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Abstract

Mobility is an element that is highly related to the development of society and the quality of
individual life. Through mass of automobile production and traffic infrastructure construction,
advanced countries have reached a high degree of individual mobility. In order to increase the
efficiency, convenience and safety of mobility, advanced traffic infrastructure construction,
transportation systems and automobiles should be developed.

Among all the systems for modern automobiles, cameras based assistance systems are
one of the most important components. Recently, with the development of driver assistance
systems and autonomous cars, detection and recognition of traffic scene objects based on
computer vision become more and more indispensable. On the other hand, the deep learning
methods, in particular convolutional neural networks have achieved excellent performance
in a variety of computer vision tasks. This thesis mainly presents the contributions to the
computer vision and deep learning methods for traffic scene objects detection and recognition.

The first approach develops numbers of methods for traffic sign detection and recognition.
For traffic sign detection, template matching is applied with new features extended from
chain code. Moreover, the region based convolutional neural networks are applied for
detecting traffic signs painted on road surface. For traffic sign recognition, convolutional
neural networks with a variety of architectures are trained with different training algorithms.

The second approach focuses on the detection related to traffic text. A novel license plate
detection framework is developed that is able to improve detection performance by simultane-
ously completing detection and segmentation. Due to the larger number and complex layout
of Chinese characters, Chinese traffic text detection faces more challenges than English text
detection. Therefore, Chinese traffic texts are detected by applying convolutional neural
networks and directed acyclic graph.

The final approach develops a method for pedestrian attribute classification. Generally,
there are irrelevant elements included in features of convolutional neural networks. In order
to improve classification performance, a novel feature selection algorithm is developed to
refine features of convolutional neural networks.
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Chapter 1

Introduction

1.1 Motivation

Mobility is an element that is highly related to the development of society and the quality of
individual life. It is the backbone of commercial trading and services, and therefore, the basis
for developing economy. Through mass of automobile production and traffic infrastructure
construction, advanced countries have reached a high degree of individual mobility. [2]
However, the development of mobility also faces adverse effects. The mass mobilisation costs
a great quantity of resource on the production, provision and maintenance of automobiles.
The noise and exhaust pollution caused by automobiles also become more and more serious.
Moreover, frequent traffic congestion reduces traffic efficiency, and traffic incidents cause
personal safety risk.

In order to increase the efficiency, convenience and safety of mobility: for environment,
better traffic infrastructure construction and Intelligent Transportation System (ITS) should be
provided [3]; for automobile, more reliable automobile design and more powerful Advanced
Driver Assistance Systems (ADAS) should be developed [2–6]; for driver, better human-
automobile systems should be focused, and autonomous cars in the future [7].

Among all the systems for modern automobiles, systems based on cameras and computer
vision are one of the most important components. The applications of computer vision can
be traced to very early in 1990s, the researchers tried to develop camera-based systems for
autonomous mobile robots and autonomous driving. [8–10] Several comprehensive surveys
of the applications of computer vision in intelligent vehicles are presented in [11] and [12],
the applications such as lane, pedestrian, and obstacle detection are described and analysed.
At the same time, computer vision for enhancing the safety of automobiles are also discussed
in [13, 14].
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Recently, with the development of ADAS and autonomous cars, detection and recognition
of traffic scene objects from images captured by vehicle mounted cameras based on computer
vision become more and more indispensable. [13, 4, 3, 5, 15, 7, 6, 16, 17] The existing works
have focused on traffic sign recognition [18–23], vehicle detection [6], pedestrian detection
[5, 15], road layout detection [16] and road marking detection [4]. On the other hand, the deep
learning [24–28] has attracted much attention in computer vision and machine learning area.
In particular, Convolutional Neural Network (CNN)s have achieved outstanding performance
due to the generalisation ability and learning capacity, therefore, CNNs have been widely
used in various computer vision tasks, such as image recognition [29–32] and object detection
[33–36].

This research has been conducted with the following objectives.

(i) To evaluate and apply the existing computer vision methods including image process-
ing, feature extraction and machine learning for traffic scene objects detection and
recognition.

(ii) To evaluate and apply the existing deep learning methods, in particular CNNs for traffic
scene objects detection and recognition.

(iii) To develop new algorithms for training of CNNs. The research should be focused on
new network layers and architectures for improving performance such as training speed,
generalisation ability and computational cost.

(iv) To apply developed algorithms for traffic scene objects detection and recognition.
Traffic scene objects like text and pedestrian have complex appearance, in order to
detect and recognise them with high accuracy, CNNs should be applied with different
training strategies.

1.2 Thesis Organisation

In order to present a legible introduction of this research, the relationships of the chapters are
summarised in Fig. 1.1. The thesis has been divided into ten chapters, which are listed as
follows:

Chapter 1 describes the motivation, organisation, contributions and publications of the
thesis.

Chapter 2 presents an overview of the research domain. The basic computer vision
methods are firstly presented. Then, the particular topics that have been focused in this thesis
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are reviewed, including Traffic Sign Recognition (TSR), License Plate Recognition (LPR),
Traffic Text Detection (TTD) and CNNs.

Chapter 3 proposes a real-time system for Traffic Sign Detection (TSD), which performs
detection by template matching with features based on shapes, namely Multi-level Chain
Code Histogram (MCCH)). For the three shapes, circle, triangle and inverted triangle that are
associated with Chinese traffic signs, MCCH is an excellent feature with good representation
ability and low computational cost.

Fig. 1.1 Thesis Organisation

Chapter 4 proposes a road surface TSD system by applying a hybrid region proposal
method and a CNN. The proposed system consists of two main stages: (i) a hybrid region
proposal method to hypothesise the traffic sign locations by taking into account complemen-
tary information of colour and edge; (ii) a multi-task network to simultaneously implement
category prediction and bounding box regression based on the Fast R-CNN framework.

Chapter 5 presents a set of detailed experiments about TSR with CNNs. Traffic signs are
recognised with the most influencing CNN architectures, including the very deep networks,
residual networks and dense networks. Extensive experiments are presented and discussed
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based on different training algorithms, such as weight initialisation, regularisation and
optimisation.

Chapter 6 proposes four TSR systems which are trained by new strategies or constructed
by new network architectures. First, different from the most existing approaches that apply
single level classifiers for TSR, a hierarchical classification system is applied for improving
the performance of TSR. Second, unsupervised feature learning is a challenge in computer
vision. By introducing Generative Adversarial Networks (GANs), a TSR system is proposed
based on features that are learnt without labels. Third, in comparison with previous CNNs
that only apply max pooling for reducing feature dimension, a novel layer is proposed, which
applies Max Pooling Positions (MPPs) of max pooling as information for sparse feature
learning. Finally, in order to overcome gradient vanishing and degradation problems, a
novel CNN architecture design that learns with multiple loss functions is developed. The
performance of the proposed methods are verified on the German Traffic Sign Recognition
Benchmark (GTSRB), and excellent results have been achieved.

Chapter 7 proposes a License Plate Detection (LPD) system for detecting Chinese and
English license plates with large skew angles. The proposed system consists of three main
stages: (i) a character proposal stage to find candidate characters based on Extremal Regions
(ERs); (ii) feature extraction and classification relies on CNN; (iii) LPD by linking individual
characters based on a new region linking method. By leaving out character segmentation, the
proposed method has better robustness compared with existing methods.

Chapter 8 proposes a context-aware Chinese TTD system by applying CNNs and Di-
rected Acyclic Graph (DAG). First, the proposed system jointly applies Maximally Stable
Extremal Regions (MSERs) and a regressor as region generator to ensure high recall. Second,
all of the generated regions are not only assigned with confidence scores for character/non-
character classification, but also inter-similarities for context-aware detection. Finally, charac-
ters are refined and linked into texts by applying an unified character linking method, which
is based on DAG. With the help of these improvements, the proposed system can handle
non-horizontal text lines and crossed text lines, while some existing text detection systems
only are able to detect horizontal or near horizontal text lines. The error accumulation
problem that usually occurs in the systems that use individual and sequential stages is also
avoided.

Chapter 9 proposes a pedestrian attribute classification system based on CNNs and a
novel feature selection algorithm. CNNs have demonstrated promising performance in image
recognition and object detection. Such networks are able to automatically learn a hierarchy
of discriminate features that richly describe image content. However, dimensions of features
of CNNs are usually very large, and there are irrelevant elements included in features of
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CNNs. Therefore, feature selection could be exploited to remove the irrelevant or redundant
features of CNNs.

Chapter 10 states the conclusions of this thesis, followed by possible future research
directions.

1.3 Contributions

The major contributions have been made in this research are listed as follows.

(i) Introduction of a new feature MCCH that has good representation ability and low
computational cost. (Chapter 3)

(ii) Creation of a new road surface traffic sign dataset, which is able to facilitate the research
and development of road surface TSD. (Chapter 4)

(iii) Introduction of a road surface TSD system based on a hybrid region proposal method
and Fast R-CNN. (Chapter 4)

(iv) Introduction of a TSR system based on hierarchical classification, which improves per-
formance by recognising different subsets of traffic signs at different levels. (Chapter
6)

(v) Introduction of a TSR system base on classifiers trained with unsupervised features that
are learnt by GANs. (Chapter 6)

(vi) Introduction of a novel sparse layer based on MPPs, which is able to learn sparse feature
and improve classification performance effectively. (Chapter 6)

(vii) Introduction of a novel CNN architecture design that is able to ease the training
problems of deep CNNs, including gradient vanishing and degradation. (Chapter 6)

(viii) Introduction of a framework for LPD which simultaneously completes detection and
segmentation. The method also able to detect both Chinese and English license plate
with extremely skewed angles. (Chapter 7)

(ix) Creation of a new Chinese traffic text dataset, which is able to fill the gap of Chinese
traffic text detection and recognition. (Chapter 8)

(x) Introduction of a Chinese TTD system that has the following advantages: (a) a region
proposal method that jointly uses of MSERs and a CNN based regressor to hypothesise
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the character locations; (b) a classification method that uses both information from a
local model and a contextual model; (c) an unified character linking method based on
DAG, which can handle non-horizontal and crossed text lines. (Chapter 8)

(xi) Introduction of a novel feature selection algorithm to remove irrelevant or redundant
features of CNNs. (Chapter 9)

1.4 Publications

1.4.1 Journal Papers

(i) B. Zhang, R. Qian and X. Yang, "Reliable License Plate Recognition by Hierarchical
Support Vector Machines," IET Intelligent Transport Systems (Accepted)

(ii) R. Qian, Y. Yue, F. Coenen and B. Zhang, "Road Surface Traffic Sign Detection with
Hybrid Region Proposal and Fast R-CNN," Journal of Computer and System Sciences
(Under review)

(iii) R. Qian, Y. Xia, S. Yan, B. Zhang, F. Coenen and Y. Yue, "Context-Aware Chinese
Traffic Text Detection with Convolutional Neural Network and Directed Acyclic Graph"
IEEE Transactions on Intelligent Transportation Systems (Under review)

In the first paper, a License Plate Recognition (LPR) system is presented by applying
MCCH for plate detection and Hierarchical SVMs for plate recognition. In the second paper,
a road surface TSD system is presented, the details will be presented in Chapter 4. In the
third paper, a context-aware Chinese TTD system is presented by applying CNNs and DAG,
the details will be presented in Chapter 8.

1.4.2 Conference Papers

(i) R. Qian, B. Zhang, Y. Yue, Z. Wang and F. Coenen, "Robust Chinese Traffic Sign
Detection and Recognition with Deep Convolutional Neural Network," 2015 11th
International Conference on Natural Computation (ICNC), Zhangjiajie, 2015, pp. 791-
796.

(ii) R. Qian, B. Zhang, Y. Yue and F. Coenen, "Traffic Sign Detection by Template Match-
ing Based on Multi-level Chain Code Histogram," 2015 12th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015, pp. 2400-
2404.
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(iii) R. Qian, Y. Yue, F. Coenen and B. Zhang, "Traffic Sign Recognition with Convolutional
Neural Network Based on Max Pooling Positions," 2016 12th International Conference
on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),
Changsha, 2016, pp. 578-582.

(iv) R. Qian, Q. Liu, Y. Yue, F. Coenen and B. Zhang, "Road Surface Traffic Sign Detection
with Hybrid Region Proposal and Fast R-CNN," 2016 12th International Conference
on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),
Changsha, 2016, pp. 555-559.

(v) R. Qian, Y. Yue, F. Coenen and B. Zhang, "Visual Attribute Classification Using
Feature Selection and Convolutional Neural Network," 2016 IEEE 13th International
Conference on Signal Processing (ICSP), Chengdu, 2016, pp. 649-653.

(vi) Z. Wang, S. Liu, R. Qian, T. Jiang, X. Yang and J. J. Zhang, "Human Motion Data
Refinement Unitizing Structural Sparsity and Spatial-temporal Information," 2016
IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, 2016, pp.
975-982.

(vii) R. Qian, B. Zhang, F. Coenen and Y. Yue, "Multilingual and Skew License Plate
Detection Based on Extremal Regions," 2017 13th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, 2017.

In the first paper, Chinese traffic sign are detected and recognised with multi-task CNNs.
In the second paper, a real-time system for Traffic Sign Detection (TSD) is proposed by
template matching based on shapes Multi-level Chain Code Histogram (MCCH)), the details
will be presented in Chapter 3. In the third paper, traffic signs are recognised based on Max
Pooling Positions (MPPs), the details will be presented in Chapter 6. In the fourth paper, a
road surface TSD system is presented, the details will be presented in Chapter 4. In the fifth
paper, a pedestrian attribute classification system is proposed based on CNNs and a novel
feature selection algorithm, the details will be presented in Chapter 9. In the final paper, a
License Plate Detection (LPD) system for detecting Chinese and English license plates with
large skew angles is proposed, the details will be presented in Chapter 7.





Chapter 2

Literature Review

2.1 Computer Vision

2.1.1 Background

Computer vision is an interdisciplinary field that involves how computers get high-level
understanding of digital images or videos. From the perspective of scientific discipline,
it is concerned with the theory related to artificial intelligence. From the perspective of
technological discipline, it seeks to apply its theories and models for the construction of
computer vision systems. From the perspective of engineering discipline, it aims to automate
tasks that the human visual system can do. [1, 37]

Computer vision tasks involves a series of methods, such as acquiring, processing,
analyzing and understanding of digital images or videos. [38] With the help of computer
vision methods, high-dimensional real world data can be transferred into numerical or
symbolic information, which can be further interfaced with other processes and elicited
appropriate actions. This image understanding can be seen as the disentangling of symbolic
information from image data using models constructed with the aid of geometry, physics,
statistics, and learning theory. [39]

2.1.2 Related Fields

There are a wide range of fields closely related to computer vision, such as machine vision,
image processing, machine learning and deep learning.

Machine vision is an engineering discipline, which can be considered distinct from
computer vision. A large number of methods are applied in machine vision, including
software and hardware products, integrated systems, actions, methods and expertise. It aims
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to combine existing methods in new ways for solving real world problems, in particular
industry. The detailed applications include automatic inspection, process control, and robot
guidance. [40]

Image processing aims to process images with mathematical operations by applying any
form of signal processing methods. Its input can be an image, a series of images or a video,
and its output may be image or a set of parameters related to the raw image. Generally, image
processing methods involve isolating the individual colour planes of an image and treating
them as two-dimensional signal and applying standard signal-processing techniques to them.
[41]

Machine learning is a field of computer science, which provides computers the ability to
learn and act without being explicitly programmed. Based on the study of pattern recognition
and computational learning theory in artificial intelligence, machine learning focuses on the
methods that can learn from and predict based on data. Therefore, the methods can avoid
strictly static program instructions by data driven prediction or decision making. Machine
learning is applied in a wide range of computing tasks where designing and programming
explicit methods with good performance is difficult or infeasible. [42]

Deep learning is a part of a broader family of machine learning methods. In contrary to
task specific methods, deep learning focuses on data representations with supervised, weakly
supervised or unsupervised learning. Deep learning methods use a cascade of many layers
of nonlinear processing units for feature extraction and transformation. Each successive
layer uses the output from the previous layer as input. Higher level features are derived
from lower level features to form a hierarchical representation. Deep learning architectures
such as deep neural networks, deep belief networks and recurrent neural networks have been
widely applied in the fields such as computer vision, speech recognition and natural language
processing. [43, 44]

2.1.3 Applications

Computer vision has been applied in a variety of real world applications [1] that are listed as
follows.

(i) Optical character recognition (OCR): reading handwritten postal codes on letters (Fig.
2.1a) and automatic License Plate Recognition (LPR).

(ii) Machine inspection: rapid parts inspection for quality assurance using stereo vision
with specialised illumination (Fig. 2.1b).

(iii) Retail: object recognition for automated checkout lanes (Fig. 2.1c).
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(iv) Medical imaging: registering pre-operative and intra-operative imagery (Fig. 2.1d).

(v) Motion capture: using retro-reflective markers viewed from multiple cameras or other
vision-based techniques to capture actors for computer animation.

(vi) Automotive safety: detecting unexpected obstacles such as pedestrians on the street,
under conditions where active vision techniques such as radar or lidar do not work well
(Fig. 2.1e).

(vii) Surveillance: monitoring for intruders, analyzing highway traffic 2.1f), and monitoring
pools for drowning victims.

(viii) Fingerprint recognition and biometrics: for automatic access authentication and forensic
applications.

2.1.4 Methods

The organisation of a computer vision system is highly dependent on specific applications.
Some simple and stand-alone applications may only solve a specific detection or recognition
problem, while some applications are very complex and consist of a series of subsystems,
such as data acquisition, control of mechanical components, planning and decision. The
specific organisation of a computer vision system also depends on whether its functionality is
fixed or flexible during operation. There are a lot of methods have been applied in computer
vision. Generally, most methods are typical and can be found in many computer vision
systems, while some methods are unique to specific application. [1]

(i) Image acquisition: a digital image is captured by image sensors, such as a variety
of light-sensitive cameras, range sensors, tomography devices, radar and ultra-sonic
cameras. Depending on the type of sensor, the captured image data is an 2D image,
a 3D volume or an image sequence. Typically, the pixel values correspond to light
intensity in one or several spectral bands (gray images or RGB images).

(ii) Data preprocessing: raw image data is usually preprocessed before computer vision
methods can be applied for extracting specific piece of information. Generally, data
preprocessing includes techniques such as normalisation, re-sampling, contrast en-
hancement and scale space.

(iii) Feature extraction: features at various levels of complexity are extracted from image
data. Typically, low level features are colours, lines, edges, corners and ridges; middle
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.1 Illustration of some industrial applications of computer vision: (a) optical character
recognition; (b) mechanical inspection; (c) retail; (d) medical imaging; (e) automotive safety;
(f) surveillance and traffic monitoring. [1]
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level features include texture and shape; high level features include semantic informa-
tion. Some famous and powerful hand-crafted features have been widely applied, such
as Histogram of Oriented Gradient (HOG) [45], Scale-Invariant Feature Transform
(SIFT) [46], Speeded-Up Robust Features (SURF) [47], Aggregate Channel Features
(ACF) [48] and Integral Channel Features (ICF)..

(iv) Detection/segmentation: some points or regions of image are selected for further
processing. Decisions are made with extracted features based on classification methods,
such as simple matching, or machine learning methods like Support Vector Machine
(SVM) [49] and AdaBoosting [50],

(v) Recognition: generally, categories of regions are classified with machine learning
methods, such as SVM, Random Forest (RF) [51], Multi-Layer Perception (MLP) and
Convolutional Neural Network (CNN).

(vi) Decision making: making final decisions required from applications. For example,
pass or fail in automatic inspection applications, match or no-match in recognition
applications and flag for further human review in more complex applications.

2.2 Traffic Sign Recognition

Acquisition of information from various traffic signs is crucial in many applications, such as
Advanced Driver Assistance Systems (ADAS) and autonomous cars. Generally, a traffic sign
recognition system involves two related issues: Traffic Sign Detection (TSD) and Traffic Sign
Recognition (TSR). The former aims to accurately detect traffic signs in images, while the lat-
er intends to identify the labels of detected traffic signs into specific categories/subcategories.
Though the topic has attracted research interests in computer vision community for more
than two decades [52, 53], there are still challenges due to various complexities, such as
diversified illumination conditions, capturing angles and open set environment.

Traffic Sign Detection Methods: TSD is similar to other object detection tasks in
computer vision. More specifically, identifying the image regions with bounding boxes
that tightly contain traffic signs. Comparing with common objects, traffic signs are usually
designed to have rigid and simple shapes, uniform and attractive colours. The spatial
relationship with other visual objects along the road is also an important cue that could
be exploited in the development of TSD. Therefore, depending on how traffic signs are
segmented, approaches can be divided into colour-based methods, geometry-based methods
and machine learning-based methods.
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Colour-based methods implement object detection based on colour information, which
usually have low computational costs and strong robustness to projective distortion. A road
sign detection system based on HSI colour space segmentation and SVM [49] classification is
proposed in [54]. Colour feature clustering is adopted to perform image segmentation in [55].
Maximally Stable Extremal Regions (MSERs) is introduced in [56]for traffic sign candidates
proposal, followed by SVM classifiers trained based on HOG [45] features. A method
that combines the information of the colour, saliency, spatial and contextual relationship is
proposed in [57]. In [58], colour probability model and MSERs are jointly used to generate
traffic sign candidates. A hybrid region proposal method which consists of MSERs and
Wave-based Detector (WaDe) is reported in [59]. On the other hand, as geometric shape is
another important cue for detection of traffic signs, works have been proposed along this line,
including Radial Symmetry Detector [60] and Triangular Detector [61]. TSD methods via
both colour segmentation and shape matching are employed in [62, 63].

TSD has also become inseparable with machine learning. For example, AdaBoosting
[50] is employed for TSD in [64]. An enhanced Common-Finder AdaBoost (CF.AdaBoost)
algorithm is proposed in [65]. ACF [48] and ICF detectors are reported in [66]. In [67], an
accurate and efficient traffic sign detection approach is proposed by exploring both AdaBoost
and support vector regression for discriminative detector learning. Due to the power of
representational learning from raw data, deep learning has acquired general interests in recent
years. Therefore, CNNs have also been applied in TSD systems. A real-time TSD system
that based on CNN features with sliding window scheme is reported in [63]. In [68], a TSD
system is proposed with two deep learning methods, including Fully Convolutional Network
(FCN) for traffic sign proposal and deep CNN for object classification.

Traffic Sign Recognition Methods: TSR can be generally treated as a pattern recogni-
tion problem, with many mature off-the-shelf techniques from machine learning. Among
the plenteous models, SVM demonstrates its good performance, which has been applied
in [54, 69, 56]. SIFT [46] and SURF [47] descriptors trained with MLP achieved high
recognition rates in [70]. RF [51] and k-d tree with HOG features are reported in [18]. Radial
Basis Function (RBF) neural network and K-D tree are used in [71] to identify the content
of traffic signs. A sign similarity measurement with SimBoost and fuzzy regression tree
method is proposed in [72]. An ensemble of classifiers based on the Error-Correcting Output
Code (ECOC) method is introduced in [64], where the ECOC is designed through a forest
of optimal tree structures that are embedded in the ECOC matrix. Sparse Representation
Classification (SRC) [73] that proposed for face recognition is used for TSR in [74], sparse
representation based graph embedding method achieves high performance by combining
feature selection and subspace learning. In [75], multi-modal tree-structure embedded Multi-
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Task Learning (MTL) is proposed to solve TSR problem, which selects features for better
recognition and shares correlated features for similar tasks.

As for any recognition problem, feature representation is the critical factor for system
performance. How to design discriminative and representative features has been in the central
stage of computer vision research. Benefiting from powerful task-specific features, CNNs
based methods achieved state-of-the-art performance in the competition of German Traffic
Sign Recognition Benchmark (GTSRB) [22] which is held by International Joint Conference
on Neural Networks 2011 (IJCNN 2011). A multi-scale CNN is introduced in [19], different
from traditional CNN that the output of the last stage is fed to a classifier, in multi-scale
CNN, the outputs of all the stages are fed to a classifier, yielding excellent performance.
A committee CNN and MLP is proposed in [20] which is able to automatically learn task-
specific invariant features in a hierarchical manner. Both these two methods outperform the
human performance, however, the computational cost is relatively high. Hinge-loss CNN
[23] further improved the recognition performance by introducing a cost function that widely
used in SVM.

2.3 License Plate Recognition

License Plate Recognition (LPR) methods enable automated detection and recognition of
the registration numbers of vehicles via digital imaging. It is a key component for many
security and Intelligent Transportation System (ITS). Examples include car park access
control, electronic highway toll payment systems, suspect vehicle analysis and tracking, and
automatic identification of expired registrations. LPR has been studied for many years [76–
78], with a variety of methods proposed for different kinds of license plates. Many countries
have deployed the technology as a main constituent of urban transportation infrastructures.

It is hard to make a comprehensive survey of the published works on LPR. Fortunately,
several review papers provide an important source of information [79–82]. There is a great
deal of variability between license plates between different countries with regards to the
design, colours, characters used, and layout. Previously published LPR methods has been
mainly centered upon a small number of the countries, including: mainland China [83–85],
Taiwan [86–89], American [90], Korea [91], and certain European countries [79, 76, 77].

Most of the existing LPR systems are based on a common structure, the consecutive
composition of: (i) LPD; (ii) character segmentation; (iii) character recognition. The plate
detection is considered as the bottleneck problem in a number of recent publications [85]. In
order to design an effective LPR system, license plates not only need to be detected correctly,
but also fast enough to meet the requirements of real-time applications. The various image
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conditions also should be taken into account. Many methods have been proposed in recent
years, including different approaches based on edge statistical analysis [92], morphological
filtering [93], Bag Of Visual Words [85], and AdaBoost [94]. It should be noticed that the
published methods are often proposed with respect to certain controlled environments.

LPD is usually followed by character segmentation, which breaks the cropped license
plate region into single characters. Effective segmentation is another critical step for LPR
as the last step character classification depends largely on the quality of the segmentation
output. Segmentation is usually difficult in practice, especially when dealing with images
with inherently noisy, low resolution and poor weather conditions. The most common
practice of character segmentation is based on histogram analysis and thresholding [79–
82]. A priori knowledge about the layout of the characters on the plate is often exploited,
for example, the spacing between two characters. Despite the efforts made, there is no
generally accepted method that can well solve the problems such as skewed or illuminated
plates detection. Moreover, separately handling LPD and character segmentation has the
disadvantage that incorrect detection can directly lead to wrong character segmentation.
Therefore, simultaneously plate detection and character segmentation are essential for a
reliable LPR system.

2.4 Traffic Text Detection

Generally, Traffic Text Detection (TTD) is closely related to Scene Text Detection (STD).
Therefore, the literatures involved with these two topics are reviewed.

2.4.1 Traffic Text Detection Methods

Despite there are numerous methods that pay particular attention to the detection of symbol-
based traffic signs [60, 56, 66], the method specifically focuses on the detection of the
text-based traffic signs has attracted much less attention. During the past decades, only a few
methods [95–103] have been proposed.

Most existing methods [95, 96, 99, 101–103] for TTD follow the pipeline: (i) Traffic
Panel Detection (TPD); (ii) TTD on panels. In [95], traffic panels are detected by using of
Shi and Tomasi features [104], Gaussian mixture models and K-means algorithm. Traffic
panel candidates are segmented based on white and blue colours, followed with Fast Fourier
Transform (FFT) for shape classification in [96]. A TPD method is reported in [101], which
detected panels based on colour segmentation and Bag of visual words (BOVW) [105].
MSERs are applied in [102] and [103] for TPD. However, TPD still remains challenges
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due to the huge variability of traffic panels. In real world, every panel is specially designed
for displaying different information, leading to unpredictable variations in size, colour, and
shape. Therefore, there maybe detection failure of TTD that caused by detection failure of
TPD. The direct detection of traffic texts should be a better choice.

In the methods [101–103], traffic texts are detected by applying MSERs. Considering
the following two aspects: (i) MSERs selects regions that are extremely stable and uniform
in their colour; (ii) in order to be easily noticed by drivers and pedestrians, traffic texts
are usually designed to have uniform and attractive colours. It is reasonable and effective
to apply MSERs as region generator. Inspired by these methods [101–103], MSERs is
also employed in the proposed system. However, the methods [101–103] are designed for
detecting English and Spain words, where the words are commonly composed of several
consistent letters. Different from English and Spain words, Chinese characters are usually
constructed of several inconsistent strokes, the performance of system will be influenced if
only MSERs is applied as region generator.

