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Abstract

There is increasing interest in fielding multi-robot teams for applications such as search

and rescue, warehouse automation, and delivery of consumer goods. Task allocation is

an important problem to solve in such multi-robot settings. Given a mission that can be

decomposed into discrete tasks, the Multi-Robot Task Allocation (MRTA) problem looks

for an assignment of tasks to robots that ultimately results in efficient execution of the

mission. There is a range of approaches to this optimisation problem, from centralised

solvers to fully distributed methods that involve no explicit coordination between team

members. Somewhere in the middle of this range lie market-based approaches, where

tasks can be treated as goods, robots as “buyers” who can compute and express their

own preferences for tasks in a virtual marketplace, and some clearing mechanism exists

to match tasks to robots according to these preferences.

The most common type of market-based mechanism for multi-robot task allocation

is an auction, in which tasks are announced to the team, robots compute and place

bids that encode some measure of cost or utility of performing the tasks, and tasks are

awarded to robots over a number of rounds, according to the particular rules of the mech-

anism. Many different auction mechanisms exist, and they vary in the trade-offs that

they make between computation time and space on the one hand, and performance of the

execution of the mission on the other. In addition, the performance that results from a

mechanism’s allocation can be greatly affected by properties of task environments—the

spatial and temporal arrangements of tasks, as well as other properties like precedence

constraints, whether tasks require the simultaneous cooperation of multiple robots, and

so on—in which it is employed. A simple mechanism that is inexpensive to compute

and scales well may perform well in some environments, but not in others.

The work presented in this thesis focuses on this relationship between auction-based

task allocation mechanisms and properties of task environments, with the goal of devel-

oping a method of selecting, from a portfolio, a mechanism that is appropriate for a given

task environment. The first part of this work is an empirical performance evaluation of

a range of mechanisms employed in a series of environments of increasing complexity.

The second part of this work uses results from this evaluation to develop and train a

data-driven method of mechanism selection using properties of environments that can

be measured at the start of a mission. The results show that, under certain conditions,

this method of mechanism selection can lead to significant performance improvements

compared to using a single mechanism alone.
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Chapter 1

Introduction

Mobile robots are being asked to perform difficult missions in increasingly complex and

dynamic environments. These kinds of missions can be found in exploration, search and

rescue, defence, and industrial settings, among others. The multi-task nature and scale

of these missions necessitates the use of teams rather than single robots. While robot

teams have the attractive potential advantage of distributing and parallelising a mission

workload amongst team members, they also pose significant coordination challenges that

do not appear in single-robot settings. Some of these challenges include representing a

mission in a way that can be decomposed into tasks that can be allocated to team

members; ensuring that team members cooperate while performing tasks instead of

interfering with and hindering each other; recovering from failure of one or more robots

during the course of a mission; or coping with poor or unreliable communication links

between team members or a human controller. Unreliable communication links between

a robot team and human controllers can make some form of autonomous decision making

necessary.

One of the primary challenges of multi-robot coordination is multi-robot task alloca-

tion (MRTA), the problem of deciding which tasks of a mission should be assigned to

which robots so that the overall execution of the mission is, by some measure, efficient

if not optimal. While there are several kinds of approaches to solving task allocation

problems (explored Chapter 2), this thesis focuses on market-based methods of task

allocation, and auctions in particular.

Market-based Task Allocation

Market-based approaches to task allocation frame the assignment problem as a multi-

agent systems (MAS) problem. Rather than having a monolithic, centralised planner

that is responsible for computing the costs or utilities of potential allocations, a market-

based approach to MRTA relies on the fact that robot team members are each capable

of planning subsets or sub-problems of the mission (i.e., planning to execute individual

tasks or groups of tasks) and can express the costs or utilities of these plans in a way that

is simple and efficient to communicate. Task allocation is governed by a mechanism, a

1
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Figure 1.1: A multi-robot routing problem. Black hexagons represent robot locations.
Circles represent locations of tasks. In this solution, tasks have all been allocated to
robots, who plan routes (straight lines) to visit task locations.

set of rules that govern how tasks should be assigned and a protocol for communicating

the availability of tasks to robots, and the values robots have for them. A mechanism

enables a virtual marketplace in which tasks can be distributed to robots or exchanged

among them.

The most common kind of market-based mechanism for multi-robot MRTA is an

auction, which compares bids for resources from interested parties and awards them

to the highest (or lowest) bidder according to the particular rules of a mechanism.

(Auctions are discussed in detail in Chapter 2). It can be expensive to compute an

allocation that is optimal for some performance objective, so most auction mechanisms

strive for approximately optimal allocations. Designers of auction mechanisms must

make trade-offs between the costs of computing an allocation and the performance of

the execution of a mission that results from the allocation.

Multi-Robot Routing

This thesis examines auction-based MRTA mechanisms for a class of problems known

as multi-robot routing. In a multi-robot routing mission, a team of robots must travel

from their starting locations to a number of task locations that are distributed over some

geographic area. The robots must avoid obstacles such as walls (and each other) as they

travel to their assigned task locations. The mission is considered complete when all of

the task locations have been visited. An example problem and its solution is shown in

Figure 1.1.
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In these types of missions, the aim of a task allocation mechanism is to assign tasks

to robots such a way that, when robots execute the tasks, some global measure of cost

is minimised or some measure of utility is maximised. Cost is often computed as the

distance covered by the team as they travel to task locations or the time it takes them

to do so. Utility might be measured as a reward for reaching a task location that has a

high priority, for example a victim in distress in a search and rescue setting.

For simple routing missions in which task locations are only visited by single robots

and there are no constraints like precedence-ordering between tasks, multi-robot rout-

ing can be formulated as a multiple travelling salesperson (mTSP) [7] or vehicle routing

problem (VRP) [72]. However, as explained in Chapter 2, multi-robot tasks and envi-

ronments may become complicated in ways that make traditional methods of solving

problems like this infeasible. In such cases, market-based mechanisms such as auctions

can be scalable, practical to implement, and still yield good performance compared to

optimal solutions.

Task Environments

A map defines the physical boundaries of a mission space as well as the obstacles within

that space, such as walls or barriers. Robot team members have an initial arrangement–

a set of starting locations–on the map. Tasks that make up a mission also have a spatial

arrangement on the map. Tasks may also have other properties:

• A task may require multiple robots to visit its location simultaneously before it

can be considered complete

• There may be precedence-ordering or other constraints between tasks that dictate

when or in which order task locations may be visited

• A tasks may “arrive” over time according to a known or unknown schedule

• A task may have a priority, raising the utility of visiting its location

A task environment characterises these properties.

In missions more complex than multi-robot routing, the execution of a task, once

its location has been reached, may itself require elaborate planning. Previous work

has observed that the environments in which auction mechanisms are employed have a

large impact on mission execution performance [106, 108, 110]. This impact can lead to

performance results that mechanism designs might not be able to consider or predict.

Applications

Task allocation is a fundamental problem in a number of multi-robot applications.

Robots exploring remote areas (Figure 1.2) need to navigate autonomously, as delayed

signals make real-time control impossible. A future is envisioned in which teams of rovers
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Figure 1.2: NASA’s autonomous rovers explore the surface of Mars.
Courtesy NASA/JPL-Caltech.

explore Mars [22, 39] or perform underwater archaeological surveys [123] by distributing

high-level mission workloads among themselves autonomously.

There is also increasing interest in employing robots for search and rescue [17, 55,

56, 85] and disaster recovery [66] missions (Figure 1.3) in environments, such as nuclear

disasters [84] or collapsed mines [83], that are not only dangerous for human responders

to enter, but also make real-time control difficult.

Figure 1.3: Hypothetical disaster scenario set in Kobe, Japan. From the Robocup
Rescue League Agent Simulation competition [56].
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1.1 Research Questions

1. Do theoretical performance guarantees of auction-based task allocation hold up

in practice in a multi-robot system? How do factors like inter-robot interference

complicate the execution of tasks once an allocation has been made?

2. Does a single auction-based task allocation mechanism perform best across a range

of complex environments in which tasks may arrive over time, may require multiple

robots to execute simultaneously, or have constraints between them? Do the rela-

tive performance rankings of several mechanisms hold across these environments?

3. If certain auction-based task allocation mechanisms perform better in some en-

vironments than others, then is it possible to choose a mechanism that performs

best for a given environment?

1.2 Contributions

Thesis Statement

This thesis asserts that, as task environments become more complex and varied, no

single multi-robot task allocation mechanism will perform best in all task environments

in which it is employed.

Research Contributions

This thesis makes four primary contributions:

1. An experimental software framework (Chapter 3)

I have developed the MRTeAm software framework1 to conduct experimental in-

vestigation of market-based task allocation mechanisms for multi-robot systems.

MRTeAm is a collection of software agents that implement task allocation and ex-

ecution behaviours for a team of mobile robots. It is used to conduct experiments

on both physical and simulated robots with minimal modification to the behaviour

between the two. MRTeAm has been deployed on physical robot hardware and in

simulations on a massively parallel compute cluster at the University of Liverpool.

As part of MRTeAm, I have developed the ROS Master Bridge, an extension to

the communication infrastructure of ROS (the Robot Operating System [96], on

which MRTeAm is based) that enables inter-robot communication.

2. Rich Performance metrics (Chapter 4) Metrics often used to measure the per-

formance of a multi-robot routing mission are the distance travelled by the robot

team over the course of a mission and the time taken to reach task locations.

Sometimes overlooked is the cost of computing an allocation itself, an important

1http://github.com/nitsuga/mrta

http://github.com/nitsuga/mrta
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factor when considering the scalability of missions and teams. Inter-robot interfer-

ence due to the need to avoid collisions can hamper robots execution of a mission

and confound predictions of performance based on allocations alone. The time

robots spend idle while team mates execute tasks is also a measure of inefficiency

of the team. This thesis defines a set of metrics that measure these factors and

tell a much richer story about the performance of a mission than commonly used

metrics can.

3. An empirical investigation of task environments (Chapter 5–7) This the-

sis presents a set of multi-robot routing experiments conducted in a series of in-

creasingly complex task environments, with the aim of discovering how theoretical

guarantees of mission performance based on allocations alone are borne out in

practice. The experiments are conducted on a team of physical autonomous mo-

bile robots when possible, and in high fidelity simulations otherwise. Experimental

results reveal how factors like inter-robot interference and the need to re-plan dur-

ing task execution can complicate expectations of performance that are based on

the quality of allocations alone.

4. A method of mechanism selection (Chapter 8)

I have developed a data-driven method of selecting a task allocation mechanism

from among several options based on reading the arrangements of tasks and robots

at the beginning of a mission. The method was inspired by the results of the em-

pirical investigation mentioned above that suggest that, under certain conditions,

it may be possible to employ a low cost task allocation mechanism that achieves

performance that is competitive with or better than a more expensive alternative.

Experiments show that, under certain conditions, selecting a task allocation mech-

anism using this method can significantly improve the performance of a robot team

executing its mission compared to using any single mechanism in the portfolio.

1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 reviews the background in which multi-

robot task allocations problems allocation problems are set, states the MRTA formally,

and discusses related work that attempts to address it. Chapter 3 details the MRTeAm

software framework that has been developed to carry out experimental work for this

research. Chapter 4 describes the design of experiments that follow, including the task

allocation mechanisms that are evaluated and metrics that measure the performance of

a mission.

Chapters 5 – 7 present the results of performance evaluation experiments in a series

of increasingly complex environments. Chapter 5 evaluates the comparative performance

of several mechanisms in a simple environment in which tasks are allocated in a single

phase at the beginning of an experiment, can be executed by single robots, and can be
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executed in any arbitrary order. Chapter 6 compares this task environment against one

in which tasks arrive over time in a fixed schedule. Chapter 7 investigates mechanism

performance in yet more complicated environments in which tasks that must be executed

by multiple robots at once and may have precedence ordering constraints between them.

Chapter 8 presents the titular contribution of this thesis, a method of selecting a

mechanism from a portfolio of options that uses spatial features of tasks and robot

locations as features to characterise a mission. This chapter also presents the results

of employing the method in the task environment investigated in Chapter 5 and shows

that, under some starting conditions, it can lead to a significant increase in performance

compared to employing any one single mechanism from the portfolio alone.

Chapter 9 discusses the path of investigation that led to developing the selection

method, suggests lines of inquiry for future work, and concludes.

Publications

Portions of the work presented in this thesis have been published in the following:

1. Eric Schneider, Ofear Balas, A Tuna Ozgelen, Elizabeth I Sklar, and Simon Par-

sons, An empirical evaluation of auction-based task allocation in multi-robot teams,

Proceedings of the International Conference on Autonomous Agents and Multi-

agent Systems (AAMAS), International Foundation for Autonomous Agents and

Multiagent Systems, 2014, pp. 1443–1444

2. Eric Schneider, Elizabeth I. Sklar, M. Q. Azhar, Simon Parsons, and Karl Tuyls,

Towards a methodology for describing the relationship between simulation and real-

ity, Proceedings of the European Conference on Artificial Life (ECAL), MIT Press,

2015, pp. 562–569

3. Eric Schneider, Elizabeth I Sklar, Simon Parsons, and A Tuna Özgelen, Auction-

based task allocation for multi-robot teams in dynamic environments, Towards Au-

tonomous Robotic Systems: 16th Annual Conference, TAROS 2015 (Clare Dixon

and Karl Tuyls, eds.), Springer International Publishing, 2015, pp. 246–257

4. Eric Schneider, Elizabeth I Sklar, and Simon Parsons, Mechanism selection for

multi-robot task allocation, Towards Autonomous Robotic Systems: 18th Annual

Conference, TAROS 2017 (Yang Gao, Saber Fallah, Yaochu Jin, and Constantina

Lekakou, eds.), Springer International Publishing, 2017, pp. 421–435

5. Eric Schneider, Elizabeth I Sklar, and Simon Parsons, Mechanism selection for

multi-robot task allocation, Towards Autonomous Robotic Systems: 18th Annual

Conference, TAROS 2017 (Yang Gao, Saber Fallah, Yaochu Jin, and Constantina

Lekakou, eds.), Springer International Publishing, 2017, pp. 421–435





Chapter 2

Background and Related Work

This chapter describes the multi-robot task allocation (MRTA) problem and gives an

overview of related work. Section 2.1 first discusses multi-robot systems (MRSs) and

multi-robot coordination, and where the MRTA problem fits within the landscape of

research in this domain. I then state the MRTA problem and introduce definitions

and notation that will be used in further discussion. A range of approaches to MRTA

is examined that run along an axis from centralised to distributed methods (Section

2.2). Among distributed methods, market-based methods of MRTA (Section 2.2.6) are

discussed, focusing on auctions (Section 2.3). This is followed by a discussion and taxon-

omy of various kinds of environments in which multi-robot missions are set (Section 2.4).

2.1 Multi-Robot Coordination

The multi-robot task allocation problem fits within a broader category of research in

multi-agent systems (MASs) and multi-agent coordination. An agent is “a computer

system situated in some environment that is capable of autonomous action in this en-

vironment to meet its design objectives,” [131] or “anything that can be viewed as

perceiving its environment through sensors and acting upon that environment through

actuators” [100]. In common are the ideas of an autonomous decision-making system

situated in some environment that can perceive aspects of the environment and that

can act upon the environment. A multi-agent system is a collection of agents, perceiv-

ing and acting within the same environment, which also includes the other agents in

the system. A MAS has potential advantages over single-agent systems intentionally

designed to perform some task, in that workloads can be distributed among multiple

agents and executed in parallel. However, as discussed in the following sections, this po-

tential parallelism comes with an added potential cost of computation, communication,

and complexity.

A multi-robot system (MRS) is a type of multi-agent system in which the environment

has a spatial property. MRSs are distinguished from MASs in that the agents (robots)

in a MRS are embodied and can move in a (possibly simulated) physical environment

and must interact physically, for example, by locomotion or manipulation [137]. Barnes

9
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and Gray (1991) [5] define multi-robot coordination as “joint collaborative behaviour

that is directed toward some goal in which there is a common interest or reward”. Cao

et al. (1997) [16] give a utility-based definition of multi-robot cooperation: “Given some

task specified by a designer, a multiple-robot system displays cooperative behaviour if,

due to some underlying mechanism (i.e., the ‘mechanism of cooperation’), there is an

increase in the total utility of the system”.

As a review of the complete body of MRS research is outside of the scope of this

thesis, the following discussion is restricted to mobile robots and does not discuss robotic

manipulators and related tasks and planning; human-robot interaction; or competitive

(i.e. non-cooperative) systems such as those investigated by Dias and Stentz (2002) [23].

2.1.1 Taxonomies for Multi-Robot Coordination

Several schemes have been proposed to classify the large body of research in multi-robot

coordination, each defining categories (or “axes” or “dimensions”) of coordination along

which a given MRS can be situated. Dudek et al. (1996) [25] focus on the intentional,

“task-oriented behaviour” and implementation of a MRS and propose categories for as-

pects of team architecture such as types of inter-robot communication, team size and

composition, and processing ability. Cao et al. (1997) [16] propose categories for team

architecture, but also for the “origins”—the motivations and mechanisms—of cooper-

ation, including emergent (e.g., biologically inspired) behaviour; for MRSs that learn

behaviours and control parameters; and for different modes of planning for “geometric”

(i.e. spatial) tasks. Farinelli et al. (2004) [29] propose broad categories that attempt to

decouple abstract properties of multi-robot coordination from categories that relate to

team architecture. Parker (2008) [92], covering ideas similar to Farinelli et al., defines

three axes that describe how strongly connected and interrelated the goal-seeking be-

haviours of team members are. Yan et al. (2013) [137] complement these taxonomies,

extending Cao’s discussion of resource conflicts and including ways that coordination

methods can adapt dynamically to changes in the environment.

The following section discusses five of the categories these taxonomies have in com-

mon and examples of MRS research that can be found in each. These categories are not

fully independent. For example, a strongly-centralised method of coordination might

requires some form of explicit communication.

A. Types of Coordination

Parker [92] defines three axes that define a space of the multi-robot coordination do-

main: robots’ awareness of each other; whether or not they share goals (as in e.g.,

box-pushing), and whether or not the separate goals of different robots have interre-

lated utility. Farinelli et al. [29] propose a single axis of coordination, covering similar

ideas, that runs from “unaware” to “strong coordination”. Coordination is governed by

the presence (or absence) of a protocol, a set of rules that robots must follow to interact
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with each other. This protocol is used in a process of deliberation, or negotiation, in

which information is communicated between team members.

In an unaware MRS, robots have no knowledge of each other’s presence or state. Al-

though explicit coordination or communication does not take place, global, goal-directed

behaviour can emerge from the goal-directed behaviours of the individual members. Ex-

amples of unaware systems can be found in biologically-inspired designs [18, 67]. With

no coordination protocol to follow or sates of other robots to represent and reason about,

such systems can scale to large numbers. The goals in an unaware MRS are often sim-

ple, such as area coverage or foraging [18]. In a MRS that is aware but not coordinated,

robots have the ability to perceive and react to their teammates, but lack a coordinating

protocol. Reactive behaviours might be repulsive or dispersive [6, 42], where robots seek

to avoid interference with one another. These types of systems have been applied to

goals that are similar to those of “unaware” systems, including foraging and exploration

or area coverage [6]. These types of systems are also capable of being scaled to large

numbers of robots without running into communication or computational bottlenecks

[61, 99].

Robots in a weakly coordinated MRS are aware of each other but still lack an ex-

plicit coordinating protocol. In contrast with “no coordination” MRSs, robots may use

perception of other robots and simple rules to achieve tasks in a coordinated way. Balch

and Arkin (1998) evaluate methods for formation-holding tasks, in which ground-based

robots seek to maintain relative distances from each other without explicitly communi-

cating [4]. In a strongly coordinated MRS, there exists a coordinating protocol and a

mechanism for deliberation. The GOFER architecture of Caloud et al. (1990) [15] co-

ordinates exploration missions using a central planning system that allocates allocates

tasks to robots. Gerkey’s MURDOCH [34] and Dias’s Traderbots [22] architectures fea-

ture coordinating protocols that allocate tasks to robots through market-based methods

of negotiation and bargaining (Section 2.2.6).

B. Types of Organization

Among MRSs that are strongly coordinated, Farinelli et al. [29] define the “organization

level” of a coordinating protocol that distinguishes between centralised and distributed

approaches. In a strongly centralised system, a single agent in the system acts as a leader

that guides the decision making for the whole team. Veloso and Stone [127] describe an

architecture for robot soccer in which player agents depend on a global vision system

to track the locations of players and the ball. In a distributed system, agents are fully

autonomous and make their own decisions about how to implement the coordinating

protocol. In Parker’s ALLIANCE architecture [91], autonomous robots with individual

goal-oriented behaviours coordinate by direct interaction without any overseeing agent.
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C. Communication

Communication between robots may occur peer-to-peer or within a limited broadcast

range. In Wang’s “Sign-board” architecture [130] each robot maintains an internal

database of information that is broadcast to team mates within communication range.

In Konolige et al.’s Centibots architecture [60, 61], leaders of “exploration clusters”

aggregate map data from robots in local neighbourhood for an exploration task. Com-

munication may occur globally as in [127]. Blackboard systems [20] maintain a global

database that team members use to share information [14]. Publish/subscribe messag-

ing models [34, 96] transmit information globally, but limit bandwidth use by sending

messages only to robots interested in certain topics.

D. Team Composition

Homogeneous teams are composed of robots with identical capabilities. In heterogeneous

[13, 59, 66, 121] teams, robots may have different physical configurations and capabilities

[91] or implement different behaviours or roles [3, 33, 119]. Another property of team

composition is the team size. Yan et al. [136] present an framework for determining

optimal team sizes for exploration missions.

E. Resource Conflict and Resolution

A resource conflict occurs when multiple robots request access to the same indivisible

resource [16]. Resources might include communication bandwidth [101, 138], space (in-

cluding access to the same physical object), or sub-goals of a mission. Conflicts over

spatial resources require some method of reactive collision avoidance [30, 48, 117, 126],

collision-free path planning [9, 129] or explicit negotiation to determine right-of-way

[2, 51]. Conflicts over tasks (or sub-goals) that make up a mission can be resolved by a

protocol that determines how to assign tasks to robots, and this is discussed in the next

section.

2.2 Multi-Robot Task Allocation (MRTA)

In a multi-robot system that is cooperative and intentionally coordinated, multi-robot

task allocation is the problem of assigning each of a set of discrete tasks that make up

a mission to robots in the team, typically in a way that optimises some performance

objective (minimising an overall measure of cost or of maximising an overall measure

of utility). Several formulations of the MRTA problem have been proposed. In settings

where each robot in a team can perform one task at a time and each task can be

performed by a single robot, multi-robot task allocation can seen as equivalent to the

Optimal Assignment Problem (OAP) from Operations Research and formulated as a

linear program [36]. Gerkey and Mataŕıc also formulate it as a set covering problem [36].

A flexible definition that is adopted here is given by Kalra et al. (2005) [53] and Zlot &
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Stentz (2006) [142], itself adapted from a definition of multi-agent task allocation given

by Andersson and Sandholm (2000) [1]:

Definition 1. Given a set of robots R, let R = 2R be the set of all robot subteams.

An allocation of a set T of tasks to R is a function, A : T → R , mapping each task

to a subset of robots responsible for completing it. Equivalently, R T is the set of all

allocations of the tasks T to the team of robots R. Let Tr(A), r ∈ R be the set of tasks

allocated to subteam r in a given allocation A.

