potential therapeutic targets, (stabilisation of the 

dimer and inhibition of internalisation), we hope the findings of this work 

detailed in this thesis will be built upon and present a wealth of knowledge in 

order to make the much-needed therapeutic advances for devastating and 

currently incurable disease. 

 

I thank Dr Marina Alvarado Ramirez, Dr Diana Penha and Dr Daniel Rigden for 

stimulating discussion around the points addressed in this summary section. 
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