2.4.2 Scene Text Detection Methods

Since both TTD and STD aim to detection text in the wild, TTD can be significantly inspired
by STD. Over the past decade, as the increasing of powerful computer vision methods,
STD has been rapidly developed [106–108]. Based on how candidate regions are proposed,
approaches to this problem can be generally divided into two groups: connected component
based methods [109–136]. and sliding window based methods. [137–149]

Connected component based methods aim to segment individual text components
based on information such as colour, edge, gradient and stroke width, and then group the text
components with similar properties together to construct texts. The representative methods in
this group are Stroke Width Transform (SWT) [119], MSERs [150], and Extremal Regions
(ERs) [151]. SWT is a local image operator which computes width of the strokes associated
to each pixel, and it has been applied in the methods [115, 116, 130]. In contrast to SWT,
MSERs selects regions that are extremely stable in their colour, and MSERs based methods
[109, 110, 117, 118, 120, 122, 125–127, 131, 132, 135] have achieved excellent performance
in STD. Rather than regions with extremely stable colour, ERs are connected components of
an image binarised at different thresholds without stability requirements, excellent results
also have been achieved in ERs based methods [111, 113, 133, 114].

Sliding window based methods implement text detection as a common binary classifi-
cation problem. A variety of machine learning methods have been applied in these methods.
For example, AdaBoosting [50] is applied in [143, 144, 148, 149] for STD, and WaldBoost
[152] is used with HOG [45] features in [142]. Rather than using boosted cascade classifier,
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SVMs [49] trained on HOG features in a sliding window scenario are reported in [147].
Instead of using HOG features, CNN features are applied in [146, 137], and the results
indicate that CNN features can work effectively in sliding window scheme. Later on, a region
generator based on ACF [48] detector and Edge Boxes [153] is proposed in [138]. Recently,
FCN [36] are introduced for STD in [141, 139], resulting in excellent performance.

Candidate region proposal is the first stage of a text detection system, its performance
is of crucial importance to success of entire system. The connected component based
methods have exhibited the great advantages in computational speed and robustness to scale,
aspect and rotation variations. However, it is difficult to detect text components, which are
constructed of isolated parts, blurred or partially covered. In order to address these problems,
Stroke Feature Transform (SFT) is proposed in [130] by incorporating colour cues of text
pixels. Region topology is applied in [110] as a selector, resulting in an extended version
of MSERs, which is called MSERs++. In [135], Contrast-Enhanced MSERs (CE-MSERs)
is developed based on MSERs, which allows to detect highly challenging text patterns. A
Colour-Enhanced Contrasting Extremal Regions (CERs) is reported in [133]. On the other
hand, sliding window based methods have strengths of robustness to noise and blur, since
strong features and classifiers are introduced. Text components with isolated parts can also
be proposed as a whole. The major limitation is the high computational cost when texts with
different scales, aspects and rotations have to be detected.

Most of the existing methods have focused on detecting horizontal or near-horizontal
text lines, there are only a few methods [115, 116, 141, 117, 118, 121, 131, 135] can handle
non-horizontal text lines. Multi-oriented text detection systems [115, 116] are developed by
pairing candidates and aggregating pairs with similar orientations. Later on, this method is
also applied by In [135]. By constructing a graph of MSERs for each input image, text line
detection problem is transferred into a graph partitioning problem in [131]. Multi-orientation
STD systems based on text candidates clustering are reported in [117, 118]. Generally, texts
on traffic panels are skewed due to capturing angles. Furthermore, the complex layout of
texts on traffic panels result in not only multi-oriented text lines, but also crossed text lines.
Therefore, in order to solve the problems of multi-oriented and crossed text line detection,
improved method should be developed.

As the natural proprieties of English, there is plenty of intra-word and inter-word con-
textual information within texts. It is extremely rare that English text only contains one
letter. Therefore, many existing methods [119, 115, 126, 116, 135] assumed: texts should
have at least 2 components, otherwise they are directly regarded as noises. In contrast to
English text detection, Chinese text detection is more complex and difficult due to the lack of
intra-character contextual information. In China, most of traffic texts contain only two or
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three characters, even many stand-alone characters. Therefore, powerful classifiers should be
applied in Chines TTD systems, so that individual characters can be accurately detected.

2.5 Convolutional Neural Networks

While the deep CNNs [29] achieve a series of breakthroughs in various computer vision tasks,
there are a lot of researches that focused on improving the network architecture of the original
AlexNets. In [154], multi-scale and sliding window scheme are implemented within CNN for
simultaneously classify, locate and detect objects in images. A novel visualisation technique
is proposed in [155] for visualising and understanding the function of intermediate feature
layers and the operation of entire network. Based on the observation, two modifications are
made: (i) the kernel size of the first layer is adjusted from 11×11 to 7×7; (ii) a stride value
2 is adopted in the first layer rather than 4, resulting in the ZFNets that achieved the best
performance in ILSVRC 2013. Furthermore, the CNNs [30] proposed by Visual Geometry
Group (VGG) indicate another important direction of network architecture design, which is
network depth. By introducing small kernel size (3×3) in all layers, the computational cost
is significantly reduced and it becomes feasible to add more convolutional layers. As a result,
the famous VGGNets with network depth from 11 to 19 are created and have been widely
used in lots of subsequent works. Later, the 22-layer GoogLeNets [31] are reported, and
the network architectures are finely optimised based on Hebbian principle and multi-scale
processing. The new deeper and wider architectures are code-named Inception, because of
the Inception modules in networks. Due to the carefully crafted architectures, GoogLeNets
win the champion in ILSVRC 2014.

Deep CNNs naturally extract low-level features to high-level features in an end-to-end
multi-layer scheme [155], and the levels of feature can be enriched by increasing depth of
networks. The importance of network depth has been proven by both VGGNets [30] and
GoogLeNets [31], which employ more convolutional layers and achieve better performance
than the AlexNets [29]. However, with the increasing of network depth, the training of
network becomes more and more difficult. The most notorious problems are gradient
vanishing and exploding [156]. Fortunately, with the aid of methods such as normalised
initialisation [156, 157] and normalisation layer [158], the gradients problems have been
largely addressed, and networks with very deep depth start to converge. Subsequently,
another critical problem is exposed in [159, 160]: as the network depth increasing, both
training and testing accuracy get saturated firstly, and then degraded. This problem is known
as degradation [32], which is not caused by overfitting, but the depth of network. In order to
solve the degradation problem, networks based on deep residual learning [32] are proposed.
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By introducing identity shortcut connections, each few stacked layers are able to learn
residual mapping rather than direct mapping. Formally, denoting a desired direct mapping
H(x) and a residual mapping F(x) = H(x)− x, then the original desired mapping can be
represented as H(x) = F(x)+ x. The results of experiments prove that the optimisation of
residual mapping is much easier than original direct mapping. As a result, the depth of
networks and accuracy of CNNs are dramatically increased, and ResNets win the champion
in ILSVRC 2015.

Recently, in order to overcome gradient vanishing and degradation problems, short path
from early layers to later layers have been widely applied in a number of CNN architectures.
For instance, Highway Networks [159] and ResNets [32, 161] introduce identity shortcut
connections for training deep CNNs. Stochastic Depth Networks [162] utilise a novel training
strategy which randomly drop a subset of layers of ResNets and bypass them with identity
connection. FractalNets [163] develop an alternative strategy called drop path for training
ultra deep networks. Later, the connection strategy is further distilled in [164]. In order to
ensure the maximum information flow inside networks, each layer receives inputs from all
preceding layers and passes to all subsequent layers. Due to the densely connected structure,
the network architectures are named as DenseNets. Different from ResNets, features from
preceding layers are combined by concatenation instead of summation. Comparing to
ResNets, DenseNets have the following advantages: (i) higher parameter efficiency; (ii)
easier training; (ii) stronger regularising effect for reducing overfitting.

2.6 Summary

In this chapter, the literatures related to research are reviewed. In section 2.1, an overview
of computer vision is presented, and the related methods of computer vision are introduced,
including image acquisition, data preprocessing, feature extraction, detection/segmentation,
recognition and decision making. In section 2.2, TSR methods are reviewed. Depending on
how traffic signs are segmented, TSD approaches can be divided into colour-based methods,
geometry-based methods and machine learning-based methods. For TSR, machine learning
methods such as SVM, RF and CNN have been widely applied, and excellent results have
been achieved. In section 2.3, LPR methods are reviewed. Most of the existing LPR systems
are designed for certain controlled environments, otherwise, the performance maybe largely
reduced. In order to design a robust and effective LPR system, it should be able to applied
in a wide range of environment, and detect license plates with high accuracy. In section
2.4, TTD and STD methods have been reviewed in detail. Over the past decade, as the
increasing of powerful computer vision methods, text detection has been rapidly developed.
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However, there are still problems, such as Chinese text detection, multi-oriented and crossed
text lines detection. In section 2.5, the development of CNNs have been reviewed. As the
increasing of depth of networks, CNNs face training problems such as gradient vanishing,
gradient exploding and degradation. With the help of normalisation and learning methods,
the problems have been well eased. However, they are not totally solved, new method are
expected to tackle these problems.





Chapter 3

Traffic Sign Detection with Multi-level
Chain Code Histogram

This chapter proposes a real-time system for Traffic Sign Detection (TSD), which performs
detection by template matching with features based on shapes, namely Multi-level Chain
Code Histogram (MCCH)). For the three shapes, circle, triangle and inverted triangle that are
associated with Chinese traffic signs, MCCH is an excellent feature with good representation
ability and low computational cost. Therefore, MCCH is very suitable for detecting traffic
signs in real-time. The proposed system consists of three stages: (i) segmentation based
on colour; (ii) feature extraction with MCCH; (iii) template matching based on histogram
intersection. Experiments are conducted using collected datasets, demonstrating good
performance with regard to high processing speed and robustness to rotation, scale, and
illumination.

3.1 Introduction

Traffic signs are designed to streamline traffic flow and provide information to road users for
improving the road efficiency and safety. Drivers or pedestrians should make appropriate
response to different traffic signs such as various warning and speed limits to secure safety.
The detection and recognition of traffic sign have been studied for more than two decades
[52, 53], mainly motivated by the applications such as Advanced Driver Assistance Systems
(ADAS) and autonomous cars.

TSD methods are expected to capture information from wild environment, three main
stages are usually involved: (i) candidate segmentation; (ii) region detection; (iii) category
recognition. Generally, traffic signs are designed with regular shapes and attractive colour to
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be easily noticed. Therefore, the information of shape and colour are widely used in TSD.
Based on however prior knowledge is used, TSD could be roughly categorised into colour-
based methods and shape-based methods. Colour-based methods rely on colour to segment
the regions that belong to traffic signs, with main advantages such as low computational
cost and robust to projective deformation. However, colour-based methods are sensitive to
illumination changes. On the other hand, shape-based methods are robust to illumination, the
disadvantage is the high computational cost.

In order to address the mentioned problems, a system for real-time TSD is proposed,
which generates candidates by colour segmentation, extracts shape information based on
MCCH and detects traffic signs with template matching. The rest of this chapter is organised
as follows. Section 3.2 presents a brief introduction of the entire TSD system. Section 3.3
explains the colour space thresholding algorithm for segmentation. Section 3.4 introduces
proposed feature extraction method MCCH. Section 3.5 presents the procedures of template
matching. Section 3.6 introduces the experimental results, followed by summary in Section
3.7.

3.2 System Overview

The proposed TSD system consists of three main stages, as illustrated in Fig. 3.1. In the first
stage, the input image is segmented by using Ohta Space Thresholding. In the second stage,
features are extracted with MCCH. In the third stage, the traffic signs are detected based on
template are matching.

Fig. 3.1 System overview. The up steps are applied in testing stage. The down step is applied
for extracting features of templates.

The TSD system can be described in the following steps in detail.
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(i) Colour space thresholding. The original input RGB image is converted into binary
image by applying Ohta Space Thresholding [53, 165], followed by connected compo-
nent analysis and edge detection to produce corresponding contour images. In order
to decrease computational cost and false positive rate, regions with small areas (≤ 20
pixels) are directly removed since traffic signs in image are impossible to have such
small areas.

(ii) Feature extraction. For each contours produced in the Step 1, they features are extracted
by using proposed MCCH.

(iii) Template matching. By comparing the MCCHs of the three shapes in Fig. 3.2 with all
of the MCCHs of the contours produced from last step, Histogram Intersection [166]
distances are calculated which estimate the matching degree between templates and
contours. The Histogram Intersection distances are regarded as confidential scores of
contours. Finally, threshold value is used to select true traffic signs and reject poor
matches.

Fig. 3.2 Chinese traffic signs have three kinds of shapes, which are circle, triangle and
inverted triangle.

3.3 Colour Space Thresholding

Ohta space thresholding: a colour space is a specific organisation of colours. The research
for an effective colour space in colour-based segmentation has resulted in variety of colour
models, such as CIEXYZ [167], CIELUV[167], CIELAB[167], and YIQ[167]. Among
the variety of spaces, Ohta space [53] shows some significant characteristics. First, the
implementation of Ohta space is quite simple and it has a very low computational cost.
Second, the aim of Ohta space is focus on finding the best uncorrelated components, thus, all
the components are independent to each other. After extensive experiments, the authors of
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[165] invented a set of features for the three colours that are derived from RGB. The set of
colours can be directly applied for image segmentation:I1
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where the component I1 is mapped to illumination and the components I2 and I3 are related
to colour categorisation. Therefore, these two components can be applied in segmentation
directly. Moreover, in order to increase the robustness to illumination changes, normalisation
is also performed. The specific designed normalised components P1 and P2 are formulated
as:
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Finally, by introducing the normalised components, the colours can be acquired according
to the following formulations:

Red(i, j) =

{
True, i f P1(i, j))≥ T hR1 and P2(i, j))≤ T hR2

False, Otherwise
(3.4)

Blue(i, j) =

{
True, i f P1(i, j))≥ T hB1 and |P2(i, j))| ≤ T hB2

False, Otherwise
(3.5)

Yellow(i, j) =

{
True, i f P1(i, j))≥ T hY1 and |P2(i, j))| ≤ T hY2

False, Otherwise
(3.6)

where i and j are coordinates in image. All the threshold values are given in Table.

Based on this method, the original input RGB image is converted into binary image,
followed by feature extraction that will be detailed in the next section.

3.4 Feature Extraction

A chain code is a traditional method used to describe an object boundary with an ordered
sequence of n straight line segments ci, i = 1,2, ...,n, where ci is a vector of connecting



3.4 Feature Extraction 27

Threshold name Threshold value
T hR1 0.024
T hR2 -0.027
T hB1 -0.04
T hB2 0.082
T hY1 0.071
T hY2 0.027

Table 3.1 Parameters of Ohta space thresholding.

neighboring contour pixels. The directions of ci are coded with integer values k = 0,1, ...,K−
1 in a counter clockwise fashion starting from the direction of the positive x-axis, where K is
the number of directions defined by an integer value 4 or 8 [168].

To better describe a contour, the histogram of the chain code can be calculated and
applied. The Chain Code Histogram (CCH) based on a chain code can be formulated by the
following discrete function:

CCH(i) =
nk

k
, k = 0,1,2...,K −1 (3.7)

where nk is the accumulated number of each direction k in a chain code, and n is the total
length of a chain code.

(a) (b) (c) (d)

Fig. 3.3 Illustration of CCH for describing a contour. (a) Definition of an eight directions
chain code. (b) A sample circle and its contour. (c) Chain code of the circle. (d) CCH of the
circle.

The details of CCH have been illustrated in Fig. 3.3. Fig. 3.3a shows an eight directions
chain code, and Fig. 3.3b gives a sample circle and its contour. The starting point for the
chain code is marked with a black circle, and clockwise is adopted as the moving direction
of the chain code. The chain code and the corresponding CCH of the circle are illustrated in
Fig. 3.3c and 3.3d.
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A CCH is a global feature for describing the shape of a contour. In order to achieve
higher CCH distance between different contours, a cascaded CCH can be created by breaking
the original contour into small contour fragments and concatenating their CCHs. To be more
specific, a cascaded CCH can be achieved by the following stages. First, the chain code of a
contour is divided into a number of small fragments, the fragment size is chosen empirically.
And then the CCH of each fragment is individually calculated. Finally, all the achieved
CCHs are sequentially concatenated. Supposing the original chain code is equally divided
into m parts, all the CCHs at different parts are concatenated to form a cascaded CHH. Thus,
the cascaded CCH descriptor is a vector with dimension of 8m. The improvements can be
illustrated by Fig. 3.4, where the chain code of the contour in Fig. 3.3 is divided into 4
fragments and the corresponding CCHs are concatenated together.

Fig. 3.4 Illustration of a cascaded CCH.

Comparing with the original CCH, a cascaded CCH is more powerful and representative.
However, in real world TSD, skew and distortion are very common. In order to achieve
better robustness and rotation invariance, cascaded CCH can be further extended to MCCH.
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More specifically, a MCCH can be defined as follows. The first level CCH is the original
CCH. From the rest levels, chain code of the contour is divided into different number of
small fragments. And then the CCH of each fragment is calculated and concatenated. As
Fig. 3.5 illustrates, a 2-level MCCH can be simply achieved by cascading the original CCH
and a 4-parts cascaded CCH. Since the length of each small CCH is 8, the length of 2-level
MCCH is 40, which is small compared with common features, such as Histogram of Oriented
Gradient (HOG) [45].

Fig. 3.5 Illustration of a 2-level MCCH.
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3.5 Template Matching

Template matching is a technique for detecting a part of an image that matches a template.
The main advantages include the efficiency of its implementation and the effectiveness with
respect to the detection of low-textured objects that mainly characterised by shape.

In this stage, four algorithms are applied to calculate distances between MCCHs of
templates and candidates, including Histogram Intersection [166], Chi-square, match distance
and Euclidean distance. In order to test the performance of different algorithms, a dataset
with 100 positive images and 50 negative images is built. The four methods are tested based
on this dataset. The results are compared in the Table 3.2.

Method True positive False positive
Histogram Intersection 95 3

Chi-square 94 4
match distance 94 3

Euclidean distance 95 5
Table 3.2 Performance comparison of different distance measuring algorithms.

Based on the results, Histogram Intersection is the best algorithm that gives the most
true-positive number with the least false-positive number. Therefore, Histogram Intersection
is used in proposed system.

3.6 Experiments

In this section, the proposed system is verified on a self collected traffic sign dataset. The
details of the experiments will be presented in the following subsections.

3.6.1 Data Collection

The dataset is recorded by a camera set up in vehicle. It includes three categories of traffic
signs that based on the shapes and colours:

Prohibitory: circle, red rim, white or red inner.
Mandatory: circle, blue rim, blue inner.
Danger: triangular, black rim, yellow inner.
Images in dataset are captured by a camera with 640×480 resolution. The total number

of the images is 300. To be more specific, 150 images contain prohibitory signs, 80 images
contain mandatory signs and 70 images contain danger signs. The sizes of traffic sign in the
images vary from 25×25 to 80×80. Some examples are illustrated in Fig. 3.6.
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Fig. 3.6 Illustration of example images from the collected data, traffic signs are highlighted
with green rectangles. Top: prohibitory signs, middle: mandatory signs, bottom: danger
signs.
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3.6.2 Performance Evaluation

In order to observe the performance of the proposed TSD system, different decision thresholds
of template matching are used. The details are shown in the following precision-recall curves
3.7.

Fig. 3.7a illustrates the detection results of prohibitory signs. With the increasing of
threshold in template matching, the recall rate rises with the decreasing of the precision rate.
According to the curve, the best trade-off is achieved at the position that recall value equals
0.95 and precision value equal to 0.9. The detection results of mandatory signs have been
provided in Fig. 3.7b. The performance is slightly lower, because of low resolution and poor
quality that caused during data collection. The detection results of danger signs have been
shown in Fig. 3.7c. Different from the previous two categories of traffic signs, the shape of
danger signs is triangular, which means the detection of danger signs is easily affected by
skewed angle or deformation. Therefore, the detection of danger signs faces more challenges
than the other two categories of the traffic signs.

3.6.3 Computational Time Evaluation

To implement the proposed system, a workstation with an Intel Xeon 3.4GHz CPU and
16GB is employed. The programs are compiled with OpenCV and ran on a 64-bit Windows
7 operating system. The computational time for each image is about 50ms, which means this
system can work in real-time application.

3.6.4 Error Evaluation

The proposed TSD system failed to detect traffic signs under some extreme conditions, such
as poor illumination, occlusion and low resolution. More specifically, poor illumination may
make traffic signs have unstable colours, leading to failures in colour segmentation; occlusion
and low resolution make traffic signs have unstable shapes, resulting in failures in template
matching. Some of the failed example are illustrated in Fig. 3.8.

3.7 Summary

In this chapter, a TSD system is proposed, which mainly consists of three stages. In the
first stage, the input image is segmented using Ohta space thresholding. In the second stage,
connected component analysis and edge detection are performed, followed by proposed
feature extraction algorithm that is named MCCH. In the final stage, the confidence of each
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(a)

(b)

(c)

Fig. 3.7 Precision-recall curves of different traffic signs. (a) Prohibitory sign. (b) Mandatory
sign. (c) Danger sign.
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Fig. 3.8 Illustration of example images that failed in detection, traffic signs are highlighted
with red rectangles.
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traffic sign is estimated by applying Histogram Intersection. Experiments verified that the
feature MCCH has good representation ability and low computational cost. And the proposed
system achieves good performance for detecting prohibitory, mandatory and danger traffic
signs with skew and deformation in real-time environment.





Chapter 4

Road Surface Traffic Sign Detection with
Fast R-CNN

Previous research in Traffic Sign Detection (TSD) generally focused on traffic signs over
roads, traffic signs painted on road surface have not been well discussed. In this chapter, a
road surface TSD system is proposed by applying a hybrid region proposal method and a
Convolutional Neural Network (CNN). The proposed system consists of two main stages:
(i) a hybrid region proposal method to hypothesise the traffic sign locations by taking
into account complementary information of colour and edge; (ii) a multi-task network to
simultaneously implement category prediction and bounding box regression based on the
Fast R-CNN framework. Experiments have been conducted with a self collected road surface
traffic sign dataset, demonstrating excellent performance with regard to the high recall and
precision rate, the overall Average Precision (AP) is about 88.7%.

4.1 Introduction

The extraction of information from various symbols-based and text-based traffic signs is a
key component in many applications, such as Advanced Driver Assistance Systems (ADAS),
autonomous cars, traffic surveillance and many other tasks in Intelligent Transportation
System (ITS). Though the endeavour of the automatic detection of traffic signs for the past
two decades, it is still a challenging problem due to the variations of scale, viewpoint and
illumination condition.

Generally, traffic signs are erected at the side of roads, above roads or painted on the
surface of roads. While there have a lot of works focused on the automatic detection of
symbol-based traffic signs [54–62, 64–67, 63, 68] and text-based traffic signs [95–97, 99, 101–
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103] at the side of or above roads, traffic signs painted on road surface have not been well
discussed. Different from traffic signs at the side of or above roads, the detection of traffic
signs on road surface faces more challenges, for example, larger scale and viewpoint variation,
colours fading, reflection and occlusion.

Recently, the development of deep learning has attracted lots of attention in computer
vision and pattern recognition research as more and more promising results are published on
a range of different tasks. Benefit from the huge success achieved by R-CNN [33], object
detection based on CNN has been significantly progressed. Furthermore, by introducing
RoI pooling and multi-task CNN, Fast R-CNN [34] achieves better performance and faster
speed. More specifically, Selective Search [169] is firstly applied for generated candidate
bounding boxes, which are subsequently labeled and regressed with a multi-task CNN. The
simultaneous classification and regression design results in improved performance. The
training and testing speeds are boosted up to 10 times faster.

Due to the mentioned advantages, Fast R-CNN is employed in the proposed road surface
TSD system. In order to decrease computational cost, the original region proposal method
Selective Search [169] is not adopted. Considering traffic signs are usually designed to have
rigid and simple shapes, uniform and attractive colours, MSERs [150] and Edge Boxes [153]
are applied together for taking into account the complementary information from colour and
edge. The main contributions of this research are presented as follows.

(i) Creation of a new road surface traffic sign dataset. This dataset contains 2223 images
and 4204 road surface traffic signs, which have been published to facilitate the research
and development of road surface TSD.

(ii) Introduction of a hybrid region proposal method, which takes into account the com-
plementary information from both colour and edge by applying MSERs and Edge
Boxes. The integration of these two region proposal methods improves the detection
performance.

(iii) A multi-task network based on Fast R-CNN to perform classification and bounding box
regression simultaneously. The advantages of Multi-Task Learning (MTL) include fast
detection speed and high detection performance.

The rest of this chapter is organised as follows: Section 4.2 presents the proposed road
surface traffic sign dataset; Section 4.3 gives a detailed introduction of the proposed TSD
system; experimental results are provided in Section 4.4, followed by summary in Section
4.5.
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4.2 Road Surface Traffic Sign Dataset

4.2.1 Details of Dataset

The proposed dataset is built as the following stages.

(i) A dashboard camera is set up in a car with a fixed shooting angle for capturing videos
with a resolution of 1280×720 pixels.

(ii) All the videos are decompressed and the frames that contain road surface traffic signs
are manually collected.

(iii) In order to protect privacy, all the regions with privacy information are blurred, such as
faces and vehicle license plates.

(iv) The ground-truth of all the road surface traffic sign in the images are annotated .

(v) All the annotated images are further divided into two parts, namely training and testing
sets.

Consequently, a dataset with 2223 images and 4204 road surface traffic signs are built.
The details are shown in Table 4.1. Some of the examples with different capturing conditions
are illustrated in Fig. 4.1 .

Training Testing Total
Images 1606 617 2223

Traffic signs 2996 1208 4204
Table 4.1 Details of the proposed road surface traffic sign dataset.

The traffic signs in proposed dataset have large variations in resolutions, with distribution
of resolutions provided in Table 4.2.

4.2.2 Evaluation Protocols

In order to evaluate detection performance on proposed dataset, the evaluation protocols that
adopted in PASCAL VOC object detection competition [170] are employed. Four evaluation
metrics are included, which are Intersection over Union (IoU), Precision, Recall and AP
respectively.

IoU is introduced to evaluate the predicted bounding boxes. All predicted bounding
boxes are assigned to ground-truth and discriminated to be true/false positives based on
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Fig. 4.1 Examples of the collected dataset. The annotated road surface traffic signs are
marked with red rectangles. The top row: traffic signs in easy case. The second row: traffic
signs with large resolution. The Third row: traffic signs with small resolution. The fourth
row: traffic signs with strong illumination. The bottom row: traffic signs with colour fading.
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Resolution of Traffic Signs Training Testing Total
≤ 60×60 55 28 83

60×60 ∼ 120×120 437 203 640
120×120 ∼ 180×180 775 305 1080
180×180 ∼ 240×240 718 266 984
240×240 ∼ 300×300 451 174 625
300×300 ∼ 360×360 242 112 354
360×360 ∼ 420×420 165 50 215
420×420 ∼ 480×480 122 51 173

≥ 480×480 31 19 50
Total 2996 1208 4204

Table 4.2 Details of traffic signs from the proposed road surface traffic sign dataset.

measuring bounding box overlap. For a correct detection, the overlap ratio (IoU) between
the predicted bounding box Bp and ground-truth bounding box Bgt should be at least 0.5.
The definition of IoU is formulated as:

IoU =
Area(Bp

⋂
Bgt)

Area(Bp
⋃

Bgt)
(4.1)

where Bp
⋂

Bgt and Bp
⋃

Bgt denote the intersection and union of the predicted and ground-
truth bounding boxes respectively.

Precision is defined as the proportion between all true positive samples and all predicted
samples, and Recall is defined as the proportion between all true positive samples and all
ground-truth samples. Precision and Recall are formulated as:

Precision =
|T P|
|D|

(4.2)

Recall =
|T P|
|G|

(4.3)

where T P, D and G are the sets of true positive samples, all detected samples and all
ground-truth samples respectively.

The AP collects the mean precision under different recall values, which are eleven equally
spaced recall levels [0,0.1, . . . ,1]:

AP =
1

11 ∑
r∈{0,0.1,...,1}

Pinterp(r) (4.4)

For every recall level r, the maximum precision is selected from all the precisions that
have corresponding recalls larger than r:
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Pinterp(r) = max
r̃:r̃≥r

(P(r̃)) (4.5)

where P(r̃) are all the precisions that have corresponding recalls larger than r.