Definition 2. The Multi-robot Task Allocation Problem: Given a set of tasks T ,

a set of robots R, and a private cost function for each subset of robots r ∈ R specifying

the cost of performing each subset of tasks cr : 2T → R+ ∪ {∞}, find the allocation

A∗ ∈ R T that minimizes a global objective function C : R T → R+ ∪ {∞}.

This definition of the MRTA problem considers all possible allocations of subsets (or

bundles) of tasks to all possible subteams of robots. A feasible allocation is any partition

of T that maps subsets of tasks to subteams of robots. Finding an optimal allocation,

however, is NP-hard [1, 70].

2.2.1 Cost Functions and Solution Quality

Definition 2 describes two functions for computing costs. A private cost function, cr,

computes the cost incurred by an individual robot or subteam when executing a single

task or a subset of tasks. A global cost function, C, which a task allocation method

attempts to optimise, is often related to the private cost function, but may be more than

just a simple sum.

Valuations of tasks by individual robots or subteams of robots are sometimes ex-

pressed in terms of utility rather than cost, in which case an MRTA solution seeks to

maximise the global utility of an allocation. In a mapping mission, a location along an

exploration frontier that promises high information gain (revealing more of the map)

might have a higher utility than a neighbouring location [114]. Kalra et al. [53] give an

example valuation that is a combination of cost and utility in an exploration mission,

where completing a task incurs a positive utility but each unit of distance travelled mov-

ing toward it incurs a negative cost. Chevaleyre et al. (2006) [19] point out that a task

can be viewed as a kind of resource to which robots assign negative utility (i.e., cost).

In multi-robot routing missions (Section 2.2.3), a natural measure of cost is the distance

a robot must travel along a path from its current location to a task location. A cost

based on path distance can be thought of as a proxy for a robot’s consumption of fuel

or battery power. A cost function might also be based on the estimated time to travel

to a task location, which may be complicated by congestion, localisation uncertainty, or

other factors that can affect navigation.

Two commonly used global cost functions are MiniSum and MiniMax [53, 70, 142].

The MiniSum objective minimises the sum of the costs incurred by individual robots
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or subteams in an allocation, which might represent the total fuel or battery energy

consumed by a team as robots travel to task locations of a routing mission:

C(A) =
∑
r∈R

cr(Tr(A)) (2.1)

The MiniMax objective, also known as the makespan, minimises the maximum cost

incurred by an individual robot or subteam in an allocation. It may be desirable to

minimise the maximum cost in a search and rescue mission, where the goal is to reach

a victim furthest away from aid in the least amount of time:

C(A) = max
r∈R

cr(Tr(A)) (2.2)

A third objective, MiniAvg, minimises the average cost of an individual robot or

subteam in an allocation [70]. This might be desirable in a search and rescue mission,

where the health condition of several victims deteriorates over time [122] or in a patrolling

mission where frequent, regular coverage of a patrol path is required [50].

C(A) =
1

m

∑
r∈R

cr(Tr(A)) (2.3)

A allocation may be optimal or approximately optimal. A ρ-approximate solution

for a multi-robot task allocation problem is no greater than ρ times the cost of an optimal

solution to a minimisation problem or 1
ρ times the cost for a maximisation problem [53].

For an online problem in which tasks appear dynamically over time, a ρ-competitive

solution is no greater than ρ or 1
ρ times the cost of an optimal offline solution of the

same problem—accounting for all tasks that eventually arrive—for minimisation and

maximisation problems, respectively.

2.2.2 Missions and Tasks

A mission is a high-level goal such as “search an area for people in distress” or “deliver

a batch of goods to these customers”. A “task” is a subgoal of a mission, such as “travel

to a location (x, y) and take a picture” or “patrol a route along these waypoints”. Some

authors define a task as a role, or set of behaviours, such as an attacker or defender in

robot soccer [32, 33, 119, 125] or individual robot actions [81].

A task specification language is often used to decompose a high-level mission goal into

subgoals that can be allocated. Noreils [87] describes how subgoals can be decomposed

automatically from a mission-level goal by a general-purpose planner. Simmons and

Apfelbaum [113] and Brummit and Stentz [13] define task specification languages that

system designers can use to represent tasks explicitly.

In the simplest cases, tasks are atomic, in that they can not be further decom-

posed, and independent, in that there are no dependencies or constraints between tasks

(e.g., precedence ordering). In more complex missions, tasks may be organised into

groups [87], trees [113] or other structures.
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2.2.3 Multi-Robot Routing

A canonical example of multi-robot task allocation is found in multi-robot routing prob-

lems [58, 70], in which a team of mobile robots must visit a set of task locations to

perform some work such as delivery or collection. The routes, or paths, from robots

to task locations should optimise criteria like travel distance or time. Movement to a

location itself is considered a task and the work performed there is abstracted. In mis-

sions with atomic and independent tasks, a multi-robot routing problem is similar to a

multiple depot multiple Travelling Salesperson Problem (mTSP) [7] or Vehicle Routing

Problem (VRP) [72], where salespeople or vehicles need not return to their depots [70].

A definition of the multi-robot routing problem adopted here is given by Lagoudakis

et al. [70], and gives Definition 2 a spatial interpretation:

Definition 3. The Multi-robot Routing Problem: Given a set of robots, R, and

their locations, a set of tasks, T , and their locations, and a function c(i, j) → R+ ∪
{∞}, i, j ∈ R ∪ T , which denotes the cost of moving between target (task) or robot

locations i and j, find the allocation A∗ ∈ R T that minimizes a global objective function

C : R T → R+ ∪ {∞}.

The cost c, or path cost, is defined here for a single robot moving from its current

location to a task location or between two task locations. A path cost between locations

i and j may be based on Euclidean distance or Manhattan distance, but in a physical

setting paths are often planned around obstacles in the environment (e.g., by Dijkstra’s

Algorithm [24] or A* [45]). The path cost may also be based on an estimated time to

travel between locations i and j. Definition 3 assumes costs are symmetric, c(i, j) =

c(j, i), are the same for all robots, and satisfy the triangle inequality. A path cost may be

infinite if it is impossible to find a path between locations i and j. The global objective

function C typically computes, as in Definition 2, the sum of path costs over all tasks

assigned to robot sub-teams in a given allocation.

2.2.4 Centralised MRTA

Centralised approaches to MRTA rely on a single “leader” agent to plan, allocate and

coordinate the executions of tasks for the entire team. With global information about

the environment and robot states, it is straightforward (but not necessarily efficient) for

a centralised coordinating agent to allocate tasks optimally. A centralised path planner,

for example, can calculate collision-free paths that optimise the MiniSum or MiniMax

objective for a multi-robot routing mission by solving a multiple Travelling Salesperson

Problem or Vehicle Routing Problem. However, as Kalra et al. [53] note, the complexity

of centralised coordination grows exponentially in the number of agents and tasks, suffers

from a single point of failure, and may incur high communication costs. Although there

are efforts to reduce the search spaces of centralised solvers [129], centralised approaches

(e.g., GRAMMPS [13]) generally do not scale as well as distributed approaches and may

only be appropriate for smaller teams or missions.
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2.2.5 Fully Distributed MRTA

In fully distributed approaches to MRTA, robots operate only on local information.

Methods, such as threshold-based task allocation [64], have low computation require-

ments, require little or no communication, can be robust to robot failure, and may be

scalable to large team and mission sizes. However, such fully distributed approaches

provide little explicit coordination and may produce suboptimal results without careful

or computationally expensive engineering or training [11]. Fully distributed approaches

to multi-robot task allocation may be most appropriate for large teams that are faced

with relatively simple tasks like foraging [65].

2.2.6 Market-based MRTA

Market-based multi-robot task allocation is somewhat of a hybrid of centralised and

distributed approaches. In market-based MRTA, self-interested agents seek to maximise

personal gain by trading resources in a “virtual economy” [53] of tasks. Market-based

approaches combine some of the advantages of centralised approaches, such as intentional

coordination of a global objective, and distributed approaches, such as distribution of

of computation and robustness to failure.

The following are some general properties of a market-based approach to MRTA

defined by Kalra et al. [53]:

• The team is given an objective that can be decomposed into sub-components

achievable by individuals or sub-teams. The team has access to a limited set of

resources with which to meet this objective.

• A global objective function quantifies the system designer’s preferences over all

possible solutions. This function may be complex and take into account multiple

criteria. For example, it might be desirable to minimize time and energy spent

moving (cost), while maximizing utility (completion of high priority tasks).

• An individual utility function (or cost function) specified for each robot quan-

tifies that robot’s preferences for its individual resource usage and contributions

towards the team objective given its current state. Evaluating this function cannot

require global or perfect information about the state of the team or team objective.

Subteam preferences can also be quantified through a combination of individual

utilities (or costs).

• A mapping is defined between the team objective function and individual and

subteam utilities (or costs). This mapping addresses how the individual production

and consumption of resources and individuals’ advancement of the team objective

affect the overall solution.

• Resources and individual or sub-team objectives can be redistributed using a

mechanism such as an auction. In a well-designed mechanism, maximizing the
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mechanism-controlling agent’s utility (or minimizing its cost) results in improving

the team objective function value.

An early example of market-based multiagent task allocation is Smith’s Contract Net

Protocol [116]. A contract net is a collection of agents that negotiate with each other

to distribute tasks by advertising and honouring contracts for work. Agents assume

either the role of manager or contractor. Managers announce the availability of tasks

to contractors and solicit bids from them. Eligible contractors capable of executing the

tasks compute and submit bids to managers. If a bid is deemed “satisfactory”, the agent

that submitted the bid is awarded the task that it bid on. The protocol defines a model

of communication for task allocation but makes no assumptions about the meaning of

bid values or how bids are determined to be satisfactory.

Wellman and Wurman [132] introduce ideas from economics to multiagent task allo-

cation. Task allocation is modelled as an auction mechanism, where agents can compute

and compare internal valuations, or prices, for tasks. A price compactly summarizes and

encodes the utility or cost of a possibly complex internal process, such as a plan, for ex-

ecuting a task. A valuation encoded as a price also makes it easier to employ established

mechanisms like auctions to multiagent task allocation.

Market-based task allocation for multi-robot systems was first proposed by Stentz

and Dias [118] and later extended in Dias’s Traderbots architecture [22]. In what they

describe as a “free market” system, robot agents model both the utilities and costs of

executing tasks, and seek to maximize their individual profits by trading tasks with each

other using an extension of the Contract Net protocol [116].

2.3 Auctions

Auctions are the most common type of market-based approach to MRTA problems [53].

An MRTA auction mechanism is both a process that determines how to allocate tasks

based on robots’ private valuations and a protocol that specifies how tasks and valuations

are encoded and communicated.

Auctions are conducted over a number of rounds, which typically have three phases:

• Announcement: An auctioneer agent advertises one or more unallocated tasks

from a pool to eligible robots.

• Bid Computation and Submission: Each robot calculates a private valuation

(a utility or cost) for the task(s) announced and submits bid(s) to the auctioneer.

• Winner Determination and Awarding (or Clearing): The auctioneer aggre-

gates all bids received, calculates one or more winners, and awards the winners

with the tasks. Awarded tasks are removed from the auctioneer’s task pool.

Auction rounds are conducted until all tasks have been allocated and the task pool

is empty.
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Parsons et al. [93] classify auction mechanisms using Shoham’s taxonomy [112] as well

as their own parametric model. By this classification, MRTA auctions are one-sided in

that robots represent multiple “buyers” of tasks but there is only a single “seller” agent

(the auctioneer). In a cooperative multi-robot system, auctions are typically sealed bid

in that robots reveal bids to the auctioneer but not to each other. Auctions may be

single-item, where one task is announced and awarded per round or multi-item, where

bundles of tasks are announced and awarded. The “price” that represents a robot’s

valuation of a task is typically abstract; that is, with some exceptions [22], a robot does

not exchange a resource with the auctioneer in return for the acquisition of a task.

Gerkey and Matarić introduced auctions for MRTA problems in their MURDOCH

architecture [35] as an extension of the Contract Net Protocol. MURDOCH uses a

central auctioneer agent and multiple autonomous robot bidding agents with a global

publish-subscribe communication model. MURDOCH allocates cooperative tasks like

box pushing using a single-item auction mechanism and utility functions based on metrics

like how well positioned a robot is to push a box. In [35], the quality of task execution

is measured, but not the global quality of the allocation.

Lagoudakis et al. formalise auction-based MRTA for multi-robot exploration and

routing missions [69, 70]. They show that an optimal solution to a multi-robot routing

problem is NP-hard and, as an approximate solution, develop bidding rules for the

MiniSum, MiniMax, and MiniAvg objectives. They prove that their auction-based

bidding rules result in solutions whose worst case performance is bounded by a constant

multiple (ρ) of an optimal solution (for MiniSum) or a multiple that is linear in the

number of tasks (for MiniMax) or size of the team (for MiniAvg).

2.3.1 Auction Mechanisms

A MRTA auction mechanism typically offers an approximate solution to an optimisation

problem, so mechanism designers make trade-offs between the quality of the solution and

the costs of computing and communicating it. Wellman and Wurman [132] define an

abstract mechanism space that considers properties of the messages communicated by

an auction protocol. Parsons et al. [93] give a parametric model of mechanism space

that considers the eligibility of agents to participate in an auction, rules for accepting or

rejecting bids, and functions, including winner determination, that govern how resources

are matched with agents. They also provide a model of the processes of an auction mech-

anism, similar to the phases of an auction round listed in Section 2.3. More concretely,

some parameters available to mechanism designers are:

1. Announcement : An auctioneer must choose which tasks are announced to which

robots from a pool of unallocated tasks. Tasks may be announced singly or in

bundles. A sequence of tasks announced over a number of rounds may be governed

by ordering or other constraints. Announcements may be broadcast to the entire

team or multicast certain groups of robots.
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2. Eligibility : In a heterogeneous robot team, not all robots might be capable of

executing all tasks that are announced. A mechanism might ensure a robot’s

eligibility to participate in an auction, as in Smith’s Contract Net Protocol [116].

3. Bid selection, computation, and submission: A robot (or subteam) can choose to

bid on all tasks announced in a bundle or a subset of them.

A robot’s (or subteam’s) private valuation of a task that it reports in a bid might

be accurate or estimated from partial information. The path cost of a routing

task, for example, might be subject to a robot’s uncertainty about its location or

obstacles in the environment.

A robot (or subteam) may consider the cost of task insertion. A bid for a routing

task, for example, might report the cumulative cost of a tour of task locations that

have already been awarded plus the cost of adding a new task. Alternatively, a

bid might report the marginal cost of adding a new task location to a tour of task

locations that have already been awarded [70].

4. Winner Determination and Awarding : An auctioneer aggregates all of the bids

that are submitted and may choose winners according to an objective like MiniSum

or MiniMax. Ties may be broken randomly or by some principled method. More

than one robot (or subteam) may win and be awarded tasks in a single round.

Different choices made within this mechanism designs space can lead to widely vary-

ing costs both in terms of computation and communication of the auction itself and in

terms of mission performance once an auction has been conducted. Phelps et al. [95]

investigate evolutionary approaches to the design of auction mechanisms for multiagent

systems. In a multi-robot exploration setting, Tovey et al. [122] systematically generate

bidding rules for the MiniSum, MiniMax, and MiniAvg objectives and show experi-

mentally that the rules result in team performance that is “good” for their respective

objectives. In this space of mechanism designs, auctions for MRTA can be broadly

classified as single-item or multi-item.

Single-item Auctions

In a single-item auction, one unallocated task is announced and awarded per round, and

rounds are conducted until all of the tasks of a mission have been allocated. Winner

determination involves finding the minimal-valued bid submitted. The number of rounds

is equal to the number of tasks in the mission and communication costs are linear in

the number of tasks and size of the team. As rounds progress, robots that have already

won tasks might evaluate the cumulative or marginal cost of acquiring a new task, and

so their bid computation costs can increase.

In a multi-robot exploration mission, Berhault et al. [8] show that single-item auc-

tions can result in suboptimal allocations because they do not take into account “syner-

gies” of related tasks. If a performance objective involves minimising a cost, two tasks
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are said to exhibit positive synergy if their combined value for the bidder is smaller than

the sum of their individual values. In a routing mission, this simply means that tasks are

located close to each other. Because task synergies are ignored in single-item auctions,

the order in which tasks are auctioned can have a great impact on the quality of the

solution [46].

Multi-item Auctions

In a multi-item auction, multiple tasks are announced and awarded per auction round.

Multi-item auctions can be further classified into combinatorial, parallel, and sequential

single-item mechanisms.

In a combinatorial auction, all unallocated tasks are announced to the robot team and

awarded in a single round (although multi-round variations exist [8]). In a combinatorial

auction, robots compute and submit bids for every possible combination (bundle) of

tasks. During the winner determination phase, synergies between tasks can be discovered

and an optimal solution computed for a given objective. However, the optimal winner

determination problem for combinatorial auctions has no known polynomial solution

and is NP-complete [8, 103]. Bid computation and communication costs for robots are

also exponential in the number of tasks. Although heuristics have been proposed to find

approximately optimal solutions to winner determination, such as pruning the number of

bundles bid upon or evaluated [8] or building incremental solutions [103], combinatorial

auctions for multi-robot MRTA can still scale too quickly to be practical. Combinatorial

auctions have been employed for the RoboCup Rescue domain [77, 85] and multi-robot

exploration missions [8].

In a parallel auction [58], all unallocated tasks are announced to the robot team

and awarded in a single round. Unlike a combinatorial auction, robots submit bids for

each task independently, ignoring inter-task synergies. Winner determination, likewise,

ignores task synergies and simply awards each task to the lowest (or highest) bidding

robot. A solution to the winner determination problem can be found in time linear in

the number of tasks and size of the team. Bid computation and communication are

also linear since there is no computation of task insertion (as in single-item auctions).

While computation and communication costs of parallel auctions are relatively low,

performance of a parallel auction allocation can be “arbitrarily bad” as Koenig et al. [58]

demonstrate.

Sequential single-item (ssi) auctions were developed by Koenig et al. [58], extending

on earlier work with Lagoudakis et al. [70] on auctions for multi-robot routing. In a ssi

auction, all unallocated tasks are announced to the robot team. Each robot computes

the cost of each task but submits a bid only for the minimum cost task computed. The

robot that submits the lowest bid is awarded the task that it bid on, and auction rounds

continue until all tasks have been allocated.

A ssi auction takes some synergies between tasks into account, but not all. Koenig

et al. give an example where an ssi auction produces an allocation for the minisum
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objective that is 1.33 times the cost of an optimal solution and equivalent to an allocation

produced by a parallel auction. Despite this, allocations produced by ssi have been

proved to have a theoretical worst case performance of 2 times an optimal solution for

the minisum objective [58].

Extensions of ssi have been developed to improve its solution quality by identifying

inter-task synergies missed by standard ssi auctions. With lookaheads, robots bid in

hypothetical multiple auction rounds but award a single task at a time [140]. Bundle-

bids have robots bid on fixed-size bundles of tasks per round and award the bundles

[140]. Rollouts have robots compute the cost of the closest task plus the cost of visiting

all unallocated task locations [140]. With regret clearing [139], robots submit bids for all

unallocated tasks and the auctioneer determines a winner by maximising the difference

between the lowest and second lowest bids submitted. These extensions are shown to

improve solution quality but raise the cost of bid computation and communication or

winner determination. Sequential single-cluster auctions [46] attempt to capture inter-

task synergies by first clustering tasks geographically into bundles, and then auctioning

the bundles.

2.4 Task Environments

Several researchers have devised taxonomies to classify the body of research into multi-

robot task allocation. A scheme by Gerkey and Mataŕıc [36] draws major distinctions

between single-task (ST) and multi-task (MT) robots, which can perform more than

one task at a time; single-robot (SR) and multi-robot tasks (MR), which require multi-

ple robots to execute; and instantaneous assignment (IA) and time-extended assignment

(TA). Instantaneous assignment means that knowledge about the robot team and tasks

is limited, so an allocation mechanism can not plan for tasks that may arrive in the

future. With time extended assignment, an allocation mechanism may have knowledge

about future tasks, such as a schedule. Landen et al. [71] extend Gerkey and Mataŕıc’s

taxonomy to classify settings in which tasks are either independent (IT) or have con-

straints between them (CT), such as precedence-ordering, and distinguish static allo-

cation (SA) and dynamic allocation (DA) from Gerkey and Mataŕıc’s IA and TA to

describe static or dynamic environments themselves rather than an allocation mecha-

nism’s knowledge about them. Korsah et al. [62] define iTax, a taxonomy for multi-robot

tasks that classifies tasks as atomic or compound bundles which may have inter-task de-

pendencies or utilities. Table 2.1 gives the dimensions of the taxonomy proposed by

Gerkey et al. with the extensions made by Landen et al.

This thesis focuses on three dimensions of the taxonomy given in Table 2.1: Single-

Robot vs. Multi-Robot Tasks (SR vs. MR); Independent vs. Constrained Tasks (IT

vs. CT); and Static Allocation vs. Dynamic Allocation (SA vs. DA).
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Dimension Description

ST vs. MT Robots can perform a single task (ST) or multiple tasks (MT) at a time.

SR vs. MR A task requires only a single robot (SR) or multiple robots (MR).

IA vs. TE An instantaneous assignment (IA) has no information to reason about
tasks that may arrive in the future; a time-extended (TE) assignment
may have a model of how tasks are expected to arrive.

UU vs. IU A task with unrelated utility (UU) has value, by itself, to bidders. Tasks
with interrelated utility (IU) may only have value when bundled with
other tasks.

IT vs. CT Task may be independent (IT) or constrained (CT) by a dependency
like precedence-ordering.

EV vs. IV Allocation is performed by an agent or entity outside of the robot team
in an external allocation view (EV). In an internal view (IV), allocation
is performed by a team member(s) and can itself be considered a task.

SA vs. DA The pool of tasks, constraints between them and team composition are
held static in a static allocation environment (SA). In a dynamic envi-
ronment (DA), they may vary over time.

Table 2.1: “Axes” or dimensions of a task environment [36, 71]

2.5 Summary

Auctions mechanisms for multi-robot task allocation are implemented in multi-robot

systems that are strongly coordinated (i.e. an auction mechanism is a coordinating

protocol); centralised, decentralised, or a hybrid; and that use explicit communication to

submit bids and awards. The following chapters investigate the performance of different

auction mechanisms empirically, with a multi-robot system implemented on physical

robots and in high-fidelity simulations. A primary interest is in seeing how theoretical

guarantees of solution quality made during task allocation, such as ssi’s upper bound of

two times the optimal team distance for the minisum objective (Section 2.3.1), accurately

predict or diverge from observed performance during task execution. Of equal interest

is understanding how performance varies as mechanisms are employed in a range of task

environments that can be complicated in ways which might not have been considered by

mechanism designs. The following chapter describes the architecture of the multi-robot

system used to conduct these experiments.



Chapter 3

The MRTeAm Experimental

Framework

This thesis investigates the comparative performance of different market-based task al-

location mechanisms when employed for the same multi-robot routing missions. I am

especially interested in measuring the empirical performance of a mission by a team

of real (or realistically simulated) robots in physical environments, with the noise, un-

certainty, and inter-robot interference that can arise in a physical system. To conduct

this experimental work, I have developed a software framework named MRTeAm, a

combination of “Multi-Robot Task Allocation” and “Teamwork”. MRTeAm is an im-

plementation of a multi-robot system that runs on both physical and simulated robots

and is designed to investigate research problems in multi-robot task allocation [107–110],

multi-robot communication quality [141], and other domains.

