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Abstract 

BACKGROUND: Soft tissue sarcomas (STS) are rare heterogeneous human malignant 

neoplasms, accounting for 1% of all human malignancies, arising mostly from various 

mesenchymal tissue. Heat shock proteins (HSPs) are involved in cell proteostasis, and their 

expression by cancer cells allows the cells to survive, invade and undergo metastasis.  

AIMS: The purpose of this thesis was to investigate the potential role of key HSPs (HSP27, 

HSP70 and HSP90) in fibroblastic/myofibroblastic tumours of the extremities.  

METHODS: Expression of HSP27, HSP70 and HSP90 were analysed using 

immunohistochemistry on tissue sections from 35 cases of fibroblastic/myofibroblastic 

sarcomas and 8 cases of non-metastasising fibroblastic tumours. The expression of each protein 

was evaluated and its relationship with clinicopathological parameters examined.  

RESULTS: HSP27 and HSP70 were expressed in all fibroblastic/myofibroblastic tumours, 

but only the expression of HSP70 was significantly higher in sarcomas compared to non-

metastasising counterparts (P < 0.05). Also, there was a significant relationship between 

HSP70 expression and the grade of sarcomas (P < 0.05). However, no significant association 

found between HSP27 and HSP90 expression and clinicopathological features of sarcomas.   

CONCLUSIONS: The findings of this study indicate that HSP70, and to a lesser extent 

HSP27, might have a role in sarcoma behaviour (as defined by the surrogates of tumour type 

and grade) and may provide prognostic information for clinicians in the future. Further studies 

are warranted to gain more insight into the role of these HSPs in the tumorigenesis of soft tissue 

sarcomas to determine whether they are possible markers of prognosis. 
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1 Introduction and literature review 

 

1.1 Soft tissue sarcoma (STS) 

Soft-tissue sarcomas (STS) are a heterogeneous group of rare malignant tumours which arise 

from mesenchymal tissue in essentially every tissue of the body. They can differentiate along 

many tissue lineages, such as adipose, fibrous, cartilage, muscle or bone. Their natural 

behaviour is different from that of epithelial tumours (1). The biology of sarcomagenesis is not 

precisely understood, but models of stepwise progression to malignancy or in situ precursor 

lesions are not founded in the manner of many of the epithelial neoplasms. In opposition to 

epithelial tumours, sarcomas often do not arise from their corresponding mature adult tissue, 

and the progenitor cell remains unclear (2). Furthermore, soft tissue tumour behaviour is 

classified as benign, intermediate (locally aggressive), intermediate (rarely metastasizing), and 

malignant (3).  

1.1.1 Incidence and Epidemiology 

STSs account for approximately 1% of all adult malignancies, equating to approximately 

1,500-2,000 cases a year in the UK (4). They can occur in any age group, however, the 

incidence of soft-tissue sarcomas rises significantly with age, with more than 65% of cases 

affecting patients aged 50 and above (5). A STS can occur in almost any site of the body, 

making it distinct amongst other human growths. The most common site of sarcoma is in the 

extremities (66%), with approximately two thirds of these occurring in the lower limbs (6). In 

2010, there were 3298 newly diagnosed cases of soft tissue sarcoma in the UK, of which 51% 
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were in males and 49%were in females. Although the yearly incidence of soft tissue sarcoma 

is regularly higher in males than females, this difference is not statistically significant (4). 

1.1.2 Aetiology and Risk factors 

The aetiology of most soft tissue sarcoma remains unknown; however, it has been associated 

with genetic diseases, viral infections, and environmental factors (7). Furthermore, inherited 

diseases have been found to be related to sarcoma development. For example, Lі-Fraumeni 

syndrome caused by germline mutations in the p53 tumour suppressor gene leads to sarcoma 

formation and neurofibromatosis Type 1 can also result in the development of peripheral nerve 

sheath tumours (8). Also, it is known that exposure to radiotherapy, as a treatment for other 

cancers, has an association with the development of STS. The most common sub-types of 

sarcoma in patients receiving radiotherapy are extra-skeletal osteogenic sarcoma (21%) and 

undifferentiated pleomorphic sarcoma (16%) (9). 