4.3 Approach

The overall detection system is demonstrated in Fig. 4.2 which mainly consists of two stages.
In the first stage, candidate regions that may contain the desired traffic signs are generated by
region generators. In the second stage, all the generated regions will be passed to Fast R-CNN
[34] with following processing steps: (i) feature extraction with CNN; (ii) classification and
bounding box regression by multi-task CNN; (iii) Non-Maximal Suppression (NMS) for the
final outputs.

Fig. 4.2 System overview of the proposed TSD system.

4.3.1 Region Proposal

The first stage of the end-to-end TSD pipeline relies on the generation of candidate traffic
signs, or object proposals. Generally, a precision-recall tradeoff is required to reduce the
computational complexity. And in this system, high recall is pursued in this region proposal
stage while high precision will be achieved by rejecting false positive candidates in later
stages.

The detection targets include a number of different traffic signs, as illustrated in Fig.
4.3. Due to the difficulties such as large scale variation, viewpoint change, colours fading,
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reflection and occlusion, targets may have difference in shape, scale and colour. Therefore,
bounding boxes are combined together from two proposal methods, namely, MSERs and
Edge Boxes.

Fig. 4.3 Illustration of road surface traffic signs.

Maximally Stable Extremal Regions

MSERs [150] denote a set of outstanding regions that are proposed in an input image. The
extremal property of these regions are defined by its intensity function. More specifically,
an input image is firstly binarised using different threshold levels, and then connected
components analysis is used to find all the connected components at each threshold level.
Finally, the regions that maintain their shape and area at several thresholds are selected as
MSERs. MSERs are scale-invariant and affine-invariant. Due to these advantages, MSERs
have been broadly applied in various detection tasks, which usually have targets can be
generated by binarisation and connected components analysis.

Edge Boxes

Recently, Edge Boxes [153] has shown excellent performance comparing with widely used
method Selective Search [169]. The key intuition of EdgeBoxes is that: the number of
contours wholly covered by a bounding box is a cue of the possibility of containing object.
To be more specific, objects usually have obvious and enclosed edges. Following this
intuition, a bounding box that contains enclosed edges tends to have object inside. As road
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surface traffic signs have distinguished and sharp boundaries, it seems to be particularly true
that objects are composed of plentiful boundaries. The pipeline in [153] has the following
stages: (i) structured edge map detectors are exploited to compute dense edge response maps;
(ii) NMS is applied orthogonal to the edge response in order to find edge peaks, resulting in
sparse edge maps; (iii) for each candidate bounding box B, a score SB is assigned based on
the number of edges wholly contained within the bounding box B.

Fig. 4.4 System overview of Fast R-CNN.

4.3.2 Classification and Localisation by Fast R-CNN

R-CNN [33] has demonstrated state-of-the-art performance in PASCAL VOC object de-
tection competition [170]. However, R-CNN has its bottlenecks in three aspects: (i) high
computational cost in training and testing stages; (ii) huge storage capacity request in training
stage; (iii) separated training for classification and bounding box regression. In order to solve
the three problems, an improved scheme has been designed and proposed, which is called
Fast R-CNN [34]. With the help of MTL and Regions of Interest (RoI) pooling, the training
and testing speed is significantly improved, detection accuracy is also benefited from the new
design.

The system overview of Fast R-CNN is illustrated in Fig. 4.4. Different from R-CNN,
Fast R-CNN takes a whole image as input. In the first step, a feature map of entire input
image is extracted at the final convolution layer, with the addition of position of each
region proposal, the features of each regions are obtained. Therefore, it is not necessary to
repetitively extract features of same areas that contained by different regions, which largely
decreases computational cost. In the second step, all the feature maps are further processed
by a RoI pooling layer, which is a special case of the Spatial Pyramid Pooling [171] layer
that samples arbitrary size of region proposal to fixed size. In the third step, Fast R-CNN
performs classification and bounding box regression by a multi-task network. Therefore,
different from the separate training in R-CNN, Fast R-CNN simultaneously trains the two
tasks based on this network design. Since the entire system can be trained with standard
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back propagation, it is not necessary to store features for training classifiers like in R-CNN,
storage capacity requirement is largely reduced.

4.4 Experiments

In this section, first, implementation details will be introduced, including system setup and
network configuration. And then, the experimental results will be presented and discussed.
Finally, computational time evaluation and error evaluation will be provided.

4.4.1 Implementation Details

System Setup

To implement the road surface TSD system, a workstation with an Intel Xeon 3.3GHz CPU,
48GB memory and a NVIDIA GTX Titan GPU is employed. The programs run on a 64-bit
Windows 7 operating system with CUDA 7.5, CUDNNv5, Matlab 2015b and MatConvNet
1.0-beta23 [172] deep learning toolbox.

Network Configurations

The architecture of CNN used in the system is based on the 16-layer network (VGG16) [30],
which have demonstrated excellent performance in image classification and object detection.
The detailed network configurations are illustrated in Table 4.3. The input are RGB images
have been preprocessed to 1066×600. All the convolutional layers are activated by Rectified
Linear Unit (ReLU) [173], and zero padded for preserving dimensionality. All max pooling
layers have kernel size 2×2 and stride 2. The RoI pooling layer samples all the input feature
maps to 7×7. The first and second fully connected layers are also activated by ReLU layers,
followed by dropout [174] layers with drop rate 0.5 for preventing over-fitting.

The training of the network consists of two stages, namely, pre-training and fine-tuning.
In pre-training stage, a pre-trained VGG16 network initialised on ImageNet is loaded. The
last max pooling layer is replaced by a RoI pooling layer. And then the last fully connected
layer is replaced with a new fully-connected layer that initialised with Improved Xavier [157],
followed by softmax loss and smooth L1 loss. Furthermore, the network inputs are modified
to use information from both images and region bounding boxes in the images. In fine-tuning
stage, Stochastic Gradient Descent (SGD) is adopted to update network parameters. Each
mini-batch is constructed from 2 images, which are selected randomly and uniformly. For
each image, 16 regions have IoU ≥ 0.5 with a ground-truth bounding box are selected as
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positive samples. 48 regions have maximum IoU < 0.5 with all ground-truth bounding
boxes are selected as negative samples. Consequently, a mini-batch B with 128 samples is
constructed. Data augmentation is applied by rotating and zooming samples during training.
The learning rate η is set to be 0.01, momentum 0.9, weight decay 0.0005 and maximum
training epoch 200 as applied in [34].

Weighted layers Classification Bounding box regression
Input

1 Convolution 3×3,64
2 Convolution 3×3,64

Max pooling
3 Convolution 3×3,128
4 Convolution 3×3,128

Max pooling
5 Convolution 3×3,256
6 Convolution 3×3,256
7 Convolution 3×3,256

Max pooling
8 Convolution 3×3,512
9 Convolution 3×3,512

10 Convolution 3×3,512
Max pooling

11 Convolution 3×3,512
12 Convolution 3×3,512
13 Convolution 3×3,512

RoI pooling
14 FC 4096
15 FC 4096
16 FC 2 FC 4

Softmax loss Smooth L1 loss
Table 4.3 Network configurations of CNN used in the system.

4.4.2 Experimental Results

Performance Evaluation of Region Proposal

The recall rates for region proposal stage are shown in Fig. 4.5. At IoU threshold of
0.5, the recall rate for Edge Boxes (α = 0.75, β = 0.55, minimum score = 0.01 and
maximum boxes = 1000), MSERs and the combination of the two methods are 84.6%,
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87.6% and 92.2% respectively. Therefore, the combination of the two proposal method-
s shows boosted performance. The missed proposal regions are mainly caused by scale
variations, changes of illumination conditions and colours fading.

Fig. 4.5 Illustration of the recall rates with the changes of IoU between the range (0.1,1) for
proposed method.

The comparison of the performance with the five region proposal methods that have been
widely used is illustrated in Fig. 4.6, including MSERs applied in [56, 58, 59, 102, 103],
Selective Search applied in [33], achromatic RGB applied in [54], achromatic HSI applied
in [175] and achromatic Ohta applied in [165]. At IoU threshold of 0.5, the recall rates
are 92.2%, 87.6%, 88.7%, 68.0%, 69.7% and 69.8% respectively. The average numbers of
proposals per image are 1294, 299, 2065, 40, 39 and 39 respectively, the details are presented
in Table 4.4. Therefore, the proposed method has the highest recall rate, and the number of
region is reasonable.
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Fig. 4.6 Illustration of the recall rates with the changes of IoU between the range (0.1,1) for
the six methods.

Type Proposals/image
Ours 1294

MSERs 299
Selective Search 2065
Achromatic RGB 40
Achromatic HSI 39
Achromatic Ohta 39

Table 4.4 Average numbers of proposals per image.
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Performance Evaluation of Detection System

The Precision Recall (PR) curves for the overall system are demonstrated in Fig. 4.7. Two
experiments are set up for evaluating the performance of bounding box regression and
MTL, namely, Fast R-CNN with or without bounding box regression. As the Fig. 4.7
illustrates, the highest recall rates achieved by these two experiments are 93.3% and 92.2%
respectively. Comparing with the recall rate 92.2% obtained in region proposal stage, Fast R-
CNN with bounding box regression attains 1.1% improvement, which indicates that bounding
box regression indeed improves performance, regions with low IoU value: (< 0.5) can be
regressed to have higher IoU value: (> 0.5). On the other hand, by introducing MTL for
bounding box regression, the precision of multi-task CNN is also higher than single-task
CNN, which proofs that MTL is able to improve classification accuracy. The APs of the two
experiments are 88.7% and 87.2% respectively.

Fig. 4.7 Illustration of PR curves for the proposed system.

The comparison of the performance with the five widely used detection systems have been
illustrated in Table 4.5, including R-CNN [33], HOG + SVM [56], Haar + AdaBoosting [50]
and ACF + AdaBoosting [66]. As the Table 4.5 shows, R-CNN achieves similar performance
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to the system (Fast R-CNN), however, the training and testing speed of R-CNN is much
slower. On the other hand, the detection systems HOG + SVM [56], Haar + AdaBoosting
[50] and ACF + AdaBoosting [66] are faster, however, due to the weak representative power
of the features, the performance of these systems are much lower.

Method AP
Ours (Fast R-CNN) 88.7%

R-CNN (CNN + MLP) [33] 87.5%
R-CNN (CNN + SVM) [33] 78.3%

HOG + SVM [56] 45.6%
Haar + AdaBoosting [50] 42.5%
ACF + AdaBoosting [66] 51.3%

Table 4.5 Performance comparison of the six detection systems.

4.4.3 Computational Time Evaluation

The detailed computational time are presented in Table 4.6. For each input image, the
average computational times (ms) are 2124, 2483, 2539, 653, 243 and 352 for the proposed
system, R-CNN, HOG + SVM [56], Haar + AdaBoosting [50] and ACF + AdaBoosting [66]
respectively.

4.4.4 Error Evaluation

Although good performance has been achieved on the road surface traffic sign dataset, there
still exists missing detections, which are mainly caused by scale variations, changes of
illumination and colours fading. Some of the examples are shown in Fig. 4.8. Since the
recall rate of regions proposal is only about 92.2%, region proposal is the bottleneck of the
proposed system.

4.5 Summary

In this chapter, a road surface traffic sign detection system is proposed, with main con-
tributions including: (i) a hybrid region proposal method which takes into account the
complementary information of colour and edge; (ii) fast R-CNN to perform classification
and bounding box regression simultaneously. By combining two popular region proposal
methods, namely MSERs and Edge Boxes, high recall rate is ensured in region proposal
stage. As the features extracted from CNN are discriminative, high recall and precision rates
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Method Stage Time (ms)
Ours (Fast R-CNN) Region proposal 898

Classification 1226
Total 2124

R-CNN (CNN + MLP) [33] Region proposal 898
Preprocessing 1035
Classification 550

Total 2483
R-CNN (CNN + SVM) [33] Region proposal 898

Preprocessing 1035
Classification 606

Total 2539
HOG + SVM [56] Region proposal 165

Preprocessing 475
Classification 13

Total 653
Haar + AdaBoosting [50] Detection 243
ACF + AdaBoosting [66] Detection 352

Table 4.6 Computational time analysis of widely used detection systems.

Fig. 4.8 Examples of failed detections.



52 Road Surface Traffic Sign Detection with Fast R-CNN

of the entire system are achieved on collected dataset. Comparing with the five widely used
methods, the system achieves highest AP, and comparable computational time.



Chapter 5

Traffic Sign Recognition with
Convolutional Neural Networks

Recognition of traffic signs have been studied for more than two decades, and numbers
of machine learning methods have been adopted, such as Random Forest (RF), Support
Vector Machine (SVM), Multi-Layer Perception (MLP) and Convolutional Neural Network
(CNN). Among all of the methods, CNNs demonstrate dominant performance due to the
generalisation ability and learning capacity. In this chapter, traffic signs are recognised with
the most influencing CNN architectures, including the very deep networks, residual networks
and dense networks. Extensive experiments are presented and discussed based on different
training algorithms, such as weight initialisation, regularisation and optimisation.

5.1 Introduction

Traffic Sign Recognition (TSR) with computer vision and machine learning methods is a
key component with respect to many applications. Recognition of traffic signs allows a
driver to be warned of inappropriate actions and potential dangers. In 2011, with the advent
of public benchmark dataset GTSRB [22] that provides a number of difficult challenges
such as viewpoint variation, poor illumination condition, motion-blur, occlusion, colours
fading, and low resolution, the recognition of traffic signs has been significantly developed. A
number of excellent approaches have been reported in the literatures [18–23], and CNNs have
achieved the best performance due to the discriminative features. Later, in 2012, the 8-layer
AlexNets proposed in [29] attracted extraordinary interests in computer vision and machine
learning field by displaying significantly improved performance on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [176, 177]. Following the huge success achieved in
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ILSVRC 2012, CNNs have been extended to various tasks, such as object detection [33–35]
and image segmentation [178], and more and more promising results have been conducted
based on a range of different benchmarks.

In this chapter, traffic signs will be recognised with CNN architectures that have been
widely used, including CNNs [19], VGGNets [30], ResNets [32] and DenseNets [164].
Extensive experiments will be presented and discussed based on different weight initialisation
algorithms, normalisation layers, regularisation strategies and optimisation algorithms. The
rest of this chapter is organised as follows: Section 5.2 introduces the basic blocks of CNNs;
Section 5.3 gives brief introduction of the most influencing CNN architectures; Section 5.4
summarises regularisation strategies for improving model generalisation ability; Section 5.5
illustrates optimisation algorithms of gradient descent; experiments will be presented and
discussed in Section 5.6, followed by summary in Section 5.7.

5.2 Network Blocks

As the name indicate, convolutional networks [179] or CNNs, are a special kind of neural
networks that process data by applying matrix convolution operation instead of matrix
multiplication. Simply, CNNs are a sequence of layers that perform one operation to another
through different functions. There are five kinds of layers that have been widely applied,
including weight, pooling, activation, normalisation and loss layers. The individual network
blocks in CNNs are detailed in Appendix A.1

Weight layers contain parameters that can be used to apply mathematical operations such
as matrix convolution and multiplication. Depending on the intersections between inputs
and outputs, there are three kinds of widely used weight layers, namely, convolution layer,
convolution transpose layer and fully-connected layer.

The weight layers performs a set of linear activation. In order to construct nonlinear
models, nonlinear activation layers should be introduced. Originally, sigmoid and hyperbolic
tangent functions are often applied in neural networks. However, these activation functions
face serious gradient vanishing problem as depth of neural network becomes deeper and
deeper. Currently, Rectified Linear Unit (ReLU) [173] is normally adopted as activation
function in deep models, because of the advantages such as sparse activation, scale invariant,
efficient gradient propagation and efficient computation.

Typically, a convolutional block consists of three layers, namely, convolution, nonlinear
activation and pooling. Pooling layer aims to further refine the input features at each certain
location by summarising a statistic around it. Due to the working principle of pooling, the
output features may invariant to small translation of the input features. This is a very useful
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property if feature content is more important than feature location. Since pooling summarises
the features over a nearby extent, the dimension of features is also reduced, this improves the
computational efficiency of the next layers. Furthermore, in some models, the input data has
varying size and pooling is essential in these networks.

Normalisation for input data, or known as preprocessing is an essential procedure in many
computer vision applications. For example, images are usually normalised into reasonable
ranges such as [−1,1] or [0,1]. Moveover, normalisation layers inside neural networks are
also very important for improving generalisation and convergence. In CNNs, there are two
main normalisation layers, namely Local Response Normalisation (LRN) [29] and Batch
Normalisation (BN) [158].

The function that minimised or maximised by model is called the objective function. If
the model is aim to minimise the objective function, it is also called loss function or cost
function. The choice of a loss function in the design of a CNN is very important. Fortunately,
the design of loss function of a CNN can be largely inspired by lots of parametric models.

5.3 Network Architectures

Four most famous CNN architectures are applied in this chapter, namely CNNs [19], VG-
GNets [30], ResNets [32] and DenseNets [164]. Inspired by the famous LeNet-5 [180]
that developed for handwritten zip code digits recognition, CNNs [19, 20] are also applied
for TSR and achieved the best performance on GTSRB in 2011. The VGGNets [30] with
network depth from 11 to 19 are developed by VGG from Oxford. These networks have
prove the importance of network depth of CNNs. The ResNets [32, 161] are developed for
solving the degradation problem [159, 160]: with the increasing of network depth, accuracy
becomes statured and then degraded. Recently, short path from early layers to later layers
have been widely adopted in a number of CNN architectures, such as Highway Networks
[159], ResNets [32], Stochastic Depth Networks [162], FractalNets [163] and DenseNets
[164]. Among all these networks, DenseNets achieve the maximum information flow inside
the networks, each layer receives inputs from all preceding layers and passes to all subsequent
layers. The details of the architectures are presented in Appendix A.2

5.4 Network Regularisation

How to achieve good performance on testing data, not just on training data is a key problem in
machine learning field. The strategies that explicitly designed to increase testing performance
are collectively known as regularisation. The widely used regularisation strategies in deep
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learning are presented in Appendix A.3, including data argumentation, dropout, parameter
norm penalty and early stopping.

5.5 Network Optimisation

Generally, most of deep learning algorithms are involved with optimisation that aims to
minimise or maximise given objective functions f (x). However, minimisation algorithms
are normally focused, because maximisation can be accomplished by minimising − f (x).
For example, in the training of CNNs, gradient based optimisations are usually applied, and
gradient descent is used to minimise the loss functions. More specifically, giving an input x, a
CNN predicts an output ŷ through forward propagation. With a target value y, the loss value
J(θ) can be calculated. And then, the gradients from output layer to input layer are computed
by back propagation [181]. Finally, gradient descent is adopted to update parameters of each
layer of the CNN. The most used gradient descent algorithms are presented in Appendix A.4.

5.6 Experiments

In this section, first, the system environment for implementing all the TSR systems will be
introduced. And then, the dataset employed in the experiments will be presented. Finally, the
results of all the implemented TSR systems will be provided and discussed.

5.6.1 System Environment

In order to implement all the TSR systems, a desktop with an Intel 3.5GHz CPU, 32GB
memory and a NVIDIA GTX Titan GPU is employed. All the programs run on a 64-bit
Windows 10 operating system with CUDA 8.0, CUDNNv5.1, Matlab 2017a and MatConvNet
1.0-beta24 [172] deep learning toolbox.

5.6.2 Dataset Details

German Traffic Sign Recognition Benchmark

The GTSRB [22] is the most famous traffic sign dataset that has been published at IJCNN
2011. It contains 51839 traffic sign images that belong to 43 classes. Some examples of the
traffic signs are illustrated in Fig. 5.1. The class distribution of the GTSRB is given in Fig.
5.2.
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Fig. 5.1 Examples of the 43 traffic sign classes of the GTSRB.

The 51839 traffic sign images are collected from more than 1,700 traffic sign instances.
The traffic signs are not necessarily squared, and their sizes vary from 15×15 to 222×193.
The resolution distribution of the GTSRB is given in Table 5.1. Each image has a border of
10% (at least 5 pixels) around the traffic sign to allow for edge-based approaches. Finally, all
the traffic signs are randomly split into two subsets, which are training set and testing set that
contain 39209 and 12630 traffic signs respectively.

Resolution of traffic signs Training Testing Total
≤ 25 117 40 157
≤ 35 11793 3970 15763
≤ 45 10604 3333 13937
≤ 55 6416 2063 8479
≤ 65 3791 1168 4959
≤ 75 2198 669 2867
≤ 85 1313 435 1748
≤ 95 907 294 1201
> 95 2070 658 2728
Total 39209 12630 51839

Table 5.1 Resolution distribution of the GTSRB (in pixel).
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Data Preprocessing

The data preprocessing is applied based on three steps. First, the borders of all the traffic signs
are removed according to the annotations. And then, based on the resolution distribution of
the GTSRB, all the cropped traffic signs are resized to 48×48×3 pixels. In other wards, the
traffic signs are processed to have square bounding boxes. Finally, the colour normalisation
of the traffic signs is utilised by linearly scaling all the pixels to the range [−1,1].

Fig. 5.2 Relative class frequencies of the GTSRB. The class ID is enumerated the classes in
Fig. 5.1 from top-left to bottom-right.

5.6.3 Performance Evaluation

The results of the experiments will be presented in detail in this section. The comparative ex-
periments are implemented based on different network architectures, regularisation strategies
and optimisation algorithms. For all the experiments, data argumentation is not applied, and
the generalisation ability is imposed via network architectures and some other regularisation
strategies, including parameter norm penalty and dropout. In order to achieve more accurate
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results, all the experiments with same setups are utilised for 10 times, and the experiments
with the best performance will be presented. Except as otherwise indicated, all the training
configurations are the same as Table 5.2.

Batch size 128
Epoch 10

Learning rate
10 logarithmically equally spaced points

between the values: 10−2 and 10−3.
Parameter initialisation Improved Xavier [157]

Regularisation
L2 parameter regularisation with value: 0.0005

Dropout: 0.5

Optimisation
Momentum optimisation algorithm

with momentum factor: 0.9
Table 5.2 The training configurations of all the experiments.

Network Architectures

First, the comparative experiments are presented and discussed based on the four famous
network architectures listed as follows.

(i) PlainNets-5 from [20], as shown in Table 5.3;

(ii) PlainNets-7 similar to VGGNets [30], as shown in Table 5.4;

(iii) PlainNets-10/18/34 and ResNets-10/18/34 from [32], the details have been displayed
in Tabel 5.5;

(iv) DenseNets-16/27/38 illustrated in Table 5.6, which are based on the networks in [164].

For all the experiments, the size of mini-batch B is set to be 64, learning rate η is sampled
from 10 logarithmically equally spaced points between 10−1 to 10−1.5, L2 regularisation
value is chosen to 0.0001, and dropout is not applied so that the regularisation mainly depends
on the design of network architectures.

The first networks are PlainNets-5 that are similar to the famous LeNet-5 [180]. Three
PlainNets-5 with different width are employed, as shown in Table 5.3. According to the
training loss and error in Fig. 5.3a and 5.3c, all of the three networks have similar convergence
rates in the training stage, the optimiser is able to find a good solution within 4 epoches every
time. The final testing error for the PlainNets-5 (25-50-100, 50-100-200, 100-150-250) are
also similar, which means that the networks have similar generalisation abilities. Considering
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Layer name Output size PlainNet-5
Conv_1 42×42 7×7,25 7×7,50 7×7,100
Pool_1 21×21 2×2 max poling with stride 2
Conv_2 18×18 4×4,50 4×4,100 4×4,150
Pool_2 9×9 2×2 max poling with stride 2
Conv_3 6×6 4×4,100 4×4,200 4×4,250
Pool_3 3×3 2×2 max poling with stride 2

Fully-connected_1 1×1 3×3,256
Fully-connected_2 1×1 1×1,43

Softmax 1×1
Table 5.3 The architectures of PlainNets-5 for experiments. Each Conv_x corresponds to the
stacked layers (Conv-BN-ReLU). The Fully-connected_1 corresponds to the stacked layers
FC-BN-ReLU.

Layer name Output size PlainNet-7
Conv_1 48×48 3×3,8 3×3,16 3×3,32 3×3,64
Pool_1 24×24 2×2 max poling with stride 2
Conv_2 24×24 3×3,16 3×3,32 3×3,64 3×3,128
Pool_2 12×12 2×2 max poling with stride 2
Conv_3 12×12 3×3,32 3×3,64 3×3,128 3×3,256
Pool_3 6×6 2×2 max poling with stride 2
Conv_4 6×6 3×3,64 3×3,128 3×3,256 3×3,512
Pool_4 3×3 2×2 max poling with stride 2

Fully-connected_1 1×1 3×3,1024
Fully-connected_2 1×1 1×1,256
Fully-connected_3 1×1 1×1,43

Softmax 1×1
Table 5.4 The architectures of PlainNets-7 for experiments. Each Conv_x corresponds to the
stacked layers (Conv-BN-ReLU). The Fully-connected_1 and Fully-connected_2 correspond
to the stacked layers (FC-BN-ReLU).
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.3 Training details of PlainNets-5 with different width.



62 Traffic Sign Recognition with Convolutional Neural Networks

(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.4 Training details of PlainNets-7 with different width.
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both computational cost and generalisation ability, the PlainNet-5 (50-100-200) is slightly
better than the other two networks.

The second networks are PlainNets-7 that are similar to the famous VGGNets [30]. Four
PlainNets-7 with different width are employed, as shown in Table 5.4. The training loss
and error are illustrated in Fig. 5.4a and 5.4c, and testing loss and error are illustrated in
Fig. 5.4b and 5.4d. As these figures indicate, all of the four networks have similar training
speed and have finished the training within 5 epoches. Moreover, the testing error of the
PlainNets-7 (8-16-32-64, 16-32-64-128, 32-64-128-256, 64-128-256-512) decreases with
the increasing of the width of networks. Therefore, PlainNet-7 (64-128-256-512) achieves
the highest accuracy in the four networks. In fact, it also demonstrates the best performance
among all the network architectures in this section.

Layer name Output size 10-layer 18-layer 34-layer
Conv_1 48×48 3×3,8K

Conv_2_x 24×24
[

3×3,8K
3×3,8K

]
×1

[
3×3,8K
3×3,8K

]
×2

[
3×3,8K
3×3,8K

]
×3

Conv_3_x 12×12
[

3×3,16K
3×3,16K

]
×1

[
3×3,16K
3×3,16K

]
×2

[
3×3,16K
3×3,16K

]
×4

Conv_4_x 6×6
[

3×3,32K
3×3,32K

]
×1

[
3×3,32K
3×3,32K

]
×2

[
3×3,32K
3×3,32K

]
×6

Conv_5_x 3×3
[

3×3,64K
3×3,64K

]
×1

[
3×3,64K
3×3,64K

]
×2

[
3×3,64K
3×3,64K

]
×3

Classification 1×1
BN, ReLU

3×3 global average pooling with stride 3
43D fully-connected, softmax

Table 5.5 The architectures of PlainNets-10/18/34 and ResNets-10/18/34 for experiments.
The stacked layers (BN-ReLU-Conv-BN-ReLU-Conv) are shown in brackets, followed by
the stacked numbers. The convolutional strides of Conv_2_1, Conv_3_1, Conv_4_1 and
Conv_5_1 are 2 for down sampling. The width of the networks is controlled by the factor K
with possible values 1, 2, 4 and 8.

The third networks are composed of two kinds of network architectures, including
common PlainNets without shortcut connections, and PlainNets with shortcut connections
that also known as ResNets [32]. Three different network depth are employed, which are
10, 18 and 34 respectively. In order to figure out the detailed relationship between network
depth, width and performance, a factor K is introduced for controlling the width of networks.
The networks with different depth and width are shown in Table 5.5.

The training and testing details of PlainNets-10/18/34 with K = 8 have been illustrated
in Fig. 5.5. The curves in Fig. 5.5d indicate that deeper plain networks have higher testing
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.5 Training details of PlainNets-10/18/34.