MRTeAm is an evolution of the HRTeam (“Human-Robot Teamwork”) software

framework [115], which itself has been used as a research platform for similar problem

domains [26–28]. HRTeam is a multi-robot system based on the Player Project [37],

which is no longer actively maintained. In an effort to adopt a more mature infrastruc-

ture, MRTeAm is based on the Robot Operating System (ROS) [96], a pervasive software

infrastructure underlying many single- and multi-robot systems in both research and

applied industrial settings. ROS provides many services needed by the kind of mobile

multi-robot systems that MRTeAm was designed to work with: drivers for sensing, sen-

sor fusion and motor control; map representation;1 localisation;2 path planning3 and

execution, including plan repair and recovery;4 and, importantly, a standard messaging

system5 for inter-process communication, which allows these services to be distributed

across multiple hosts in a flexible way.

MRTeAm builds upon ROS by adding several key components. Robot Controllers are

agents responsible for the bidding and task execution behaviour of robot team members.

1http://wiki.ros.org/map server
2http://wiki.ros.org/amcl
3http://wiki.ros.org/global planner
4http://wiki.ros.org/move base
5http://wiki.ros.org/Messages

23
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An Auctioneer is a coordinating agent responsible for conducting auctions among the

robot controllers and guiding the overall course of an experiment. The Robot Controller

and Auctioneer agents implement task allocation and execution for missions which are

set in the SR/MR-IT/CT-SA/DA task environments described in Chapter 2. The

ROS Master Bridge is an extension to ROS’s messaging system that connects multiple

ROS communication hubs (“masters”), enabling multi-robot communication

Section 3.1 explains some of the basic concepts behind ROS and its implementation

of navigation services for mobile robots, which are relevant to understanding the results

of experiments in later chapters. This review of existing software is followed by sections

that describe my own work on MRTeAm. Section 3.2 discusses the auctioneer and robot

controller agents that implement task allocation and execution behaviours to accomplish

multi-robot routing missions. Section 3.3 discusses the ROS Master Bridge and multi-

robot communication. Section 3.5 describes the physical platform on which MRTeAm

has been deployed and section 3.6 describes its counterpart in simulations. Section 3.7

discusses the HRTeam framework used to carry out the experiments discussed in Chapter

5.

3.1 The Robot Operating System (ROS)

ROS consists of a set of computation units (“nodes”), which run as separate processes,

and a structured communications layer based on message-passing [96], which enables

communication between them. A ROS node is a process that performs some computation

and communicates with other nodes via messages. ROS messages are sent between nodes

on topics using a publish-subscribe model [34]. A ROS master is a special process that

provides naming and directory services that keep track of nodes and publishers and

subscribers to topics. A ROS message is an instance of a typed data structure that

nodes use to communicate. The set of all ROS nodes that are connected to a single

master comprises a ROS Computation Graph (Figure B.1, pg. 138).

3.1.1 The ROS Navigation Stack

The ROS navigation stack6 is a collection of nodes which provide services that enable

mobile robots to plan and navigate through physical spaces. Physical space is repre-

sented by a two-dimensional, grid-based cost map, where the value of each grid cell

represents the likelihood of occupancy by an obstacle in that location. Obstacles may

be inserted or cleared from the cost map based on readings from a robot’s range sensors

(e.g., a laser or infrared-based camera). A localisation node attempts to find the most

likely position of the robot on the map from spatial features detected by the robot’s

range sensors using a particle filter approach [31]. A global planner finds the shortest

path between two locations through the cost map using an A* search algorithm [45]. A

6http://wiki.ros.org/navigation
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Figure 3.1: Components of the ROS navigation stack and their interactions.

path plan produced by the global planner is made up of a series of positions, or way-

points, from the robot’s current position to the goal. A local planner follows a global plan

by computing motion trajectories and issuing velocity commands that follow them to a

robot’s drive motors. Several of these services are coordinated by the move base7 node

(Figure 3.1). Some components of the navigation stack can be visualised for monitoring

and debugging (Figure 3.2).

3.2 Agents

Two types of agents carry out missions in MRTeAm experiments. The Auctioneer de-

composes a mission into discrete tasks and allocates them to Robot Controllers using a

number of mechanisms.

3.2.1 Auctioneer

The auctioneer is an agent with two main roles. Chiefly, it is responsible for allocating

tasks to robots via auctions and other types of mechanisms. The auctioneer sends and

receives messages that announce tasks to robots, collects bids from them, determines

winners, and awards tasks to robots. The auctioneer is also responsible for the overall

coordination of experiments by signalling the transitions of experimental phases (Section

4.5) to a tool that logs results (Section 3.4).

At the beginning of an experiment, the auctioneer loads a pre-defined scenario, which

specifies a map and a set of tasks. (A scenario is defined in Section 4.3). The auctioneer

then places tasks that make up the scenario into a task pool of unallocated tasks. Alter-

natively, the auctioneer can wait for tasks to be introduced by some external source (e.g.,

7http://wiki.ros.org/move base
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Figure 3.2: Visualisation of the state of navigation stack components running on a
simulated robot. A global path plan, shown in green, has a goal location in the lower
right. Green arrows show samples of the particle filter used for localisation. Shaded
cells of the cost map along the upper right indicate occupancy by an obstacle. Different
colours indicate different costs for cells in the cost map. For example, a yellow cell is
the most costly as it is the most likely that a robot will crash into a physical obstacle
(such as a wall) in that region.

a mission generator). After the task pool is populated, the auctioneer identifies mem-

bers of the robot team and selects a task allocation mechanism. A mechanism is either

chosen manually as a parameter of the experiment, or dynamically based on features of

the environment (as in Chapter 8). The auctioneer then advances the experiment to a

deliberation, or task allocation, phase. An auction-based allocation takes place over a

number of rounds, with each round typically having three sub-phases:

1. Announcement : One or more tasks from the task pool are announced to the team

via ROS messages. The number of tasks to announced depends on the rules of the

chosen mechanism.

2. Bid computation/submission: Each robot team member computes a bid value

(Sections 3.2.2 and 4.4) for one or more of the tasks that were announced and

publishes it to the auctioneer via a ROS message(s).

3. Winner determination: The auctioneer collects the bids submitted and determines

winners (possibly more than one) of task(s) auctioned in the current round accord-

ing to the rules of the mechanism.
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start

idle

end

announce

collect_bids

determine_winner

award

all allocated

all tasks complete

no tasks

choose_mechanism

new task

Figure 3.3: A simplified version of the auctioneer’s state machine.

4. Award : The auctioneer awards each winning robot by publishing a ROS message.

After a task has been awarded, it is removed from the pool (cleared).

Task allocation proceeds until the task pool is empty. The auctioneer then marks

the end of a deliberation phase of the experiment and the beginning of an execution

phase in which robots traval to their task locations. A simplfied version of the state

machine that drives the auctioneer’s behaviour is shown in Figure 3.3. A diagram of the

communication that takes place between the auctioneer and robot controllers is shown

in Figure 3.4.
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Figure 3.4: Auctioneer communication with robot controllers.

Figure 3.5: Communication between a robot controller and the ROS navigation stack.

The auctioneer implements a number of allocation mechanisms (discussed in Section

4.4), but is extensible so that additional mechanisms (e.g., manual assignment) can be

added.

3.2.2 Robot Controllers

A robot controller in MRTeAm is an agent that implements a robot’s bidding and task

execution behaviours. For the multi-robot routing domain investigated in this thesis,

task execution entails two procedures: task selection—deciding which task location to

visit next out of several possible options—and navigation to the location of the selected

task. While en route to a task location, a robot may need to take precautions against

colliding with other robots that lie in its path.
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Bidding

In the bid computation phase of an auction (Section 3.2.1) a robot calculates and sub-

mits bids for tasks that were advertised in an announcement phase. Bids values are

based on path distances between locations. A path distance between two locations on a

map is calculated by invoking the ROS navigation stack’s global planner (Figure 3.5),

which finds the shortest path through the cost map between the two locations (around

obstacles) using an A* search. Distances between the waypoints of the path returned

by the global planner are then summed to compute total path distance.

When a task is awarded to a robot by the auctioneer, it it placed in the robot’s

agenda, a list of incomplete tasks. A robot may consider the locations of tasks in its

agenda to compute bids (Section 4.4).

Task Selection

When an execution phase of an experiment begins, a robot controller must decide which

task in its agenda to execute first. Ideally, a robot would compute an optimal path of

tasks in its agenda (i.e., a Hamiltonian path) that minimises the total cost of visiting

all task locations. In order to compute such an optimal path, the robot controller would

need to invoke the global planner O(|agenda|2) times to find the path distance between

between each pair of locations. Instead, the robot finds the path distance between its

current location and every task in its agenda, invoking the path planner O(|agenda|)
times, and chooses the closest task as a nearest-neighbour candidate. (Other heuristic

approaches are possible [104].) For single-robot tasks with no precedence-constraints

between them (SR-IT), this nearest neighbour is selected as the next task to execute.

For multi-robot (MR) or precedence-constrained (CT) tasks, the robot controller

uses the following procedure to select its next task:

1. Construct a directed graph GA of tasks in the robot’s agenda. Each node t ∈ GA
represents a task, and an edge between two nodes tp → tq indicates a precedence

constraint such that task tp must be completed before task tq.

2. candidatesLC ← the list of tasks represented by nodes with no incoming edges,

found by topological sort of GA.

3. candidatesMR ← the list of multi-robot (MR) tasks in the agenda that have at

least one team mate en route to or arrived and waiting at their locations.

4. If candidatesMR 6= ∅, then candidates ← candicatesLC ∩ candidatesMR. Else,

candidates← candidatesLC .

5. Find the path distance to each task tc ∈ candidates. Choose the task with the

minimum distance, breaking ties randomly.

While en route to task locations, robots may drive close enough to risk a collisions.

Collisions are avoided with a simple avoidance protocol similar to that described in
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Figure 3.6: Semi-circular “danger zone” of a collision risk between two robots.

[51]. Each robot controller maintains a list of positions of other robots in a list that is

updated dynamically. Whenever an update of a team mate’s position is received, the

robot controller checks whether or not it is inside a semi-circular “danger zone” around

it (Figure 3.6). If the team mate’s position falls within a “danger zone”, both robots

pause and calculate the remaining path distance to the task they are currently pursuing.

The robot with the shorter remaining path distance (ties are broken randomly) is given

the right of way and allowed to resume its movement towards its task location. The

team mate robot waits until its danger zone is clean and then resumes moving.

3.3 ROS Master Bridge

The centralised nature of the naming and directory services provided by a ROS master

(3.1) poses a challenge for multi-robot systems. The problem of where to locate a single

ROS master, physically, among a team of autonomous robots has no clear solution. Cer-

tain nodes like those that publish or consume sensor information require a reliable, high

throughput connection. Mobile robots are typically connected over a wireless network

(e.g., 802.11 Wi-Fi), which can lack both qualities. A problematic connection between,

for example, a node that publishes a robot’s distance sensor scans and the node that

handles its localisation could cause navigation to fail. Thus, it is common for each robot

to run its own ROS master on its host computer.

Communication between nodes that are connected to different ROS masters—multi-

master communication—is not officially supported by ROS in its current versions. When
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work on MRTeAm first began, several unofficial implementations of multi-master com-

munication existed but were not very robust or mature.8

I have developed my own method for multi-master communication named the ROS

Master Bridge. The ROS Master Bridge provides a publish/subscribe messaging ser-

vice that connects multiple ROS masters using RabbitMQ,9 a messaging server that

implements the Advanced Message Queueing Protocol [128]. A Master Bridge service

runs on a central host (Figure 3.7). Each robot connects to the master bridge using a

local master bridge relay node, which is responsible for publishing local ROS messages

to and receiving messages from the master bridge.

In an MRTeAm experiment, only messages that relate to the experiment are relayed

between robots by the master bridge: announcements, bids, awards, and robot positions

(Appendix B.2). In this way, the bulk of messaging traffic produced by a robot’s navi-

gation stack (such as coordinate frame transformation messages10) remains local to the

robot, and does not saturate the network.

Figure 3.7: MRTeAm System Architecture with ROS Master Bridge.

8
http://wiki.ros.org/sig/Multimaster/

9
https://www.rabbitmq.com/

10
http://wiki.ros.org/tf

http://wiki.ros.org/sig/Multimaster/
https://www.rabbitmq.com/
http://wiki.ros.org/tf
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3.4 Tools

MRTeAm contains several tools to support the generation and analysis of experiments,

including a pipeline that converts experimental results into training sets for a machine

learning library [94] (discussed in Chapter 8). A scenario generator creates scenarios in

which task locations and other properties of tasks, such as their arrival times, precedence

constraints and the number of robots required ([1, n], where n = |R| the number of robots

in the team), can be randomised. Messages and events generated during the course of

an experiment are recorded in a ROS bag, a special type of logging file.11

3.5 Physical Platform

The physical environment for MRTeAm experiments is an arena that has been built in

the smARTLab UGV laboratory at the University of Liverpool. The arena is 8 metres

long and 6 metres wide, with walls 0.5 metres high. The layout of the arena is meant to

resemble a simplified floor plan of an office-like building with spatial features like rooms

and corridors. The arena can be reconfigured in different layouts.

MRTeAm’s physical robot platform is the Turtlebot 2.12 Each robot is equipped

with a differential-drive mobile base and a colour- and depth-sensing camera and is

controlled by an on-board laptop computer that runs the ROS navigation stack. Each

robot is capable of fully autonomous navigation, and only depends on the auctioneer to

receive tasks. Robots in the physical arena are shown in Figures 3.8.

Figure 3.8: Turtlebots in the smARTLab environment.

3.6 Simulation Platform

The layout of the physical arena is reproduced inside of the Stage13 robot simulator

[37]. The Turtlebots’ physical properties (e.g., size, shape, acceleration) and sensors are

11http://wiki.ros.org/rosbag
12
http://www.turtlebot.com/turtlebot2/

13http://rtv.github.io/Stage/

http://wiki.ros.org/rosbag
http://www.turtlebot.com/turtlebot2/
http://rtv.github.io/Stage/
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Figure 3.9: Turtlebots in an office-like environment.

modelled in Stage. The fidelity of the simulation is important. Most of the experiments

presented in this thesis are conducted in simulation, with the goal of validating sim-

ulation results on physical robots [107]. Section 4.7 (pg. 47) discusses the differences

between simulated and physical settings and how these differences can be measured and

mitigated.

I put approximately five months of effort into building the software necessary to run

simulations on the University of Liverpool’s Chadwick cluster.14 This effort involved

porting ROS and its software dependencies to the cluster’s computing environment.

The Chadwick cluster is a grid computing resource with 200 compute nodes, each with

2 8-core Intel Xeon CPUs. I am able to run simulation experiments on the Chadwick

cluster in parallel on a large scale, which allows for a large number of experiments to be

run in a reasonable amount of time.

(a) A simulation of the smARTLab arena. (b) The office environment in Figure 3.9.

Figure 3.10: Turtlebots in the Stage simulator.

14http://www.liv.ac.uk/csd/escience/

http://www.liv.ac.uk/csd/escience/
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3.7 HRTeam

HRTeam [115] is a multi-robot framework with agents that implement auction-based

multirobot task allocation mechanisms for multi-robot routing missions, with implemen-

tations similar to those of MRTeAm. HRTeam uses software from the Player Project [37]

to handle robot navigation and a central server to communicate messages between auc-

tioneer and robot controller agents (Figure 3.11).

The robot platform of HRTeam is the Surveyor SRV-1 Blackfin robot (Figure 3.12a),

which was modelled in the Stage simulator [37] for the experiments reported in Chapter

5.
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Figure 3.11: HRTeam system architecture

(a) Surveyor SRV-1 Blackfin robot. (b) The physical arena for HRTeam missions.

Figure 3.12: HRTeam physical platform.

3.8 Summary

This chapter has introduced the MRTeAm software framework, which was used to con-

duct the majority of experiments presented in this thesis. I have developed MRTeAm to
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run on both physical and simulated robots with minimal difference in the behaviour of

the two. The following chapter describes the design of experiments presented in Chapters

5–8, defining the terminology, notation, and the metrics used to measure performance.





Chapter 4

Experimental Design

This chapter describes common elements of experiments presented in this thesis and a

rationale for their design. Section 4.1 describes a hypothetical setting in which experi-

ments take place. Section 4.2 describes the task environments investigated in Chapters

5–8. Section 4.3 defines the terms and notation used to discuss experiments. Section

4.4 defines the task allocation mechanisms employed in experiments, including their ex-

pected computation and communication costs. Section 4.5 discusses the phases of an

experiment time line. Section 4.6 defines the metrics that are used to measure perfor-

mance. Section 4.7 discusses the differences between simulated and physical settings

and how simulations can be used to develop and test algorithms that will ultimately

work on physical robots despite a “reality gap” that exists between the two settings.

Finally, Section 4.8 describes the practical factors that affect the design of experiments

conducted in Chapters (5–8).

A portion of the results and discussion presented in Section 4.7 were published in

Schneider et al. (2015) [107].

4.1 Mission Setting

A primary inspiration for the experiments presented in the following chapters is that of

a search and rescue mission performed by a team of autonomous mobile robots. The

mission is set on a floor of an office-like building with features like rooms and corridors

that link them (Figure 4.1). Multi-stage missions, in which an advance team of surveying

robots first explores and maps an area and discovers points of interest in it, have been

employed in ground-based [66] and undersea [124] archaeological inspection and recovery

settings. Here we assume that the area has been explored and mapped beforehand and

that the map is available to the robots. The mission involves sending the robot team

into the building from safe entry points at the edges of the map to travel to pre-identified

points of interest and perform some action, for example, recording video or offering aid

to a person in distress.

37
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Figure 4.1: An office-like floorplan of the type used in experiments in Chapters 5–8.

4.2 Task Environments

The experiments presented in Chapters 5–8 investigate the performance of task allo-

cation mechanisms employed in a number of task environments classified by the

taxonomy given in Section 2.4. The “landscape” of task environments investigated is

defined by three axes:

• Single-robot (SR) vs. multi-robot (MR) tasks

• Independent (IT) vs. constrained (CT) tasks

• Static allocation (SA) vs. dynamic allocation (DA)

A single task environment in this landscape is identified by a triple, for example, SR-

IT-SA, which indicates an environment in which all tasks are single-robot tasks, have

no constraints between them, and are all allocated at the beginning of an experiment.

4.3 Terms and Notation

The following terms and notation are used to describe the experiments presented in

Chapters 5–8:1

• A map specifies the two-dimensional extents of a space and the arrangements of

obstacles within it.

• A team is a set of n robots R = {r0, . . . , rn−1}.
1These definitions may be different to those found in [106, 108–110]
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• A starting configuration specifies the location, rstart, on a map of each robot

in the team at the beginning of an experiment.

• A scenario is a set of m tasks T = {t0, . . . , tm−1} situated on a map. Each task

t ∈ T has the following properties:

– t.pos, a fixed position on the map;

– t.arr, the arrival time of the task;

– t.req, the number of robots required to complete the task.

A scenario also contains ordering constraints CT , a set of pairs of tasks

(tp, tq), tp, tq ∈ T such that tp must be completed before tq can proceed.

• A mission M comprises a map, a scenario, and a team with a starting configura-

tion M = {map, T,R}

4.4 Task Allocation Mechanisms

Four task allocation mechanisms are employed in experiments in Chapters 5–8: Round-

robin (rr) allocation; the ordered single-item auction (osi) auction; the sequential single-

item auction (ssi) [58]; and the parallel single-item auction (psi) [58]. These are standard

in the design space of MRTA mechanisms but do not explore it fully (combinatorial

auctions [8, 77, 85, 103], for example, are not investigated here). Sequential single-

item (ssi) auctions [58, 111] and their extensions [46, 139, 140], parallel (psi) auctions

[22, 58, 86], and sequential auctions (as in osi) [10] have been well-investigated. Round-

robin is a non-auction based mechanism, developed in [90] and [106] as a kind of baseline

against which auction-based mechanisms can be compared.

The four task allocation mechanisms are defined in turn in the following subsections.

It it helpful to define here some common terms used in their definitions. In the notation

of Koenig et al. [58], let PC(r,A) be the smallest path cost of a robot r to visit all of

the task locations in its agenda A from its current location. The task insertion cost

TIC(r, t′) of a robot r for task t′ is the marginal path cost increase the robot incurs for

adding t′ to its agenda. That is, TIC(r, t′) = PC(r,A∪ {t′})− PC(r,A). Computing a

minimal path cost is NP-hard, so the mechanisms presented here use a heuristic method

for computing path insertion cost (Algorithm 2, Line 3 and Algorithm 3, Line 4) as

described by Lagoudakis et al. [70].

4.4.1 Round Robin (RR)

In round robin allocation (Algorithm 1), a cycling iterator identifies each robot by an

index and keeps track of a “current” index (ci). Tasks T that make up a mission are

sorted in an arbitrarily ordered list. For each task t ∈ T , the cycling iterator is queried

for the index of a robot rnext, and the task is awarded to that robot wr, who adds
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Algorithm 1 Round Robin (RR)

1: ci← 0
2: procedure CycleIterator()
3: rnext ← rci
4: if ci < (|R| − 1) then
5: ci← ci+ 1
6: else
7: ci← 0
8: end if
9: return rnext

10: end procedure
11: for all t ∈ T do
12: for 1 . . . treq do
13: wr ← CycleIterator()
14: T (wr)← T (wr) ∪ {t}
15: T ← T \ {t}
16: end for
17: end for

Algorithm 2 Ordered Single-Item (OSI) Auction

1: for all t ∈ T do
2: for all r ∈ R do
3: bid(r, t)← PC(r, T (r) ∪ {t})− PC(r, T (r))
4: submit(r, t, bid(r, t))
5: end for
6: wr ← argminr∈Rbid(r)
7: T (wr)← T (wr) ∪ {wt}
8: T ← T \ {wt}
9: end for

the task to its agenda. A (rr) allocation has a winner determination phase but no

announcement or bid computation/submission phases

This is clearly not a particularly efficient way to approach task allocation. It pro-

vides a valid solution to an allocation problem but does not attempt to optimise any

performance objective. But it does provides a baseline against which other mechanisms

can be tested. We referred to this as the “greedy taxi” policy in our earlier work [90],

because this policy emulates the behaviour of a taxi rank.