1.1.3 WHO classification 

As part of the International Classification of Diseases (ICD), the World Health Organisation 

(WHO) publishes classification systems for all types of cancer. The ‘WHO Classification of 

Tumours of Soft Tissue and Bone’, a sub classification of ICD covers sarcomas. This was 

revised in 2013 and published in a 4th Edition and provides a universal nomenclature which 

helps to ensure comparability of international clinical trials and translational research (10). 

Although the WHO system depends on morphologic appearance to classify STS, the new 

system of classification includes much more detailed cytogenetic and molecular data in keeping 

with the exponentially increasing knowledge on the genetics of tumours. One important change 

is the removal of the term ‘malignant fibrous histiocytoma’ (MFH). This was previously one 
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of the most common diagnoses within soft-tissue sarcomas, but advances in molecular 

diagnosis have shown that these tumours should be classified with other more specific types of 

sarcoma as ‘myxofibrosarcoma’ (10). However, this leaves a small number of tumours that do 

not come under the diagnostic criteria of other specific types. Hence, the new WHO 

classification of soft tissue sarcomas has more than 50 histologic subtypes. A simplified 

classification of STSs by cell type differentiation is presented in Table 1.1. 

Table 1.1 The WHO Classification of STSs.  

WHO Classification of Soft Tissue Tumours Most Common Sarcoma Subtype 

Adipocytic tumours Liposarcoma 

Fibroblastic/myofibroblastic tumours Myxofibrosarcoma, Low grade Fibromyxoid sarcoma, 

Myxoinflammatory fibroblastic sarcoma, 

Myofibroblastic sarcoma 

Smooth-muscle tumours Leiomyosarcoma 

 

Skeletal-muscle tumours Rhabdomyosarcoma 

Vascular tumours 

 

Angiosarcoma 

 

Peripheral nerve tumours Malignant Peripheral Nerve Sheath Tumour (MPNST) 

 

Tumours of uncertain origin Synovial sarcoma, Epithelioid sarcoma, 

Extra-skeletal Ewing sarcoma, Clear cell sarcoma 

Adapted from WHO Classification of Tumours of Soft Tissue and Bone. 2013 (3) 

 

The five most common STSs in adults are undifferentiated pleomorphic sarcoma (28%), 

liposarcoma (15%), leiomyosarcoma (12%), synovial sarcoma (10%), and malignant 

peripheral nerve sheath tumours (MPNST) (6%), whereas the residual 45 histological STS sub-

types represent the remaining 29% (11).  
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1.1.4 Diagnosis of STS 

Any patient with a suspected STS should have a triple assessment with clinical history, imaging 

and biopsy. In the UK, The National Institute for Health and Care Excellence (NICE) provides 

comprehensive guidelines for the management of soft tissue sarcoma. To achieve a successful 

diagnosis of STS, a collaboration between the specialist radiologists, surgeons, oncologists and 

pathologists is vital; prompt referral to specialist centres is designed to facilitate early and 

consistent diagnosis (12). 

1.1.4.1 Clinical presentation and patient examination 

Due to the various sites of origin of STS, it is difficult to clearly define the clinical features of 

the disease. Nonetheless, the most common presentation of a STS is as a painless mass 

increasing in size. The clinical history should inquire about a personal or family history of 

cancer or pre-malignant/inherited conditions such as neurofibromatosis, Li-Fraumeni 

Syndrome or Multiple Hereditary Exostoses, as well as other lesions. Clinical examination is 

the standard examination of any lump plus an assessment of the neurovascular status distally 

and palpation of both local and systemic lymph nodes. Approximately one third of sarcomas 

are superficial to the fascia, the remainder are deep. Usually, local symptoms develop late. A 

large tumour may cause compression of neural and vascular structures, resulting in radicular 

pain, venous stasis and lymphedema. In the advanced stage, the tumour may infiltrate the 

overlying skin, causing ulceration or necrosis (12, 13). 

1.1.4.2 Imaging 

Imaging investigations such as X-rays, ultrasound, CT scan, and magnetic resonance imaging 

(MRI) are also used to determine the anatomical location of the tumour, its size and infiltration 

into the surrounding tissues. A standard X-ray may be used to identify any connection with, or 
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erosion into, bone or calcification within the mass and ultrasound is often utilised in the primary 

care setting. NICE recommends urgent ultrasonography, within two weeks in adults and within 

two days for children and young people, for all unexplained lumps increasing in size (13). 