5.6 Experiments 65

(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.6 Training details of ResNets-10/18/34.
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error than shallower plain networks, especially the PlainNet-34 has much higher testing
error than PlainNet-10 and PlainNet-18. To reveal the reasons, the training error in Fig.
5.5c can be compared, and it is obvious that PlainNet-34 also has higher training error than
PlainNet-10 and PlainNet-18. Therefore, the degradation problem already appears. Because
all the networks are trained with BN layers, which ensure forward propagated features and
backward propagated gradients have healthy values. It can be argued that this degraded
performance is nearly impossible to be caused by gradient vanishing. In fact, at the end of
the training, PlainNet-34 is still able to converge and achieve not much degraded accuracy,
which means that the optimiser still works but the convergence rate is largely decreased by
the deep and plain network architecture.

The training and testing details of ResNets-10/18/34 with K = 8 have been illustrated in
Fig. 5.6. By introducing residual learning, the training speed of ResNet-34 is significantly
increased, the ResNets-10/18/34 become have similar training speed and error. Moreover,
although residual learning does not bring deeper networks better testing error, all the networks
achieve comparable testing error, which means the degradation problem is well addressed.

Layer name Output size 16-layer 27-layer 38-layer
Convolution 24×24 3×3,2G with stride 2

Dense_Block_1 24×24
[
3×3 conv

]
×2

[
3×3 conv

]
×4

[
3×3 conv

]
×6

Transition_Block_1
24×24 1×1 conv
12×12 2×2 average poling with stride 2

Dense_Block_2 12×12
[
3×3 conv

]
×2

[
3×3 conv

]
×4

[
3×3 conv

]
×6

Transition_Block_2
12×12 1×1 conv
6×6 2×2 average poling with stride 2

Dense_Block_3 6×6
[
3×3 conv

]
×4

[
3×3 conv

]
×8

[
3×3 conv

]
×12

Transition_Block_3
6×6 1×1 conv
3×3 2×2 average poling with stride 2

Dense_Block_4 3×3
[
3×3 conv

]
×3

[
3×3 conv

]
×6

[
3×3 conv

]
×6

Classification 1×1
BN, ReLU

3×3 global average pooling with stride 3
43D fully-connected, softmax

Table 5.6 The architectures of DenseNets-16/27/38 for experiments. The conv stands for
composite layers (BN-ReLU-Conv), and the numbers followed by the brackets are the stacked
numbers. The width of the networks is controlled by the stacked numbers of dense blocks
and the growth rate G with possible values 8, 16 and 32.

The final networks are DenseNets-16/27/38 that built based on the original DenseNets
[164]. The networks with different depth and width are shown in Table 5.6. G is the growth
rate that is able to control the width of networks. The training details of DenseNets-16/27/38
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.7 Training details of DenseNets-16/27/38 with different width.
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Network name Average top-1 testing error Lowest top-1 testing error
PlainNet-5 (25-50-100) 1.54% 1.39%
PlainNet-5 (50-100-200) 1.51% 1.29%
PlainNet-5 (100-150-250) 1.53% 1.36%
PlainNet-7 (8-16-32-64) 2.38% 1.52%
PlainNet-7 (16-32-64-128) 1.63% 1.35%
PlainNet-7 (32-64-128-256) 1.60% 1.24%
PlainNet-7 (64-128-256-512) 1.51% 1.14%
PlainNet-10 (K = 1) 3.01% 2.32%
PlainNet-10 (K = 2) 2.66% 2.26%
PlainNet-10 (K = 4) 2.10% 1.82%
PlainNet-10 (K = 8) 1.98% 1.68%
PlainNet-18 (K = 1) 3.69% 3.06%
PlainNet-18 (K = 2) 2.86% 2.44%
PlainNet-18 (K = 4) 2.66% 2.26%
PlainNet-18 (K = 8) 2.78% 2.23%
PlainNet-34 (K = 1) 7.24% 5.08%
PlainNet-34 (K = 2) 6.32% 5.00%
PlainNet-34 (K = 4) 6.07% 4.77%
PlainNet-34 (K = 8) 8.00% 4.88%
ResNet-10 (K = 1) 2.95% 2.53%
ResNet-10 (K = 2) 2.52% 2.27%
ResNet-10 (K = 4) 2.06% 1.79%
ResNet-10 (K = 8) 2.00% 1.87%
ResNet-18 (K = 1) 2.75% 2.29%
ResNet-18 (K = 2) 2.33% 1.92%
ResNet-18 (K = 4) 1.92% 1.43%
ResNet-18 (K = 8) 1.94% 1.58%
ResNet-34 (K = 1) 2.65% 2.21%
ResNet-34 (K = 2) 2.36% 1.83%
ResNet-34 (K = 4) 2.18% 1.78%
ResNet-34 (K = 8) 2.19% 2.10%
DenseNet-16 (G = 8) 3.14% 2.24%
DenseNet-16 (G = 16) 2.01% 1.54%
DenseNet-16 (G = 32) 2.15% 1.84%
DenseNet-27 (G = 8) 2.20% 1.84%
DenseNet-27 (G = 16) 1.92% 1.52%
DenseNet-27 (G = 32) 2.10% 1.77%
DenseNet-38 (G = 8) 2.39% 1.71%
DenseNet-38 (G = 16) 2.05% 1.56%
DenseNet-38 (G = 32) 2.37% 1.54%

Table 5.7 The performance of all the network architectures. The networks achieve the best
performance are highlighted with bold font.
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with G = 32 have been illustrated in Fig. 5.7. Based on the observation of the training and
testing error, it can be concluded that degradation problem has not been found in DenseNets.
The convergence rates of DenseNets are also not visibly affected by the depth of networks.
These are benefited from the special design of DenseNets, which allows each layer receives
inputs from all preceding layers and passes to all subsequent layers. Therefore, feature reuse
exists everywhere inside DenseNets. The reuse of feature makes DenseNets very compact in
network parameters. Furthermore, the compact network architecture significantly improves
parameter efficiency. High parameter efficiency ensures less parameter number, resulting in
less overfitting and better generalisation ability.

Finally, the performance of all the network architectures are summarised and displayed
in Table 5.7. Three major observation can be found from Table 5.7, first, the testing error of
PlainNets-34 is much higher than other networks. It is not caused by overfitting, because the
network parameters of PlainNets-34 are less than ResNet-34. Therefore, the PlainNets-34
faces serious degradation problem. Second, with the help of shortcut connections, both
ResNets and DenseNets ease the degradation problem well. These networks can achieve
similar performance no matter how deep the networks are. Finally, the PlainNets-5 and
PlainNets-7 achieve excellent performance even though the depth of these networks are
relatively shallow. In particular, PlainNet-7 (64-128-256-512) achieves the lowest testing
error which is 1.14%. This is because that the GTSRB is not such hard, so that simple
networks can achieve good performance. On the other hand, the degradation problem is not
totally solved. Further improvement should be made to enhance network architecture.

Parameter Initialisation Methods

Three parameter initialisation methods are employed, namely Gaussian distribution, X-
avier[156] and Improved Xavier[157]. For the gaussian distribution initialisation, the parame-
ters are sampled from [−0.02,0.02]. The employed network is PlainNet-7 (64-128-256-512)
that has been shown in Table 5.4.

The training details are illustrated in Fig. 5.8, and the testing error is given in Table 5.8.
The results indicate that the three parameter initialisation methods have nearly the same
performance in training stage. Subsequently, in testing stage, Improved Xavier[157] gives
the best average testing error 1.58% while Gaussian distribution achieves the lowest testing
error 1.24%, and Xavier shows a little lower performance. Combining both the average and
lowest testing error, Improved Xavier slightly outperforms the other two methods.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.8 Training details of PlainNets-7 (64-128-256-512) with the three parameter initialisa-
tion methods.
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Method Average top-1 testing error Lowest top-1 testing error
Gaussian 1.60% 1.24%
Xavier 1.72% 1.57%

Improved Xavier 1.58% 1.35%
Table 5.8 The performance of the networks with the three parameter initialisation methods.

Nonlinear Activation Layers

The sigmoid function and ReLU [173] are employed as nonlinear activation functions
respectively. The employed network is PlainNet-7 (64-128-256-512) that has been shown in
Table 5.4.

The training details are illustrated in Fig. 5.9, and the testing error is given in Table
5.9. As Fig. 5.9a to 5.9d illustrate, the convergence rate of the network with sigmoid
function is much slower than the network with ReLU, and the optimiser fails to find a
good solution within 10 epoches. Therefore, the sigmoid function causes serious gradient
vanishing problem. It is important to notice that BN layers have been employed in all of
these networks, so that the gradient vanishing problem has already been partially overcame.
Without the help of BN layers, the gradient vanishing problem caused by sigmoid function
should be more serious. For this reason, sigmoid function should be carefully applied in deep
CNNs.

Method Average top-1 testing error Lowest top-1 testing error
Sigmoid 9.42% 8.86%
ReLU 1.58% 1.35%

Table 5.9 The performance of the networks with the two nonlinear activation functions.

Batch Normalisation

The performance of networks with or without BN [158] is presented here. The applied
network is PlainNet-7 (64-128-256-512) that has been shown in Table 5.4.

The training details are illustrated in Fig. 5.10, and the testing error is given in Table 5.10.
The results in Fig. 5.10a and 5.10c show that BN indeed boosts training speed. The network
with BN is able to finish the training by only 5 epoches, while the network without BN takes
10 epoches to find the solution. Moreover, the results in Fig. 5.10b and 5.10d indicate that
BN also provides lower testing error. This is benefited from its strong regularisation ability,
because the features of a training example are affected by the randomly created mini-batch.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.9 Training details of PlainNets-7 (64-128-256-512) with the two nonlinear activation
functions.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.10 Training details of PlainNets-7 (64-128-256-512) with or without BN.
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Method Average top-1 testing error Lowest top-1 testing error
Without BN 4.28% 3.90%

With BN 1.58% 1.35%
Table 5.10 The performance of the networks with or without BN.

Parameter Norm Penalties

Three parameter norm penalty strategies are applied, including no penalty, L1 and L2. The L1

value is 0.0001 and L2 value is 0.0005. The employed network is PlainNet-7 (64-128-256-
512) that has been shown in Table 5.4.

The training details are illustrated in Fig. 5.11, and the testing error is given in Table
5.11. It is interesting that the networks with L2 penalty achieve the best average testing error
1.58%, and the network without any penalty provides the lowest testing error 1.31%. The
best average testing error of L2 penalty means it truly provides regularisation, and the lowest
testing error achieved by no penalty indicates that the existing regularisation of networks is
already quite strong. On the other hand, the testing loss and error of network with L1 penalty
are extremely unstable. Due to the principle of L1 penalty, it trends to make the network
parameters sparse, resulting in sparse features. The sparse features maybe incompatible with
the networks.

Method Average top-1 testing error Lowest top-1 testing error
No penalty 1.64% 1.31%

L1 4.90% 2.61%
L2 1.58% 1.35%

Table 5.11 The performance of the networks trained with the three parameter norm penalties.

Dropout

The performance of networks with or without dropout [174] is presented here. The applied
network is PlainNet-7 (64-128-256-512) that has been shown in Table 5.4.

The training details are illustrated in Fig. 5.12, and the testing error is given in Table 5.12.
Obviously, networks with dropout provide lower testing error due to its strong regularisation.
However, the results in Fig. 5.12a and 5.12c show that network without dropout is able to
converge within 3 epoches, while network with dropout needs 5 epoches. Therefore, dropout
can provide strong regularisation, but it also decreases training speed.
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(a) Training loss (b) testing loss

(c) Training error (d) Testing error

Fig. 5.11 Training details of PlainNets-7 (64-128-256-512) with the three parameter norm
penalties.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.12 Training details of PlainNets-7 (64-128-256-512) with or without dropout.
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Method Average top-1 testing error Lowest top-1 testing error
Without dropout 3.04% 2.48%

With dropout 1.58% 1.35%
Table 5.12 The performance of the networks with or without dropout.

Optimisation Algorithms

In order to demonstrate a detailed comparison, seven optimisation algorithms are employed,
namely SGD, Momentum (α = 0.9) [182], Nesterov (α = 0.9) [183], Adagrad (ε = 10−10)
[184], RMSprop (α = 0.99,ε = 10−8) [185], Adadelta (α = 0.9,ε = 10−6) [186] and Adam
(α = 0.9,β = 0.999,ε = 10−8) [187]. The applied network is PlainNet-7 (64-128-256-512)
that has been shown in Table 5.4.

The training details are illustrated in Fig. 5.13, and the testing error is given in Table
5.13. First, it is clear that SGD provides very slow training speed, and it fails to find a good
solution within 10 epoches. Second, Momentum significantly increases the training speed of
SGD, and then Nesterov further boosts the training speed of Momentum. The testing loss and
error of both the two algorithms are very stable during the training. The final testing error is
also comparable with other optimisation algorithms. Third, Adagrad demonstrates the fastest
training speed and achieves the lowest testing error 0.7%. The training of Adagrad is rapidly
stopped after about 2 epoches, which is accords with its characteristic. Fourthly, RMSprop
and Adadelta display fast training speed in the early and middle stage, however, the testing
error is not stable at the end of the training. Finally, Adam shows improved performance than
SGD, however, it does not outperform the other optimisation algorithms in the experiments.

Method Average top-1 testing error Lowest top-1 testing error
SGD 16.68% 15.22%

Momentum 1.58% 1.35%
Nesterov 1.32% 1.21%
Adagrad 0.87% 0.70%

RMSprop 1.96% 1.61%
Adadelta 1.14% 0.78%

Adam 1.89% 1.53%
Table 5.13 The performance of the networks trained with the seven optimisation algorithms.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 5.13 Training details of PlainNets-7 (64-128-256-512) with the seven optimisation
algorithms.



5.7 Summary 79

5.7 Summary

In this chapter, traffic signs are recognised with various CNN architectures that have been
widely used, including CNNs [19], VGGNets [30], ResNets [32] and DenseNets [164].
Extensive experiments have been presented and discussed based on different network archi-
tectures, parameters initialisation methods, network layers, parameter norm penalty strategies
and optimisation algorithms. For network architectures, the very deep plain networks show
larger training and testing error than shallow plain networks, which indicates the degradation
problem maybe appear when the networks have very deep depths. In order to ease this
problem, shortcut connections have been applied in ResNets and DenseNets, resulting in
better performance. For parameter initialisation methods, normalised parameters demonstrate
good training speed and generalisation ability. For network layers, ReLU, dropout and BN
layers show better performance in training speed and generalisation ability. The classical acti-
vation function sigmoid should be carefully applied, it shows significantly gradient vanishing
problem in very deep networks. For parameter norm penalty strategies, the L2 penalty shows
better regularisation ability. For optimisation algorithms, Adagrad demonstrates the fastest
training speed and achieves the lowest testing error in the experiments. On the other hand,
SGD provides very slow training speed, and the networks fail to converge in the experiments,
therefore, SGD should be carefully applied in the training of deep CNNs.





Chapter 6

Traffic Sign Recognition with Novel
Convolutional Neural Networks

Deep Convolutional Neural Network (CNN)s have achieved excellent performance in Traffic
Sign Recognition (TSR). However, the construction and training of deep CNNs still remain
problems. In this chapter, traffic signs are recognised with new CNNs, which are trained by
new strategies or constructed by new network architectures. First, different from the most
existing approaches that apply single level classifiers for TSR, a hierarchical classification
system is applied for improving the performance of TSR. Second, unsupervised feature
learning is a challenge in computer vision. By introducing Generative Adversarial Networks
(GANs), a TSR system is proposed based on features that are learnt without labels. Third, in
comparison with previous CNNs that only apply max pooling for reducing feature dimension,
a novel layer is proposed, which applies Max Pooling Positions (MPPs) of max pooling as
information for sparse feature learning. Finally, in order to overcome gradient vanishing
and degradation problems, a novel CNN architecture design that learns with multiple loss
functions is developed. The performance of the proposed methods are verified on the German
Traffic Sign Recognition Benchmark (GTSRB), and excellent results have been achieved.

6.1 Introduction

Traffic Sign Recognition (TSR) is a challenging machine learning and computer vision
problem [22]. First, it is a multi-class classification problem that involves with not only im-
balanced data, but also very small inter-class difference. Second, in real-world environments,
traffic signs have very large variability in their appearance due to illumination changing,
shooting angle variations, partial occlusions, weather conditions and colour fading. Finally,



82 Traffic Sign Recognition with Novel Convolutional Neural Networks

accuracy and real-time capability also should be ensured as TSR are usually applied in real
world applications, such as ADAS and autonomous cars.

In order to be easily noticed and understood by pedestrian and driver, traffic signs are
designed to have visible appearance that is combined with colour, shape, icon and text. This
kind of design principle allows to create a large number of traffic signs, which can be read
with a simple glance. Generally, traffic signs can be divided into three big subsets, including
prohibitory signs, mandatory signs and danger signs. Signs from different subsets usually
have large variations in appearance. However, signs from same subset may share many
similarities, which makes they are easily confused with each other during classification. Due
to the large intra-class difference and small inter-class similarity, a hierarchical classification
TSR system is developed by integrating multiple level CNNs.

Recently, supervised learning based on CNNs has been widely applied in a lot of com-
puter vision applications. However, unsupervised learning with CNNs has attracted much
less attention because of its difficult. Moreover, for the most existing TSR methods [18–23],
supervised leaning are also dominate methods. Therefore, TSR system are applied with unsu-
pervised features based on the GANs, including Deep Convolutional Generative Adversarial
Networks (DCGANs) [188] and Wasserstein Generative Adversarial Networks (WGANs)
[189].

Despite CNN based methods have achieved excellent performance, exploring, understand-
ing and interpreting the internal working principles of CNNs are still elusive problems to
researchers. Some recent methods apply recognition tasks by the visualisation and activation
CNN models [190–192, 155]. Inspired by these approaches, an novel layer is proposed by
applying MPPs as information for sparse feature learning. Due to the powerful feature learn-
ing ability, CNNs usually generate overcomplete and redundant features, which may cause
overfitting. With the help of proposed sparse layer, unnecessary features can be effectively
removed, leading to improved performance.

Generally, deeper CNNs generate more discriminative features than shallower CNNs
[30]. However, the training of deep CNNs face problems. The first problems are gradient
vanishing and exploding [156]. Fortunately, with the help of BN [158], the problems of
feature forward propagation and gradient backward propagation have been largely eased.
The second critical problem is degradation [32], which have been discussed by shortcut
connections in many approaches, such as Highway Networks [159], ResNets [32, 161],
Stochastic Depth Networks [162], FractalNets [163] and DenseNets [164]. In order to deal
with these training problems, an alternative design is proposed, which employs multiple loss
functions for training CNNs.

The main contributions in this chapter are listed as follows.
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(i) A TSR system based on hierarchical classification, which improves performance by
recognising different subsets of traffic signs at different levels.

(ii) A TSR system base on classifiers trained with unsupervised features that are learnt by
GANs.

(iii) A novel sparse layer based on MPPs, which is able to learn sparse feature and improve
classification performance effectively.

(iv) A novel CNN architecture design that is able to ease the training problems of deep
CNNs, including gradient vanishing and degradation.

The rest of this chapter is organised as follows: Section 6.2 presents the proposed methods,
including the hierarchical classification system in Subsection 6.2.1, the TSR system based on
unsupervised feature learning in Subsection 6.2.2, the novel sparse layer for sparse feature
learning in Subsection 6.2.3 and the novel CNN architecture that has multiple loss functions
in Subsection 6.2.4. Experiment details are provided and discussed in Section 6.3, followed
by the summary in Section 6.4.

6.2 Approachs

6.2.1 Recognition with a Hierarchical Classification System

Fig. 6.1 Examples from the six subsets of GTSRB.

Hierarchical Structure of Dataset

Originally, the GTSRB contains 51839 traffic signs that belong to 43 unique classes. Ac-
cording to the appearance and meaning of the traffic signs, the dataset is further split into
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six subsets that have been shown in Fig. 6.1. For the subsets from (a) to (f) in Fig. 6.1, the
numbers of the signs are 16950, 6030, 1500, 7409, 8190 and 11760 respectively.

Hierarchical Structure of System

The proposed hierarchical classification system includes two levels, which are the rooted
level and the branch level, as illustrated in Fig. 6.2 . The rooted level contains 1 classifier
that is responsible for classifying the 43 classes of signs into the 6 subclasses. Subsequently,
the branch level includes 6 classifiers which focus on discriminating the specific classes.
Therefore, the proposed hierarchical classification system is composed of 7 CNNs.

Fig. 6.2 System overview of the proposed hierarchical classification system.

Network Architectures

The CNNs applied in this system are similar to the VGGNets [30], the detailed network
architecture is illustrated in Fig. 6.3. Each of the network consists of 4 convolutional layers
and 3 fully-connected layers. BN [158] layers are employed for improving training speed and
regularisation. Furthermore, dropout [174] layers are introduced to improve performance.
Due to the huge difference of the numbers of traffic signs in the subsets, the 7 CNNs applied
have different width, which will be detailed in the following section.
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Fig. 6.3 The network architecture of CNNs in the hierarchical classification system.

6.2.2 Unsupervised Feature Learning Based on Generative Adversari-
al Networks

Generative Adversarial Networks

The adversarial modeling framework [193] consists of two networks: a generative network
G that captures the real data distribution, and a discriminative network D that estimates the
probabilities of samples from real data and fake data. In the training stage, the aim of G is to
generating fake data that makes D predicts it as real with high probability. On the contrary,
D tries to discriminate real and fake data as correct as possible. Therefore, the training
procedure is a minimax two-player game. The system overview of the original GANs is
illustrated in Fig. 6.4.

Fig. 6.4 System overview of generative adversarial networks.

In order to learn the distribution of real data preal(x), a set of noise variables pz(z) are
firstly sampled, and then mapped to a new data distribution p f ake through the generative
network G. Subsequently, the discriminative network D predicts single scalars that represent
the probability of real or fake data. Finally, D is trained to maximise the probability of
assigning the correct label to both real and fake data, while G is trained to minimise the
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probability of assigning the correct label to fake data. Formally, D and G play the following
minimax two-player game with value function V (G,D) formulated as:

min
G

max
D

V (D,G) = Ex∼preal(x)) [logD(x)]+Ez∼pz(z) [log(1−D(G(z)))] (6.1)

where G and D are the generator and discriminator respectively. log is the logarithm function.
In practice, at the beginning of training, G is not able to generate high quality data, leading
to easily saturated values of log(1−D(G(z))). Therefore, G can be trained to maximise
logD(G(z)). So that the objective is not changed, but gradient is much stronger.

Deep Convolutional Generative Adversarial Networks

Originally, the networks G and D of GANs [193] are MLPs, which are not able to learn
complex data distribution and generate high quality data. The training of the GANs faces two
problems [188]: (i) delicate and unstable training procedure; (ii) using of CNNs in GANs.
In order to solve the problems, the DCGANs [188] are proposed by adopting the following
techniques.

(i) Using fractional-strided convolutions (transpose convolution or deconvolution) in gener-
ator G, and strided convolutions in discriminator D for performing pooling operations.

(ii) Applying BN in both G and D.

(iii) Removing Fully-connected layers from the deep architectures.

(iv) Using ReLU in G for all the activation layers, expect for the last layer, which is Tanh.

(v) Using Leaky ReLU in D for all the activation layers.

Fig. 6.5 The network architecture of DCGANs.
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The network architectures of DCGANs are illustrated in Fig. 6.5. First, in generator G, a
uniform distribution noise z is projected to high dimension feature maps by convolution and
reshape layers, and then four transpose convolution layers convert the features into fake data.
Second, both the fake data and real data are fed into discriminator D. Finally, D estimates
the probabilities of data belongs to real or fake.

Wasserstein Generative Adversarial Networks

DCGANs successfully integrated deep CNNs into the architectures of GANs. However, the
training of GANs still faces problems. One of the most important problem is collapse modes,
which is the situation that generator generate very less kind of fake data, most of the fake
data is repeat and lack of variety.

Instead of using popular probability distances and divergences, Earth Mover (EM) dis-
tance is applied in WGANs [189], and improved performance is achieved with the following
modifications.

(i) Removing the last sigmoid layer in discriminator D.

(ii) Removing log in the loss function.

(iii) Weight clipping after each parameters update.

(iv) Applying optimisation algorithms that do not rely on momentum, such as SGD and
RMSProp.

Recognition with Features of Generative Adversarial Networks

With the features learnt from the GANs, traffic signs are recognised with simple MLPs. The
implementation details will be presented in the following sections.

6.2.3 Sparse Feature Learning Based on Max Pooling Positions

Network Architecture in Pre-training Stage

The network applied in pre-training stage is composed of 4 convolutional layers and 3 fully-
connected layers, the detailed network architecture is illustrated in Fig. 6.6. Subsequently, for
all the training samples of GTSRB, their features at the last convolutional layer are extracted.
As indicated in Fig. 6.6, the features at the dash line are collected, the size of features of each
sample is 3×3×512.
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Fig. 6.6 The network architecture in pre-training stage.

Max Pooling Positions

As Fig. 6.7 illustrates, the size of features of each training sample is 3×3×512. Then, a
max pooling operation with kernel size 3×3 and stride 3 is implemented on the features,
resulting in 512 max values and the corresponding positions. Finally, the MPPs of each
sample are recorded. For example, as displayed in Fig. 6.7, the first feature map has a max

values at top-left, so that the feature map is firstly encoded into a 3×3 matrix:

1 0 0
0 0 0
0 0 0

,

and recorded subsequently.

Fig. 6.7 Illustration of the procedures for computing max pooling positions.
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One Versus One Classifications

In order to achieve higher performance, the original multi-class classification problem is
transferred into a set of one versus one classification problems. Since GTSRB includes 43
unique classes, 43(43−1)

2 = 903 one versus one classifiers should be train for performing the
43-way multi-class problem.

For each classifier, supposing two classes: i, j ∈ {1,2...43} are related, the training stage
can be described in the following steps.

(i) Data collection. All the features and the corresponding MPPs belong to classes i and j
are collected.

(ii) Data processing. In order to measure the similarities of MPPs belong to same class, all
of the MPPs come from same class are accumulated, and then normalised by dividing
the number of them. So that two matrixes are calculated, which can indicate the
probability of appearance of the max value positions. The two probability are denoted
as pi and p j.

(iii) Sparse layer creation. First, a kernel matrix of the sparse layer with size 3×3×512 is
initialised. Second, based on the values of the two probability matrixes pi and p j, a
difference matrix is computed by d =

∣∣pi − p j
∣∣. And then, the positions of the highest

n values of d are selected, where 0 < n ≤ 4608. The hyperparameter n is decided by
cross validation. Finally, the kernel matrix of the sparse layer is assigned with 1 at the
selected n positions, and 0 otherwise.

(iv) Classifier initialisation. A classifier with with three layers is initialised, as Fig. 6.8
illustrated. The kernel of the sparse layer are obtained from last step.

(v) Classifier training. The classifier is trained by standard back propagation. More
specifically, first, the features are passed through the sparse layer, refined by element-
wise multiplication with the sparse kernel. Second, the sparse features are fed into the
fully-connected layer, and then the softmax layer. Finally, gradients are calculated from
the loss function, and back propagated to the fully-connected layer.

Network Architecture in Testing Stage

The network applied in testing stage is illustrated in Fig. 6.8. At the first glance, this network
architecture is very similar to a typically multi-task network. However, the feature extraction
layers and classification layers are not optimised as a whole, which means MTL is not
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Fig. 6.8 The network architecture in testing stage.

involved. The network includes 903 binary classifiers, which rely on the the same public
feature extraction layers and 903 dedicated sparse layers. For each testing sample, 903 binary
labels are firstly predicted, and then the final label is voted by the 903 predictions.

6.2.4 Very Deep Network Training with Multi-loss Functions

Learning with Auxiliary Classifiers

Due to the good performance of shallow networks, the features of low-level and middle-level
layers are verified to be very discriminative and important. However, in the training of very
deep networks, the problem of propagating gradient back through all the layers is a big
challenge, low-level layers in particular. In order to improve the ability of gradient back
propagation, auxiliary classifiers are employed in the GoogLeNets [31]. These auxiliary
classifiers are connected to the intermediate layers of networks, which are able to ease the
gradient vanishing problem and provide regularisation.

The network architectures of PlainNets-10/18/34 with auxiliary classifiers are illustrated
in Fig. 6.9. For the strategies of GoogLeNets, in the training stage, the loss of auxiliary
classifier is added to the main loss with a discount weight (0.3). In testing stage, these
auxiliary classifiers are discarded. Therefore, the auxiliary classifiers are only used for
generating gradients and regularisation.
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Fig. 6.9 The network architectures of PlainNets-10/18/34 with auxiliary classifiers.