4.4.2 Ordered Single-Item (OSI)

An ordered single-item auction (Algorithm 2) is a type of sequential auction. The tasks

T of a mission are sorted in an arbitrarily ordered list, as in an rr allocation. Each task

t ∈ T in turn is announced to all robots, who then bid on it. The value that a robot r

bids is the cost of inserting the task into its agenda T (r). The robot that submits the

lowest bid is determined the winner wr and awarded the task, which the robot inserts

into its agenda.
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Algorithm 3 Sequential Single-Item (SSI) Auction

1: while T 6= ∅ do
2: for all r ∈ R do
3: for all t ∈ T do
4: bid(r, t)← PC(r, T (r) ∪ t)− PC(r, T (r))
5: end for
6: bid(r)← mint∈T bid(r, t)
7: target(r)← argmint∈T bid(r, t)
8: submit(r, target(r), bid(r))
9: end for

10: wr ← argminr∈Rbid(r)
11: wt← target(wr)
12: T ← T \ {wt}
13: T (wr)← T (wr) ∪ {wt}
14: end while

Algorithm 4 Parallel Single-Item (PSI) Auction

1: for all t ∈ T do
2: for all r ∈ R do
3: bid(r, t)← PC(r, {t})
4: submit(r, t, bid(r, t))
5: end for
6: end for
7: for all t ∈ T do
8: wr ← argminr∈Rbid(r)
9: T (wr)← T (wr) ∪ {wt}

10: end for

4.4.3 Sequential Single-Item (SSI)

In the sequential single-item auction (Algorithm 3) [58], all unallocated tasks are an-

nounced to all the robots simultaneously. Each robot bids on the task with the lowest

cost (again computed as in osi) and the task with the lowest bid is awarded to the robot

wr that placed the bid. The winning robot inserts the task into its agenda and the

process is repeated until all points have been allocated.

4.4.4 Parallel Single-Item (PSI)

In a parallel single-item auction (Algorithm 4) (introduced as something of a strawman

in [58]) all unallocated tasks are announced to all the robots simultaneously as in ssi.

Each robot submits a bids for the cost of a path from its current location to the location

of each of the tasks announced. All the tasks are allocated in one round, however, with

each point going to whichever robot made the lowest bid on it.
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rr osi* ssi* psi

Bids computed – m× n
(
m(m+1)

2

)
n m× n

Winner Determination – m× n m× n m× n

Announce messages – m× n
(
m(m+1)

2

)
n m× n

Bid messages – m× n m× n m× n

Award messages m m m m

Table 4.1: Computation and communication costs of the four task allocation mecha-
nisms used in experiments. m = |T | is the number of tasks in a mission and n = |R| is
the number of robots in a team.

* Each bid includes the cost of task insertion, which grows linearly in the size of the robot’s
agenda.

4.4.5 Costs

Table 4.1 gives the computation and communication costs of the four mechanisms in

terms of the number of tasks in a mission m = |T | and the number of robots in a team

n = |R|. Note that although osi and psi appear to have the same bid computation costs,

each bid computation in an osi auction calculates a task insertion cost (Algorithm 2,

Line 3), which grows in the size of a robot’s agenda, while a psi bid computation does

not.
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Figure 4.2: Number of messages communicated in the deliberation phase of each of
the four mechanisms. n = |R| is the number of robots on the team. m = |T | is the
number of tasks in a mission.
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(a) Experiment Start (b) Scenario Loaded

(c) Task 1 awarded to Robot 1 (Red) (d) Task 2 awarded to Robot 3 (blue)

(e) Execution Phase

Figure 4.3: Phases of an experiment.

4.5 Phases of an MRTeAm Experiment

At the beginning of an experiment, tasks are loaded from a scenario (Fig. 4.3a) and

placed into the auctioneer’s task pool. The experiment then proceeds to a deliberation

phase, in which tasks are allocated. A task allocation mechanism is chosen by the
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auctioneer and all tasks in its task pool are assigned to robots according to the rules of

the chosen mechanism.

After tasks have been allocated the deliberation phase ends and the experiments

proceeds to an execution phase (Fig. 4.3). Each robot chooses its next task to execute

and moves to that location. Tasks are abstracted so that a robot “performs” a task by

moving to its location.

Execution

tim
e

Deliberation

New Task

Execution

Deliberation

Static Dynamic

Figure 4.4: Phases of an experiment in static allocation (SA) and dynamic allocation
(DA) task environments.

D1 E1 E2 E3 E4D1 D3 D4

time

Figure 4.5: Multiple deliberation and execution phases in a dynamic allocation (DA)
task environment.

In a static allocation environment (SA), all tasks in a mission are allocated in a single

deliberation phase at the start of an experiment followed by a single execution phase.

In a dynamic allocation environment (DA), a deliberation phase begins each time a

task is added to the auctioneer’s task pool (via a delayed timer). If this happens during

an execution phase, the execution phase is aborted, the robots are paused, and a new
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Metric Description Unit

team distance actual distance covered by robots metres

run time total length of a run seconds

– deliberation time time spent allocating tasks seconds

– execution phase time time spent executing tasks seconds

near collisions number of near collisions between robots N

delay time time spent waiting to resolve collisions seconds

movement time time spent actually moving towards tasks (per robot) seconds

idle time time between when the first robot completes all of its
tasks and the last robot to completes all of its tasks

seconds

waiting time time spent by robots waiting for others to arrive at
multi-robot tasks

seconds

Table 4.2: Performance Metrics

deliberation phase begins. The sequence of phases for static and dynamic environments is

shown in Figure 4.4. Fig. 4.5 shows an illustration of an multiple deliberation-execution

phases of an experiment in a DA environment. Figure 4.6 shows a timeline plot of robot

activity over the course of an experiment set in a dynamic allocation (DA) environment.

Deliberation phases can seen at 45, 90, and 135 seconds into the experiment.

4.6 Performance Metrics

0 50 100 150 200 250

R3

R2

R1

Deliberation Time Movement Time Waiting Time

Delay TimeIdle Time

Figure 4.6: An example of an experiment timeline. The experiment begins at time 0
and proceeds to the right. Each row shows the changing state of a robot as it carries out
its part of a mission. Time spent moving towards task locations (i.e. actually executing
routing tasks) is indicated by green intervals. Other intervals show time spent idle or
coordinating with other robots. Gaps indicate task selection intervals, when a robot
decides which task in its agenda to move to next.

To evaluate the performance of a team, we consider a number of metrics that measure

the performance of both individual robots and the team as a whole. In any work with

robots, power consumption is the fundamental scarce resource that a robot possesses.
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Robot batteries only last for a limited time, and so, all other things being equal, we prefer

task allocations and subsequent executions that minimise battery usage. As in [57, 58,

69, 70, 122], therefore, we measure the distance travelled by each robot over the course

of an experiment since this is a suitable proxy for power consumption.2 Team distance

is the sum of the distances travelled by the group.

Time to complete a set of tasks is also important. Time is important in exploration

tasks—in search and rescue activities, in patrolling, and possibly in demining3 —and so

we measure run time, the time between the start of an experiment and the point at

which the last robot on the team completes the tasks allocated to it.

A component of run time is deliberation time, the time that it takes for the tasks

to be allocated amongst the robots. Deliberation time matters because it feeds into

the overall time required to complete a set of tasks, but also because it allows us to

establish how different allocation mechanisms compare in terms of the computational

effort and communication resources required to run them. Another component of run

time is execution phase time, the time it takes robots to execute tasks during an

execution phase once they have been allocated.

The planned paths of two robots may cross, leading to a potential collision. In such

cases, the robots stop and negotiate which of them will receive the right of way. Such

near collisions are counted as well as the delay time they incur. Movement time

is the time robots spend actually moving, without interruption (e.g., by a near collision),

toward tasks. A robot might arrive at a task location before the necessary conditions

for executing the task have been met, such as waiting for a team mate to arrive at the

location of a multi-robot task. This particular kind of time is measured as waiting

time.

Also measured is idle time, the amount of time that robots sit idly during a mission.

This is computed as the time that elapses between when a robot completes its last task

and when all robots on the team have completed all of their assigned tasks. This gives a

way of quantifying how equally tasks are distributed among robots, and it also suggests

the extent to which resources are being wasted by a particular allocation. Although

a mismatch between the number of tasks and the number of robots means that idle

time can be inevitable, idle time represents the use of precious power that is not being

directed at task completion.

2Note that we compute distance not by looking at the shortest distances between the task locations,
but at (as closely as we can establish) the actual distance travelled by the robots during task execution.
We collect frequent position updates, compute the Euclidean distance between successive positions, and
sum these.

3One can easily imagine demining happening against the clock—in humanitarian demining [43], for
example, there may be the need to demine an area in order to allow refugees to move safely away from
a dangerous situation.
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4.7 From Simulated to Physical Robots

It is common practice in robotics to employ simulation as a means to evaluate an ap-

proach which is intended to be deployed in some type of physical environment [12, 52,

80, 82]. The advantage of simulation over reality is that we typically have more control

over and easier access to the simulated environment, and experiments are easier to au-

tomate and scale to large numbers. This implies that it is simpler to develop and test

algorithms, controllers, or whatever we are working on, in the simulated environment

first—i.e., before they are deployed on physical robots.

Especially in cases where testing in reality is risky (e.g., nuclear cleanup) and/or

expensive (e.g., planetary exploration), it would be very useful to know how much we

are gaining by the knowledge obtained in the simulation environment. As it is sometimes

impractical to develop robot behaviours on physical hardware, there has been a good

deal of investigation into developing behaviours in simulations. An early example of this

is the work of Koza (1991) [63], which used genetic programming to recreate the kind of

navigation that Matarić (1990) [79] had hand-coded, and led some to conclude that it

would be straightforward to use evolutionary techniques to learn robot controllers that

could be dropped into real robots that would then operate as desired in the real world.

Responding to this position, Brooks (1992) [12] raised concerns about the transferability

of behaviours learned in simulations due to significant differences between simulation and

physical environments. First, working purely in simulation, that is without regularly

checking the results of the simulation against what happens in the real world, could lead

to focusing on problems that just don’t exist in the real world. Second, if simulators

do not accurately model the errors that occur in sensing and actuation, techniques that

evaluate their output only in simulation are unlikely to evolve controllers that will work

on real robots. Jakobi et al. (1995) [52] introduced the term reality gap to describe the

differences between reality and simulation that Brooks had described, and went on to

provide evidence both of the existence of the gap and of the possibility of overcoming

it. They evolved controllers under three conditions: no noise, noise equivalent to that

measured in the real world (“observed noise” in their terminology), and much more noise

than is observed in reality. Their results showed that controllers that evolved with no

noise were too brittle, and relied on behaviours that could not be reliably replicated

on a physical robot, while those that evolved with too much noise ended up relying on

the existence of the noise in order to work. Controllers that evolved with “observed

noise” could be transferred to physical robots that behaved similarly to their simulated

counterparts.

Considering the issues presented by the reality gap between simulated and physical

settings, I have investigated the extent to which the approach of using results obtained

from simulation can be applied to physical robots with the MRTeAm and HRTeam

frameworks, with the ultimate goal of developing a method of mechanism selection

(Chapter 8 on physical robots. In Schneider et al. (2015) [107], I showed that, while

differences in multi-robot performance certainly exist between simulation and physical
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Figure 4.7: Comparison of results obtained from simulation and physical experiments.
Each plot compares results from physical (red) and simulation (blue) experiments be-
tween the Round Robin (rr), Ordered Single-Item (osi), Sequential Single-Item (ssi),
and Parallel Single-Item (psi) mechanisms. The left plot compares execution times in
seconds; the right plot compares distance travelled in centimetres.

settings, the relative performance differences among task allocation mechanisms largely

hold across the two settings.

Figure 4.7 shows absolute performance differences observed among four task alloca-

tion mechanisms in the same set of experiments conducted with the HRTeam framework,

similar to those presented in Chapter 5, performed in physical (red) and simulated (blue)

settings for the execution time (Figure 4.7a) and distance travelled (Figure 4.7b) metrics.

The simulated robot team clearly travels shorter distances and requires less time to com-

plete its mission than its physical counterpart. Execution time is lower for the simulated

robots because they consistently moved faster than their physical counterparts, while

the distance they travelled is lower because, although they moved through a map with

the same spatial configuration as their physical counterparts, they encountered fewer

localisation errors and travelled in straighter paths.

The relative performance differences of the four mechanisms, however, which is of

primary interest for the work presented in this thesis, largely hold across the two settings.

These relative relationships can be seen more clearly in the rank-ordering of performance

for the same experiments, shown in Figure 4.8. The top row of each plot shows, in the

physical setting, a rank ordering of the four task allocation mechanisms according to a

particular metric, while the bottom row shows the same for the simulated setting. While

the rank ordering is the same across the two settings for the deliberation time, execution

time and distance travelled metrics, the primary performance metrics investigated in

this thesis, differences in rankings do exist. Figures 4.8d–4.8f show that rankings for

the idle time, near collisions and (consequently) delay time metrics differed across the

two settings. While the differences are “misaligned” by at most one rank-order, they

suggest that these metrics may be more sensitive to the ability of the simulator to

represent the type of “observed noise” discussed by Jakobi et al. [52]. The results of
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Figure 4.8: Comparison of rank-ordered results obtained from simulation and physical
experiments for the Round Robin (rr), Ordered Single-Item (osi), Sequential Single-
Item (ssi), and Parallel Single-Item (psi) mechanisms. The top row of each plot shows
rank-orderings of results from physical experiments while the bottom shows results
from corresponding experiments performed in simulation. Values are ordered lowest to
highest from left to right and measure time (a, b, d, f), distance (c), and counts (e).

simulation experiments conducted with the MRTeAm framework presented in Chapter

5 show similar rank-ordering relationships to those of physical experiments described in

Appendix A.2 (pg. 129).

4.8 Practical Considerations

In the experiments presented in Chapters 5–8, the size of the team is fixed at n = 3 and

the number of tasks, m = {8, . . . , 16}, is relatively small. As discussed in the previous

section, it is desirable to maintain a consistent experimental design across simulated

and physical settings since we want to develop and test algorithms in simulation but

ultimately field them on physical robots. It is also important to employ a high-fidelity

simulator that reproduces as much of the “observed noise” of the physical setting as is

practical and to employ the same navigation controllers, which operate on streams of

noisy sensor data as input, in both settings.

In simulation, the size of the team is constrained by the computing resources available

on a single workstation or HPCC compute node, with n = 3 being the practical upper

limit on the number of instances of the ROS navigation stack (Section 3.1.1) that can

run simultaneously. It was found to be infeasible to coordinate multiple HPCC compute
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nodes, running instances of the navigation stack in parallel, to increase this limit. In the

physical setting, this constraint is somewhat relaxed since each physical robot runs an

instance of the navigation stack on its own computing hardware. Nevertheless, team size

in the physical setting was constrained by the desire to keep consistent with simulations.

The number of tasks, m, was limited mainly by running time. The ROS navigation stack

has a practical limit on the rate at which it can read streams of sensor data and issue

motion commands to a robot, whether simulated or physical, and thus the simulator

can not run faster than real-time, as in a discrete event simulation. In the type of

experimental setup presented in Chapters 5–8, given the size of the team, the number of

tasks, and the size of the map, a mission with m = 16 tasks typically takes about 10–15

minutes to run. The large number of simulations (on the order of several thousand)

required by the method of mechanism selection described in Chapter 8 thus limited the

number of tasks that could be allocated and executed in a single mission.

The main line of inquiry pursued in this thesis is not evaluate how the performance

of task allocation mechanisms varies as team sizes and numbers of tasks are scaled, but

rather to investigate how performance of the mechanisms diverges for a single mission

(or small set of missions) as that mission is carried out over a range of task environments.

The results of experiments presented in Chapters 5–8 show that the effects of task en-

vironments on mechanism performance can be readily seen despite practical constraints

on team size and number of tasks.

4.9 Summary

This chapter has described common elements of experiments presented in the following

chapters and puts forth a rationale for their design. It has explained the operation and

computation and communication costs of the four task allocation mechanisms employed

in experiments presented in Chapters 5–8, explained the timeline of a typical experi-

ment, and defined the metrics used to measure performance. It has also discussed the

differences between simulated and physical settings and how simulation is a valid setting

for developing approaches that are ultimately fielded on physical robots. Finally, it has

discussed some practical constraints that limit the scale of missions. These limitations

do not, however, prevent the investigation of the performance of task allocation mecha-

nisms as they are carried out over a range of task environments. The following chapter

presents a set of experiments conducted in a SR-IT-SA (single-robot, independent task,

static allocation) task environment.



Chapter 5

A Static Task Environment

(SR-IT-SA)

5.1 Introduction

This chapter compares the performance of the four task allocation mechanisms defined

in Section 4.4 in two multi-robot routing scenarios in a task environment (SR-IT-SA) in

which tasks are independently executed by single robots and all tasks can be allocated

at the beginning of a mission. The aim of the experiments presented here, and of the

investigation overall, is to understand how the performance of task allocation mech-

anisms is affected by the environments in which they are employed, with the goal of

establishing the suitability of the mechanisms for different kinds of environments. Dy-

namic task environments that require on-line problem solving (SR-IT-DA) and tighter

coordination between robots can be considerably more complex and are investigated in

Chapter 6–7. However, in a SR-IT-SA environment there is still a great deal of variation

in the arrangements of task locations, robot locations, and free spaces and obstacles on

a map.

Section 5.2 details the design of the experiments performed, including the arrange-

ments of robot and task locations, the size and properties of the robot team, the metrics

used to measure performance, and the system platform used to carry out the experi-

ments. Section 5.3 points out key results and Section 5.4 discusses their significance.

Section 5.5 summarises the research presented in this chapter.

The experiments and a portion of the results presented in this chapter were published

in Schneider et al. (2014) [106].

5.2 Experiments

5.2.1 Mechanisms Tested

The task allocation mechanisms discussed in Section 4.4 were tested in these experi-

ments:

51
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• Round-robin (rr)

• Ordered single-item (osi)

• Sequential-single item (ssi)

• Parallel single item (psi)

The implementations of osi and ssi used in these experiments calculate their bid costs

differently to the definition given in Algorithm 2 (lines 3 and 4, respectively). During

these auctions, after a robot wins a task it updates a bid-from position to that of the task

it has just won. In subsequent rounds, the bid value a robot calculates is the distance of

a path from its bid-from position to a task location. This simple task insertion heuristic

does not explicitly attempt to optimise the MiniSum objective as in Tovey et al. [122]

and Koenig et al. [58].

The tasks in both scenarios are labelled with an (arbitrary) order. The ordering does

not affect the ssi or psi auctions, but it specifies the order in which tasks are assigned

by the rr mechanism and announced to the team in the osi auction.

5.2.2 Metrics

Each experiment recorded some of the metrics described in Section 4.6:

• Team Distance – The sum of the distances travelled by all robots.

• Deliberation time – The time taken for the tasks to be allocated to the robots.

• Run time – The time between the start of an experiment and the time the last

robot on the team completes the tasks allocated to it. This includes deliberation

time.

• Near collisions – The number of times two robots travelled close enough to detect

a risk of collision and triggered a negotiation to avoid colliding.

• Delay time – The time robots spent replanning and yielding the right of way while

negotiating to avoid a collision; and

• Idle time – The time that elapses between when a robot completes its last task

and when all robots on the team have completed all of their assigned tasks

• Movement time – The time a robot actually spends moving, uninterrupted, towards

task locations.
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5.2.3 Platform

Experiments were conducted with the HRTeam multi-robot framework (Section 3.7)

using the Stage simulator [37]. The simulated robots are modelled on the Surveyor

SRV-1 Blackfin robot described in Section 3.7 and have the same characteristics as their

physical counterparts (size, shape, acceleration, and maximum speed).

One aspect of the simulation to point out is that all agent processes—the auctioneer

and robot controllers—run on a single computer. These experiments do not model the

communication quality of physical robots that communicate over wireless networks.

5.2.4 Experimental Setup

Two scenarios are investigated, shown in Figure 5.1c and 5.1d, set on the same map

and each with m = 8 tasks. In Scenario 1, task locations are distributed more or less

uniformly through the map, while Scenario 2 has a different arrangement.

The size of the robot team is fixed at n = 3. Two starting configurations were chosen

for the team. Figure 5.1a shows the clustered configuration, where robots start in the

same “room” in the lower left corner of the map. In the distributed configuration, robots

start at three different corners of the map.

Four task allocation mechanisms were employed in each of 4 missions and there were

10 trials for each combination, for a total of 160 experimental trials:

160 = 4 missions ( {clustered , distributed} × {Scenario1 , Scenario2} );

× 4 allocation mechanisms × 10 trials.

5.3 Results

The results of the experiments can be seen in Figures 5.3–5.14. Figures 5.3 and 5.4

show the paths taken by the robots in individual runs of Scenario 1 as solved by differ-

ent allocation mechanisms. The routes taken by different robots are given in different

colours. The aim of the figures is to give a sense of allocations produced by the different

mechanisms and the effect that these have on the routes taken by the robots. These

trajectories capture many of the key points about the allocations that are echoed in the

metrics. The arbitrary allocation of the rr allocation mechanism shows the lack of a

clear pattern in the allocations to each robot. The tendency of psi to allocate tasks

unevenly between robots—first noted by Koenig et al. [58]—is clear when comparing

it with other mechanisms for the clustered starting configuration (Figure 5.3d). The

propensity for ssi to produce tight groupings is clear in its handling of the distributed

starting configuration. The allocation of tasks from Scenario 1 to robots is also shown in

Figure 5.2, revealing the patterns in each allocation mechanism. Note that each robot

visited task locations in the order in which they were allocated, which wasn’t necessarily

the shortest path amongst the complete set of tasks allocated to the robot.
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Figure 5.1: Robot starting locations and scenarios. The top row shows two sets of
starting locations, clustered (a) and distributed (b) superimposed on a map of the test
environment. The plots on the bottom show task locations in two scenarios.

Figures 5.5–5.14 then plot the average values over 10 runs of each metric for each

combination of the four mechanisms, two scenarios, and two starting configurations.

Looking at the results from the scenarios side by side makes it clear that the clustered

starting configuration provides a steeper challenge for an allocation mechanism than the

distributed set. While deliberation times (Figure 5.5 and 5.6) are comparable, team

distance and run time (5.7 and 5.8) are reduced for the distributed case, as are the

number of collisions and delay times shown in Figures 5.9 and 5.10 (naturally this pair

of metrics will be strongly correlated). Tables 5.1 and 5.2 give the same information

as Figures 5.5–5.14 but in tabular form, making numerical comparisons possible. The

tables also give 95% confidence intervals for the metrics.

Finally, Figures 5.11–5.14 give the metrics that are computed on a per-robot basis,

as opposed to those computed for the team as a whole. These individual metrics are

distance, delay time (Figure 5.11 and 5.12), travel time, and idle time (Figures 5.13

and 5.14), and the figures give these for each of the three robots for each mechanism

and both starting configurations. Since the same robot starts in the same position each

time, the distribution across the robots tells us something about the mechanisms. For

example, they expose the skewed nature of the results for psi in the case of the clustered
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Figure 5.2: Allocation of tasks from Scenario 1 to robots over all trials. Each column
represents an allocation for one trial, grouped by mechanism and starting locations.
Each row represents a task. Colours indicate individual robots.

Team Distance Run time Delib. time Idle time Delay time

Clustered RR 35.39± 0.95 478± 82 0.05 ± 0.0005 251± 52 41± 27

OSI 31.33± 0.95 421 ± 18 0.95± 0.06 245 ± 56 38± 23
SSI 28.65 ± 0.34 435± 86 1.08± 0.06 249± 106 42± 23
PSI 32.33± 2.07 1056± 82 0.22± 0.017 2113± 164 0 ± 0

Distributed RR 44.68± 1.68 605± 28 0.05 ± 0.003 286± 84 82± 30
OSI 21.08± 1.42 300± 27 0.89± 0.01 189± 46 10 ± 8
SSI 17.72 ± 0.35 229 ± 25 0.98± 0.043 107 ± 63 12± 8
PSI 25.64± 1.23 381± 39 0.23± 0.015 290± 71 15± 10

Table 5.1: Metrics for Scenario 1. Time is in seconds. Distance is in metres. The
values given are means with 95% confidence intervals.

starting configuration, with two robots (robot 2 and robot 3) travelling no distance and

reporting high idle time.