When the mass is smaller than 5 cm and superficial, ultrasound is appropriate, but when larger 

than 5 cm or deep, sarcoma centre referral and MRI scanning is mandatory. A MRI is preferred 

to CT for further information regarding size, location and extent of the tumour to help plan the 

biopsy and surgical intervention. For staging, a chest radiograph and CT thorax (plus or minus 

abdomen and pelvis) are required. An isotope bone scan has a limited role, whereas whole body 

MRI is an established technique in STS staging of myxoid liposarcoma because of their 

propensity for unusual metastases (14). 

1.1.4.3 Biopsy 

Despite advanced imaging techniques, there is only one reliable method of establishing 

whether a soft tissue tumour is benign or malignant, and that is by performing a biopsy on the 

tumour. Hence, a biopsy is the required initial procedure for all soft tissue lumps or masses that 

persist or increase in size. Numerous biopsy techniques are available, including: open 

incisional biopsy (where a portion of the tumour is removed), open excisional biopsy (where 

the entire tumour is removed), core needle biopsy (CNB), fine-needle aspiration (FNA), and 

core biopsy. Biopsy should be performed within the sarcoma diagnostic or treatment centre 

(12). 

FNA is a convenient technique to perform, being a relatively short procedure that may be 

conducted under local anaesthetic in an outpatient clinic. However, it can be difficult to make 

an accurate primary diagnosis with FNA alone. It should be used in centres in which 

cytopathologists have experience in both the FNA technique and the interpretation of the 

results. The diagnostic accuracy of FNA, based on results of patients with primary tumours, 
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ranges from 60% to 96% (15). In other instances, FNA provides only a cytological sample with 

scant tissue, consequently, accurate typing and grading are not usually possible.  

Core needle biopsy (CNB), usually under ultrasound guidance, is the method of choice, as it is 

a safe, accurate, and economical procedure for diagnosing STS. It provides an adequate sample 

for use in several diagnostic analyses, such as cytogenetic analysis and electron microscopy. 

Frequently, diagnosis is made on CNB material, and tumour subtype and grade can be 

determined in about 80% of core biopsies (16). Additionally, it is usually performed under CT 

or, less commonly, ultrasound guidance. CNB has been shown to be effective in the diagnosis, 

and sub-typing or grading of STS and, moreover, has lower morbidity. It also has a sensitivity 

of 82–100% and a specificity of 91–100% in STS, with complication rates of 0–1.1% (17).  

This is a reliable diagnostic method for obtaining an adequate and representative sample of 

tissue for diagnosis. It is usually performed when a diagnosis has not been possible from fine-

needle aspiration or core needle biopsy specimens. It is performed in a designated treatment 

centre, preferably by the same surgeon who will carry out the surgery, and hence, the procedure 

requires careful surgical planning. The direction of the incision should be orientated 

longitudinally along the extremity such that the resulting biopsy tract is easily excised at the 

time of the definitive tumour resection procedure (18).  

Excision biopsy is sometimes straightforward and easily accessible at the outset, but this is 

usually reserved for tumours with certain features outside the sarcoma treatment centre, such 

as when the lump is superficial, well defined and < 3 cm in diameter (19). However, the benefits 

of excisional biopsy rarely exceed those of other biopsy techniques, and these procedures may 

also cause post-operative complications so ultimately, it would be best to perform a diagnostic 

biopsy first and delay the final surgical treatment (11).  
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1.1.5 Histology 

Histological diagnosis of soft tissue tumours is known as being one of the most challenging 

areas in histopathology. For example, there is significant morphological overlap between soft 

tissue neoplasms and reactive lesions. Some aggressive sarcomas appear histologically bland 

while reactive conditions such as nodular fasciitis show potentially worrying characters 

including high cellularity and mitotic activity. Furthermore, A broad range of different soft 

tissue tumours have spindle cell morphology, and ancillary stains may be required to show 

specific differentiation features. Since identifying a histopathologic type of sarcoma is often 

difficult, some ancillary methods, such as immunohistochemistry and genetic analysis, are 

helpful in supporting the morphologic diagnosis.  