Fig. 6.10 The network architectures of PlainNets-10/18/34 with auxiliary classifiers and a
global softmax layer.
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Network Architectures of Proposed Networks

Inspired by GoogLeNets [31], a novel network architecture is developed, which is able
to ease the problems of gradient vanishing and degradation. The network architectures of
PlainNets-10/18/34 with proposed design are illustrated in Fig. 6.10. Except the auxiliary
classifiers, a global softmax layer is added as the last output, its inputs are summarised by
the inputs of the four softmax layers (softmax-1 to softmax-4).

Different from the strategies of GoogLeNets, for proposed networks, the loss of auxiliary
classifier is added to the main loss with a relative small weight (0.1) in the training stage. The
weight is decided by control experiments, which indicate that large weights have negative
effects to the convergence of the networks, while too small weights have too less influence to
the convergence. Based on this design, the problem of gradient vanishing is eased. In the
testing stage, instead of discarding the auxiliary classifiers, the final labels are predicted by
summarising the inputs of all the four softmax layers. This ensemble voting scheme can
improve performance, even though part of the classifiers give wrong predictions. Therefore,
the degradation problem is also well eased.

6.3 Experiments

In this section, first, the system environment for implementing all the TSR systems will be
introduced. Second, the dataset employed in the experiments will be presented. And then,
the configurations of all the networks applied will be detailed. Finally, the results of the
experiments will be provided and discussed.

6.3.1 System Environment

In order to implement all the TSR systems, a desktop with an Intel 3.5GHz CPU, 32GB
memory and a NVIDIA GTX Titan GPU is employed. All the programs run on a 64-bit
Windows 10 operating system with CUDA 8.0, CUDNNv5.1, Matlab 2017a and MatConvNet
1.0-beta24 [172] deep learning toolbox.

6.3.2 Dataset Details

German Traffic Sign Recognition Benchmark

The GTSRB [22] contains 51839 traffic sign images that belong to 43 classes. The examples
and class distribution of the GTSRB have been clearly presented and discussed in Section
5.6.2.
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Data Preprocessing

The data preprocessing is applied based on three steps. First, the borders of all the traffic
signs are removed according to the annotations. And then, all the cropped traffic signs are
resized to 48×48×3 pixels. Finally, the colour normalisation of the traffic signs are utilised
by linearly scaling all the pixels to the range [−1,1]. Data argumentation is not applied in all
the experiments.

6.3.3 Network Configurations

Hierarchical Classification Networks

Depending on the complexity of tasks, the CNNs are developed with different width. For the
rooted classifier, the kernels of weight layers from input are {3,64,1}, {3,128,1}, {3,256,1},
{3,512,1}, {3,1024,1}, {1,256,1}, {1,6,1} in the form of {kernel size, kernel number, stride}
respectively. For the branch classifiers, 6 task are related, as illustrated in Fig. 6.1. The tasks
(a), (d) and (f) have the following kernels: {3,8,1}, {3,16,1}, {3,32,1}, {3,64,1}, {3,1024,1},
{1,256,1}, {1,x,1}, the x stands for the number of class of each task. On the other hand,
the tasks (b), (c) and (e) have the following kernels: {3,8,1}, {3,16,1}, {3,32,1}, {3,64,1},
{3,256,1}, {1,32,1}, {1,x,1}. All the max pooling layers have 2×2 kernels with stride 2. The
dropout rate is 0.5.

The CNNs are initialised with Improved Xavier [157], and trained for 30 epoches by
applying Momentum of factor 0.9 and a mini-batch B with size 64. The learning rate η

is started from 10−1 and uniformly decayed to 10−3 at the end of training. Moreover, L2

parameter regularisation with value 0.0005 is employed for preventing overfitting.

Generative Adversarial Networks

The detailed network configurations of the DCGANs and WGANs have been displayed in
Table 6.1. All the applied Leaky ReLU layers have leaky values 0.2. Padding is adopted
in convolutions for keeping the size of feature maps, and cropping is applied in transpose
convolutions for adjusting the size of feature maps.

For the training of DCGANs, networks are initialised with Gaussian distribution in the
range [−0.02,0.02]. The size of mini-batch B is set to 128, and learning rate η 0.0002. Adam
(α = 0.5,β = 0.999,ε = 10−8) [187] optimisation algorithm is employed, and no parameter
norm penalty is applied. The discriminator and generator are trained for 25 epoches. For each
iteration in the first epoch, discriminator and generator are alternately trained with frequency
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5:1. For each iteration in the rest epoches, discriminator and generator are alternately trained
with frequency 1:1.

For the training of WGANs, networks are initialised with Gaussian distribution in the
range [−0.02,0.02]. The size of mini-batch B is set to 64, and learning rate η 0.00005.
The weight clipping ensures all the parameters of networks stay in the range [−0.01,0.01].
RMSprop (α = 0.99,ε = 10−8) [185] optimisation algorithm is employed, and no parameter
norm penalty is applied. The discriminator and generator are trained for 25 epoches. For each
iteration in the first epoch, discriminator and generator are alternately trained with frequency
5:1. For each iteration in the rest epoches, discriminator and generator are alternately trained
with frequency 1:1.

Finally, with the features (outputs of Conv_D_4) extracted from the GANs, MLPs are
trained for TSR. The MLPs have the following kernels: {3,1024,1}, {1,256,1}, {1,43,1}.

Generator
Layer name Output size DCGANs WGANs
Input 1×1 Noise with depth=100.
Conv_G 1×1 1×1,4608, followed by BN and ReLU.
Reshape 3×3 depth=512
Convt_G_1 6×6 5×5,256 with stride 2, followed by BN and ReLU.
Convt_G_2 12×12 5×5,128 with stride 2, followed by BN and ReLU.
Convt_G_3 24×24 5×5,64 with stride 2, followed by BN and ReLU.
Convt_G_4 48×48 5×5,3 with stride 2, followed by Tanh.

Discriminator
Input 48×48 Fake and Real data with depth=3.
Conv_D_1 24×24 3×3,64 with stride 2, followed by Leaky ReLU.
Conv_D_2 12×12 3×3,128 with stride 2, followed by BN and Leaky ReLU.
Conv_D_3 6×6 3×3,256 with stride 2, followed by BN and Leaky ReLU.
Conv_D_4 3×3 3×3,512 with stride 2, followed by BN and Leaky ReLU.
Conv_D 1×1 3×3,1
Activation 1×1 Sigmoid -

Table 6.1 The detailed configurations of the generators and discriminators used in DCGANs
and WGANs. Convt_G_x stands for the transpose convolution in generator, the cropping
parameters are [2 1 2 1]. Conv_D_x stands for the convolution in discriminator, the padding
parameters are [1 1 1 1].

Max Pooling Positions Networks

The network applied in pre-training stage has the following kernels: {3,64,1}, {3,128,1},
{3,256,1}, {3,512,1}, {3,1024,1}, {1,256,1}, {1,43,1}. For each of the 903 binary classifier,
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a feature spare layer with kernels 3× 3× 512 is included, followed by a fully-connected
layer with kernels {3,2,1} and a softmax layer.

The networks are initialised with Improved Xavier [157], and trained for 10 epoches by
applying Momentum of factor 0.9 and a mini-batch B with size 128. The learning rate η

is started from 10−1 and uniformly decayed to 10−1.5 at the end of training. Moreover, L2

parameter regularisation with value 0.0005 is employed for preventing overfitting.

Multi-loss Networks

The applied baseline networks are PlainNets-10/18/34 and ResNets-10/18/34, the detail
network architectures have been shown in Table 5.6. For the proposed networks, auxiliary
classifiers are added to stacked layers 1, stacked layers 2 and stacked layers 3, as shown
in Fig. 6.10. Moreover, global softmax layers are applied to summarise the inputs of the
previous softmax layers.

The CNNs are initialised with Improved Xavier [157], and trained for 10 epoches by
applying Momentum of factor 0.9 and a mini-batch B with size 64. The learning rate η is
started from 10−1 and uniformly decayed to 10−1.5 at the end of training. Moreover, L2

parameter regularisation with value 0.0001 is employed for preventing overfitting.

6.3.4 Presentation of Generated Traffic Signs

The generated traffic signs during the training of the GANs are illustrated in Fig. 6.11. For
every two epoches, 6 traffic signs are collected, and each of them belongs to one of the 6
subsets as in Fig. 6.1. According to the generated traffic signs, three main observations
are found: (i) both methods can stably produce high quality samples. (ii) WGANs have
obviously faster convergence rate than DCGANs. This is mainly caused by the network
designs. DCGANs apply sigmoid function in output layer and log function in loss layer,
which are easily saturated during training. On the contrary, WGANs discard sigmoid and log
functions, resulting in increased training speed; (iii) collapse modes still exist, DCGANs in
particular. For example, due to the less number of prohibitory signs - Derestriction (the third
rows in Fig. 6.11) in the GTSRB, both DCGANs and WGANs trend to generate other kinds
of traffic signs.

6.3.5 Performance Evaluation of Hierarchical Classification System

The results in Table 6.2 present the performance of the hierarchical TSR system, together
with the results of other TSR systems. The proposed hierarchical system achieved 100.00%
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Fig. 6.11 Illustration of generated traffic signs during the training of the GANs. Top:
DCGANs, bottom: WGANs. All the generated samples are not cherry-picked.

recognition rates in both prohibitory signs - Others and prohibitory signs - Derestriction, and
the recognition rate of Unique signs is the highest except human performance. The perfor-
mance indeed indicates that hierarchical classification is effective on the tasks with strong
hierarchical structure. Comparing with the single CNN system, hierarchical system achieves
better performance on most of the subsets, resulting in improved overall performance.

6.3.6 Performance Evaluation of Multi-loss Networks

The training details of PlainNets-10/18/34 ,ResNets-10/18/34 and the proposed multi-loss
networks with K = 1 are illustrated in Fig. 6.12, Fig. 6.13 and Fig. 6.14. First, the Fig.
6.12a to 6.12d present the training details of the 10-layer networks. The results show that
the proposed multi-loss network has the lowest training and testing error, which is benefited
from the global summation. The convergence rate of the proposed network is similar to the
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 6.12 Training details of PlainNets-10 ,ResNets-10 and the proposed multi-loss networks.
softmax-4 stands for the original softmax layer, and softmax-global stands for the introduced
global softmax layer. All the networks are built with width factor K = 1.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 6.13 Training details of PlainNets-18 ,ResNets-18 and the proposed multi-loss networks.
softmax-4 stands for the original softmax layer, and softmax-global stands for the introduced
global softmax layer. All the networks are built with width factor K = 1.
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(a) Training loss (b) Testing loss

(c) Training error (d) Testing error

Fig. 6.14 Training details of PlainNets-34 ,ResNets-34 and the proposed multi-loss
networks.softmax-4 stands for the original softmax layer, and softmax-global stands for
the introduced global softmax layer. All the networks are built with width factor K = 1.
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System name Rooted Speed limits Others Derestriction Mandatory Danger Unique
Hierarchical CNNs (Ours) 99.88% 99.09% 100.00% 100.00% 99.55% 97.17% 99.90%

Single CNN (Ours) - 99.23% 99.53% 92.78% 99.44% 96.67% 99.75%
Committee of CNNs [20] - 99.47% 99.93% 99.72% 99.89% 99.07% 99.22%

Human (best individual) [22] - 98.32% 99.87% 98.89% 100.00% 99.21% 100.00%
Human (average) [22] - 97.63% 99.93% 98.89% 99.72% 98.67% 100.00%
Multi-Scale CNN [19] - 98.61% 99.87% 94.44% 97.18% 98.03% 98.63%

Random Forests (HOG 2) [18] - 95.95% 99.13% 87.50% 99.27% 92.08% 98.73%
LDA (HOG 2) [22] - 95.37% 96.80% 85.83% 97.18% 93.73% 98.69%

Table 6.2 Individual performance of the 6 subsets. Bold font denotes the best results.

PlainNet-10 and ResNet-10. In Fig. 6.12b, the loss of softmax-global is higher than other
softmax layers. The reason is that softmax-global summarises the results from 4 different
outputs (as illustrated in Fig. 6.10) in forward propagation, but it does not generate gradients
in back propagation. Second, the results in Fig. 6.13a to 6.13d also show that the proposed
network has the lowest training and testing error, while its convergence rate is comparable
to the other two networks. Finally, as Fig. 6.14a indicates, due to the problem of gradient
vanishing, the convergence of the PlianNet-34 is significantly affected. By introducing
auxiliary classifiers, the proposed network achieves boosted convergence rate. Moreover,
the results in Fig. 6.14d show that the proposed network has lower testing error than the
PlianNet-34, which means that the degradation problem is partially eased. Besides, based on
the shortcut connections, the ResNet-34 achieves the highest convergence rate and the lowest
testing error. To sum up, the proposed multi-loss networks have better performance than
plain networks under various depth. On the other hand, the proposed multi-loss networks
outperform ResNets when depth of networks are not extremely deep. In other words, the
proposed design has better performance than plain and residual designs in relative shallow
networks. However, in extremely deep networks, it outperforms plain design, but worse than
residual design.

6.3.7 Performance Evaluation of Proposed Systems

The performance of the systems have been shown in Table 6.3, followed by the performance
of the famous systems. For proposed systems, in order to observe the generalisation ability
of networks themselves, data argumentation is not performed. The baseline CNN is the
PlainNet-7 (64-128-256-512) that has been shown in Table 5.4. Based on the results, the
conclusions are: (i) hierarchical classification can improve performance; (ii) the proposed
MPPs based CNN is powerful, and it achieves the highest performance among all the
systems, including the famous systems with data argumentation; (iii) the features learnt by
unsupervised learning are discriminative, which are comparable with HOG; (iv) the proposed
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multi-loss networks achieves increased performance than plain networks, however, gradient
vanishing and degradation are not totally addressed.

System name Accuracy (with data argumentation) Accuracy (without data argumentation)
The performance of the proposed systems

Single CNN (baseline) - 98.63%
Hierarchical CNNs - 98.81%

MPPs CNN - 99.58%
MLP with features from RGB colours - 92.51%

MLP with features from DCGANs - 95.77%
MLP with features from WGANs - 94.58%

10-layer Multi-loss CNN - 97.61%
18-layer Multi-loss CNN - 97.74%
34-layer Multi-loss CNN - 96.30%

The performance of the famous systems
Committee of CNNs [20] 99.46% 98.64%

Human (best individual) [22] 99.22% 99.22%
Human (average) [22] 98.84% 98.84%
Multi-Scale CNN [19] 98.31% -

Random Forests (HOG 2) [18] 96.14% -
LDA (HOG 2) [22] 95.68% -

Table 6.3 The performance of the proposed systems, followed by the performance of the
famous systems.

6.4 Summary

In this chapter, traffic signs are recognised with four proposed CNNs, which are trained by
new strategies or constructed by new network architectures. First, different from the most
existing approaches that apply single level classifiers for TSR, a hierarchical classification
system is applied for improving the performance of TSR. Second, unsupervised feature
learning is a challenge in computer vision. By introducing Generative Adversarial Networks
(GANs), a TSR system is proposed based on features that are learnt without labels. Third, in
comparison with previous CNNs that only apply max pooling for reducing feature dimension,
a novel layer is proposed, which applies Max Pooling Positions (MPPs) of max pooling as
information for sparse feature learning. Finally, in order to overcome gradient vanishing
and degradation problems, a novel CNN architecture design that learns with multiple loss
functions is developed. The performance of the proposed methods are verified on the German
Traffic Sign Recognition Benchmark (GTSRB), and excellent results have been achieved
compared with the famous systems.





Chapter 7

Chinese and English License Plate
Detection Based on Extremal Regions

In this chapter, a License Plate Detection (LPD) system is proposed for detecting Chinese and
English license plates with large skew angles. The proposed system consists of three main
stages: (i) a character proposal stage to find candidate characters based on Extremal Regions
(ERs); (ii) feature extraction and classification relies on Convolutional Neural Network
(CNN); (iii) LPD by linking individual characters based on a new region linking method. By
leaving out character segmentation, the proposed method has better robustness compared
with existing methods. The performance of the proposed LPD system is evaluated on five
datasets, including a large field-captured dataset, a skew and tilt dataset, a 12 countries
dataset and two benchmark datasets. For Chinese civilian vehicles, the accuracy of LPD is
98.3%.

7.1 Introduction

Automatic detection and recognition of license plates of vehicles via digital imaging is a
key component in Intelligent Transportation System (ITS), such as car park access control,
electronic toll collection, suspect vehicle analysis and tracking, and automatic identification
of expired registrations. In order to develop a robust LPD system, there are still some
problems, for example, the detection of license plates with different layouts, characters and
skew angles.

There is a great deal of variability between license plates in different countries with
regards to the design, colours, characters used, and layout. Previously published LPD methods
have been mainly centered upon a small number of the countries, including: mainland China,
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Taiwan, American, Korea and certain European countries. On the other hand, most of the
reported LPD systems are based on a common structure, the consecutive composition of:
(i) LPD; (ii) character segmentation; (iii) character recognition. Effective segmentation is a
critical step for LPD as the last step character classification depends largely on the quality
of the segmentation output. However, segmentation is difficult in practice, especially when
dealing with images with inherently noisy, low resolution and poor weather conditions.

Therefore, there are still challenges to be solved in order to produce a robust LPD system
that is able adapt to the variability of the environments and different demands. For example,
a captured vehicle image could be at a poor level of resolution due to the large distance
between camera and the vehicle, or the poor lighting and low contrast which may in turn
come from overexposure, reflections or shadows. Part of the plate can be obscured due to
discoloration or dirt. Variations in the angle between a camera and the vehicle can produce
perspective projection distortion of a license plate. Compared with most western countries,
Chinese license plates are more challenging because of the complex combination of different
characters on a license plate, including Chinese characters, English letters and digits, and
many sub-categories of license plates with distinct colours and layouts.

The main motivation of this research is to develop a Chinese and English LPD system,
and three main contributions are included as follows.

(i) A framework for LPD which simultaneously completes detection and segmentation.

(ii) A LPD system that is able to detect both Chinese and English license plate.

(iii) A LPD system that is able to detect extremely skewed license plate.

The rest of this chapter is organised as follows: Section 7.2 presents the detailed approach
of the proposed LPD system; experimental results will be provided in Section 7.3, followed
by summary in Section 7.4.

7.2 Approach

The overall LPD detection system is demonstrated in Fig. 7.1. In the first stage, a large
number of candidate regions that may contain license plate characters are generated by region
generators. In the second stage, all the generated regions are passed to a CNN for feature
extraction and classification. In the third stage, license plates are detected based on a region
linking strategy, which can link individual characters into license plate with large angles.
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Fig. 7.1 System overview of the proposed LPD system.

7.2.1 Region Proposal

ERs [151] are connected components of an image binarised at a certain threshold. In this
system, an input image (RGB) is converted into a set of binary images by applying pre-set
thresholds, followed by connected component analysis for generating ERs. In order to
reduce computational cost, regions with small areas (< 20 pixels) are ignored. The main
motivation of generating different binary images and subsequent regions is to compensate
for the negative effects of varying brightness and contrast. Therefore, high recall rate can be
achieved in this stage.

7.2.2 Classification

Fig. 7.2 Network architecture of the applied CNN.

The network applied is similar to the famous VGGNets [30], which is illustrated in Fig.
7.2. The network consists of four convolution layers followed by fully-connected layers
and softmax layer. Each convolution layer followed by non-linear activation layer and max
pooling layer. ReLU [173] is employed as the activation function for convolutional layers and
full connection layers. Dropout [174] is adopted for preventing overfitting. The final softmax
layer has 2 outputs, corresponding to character and background. All the input regions are
firstly resized to 48×48×3. After the classification, the label of each region is achieved,
and then all the positive and negative regions are passed to next stage.
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7.2.3 Region Linking

Individual characters should be linked together to format a license plate. The layout of license
plates are specially designed in most countries. For example, all the Chinese license plates
are composed of Chinese characters, digits and English letters. For the majority of Chinese
civilian vehicles, the first character is Chinese, representing provincial level divisions. To
the right of the Chinese character is Latin alphabet character representing the municipality
or county. The remaining part is a combination of five digits or English letters. Therefore,
in order to detect a Chinese license plate, it is sufficient to only consider digits and English
letters on the plate, and then infer the complete plate location based on the prior knowledge
about the layout of Chinese license plates.

For each binary threshold used in region proposal stage, a set of bounding boxes are
obtained and denoted as Rectrn = {xr

n,y
r
n,w

r
n,h

r
n}. The positive regions from previous stage

can also generate a set of bounding boxes Rectcm = {xc
m,y

c
m,w

c
m,h

c
m}. For example, there are

2 filtered regions in Fig. 7.3a and 5 filtered regions in Fig. 7.3b respectively. The region
linking procedure can be described in the following steps.

(a) (b)

Fig. 7.3 Examples of filtered regions.

(i) Assuming the position and size of current region (hypothesis character) defined by
a rectangle (xc

m,y
c
m,w

c
m,h

c
m), where (x,y) is the coordinate of top left corner of the

rectangle, w and h are corresponding width and height. The next region, similarly
denoted as (xr

n,y
r
n,w

r
n,h

r
n), is localised as follows.

(a) Search towards the right for a matched region with similar height: |hr
n − hc

m| <
0.5hc

m, and the horizontal and vertical differences between the two regions: |xc
m −
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xr
n|, |yc

m − yr
n|, being less than the height of current hypothesis character. If such a

region is found, the searching process will continue. Otherwise, move to next step.

(b) Search towards the left for a matched region with similar height: |hr
n−hc

m|< 0.5hc
m,

and the horizontal and vertical differences between the two regions: |xc
m − xr

n|,
|yc

m−yr
n|, being less than the height of current hypothesis character. If such a region

is found, the searching process will continue. Otherwise, move to next step.

Some examples are provided in following Fig. 7.4 to further explain the above two
steps. In Fig. 7.4, four examples are used to demonstrate the detection processes. In Fig
7.4a, the algorithm first searches towards the right with two similar regions found, and
then searches towards the left finding three similar regions. In Fig. 7.4b, the algorithm
first searches towards the right with one similar region found, and then searches towards
the left with four similar regions located. In Fig. 7.4c, the algorithm first searches
towards right finding five similar regions, and then search towards the left without
detecting any similar regions. In Fig. 7.4d, the algorithm first searches towards right
without finding any similar region, and then searches towards the left with five similar
regions detected.

(ii) Count the number of regions. If the number is less than 6, then the current region is not
a character on a license plate. If the number equals to 6, and the spacing between the
leftmost character and its right neighbor conforms to the standard, it can be concluded
that the regions are from a license plate. If the number is larger than 6, then attempt to
find a region such that the spacing between it and its right neighbor conforms to the
standard. If such a region exists, the region together with its right-side 5 consecutive
regions will be deemed as the characters on a license plate. Otherwise the current
region is not a character on a license plate.

(iii) The position of the last 6 consecutive characters will be used to infer the position of
Chinese character on the license plate.

(iv) Since a same license plate may be detected several times by using different regions, it
is necessary to remove those duplicate license plates. In the algorithm, this is simply
implemented by removing the redundant license plates with the same position.
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(a) (b) (c) (d)

Fig. 7.4 Explanation of the inference process for a hypothesis license plate. (a) and (b):
license plate detection starts from B and 8. (c) and (d): license plate detection starts from E
and 9.

7.3 Experiments

7.3.1 Implementation Details

In order to evaluate the performance of the proposed LPD system, a workstation with an
Intel Xeon 3.3GHz CPU, 48GB memory and a NVIDIA GTX Titan GPU is employed. The
programs run on a 64-bit Windows 7 operating system with CUDA 7.5, CUDNNv5, Matlab
2015b and MatConvNet 1.0-beta23 [172] deep learning toolbox.

7.3.2 Field-captured Dataset

The first set is collected from surveillance cameras at different traffic intersections in Suzhou,
China. This image set consists of 1039 images with size 1360×1024 pixels. The distribution
between the daytime and nighttime capture time of the images are 85% and 15%, as shown
in Table 7.1.

Car Bus Truck Van
Daytime 244 233 172 230

Nighttime 18 80 42 20
Table 7.1 Data distribution of the field-captured dataset.
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As the LPD system depends on two main parameters, namely the step of thresholds and
the confidence scores of CNN. In the following, the system performance based on the change
of the two parameters is evaluated.

The main motivation for generating multiple binary images from a single original image
with different thresholds is to compensate for the large illumination variation, particularly
the change from day to night. This procedure is also able to minimise the negative effect
from different background colours of the license plates (white, yellow and blue). According
to the experiments, a range from 10 to 240 is sufficient for threshold adaptation. In other
words, the minimum and maximum threshold values are 10 and 240 respectively, and the
internal thresholds are recursively calculated by a step. More specifically, a step of 5 means
46 thresholds: 10, 15, 20, · · · , 230, 235, 240 will be applied to generate 46 binary images for
the subsequence detection, while a step of 70 means only four thresholds: 10, 80, 170, 220
will be applied. With the 1039 sample images, the detection rates with the different steps are
illustrated in Fig. 7.5.

Fig. 7.5 Illustration of the detection rates with the change of steps in the range [10,240].
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As Fig. 7.5 indicates, with the increasing of the step, less binary images are generated,
resulting in reduced detection rates. The relatively small steps (1 ∼ 10) bring high detection
rates (> 98%), and once the step becomes too large (> 10), the detection rate drops rapidly.
On the other hand, the computational cost is also decreasing with the increasing of step, in
particular in the range (1 ∼ 5). Therefore, in order to achieve the best trade off between
speed and performance, a step value of 10 is chosen in the system.

Fig. 7.6 Illustration of the detection rates with the change of confidence scores of CNN.

Confidence score is another important factor that critically influences the performance.
The detection rates under different confidence scores are demonstrated in Fig. 7.6. The
results show that 0.8 is a reasonable threshold of confidence score. When score larger than
0.8 is adopted, many characters are filtered out, thus giving low detection rate. On the
contrary, score smaller than 0.8 also decrease the detection speed because regions that do not
correspond to any characters would be treated as positive.

With the step of 10 for image binarisation and the confidence score of 0.8 for CNN,
the detection results corresponding on field-captured dataset are given in Table 7.2. The
accuracies of LPD are about 98.3% and 98.1% for daytime images and nighttime images
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respectively. This demonstrates the advantage of the proposed algorithm, such as changes in
the illumination do not apparently affect the performance.

The overall localisation rate of over 98.3% is indeed good. The result also indicates that
the performance does not change much for different types of vehicles. The main reasons
for the 1.8% of images which are failed in the experiments are: (i) the two neighboring
characters become connected after binarisation; (ii) part of a character is missed; or (iii) the
boundary of the characters is obscured. These problems are generally from vehicles with
rusty plate or dirty plate.

Daytime Night Overall Rates (%)
Car 98.0 94.4 97.7
Bus 99.1 98.9 99.0

Truck 95.9 100 96.7
Van 99.6 95.0 99.2

Overall Rates (%) 98.3 98.1 98.3
Table 7.2 Results of the field-captured dataset.

7.3.3 LP and Caltech Cars 1999 Datasets

To further verify the advantages of the proposed LPD system, the comparison experiments
are conducted with four published LPD methods on two benchmark datasets, which are called
the LP dataset [85] and Caltech Cars 1999 [194]. The first dataset contains 410 Chinese
vehicle images and bears varied imaging conditions such as resolution, illumination and
viewing angles. The second dataset has 126 images, each containing a American license
plate with a cluttered background.

The first compared method is the Principal Visual Word (PVW) [85], which locate
license plates by principal visual word, discovery and local feature matching. Other three
methods are cited and compared in [85], including hybrid license plate extraction based on
line detection and the construction of weighted edge map, denoted as HLPE, license plate
detection in coarse-to-fine based on vertical edge detection and mathematical morphology,
denoted as LPE , and license plate detection based on edge statistics and morphology, denoted
as ESM.

In [85], the metric of evaluation for the two benchmark datasets is defined by (i) high
level-true: license plate is totally encompassed by the bounding box and A∩B/A∪B ≥ 0.5,
where A is the detected region and B is the ground truth region; (ii) low level-false: the
license plate is totally missed by the bounding box; (iii) middle level-partial: the remaining
results excluded by the above two types.