The next section discusses the most interesting of the results.
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Figure 5.3: Sample trajectories for SR-IT-SA Scenario 1 with clustered starting lo-
cations

Distance Run time Delib. time Idle time Delay time

Clustered RR 40.23± 1.48 530± 38 0.05 ± 0.0003 234± 61 70± 19

OSI 38.19± 1.21 513± 32 1.14± 0.07 190 ± 62 100± 72
SSI 36.20 ± 1.37 508 ± 48 1.37± 0.12 250± 98 84± 21
PSI 37.46± 2.14 1382± 140 0.25± 0.012 2764± 279 0 ± 0

Distributed RR 40.51± 3.21 570± 49 0.81 ± 0.5 287± 89 65± 20
OSI 26.23± 3.51 412± 48 0.96± 0.04 353± 47 12± 12
SSI 20.20 ± 1.20 375 ± 44 1.12± 0.10 425± 123 3 ± 4
PSI 29.22± 1.29 377± 25 0.25± 0.02 127 ± 61 13± 11

Table 5.2: Metrics for Scenario 2. Time is in seconds. Distance is in metres. The
values given are means with 95% confidence intervals. Bold values are lower than those
for other mechanisms, but not necessarily significantly.

5.4 Discussion

The analysis focuses on the comparative performance of the mechanisms. We start by

considering the results for Scenario 1.

Overall the analysis supports the results of Tovey et al. [122], Lagoudakis et al. [57,

69, 70], and Koenig et al. [58], showing the effectiveness of the sequential single-item
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Figure 5.4: Sample trajectories for SR-IT-SA Scenario 1 with distributed starting
locations

auction in finding solutions to the multi-robot routing problem when the overall dis-

tance covered (the MiniSum objective) is the most important performance metric. For

both the clustered and distributed starting configurations, ssi generated solutions which

required the team to travel the smallest overall combined distance, on average, by a

significant amount (Figure 5.7). This means that the solutions generated by ssi were

executed quickly in comparison to those generated by the other allocation mechanisms,

though on average in the clustered case the ssi solutions take marginally longer to exe-

cute than the osi allocations (Figure 5.7c).

The cost for this performance can be seen in the deliberation times. ssi, which

requires bids from all robots for all unallocated tasks in every round, involves much

more bidding than any of the other approaches, and this translates into the longest time

spent in the allocation process (deliberation time). However, for the scenarios considered

here, the deliberation times are all less than 1 percent of the total goal of executing the

set of tasks (Figure 5.5).

ssi also performs well in terms of idle time. An individual robot accumulates idle

time when it finishes visiting its allocated tasks before other robots finish visiting theirs,

so across the team it is a measure of wasted resource. For the clustered starting con-

figuration, ssi outperforms osi and rr but not significantly (though these results are

dominated by the terrible performance of psi on this metric). For the distributed starting
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Figure 5.5: Deliberation Time and Idle Time for Scenario 1, with clustered (left) and
distributed (right) starting locations. Time is given in seconds.

configuration, ssi has, on average, about half the idle time of the second-best performing

mechanism.

Indeed, in terms of the metrics assessed, ssi can only be considered to have poor

comparative performance in terms of near collisions in the case of the clustered starting

configuration. The reason for this is the slightly higher number of near collisions that

occur in ssi allocations for both clustered and distributed starting configurations and the

consequent delay time (Figure 5.9). During an allocation with any of the mechanisms

tested here, robots compute bids based on path plans independently with no knowledge

of other robots’ agendas. Thus, it can be difficult to predict inter-robot interference

during the execution of tasks at the time of allocation, unless a method of conflict-free,

joint path planning is employed, as in [129]. The increased delay time in this case is an

order of magnitude below the run time, so is not a significant factor in the terms of task

completion.

As Koenig et al. [58] point out, psi can come up with arbitrarily poor allocations

because it does not take synergies between task locations into account. As the results for

the clustered start configuration show, it can also skew the distribution of tasks between

robots — Figures 5.3d and 5.12a reveal that in the clustered start case, psi allocates all

of the tasks to one robot. This skew means that although psi is not much worse than
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Figure 5.6: Deliberation Time and Idle Time for Scenario 2, with clustered (left) and
distributed (right) starting locations. Time is given in seconds.

ssi or osi on team distance, it is much worse on run time and on idle time.1 Naturally,

since psi only allocates tasks to one robot, there are no near collisions and hence no

delay time. Even on the distributed start configuration where this skew does not occur

— as Figure 5.7b shows — psi performs rather poorly, where team distance travelled is

more than 40% greater than that travelled, on average, in a ssi allocation.

Turning to the results for Scenario 2, they largely agree with those from Scenario 1.

ssi again produces good results, broadly outperforming the other mechanisms for the

clustered starting configuration on all metrics except deliberation time. As in Scenario 1,

psi performs considerably worse than the other mechanisms (including the arbitrary

allocations produced by rr) on run time (Figure 5.8a) and idle time (Figures 5.6c and

5.14c) when the starting locations are clustered.

One interesting result, however, is how well psi performs on run time when starting

locations are distributed. The run-time for psi (377 seconds) is basically identical to

that for ssi (375 seconds, Figure 5.8b) with a considerably lower idle time (127 versus

424 seconds, Figure 5.6d).

1The distance for psi is 13% larger than that for osi and 23% larger than that for ssi, but the runtime for psi
is 2.4 times that for ssi and 2.5 times that for osi.
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Figure 5.7: Team Distance and Run Time for Scenario 1, with clustered (left) and
distributed (right) starting locations. Distance is given in metres. Time is given in
seconds.

More evidence that psi performs competitively with the other auction-based mech-

anisms from distributed starting locations can be found in results from a similar exper-

iment in Appendix A.1.

Overall, the results tend to confirm the strong performance of the ssi auction mecha-

nism in multi-robot routing tasks. The one area in which ssi performs worse than other

mechanisms is in deliberation time, the time that it takes to allocate tasks to robots.

For the scenarios considered here, the cost of allocating the tasks is negligible, with the

deliberation time being less than 1 percent of the total time for completing the set of

tasks. The total number of bids to allocate m tasks to n robots is:2

n

(
m(m+ 1)

2

)
and it is conceivable that this could become big enough to be problematic. For example,

consider the case of one hundred robots — as in the Centibots project [60] — which have

to allocate 500 tasks. In such a case the ssi auction would require over 12 million bids,

a 12,000-fold increase over what is required in these experiments, and enough to make

2One bid from each robot for m tasks in the first round, one bid from each robot for m−1 tasks in the second
round, and so on.
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Figure 5.8: Team Distance and Run Time for Scenario 2, with clustered (left) and
distributed (right) starting locations. Distance is given in metres. Time is given in
seconds.

deliberation time a significant contributor to the time for task completion. In addition,

since each bid has to be transmitted wirelessly — either to a centralised auctioneer, or

to all other robots in a distributed auction — the number of messages can be a factor

in robot deployments where communication bandwidth is limited [105].

In addition to communication, the cost of bid computation should also be considered.

In the experiments reported here, the simple task insertion heuristic discussed in Section

5.2.1 makes the cost of computing a bid during a round of a ssi or osi auction relatively

inexpensive (it is the cost of a single path between a robot’s bid-from location and a task

location). A task insertion heuristic designed to optimise the MiniSum or MiniMax

objectives, such as the TSP insertion heuristic discussed by Lagoudakis et al. [70], would

make the cost of every bid more expensive the more tasks a robot wins. While this may

increase the quality of a solution for a distance-based objective, the increased cost of bid

computation also increases the time it takes to compute a solution, which also affects

the scalability of such ssi implementations.

Both of these aspects might make the osi or psi mechanisms worth considering

for larger deployments. The osi auction results in distances that are 10% (clustered

start) to 20% (distributed start) worse than ssi in terms of distance to the tasks in

Scenario 1, and for the Centibots example would require several hundred times fewer
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Figure 5.9: Near Collisions and Delay Time for Scenario 1, with clustered (left) and
distributed (right) starting locations. Time is given in seconds.

bids (50, 000 rather than 12 million). The psi auction is about 40% worse in terms of

total distance for the distributed case with Scenario 1, but could do the task allocation

for the Centibots with just 500 bids (one for each task). In Scenario 1 with the clustered

starting configuration, as pointed out above, psi is only about 23% worse than ssi in

terms of distance travelled, but the long run time that results from the skewed allocation

needs to be taken into account. This point is reinforced by the results for Scenario 2,

which show that there are situations in which psi can equal or outperform ssi (at least

this implementation of it) on some metrics. However, while this result is encouraging in

this respect, an analysis of more scenarios would be required before reaching any firm

conclusions about whether psi can predictably outperform ssi.

5.5 Summary

The experiments discussed in this chapter have studied the performance of a number

of task allocation mechanisms on a version of the multi-robot routing problem in which

tasks are independently executed by single robots (SR-IT-SA). The missions were car-

ried out in simulation. The experiments discussed in this chapter do not attempt to

characterise the SR-IT-SA environment as a whole, which includes general multi-robot

routing problems. The aim is to investigate factors like inter-robot interference (near
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Figure 5.10: Near Collisions and Delay Time for Scenario 2, with clustered (left) and
distributed (right) starting locations. Time is given in seconds.

collisions and delay time) that can complicate theoretical predictions of mechanism

performance when applied to a realistic multi-robot system even in a simple setting.

Chapter 8 presents a more systematic investigation of multi-robot routing missions in

the SR-IT-SA environment.

The main result is that the sequential single item (ssi) auction broadly outperforms

other single-item auctions and parallel auctions across our range of metrics, though it

does not perform best on all of them for all scenarios. However, there do seem to be trade-

offs, especially in terms of the total number of bids required by the mechanisms. This

suggests that the ssi auction might have issues with scaling to larger routing problems

than we study here, especially if communication bandwidth is restricted. In other words,

the high performance of ssi comes at a cost that might be hard to pay for some missions.

Other mechanisms tested, which can scale better, might be preferable on such scenarios

despite their poorer performance otherwise. The next chapter examines the performance

of the same four task allocation mechanisms as they are employed in both SR-IT-SA

and SR-IT-DA (dynamic allocation) environments.



Chapter 5. A Static Task Environment (SR-IT-SA) 64

RR OSI SSI PSI0

5

10

15

20

25

30

35

40
robot_1
robot_2
robot_3

(a) Distance, Clustered

RR OSI SSI PSI0

5

10

15

20

25

30

35

40
robot_1
robot_2
robot_3

(b) Distance, Distributed

RR OSI SSI PSI0

10

20

30

40

50

60
robot_1
robot_2
robot_3

(c) Delay Time, Clustered

RR OSI SSI PSI0

10

20

30

40

50

60
robot_1
robot_2
robot_3

(d) Delay Time, Distributed

Figure 5.11: Distance Travelled and Delay Time for each robot in Scenario 1 with
starting locations clustered (left) and distributed (right). Results are grouped by mech-
anism and by robot.
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Figure 5.12: Distance Travelled and Delay Time for each robot in Scenario 2 with
starting locations clustered (left) and distributed (right). Results are grouped by mech-
anism and by robot.
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Figure 5.13: Travel and Idle time for each robot in Scenario 1 with starting locations
clustered (left) and distributed (right). Results are grouped by mechanism and by robot.
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Figure 5.14: Travel and Idle time for each robot in Scenario 2 with starting locations
clustered (left) and distributed (right). Results are grouped by mechanism and by robot.





Chapter 6

A Dynamic Task Environment

(SR-IT-DA)

6.1 Introduction

This chapter investigates how the performance of task allocation mechanisms varies

when the mechanisms are employed across different task environments. Experiments are

presented that compare the performance of the four task allocation mechanisms defined

in Section 4.4 on multi-robot routing problems set in two different task environments: a

static environment (SR-IT-SA), in which all tasks can be allocated at the beginning of

a mission, and a dynamic environment (SR-IT-DA), in which tasks arrive over time. In

both task environments, tasks are performed by single robots in any order they choose

after they are allocated. Section 6.2 describes the design of the experiments, Section 6.3

presents their results, Section 6.4 discusses the significance of the results, and Section

6.5 concludes.

The experiments and a portion of the results presented in this chapter were published

in Schneider et al. (2015) [110].

6.2 Experiments

6.2.1 Mechanisms Tested

The task allocation mechanisms discussed in Section 4.4 were tested in these experi-

ments:

• Round-robin (rr)

• Ordered single-item (osi)

• Sequential-single item (ssi)

• Parallel single item (psi)

69
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6.2.2 Metrics

Each experiment recorded some of the metrics described in Section 4.6:

• Team Distance – The sum of the distances travelled by all robots.

• Deliberation time – The time taken for the tasks to be allocated to the robots.

• Run time – The time between the start of an experiment and the time the last

robot on the team completes the tasks allocated to it. This includes deliberation

time.

• Near collisions – The number of times two robots travelled close enough to detect

a risk of collision and triggered a negotiation to avoid colliding.

• Delay time – The time robots spent replanning and yielding the right of way while

negotiating to avoid a collision; and

• Idle time – The time that elapses between when a robot completes its last task

and when all robots on the team have completed all of their assigned tasks

6.2.3 Platform

Experiments were conducted with the MRTeAm framework (Section 3) using the Stage

simulator [37]. The simulated robots are modelled on the Turtlebot 21 robot described

in Section 3.5 and have the same characteristics as their physical counterparts (size,

shape, acceleration, and maximum speed).

6.2.4 Experimental Setup

Two versions of a scenario pictured in Figure 6.1 are investigated with m = 9 tasks in

the same locations. The map in which the scenarios are set is 8×6 metres, with rooms

and corridors arranged as shown in Figure 6.1. In the static scenario (SA), all tasks

arrive at the beginning of an experiment and can be allocated to the robots in a single

deliberation phase, followed by a single execution phase.

In the dynamic scenario (DA), the value of each task’s arrival time, t.arr, is shown in

Figure 6.1. Arrival of a task triggers a deliberation phase followed by an execution phase

(Figure 4.5). If a task arrives while robots are currently executing tasks awarded in a

prior deliberation phase, the current execution phase is aborted and a new deliberation

phase begins, in which the newly arrived tasks are allocated. Robots retain tasks they

have been awarded between deliberation and execution phases.

In the dynamic scenario investigated here, tasks arrive in pairs on a fixed schedule

at 45-second intervals. For example, tasks 1 and 8 arrive at time 0 and can be allocated

at the beginning of an experiment. Tasks 3 and 4 arrive after 45 seconds have elapsed,

1
http://www.turtlebot.com/turtlebot2/

http://www.turtlebot.com/turtlebot2/
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Figure 6.1: The scenario tested, with two variations. In the static scenario (SA),
tasks are all allocated at the beginning of an experiment. In the dynamic scenario
(DA), tasks arrive and become available for allocation at the times indicated in the
figure.

R1R2

R3

(a) Clustered

R1R2

R3

(b) Distributed

Figure 6.2: Robot starting locations

triggering a second deliberation phase, and so on. The dynamic scenario is loosely based

on one used in a study of task complexity in human-robot teams [89].

The size of the robot team is fixed at n = 3 as in the experiments in Chapter 5. Two

sets of robot starting configurations are used, clustered (Figure 6.2a) and distributed

(Figure 6.2b). These starting configurations are similar to those used in experiments in

Chapter 5, but the map used here has a different size and configuration.

Experiments were conducted with each of the two scenarios and two sets of starting

configurations using each of the four task allocation mechanisms, and each was run 10
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Team Distance Run time Delib. time Idle time

Clustered RR 43.92 ± 1.12 262.62 ± 9.03 0.003 ± 0.0003 118.69 ± 20.95

OSI 42.17 ± 1.23 238.17 ± 11.55 5.08 ± 0.05 70.87 ± 15.73
SSI 32.30 ± 0.26 181.95 ± 7.08 7.87 ± 0.05 58.61 ± 10.42
PSI 34.51 ± 0.24 405.74 ± 7.98 1.14 ± 0.03 389.80 ± 8.02

Distributed RR 46.80 ± 0.39 233.77 ± 9.83 0.004 ± 0.0006 131.19 ± 16.49
OSI 23.81 ± 0.15 138.93 ± 5.31 4.20 ± 0.09 97.62 ± 11.36
SSI 24.23 ± 0.20 137.84 ± 5.41 6.43 ± 0.05 77.70 ± 10.78
PSI 22.57 ± 0.15 169.12 ± 4.65 1.34 ± 0.02 207.94 ± 9.42

Team Distance Run time Delib. time Idle time

Clustered RR 57.03 ± 0.93 234.65 ± 9.15 0.0153 ± 0.001 123.31 ± 18.69

OSI 37.52 ± 3.64 211.79 ± 1.39 9.06 ± 0.34 125.56 ± 6.92
SSI 35.78 ± 0.16 212.88 ± 1.61 9.38 ± 0.33 125.42 ± 3.08
PSI 43.23 ± 3.26 220.62 ± 12.75 6.11 ± 0.18 127.4 ± 37.57

Distributed RR 69.7 ± 1.69 233.54 ± 8.72 0.0143 ± 0.0007 101.04 ± 9.54
OSI 28.2 ± 0.14 204.72 ± 2.43 9.17 ± 0.22 89.88 ± 4.42
SSI 28.25 ± 0.12 204.0 ± 2.04 9.35 ± 0.24 88.45 ± 4.48
PSI 28.14 ± 0.26 203.43 ± 0.52 6.05 ± 0.14 89.21 ± 2.08

Table 6.1: Team metrics for the static (top) and dynamic (bottom) scenario alloca-
tions. Distance is given in metres. Time is given in seconds. The values given are
means with 95% confidence intervals.

times. 160 experimental trials were conducted in all:

160 = 4 missions ({clustered , distributed} × {static , dynamic})

× 4 allocation mechanisms × 10 trials

6.3 Results

The results of the experiments can be seen in Table 6.1 and Figures 6.4–6.12. Table 6.1

gives the value of the metrics for each of the four task allocation mechanisms — rr, osi,

ssi and psi in each of the four missions of static and dynamic scenarios with clustered

and distributed starting configurations. The table gives average values across the 10

runs with 95% confidence intervals. Figure 6.3 gives average distances travelled by the

team. This is one metric considered here since it is the one that ssi is looking to optimise

task allocations against (the implementation of ssi used in these experiments attempts

to optimise the MiniSum objective) and it is the metric that we might expect it to

perform best on. The other main metric is run time (Figure 6.4), another important

measure of performance. Team distance does not necessarily give an indication of run

time. Note a result from Chapter 5, shown in Figure 5.8, where a psi allocation was

competitive with the other mechanisms in terms of team distance, but its run time was
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Figure 6.3: Team distances for clustered (left) and distributed (right) starting con-
figurations in the static (top) and dynamic (bottom) scenarios.

almost three times greater, on average. (Run time is more proportional to the maximum

robot distance travelled by any robot during a mission, also known as the makespan).

Figures 6.5–6.8 show the remaining metrics.

Figures 6.9–6.12 are timeline plots that show robot activity over the course of an

experiment in each of the experimental configurations. Each figure plots the activity of

robots in the team recorded during a single example trial. These figures help clarify the

time-based metrics that we measure (run time, deliberation time, idle time, and delay

time) and provide a way to inspect each robot’s activity in parallel with its team mates

as an experiment unfolds.

In the static scenario, the results for team distance (Figure 6.3) show that ssi per-

forms as we expect it to given the analysis in [58] and the results from experiments with

similar SR-IT-SA scenarios in Chapter 5. From the clustered configuration, ssi gener-

ates allocations that result in shorter total distances for the team than any of the other

mechanisms (Figure 6.3a). The results also show that ssi allocations yield lower run time

(Figure 6.4a), execution phase time (Figure 6.5a), and idle time (Figure 6.7a). Run time

and execution time can be complicated by inter-robot interference. In this regard, ssi

allocations also resulted in paths with fewer near collisions than any mechanism besides
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Figure 6.4: Run times for clustered (left) and distributed (right) starting configura-
tions in the static (top) and dynamic (bottom) scenarios.

psi and correspondingly low delay time (Figure 6.8a). Low idle time (Figure 6.7a) sug-

gests a more even allocation of tasks to robots than other mechanisms. psi is notably

poor in this regard in the static scenation from the clustered starting configuration, a

point noted by Koenig et al. [58].

The timelines in Figure 6.9 illustrate ssi’s performance in these regards visually.

Especially clear is the imbalance in allocation between ssi and psi, which allocated most

of the tasks to a single robot (Figure 6.9d). Also apparent is that the osi allocation in

this trial led to more inter-robot interference (Figure 6.9b). A number of near collisions

were detected by robot 3 as it attempted to leave the starting area and execute its tasks

in the first 60 seconds of the trial. Note that timelines are plotted from individual trials

and so don’t show average performance across all trials.

When moving to consider the static scenario with the distributed starting configu-

ration, note from Figure 6.3b that ssi doesn’t provide an obviously better allocation in

terms of team distance than either osi or psi. In fact, Table 6.1 reveals that ssi does

fractionally worse than osi. ssi also does not produce significantly lower run times than

osi on average (Figure 6.4b). ssi however, continues to perform at least as well as the

other mechanisms on other metrics, barring its higher deliberation time (Figure 6.6b).



Chapter 6. A Dynamic Task Environment (SR-IT-DA) 75

RR OSI SSI PSI
0

50

100

150

200

250

300

350

400

450

(a) Execution Phase Time, Clustered (SA)

RR OSI SSI PSI
0

50

100

150

200

250

(b) Execution Phase Time, Distributed (SA)

RR OSI SSI PSI
0

50

100

150

200

250

(c) Execution Phase Time, Clustered (DA)

RR OSI SSI PSI
0

50

100

150

200

250

(d) Execution Phase Time, Distributed (DA)

Figure 6.5: Execution times for clustered (left) and distributed (right) starting con-
figurations in the static (top) and dynamic (bottom) scenarios.

Moving from the static (SA) to the dynamic (DA) scenario, in terms of team distance

(Figure 6.3c), ssi again produces allocations that leads to the smallest team distances,

but its average run time (212.88 seconds) is actually slightly higher than osi’s run time

(211.79 seconds) (Figure 6.4c). In the dynamic scenario, allocation spreads the robots

out in time much the same way as the distributed start locations do in space — because

they start moving to the locations of tasks allocated in the first deliberation phase (at

time 0), the robots are physically spread out by the time that later tasks are allocated. In

the dynamic scenario with the distributed starting configuration in particular, all three

auction mechanisms outperform rr about equally, and across other metrics including

team distance (Figure 6.3d), run time (Figure 6.4c), and idle time (Figure 6.7d).

Additional evidence that psi performs competitively with the other auction-based

mechanisms from distributed starting locations in a SR-IT-DA task environment can

be found in results from a similar experiment carried out on physical robots given in

Appendix A.2.
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Figure 6.6: Deliberation time for clustered (left) and distributed (right) starting
configurations in the static (top) and dynamic (bottom) scenarios.