1.1.5.1 Immunohistochemistry (IHC) 

The diagnostic IHC technique was introduced in the early 1980s and it can localise molecules 

in tissues by observing histological staining due to the binding of specific antibodies (20). It is 

now a regular tool for evaluating the diagnosis and prognosis of tumours due to its relatively 

low cost, simplistic technique and the availability of a large number of increasingly sensitive 

and specific antibodies. In addition, IHC is important in the diagnosis of STSs because of their 

variety, with several lines of differentiation, and the common difficulty of diagnosis with 

numerous pseudosarcomatous benign lesions and non-mesenchymal malignant tumours (20). 

The impact of IHC in pathology may be explained by three major advances, the availability of 

appropriate antibodies for routine formalin-fixed tissue, improvements in antigen retrieval 

methods (particularly heat-induced epitope retrieval which provides consistent and reliable 

results), and the availability of sensitive detection systems (21). However, IHC also has its 

limitations, since no IHC marker is wholly specific for any tumour and positive findings should 
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be taken in the context of the total antibody panel and the tumour morphology. For example, 

CD99, originally thought to be specific for Ewing sarcoma, is expressed to varying degrees in 

several tumours, including those in the Ewing sarcoma differential diagnosis, such as poorly 

differentiated synovial sarcoma (22). Also, CD117 (cKIT), positive in more than 95% of 

gastrointestinal stromal tumours (GISTs), is variably expressed in other tumours, such as 

angiosarcoma, Ewing sarcoma, synovial sarcoma, leiomyosarcoma, and MFH (23). In 

addition, sometimes the inappropriate antibody panels are selected because of incorrect light 

microscopic analysis, resulting in IHC results which are internally consistent, but completely 

inaccurate. Moreover, the continuing delineation of new entities and production of new 

antibodies will lead to the expansion of panels required for differential diagnosis, particularly 

when there are critical therapeutic options. The most important markers used in the differential 

diagnosis of STS and their diagnostic targets are listed in Table 1.2.  

Table 1.2 Markers used in the differential diagnosis of STS.  

IHC Markers Diagnosis 

Endothelial Markers  

CD31 

CD34 

 

 

Angiosarcoma, Kaposi sarcoma 

Kaposi sarcoma, many vascular fibroblastic 

Muscle Cell Markers 

Actin 

Desmin 

Calponin 

H-caldesmon 

Myoglobin 

 

Smooth and skeletal tumours, myofibroblastic 

Smooth and skeletal tumours 

Smooth muscle, myofibroblasts, myoepithelial, synovial sarcoma 

Smooth muscle (Leiomyosarcoma) 

Rhabdomyosarcoma 

Histiocytic Markers 

Lysozyme 

CD68 

CD163 

 

Histiocytes, myelomonocytic cells 

Histiocytes, macrophage, schwanoma 

Histocytes 
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Other Markers 

S-100 

Keratin 

Vimentin 

Osteocalcin 

CD99 

Desmoplakin 

 

Melanocytic, schwannian, chondroid 

Synovial and epithelioid sarcoma 

Mesenchymal tumours, many poorly differentiated carcinoma 

Osteosarcoma, osteoid material 

Ewing sarcoma 

Epithelial tumours in general, Ewing sarcoma 

Adapted from Miettinen, 2003 (24) 

 

Aggressive tumour phenotypes are characterised by vascular invasion, metastasis and local 

recurrence; however, this is more about research than current diagnostic work. For example, 

the factor VIII can be used to measure vessel density, Ki-67 is a marker of proliferation, and 

the p53, p27 and Bcl2 proteins are all related to the regulation of the cell cycle, hence, linked 

to apoptosis. Furthermore, the expression of CD44 and ezrin are associated with cell adhesion, 

and related to cell migration and metastasis (1, 24). No immunohistochemical marker is 

completely specific for any tumour and positive findings should be considered against the 

background of the total antibody panel as well as the tumour morphology (20).  