112 Chinese and English License Plate Detection Based on Extremal Regions

For proposed system, the above metric needs to be revised because the proposed LPD
system aims at simultaneously detecting individual characters and the whole plates. The
metric is redefined as (i) high level-true: which means license plate is completely localised,
and all of the characters are segmented; (ii) low level-false: the license plate is totally missed
by the bounding box; (iii) middle level-partial: which refers to the situation that only part of
the license plate has been localised and the segmented characters are incomplete.

The accuracy definition [85] of True, Partial, False and FalsePositiveRate(FPR) are
formulated as:

True =
T P

T P+PartialT P +FN +FP
(7.1)

Partial =
PartialT P

T P+PartialT P +FN +FP
(7.2)

False =
FP+FN

T P+PartialT P +FN +FP
(7.3)

FPR =
FP

T P+PartialT P +FP
(7.4)

where the T P is the true positive number, PartialT P stands for partial true positive number,
FP denotes false positive number, and FN is false negative number (miss detection).

With above metric of evaluation, the comparison results are summarised in Tables 7.3
and 7.4, from the LP dataset and Caltech Cars 1999 datasets respectively. For the LP dataset,
it is obvious that the proposed system performs the best in terms of the accuracy. Both the
Partial and False detection rates are lower than all the other four methods. However, the FP
3.4% is higher than the result 1.0% of PVW method. This is mainly because many vehicle
images in the LP dataset have advertisement or telephone numbers painted on the vehicles,
which are prone to be detected as license plates. For the Caltech Cars 1999 dataset, the True
detection rate of proposed approach is 88.4%, which is higher than all the other methods.
The Partial detection rate 6.2% is a little high, because of the low resolution of images in
Caltech Cars 1999 dataset.

Some images in the LP dataset are captured with skew and tilt angles. As shown in Fig.
7.7 (top), the proposed system can successfully detect the license plates. Shadow is another
negative factor that may affect performance. For weak shadow, there will be no influence on
detection result as demonstrated by the examples in Fig. 7.7 (middle). However, when the
shadow increases, it may causes detection failure. As illustrated in Fig. 7.7 (bottom), a plate
with strong shadow result in incomplete characters.
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Fig. 7.7 Examples of the LP dataset. Top: skew license plates, middle: weak shadow license
plates, bottom: strong shadow license plates.
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Accuracy
Approach True Partial False FPR

HLPE 80.8% 6.6% 12.6% 12.6%
LPE 84.6% 1.5% 13.9% 7.6%
ESM 74.6% 7.3% 18.1% 17.9%
PVW 93.2% 0.3% 6.5% 1.0%

Proposed 94.3% 0% 5.7% 3.4%
Table 7.3 Comparison results of the LP dataset.

Accuracy
Approach True Partial False FPR

HLPE 61.6% 9.8% 28.6% 28.6%
LPE 58.0% 1.8% 40.2% 29.5%
ESM 68.7% 2.7% 28.6% 25.9%
PVW 84.8% 1.8% 13.4% 4.5%

Proposed 88.4% 6.2% 5.4% 2.4%
Table 7.4 Comparison results of the Caltech cars 1999 dataset.

7.3.4 Skew and Tilt Dataset

Fig. 7.8 Explanation of capturing system for collecting images with skewed and tilted license
plates.

In many situations, there exists considerable variation in the capturing angles between
a camera and the target license plate, which results in distorted license plate images. The
license plates obtained from such images are far from perfect rectangles. Most of the
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previously proposed LPD methods failed to detect such distorted plates. A possible solution
is perspective rectification as discussed in many computer vision topics, which is however
computational expensive in finding a transformation matrix that may rectify the perspective
projection distortion.

To evaluate the performance of the proposed algorithm for skewed and tilted license
plates, a set of vehicle images are collected with controlled capturing angles, as illustrated in
Fig 7.8.

Fig. 7.9 Examples of the skew and tilt dataset. Top: skew degree ±70o, bottom: skew degree
±75o.

To change the tilt degrees, the camera is fixed on a tripod and the distance to ground is
around 120cm. As the perpendicular distance between the license plate and ground is 40cm,
the horizontal distance between camera and plate is 300cm, the tilting angle between the
camera and plate is around 15o. To obtain vehicle images with different skew angles, the
angles towards the left are regarded as negative and the viewing angles towards the right
are regarded as positive. The sampling angles are −75o, −70o, −65o, −60o, −50o, −40o,
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−30o, −20o, −10o, 0o, 10o, 20o, 30o, 40o, 50o, 60o, 65o, 70o and 75o. For each angle, three
images are shot with tilting degrees 14o, 15o and 16o.

In the 57 skew and tilt images, 54 of license plates are correctly detected, which means a
94.7% detection rate. The system fails to detect license plate when the skew degree raised to
75o (1 failed) and −75o (2 failed) respectively. This indicates that the proposed algorithm
is tolerant to skew degree up to ±75o when the tilting degree is around 15o. Some of the
examples are displayed in Fig. 7.9.

7.3.5 12 Countries Dataset

Fig. 7.10 Examples of the 12 different countries, including Australia, Austria, Canada,
Croatia, France, Germany, Israel, Italy, Spain, Portugal, UK, and USA.

The majority of the published methods about LPD are proposed for a particular type of
license plate in a specific country or region. This lack of extendibility is well-known problem
in LPD. The method proposed in this chapter is able to overcome this problem due to the
flexible framework of the region linking stage.

In this section, the proposed LPD system is tested on a dataset that is collected from
the Internet image search engine. This dataset contains 171 licensed vehicle images, which
belong to 12 different countries as illustrated in Fig. 7.10. The detection results are given in
Table 7.5, the total detection rate is 96% on this 12 countries dataset.
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Australia Austria Canada Croatia
#Images 10 11 10 13

#Detected 9 10 10 13
France Germany Israel Italy

#Images 11 20 7 11
#Detected 10 20 7 10

Spain Portugal UK USA
#Images 10 10 11 47

#Detected 10 10 10 45
Table 7.5 Results of the 12 countries dataset.

7.4 Summary

In this chapter, a LPD system is proposed for detecting Chinese and English license plates
with large skew angles. The main contributions include: (i) a framework for LPD which
simultaneously completes detection and segmentation; (ii) a LPD system that is able to detect
both Chinese and English license plate; (iii) a LPD system that is able to detect extremely
skewed license plate. Extensive experiments have been presented with different kind of
datasets, and excellent results have been achieved.





Chapter 8

Context-aware Traffic Text Detection
with Convolutional Neural Networks and
Directed Acyclic Graph

Automatic acquisition of traffic information, including traffic signs, traffic texts, vehicles and
pedestrians, plays an important role in high-level tasks of Intelligent Transportation System
(ITS), such as Advanced Driver Assistance Systems (ADAS) and autonomous cars. The
detection of traffic signs, vehicles and pedestrians has been widely discussed over the past
two decades. Comparatively, Traffic Text Detection (TTD) has received less attention. Due to
the various appearance and layout of texts, TTD in the wild still faces challenges. Moreover,
there exist more problems for the development of TTD system in China, because of the large
number and complex layout of Chinese characters. In this chapter, a context-aware Chinese
TTD system is proposed by applying Convolutional Neural Network (CNN)s and Directed
Acyclic Graph (DAG). First, the proposed system jointly applies Maximally Stable Extremal
Regions (MSERs) and a regressor as region generator to ensure high recall. Second, all of the
generated regions are not only assigned with confidence scores for character/non-character
classification, but also inter-similarities for context-aware detection. Finally, characters
are refined and linked into texts by applying an unified character linking method, which
is based on DAG. With the help of these improvements, the proposed system can handle
non-horizontal text lines and crossed text lines, while some existing text detection systems
only are able to detect horizontal or near horizontal text lines. The error accumulation
problem that usually occurs in the systems that use individual and sequential stages is
also avoided. Experiments have been conducted using the proposed dataset, demonstrating
excellent performance with regard to high recall and precision rate. The overall system
Fmeasure is 70.3% on the Internet-collected dataset.
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Acyclic Graph

8.1 Introduction

ADAS are systems that developed to enhance vehicles for automated/adaptive/safety driving,
such as automatic parking, automotive navigation system, adaptive cruise control, lane
departure warning system, pedestrian protection system and traffic sign recognition. Over
the past two decades, due to the untiring investigation and development, ADAS become
the fastest growing parts in automotive electronics [195, 5, 7, 6]. ADAS work rely on
multiple data that captured by a variety of sensors, including lidar, radar, camera and vehicle
communication system. Among all the sensors, camera sensors have the advantages such as
cheap, small and flexible deployment. Moreover, due to the development of computer vision
and hardware, camera sensors have shown excellent growth rate and market share in recent
years.

Fig. 8.1 Examples of traffic texts in China. Green rectangles: the characters are composed
of isolated components. Yellow rectangles: stand-alone characters. Red rectangles: non-
horizontal and crossed text lines.

While the detection of traffic signs [53, 52], vehicles [6] and pedestrians [5] has been
widely discussed, there is much less research focused on the detection of traffic text. Com-
paratively, TTD is sometimes more important due to the rich and clear high level semantic
information for drivers. Nevertheless, TTD imposes more challenges [101, 102], such as the
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wide variety of text appearance due to different fonts, colours, sizes and layouts. Therefore,
there are fairly less works [95–103] that specifically focus on the detection of traffic text.

Among all the developed TTD systems, three systems [95, 102, 103] are designed for
English texts and the other systems [96–101] are focused on Spain texts, remaining a blank
for the detection of Chinese traffic texts. Generally, texts from different countries vary greatly
in appearance, which means the applications of specially designed systems are geographically
limited. Some examples of Chinese texts are illustrated in Fig. 8.1. In comparison to English
and Spain texts, detection of Chinese texts is confronted with more challenges: (i) there
is a huge number of Chinese characters included in traffic environment; (ii) different from
English and Spain words that are composed of one or several consistent letters, Chinese
characters are usually constructed of several inconsistent strokes, it is more difficult to detect
Chinese characters as a whole; (iii) the inconsistent and isolated strokes of Chinese characters
also make Chinese TTD lack of intra-character and inter-character contextual information;
(iv) Chinese texts are usually shorter than English and Spain texts, the intervals between
Chinese characters may larger, resulting in harder of linking characters into text lines; (v)
except horizontal and near horizontal text lines, non-horizontal and crossed text lines widely
exist in traffic environment. Therefore, Chinese TTD is more complex and difficult, in order
to develop a high performance Chinese TTD system, the following problems should be
solved.

(i) To establish a benchmark for Chinese TTD.

(ii) To use a region generator which can detect Chinese characters as a whole.

(iii) To apply a classifier that can discriminate characters/non-characters.

(iv) To develop a character linking method that can handle non-horizontal and crossed text
lines.

To address these problems, discriminative features and powerful classifiers are the keys.
Recently, the deep learning [24–28] has attracted much attention in computer vision and
machine learning fields. In particular, CNNs have achieved outstanding performance due
to the generalisation ability and learning capacity, and CNNs have been widely applied
in various computer vision tasks, such as image recognition [29–32] and object detection
[33–36]. Therefore, CNNs are applied in the proposed system to solve the problems listed
above.

In this chapter, a context-aware Chinese TTD system is proposed, with a number of key
contributions as follows.
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(i) The first contribution is the construction of a new Chinese traffic text dataset, which
is purely collected from Internet. This dataset contains 1825 images with about 20k
individual Chinese characters and 7k text lines labelled. With the help of this dataset,
the gap of Chinese traffic text detection and recognition will be filled.

(ii) The second contribution is a region proposal method that jointly uses of MSERs and
a CNN based regressor to hypothesise the character locations by taking into account
the complementary information from both modules. This method boosts performance
while characters are constructed of isolated components, blurred or partially covered.

(iii) The third contribution is a classification method that uses both information from a
local model and a contextual model. The local model is a CNN based classifier
that is applied for assigning character/non-character confidence scores of candidate
regions. The contextual model is a Siamese network that is introduced for measuring
inter-similarities between pairs of candidate regions. The combination of local and
contextual model allows more accuracy discrimination, especially in the detection of
stand-alone and distant characters that are contained in Chinese traffic texts.

(iv) The fourth contribution is an unified character linking method based on DAG, which
detects text lines by finding shortest path based on local weight, contextual weight and
spatial weight. The local weight considers the confidence scores of candidate regions.
The contextual weight measures the similarities of candidate regions. The spatial weight
controls the angle, distance and size likelihood of candidate regions. Therefore, the
problem of text detection is formulated into a task of finding the shortest path. This
method is able to detect non-horizontal and crossed text lines. The error accumulation
problem that usually occurs in the systems that use individual and sequential models is
also avoided.

The rest of this paper is organised as follows: Section 8.2 presents the proposed Chinese
traffic text dataset; Section 8.3 gives a detailed introduction of the proposed Chinese TTD
system; The experimental results will be provided in Section 8.4, followed by summary in
Section 8.5.

8.2 Chinese Traffic Text Dataset

8.2.1 Introduction of Proposed Dataset

The proposed Chinese traffic text dataset is established as follows.
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Fig. 8.2 Examples from the proposed dataset. Red rectangles: characters, yellow rectangles:
text lines. The top row: horizontal traffic texts and stand-alone characters, the second row:
vertical traffic texts, the third row: non-horizontal traffic texts, the bottom row: crossed traffic
texts.
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(i) 1825 images with Chinese traffic texts are downloaded from the Internet, the resolutions
of collected images vary from 240×180 pixels to 5184×3456 pixels.

(ii) In order to protect privacy, all the privacy related contents, such as faces and license
plates, are blurred.

(iii) The ground-truth of all the characters are firstly annotated, and then the characters are
manually linked into text lines accord to their semantic information.

(iv) The images are randomly divided into three sets, namely training, validation and testing,
the allocation weights are 40%, 10% and 50% respectively.

The details of the proposed dataset are provided in Table 8.1. Some examples from the
proposed dataset are illustrated in Fig. 8.2, including traffic texts with different layouts and
capturing angles.

Resolution of Image Training Validation Testing Total
≤ 300×300 34 11 46 91

300×300 ∼ 600×600 350 92 399 841
600×600 ∼ 900×900 242 49 340 631

900×900 ∼ 1200×1200 59 20 66 145
≥ 1200×1200 45 11 61 117

Total 730 183 912 1825
Table 8.1 Details of the proposed Chinese traffic Text dataset

Annotation of Characters

For character level annotation, all the legible character regions are marked with bounding
boxes and character classes, whereas illegible tiny character regions are removed for prevent-
ing man-made error. Consequently, a total number of 20429 Chinese characters are collected.
The details of the collected characters are provided in Table 8.2.

Annotation of Text Lines

For text line level annotation, all the labeled characters are manually linked into text lines
accord to their semantic information, and marked with text labels. Different from English
traffic texts, the length of Chinese traffic texts are usually shorter. To more comprehensively
present proposed dataset, the distribution of the lengths of text lines in the proposed dataset
are provided in Table 8.3.
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Resolution of Character Training Validation Testing Total
≤ 10×10 227 38 181 446

10×10 ∼ 20×20 3574 787 3973 8334
20×20 ∼ 30×30 2510 502 3236 6248
30×30 ∼ 40×40 871 314 1263 2448
40×40 ∼ 50×50 471 157 598 1226

≥ 50×50 739 173 815 1727
Total 8392 1971 10066 20429

Table 8.2 Details of characters from the proposed Chinese traffic Text dataset

Length of Text Line Training Validation Testing Total
1 246 59 253 558
2 1069 214 1274 2557
3 683 161 779 1623
4 589 143 709 1441
5 129 37 165 331
≥ 6 137 36 178 351

Total 2853 650 3358 6861
Table 8.3 Details of text lines from the proposed Chinese traffic text dataset

8.2.2 Evaluation Protocols

In this section, the evaluation protocols for the proposed dataset are introduced, including
evaluation protocols of character and text detection.

Evaluation Protocol of Character Detection

To evaluate performance of character detection, similar evaluation protocols as PASCAL
VOC object detection competition [170] are employed. Four metrics are introduced, namely
Intersection over Union (IoU), Precision, Recall and Average Precision (AP). Multiple
detections of same character are considered to be all positives.

The definition of IoU is the overlap ratio between the predicted bounding box Bp and
ground-truth bounding box Bgt formulated as:

IoU =
Area(Bp

⋂
Bgt)

Area(Bp
⋃

Bgt)
(8.1)

where Bp
⋂

Bgt and Bp
⋃

Bgt denote the intersection and union of the predicted and ground-
truth bounding boxes respectively. For a predicted sample, its IoU value should be at least
0.5 for considering as a true positive sample.
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The definition of Precision is the ratio between all true positive samples and all predicted
samples, while Recall is defined as the ratio between all true positive samples and all
ground-truth samples. The formulations of Precision and Recall are:

Precision =
|T P|
|D|

(8.2)

Recall =
|T P|
|G|

(8.3)

where T P, D and G are the sets of true positive samples, all detected samples and all
ground-truth samples respectively.

The definition of AP is the mean precision that calculated from a set of eleven equally
spaced recall levels [0,0.1, ...,1]:

AP =
1
11 ∑

r∈{0,0.1,...,1}
Pinterp(r) (8.4)

For each recall level r, all the precisions are collected if the corresponding recalls exceed
r, subsequently, the maximum precision is regarded as the output:

Pinterp(r) = max
r̃:r̃≥r

(P(r̃)) (8.5)

where P(r̃) are all the precisions that have corresponding recalls exceed r.

Evaluation Protocol of Text Detection

To evaluate performance of text detection, based on the widely used STD protocols in ICDAR
robust reading competitions [196–198], new character based protocols have been designed
for evaluating performance on proposed dataset. Three widely used metrics are introduced,
namely, Precision, Recall and Fmeasure.

The definition of Precision is the ratio between all true positive text lines and all detected
text lines, while Recall is defined as the ratio between all true positive text lines and all
ground-truth text lines. The formulations of Precision and Recall are:

Precision(G,D) =
∑Match(G,D)

|D|
(8.6)

Recall(G,D) =
∑Match(G,D)

|G|
(8.7)
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Match(G,D) =


1, i f pe f ect match
0.5, i f partial match
0, otherwise

(8.8)

where D and G are the sets of all detected text lines and all ground-truth text lines. Match(G,D)

is a function that takes different types of matches into consideration. The details are listed as
follows.

(i) Perfect match is defined as: characters between a ground-truth text line and a detected
text line are exactly matched in number, linking and overlap (IoU ≥ 0.5).

(ii) Partial match is defined as: characters between a ground-truth text line and a detected
text line are partially matched in number and linking. The numbers of characters in
a ground-truth (ngt) and a detected (nd) text lines should satisfy min(nd ,ngt)

max(nd ,ngt)
≥ 0.5. The

number of correctly detected characters (nc with IoU ≥ 0.5) in a ground-truth text line
should satisfy nc

ngt
≥ 0.5;

(iii) All the other situations are regarded as mismatch. For each ground-truth text line, the
match with the largest value is found, all the rest matches are taken as false positives.

Fmeasure is an overall harmonic mean that combines precision and recall. The relative
weights of these are controlled by α , which is usually set to 0.5 to give equal importance to
precision and recall:

Fmeasure =
1

α

Precision +
1−α

Recall

(8.9)

8.3 Approach

In this section, the proposed context-aware detection system will be introduced in detail. As
Fig. 8.3 shows, the proposed system consists of three main stages, which will be presented
in Sections 8.3.1, 8.3.2 and 8.3.3 respectively.

8.3.1 Character Proposal

The first stage of proposed detection system depends on the generation of character bounding
boxes. In this stage, high recall is required for ensuring the success of entire system,
low number of proposals are also expected for decreasing complexity and computational
cost. Therefore, MSERs is firstly employed because of its advantages in high recall, high
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Fig. 8.3 System overview. The proposed system contains three main stages, namely character
proposal, context-aware character filtering and context-aware character linking.

computational speed and strong robustness. Moreover, since there are a lot of Chinese
characters that are constructed of isolated strokes, it is hard for MSERs to detect them as a
whole. In order to address this problem, a bounding box regressor is also applied to adjust all
the bounding boxes that generated by MSERs.

MSERs

In most images, there exist Distinguished Regions (DRs) that can be detected based on
their distinguishing, invariant and stable properties [150]. As a kind of DRs, Extremal
Regions (ERs) have the following desirable properties: (i) pixels in an ERs are contiguous in
coordinates; (ii) pixels are closed in intensities. Further, by introducing an extremal property,
namely, affinely-invariant stability, MSERs can be generated as subsets of ERs [150]. More
specifically, MSERs denote a set of outstanding regions that are extremely stable inside
the regions and on their outer boundary. An input image is firstly binarised using different
threshold levels, and then connected components analysis is used to find all the connected
components at each threshold level. Finally, the regions that maintain their shape and area
at several thresholds are selected as MSERs. In this step, let I be an input image, a set of
regions RM = (r1,r2, ...,rn) are generated based on MSERs method. The bounding boxes of
all the regions are denoted as BM = (b1,b2, ...,bn).

Bounding Box Regression

For each bounding box b ∈ BM, its coordinates can be defined by the positions of its top-
left and bottom-right corners, denoted as b = (x1,y1,x2,y2). The aim of bounding box
regression is to update a new bounding box b∗ = (x∗1,y

∗
1,x

∗
2,y

∗
2) that has higher overlap with

targets. Instead of directly using the absolute coordinates of bounding box for regression,
the original coordinates are firstly encoded into a set of translation-invariant values in the
system. Let x1+x2

2 , y1+y2
2 be the centre, w be the weight and h be the height of bounding
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box b, then the distances from its centre to four boundaries can be calculated, denoted as
(dl,dr,dt ,db). With the cropped image in b, the regressor predicts a set of scaling factors
(zl,zr,zt ,zb). Subsequently, a set of new distances (d∗

l ,d
∗
r ,d

∗
t ,d

∗
b) are obtained, resulting a

updated bounding box b∗. The details are illustrated in Fig. 8.4.

Fig. 8.4 The bounding box regressor adjusts the original bounding box (red) to a updated
bounding box (green). The blue point is the central point of original bounding box, and the
coordinate encoding scheme uses it as reference point.

The regression CNN is trained by minimising the Euclidean loss between the ground-truth
scaling factors and predicted scaling factors:

argmin
W R

N

∑
i=1

LR(zi, f (ri;W R))+Ψ(W R) (8.10)

LR(zi, f (ri;W R)) =
∥∥zi − f (ri;W R)

∥∥2
2 (8.11)

where LR(.) denotes the Euclidean loss, N is the number of training examples, ri is the
input image region, f (ri;W R) is the predicted scaling factors that mapped by parameterised
function W R, zi is the ground-truth scaling factors and Ψ(W R) is a regularisation term.

The bounding box regressor takes all the bounding boxes (b1,b2, ...,bn) ∈ BM as input,
and produces a set of adjusted bounding boxes BR = (bn+1,bn+2, ...,b2n). Then, the bounding
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boxes from both sets are collected and combined together, resulting in a new set of bounding
boxes B = (b1,b2, ...,b2n) and the corresponding regions R = (r1,r2, ...,r2n).

8.3.2 Context-aware Character Filtering

In the second stage, two models are applied, namely local model and contextual model. The
local model is a CNN based classifier that is employed for assigning character/non-character
confidence scores of candidate regions. The contextual model is a Siamese network that is
introduced for measuring inter-similarities between pairs of candidate regions. Based on the
two models, candidate regions are filtered for removing partial non-character regions while
keeping all character regions.

Local Model

The local model is a CNN that follows the architecture in [30]. For each region in set
R = (r1,r2, ...,r2n), the local model assigns a confidence score c, forming a set of confidence
scores C = (c1,c2, ...,c2n).

The local model is trained by minimising Softmax loss between the ground-truth labels
and predicted labels:

argmin
W L

N

∑
i=1

LL(li, f (ri;W L))+Ψ(W L) (8.12)

LL(li, f (ri;W L)) =−li log( f (ri;W L)) (8.13)

where LL(.) denotes the Softmax loss, N is the number of training examples, ri is the input
image region, f (ri;W L) is the predicted label that mapped by parameterised function W L, li
is the ground-truth label and Ψ(W L) is a regularisation term.

Contextual Model

The contextual model aims to jointly measure and reason about multiple regions. Following
the work in [27], the contextual model is formulated as a Siamese network. This type of
network has two branches that share exactly the same architecture and parameters. For a pair
of image patches, each branch takes one of them as input and passes the patch through the
entire network. Finally, the outputs from both branches are concatenated and measured by a
similarity function. The details of a Siamese network are illustrated in Fig. 8.5.

Based on the regions in set R = (r1,r2, ...,r2n), a number of m different pairs of regions
can be collected, denoted as RS = ((r1

1,r
2
1),(r

1
2,r

2
2), ...,(r

1
m,r

2
m)). Let (r1

i ,r
2
i ) be a paired
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Fig. 8.5 The architecture of Siamese network

training examples, W S be the network parameters. The employed similarity function can be
formulated as:

di =
∥∥∥ f (r1

i ;W S)− f (r2
i ;W S)

∥∥∥2

2
(8.14)

where f (r1
i ;W S) and f (r2

i ;W S) are the output values of network, and di is the predicted
similarity. Then, the contextual model is trained by minimising Contrastive loss based on the
similarity of input pairs:

argmin
W S

N

∑
i=1

LS(yi,di)+Ψ(W S) (8.15)

LS(yi,di) = (1− yi)di + yi max(0,margin−di) (8.16)

where LS(.) denotes the Contrastive loss, N is the number of training examples, yi is a binary
flag of the pair (0 for similar pairs, 1 for dissimilar pairs), margin is the minimum distance
for dissimilar pairs and Ψ(W S) is a regularisation term.

For each region in set R = (r1,r2, ...,r2n), the contextual model measures a value s (output
of Siamese network, as indicated in Fig. 8.5), forming a set of similarity coordinates in
contextual model, denoted as S = (s1,s2, ...,s2n).



132
Context-aware Traffic Text Detection with Convolutional Neural Networks and Directed

Acyclic Graph

Fig. 8.6 Green diamond: positive sample with high confidence score. Blue diamond: positive
sample with low confidence score. Red triangle: negative sample. There are 2 negative
samples recalled if confidence scores are solely used. However, if similarity coordinates are
applied, only 1 negative sample is recalled.

Character Filtering

After the previous stages, a set of bounding boxes B = (b1,b2, ...,b2n), the corresponding con-
fidence scores C = (c1,c2, ...,c2n) and similarity coordinates S = (s1,s2, ...,s2n) are achieved.
All the essential information for character linking have been already obtained. However, due
to the large number of candidate regions, a character filtering step should be performed for
decreasing computational cost and complexity of the next stage.

To tackle this problem, the regions are not simply filtered based on a threshold thl
C of

C, but rather jointly use C and S. More specifically, the regions that have confidence scores
higher than thh

C are firstly selected. And then, the selected regions form a domain in the output
space of contextual network. The centre is calculated from the average value of selected s,
and the range thS is determined based on the standard deviation of selected s. Finally, all the
unselected regions inside this domain are also picked. The details are illustrated in Fig. 8.6.

8.3.3 Context-aware Character Linking

In the final stage, characters are linked into text line with an unified character linking method
based on DAG, which detects text line by finding shortest path between characters. Three
steps are involved in this stage: (i) character lining proposal for detecting all the possible
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combinations of text lines; (ii) DAG for finding the shortest path of the text lines; (iii)
character lining selection for selecting the final text lines.

Character Lining Proposal

Based on the assumption that all text lines are straight, all the selected regions from last stage
are sorted according to their confidence scores. For each regions B, and two nearby regions A
and C, their spatial and geometrical relationships of regions have been illustrated in Fig. 8.7.

Fig. 8.7 The spatial and geometrical relationships of three regions.

In order to reduce errors and searching space, the connection of B and C is restricted by
certain constraints.

(i) The regions B and C have not been connected in previous character lining.

(ii) The distance between B and C should satisfy the condition: D(B,C)
min(WB,WC)

≤ T hD.

(iii) The width difference between B and C should satisfy the condition: |WB−WC|
min(WB,WC)

≤ T hW .

(iv) The IoU difference between B and C should satisfy the condition: IoU(B,C)≤ T hI .

(v) The angle difference between A, B and C should satisfy the condition: |G(A,B)−G(B,C)| ≤
T hG.

For each text line, the character lining is performed until no further character can be
connected into text line. Extensive experiments on validation set show that the best trade-off
between performance and searching space is under the values: T hD = 3,T hW = 0.3,T hI =

0.1,T hG = 15◦.
Based on the above constraints, all the potential text lines or stand-alone characters can

be proposed. However, background or overlapped regions are also included in the results.