6.4 Discussion

The aim of the experiments presented in this chapter is to show how the performance of

mechanisms varies when they are employed across task environments (from SA to DA),

in addition to comparing how mechanisms perform within a single environment, as in

Chapter 5. When considering team distance as a measure of performance, the results

show that across task environments, ssi consistently produced the lowest team distance

of any mechanism from the clustered starting configuration in both the static (Figure

6.3a) and dynamic (Figure 6.3c) scenarios. However, the relative performance of osi

and psi in terms of team distance did change when moving across task environments.

In the static scenario with the clustered starting configuration, psi produced a lower

team distance on average (34.51 seconds) than osi (Figure 6.3a). When the mechanisms

were employed in the dynamic scenario with the same starting configuration, relative

performance was reversed, with osi producing a lower team distance on average (37.52

seconds) than psi (43.23 seconds).

A similar effect can be seen when run time is considered (Figure 6.4). In the static

scenario, ssi produced the lowest run time from the clustered starting configuration

(Figure 6.4a), but in the dynamic scenario its run time was not significantly better than

osi’s (Figure 6.4c). Similarly for execution phase time (as a component of run time),
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Figure 6.7: Idle time for clustered (left) and distributed (right) starting configurations
in the static (top) and dynamic (bottom) scenarios.

the relative performance between ssi and osi was reversed when moving from the static

scenario (Figure 6.5a) to the dynamic scenario (Figure 6.5c). As with team distance,

the relative performance differences between the auction-based mechanisms in terms of

run time and execution phase time was diminished or removed when moving from the

clustered starting configuration to the distributed starting configuration (Figures 6.4d

and 6.5d).

An observation that can be made from these results is that not only can the per-

formance of a single task allocation mechanism vary as as it is employed across task

environments, but the relative performance of a group of mechanisms can change as

well. This idea is explored more fully in the next chapter.

6.5 Summary

This chapter has presented experiments that investigate the performance of a number

of task allocation mechanisms on two examples of a multi-robot routing problem set

in different task environments: a static environment (SR-IT-SA), in which all tasks

could be allocated at the beginning of a mission, and a dynamic environment (SR-

IT-DA), in which tasks arrived over time. The results show that not only can the
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Figure 6.8: Delay time for clustered (left) and distributed (right) starting configura-
tions in the static (top) and dynamic (bottom) scenarios.

performance of a single mechanism vary across task environments, but also the relative

performance among the group of mechanisms. The next chapter explores the idea of

relative performance ranking of mechanisms in other task environments.
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Figure 6.9: Timelines showing robot activity in a single trial of the static scenario
with clustered start locations. An experiment begins at time 0, and moves along the
positive x-axis. psi run times were about 400 seconds (Figure 6.1) and run past the
end of the timeline at the scale shown here.
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Figure 6.10: Timelines showing robot activity in a single trial of the static scenario
for distributed start locations.
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Figure 6.11: Timelines showing robot activity in a single trial of the dynamic sce-
nario for clustered start locations.
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Figure 6.12: Timelines showing robot activity in a single trial of the dynamic sce-
nario for distributed start locations.



Chapter 7

Multi-Robot and Constrained

Tasks (MR-CT-DA)

7.1 Introduction

This chapter continues the investigation of Chapter 6 into how performance varies when

task allocation mechanisms are employed across different task environments. Experi-

ments are presented that compare the performance of the four task allocation mecha-

nisms defined in Section 4.4 on multi-robot routing missions set in four different task

environments, in which tasks may require more than one robot to be present before

they they can be executed (MR) and which may have precedence-ordering constraints

between them (CT ) that dictate the order in which they can be performed. In all four

environments, tasks arrive dynamically over time (DA).

Two hypotheses are tested. The first hypothesis is that within a single environment,

the different mechanisms evaluated here produce statistically significantly different re-

sults, according to particular performance metrics. Thus, for any one point in the

environment landscape, we can identify one task allocation mechanism that reliably

performs the best for a given metric. The second hypothesis is that across multiple

environments, there is no definitive or consistent ranking of these mechanisms across

the metrics. Thus, across all points in the environment landscape, none of the task

allocation mechanisms evaluated performs the best for a given metric. The results of

experiments presented in this chapter show evidence that supports both of these hy-

potheses through empirical results obtained on physical robots, backed up with results

obtained in simulation experiments.

Section 7.2 describes related work in the task environments investigated here, Section

7.3 describes the experiments that were run, Section 7.4 presents their results, Section

7.5 analyses how the results support the hypotheses, and Section 7.6 summarises the

chapter.

The experiments and a portion of the results presented in this chapter were published

in Schneider et al. (2016) [108].

83
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Figure 7.1: Physical robots in the test environment

7.2 Related work

Most of the existing work around multi-robot task allocation studies environments in

which tasks are known ahead of time, are independent, can be completed in any order,

and require only one robot. Existing taxonomies [36, 71] discussed in Chapter 2 suggest

three task dimensions, labelling well-studied environments as single-robot (SR), indepen-

dent (IT ) and static (SA). The experiments presented in this chapter investigate task

allocation in more complex environments. Work in Chapter 6 evaluated static versus

dynamic task allocation factors, comparing situations where tasks were all known ahead

of time and were allocated before execution of any task commenced (SR-IT-SA, Chap-

ter 5) and situations where tasks appeared during execution, meaning that allocation

occurred dynamically, after some tasks had commenced (SR-IT-DA, Chapter 6). Here,

two additional confounding factors are considered: multi-robot (MR) tasks, where more

than one robot is required (e.g., moving a heavy object); and constrained (CT ) tasks,

where a task may be dependent on others to be completed before it can be executed

(e.g., clearing debris from a doorway before being able to enter a room).

This chapter is a further contribution to the body of work around ssi, extending

the use of ssi and related mechanisms to task environments that are, according to

the taxonomies developed by Gerkey and Mataŕıc [36] and Landén et al. [71]: multi-

robot (MR), constrained (CT ) and dynamic (DA). Auction-based approaches to task

allocation have been proposed for tasks with precedence [78], with temporal [40, 88]

constraints, and for dynamic environments [47, 86, 110, 111] with single robot tasks.

Environments that contain multi-robot tasks, with and without constraints, are less

well investigated than their single-robot counterparts [62].
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Figure 7.2: Robot starting locations

Figure 7.3: A dynamic scenario with single-robot tasks (circles), multi-robot tasks
(squares) and precedence constraints. A dotted line from task tp to task tp means that
tp must be completed before task tq can be executed. Tasks arrive and become available
for allocation at the times indicated in the figure.

7.3 Experiments

Experiments were conducted to compare task allocation mechanisms in a structured set

of 〈SR|MR〉〈IT |CT 〉〈SA|DA〉 environments. Here we describe the mechanisms tested,

the metrics used to measure performance, the system platform used to conduct these

experiments, and the experimental setup.



Chapter 7. Multi-Robot and Constrained Tasks (MR-CT-DA) 86

7.3.1 Mechanisms Tested

The task allocation mechanisms discussed in Section 4.4 were tested in these experi-

ments:

• Round-robin (rr)

• Ordered single-item (osi)

• Sequential-single item (ssi)

• Parallel single item (psi)

7.3.2 Metrics

Each experiment recorded some of the metrics described in Section 4.6:

• Team Distance – The sum of the distances travelled by all robots.

• Deliberation time – The time taken for the tasks to be allocated to the robots.

• Execution phase time – The time it takes robots to execute tasks during an exe-

cution phase once they have been allocated.

• Run time – The time between the start of an experiment and the time the last

robot on the team completes the tasks allocated to it. This includes deliberation

time and execution phase time.

• Movement time – Te time robots spend actually moving, without interruption

(e.g., by a near collision), toward tasks.

• Delay time – The time robots spent replanning and yielding the right of way while

negotiating to avoid a collision; and

• Idle time – The time that elapses between when a robot completes its last task

and when all robots on the team have completed all of their assigned tasks

• Waiting Time – The time robots spend waiting at a task location before the

necessary conditions for executing the task have been met, such as waiting for a

team mate to arrive at the location of a multi-robot task.

7.3.3 Platform

Experiments were conducted with the MRTeAm framework (Section 3) using both physi-

cal Turtlebot 21 robots in the smARTLab UGV laboratory at the University of Liverpool

and a simulation of the laboratory’s arena in the Stage simulator [37]. The simulated

robots have the same characteristics as their physical counterparts (size, shape, acceler-

ation, and maximum speed).

1
http://www.turtlebot.com/turtlebot2/

http://www.turtlebot.com/turtlebot2/
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7.3.4 Experimental Setup

An experimental condition is defined by the starting locations of the robots and the task

scenario (defined by task locations, task arrival times, constraints and robot require-

ments). This work investigates routing tasks—a robot executes a task simply by driving

to the task’s location. All of the experiments reported here involve a team of n = 3

robots. We used two sets of starting configurations (Figure 7.2) for the robot team: one

clustered the robots in the “room” in the lower left corner of the arena, while the other

distributed the robots at three corners of the map.

We examined four different task environments, all with dynamic allocation (DA),

combining single-robot (SR) vs. multi-robot (MR) and independent (IT) vs. constrained

(CT) tasks: SR-IT-DA, SR-CT-DA, MR-IT-DA and MR-CT-DA. Two scenarios were

employed. Figure 7.3 shows a diagram of the first scenario.

The aim in choosing this combination of task environments was to see how per-

formance of the four task allocation mechanisms varied along the MR/SR and CT/IT

dimensions. In total, 192 physical and 960 simulation trials were performed:

2 starting configurations × 4 task environments × 2 scenarios×

4 allocation mechanisms × {3 physical | 15 simulation} trials.

7.4 Results

Figures 7.5–7.6 and Table 7.1 contain representative results from the experiments. Fig-

ure 7.5 shows the average team distance by in eight variations of the scenario shown in

Figure 7.3. In each plot, average travel distances resulting from allocations produced by

rr, osi, ssi, and psi are shown from left to right.

Figures 7.4a and 7.4c show how, in the SR-clustered conditions of this scenario,

psi allocations result in distances that are significantly shorter than those produced

by the other mechanisms. As we move to distributed-start conditions of the scenario

(Figures 7.4b and 7.4d), differences among three of the mechanisms diminish but remain

statistically significantly different, while rr continues to lead to dramatically longer

distances. This result is similar to those reported in Chapter 6, where it was shown that

a starting configuration that distributes team members more evenly amongst tasks tends

to lessen the advantages of mechanisms such as ssi that exploit clustering properties

of task locations. In MR conditions of the same scenario, the results are somewhat

different. For example, rr doesn’t always result in the longest distances (Figures 7.5a

and 7.5b) nor does psi always result in the shortest (Figure 7.5c). The relative rankings

of the mechanisms are much less predictable than in the SR environments. The second

experimental scenario produced similar results.
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(d) SR-CT-DA, distributed

Figure 7.4: Average distance (metres) travelled in physical experiments for the single-
robot (SR) variations of the scenario shown in Figure 7.3.

We can choose other of our performance metrics to examine individually. But with

nine metrics and a large number of combinations of environments and experimental con-

figurations, we want to make sense of the results as a whole. Do any of the mechanisms

produce the best performance across environments or experimental configurations? Do

clear patterns emerge? I address these questions in the following section by examining

the data in aggregate.

7.5 Analysis

Here, we focus on five different performance metrics. Deliberation time is a component

of overall run time and a good measure of how well an allocation mechanism scales

with the number of tasks and the size of the team. Execution phase time is another

component of run time and one of the main measures we would like to minimise, the

other being team distance. We also look at idle time as a measure of how well balanced

the task load is among the team. Finally, we look at waiting time. This is a feature

specific to the MR and CT environments. A key contribution of this work is extending

experimental results, particularly with physical robots, into MR and CT environments.
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(d) MR-CT-DA, distrib.

Figure 7.5: Average distance (metres) travelled in physical experiments for the multi-
robot (MR) variations of the scenario shown in Figure 7.3.

As discussed above, one of the long term goals of this work is to develop task allo-

cation mechanisms, or methods of choosing mechanisms, that perform well in different

environments. Underlying this is the assumption that some mechanisms lead to better

performance outcomes in some environments than others, and that there may not be a

single mechanism that is best suited for all environments. I suggest two research hy-

potheses to evaluate this assumption and use the results of experiments discussed here

to provide evidence for them.

The first hypothesis is that within a single 〈sc, te, s〉 tuple (where sc = starting con-

figuration, te = task environment, and s = scenario), the four mechanisms examined

here produce statistically significantly different results, according to performance met-

rics. It is important to show that performance differences between mechanisms exist in

the first place before examining the effects of varying environments. To evaluate this first

hypothesis, I apply analysis of variance (ANOVA) to determine if there are significant

differences between the different mechanisms. I ran ANOVA on the four samples—one

for each mechanism in each 〈sc, te, s〉 tuple. If the null hypothesis were true and the

differences among the four samples were due to chance, then the likelihood of producing

the F-ratio would be less than p%. The F-ratios of samples from both physical and

simulation experiments are shown in Table 7.1. These F-ratios (p-value = 0.01) indicate
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Physical Simulation
(a) Deliberation time

F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p
MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 83.96 0.010 cl-s1 71.77 0.010 cl-s1 28709.89 0.010 cl-s1 241.51 0.010
di-s1 158.13 0.010 di-s1 43.87 0.010 di-s1 54561.93 0.010 di-s1 213.79 0.010
cl-s2 3901.58 0.010 cl-s2 1766.23 0.010 cl-s2 18630.69 0.010 cl-s2 30977.14 0.010
di-s2 3080.90 0.010 di-s2 3708.91 0.010 di-s2 22404.35 0.010 di-s2 21734.58 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 93.79 0.010 cl-s1 5038.94 0.010 cl-s1 24591.32 0.010 cl-s1 174.05 0.010
di-s1 1150.34 0.010 di-s1 45.53 0.010 di-s1 44307.68 0.010 di-s1 2089.02 0.010
cl-s2 5124.26 0.010 cl-s2 37639.65 0.010 cl-s2 15842.79 0.010 cl-s2 23317.28 0.010
di-s2 5364.80 0.010 di-s2 146.10 0.010 di-s2 44591.27 0.010 di-s2 27112.49 0.010

(b) Execution phase time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 1.39 0.950 cl-s1 19.70 0.010 cl-s1 30.43 0.010 cl-s1 60.39 0.010
di-s1 9.58 0.010 di-s1 3.27 0.950 di-s1 5.94 0.010 di-s1 22.79 0.010
cl-s2 5.49 0.050 cl-s2 19.72 0.010 cl-s2 24.02 0.010 cl-s2 19.82 0.010
di-s2 3.19 0.950 di-s2 24.63 0.010 di-s2 9.88 0.010 di-s2 39.51 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 2.82 0.950 cl-s1 18.58 0.010 cl-s1 36.39 0.010 cl-s1 33.09 0.010
di-s1 1.54 0.950 di-s1 11.17 0.010 di-s1 9.53 0.010 di-s1 14.14 0.010
cl-s2 3.92 0.950 cl-s2 9.93 0.010 cl-s2 6.62 0.010 cl-s2 28.28 0.010
di-s2 0.77 0.950 di-s2 79.93 0.010 di-s2 5.10 0.010 di-s2 15.93 0.010

(c) Team distance
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 7.76 0.010 cl-s1 30.83 0.010 cl-s1 35.88 0.010 cl-s1 312.84 0.010
di-s1 13.04 0.010 di-s1 784.63 0.010 di-s1 4817.66 0.010 di-s1 75593.00 0.010
cl-s2 12.90 0.010 cl-s2 7.70 0.010 cl-s2 33.75 0.010 cl-s2 60.12 0.010
di-s2 9.39 0.010 di-s2 996.79 0.010 di-s2 132.54 0.010 di-s2 1395.83 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 10.38 0.010 cl-s1 6.01 0.050 cl-s1 390.48 0.010 cl-s1 436.66 0.010
di-s1 68.46 0.010 di-s1 173.25 0.010 di-s1 3121.61 0.010 di-s1 98521.39 0.010
cl-s2 13.30 0.010 cl-s2 29.16 0.010 cl-s2 122.99 0.010 cl-s2 231.39 0.010
di-s2 10.21 0.010 di-s2 2823.98 0.010 di-s2 527.39 0.010 di-s2 3676.25 0.010

(d) Idle time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 0.72 0.950 cl-s1 8.44 0.010 cl-s1 40.63 0.010 cl-s1 40.08 0.010
di-s1 2.17 0.950 di-s1 4.33 0.050 di-s1 36.85 0.010 di-s1 34.25 0.010
cl-s2 8.28 0.010 cl-s2 6.23 0.050 cl-s2 112.31 0.010 cl-s2 7.00 0.010
di-s2 4.30 0.050 di-s2 29.89 0.010 di-s2 70.23 0.010 di-s2 29.02 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 111.22 0.010 cl-s1 2.19 0.950 cl-s1 117.09 0.010 cl-s1 14.87 0.010
di-s1 7.90 0.010 di-s1 6.69 0.050 di-s1 40.33 0.010 di-s1 52.47 0.010
cl-s2 20.62 0.010 cl-s2 4.12 0.050 cl-s2 99.37 0.010 cl-s2 12.82 0.010
di-s2 16.53 0.010 di-s2 90.31 0.010 di-s2 16.58 0.010 di-s2 8.40 0.010

(e) Waiting time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 26.38 0.010 cl-s1 100.07 0.010 cl-s1 10.02 0.010 cl-s1 1260.61 0.010
di-s1 1.28 0.950 di-s1 9.19 0.010 di-s1 30.23 0.010 di-s1 100.39 0.010
cl-s2 0.15 0.950 cl-s2 6.01 0.050 cl-s2 16.90 0.010 cl-s2 38.08 0.010
di-s2 8.92 0.010 di-s2 22.55 0.010 di-s2 20.93 0.010 di-s2 6.94 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 4.21 0.050 cl-s1 0.25 0.950 cl-s1 28.44 0.010 cl-s1 0.63 0.950
di-s1 0.26 0.950 di-s1 0.42 0.950 di-s1 23.39 0.010 di-s1 0.64 0.950
cl-s2 0.30 0.950 cl-s2 2.49 0.950 cl-s2 14.05 0.010 cl-s2 0.00 0.950
di-s2 1.00 0.950 di-s2 1.69 0.950 di-s2 8.03 0.010 di-s2 1.32 0.950

Table 7.1: F-ratios for 5 different metrics

a significant performance difference between the populations (mechanisms). For exam-

ple, in the case of deliberation time (Table 7.1(a)), very large F-ratio values are the

result of comparing RR, a simple mechanism that runs very quickly, with the others.
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(a) MR-CT-DA, Delib. (b) MR-IT-DA, Delib. (c) SR-CT-DA, Delib. (d) SR-IT-DA, Delib.

(e) MR-CT-DA, Exec. (f) MR-IT-DA, Exec. (g) SR-CT-DA, Exec. (h) SR-IT-DA, Exec.

(i) MR-CT-DA, Dist. (j) MR-IT-DA, Dist. (k) SR-CT-DA, Dist. (l) SR-IT-DA, Dist.

(m) MR-CT-DA, Idle (n) MR-IT-DA, Idle (o) SR-CT-DA, Idle (p) SR-IT-DA, Idle

(q) MR-CT-DA, Wait. (r) MR-IT-DA, Wait. (s) SR-CT-DA, Wait. (t) SR-IT-DA, Wait.

Figure 7.6: Heat maps for the physical experiment data on each task environment.
Each heatmap shows the two different scenarios and two different experimental condi-
tions. For a given scenario/experimental condition pair (row) the colour of the squares
indicates the rank order of the mechanism (column). The darkest square indicates the
lowest value of the metric (best mechanism), the lightest square indicates the highest
value (worst mechanism). a–d show deliberation time, e–h show execution time, i–l
show distance, m–p show idle time, and q–t show waiting time.

In contrast, F-ratios for distance travelled (Table 7.1(c)) are lower but still above the

critical value for the significance level and degrees of freedom tested. This supports the

first hypothesis.

The second hypothesis is that across multiple 〈sc, te, s〉 tuples, there is no definitive

ranking amongst the metrics for each mechanism. Figure 7.6 shows performance rankings

obtained from physical experiments in the form of heat maps. Each row of heat maps



Chapter 7. Multi-Robot and Constrained Tasks (MR-CT-DA) 92

in the figure corresponds to one of the five metrics discussed above. Within each heat

map, the four columns correspond to the four task allocation mechanisms (rr, osi, ssi,

psi, from left to right). The rows of each heat map are labelled with a variation of a

particular scenario. For example, cl-s1 indicates clustered, scenario 1. The shading of

a cell indicates its rank: darker shades indicate lower values for that metric. While the

ANOVA results mentioned in support of the first hypothesis don’t directly measure the

degree to which any pair of mechanisms differed in performance, they do provide evidence

that the rankings shown in the heat maps are based on statistically significant differences.

The heat maps for deliberation time (Figure 7.6a–7.6d) reveal some consistency when

comparing environments and experimental conditions (rows within a single heat map,

and across heat maps in the same row of the figure). rr is always the quickest to

run, followed by psi, while osi and ssi trade ranks depending on the experimental

condition. Apart from deliberation time, this type of performance ranking does not

hold in a consistent way for the other metrics when comparing across environments and

experimental conditions. This supports the second hypothesis.

7.6 Summary

The work presented in this chapter tests two hypotheses: (1) within a single parame-

terised environment, a given task allocation mechanism can be proven to consistently

outperform others for certain metrics; and (2) across a varied set of parameterised en-

vironments, no single task allocation mechanism will consistently outperform others for

any metrics. We conducted experiments with physical robots, as well as simulated robots

in an environment that parallels our physical setup. Empirical results presented here

support both of these hypotheses.



Chapter 8

Mechanism Selection

8.1 Introduction

Previous chapters have examined how the performance of task allocation mechanisms can

vary when applied across different missions within the same task environment (Chapter

5) and across different task environments (Chapters 6 and 7). This chapter returns to

the SR-IT-SA from environment Chapter 5 and presents a method for selecting a task

allocation mechanism that is suited to the mission in which it is employed. The method

selects an allocation mechanism from a portfolio of available mechanisms by examining

spatial features of the environment.

Many market-based mechanisms have been suggested for the task allocation problem,

as reviewed in Chapter 2. These mechanisms vary considerably in the trade-offs that they

make between computation time and space, and the quality of solutions that they deliver,

measured by metrics such as the total distance covered by the team while completing a

set of tasks. In addition, the performance of mechanisms seems to be greatly affected by

the environments in which they are deployed. In some environments, a simple, greedy

mechanism which might not be expected to perform well in the general case may, in

fact, perform competitively with more sophisticated mechanisms, with the advantage of

scaling better. The experimental results in Chapters 5–7 and published in [106, 108, 110]

have shown evidence that this is the case in both simulated and physical experiments.

In particular, Chapters 5–6 have shown that while the sequential single-item auc-

tion (ssi) [58] performs better than the parallel single-item auction (psi) [58] when the

allocation is carried out with robots clustered together geographically, this advantage

diminishes as robots are distributed over space and tasks are distributed over space and

time. Based on this observation, this chapter proposes a portfolio-based approach to the

MRTA problem. Given a set of task allocation mechanisms and a set of environmen-

tal features that can be measured, a portfolio-based approach to mechanism selection

should be able to classify a previously unseen mission environment in order to choose a

task allocation mechanism that performs well in it.