1.1.5.2 Genetic Analysis 

Occasionally, a diagnosis is not possible from morphologic features and IHC, therefore, the 

detection of sarcoma with specific genetic alterations, such as chromosomal translocation and 

complex karyotypes, represents an additional diagnostic and prognostics tool in STS (25). STS 

with recurrent chromosomal translocations can be classified into sub-types depending on the 

presence of fusion gene transcripts, for example, TLS-CHOP in myxoid or round cell 

liposarcoma, SYT-SSX (SYT-SSX1 or SYT-SSX2) in synovial sarcoma, EWS-ATF1 in clear 

cell sarcoma, and PAX-FKHR (PAX3-FKHR or PAX7-FKHR) in alveolar 

rhabdomyosarcoma. The fusion genes resulting from chromosomal translocations could be of 

clinical importance for diagnostic and prognostic information (1).  
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Kawai et al. suggested that the type of SYT-SSX fusion gene may be prognostic for survival 

in patients with synovial sarcoma. Another study found that 46% of synovial sarcomas have 

SYT-SSX1 and 36% have SYT-SSX2. The five-year survival for localised synovial sarcoma 

with the SYT-SSX2 was 48% as compared to 24% for patients with SYT-SSX1. Therefore, 

the type of SYT-SSX fusion gene appears to positively influence subsequent clinical behaviour 

in synovial sarcoma (26).  

There are several techniques that can be used for cytogenetic analysis, but the main techniques 

are fluorescence in–situ hybridisation (FISH), reverse-transcriptase polymerase chain reaction 

(RT-PCR), and the more recent, gene expression profiling (1). It has been suggested that the 

molecular heterogeneity of the fusion transcript is useful in predicting the prognosis in 

particular sub-types of sarcoma. For example, fusion transcript type 1 EWS-FLI1 has been 

demonstrated to indicate better survival in patients with Ewing sarcoma than other fusion gene 

transcripts (27). Also, in alveolar rhabdomyosarcoma, the presence of PAX7-FOXO1A has 

been associated with a favourable prognosis, compared with the more common PAX3-

FOXO1A (28). In patients with synovial sarcoma, a less clear impact has been noted among 

the fusion gene transcripts SYT-SSX1 and SYT-SSX2 (1). 

In summary, genetic analysis appears promising, it involves highly complex techniques and 

has the potential to be useful for the differential diagnosis of sarcoma and the prediction of 

tumour behaviour. Additionally, the technical limitations associated with genetic analysis 

suggested that molecular evaluation be considered as an ancillary technique only. Genetic 

analysis findings should only be interpreted in the context of the morphologic features of a 

sarcoma (25, 29).  

Genetic markers represent an increasingly important field in STS diagnosis and prognosis. In 

general, the oncogenes, which can induce malignant transformation and cell proliferation, have 
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been implicated in the development of STS. In the majority of cases, oncogene activation 

results from chromosomal rearrangements or gene amplifications. Changes in the 

microenvironment of the gene, for example, following epigenetic modifications, must also be 

considered. Example of oncogenes linked to STS are the C-KIT and PDGFRA mutations in 

GIST, and the fusion oncogene, such as SS18-SSX, in 90% of synovial sarcoma (27). In 

contrast, tumour suppressor genes (TSG) play a critical role in cell growth and direct the cell 

programme toward programmed cell death or apoptosis. Unlike oncogene activation, the loss 

or change in the TSG function commonly results from deletions or discrete mutations. Two 

major TSGs that are relevant to STS are the retinoblastoma gene (RBI) and the TP53 gene 

(tumour protein p53). Approximately 30–60% of STSs have been reported to harbour 

aberrations of the TP53 gene, including a sub-set of patients with germ-line mutations i.e. the 

Li-Fraumeni syndrome (30).  

1.1.6 Prognostic factors 

The overall STS prognosis in terms of survival is 50% for high-grade sarcoma and 90% for 

low-grade sarcoma (31). Five prognostic factors determine the outcome of STS, depending on 

advanced patient age, presence of metastases at presentation, tumour size, grade and depth. Of 

these, histological grade has been shown to be the most critical factor (32). These prognostic 

factors appear to have slightly different importance in different studies and in aspects of STS 

prognosis (local recurrence rate, distant metastasis, and tumour-related death). In most studies, 

poor prognostic factors for local recurrence were microscopically positive margins, tumour 

size and, in some studies, patient age over 50 years. Tumour size and grade are the major 

determinants of death from tumours (33, 34). 
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1.1.6.1 Grading of STS 

Currently, the most important prognostic factor and the best indicator for accurate STS 

diagnosis is histological grade, and to help in this several grading systems have been developed. 