134
Context-aware Traffic Text Detection with Convolutional Neural Networks and Directed

Acyclic Graph

In order to remove the background and overlapped regions, the following steps should
be performed. In fact, with a classifier for text/no-text discrimination and Non-Maximal
Suppression (NMS), the text detection is already finished for typical approaches that apply
common evaluation protocol of text detection.

Directed Acyclic Graph Construction

In graph theory, the shortest path problem is the problem of finding a path between two
nodes in a graph such that the sum of the weights of its constituent edges is minimised. Due
to the structure of characters in straight text lines, the paths between them are directed and
weighted with no directed cycles. Therefore, character linking problem is actually a shortest
path problem that can be solved with weighted DAG. An example of the constructed graph is
shown in Fig. 8.8.

(a) (b)

Fig. 8.8 Illustration of the directed acyclic graph construction: (a) shows the eight detected
character regions (nodes) with connections (edges) in blue lines. (b) shows the constructed
directed acyclic graph. The red circle is the entry node and the green rectangle is the exit
node. For each region in (a), entry (red lines) and exit (green lines) edges are created with
corresponding weights. For each pair of connected regions, the weights are also assigned.
The final output path is shown in bold line.

The weights that have been applied in the DAGs are explained in the following. For
edges between two candidate regions, the weight is composed of local, contextual and spatial
weights.

The local weight is formulated as:

Weightlocal(A) =−α ∗C(A) (8.17)
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where A is a candidate region and C(A) is the confidence score of A being a character region.
The local weight is negatively correlated the confidence score. Therefore, higher confidence
score means more negative weight, which decreases the distance of the entire path. α is a
parameter that used to adjust the importance of local weight.

The contextual weight is formulated as:

Weightcontextual(A,B) =−(1+β ∗S(A,B))∗ (C(A)+C(B)) (8.18)

where A and B are two candidate regions with the similarity measured in S(A,B). The
contextual weight is also negative, so that both high confidence score and high similarity
can result in more negative weight, which decreases the distance of the entire path. β is a
parameter that used to adjust the importance of similarity.

The spatial weight is formulated as:

Weightspatial(A,B) = µ ∗D(A,B))+ν ∗W (A,B)) (8.19)

where A and B are two candidate regions with distance D(A,B) and width difference W (A,B)).
The spatial weight is non-negative, therefore, it is large when the candidate regions are
spatially far away or have very large width difference. In other words, candidate regions with
large spatial weight are less likely to belong to a same text line.

Since every regions has the chance to be the starting/ending of a text line, the entry weight
and exist weight are formulated as:

Weightentry(A) =−α ∗C(A) (8.20)

Weightexit(A) = 0 (8.21)

where entry weight is the same as local weight, while exit weight equals to 0.
Finally, the text lines can be selected by finding the shortest path from entry to exit nodes.

Extensive experiments on validation set show that the best performance is achieved when:
α = 0.01,β = 0.1,µ = 0.5,ν = 0.2.

Character Lining Selection

In this step, the text lines obtained in last step are further selected for generating final outputs
that without overlap. Two simple rules are applied: (i) the text lines with small horizontal
angles (≤ 45◦) and small weights are firstly selected; (ii) if two text lines are overlapping,
the text line with small weight is kept, the other one is split up or removed.
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8.4 Experiments

In this section, first, implementation details will be introduced, including system environment,
regression network, classification network and Siamese network. Second, the results of the
experiments will be presented. Finally, error evaluation will be discussed.

8.4.1 Implementation Details

System Environment

To implement the Chinese TTD system, a workstation with a Intel Xeon 3.3GHz CPU, 48GB
memory and a NVIDIA GTX Titan X GPU is employed. The programs run on a 64-bit
Windows 7 operating system with CUDA 7.5, CUDNNv5, Matlab 2015b and MatConvNet
1.0-beta20 [172] deep learning toolbox.

Regression Network

The bounding box regression network is constructed of 4 convolutional layers, followed by 3
fully-connected layers with 4096, 1024 and 4 neurons respectively. All the convolutional
layers are normalised by BN [158], activated by ReLU, and down-sampled by a max pooling
layer with kernel size 2× 2 and stride 2. The inputs to all the convolutional layers are
zero-padded for preserving dimensionality. Dropout layers [174] are applied after the fully-
connected layers for preventing over-fitting. The details of the regression network are shown
in Table 8.4.

For the training set, all of the candidate regions generated by MSERs are collected, and
the candidate regions have ≥ 0.2 IoU overlap with ground-truth are selected as training
samples. And then, all the samples are resized to 48× 48× 3 RGB images. Finally, the
images are pre-processed by subtracting the mean and dividing by the standard deviation.
The validation set is built follow the same steps.

For the training stage, the network parameters are initialised by applying Improved Xavier
[157]. Then, the parameters of the network are optimised by minimising the Euclidean loss
between ground-truth and estimated values with SGD algorithm. The size of mini-batch B is
set to 128, momentum 0.9, weight decay 0.0005 and training epoch 100. The learning rate η

is initialised at 0.01, and divided by 10 if the recall on validation set maintains for 5 epoches.
After the training is finished, the network with the highest recall on validation set is selected.
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Classification Network

The details of the classification network are presented in Table 8.4. Different with regres-
sion network, the number of final output neurons are 2, corresponding to characters or
backgrounds.

Network configurations
Layer Index Regression network Classification network Siamese network

1 Input: 48×48,3
2 Convolution: 3×3,64
3 BN
4 ReLU
5 Max pooling: 2×2 with stride 2
6 Convolution: 3×3,128
7 BN
8 ReLU
9 Max pooling: 2×2 with stride 2

10 Convolution: 3×3,256
11 BN
12 ReLU
13 Max pooling: 2×2 with stride 2
14 Convolution: 3×3,512
15 BN
16 ReLU
17 Max pooling: 2×2 with stride 2
18 FC: 4096
19 BN
20 ReLU
21 Dropout
22 FC: 1024
23 BN
24 ReLU
25 Dropout
26 FC: 4 FC: 2 FC: 2
27 Euclidean loss Softmax loss Contrastive loss

Table 8.4 Network configurations

For the training set, first, all the candidate regions from MSERs and regressor are collected.
Second, all the candidate regions have ≥ 0.5 IoU overlap with ground-truth and ground-truth
regions are selected as positive samples. And then, from the rest samples, two times number
of negative samples to positive samples are uniformly selected. Finally, all the samples are
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resized to 48×48×3 RGB images, followed by subtracting the mean and dividing by the
standard deviation. The validation set is built follow the same steps.

For the training stage, the network parameters are initialised by applying Improved Xavier
[157]. Then, the parameters of the network are optimised by minimising the softmax loss
between target labels and predicted labels with SGD algorithm. The size of mini-batch B is
set to 128, momentum 0.9, weight decay 0.0005 and training epoch 100. The learning rate η

is initialised at 0.1. Early stopping is employed for selecting the best model.

Siamese Network

The details of the Siamese network are shown in Table 8.4. The network is similar to
classification network, except the loss function is contrastive loss instead of softmax loss.

For the training set, in each iteration, similar pairs (two positive samples which have
≥ 0.5 IoU overlap with ground-truth) and dissimilar pairs (one positive sample and one
negative sample) are randomly and uniformly sampled from the training images. And then,
all the samples are resized to 48×48×3 RGB images, followed by subtracting the mean
and dividing by the standard deviation. The validation set is built follow the same steps.

For the training stage, the Siamese network comprises two identical sub-networks, one
sub-network is firstly initialised by applying Improved Xavier [157], and then all the pa-
rameters are copied to the other one. Subsequently, pairs of images are passed through
the sub-networks, yielding pairs of outputs which are further passed to the contrastive loss.
The gradients of both sub-networks are computed using back-propagation. The network
parameters are updated with SGD based on the average gradients of the two sub-networks.
The size of mini-batch B is set to 128, momentum 0.9, weight decay 0.0005, training iteration
100000, and margin value 1. The learning rate η is initialised at 0.01. After the training is
finished, the network with best performance on validation set is selected.

8.4.2 Performance Evaluation of Character Proposal

The performance of the proposed character proposal method is presented in Fig. 8.9. The
recall rates for characters are illustrated with the changes of IoU between the range [0.1,1].
With an IoU value of 0.5, the recall rates for MSERs, regression and the combination of the
two methods are 93.8%, 97.3% and 97.7% respectively. Apparently, the regression method
indeed improves the performance of MSERs, and the combination of the two methods shows
further boosted performance.

The performance the proposed method are compared with the five widely used methods,
including MSERs, Edge Boxes ( α = 0.65 and β = 0.75), Selective Search, Stroke Width
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Fig. 8.9 Performance of the proposed character proposal method. The recall rates are
illustrated with the changes of IoU between the range [0.1,1].

Type Average number of proposals / image
Ours 964

MSERs 482
Edge Boxes 4000

Selective Search 3574
SWT 340

AdaBoosting 5000
Table 8.5 Average number of proposals per image
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Transform (SWT) and AdaBoosting, with an IoU value of 0.5, the recall rates are 97.7%,
93.8%, 52.7%, 57.3%, 60.3% and 72.3% respectively. The curve of recall rates versus IoUs
are illustrated in Fig. 8.10. The proposed method outperforms these widely used methods.
The average numbers of proposals of all the methods are presented in Table 8.5. The results in
Table 8.5 indicate that the number of proposals generated by proposed method is reasonable
while it outperforms other methods in recall rate.

Fig. 8.10 Performance comparison of the character proposal method with the five widely
used methods, including MSERs, Edge Boxes, Selective Search, Stroke Width Transform
and AdaBoosting. The recall rates are illustrated with the changes of IoU between the range
[0.1,1].

8.4.3 Performance Evaluation of Character Filtering

The Precision - Recall (PR) curves of the classifiers are illustrated in Fig. 8.11. Two
experiments are set up for providing a comprehensive evaluation. The Fig. 8.11 shows that
the sole use of local model presents good performance when high confidence scores are
used for prediction. However, with the decreasing of the confidence score, the performance
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of local model is decreased due to the factors such as: (i) there are thousands of different
Chinese characters contained in traffic text, lots of them are not involved in training set; (ii)
capturing angle, colour fading and partial covering make the classification very difficult. On
the other hand, the contextual model directly measures the similarities of two inputs, the
robustness to unseen and broken characters is better than local model. Therefore, the local
and contextual models are jointly used in the proposed system. The APs of the sole model
and the joint models are 93.9% and 93.4% respectively.

Fig. 8.11 Illustration of the precision - recall curves. Red line: sole use of local model. Blue
line: joint use of local and contextual models.

Type Recall Precision
Input 97.7% 6.7%

Local model filtering 97.7% 8.0%
Context-aware filtering 97.7% 12.4%
Table 8.6 Performance of character filtering
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The recall and precision rates for input and filtered sets are shown in Table 8.6. Without
missing character regions, the proposed method increase the precision from 6.7% to 12.4%.
In other words, the size of filtered set is only about 54.1% of input set. Therefore, the
computational cost and complexity of next stage will be largely reduced.

8.4.4 Performance Evaluation of Character Linking

The performance of the DAG based character linking method is presented in Table 8.7,
followed by a set of experiments that are implemented based on different character linking
methods: (i) simple perceptual similarity rules [102]; (ii) pairing candidates and aggregating
pairs with similar orientations [115, 116, 135]; (iii) text flow [149].

Type Recall Precision Fmeasure
Character linking proposal (Ours) 95.5% 10.3% 18.7%

Directed acyclic graph (Ours) 90.4% 9.78% 17.7%
Final results (Ours) 89.2% 58.2% 70.3%

Text Flow [149] 82.9% 60.1% 69.7%
Simple similarity rules [102] 73.3% 53.5% 61.8%

Orientation pairing [115, 116, 135] 78.2% 51.4% 62.1%
Table 8.7 Performance of character linking

The results in Table 8.7 indicates that the proposed approach is indeed effective. In
character linking proposal stage, the applied method achieves 95.5% recall rate. After region
refinement based on directed acyclic graph, the recall rate reduced to 90.4%, the reduced
recalls are mainly partial matches, which are caused by inaccurate path selection. Finally,
the character linking method achieves 89.2% recall and 58.2% precision rates, resulting in
70.3% Fmeasure, which outperforms the existing character linking method.

8.4.5 Error Evaluation

Some examples of successful or failed detection are illustrated in Fig. 8.12. The results
in Fig. 8.12 indicate that the proposed system is able to detect horizontal, non-horizontal,
vertical traffic or even crossed traffic texts. However, failed detection exists in some cases,
such as the characters from several texts are very close or characters from one text are far
from each other. In order to address these problems, traffic text recognition is essential. With
the help of semantic meanings of the characters, it will be much easy to link them together.
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Fig. 8.12 Illustration of examples of detection results. Blue rectangles: successfully detected
characters, red rectangle: missed characters, green lines: successfully linked text lines, red
lines: incorrectly lined text lines.
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8.5 Summary

In this chapter, a context-aware Chinese TTD system is proposed, the contributions include:
(i) the construction of a new Chinese traffic text dataset. With the help of this dataset, the gap
of Chinese traffic text detection and recognition will be filled; (ii) a region proposal method
that jointly uses of MSERs and a CNN based regressor to hypothesise the character locations.
This method boosts performance while characters are constructed of isolated components,
blurred or partially covered; (iii) a classification method that uses both information from
a local model and a contextual model. The combination of local and contextual model
allows more accuracy discrimination, especially in the detection of stand-alone and distant
characters that are contained in Chinese traffic texts; (iv) an unified character linking method
based on DAG. The problem of text detection is then formulated into a task of finding the
shortest path, and this method also allows to detect non-horizontal and crossed text lines.
Extensive experiments have been performed, and good results have been achieved on the
stages, including character proposal, character filter and character linking.



Chapter 9

Pedestrian Attribute Classification with
Convolutional Neural Networks and
Feature Selection

Visual attribute classification has been widely discussed due to its impact on lots of appli-
cations, such as face recognition, action recognition and scene representation. Recently,
Convolutional Neural Network (CNN)s have demonstrated promising performance in image
recognition and object detection. Such networks are able to automatically learn a hierarchy
of discriminate features that richly describe image content. However, dimensions of features
of CNNs are usually very large. In this chapter, a pedestrian attribute classification system is
proposed based on CNNs and a novel feature selection algorithm. Experiments have been
conducted using the Berkeley Attributes of People dataset. The best overall Mean Average
Precision (MAP) is about 89.2%.

9.1 Introduction

Visual attributes are human-nameable properties (e.g., is male, wear hat and wear glasses)
that are discernible in images or videos, and they are crucially important to solving various
vision problems. For example, scene representation proposed in [199] characterises target
scene by a series of attributes rather than a single label which is too restrictive to describe the
properties of a scene. In [200], the face verification problem is reformulated as the recognition
of the presence or absence of describable aspects of visual appearance. Different formulations
of attributes have been proposed, including binary attributes and relative attributes [201].
Binary attributes are used to represent the presence of certain properties. Relative attributes
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describe the relative strength of each attribute, which are closer to the ways that human
describe and compare objects in real world.

For computer vision tasks, feature representation is a critical factor that affects system
performance. The problem of extracting discriminative and representative features has been
profoundly researched in the past decades. Recently, deep learning have achieved huge
popularity. In particular, the success achieved by Krizhevsky et al. [29] on the ILSVRC-
2012 image classification benchmark, leading a new way of applying CNNs to tasks like
image recognition and object detection. The works in [29, 30] show that CNNs are able to
automatically learn discriminative feature representation. With the help of region proposals,
CNN based object detection [33, 34] is significantly developed. And CNNs are also widely
applied in action recognition [202] and scene representation [199].

However, dimensions of features of CNNs are usually very large, and there are irrelevant
elements included in features of CNNs. Therefore, feature selection could be exploited
to remove the irrelevant or redundant features of CNNs. Feature selection is an important
method in many computer vision tasks. The motivations include: (i) reducing feature
dimension; (ii) improving classification performance; (iii) decreasing computational cost.
Feature selection methods can be divided into two categories, which are supervised feature
selection method and unsupervised feature selection method. Supervised feature selection
methods [203, 204] reduce feature dimensions based on correlation information between
features and labels. On the other hand, unsupervised feature selection methods [205, 206]
select features mainly based on similarity preserving or clustering. However, due to the lack
of label information, feature selection should be performed without guide of classification
accuracy, leading particular challenge in unsupervised feature selection.

In this chapter, a pedestrian attribute classification system will be presented. Inspired
by R*CNN [202] that aims to improve classification accuracy by introducing secondary
regions, the proposed system focus on exploring the relationships between different portions
of features with regard to visual attribute tasks, two main contributions are included as
follows.

(i) A pre-trained CNN model to extract discriminative feature representation.

(ii) A novel feature selection algorithm to remove irrelevant or redundant features of
CNNs, resulting in reduced feature dimension, improved classification performance
and decreased computational cost.

The rest of this chapter is organised as follow: Section 9.2 gives a detailed introduction
of the proposed visual attribute classification system. Experimental results will be introduced
in Section 9.3, followed by summary in Section 9.4.
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9.2 Approach

The proposed visual attribute classification system mainly includes three stages: (i) feature
extraction; (ii) feature selection; (iii) classification, as Fig. 9.1 illustrates. The modules will
be detailed in the following sections.

Fig. 9.1 System overview.

9.2.1 Feature Extraction

In this stage, a CNN is applied for feature extraction, and the applied model is based on the
networks in Fast R-CNN [34] and R*CNN [202]. The network is built based on the 16-layer
architecture (VGG16) [30], which have demonstrated outstanding performance in image
classification and object detection. Since only the features before fully-connected layers
are used, the last layer of the network is the Region of Interest (RoI) pooling layer [34] in
proposed system. The detailed network configurations are illustrated in Table 9.1.

9.2.2 Feature Selection

In feature selection stage, first, the features of all images at the RoI pooling layer are collected.
The RoI pooling layer is a kind of adaptive max pooling layer, the size (7×7 in the system) of
its output feature maps are fixed whatever the size of inputs. Therefore, the size of extracted
features for each input image is 7× 7× 512 (25088 in total). Then, feature selection is
performed using proposed algorithm. More specifically, for each attribute classifier, the
detailed procedure are listed as follows.
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(i) Data collection. For the training attribute, all related images in training set are divided
into two classes (positive and negative) based on labels.

(ii) Data processing. In order to measure the similarities of features belonging to the same
class, all of the features are transformed into binary arrays using a threshold value.
Since the activation function of the last convolutional layer (weight layer 13) is ReLU
[173], only values larger than 0 are able to pass to next layer. In other words, feature of
each position (25088 in total) is activated if the value is larger than 0. Therefore, 0 is
adopted as the threshold value in this step. And then, all of the binary arrays from same
class are accumulated together and normalised by dividing by the number of images.
In this manner, for each class, a array that indicate the probability of activation of each
feature position can be obtained. Finally, two probability arrays are achieved, namely,
ppositive and pnegative.

(iii) Feature selection. In this step, feature selection is performed by comparing the magni-
tude of the probability of each position in ppositive and pnegative. First, a distance vector
can be computed based on |ppositive − pnegative|. Second, the vector is sorted according
to its magnitude. Finally, given a desired dimension n, the original 25088 feature can
be reduced to n by simply select the positions that contain top n largest values in vector.

9.2.3 Classification

In classification stage, linear SVMs are employed [207]. Classification of SVMs are per-
formed by constructing maximum-margin hyper-plane. With the selected features extracted
from the previous stage, linear SVMs are trained to discriminate between presence or absence
for each attribute.

9.3 Experiments

In this section, first, the implementation details will be introduced. Second, the Berkeley
Attributes of People Dataset will be illustrated. Then, the experimental results of proposed
system will be presented and discussed followed by the performance comparison. Finally,
error evaluation will be presented.
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9.3.1 Implementation Details

System Setup

To implement the system, a laptop with an Intel Xeon E3-1231 V3 CPU, 32GB memory
and a NVIDIA GTX 970m GPU is employed. The program runs on a 64-bit Open-source
Linux operating system with CUDA 7.5, Python 2.7.3, Matlab 2014b and Caffe deep learning
platform installed.

ConvNet Configurations
Weight layer VGG16 Applied

Input
1 Convolution 3×3,64 Convolution 3×3,64
2 Convolution 3×3,64 Convolution 3×3,64

Max pooling
3 Convolution 3×3,128 Convolution 3×3,128
4 Convolution 3×3,128 Convolution 3×3,128

Max pooling
5 Convolution 3×3,256 Convolution 3×3,256
6 Convolution 3×3,256 Convolution 3×3,256
7 Convolution 3×3,256 Convolution 3×3,256

Max pooling
8 Convolution 3×3,512 Convolution 3×3,512
9 Convolution 3×3,512 Convolution 3×3,512
10 Convolution 3×3,512 Convolution 3×3,512

Max pooling
11 Convolution 3×3,512 Convolution 3×3,512
12 Convolution 3×3,512 Convolution 3×3,512
13 Convolution 3×3,512 Convolution 3×3,512

Max pooling RoI pooling
14 FC 4096
15 FC 4096
16 FC 1000

Soft-max
Table 9.1 Network configurations of CNNs

Network Configurations

The network details are illustrated in Table 9.1. In the training stage, the CNN started from a
model [202] initialised with discriminative pre-training for the Berkeley Attributes of People
dataset [208], and fine-tuning is not performed for the CNN. For each sample in the dataset,
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only the information provided from the ground-truth region is used for the tasks of attributes
classification.

9.3.2 Berkeley Attributes of People Dataset

The Berkeley Attributes of People dataset [208] contains 8035 images with at least a full
body of a person included. 9 attributes are provided, and the detail distribution of labels are
illustrated in Table 9.2. Some examples from the dataset have been shown in Fig. 9.2.

Positive Negative
Is Male 3395 2365
Has Long Hair 1456 3361
Has Glasses 1238 4083
Has Hat 1096 5532
Has T-Shirt 1019 3350
Has Long Sleeves 3045 3099
Has Shorts 477 2020
Has Jeans 771 1612
Has Long Pants 2020 760

Table 9.2 Number of positive and negative labels of Berkeley Attributes of People Dataset.

9.3.3 Experimental Results

Performance Evaluation of Feature Selection

The objective of proposed feature selection method is to remove the redundant or irrelevant
parts of the features. Thus, the curves of classifying performance versus the numbers of
selected features (channels) are presented, as illustrated in Fig. 9.3. All the attributes in
the test set of the Berkeley Attributes of People dataset are included. The sizes of selected
features are set from 50 to 25088 with a step size of 50. Two measurement parameters
are employed for evaluating the system performance, namely Average Precision (AP) and
precision. The highest values of AP and precision for each attribute task are highlighted
with green stars. As Fig. 9.3 indicates, the classifying performance increases as the selected
feature dimension (< 2500) increases, which means the discriminant part of the features have
been selected. Subsequently, the classifying performance becomes nearly stable regardless
of the increasing of feature dimension, which means the rest features are not such relevant to
the corresponding tasks. Therefore, the experiments show that the proposed methods can
reduced the feature dimension effectively.
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Fig. 9.2 Examples from the Berkeley Attributes of People Dataset. The persons in question
are highlighted with a red box.
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(a) Is Male (b) Has Long Hair (c) Has Glasses

(d) Has Hat (e) Has T-Shirt (f) Has Long Sleeves

(g) Has Shorts (h) Has Jeans (i) Has Long Pants

Fig. 9.3 Illustration of AP−channel and precision−channel curves of the attribute classifiers
on the test set. The sizes of selected features are set from 50 to 25088 with a step size of 50,
and the highest values of AP and precision for each attribute task are highlighted with green
stars.

Performance Comparison

Is Male Has Long Hair Has Glasses Has Hat Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants MAP
Fast R-CNN 91.8 88.9 81.0 90.4 73.1 90.4 88.6 88.9 97.6 87.8
Ours (500) 91.8 86.9 87.9 93.0 66.2 91.0 87.2 86.4 98.1 87.6
Ours (1500) 92.7 88.2 88.2 93.5 67.5 91.7 89.0 88.1 98.3 88.6
Ours (2500) 92.9 88.2 88.4 93.6 68.3 91.6 89.9 88.3 98.4 88.8
Ours (3500) 93.3 88.4 88.6 93.8 68.5 91.7 89.9 87.8 98.4 88.9
Ours (4500) 93.4 88.3 88.5 93.8 68.2 91.6 90.2 87.9 98.4 88.9
Ours (highest) 93.4 88.7 88.7 94.0 68.9 91.9 90.5 88.5 98.4 89.2
Poselet [208] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.2
PANDA [202] 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0
Gkioxari et al.[202] 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5
R*CNN [202] 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2

Table 9.3 Performance of the Berkeley Attributes of People test set.



9.4 Summary 153

Table 9.3 shows the comparative results of all the pedestrian attributes in the Berkeley
Attributes of People dataset. Since the pre-trained model from [202] is applied in proposed
system, the performance of Fast R-CNN is shown as the baseline, followed by the results
of proposed method with feature selection dimensions (500, 1500, 2500, 3500 and 4500).
Comparing with the baseline method, the proposed method achieves better performance on
the most of tasks. In particular, the tasks Is Male, Has Glasses, Has Hat and Has Long
Sleeves perform obviously better. The MAP seems to stable at about 88.8% after the feature
selection dimension larger than 2500, which means the proposed method can effectively
reduce the feature dimension from 25088 to 2500 without loss of performance.

The proposed method is also compared to other approaches. As Table 9.3 indicates, the
highest results are collected for each task under different feature selection dimensions, and
the proposed method obtains the best performance in the tasks Is Male, Has Glasses and
Has Hat. The maximum MAP is about 89.2%, which is the same as the result obtained by
R*CNN.

Error Evaluation

Although the proposed pedestrian attribute classification system has demonstrated boosted
performance on most attributes, some of the attributes are still hard to discriminate, such as
Has Shorts and Has T-Shirt. As Fig. 9.3e elaborated, the classification performance of the
attribute Has T-Shirt is especially low, the AP value is stabled at about 68.5%, which is much
lower than the corresponding precision value 84.3%. Some of false examples are given in
Fig. 9.4.

The main reasons cause false predictions include: (i) low resolution of images; (ii)
partial occlusions; (iii) huge appearance variations; (iv) the representative ability of features
extracted with the applied CNN are not such discriminative. Even though the proposed
feature selection method is able to improve classification performance by removing irrelevant
or redundant features, the system performance will be influenced if the features are extracted
using under-fitting models. Comparing to the baseline method, some of the attributes show
decreased performance, which indicates that MLP could achieve better performance than
SVM for these tasks.

9.4 Summary

This chapter proposes a visual attribute classification system based on CNNs and feature
selection, with main contributions including: (i) a pre-trained CNN model to extract discrim-
inative feature representation; (ii) a novel feature selection algorithm to remove irrelevant
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Fig. 9.4 Illustration of examples where the prediction failed.
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or redundant features, resulting in reduced feature dimension, improved classification per-
formance and decreased computational cost. By introducing the proposed method, feature
dimensions can be reduced, and system achieves higher accuracy and lower computational
cost. Experiments have been conducted on the Berkeley Attributes of People test set, and
competitive results have been achieved.





Chapter 10

Conclusions and Future Work

In this chapter, the conclusions of this thesis will be presented in the first, followed by
possible research directions for future works.

10.1 Conclusions

The objectives of this thesis is to evaluate, develop and apply computer vision and deep
learning methods, techniques and algorithms for traffic scene objects detection and recogni-
tion. Three objects are mainly focused, including traffic sign, traffic text and pedestrian. For
traffic sign, CNNs with the most influencing CNN architectures are trained based on different
training algorithms, such as weight initialisation, regularisation and optimisation. And then,
CNNs are trained based on proposed methods, and improved performance is achieved. For
traffic text, Chinese and English license plates are firstly detected with proposed method.
And then, the Chinese texts on traffic panels are detected based on CNNs and DAG. For
pedestrian, the attributes of pedestrian are classified based on CNNs and a novel feature
selection algorithm. The detail discussion will be presented in the following.