“Mission environment” here refers to the spatial arrangements and distributions

of robots and tasks. It seems appropriate to apply the tools and techniques of cluster

93
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analysis to these environments. Environmental obstacles like walls need to be considered,

so it seems natural to model environments as graphs, where nodes may be robots and/or

task locations, and edges are paths computed by a path planner (e.g., A* [45]) between

these nodes, around obstacles. The graphs constructed in this way resemble something

like road networks, which suggests an approach to characterising different environments.

The distribution of sites over road-network-like graphs is a well-studied research area

in Geographic Information Systems (GIS). One particular class of problem from GIS that

is useful to apply here is location-allocation or facility location, which seeks to determine

the ideal locations for “facilities” and allocates “demand points” to them in a way that

minimises some measure of overall cost or maximises some overall utility. Examples of

facilities and demand points might be warehouses and customers, or police stations and

potential crime scenes, respectively. In the family of facility location problems [97], the

p-median problem (described below) seems most suitable here, with p representing the

number of facilities one wishes to locate.

In the case of multi-robot routing missions, robot team members can be thought of

as facilities and task locations as demand points. If such a facility location problem can

be solved for a multi-robot routing mission, where the number of facilities is equal to

the number of team members, it may be possible to find an ideal set of team starting

locations for a simple, greedy mechanism like the parallel single-item auction (psi). The

hypothesis investigated by experiments presented in this chapter is that if actual robot

start locations are close to ideal facility locations, then the parallel single-item auction

will lead to competitive performance. Conversely, if actual robot start locations are

far away from ideal facility locations, then a more sophisticated mechanism like the

sequential single-item auction is a better choice. Furthermore, it will be possible to

select the best mechanism for specific sets of start and facility locations based only

on knowledge about those locations. This chapter provides an empirical test of this

hypothesis and finds that, at least for some sets of locations, machine learning can be

used to identify the best mechanism to use. Experiments show that this approach can

produce significant improvements in team performance.

Section 8.2 describes related work, Section 8.3 explains the mechanism selection

method proposed here works, Section 8.4 describes experiments that were run to evaluate

the method’s performance, Section 8.5 presents the results, Section 8.6 discusses the

results and the effectiveness of the method, and Section 8.7 summarises the chapter.

Some of the experimental results presented in this chapter were published in Schnei-

der et al. (2017) [110].

8.2 Related Work

Location theory sits at the intersection of (GIS) and economics. The p-median problem

is one class of location-allocation or facility location problem that seeks to find optimal

locations among existing sets of points that either maximize some measure of distribution
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utility or minimize some measure of cost [73]. Reese [97] gives the following definition

of the p-median problem on a graph:

Given a graph or a network G = (V,E), find Vp ⊆ V such that |Vp| = p and

that the sum of the shortest distances from the vertices in {V \ V p} to their

nearest vertex in Vp is minimized.

Hakimi developed such problems on a graph to locate optimal switching centres for

communication networks or police stations in a highway system [44]. Kariv & Hakimi

showed that finding solutions to p-median problems is NP-hard on a general graph [54],

but heuristics have been developed to make this more efficient [21, 120].

Clustering or bundling of tasks has been investigated in the design of task allocation

mechanisms. Sandholm (1998) extended Smith’s Contract Net Protocol with C-contracts

(cluster contracts), which award bundles of tasks, rather than single tasks, to agents

[102]. Dias & Stentz proposed a mechanism that clusters geographically close tasks

into a forest of minimum spanning trees, which may then be auctioned and potentially

swapped [23]. Heap proposed sequential-single-cluster (ssc) auctions, an extension to

ssi that uses an agglomerative clustering algorithm to create task bundles, which are

then auctioned as in ssi [46]. Liu & Shell [76] develop a hybrid distributed-centralised

approach to MRTA. The task set is first partitioned into subsets that are then solved in

parallel using a centralised assignment algorithm [68].

The problem of algorithm selection and defining criteria for selecting an algorithm

were proposed at least as early as Rice (1976) [98]. Computational or algorithm portfolios

that use domain knowledge to define features of problem instances in order to select an

appropriate algorithm have been investigated by Huberman et al. [49], Gomes & Bart

[41], and Leyton-Brown et al. [75]. Portfolio-based SAT solvers like SATzilla [135]

and Hydra [134] have had success in selecting appropriate heuristics to solve NP-hard

problems.

8.3 Portfolio-based Mechanism Selection

The mechanism selection method proposed here uses a corpus derived from the results

of experimental runs carried out over a range of missions (that is, over a range of spatial

arrangements of task and robot start locations) on a particular map to train a classi-

fier to select a mechanism from a portfolio. Once trained, the classifier should select a

mechanism that will optimise (typically minimise) some performance metric when em-

ployed for a previously unseen mission. The classifier does not make forward predictions

about performance (e.g., the distance the team will travel) during a mission when a

given mechanism is employed, but rather attempts to minimise the regret of choosing

an alternative mechanism that does not perform well. It is possible to make an “offline”

prediction of the best-performing mechanism for a given mission by running a series of

simulations, one per mechanism, and choosing the best among them. However, such a
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Figure 8.1: A complete task graph for the scenario shown in Fig. 8.4a–8.4d. Task
locations are shown as × marks. Locations of medians are indicated small coloured
ovals.

forward prediction method would not be practical in a setting that demands a timely

prediction, especially since a sufficiently high-fidelity simulator must run in real-time,

as discussed in Section 4.7 (p. 47). The portfolio used for experiments presented in

this chapter comprises two mechanisms, the parallel single-item (psi) auction and the

sequential single-item (ssi) auction, and thus the trained classifier is a binary discrimi-

nator. Future work will incorporate the ordered single-item (osi) and round-robin (rr)

mechanisms into the portfolio.

The method works as follows. On a map (shown in Figures 8.1–8.2), a large number

of training missions are generated in which tasks and robot starting locations are ran-

domly chosen from a uniform distribution over the map (detailed in Section 8.4.1). For

each training mission, an experimental run is conducted with both psi and ssi auction

mechanisms. This generates a pair of results with the same starting conditions but dif-

ferent performance outcomes. From these results, a training instance for each mission

is created by recording properties of that mission as training features (Table 8.1) and

the winning mechanism, for some performance metric to optimise, as a label. Finally,

after balancing the training set and selecting features, a (binary) classifier is trained to

predict a winning mechanism. We can now, in previously unseen missions (i.e., task

and robot starting locations), query a classifier at runtime to select a mechanism that

it predicts will perform best in that environment.

8.3.1 Training Features

The features used to train a classifier are based on the locations of medians of a task graph

constructed between task locations (Figure 8.1) and the distances between medians and
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Figure 8.2: The path distance of each robot to its assigned median for clustered (faint)
and distributed (dark) starting locations with the same set of task locations.

robot starting locations (Figure 8.2), where distances are measured from paths planned

between two locations. Robots and tasks are thought of as “facilities” and “demand

nodes”, respectively, as in a facility location problem, and the number of medians p of

a task graph is equal to the size of the team n = |R|.

Three steps are taken before the features can be computed:

1. Constructing a task graph

A path planner1 is invoked to find a path between each pair of task locations. The result

is a complete graph whose nodes represent task locations and edges are paths planned

between them (Figure 8.1). The path planner is invoked O(m2) times, where m = |T | is
the number of tasks in a scenario, at a cost that must be considered when evaluating the

run-time performance of this method. The cost of constructing a task graph in practice

is discussed in Section 8.6.

2. Finding medians

The task graph is represented as a weighted adjacency matrix as input for a median

solver. An implementation of the Teitz-Bart method [120] by Xiao [133] locates p = n

medians of the task graph coincident with task locations.

1The ROS global planner (Chapter 3), the same A* planner used by mechanisms to compute bid costs and
by robots to navigate to task locations.
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3. Assigning medians to robots

Assigning medians to robots is a task allocation problem in itself. Two methods of

assignment are considered:

• Greedy median assignment uses a method similar to the parallel single-item (psi)

auction (Section 4.4), and assigns each median to the robot whose starting location

it is closest to by path distance.

• ssi-median assignment uses a method similar to the sequential single-item auction

(ssi) (Section 4.4).

Examples of ssi-median assignment are shown in Figures 8.2 and 8.4.

The following training features are then computed (summarised in Table 8.1):

• Total distance to assigned medians measures the sum of all robots’ path distances

from their starting locations to their assigned median locations.

• Total distance to all medians measures the sum of all robots’ path distances from

their starting locations to all median locations regardless of median assignments.

• Maximum distance to assigned median measures the maximum path distance of

any one robot from its starting location to its (ssi-)assigned median location.

• Maximum distance to any median measures the maximum path distance of any

robot’s starting location to any median location.

• Minimum distance to assigned median measures the minimum path distance of

any robot from its starting locations to its (ssi-)assigned median location.

• Minimum distance to any median measures the minimum path distance of any

robot from its starting location to any median location.

• Assigned median distance spread measures the difference between the Maximum

distance to assigned median and the Minimum distance to assigned median.

• Total median distance spread measures the path difference between the maximum

distance to any median and the minimum distance to any median.

• Greedy median count spread measures the difference between the maximum number

of medians assigned to any one robot via greedy assignment and the minimum

number of the same.

• Team diameter measures the longest path distance between any two robots.

These features are recorded for each training instance.
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Feature Description

total dist. to assigned medians Sum of all robots’ distances to their (ssi-) as-
signed medians

total dist. to all medians Sum of all robots’ distances to all medians

max. distance to assigned median Max. distance of any robot to its (ssi-)assigned
median

max. distance to any median Max. distance of any robot to any median

min. distance to assigned median Min. distance of any robot to its (ssi-)assigned
median

min. distance to any median Min. distance of any robot to any median

assigned median distance spread max. distance to assigned median − min. dis-
tance to assigned median

total median distance spread max. distance to any median − min. distance to
any median

greedy median count spread max. number of medians greedily (psi-)assigned
to any one robot − min. number of the same

team diameter Longest distance between any two team mem-
bers

Table 8.1: Training features based on task, median, and robot starting locations

8.4 Experiments

I conducted experiments to compare the portfolio-based method of mechanism selection

presented in this chapter (hereafter referred to as sel) to the task allocation mechanisms

studied in previous chapters, with the aim of investigating whether mechanism selection

can improve performance, according to some objective, of a robot team executing its

mission compared to employing the same mechanism alone across a range of missions.

Experiments were conducted in three configurations, described below. Each config-

uration consisted of two stages: a training stage and an evaluation stage that compared

performance on the same set of starting conditions (the locations of tasks and robots).

The experiments were set in an environment in which tasks were single-robot, inde-

pendent, and statically allocated (SR-IT-SA). The size of the robot team was fixed at

n = 3 robots and the number of tasks in each scenario was fixed at m = 16. All experi-

ments were conducted with MRTeAm in Stage simulator on the University of Liverpool’s

Chadwick computing cluster (as described in Chapter 3).

Mechanisms Compared

Performance was compared between three task allocation methods: the parallel single-

item auction (psi), the sequential single-item auction (ssi) and the portfolio-based

method (sel). The sel method was trained so that it could select either psi or ssi
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to carry out task allocation at run time based on the features of the starting conditions

measured at the outset of an experimental trial.

The psi auction was chosen because the allocations it produces have been shown (in

Chapters 5–7 and previous work [106, 108, 110]) to lead to performance that is, by some

metrics, competitive with the best-performing mechanism overall that was studied, the

ssi auction. Additionally, the computation and communication costs of a psi allocation

are lower than for ssi which allows it to scale better with the number of tasks.

Performance Metrics and Objectives

Performance among the three task allocation methods was compared using the metrics

defined in Section 4.6 and used in experiments in previous chapters. Team distance

measures the sum of the lengths of paths travelled by all team members over the course

of an experiment. Maximum robot distance measures the longest distance travelled by

any one robot in the course of an experiment. It gives an indication of how balanced the

load of a mission is across the team for a given allocation. Deliberation time measures the

time taken by an mechanism to allocate tasks to robots. In the case of sel, deliberation

time includes the time taken to build a task graph, compute spatial features, and select

a mechanism from its portfolio. Execution phase time measures how long it takes for

robots to complete their tasks once an allocation has been made. Run time measures

the overall time taken by an experiment, that is, it is the sum of deliberation time and

execution phase time.

Maximum robot distance and execution phase time chosen used as performance

objectives for the sel method.

Experimental Configurations

Three different experimental configurations were investigated:

1. In the maximum distance, random start configuration, the sel method was trained

to minimise the maximum robot distance objective and evaluated against the per-

formance of psi and ssi in missions where task and robot starting locations were

randomly chosen.

2. In the execution time, random start configuration the sel method was trained to

minimise the execution phase time objective and evaluated against the performance

of psi and ssi in missions where task and robot starting locations were randomly

chosen.

3. In the execution time, fixed start configuration the sel method was trained to

minimise the execution phase time objective and evaluated against the performance

of psi and ssi in missions where task locations were randomly chosen but robot

starting locations were fixed in the clustered and distributed configuration used

shown in Figure 8.3 (also used for experiments in Chapter 7).
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Figure 8.3: Robot starting locations for the execution time, fixed start experimental
configuration.

8.4.1 Training

The sel method trains on the results of running a large number of missions in which task

and robot starting locations are randomised (Section 8.3). In the experiments reported

here, training missions, were set on the smARTLab UGV map shown in Figures 8.1–8.3

(also used for experiments in Chapter 7). Locations for both task and robot starting

locations were chosen uniformly randomly with a small buffer distance away from the

walls (and robot starting locations from each other).

1000 training missions were generated. Both of the mechanisms in the sel method’s

portfolio, psi and ssi, were run on each (all in simulation) to produce a training instance

for each of the performance objectives tested (maximum robot distance and execution

phase time), for a total of 1000 × {psi, ssi} = 2000 runs, producing 1000 labelled

training examples.

8.4.2 Mechanism Selection Evaluation

Test missions with randomised task locations were used to compare performance of

the three task allocation methods (psi, ssi, and sel) in each of the three experimental

configurations:

1. For the maximum distance, random start experimental configuration, 300 test

missions were generated with random robot starting locations. The three task

allocation methods to be compared were run on each test mission for a total of

300 × {psi|ssi|sel} = 900 experimental runs.

2. For the execution time, random start configuration, 300 test missions were gen-

erated with random robot starting locations. The three task allocation methods

were run on each test mission for a total of

300 × {psi, ssi|sel} = 900 experimental runs.
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Metric PSI Wins % SSI Wins %

maximum robot distance 85 9.28 831 90.72
execution phase time 118 12.88 798 87.12

Table 8.2: “Winners” of objectives in the class-unbalanced training set

3. For the execution time, fixed start configuration, 150 test missions were generated

for each of the clustered and distributed starting configurations. The three task

allocation methods were run on each test mission for a total of

150 × {clustered,distributed} × {psi|ssi|sel} = 900 experimental runs.

In total, 2700 experimental runs were conducted on test missions across the three

experimental configurations.

8.5 Results

Results from three stages of the experiments are presented. First, some properties of

the test missions that served as training data for classifiers are discussed. Second,

classifier accuracy is shown on held-out portions of the training data. Finally, the

ultimate results of the three task allocation mechanisms applied to previously unseen

missions are compared.

8.5.1 Training Data

Training Missions

Of the 1000 training missions generated, only 916 {psi|ssi} pairs of runs were success-

fully completed due to run failures. A run failure was typically due either to a software

crash or a failure of the ROS navigation stack to avoid an obstacle (like a wall), resulting

a robot becoming “stuck” to the obstacle. In such cases of navigation failure, the run

was terminated after 15 minutes of time had elapsed. In general, ssi dominated perfor-

mance on the training missions, producing allocations that led to both lower maximum

robot distances (831/916 = 91%) and lower execution phase times (798/916 = 87%)

than psi (Table 8.2). These results demonstrate the effectiveness of ssi at producing

efficient allocations—at least compared to those produced by psi—even for performance

objectives other than ones it was designed to optimise (team distance, or MiniMax).

Table 8.3 gives the mean performance values observed for the two performance ob-

jectives that resulted from allocations produced by psi, ssi and compares them with

an ideal mechanism selector (an “oracle”) able to predict with perfect accuracy which

of psi or ssi allocations would yield better performance on the same training mission.

An ideal selector would be able to perform slightly better than ssi on both objectives

(although it would be difficult to perform significantly better for the range of task and

robot starting locations observed in the training missions).
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PSI SSI Ideal sel

Metric µ σ µ σ µ σ

maximum robot distance 20.97 5.89 13.08 1.696 12.96 1.704
execution phase time 327.26 88.13 232.756 49.01 226.68 40.69

Table 8.3: psi and ssi performance compared to an “ideal” mechanism selector on
the training missions.

Training Instances

Training instances were created by recording properties of each training mission as fea-

tures (Section 8.3.1) and the winning mechanism as a label, for each of the {maximum

robot distance|execution phase time} performance objectives.

Figure 8.4 visualizes some of the features recorded from two hypothetical training

missions that share the task locations but have different robot starting locations. The

figure shows assignments of robots to medians as dotted lines. Figures 8.5a and 8.5b

visualise training instances in for execution phase time objective. In each figure, red and

blue samples indicate instances in which ssi and psi, respectively, had a lower execution

phase time.

8.5.2 Classifier Performance

Initially, the training sets had a severe class imbalance. In the training set for the

maximum robot distance objective, for example, ssi was the winning mechanism in 831

cases compared to psi’s count of 85. The training sets were balanced using a random

undersampling method [74], although other methods are possible. Figures 8.5a and

8.5b show instances of a training set before and after balancing. The scikit-learn [94]

library was used to select features and train classifiers. Several types of classifier were

evaluated, including decision trees,2 k-nearest neighbours,3 random forests,4 and support

vector machines.5 Table 8.4 shows the average accuracy of some of these classifiers on

held-out data over 10-fold cross validation. Parameters of the classifiers were tuned

using an exhaustive grid search.6

As a result of these experiments, the random forest classifier was selected for the

remainder of the work presented here. The features selected for the random forest clas-

sifier trained to optimise the execution phase time objective were: {maximum distance

to assigned median, assigned median distance spread, team diameter, and greedy median

count spread}. Features selected for the random forest classifier trained to optimise the

2
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

3
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

4
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

5
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

6http://scikit-learn.org/stable/modules/grid_search.html

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/grid_search.html
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(a) ssi, max. robot dist. loser (b) psi, max. robot dist. winner

(c) ssi, max. robot dist. winner (d) psi, max. robot dist. loser

Figure 8.4: Trajectories and median assignments for two sets of random start, random
task location environments. Note the different robot start locations between the top
and bottom rows. Robot start locations are shown as large open coloured squares, task
locations are shown as × marks, medians are shown as small closed coloured squares,
and assignments of medians to robots are shown as dotted lines. (a) and (b) show a
mission for which the psi allocation led to a smaller maximum robot distance. (c) and
(d) show a mission for which an ssi allocation led to a smaller maximum robot distance.
In (a), the green robot’s start location and its assigned median are close together and
the line between them is barely visible.

Classifier Type Objective Accuracy Std. Dev

Random Forest Execution Phase Time 75.22% 0.91%
SVM Execution Phase Time 74.55% 1.00%
Random Forest Max. Robot Distance 80.88% 1.26%
SVM Max. Robot Distance 76.80% 1.20%

Table 8.4: Accuracy of several classifiers trained for different performance objectives.

maximum robot distance objective were: {total distance to all medians, maximum dis-

tance to any median, team diameter, and greedy median count spread}. Other technical

details of the random forest classifier are discussed in Appendix C (p. 141).
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Figure 8.5: Training features maximum distance to any median by team diameter in
a class-unbalanced (left) and class-balanced (right) training set. Red and blue samples
indicate where ssi and psi performed best, respectively.

Max. Robot Distance Deliberation Time Run Time

SSI 13.18 ± 0.18 32.92 ± 0.11 270.24 ± 5.34

PSI 21.01 ± 0.59 3.24 ± 0.03 333.21 ± 8.49
SEL 19.19 ± 0.51 35.6 ± 1.38 340.71 ± 7.63

Table 8.5: Results for the maximum distance, random start experimental configura-
tion. Units are metres. Values are means with 95% confidence intervals.

Run time Deliberation time Execution time

SSI 270.64 ± 5.82 32.95 ± 0.11 235.74 ± 5.83

PSI 326.36 ± 8.87 3.23 ± 0.03 321.19 ± 8.87
SEL 347.89 ± 8.67 33.57 ± 1.06 312.37 ± 8.28

Table 8.6: Results for the execution time, random start experimental configuration.
Time is in seconds. The values given are means with 95% confidence intervals.

8.5.3 Mechanism Selection Results

Having trained a classifier for each of the two performance objectives, we then used

them in experiments to see if the sel method, which uses initial locations of tasks and

robots to pick an allocation mechanism using these classifiers, could outperform either

ssi or psi alone (i.e., as the only task allocation available in the system). Any runs that

failed to complete were repeated so that results from the full set of 900 runs for each

experimental configuration were collected. The results of these experiments are given in

Tables 8.5–8.7 and Figures 8.6–8.10.

Results from the three experimental configurations are discussed in turn.
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Run time Deliberation time Execution time

Clustered SSI 353.89 ± 11.37 33.02 ± 0.21 318.92 ± 11.37

PSI 555.4 ± 11.22 3.38 ± 0.04 550.08 ± 11.22
SEL 391.73 ± 14.34 58.2 ± 1.31 331.58 ± 14.84

Distributed SSI 273.47 ± 12.88 32.82 ± 0.18 238.71 ± 12.84
PSI 197.92 ± 5.08 3.52 ± 0.02 192.46 ± 5.07
SEL 222.55 ± 5.55 27.23 ± 0.86 193.38 ± 5.25

Combined SSI 309.81 ± 10.07 32.91 ± 0.14 274.95 ± 10.04
PSI 313.96 ± 24.46 3.47 ± 0.02 308.54 ± 24.47
SEL 294.43 ± 12.79 40.39 ± 2.11 252.1 ± 11.23

Table 8.7: Results for the execution time, fixed start experimental configuration, with
starting locations shown separately and combined. Time is in seconds. The values given
are means with 95% confidence intervals.
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Figure 8.6: Maximum robot distance for the maximum distance, random start exper-
imental configuration. Units are seconds.

Maximum distance, random start

Results for the maximum distance, random start experimental configuration are shown in

Table 8.5 and Figure 8.6. The sel method did not outperform ssi in terms of maximum

robot distance. ssi allocations led to significantly lower maximum robot distances on

average (13.18 metres) than both sel (19.19 metres) and psi (21.01 metres). The average

maximum robot distance produced by sel allocations was slightly lower than that of

psi, but significantly so (t = 4.59, p = 5.195).

In addition, sel’s deliberation time was significantly higher than that of ssi or psi

since it constructs a task graph as part of its selection process (Section 8.3.1), and this

led to higher run times than the other two mechanisms.

Execution time, random start

Results for the execution time, random start experimental configuration are shown in

Table 8.6 and Figure 8.7. Similar to the results found in the maximum distance, ran-

dom start experimental configuration, the sel method did not outperform ssi in terms
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Figure 8.7: Execution phase time (8.7a), deliberation time (8.7b), and run time (8.7c)
for the execution time, random start experiments. Units are seconds.

of average execution phase time when robot start locations were randomised. ssi al-

locations led to significantly lower execution phase times on average (235.74 seconds)

than both sel (312.37 seconds) and psi (321.19 seconds). The average execution phase

time produced by sel allocations was slightly, but significantly lower than that of psi

(t = 1.43, p = 0.15). In terms of deliberation time, sel’s task graph was again costly

enough to compute that it led to the highest run times of any mechanism tested (Figure

8.7c).

Execution time, fixed start

Results for the execution time, fixed start experimental configuration are shown in Ta-

ble 8.7 and Figures 8.8–8.10. With clustered starting locations, sel allocations led to

an average execution phase time (331.58 seconds) only slightly higher than the best-

performing mechanism, ssi (318.92 seconds) and far lower than psi (550.08 seconds).

With distributed starting locations, sel allocations led to an average execution phase

time (193.38 seconds) that was not significantly higher than the best-performing mech-

anism, psi (192.46 seconds) and was significantly lower than ssi (238.71 seconds).

When results for missions with clustered and distributed starting locations are com-

bined, sel allocations led to average execution phase times (252.1 seconds) that were
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Figure 8.8: Execution phase time for clustered starts (8.8a), distributed starts (8.8b),
and the combination of clustered and distributed starts (8.8c) for the execution time,
fixed start experimental configuration. Units are seconds.

significantly lower than either psi (308.54 seconds) or ssi (274.95 seconds) (t = 2.99, p =

0.0029). In addition, while the cost of computing sel’s task graph made its average de-

liberation time (40.39 seconds) the highest of the three methods, its low execution time

led to an average run time (294.43 seconds) that was significantly lower than either psi

(313.96 seconds) or ssi (309.81 seconds).

8.6 Discussion

Over the three experimental configurations, performance of the sel method was mixed.

The ssi auction mechanism showed its effectiveness at producing efficient allocations

[58, 70] across a range of missions and performance objectives. The sel method did

not outperform psi or ssi in the maximum robot distance or execution, random start

experimental configurations, but did show significant improvement over the other mech-

anisms in the execution, fixed start configuration when the results for the clustered and

distributed starting locations were combined.

The robot starting locations of the execution, fixed start configuration were manually

chosen based on the results of previous experiments (Chapters 5 and 6), where it was

observed that the performance advantages of the ssi auction over other mechanisms
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Figure 8.9: Deliberation time for clustered starts (8.9a), distributed starts (8.9b),
and the combination of clustered and distributed starts (8.9c) for the execution time,
fixed start experimental configuration. Units are seconds.

like psi diminished, or even disappeared, when robot starting locations were spread out

(“distributed”) to the corners of the map. In such cases, it might be preferable to employ

a simpler mechanism such as psi, which has its own advantage of lower computational

and communication costs. Experimental results for the sel method presented here

show that, at least under the fixed start conditions, a method that selects a mechanism

from a portfolio by examining spatial features of an environment before conducting an

allocation can increase performance over using a single mechanism alone. It should be

noted that the sel method was trained on missions in which robot starting locations

were randomised, so the results of the execution, fixed start experimental configuration

do not test performance on training data.

The sel method proposed here has several drawbacks. First, it did not lead to

significantly improved performance in general in the missions tested here when robot

starting locations were chosen randomly. This suggests that the spatial features used to

train its classifiers, based on the medians of a graph constructed between task locations,

may not capture

Second, the sel method requires a large amount of historical data to train its clas-

sifiers, data which may not be available for missions that involve exploring unknown

environments. Finally, the cost of classifying an environment incorrectly and selecting
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Figure 8.10: Run time for clustered starts (8.10a), distributed starts (8.10b), and
the combination of clustered and distributed starts (8.10c) for the execution time, fixed
start experimental configuration. Units are seconds.

an ineffective mechanism may be high. The cost of constructing a task graph scales

quadratically with the number of tasks in a mission (O(m2)), and this can be seen in

the results for deliberation time across all three experimental configurations.

8.7 Summary

This chapter has presented a method for selecting a task allocation mechanism from

among a portfolio of available mechanisms by examining spatial features of a mission

before an allocation is conducted. Experimental results show that this method can lead

to significantly increased performance for a performance objective under certain starting

conditions of a mission.



Chapter 9

Conclusions and Future Work

This thesis has investigated the use of market-based mechanisms for multi-robot task

allocation with the aim of discovering how the performance of mechanisms varies when

they are employed in different kinds of environments. Performance is evaluated with

a number of metrics that measure resource usage of a robot team as it executes a

mission as well as the costs of conducting allocations themselves, with the intention of

understanding the trade-offs that are made between the cost and solution quality of an

allocation. The investigation has been primarily experimental, conducted on physical

robots when possible and in high fidelity simulations otherwise. The principal results of

the investigation show that while the theoretical performance guarantees of mechanisms

are sometimes supported empirically, factors such as spatial arrangements of tasks and

inter-robot interference can complicate predictions of performance.

A long term goal is to determine the suitability of mechanisms to particular envi-

ronments. The experimental investigation presented in Chapters 5–7 shows that, given

a number of task allocation mechanisms to choose from, a single mechanism may not

perform best across all task environments. This thesis proposes a task allocation method

that examines features of an environment to select a mechanism, from a number of op-

tions, that will perform best in that environment (Chapter 8). Experimental results

show that, under certain circumstances, this method can lead to significantly greater

performance than employing a single mechanism alone.

9.1 Summary of contributions

1. An experimental software framework (Chapter 3)

MRTeAm1 is an implementation of a multi-robot system designed to conduct ex-

perimental investigations of multi-robot mission performance. It is used to conduct

experiments on both physical and simulated robots with minimal modification to

the behaviour between the two. MRTeAm can perform routing missions with tasks

that require multiple robots, tasks that have precedence-ordering constraints, and

tasks that arrive over time. As part of MRTeAm, I have also developed the ROS

1http://github.com/nitsuga/mrta
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Master Bridge, an extension of the Robot Operating System (ROS) [96] commu-

nication framework that enables multi-robot communication. MRTeAm has been

used to conduct the experiments presented in Chapters 6–8.

2. Rich Performance metrics (Chapter 4)

Metrics often used to measure the performance of a multi-robot routing mission are

the distance travelled by the robot team over the course of a mission and the time

taken to reach task locations. Sometimes overlooked is the cost of computing an

allocation itself, an important factor when considering the scalability of missions

and teams. Inter-robot interference due to the need to avoid collisions can hamper

robots’ execution of a mission and confound predictions of performance based on

allocations alone. The time robots spend idle while team mates execute tasks is

also a measure of inefficiency of the team. This thesis defines a set of metrics that

measure these factors and tell a much richer story about the performance of a

mission than commonly used metrics can.

3. An empirical investigation of task environments (Chapter 5–8)

This thesis has presented a set of multi-robot routing experiments conducted in

a series of increasingly complex task environments, with the aim of discovering

how theoretical guarantees of mission performance, based on allocations alone, are

borne out in practice. Experiments with a team of autonomous robots reveal how

confounding factors, like inter-robot interference and the need to re-plan during

task execution, can complicate performance expectations. The experiments also

reveal how spatial and temporal arrangements of tasks can diminish the perfor-

mance advantages of some task allocation mechanisms compared to others, and

suggest that, under certain conditions, it may be possible to employ simple allo-

cation mechanisms with low computational and communication costs to achieve

competitive performance with more sophisticated allocation algorithms.

4. A method of mechanism selection (Chapter 8)

I have developed a data-driven method of selecting a task allocation mechanism

from among several options based on reading the arrangements of tasks and robots

at the beginning of a mission. The method was inspired by the results of the em-

pirical investigation mentioned above which suggest that, under certain conditions,

it may be possible to employ a low cost task allocation mechanism that achieves

performance that is competitive with, or better than, a more expensive alternative.

Experiments show that selecting a task allocation mechanism using this method

can significantly improve the performance of a robot team executing its mission

compared to using any single mechanism in the portfolio.

The greater part of effort was spent developing the software infrastructure and work

flow that made experimental investigation possible. I spent about a year developing

MRTeAm to work with both simulated and physical robots and about half a year adapt-

ing its simulations to work on a high performance compute cluster (HPCC). The ability
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to run large numbers of simulations in parallel was vital for producing the large numbers

of training data required by the mechanism selection method discussed in Chapter 8.

9.2 Discussion

The experiments presented in this thesis employed the same four task allocation mech-

anisms (Section 4.4) in missions set in a series of increasingly complex environments.

The aim of the experiments was to understand factors that arise during execution of a

mission and that affect performance in ways that might not be apparent at the time an

allocation is made. The four mechanisms make different trade-offs between the quality

of the solutions they provide and the costs of computing them. The round-robin (rr)

mechanism is trivial to compute but produces arbitrarily poor allocations. The parallel

single-item (psi) auction is a simple, “greedy” algorithm that is inexpensive to compute,

but can also produce arbitrarily poor allocations [58]. The ordered single-item (osi)

auction can take some inter-task synergies into account, but is strongly affected by the

order in which tasks are auctioned [46]. The sequential-single item auction (ssi) has been

proven to produce allocations that are close to optimal for some performance objectives

[58], but carries the highest cost to compute its allocations.

Chapter 5 compared the performance of these mechanisms in a simple environment

in which tasks were statically allocated and could be executed independently by single

robots (SR-IT-SA). Experimental results show that ssi was indeed effective at produc-

ing efficient allocations that generally led to the best performance in practice, by most

metrics. But an interesting result was observed when the starting locations of robots

were spread out over the map (“distributed”), and the differences among the four mech-

anisms was diminished in terms of the time taken to execute the mission. The results of

experiments in Chapter 6 showed that when the appearance of tasks was distributed over

time (SR-IT-DA), the performance differences among three of the mechanisms dimin-

ished even further. In particular, the performance of psi allocations during execution

was indistinguishable from that of ssi while being much less expensive to compute.

The experiments in Chapter 7, designed to determine if relative performance rankings

of mechanisms would hold when the mechanisms were employed across different task

environments (SR/MR-IT/CT-DA), showed that factors like multi-robot coordination

and honouring precedence-ordering of tasks during mission execution made predictions

of performance outcomes based on the expected efficiency of allocations alone difficult

or impossible to confirm.

The method of mechanism selection presented in Chapter 8 was developed based

on these results, especially those presented in Chapters 5 and 6. It was motivated

by the idea that it might be possible to identify environments in which an inexpensive

mechanism (like psi) produces allocations that are competitive with a more sophisticated

mechanism (like ssi) a priori, before actually conducting an allocation. The results of

the method proposed in Chapter 8 are a proof of concept of this methodology and show
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that, in certain settings, mechanism selection can improve performance as compared to

employing any one single mechanism alone.

9.3 Future work

The work presented in this thesis falls into two broad categories. The first is a com-

parative evaluation of task allocation mechanisms in practice as they are employed in

different environments (Chapters 5–7). The second, mechanism selection (Chapter 8),

attempts to exploit the results of the evaluation to choose a mechanism suited to the en-

vironment at hand from a number of options. The following sections suggest directions

for future work in each category.

9.3.1 Evaluation

One natural direction of investigation is to increase the sizes of both the team and

the missions they carry out and examine how scaling each affects both the costs of

conducting allocations and the performance of executing missions in practice. There are

practical limits to the number of robots that can be fielded in physical experiments, but

larger scale experiments can be carried out in simulation. It would also be interesting

to see if observations made on one map carry over (or not) to different maps, including

randomly generated ones.

Other mechanisms should also be investigated. In particular, a benchmark of (pre-

dicted) optimal performance would provide a basis of comparison for other mechanisms

that make trade-offs between solution quality and cost. A combinatorial auction mech-

anism can generate provably optimal allocations for different performance objectives by

changing its winner determination function, although it may have problems scaling up

with mission or team sizes. Besides a “benchmark” mechanism, the various extensions to

ssi (lookaheads, bundle-bids [140], regret-clearing [139], or sequential single-cluster ssc

auctions [46]), which each make different trade-offs to improve solution quality, would

be interesting to investigate.

Collection and delivery tasks have clear applications for public and commercial trans-

portation scheduling and warehouse automation, but have received little attention re-

searchers of market-based MRTA (with some exceptions [47]). As autonomous vehicles

become commonplace, this will be an exciting and perhaps important class of problem

to investigate.

9.3.2 Mechanism Selection

A natural next step is to train and evaluate the performance of the mechanism selection

method (sel) in the multi-robot, constrained (MR-CT-DA) task environments investi-

gated in Chapter 8, where it was observed that predictions about mission performance

were difficult to make based on the efficiency of allocations alone.
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The complete task graph used by sel is expensive to compute, and run-time per-

formance can be improved by constructing a more sparse, but still connected graph.

The features used to train the sel method were devised manually and may not have

represented the properties of robot starting locations in relation to medians well enough

to characterise task environments. A more principled (or automated) approach of de-

veloping training features might improve its classification performance. Features based

on metrics of the task graph other than its medians may also help discriminate between

environments better.

It would also be interesting to expand the portfolio of mechanisms that the sel

method can choose from to include the other two mechanisms investigated in this the-

sis, rr and osi, as well as other methods like a combinatorial auction mechanism and

extensions to the ssi mechanism discussed in Section 2.3.1.

9.4 Summary

The work presented in this thesis has focused on the relationship between auction-

based task allocation mechanisms and properties of task environments, with the goal

of developing a method of selecting, from a portfolio of options, a mechanism that is

appropriate for a given task environment. The first part of this work was an empirical

performance evaluation of a range of mechanisms employed in a series of environments

of increasing complexity. The second part of this work used results from the evaluation

to develop and train a data-driven method of mechanism selection using properties of

environments that can be measured at the start of a mission. The results show that,

under certain conditions, this method of mechanism selection can lead to significant

performance improvements compared to using a single mechanism alone.
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Appendix A

Additional Results

A.1 SR-IT-SA

A.1.1 Experiment and results

An experiment similar to those discussed in Chapter 5 was conducted using the scenario

and 2 starting configurations shown in Figures A.1–A.2. The experiment was conducted

with MRTeAm using the Stage simulator (Section 3.6).

The four task allocation mechanisms discussed in Section 4.4 were employed in each

of 2 missions with 15 trials for each combination, for a total of 120 experimental trials:

2missions = (2 starting configurations × 1 scenario)

×4 allocation mechanisms × 15 trials

The results are presented in the figures below.

Table A.1 shows mean values of metrics over 15 runs of each experimental configu-

ration. The metrics discussed in Chapter 5 are presented followed by plots of robots’

trajectories and timelines. Note that the implementation of ssi (Algorithm 3) used

in the experiment presented here does attempt to optimise the MiniSum objective of

an allocation using a task insertion heuristic during bid computation, as discussed in

Section 4.4.

One point made in Section 5.4 can be corroborated by the results presented here. In

the case of clustered start locations, osi leads to significantly lower run times and team

distances than ssi. This seems to be due to inter-robot interference seen in the higher

number of near collisions and associated delay time in ssi allocations as compared to

osi (note the delay time of Robot 2 in Figure A.7). Another factor is scalability. Bid

computation for both osi and ssi is more expensive in MRTeAm than HRTeam due to

the task insertion heuristic it uses. The rr and psi mechanisms do not calculate task

insertion, and this difference can be seen in comparisons of deliberation time.
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Figure A.2: Starting locations of robots, clustered (left) and distributed (right)

A.1.2 SR-IT-SA Results
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Distance Run time Delib. time Delay time

Clustered RR 37.8 ± 0.38 184.39 ± 2.14 0.0113 ± 0.0011 17.47 ± 3.72

OSI 33.58 ± 0.28 167.92 ± 3.81 8.51 ± 0.1 19.67 ± 3.29
SSI 37.84 ± 0.61 210.0 ± 5.18 10.2 ± 0.08 44.69 ± 9.49
PSI 31.99 ± 0.32 322.06 ± 2.77 3.12 ± 0.06 8.57 ± 1.65

Distributed RR 35.12 ± 0.08 153.06 ± 1.85 0.0104 ± 0.0018 35.15 ± 1.62
OSI 19.99 ± 0.06 103.61 ± 0.88 8.22 ± 0.06 0.0 ± 0.0
SSI 18.64 ± 0.05 123.47 ± 1.01 10.23 ± 0.07 0.0 ± 0.0
PSI 20.07 ± 0.1 99.61 ± 0.99 3.21 ± 0.05 0.0 ± 0.0

Table A.1: Metrics for the SR-IT-SA scenario shown in Figure A.1

Metrics for the SR-IT-SA scenario shown in Figure A.1. The values given are means
with 95% confidence intervals.
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Figure A.3: Robot trajectories for rr, clustered starting locations
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Figure A.4: Robot trajectories for rr, distributed starting locations
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Figure A.5: Robot trajectories for osi, clustered starting locations
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Figure A.6: Robot trajectories for osi, distributed starting locations
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Figure A.7: Robot trajectories for ssi, clustered starting locations
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Figure A.8: Robot trajectories for ssi, distributed starting locations
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Figure A.9: Robot trajectories for psi, clustered starting locations
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Figure A.10: Robot trajectories for psi, distributed starting locations
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Figure A.11: An SR-IT-DA scenario
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Figure A.12: Starting locations of robots, clustered (left) and distributed (right)

A.2 SR-IT-DA

A.2.1 Experiment and results

An experiment similar to those discussed in Chapter 6 was conducted using the scenario

and start locations shown in Figures A.11–A.12. The scenario is dynamic (SR-IT-DA)

and is not compared with a static counterpart (SR-IT-SA). The experiment was con-

ducted with MRTeAm on physical robots and the results are presented in the figures

below. The results show mean values of metrics over 3 runs of each experimental con-

figuration. Although the number of runs was small, the results are similar those those

in Chapter 6, showing that in a dynamic scenario (SR-IT-DA), the performance advan-

tages of ssi over psi are diminished, particularly when robots started from the distributed

starting locations.
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Distance Run time Delib. time Delay time

Clustered RR 37.2 ± 14.52 231.97 ± 67.83 0.0383 ± 0.0034 58.53 ± 44.58

OSI 31.25 ± 10.46 178.62 ± 11.19 19.31 ± 0.11 24.3 ± 14.88
SSI 30.78 ± 4.21 171.36 ± 11.89 19.86 ± 0.14 22.8 ± 0.25
PSI 23.72 ± 1.21 250.09 ± 58.34 8.58 ± 0.38 0.0 ± 0.0

Distributed RR 43.37 ± 1.95 268.52 ± 46.18 0.0378 ± 0.0019 91.2 ± 30.43
OSI 18.71 ± 0.25 180.28 ± 17.25 15.01 ± 0.9 0.0 ± 0.0
SSI 16.95 ± 7.24 176.98 ± 3.72 15.81 ± 0.38 0.0 ± 0.0
PSI 18.33 ± 0.34 166.28 ± 1.8 9.25 ± 0.62 0.0 ± 0.0

Table A.2: Metrics for the SR-IT-DA scenario shown in Figure A.11

Metrics for the SR-IT-DA scenario shown in Figure A.11. The values given are means
with 95% confidence intervals.

A.2.2 SR-IT-DA Results
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Figure A.13: Timelines showing robot activity in a single trial of a SR-IT-DA scenario
for clustered start locations.
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Figure A.14: Timelines showing robot activity in a single trial of a SR-IT-DA scenario
for distributed start locations.





Appendix B

System Architecture

B.1 Components (state machines)

B.1.1 Robot Controller

The robot controller’s state machine is shown in Figure B.2.

B.1.2 Auctioneer

The auctioneer’s state machine is shown in Figure B.3.

B.1.3 Task Representation

Listing 1 Task Description format

- task_id: <string>

type: SENSOR_SWEEP

location:

x: <float>

y: <float>

arrival_time: <float>

num_robots: <int>

duration: <float>

depends: [<list of strings>]

B.2 Message definitions
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Figure B.1: A ROS computation graph of nodes and communication links in a
MRTeAm experiment. Robot controllers are shaded blue. The auctioneer is shaded
red. Message topics used to communicate about tasks during deliberation and task
execution are shaded in yellow.

Listing 2 Task message definition

string task_id # Unique task identifier

string[] depends # Ids of other tasks that must be completed first

string type # Currently just ’SENSOR_SWEEP’

uint8 num_robots # Number of robots needed to complete this task

float32 duration # Time (in seconds) required to ’execute’ the task

float32 arrival_time # Time (in seconds) at which the task ’arrives’

# after start of experiment
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Figure B.2: State machine that controls a robot controller agent’s behaviour.
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Figure B.3: State machine that controls the auctioneer agent’s behaviour.
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Listing 3 SensorSweepTask message definition

Task task # See Task.msg

geometry_msgs/Point location # Location in which to perform the sweep

Listing 4 AnnounceSensorSweep message definition

std_msgs/Header header # Message header

string mechanism # Robots need to know this in order to know how

# to bid

SensorSweepTask[] tasks # Tasks to announce. A list lets us announce

# bundles of tasks.

Listing 5 TaskBid message definition

std_msgs/Header header # Message header

string[] task_ids # Unique task identifier(s)

string robot_id # Unique id/name of the bidding robot

float64 bid # Cost to complete the task (e.g., distance)

Listing 6 TaskAward message definition

std_msgs/Header header # Message header

string robot_id # Unique id/name of the robot being awarded

SensorSweepTask[] tasks # The tasks to be awarded

Listing 7 TaskStatus message definition

std_msgs/Header header # Message header

string robot_id # Unique robot identifier

string task_id # Unique task identifier

uint8 status

uint8 MOVING = 0 # Robot has begun to travel toward the task

uint8 PAUSE = 1 # Paused (e.g., to avoid a collision)

uint8 RESUME = 2 # Resuming from a PAUSE

uint8 ARRIVED = 3 # Robot has arrived at the task site

uint8 BEGIN = 4 # Robot has begun executing the task

uint8 SUCCESS = 5 # Task successfully executed

uint8 FAILURE = 6 # Task failed

uint8 ALL_TASKS_COMPLETE = 7 # All tasks have been completed

uint8 AGENDA_CLEARED = 8 # This robot’s agenda has been cleared

uint8 ABANDONED = 9 # Gave up on moving toward this task



Appendix C

Classifier Details

This appendix provides some technical details about the classifier trained and used for

the mechanism selection method discussed in Chapter 8.

The random forest classifier1 is an ensemble classifier that comprises a set of decision

trees. Each tree in the ensemble is constructed from a random sample drawn (with

replacement) from a set of labelled training instances. Each internal node of a tree

splits its child nodes by finding values of the training feature (from a random sample

of training features) that group the sample of training instances into the most inequal

class distributions (i.e., with the highest Gini coefficient [38]). When the random forest

classifier is run, the class label selected by the greatest number of trees in the forest is

returned.

Optimal parameters for the random forest classifier were found using an exhaustive

grid search2 and are given in table C.1.

1
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

2
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Parameter Description Value

n estimators The number of trees in the forest 50

criterion Function to measure quality of a split Gini

max features Number of features to consider when looking for
the best split

sqrt(n features)

max depth Maximum depth of a tree None

min samples split Minimum number of samples required to split
an internal node

3

min samples leaf Minimum number of samples required to be at
a leaf node

10

bootstrap Whether bootstrap samples are used when
building trees

False

Table C.1: Parameters of the random forest classifier evaluated in Chapter 8.
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[34] Brian P Gerkey and Maja J Matarić, Murdoch: Publish/subscribe task allocation

for heterogeneous agents, Proceedings of the fourth international conference on

Autonomous agents, ACM, 2000, pp. 203–204.

[35] Brian P Gerkey and Maja J Mataric, Sold!: Auction methods for multirobot co-

ordination, Robotics and Automation, IEEE Transactions on 18 (2002), no. 5,

758–768.
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