In Chapter 3, a real-time system for TSD is proposed by template matching with features
based a new feature MCCH). Comparing with classical features such as HOG, the feature
dimension of MCCH is less while the representation ability is comparative. Therefore, MCCH
has lower computational cost, and it is very suitable in real-time applications. Followed by
the detection of traffic signs over roads, traffic signs painted on road surface are detected in
Chapter 4, the proposed TSD system applies a hybrid region proposal method and a CNN.
The features of CNN are more discriminative than the simple features such as SIFT, HOG and
MCCH. Therefore, the system accuracy of CNN based methods are higher than traditional
methods. Moreover, in order to improve detection speed and accuracy, the famous Fast
R-CNN framework is applied. Fast R-CNN takes whole images as input, and predicts outputs
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based on multi-task networks, which improve system accuracy and decrease computational
cost.

In Chapter 5, traffic signs are recognised with the most influencing CNN architectures,
including the very deep networks, residual networks and dense networks. Extensive exper-
iments are presented and discussed based on different training algorithms, such as weight
initialisation, regularisation and optimisation. Then, in Chapter 6, four TSR systems are
proposed based on new strategies or constructed by new network architectures. First, different
from the most existing approaches that apply single level classifiers for TSR, a hierarchical
classification system is applied for improving the performance of TSR. Second, unsupervised
feature learning is a challenge in computer vision. By introducing GANs, a TSR system
is proposed based on features that are learnt without labels. Third, in comparison with
previous CNNs that only apply max pooling for reducing feature dimension, a novel layer is
proposed, which applies MPPs of max pooling as information for sparse feature learning.
The sparse layer is able to extract the important part of features based on different tasks,
so that the classification performance of CNNs is improved. Finally, in order to overcome
gradient vanishing and degradation problems, a novel CNN architecture design that learns
with multiple loss functions is developed. With the help of this design, the gradient vanishing
and degradation problems are eased. Comparing with residual learning, the proposed design
has better performance in shallow networks.

In Chapter 7, a system for detecting Chinese and English license plates is proposed.
Comparing with existing methods, it is more robust and able to detect Chinese and English
license plate with large skew angles. Then, a context-aware Chinese TTD system is proposed
in Chapter 8 with three advantages. First, the proposed system jointly applies MSERs and a
regressor as region generator to ensure high recall. Second, all of the generated regions are
not only assigned with confidence scores for character/non-character classification, but also
inter-similarities for context-aware detection. Finally, characters are refined and linked into
texts by applying an unified character linking method, which is based on DAG. With the help
of these improvements, the proposed system can handle non-horizontal text lines and crossed
text lines, while some existing text detection systems only are able to detect horizontal or
near horizontal text lines. The error accumulation problem that usually occurs in the systems
that use individual and sequential stages is also avoided.

In Chapter 9, a pedestrian attribute classification system is proposed based on CNNs
and a novel feature selection algorithm. CNNs have demonstrated promising performance
in image recognition and object detection. Such networks are able to automatically learn a
hierarchy of discriminate features that richly describe image content. However, dimensions
of features of CNNs are usually very large, and there are irrelevant elements included in
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features of CNNs. Comparing with R*CNN that aims to improve classification accuracy
by introducing secondary regions, the proposed system focus on exploring the relationships
between different portions of features with regard to visual attribute tasks.

10.2 Future Works

In this thesis, there are different directions for future work based on existing outcomes. Some
of the directions are listed as follows.

(i) In Chapter 6, a novel layer is proposed by applying MPPs of max pooling as infor-
mation for sparse feature learning. Although excellent results have been achieved,
the existing sparse layer is not able to train with entire network together. It would be
interesting to improve the sparse layer for training the entire network as a whole.

(ii) In Chapter 6, a novel CNN architecture design that learns with multiple loss functions
is developed. Although improved results have been achieved, the problems of gradient
vanishing and degradation are not totally addressed. It would be interesting to further
improve the architecture of CNNs.

(iii) In Chapter 8, a context-aware Chinese TTD system is proposed by applying CNNs and
DAG. Although excellent results have been achieved, the task of traffic text recognition
is not addressed. Traffic text could be recognised by Recurrent Neural Network (RNN)
or Long Short-Term Memory (LSTM). With the result of traffic text recognition, the
system performance can be further improved. However, due to the large number of
Chinese characters, more than 5000 classes of characters are involved. It will be
interesting and challenging.
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Appendix A

Convolutional Neural Networks

A.1 Network Blocks

A.1.1 Weight Layers

Convolution

Generally, convolution is an operation about two real valued functions. Suppose there is a
sensor that measures a signal x(t) at time t, however, the measured data is noisy. In order
to estimate a new data with less noise, an effective choice is to use average data between
several continuous measurements. Since more recent measurements are more relevant, higher
weights should be assigned to these measurements, oppositely, dated measurements should
have lower weights. The estimated signal y(t) can be achieved by convolution between the
signal x(t) and a weighting function w(t), formulated as:

y(t) =
∫ +∞

−∞

x(a)w(t −a)da (A.1)

Normally, the convolution operation is denoted as an asterisk:

y(t) = x(t)∗w(t) (A.2)

In real world applications, it is impossible to measure data at every instant, the data are
discretely collected with selected frequencies. The discrete convolution is defined as:

y(t) =
+∞

∑
a=−∞

x(a)w(t −a) (A.3)
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And in computer vision field, the inputs are usually multi-dimensional array data, such as
image and video. Therefore, convolutions are performed over more than one axis at a time.
The convolution of 3D input and output is formulated as:

y j = ∑
i

f i j ∗ xi +b j (A.4)

where xi denotes the i-th input data in depth, y j denotes the j-th output data in depth. f i j is the
convolution kernels and b j is the bias. ∗ represents 2D convolution operation. ∑ represents
summation operation.

Convolution operation is effective and powerful in machine learning systems, because of
three aspects as follows. (i) Sparse interactions or local connectivity, which is accomplished
by connecting neurons to only a local region of input data. The spatial extent of this local
region is also called local receptive field. Normally, the sparse intersections are local in width
and height, but dense in depth. This property ensures convolution operation needs much less
parameters and much fewer computational cost. (ii) Parameter sharing refers to repeatedly
use same parameters in a network. In traditional neural networks, each parameter only
contributes to output once. However, in CNNs, each parameter in kernels is repeatedly used
in every local operation. This parameter sharing strategy means that only a set of parameters
are learnt, rather than different sets of parameters for every location. Therefore, memory
requirement and computational cost are further reduced. (iii) Equivalent representations is
another important property that benefits from parameter sharing. The equivalent property of
a function means that outputs change in the same way as inputs change. In CNNs, outputs
and inputs are equivalent in translation, and this property has been widely used in lots of
CNN architectures. However, CNNs are not naturally equivalent in rotation and scale.

Convolution Transpose (Deconvolution)

Mathematically, deconvolution is an algorithm that reverses the effects of convolution op-
eration on data. However, in CNNs, deconvolution [209] and convolution transpose are
synonymous, both of them perform transpose operation of convolution. The convolution
transpose of 3D input and output can be formulated as:

x̃ j = ∑
i

yi ∗ f i j +b j (A.5)

where yi denotes the i− th input data in depth and x̃ j denotes the j− th output data in depth.
f i j is the convolution transpose kernels and b j is the bias. ∗ represents 2D convolution
transpose operation. ∑ represents summation operation.
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Fully-connected

Fully-connected layers have been used for a long time in traditional neural network, which
apply matrix multiplication between inputs and weights. The intersections between each
input unit and output unit are fully connected, which means every input unit is connected to
every output with separate weight. Matrix multiplication in fully-connected layers can be
formulated as:

y j = ∑
i

wi jxi +b j (A.6)

where xi and y j denotes the i− th input data and the j− th output data respectively. wi j is
the weight matrix and b j is the bias.

Parameter Initialisation

In order to train deep CNNs, initial points should be generated to optimisation algorithms for
iterating. However, the convergence of most optimisation algorithms are strongly depended
on the choice of initialisation. Bad initialisation may cause unstable and numerical problems,
sometimes models can not converge at all. On the other hand, good initialisation is able to
speed up convergence and improve generalisation.

Currently, the initialisation methods are simple and heuristic. It is very difficult to design
improved initialisation methods, because optimisation of deep models has not been totally
understood. Parameters in weight layers are composed of weights and biases. Normally,
weights are initialised randomly, and biases are set to constants. There are three widely
applied methods, which will be detailed as follows.

(i) Gaussian distribution is the most common initialisation method. The scale of initial
distribution has significant effect on both convergence and generalisation. In order
to propagate information forward and backward successfully, initial scales should be
large enough. However, large weights are harmful to regularisation, resulting in bad
generalisation. Denoting a scale value s, gaussian distribution initialisation can be
formulated as:

w ∼ (−s,s) (A.7)

(ii) Xavier [156] is a kind of normalised initialisation. The weights are normalised by the
formulation:
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w ∼ (−
√

3
hwdin

,

√
3

hwdin
) (A.8)

where h and w are the height and the width of kernels respectively. din is the depth of
the input.

(iii) Improved Xavier [157] further improves Xavier initialisation and demonstrates excellent
performance in the training of CNNs. The main difference is that Improved Xavier
considers the influences from nonlinear blocks. The weights are normalised by the
formulation:

w ∼ (−
√

2
hwdout

,

√
2

hwdout
) (A.9)

where h and w are the height and the width of kernels respectively. dout is the depth of
the output.

A.1.2 Nonlinear Activation Layers

The sigmoid and Hyperbolic Tangent (Tanh) functions are formulated as follows:

Sigmoid(x) =
1

1+ e−x (A.10)

Tanh(x) =
e2x −1
e2x +1

(A.11)

where x is the input and e is the exponential function. As Fig. A.1 illustrates, sigmoid and
tanh are bounded by minimum and maximum values, which may cause saturation problem
that makes gradient based learning very difficult.

The ReLU [173], Softplus [210] and Leaky ReLU [211] functions are formulated as
following:

ReLU(x) = max(x,0) (A.12)

So f t plus(x) = log(1+ ex) (A.13)

Leaky ReLU(x) = max(x,0.01x) (A.14)

where x is the input and e is the exponential function. The curve of each function is illustrated
in Fig. A.2.
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Fig. A.1 Sigmoid and Tanh activation functions.

A.1.3 Pooling Layers

Generally, two kinds of pooling layers are usually applied, which are max pooling and mean
pooling. Max pooling finds the largest values in selected extents, while meaning pooling
calculates the mean values. The formulations are denoted as:

yk
i, j = max

06m<h,06n<w
xk

i+m, j+n (A.15)

yk
i, j =

1
hw ∑

06m<h,06n<w
xk

i+m, j+n (A.16)

where xk and yk are the k− th input and output feature map. h and w are the height and width
of selected window.
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Fig. A.2 ReLU, Softplus and Leaky ReLU activation functions.

A.1.4 Normalisation Layers

Local Response Normalisation

The LRN is originally inspired by Local Contrast Normalisation (LCN) [212], which nor-
malise features based on nearby adjacent in same feature maps or same spatial location
in different feature maps by subtraction and division. Comparing to LCN, LRN does not
subtract the mean values, therefore, the brightness information in LRN is abundant. The
response-normalised features can be computed by:

yk
i, j = xk

i, j/

(
γ +α

min(N−1,k+n/2)

∑
l=max(0,k−n/2)

(xl
i, j)

2

)β

(A.17)

where xk
i, j and yk

i, j are the input and output feature maps respectively. N is the total depth
of input feature maps, and the normalisation runs over n adjacent feature maps at the same
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spatial positions. The constants α , β and γ are hyper-parameters whose values should be
determined on a validation set.

Batch Normalisation

Due to the varying distribution of inputs of each layer, the training of CNNs is complicate
and sensitive. Generally, low learning rates and careful parameter initialisation are required
for tackling this problem. This phenomenon is referred as internal covariate shift [158],
which has been significantly addressed by BN. Different from LCN and LRN that perform
normalisation for each individual input, BN normalising inputs for each training mini-
batch. Networks with BN layers can be trained with higher learning rates and less careful
initialisation, and the networks also demonstrate better generalisation ability.

Denoting a mini-batch B of size m, for each spatial location of the inputs, there are m
features in the mini-batch: B = {x1,x2...xk}. Let the normalised features be x̂1...m and the
linear transformed features be y1...m. BN performs the transformation BN : x1...m → x̂1...m →
y1...m. More specifically, BN transformation is illustrated as follows:

µB =
1
m

m

∑
i=1

xi (A.18)

σ
2
B =

1
m

m

∑
i=1

(xi −µB)
2 (A.19)

x̂i =
xi −µB√

σ2
B + ε

(A.20)

yi = α x̂i +β (A.21)

where µB is mini-batch mean and σ2
B is mini-batch variance. α and β are scale and shift

values of linear transformation for improving feature representation. ε is a constant for
ensuring numerical stability.

A.1.5 Loss Layers

In most cases, CNNs are required to describe a distribution p(y|x;θ), and the principle of
maximum likelihood is usually used. This means that the loss function is simply the negative
log-likelihood, or equivalently denoted as the cross-entropy between the model distribution
and the training data distribution. This loss function is given by:
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J(θ) =−Ex,y∼p̂datalogpmodel(y|x) (A.22)

The choice of output layers should be tightly designed with the tasks. In a lot of tasks,
the prediction value y is a binary variable, and then the sigmoid function is used in output
layer, which is formulated as:

Sigmoid(x) =
1

1+ e−x (A.23)

On the other hand, in order to train a n-categories classifier, the model distribution is over
n different classes. Softmax function is usually adopted, which can be formulated as:

So f tmax(x)i =
exi

∑i exi
(A.24)

A.2 Network Architectures

A.2.1 Traditional Networks

These CNNs are simple shallow networks that consist of about 3 convolutional and 2 fully-
connected layers, followed by nonlinear activation layers. The sizes of the convolutional
kernels are usually larger than 4×4. The pooling layers may also introduced for reducing
feature dimension. An example of a 5-layer network is illustrated in Fig. A.3.

Fig. A.3 Illustration of a 5-layer traditional network.

A.2.2 Very Deep Networks

In the VGGNets, the sizes of the convolutional kernels are all 3×3, therefore, the compu-
tational cost of convolution is reduced, and it becomes feasible to build deeper CNNs. An
example of a 11-layer VGGNet is illustrated in Fig. A.4.
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Fig. A.4 Illustration of a 11-layer VGGNet.

A.2.3 Deep Residual Networks

In ResNets, the entire network are not trained through individual forward or backward path,
each few stacked layers are able to learn residual mapping by shortcut connections. The
identity shortcut connection for residual learning has been illustrated in Fig. A.5. Formally,
denoting a desired direct mapping H(x) and a residual mapping F(x) = H(x)− x, then the
original desired mapping can be represented as H(x) = F(x)+ x.

Fig. A.5 Residual learning with identity shortcut connection.

Inspired by the VGGNets, two plain networks with 18 and 34 layers are firstly developed.
The architecture of a 18-layer plain network (PlainNet-18) is illustrated in Fig. A.6. In this
PlainNet-18, besides the first convolutional layer, the rest 16 convolutional layers are grouped
into 8 stacked layers blocks, which are also basic blocks in residual networks. The design of
these plain networks follows the following rules: (i) the sizes of all the convolutional kernels
are 3×3; (except the first convolutional layer) (ii) if the size of output feature maps are held,
the channel of output feature maps are held; (iii) if the size of output feature maps are halved,
the channel of output feature maps are doubled; (iv) pooling operation should be performed
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by convolutional layers with stride 2. Finally, global average pooling is applied to pool the
final feature maps into 1×1 size, followed by fully-connected and softmax layers.

Fig. A.6 Illustration of the architecture of a PlainNet-18.

Based on the above plain network, the corresponding 18-layer residual network (ResNet-
18) is simply developed by adding shortcut connections between each stacked layers. The
architecture of a ResNet-18 is illustrated in Fig. A.7. Due to the destination of some shortcut
connections have increased feature map channels, three designs are developed for dealing
with this problem: (i) zero padding for these shortcuts; (ii) projection for these shortcuts; (iii)
projection for all the shortcuts. The results indicate the third design has the best performance
and the highest computational cost.

Fig. A.7 Illustration of the architecture of a ResNet-18. The solid shortcut connections hold
the feature map channels, and the dotted shortcut connections increase feature map channels.

With the help of the shortcut connections, residual networks can be much deeper than 34
layers. Three much deeper residual networks are subsequently developed, namely ResNet-50,
ResNet-101 and ResNet-152. Moreover, in order to improve computational efficiency, the
original stacked layers are replaced with bottleneck layers. The detail of these two blocks
have been presented in Fig. A.8. In stacked layers, the sizes of all convolutional kernels are
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Fig. A.8 Left: stacked layers for ResNet-18 and ResNet-34. Right: bottleneck layers for
ResNet-50, ResNet-101 and ResNet-152.

3×3 and the channels of the feature maps are held. On the other hand, in bottleneck layers,
the first convolutional layer is applied to reduce the channel of the input feature map into
one fourth, followed by the second convolutional layer with 3×3 kernel size. Finally, the
channel of output feature map is increased to four times by the third convolutional layer with
1×1 kernel size.

A.2.4 Densely Connected Networks

Different from ResNets, features from preceding layers are combined by concatenation
instead of summation. Formally, denoting a desired direct mapping H(x) and an identity
shortcut connection x, the mapping of ResNets can be represented as H(x) = F(x)+ x, and
the mapping of DenseNets is H(x) = [F(x),x].

Inspired by [32, 213], DenseNets also employ a basic block called composite layers,
which is composed of three layers: BN-ReLU-Conv(3×3). In order to improve the efficiency
of the networks, this block can be further improved to bottleneck layers: BN-ReLU-Conv(1×
1)-BN-ReLU-Conv(3×3). The detail of these two blocks have been presented in Fig. A.9.
Subsequently, the dense block can be built by cascading several these blocks. Since the input
and output feature maps of each basic block is concatenated in channel, the channel of feature
maps inside a dense block grows by a rate G. Due to the concatenation operation inside each
dense block, the size of the feature maps are unchangeable. In order to reduce the size of
feature maps, transition blocks are developed and used between two dense blocks. This block
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Fig. A.9 Left: composite layers. Right: bottleneck layers. The G stands for the growth rate
in DenseNets.

is composed of four layers: BN-ReLU-Conv(1×1)-Pool(2×2). Furthermore, inside transition
blocks, model compactness can be further enhanced by employing a hyperparameter θ that
controls the channels of output feature maps. Assuming the channel of the input feature
maps of a transition block is C, the channel of the output feature maps can be reduced to
Cθ(0 < θ 6 1) within the internal convolution operation. A DenseNet with three dense
blocks and two transition blocks has been presented in Fig. A.10.

Fig. A.10 Illustration of the architecture of a DenseNet with three dense blocks and two
transition blocks.

A.3 Network Regularisation

A.3.1 Data Argumentation

The best and most direct way to achieve better model generalisation is to use more training
data. However, the number of training is usually limited in real applications. Therefore,
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additional data should be generated based on existing data. In classification problem, such as
image recognition, data argumentation has been proven to be an effective technique. Giving
an image, it is very easy to create a set of similar images with a variety of variations, such as
translation, flipping, scaling and rotation. Moreover, injecting noise to training data is also a
form of data augmentation. Nevertheless, data augmentation should be carefully applied in
some tasks. For example, in scene text recognition tasks, digits 6 and 9 are both included, so
it is not appropriate to augment data with too large rotation angles.

A.3.2 Dropout

Deep CNNs with a mass of parameters have very strong representation ability that can learn
very complicated relationships between inputs and outputs. However, many of the learnt
relationships are noise, which only exist in training data but never in testing data. Therefore,
CNNs usually face serious overfitting. To address this problem, a good choice is to combine
the predictions of many CNNs that trained under different settings. However, CNNs are large
and slow, the computational cost of averaging the outputs of many separately trained CNNs
are extremely high. Moreover, CNNs usually require a large amounts of training data, and it
may very difficult to collect enough data to train different CNNs on different subsets of the
data.

Dropout [174] as a powerful regularisation methods, is able to prevent overfitting and
provide an inexpensive way of combining exponentially many CNNs. The term dropout
means to randomly remove output units from original network. The connection is dropped
temporarily in training stage during both forward and backward propagation. For each unit,
its independent dropping probability is p, which can be simply set to 0.5 or selected based on
a validation set. Considering a layer with n outputs and a dropout rate of 0.5, the layer can be
regarded as a collection of 2n possible thinner layers that share parameters. For each iteration
in training, a new thinner layer is selected and trained. Therefore, the training of CNNs with
dropout is actually the training of a collection of CNNs with extensive parameter sharing.
Subsequently, in testing stage, the CNN works like the bagging ensemble of many CNNs.

A.3.3 Parameter Norm Penalty

Parameter norm penalty includes a series of classical regularisation methods that rely on
penalising the parameters of models. Denoting a parameter norm penalty term Ω(θ), the
parameters are penalised by the regularised loss function given by:

Ĵ(θ ;x,y) = J(θ ;x,y)+αΩ(θ) (A.25)
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where Ĵ and J are regularised and original loss functions respectively. α is a hyperparameter
that controls the weight of the parameter norm penalty term. For example, α = 0 equals
to no regularisation, and large α values result in strong regularisation. In order to achieve
different solutions, different choice of penalty terms Ω are adopted. In this section, the wide
used L1 and L2 penalty terms are detailed.

L1 Parameter Regularisation

L1 parameter regularisation is a kind of weight decay method that penalise the size of the
parameters of models. The penalisation trends to optimise some of the parameters to have 0
values, resulting in sparse parameters and features. This sparse property has been extensively
used by feature selection methods that aim to select subsets from existing features.

Formally, L1 penalty term can be defined as the sum of the absolute values of all pa-
rameters: Ω(θ) = ∥w∥1 = ∑i |wi|. Thus, the regularised loss function with L1 parameter
regularisation is formulated as:

Ĵ(w;x,y) = J(w;x,y)+α ∥w∥1 , (A.26)

and the corresponding gradient function:

∇wĴ(w;x,y) = ∇wJ(w;x,y)+αsign(w), (A.27)

where sign(w) is the sign of every element in w, and ∇ represents gradients.

L2 Parameter Regularisation

L2 parameter regularisation is one of the most common parameter norm penalty, which is
also called weight decay or ridge regression. This penalisation trends to drive all the weights
closer to the origin. More specifically, it can regularise the parameters and make them close
to any specific point, which is usually 0 since it is hard to verify the best point.

Formally, L2 penalty term can be defined as the sum of the square values of all parameters:
Ω(θ) = 1

2 ∥w∥2
2 =

1
2wT w. Thus, the regularised loss function with L2 parameter regularisation

is formulated as:

Ĵ(w;x,y) = J(w;x,y)+
α

2
∥w∥2

2 , (A.28)

and the corresponding gradient function:

∇wĴ(w;x,y) = ∇wJ(w;x,y)+αw, (A.29)
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A.3.4 Early Stopping

Early stopping is a simple and effective regularisation method in deep learning. Giving
a validation set, early stopping checks the validation error of each iteration, and stores a
copy of model parameters with the lowest validation error. If the validation error cannot
be reduced for a preset amount of time, the training is stopped and the parameters with the
lowest validation error are returned. Early stopping is a parameters selection algorithm that
does not influence the underlying training setups, such as network architecture, loss function,
learning rate and optimisation algorithm. Therefore, early stopping can be easily used in
conjunction with other regularisation methods.

A.4 Network Optimisation

A.4.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most widely used optimisation algorithm in
machine learning and deep learning. For each iteration, SGD samples a mini-batch dataset
from entire dataset, and then updates parameters of model with the average gradients of the
mini-batch samples. The detailed update rule of SGD is given by:

g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

θ = θ −ηg

where m is the batch size of a mini-batch B with inputs {x1, ...,xm} and target outputs
{y1, ...,ym}. g is the computed gradients from loss function and θ is model parameters. η

is the learning rate that is a crucial parameter in SGD. In practice, η should be gradually
decreased during training. The strategies of choosing learning rates are an art more than a
science. Normally, the learning rates are chosen by iterative trail and careful observation of
loss value and error.

A.4.2 Momentum

SGD is a very popular optimisation algorithm. However, the training speed of model with
SGD is quite slow sometimes. In order to improve training speed, momentum [182] is
developed to accelerate training by using accumulated gradients of past updates. As its
name indicates, momentum optimisation algorithm adopts the concept of momentum from
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physics. Momentum in physics can be calculated by mass and velocity, denoted as p = mv. In
momentum optimisation algorithm, mass is set to unit and velocity v is regarded as gradient.
The detailed update rule of momentum is given by:

g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

v = αv−ηg

θ = θ + v

where v accumulates the gradients g in each iteration controlled by a factor α . And in
each iteration, the final updated gradients in momentum are composed of two parts, one is
gradients g of the loss function and the other is moving average gradients v accumulated over
past iterations. The training speed is boosted at the beginning of training. And the training is
more stable when the gradient direction changes. Furthermore, sometimes the model may
jump into a local minimum and g trend to 0, then v can help model jump out from the local
minimum.

A.4.3 Nesterov

Nesterov [183] is a variant optimisation algorithm that is developed based on momentum
[182]. The detailed update rule of Nesterov is given by:

θ̂ = θ +αv

g =
1
m

∇
θ̂ ∑

i
L( f (xi; θ̂),yi)

v = αv−ηg

θ = θ + v

where v and α works similarly as in momentum optimisation algorithm. The only difference
between Nesterov and momentum is the update sequence of gradients. In momentum, first,
g is calculated by loss function, and then accumulated to v by v = αv−ηg, then, model
parameters θ are updated with v. However, if fact, the term of αv for the next iteration is
already known in current iteration. Therefore, in Nesterov, a correction factor αv is added to
θ before g is calculated. Nesterov shows improved performance in some cases.



A.4 Network Optimisation 193

A.4.4 AdaGrad

Learning rate of training a neural network is considered as one of the most important
hyperparameters that has significant impact to model performance. In the AdaGrad [184]
optimisation algorithm, the individual learning rate of each model parameter is automatically
adapted to historical gradients. The detailed update rule of AdaGrad is given by:

g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

r = r+g⊙g

∆θ =− η

ε +
√

r
⊙g

θ = θ +∆θ

where r is the sum of historical squared gradients. ⊙ stands for element-wise multiplication.
∆ presents the difference of θ . ε is a constant for numerical stability, a common value perhaps
be 10−7. At the beginning of training, the term r of AdaGrad is able to enlarge gradients. In
the middle of training, r restricts gradients. However, once r becomes too large, the gradients
will be excessively restricted, and the training is stopped prematurely.

A.4.5 RMSProp

The RMSProp [185] optimisation algorithm further improved the AdaGrad by using an
exponentially decaying average to historical gradients. The AdaGrad optimisation algorithm
is originally designed to achieve fast convergence rate for convex functions. In contrast,
the learning trajectory of non-convex functions are usually longer, and the learning rate
in AdaGrad may have been decayed too much before the training has reaches a locally
convex bowl. However, RMSProp applies an exponentially decaying average, ensuring it
can successfully converge after reaching such a convex bowl. The detailed update rule of
RMSProp is given by:
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g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

r = αr+(1−α)g⊙g

∆θ =− η√
ε + r

⊙g

θ = θ +∆θ

where r is the exponentially decaying average of historical squared gradients. The rest terms
are similar with the AdaGrad.

A.4.6 AdaDelta

The AdaDelta [186] optimisation algorithm is fully adaptive method that do not rely a global
learning rate. The detailed update rule of AdaDelta is given by:

g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

r = αr+(1−α)g⊙g

∆θ =−
√

s+ ε

r+ ε
⊙g

s = αs+(1−α)∆θ ⊙∆θ

θ = θ +∆θ

where r is the exponentially decaying average of historical squared gradients, and s is
exponentially decaying average of historical updated gradients. As the term of learning rate
η is not included, a global learning rate is not necessary in AdaDelta.

A.4.7 Adam

The Adam [187] optimisation algorithm is also able to adapt learning rate. It can be regarded
as the combination of momentum and RMSProp, but with several important improvements.
Generally, Adam is the most robust optimisation algorithm that works very stable with
various hyperparameters. The detailed update rule of Adam is given by:
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t = t +1

g =
1
m

∇θ ∑
i

L( f (xi;θ),yi)

v = αv+(1−α)g

r = β r+(1−β )g⊙g

v̂ =
v

1−α t

r̂ =
r

1−β t

∆θ =− η

ε +
√

r̂
⊙ v̂

θ = θ +∆θ

where t counts the iteration. v and r are the biased first order and second order moments of
gradients respectively, v̂ and r̂ are the corresponding unbiased moments.
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