In the UK and Europe, the Fédération Nationale des Centres de Lutte Contre le Cancer 

(FNCLCC) grading system is commonly adopted, which defines three grades (32). This system 

is based on three pathological parameters, degree of tumour differentiation compared with 

normal tissue, mitotic count, and amount of tumour necrosis, as shown in Table 1.4. In addition, 

the value of the malignancy grade as the prognostic variable for STS has been reported by 

many groups (35). These classical parameters have been proven to have value as prognostic 

markers for decades. As shown by Fletcher et al., the mitotic index, the extent of tumour 

necrosis, and tumour size appear to be the most reliable predictors (8, 10).  

Table 1.3 FNCLCC grading system: definition of parameters. 

Tumour differentiation 

 

  

Score 1: Sarcomas closely resembling normal adult mesenchymal tissue (e.g., low 

grade leiomyosarcoma) 

Score 2: Sarcomas for which histological typing is certain (e.g., myxoid 

liposarcoma) 

Score 3: Embryonal and undifferentiated sarcomas, sarcomas of doubtful type 

(e.g., synovial sarcomas, PNET) 

 

Mitotic Count 

 

 

Score 1: 0–9 mitoses per 10 HPF* 

Score 2: 10–19 mitoses per 10 HPF 

Score 3: ≥ 20 mitoses per 10 HPF 

 

Tumour Necrosis 

 

  

Score 0: no necrosis 

Score 1: <50% tumour necrosis 

Score 2: ≥50% tumour necrosis 

 

Histological Grade   
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 Grade 1: total score 2, 3 

Grade 2: total score 4, 5 

Grade 3: total score 6, 7, and 8 

 

Adapted from Coindre et al. 2006 (36). PNET – primitive neuroectodermal tumour. * high power field (HPF) 

measuring 0.1734 mm. 

 

To enhance the reproducibility and reliability of the system, the parameters are defined as 

exactly as possible to help to predict a chance of survival and distant metastatic rates of the 

patients with the tumours grade I–III. Nonetheless, many other grading systems are in use and 

are usually based on similar histological parameters, including the NCI (National Cancer 

Institute) three-grade system preferred in the USA. The Trojani/FNCLCC has confirmed slight 

superiority over NCI grading (37), and has been used to give the most complete survival data 

for STS to date. This is presented in Table 1.4.  

 

Table 1.4 Survival rates in STS according to the Trojani/FNCLCC grading system. 

Grade 5-year survival 10-year survival 

I 90% 85% 

II 70% 65% 

III 45% 30% 

Adapted from Kotilingam et al. 2006 (38). 

 

1.1.6.2 Tumour size and site 

The tumour size is of great importance in the prognosis. In this respect, STSs are divided into 

two groups according to whether they include T1 lesions, which are 5 cm or smaller, and T2 

lesions, which are larger than 5 cm, since the 5-cm criterion has widespread acceptance as a 

poor prognostic variable. Prognosis is particularly poor for tumours larger than 10 cm at 

presentation due to a high rate of metastatic recurrence (39). In addition, some authors have 
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suggested that the further stratification of tumours larger than 5 cm would give more accurate 

prognostic information. A study of 316 patients who were divided on the basis of tumour size 

into four groups, demonstrated that the prognosis of each group differed substantially, with 

tumour sizes of less than 5 cm, 5 to less than 10 cm, 10 to 15 cm, and greater than 15 cm, the 

five-year survival rates were found to be 84%, 70%, 50%, and 33% (40). Additionally, a 

relationship was found between the location of the tumour and its size. Those STSs in the distal 

extremities are generally both superficial and small at the time of diagnosis and have a better 

prognosis than those found intra-abdominally, which often reach large proportions before they 

can be diagnosed (19).  

1.1.6.3 Staging 

The most commonly adopted staging system for soft-tissue sarcoma is provided by the 

American Joint Committee on Cancer (AJCC) (Table 1.5). This AJCC system uses the four 

criteria of tumour size, nodal status, grade, and metastasis (TNGM) to designate one of four 

disease stages (41).  

Table 1.5 The American Joint Committee on Cancer Staging System, 7th edition. 

Tumour Size (T) 

T1 Primary tumour < 5cm (T1a –  superficial; T1b –  deep) 

T1 Primary tumour > 5cm (T2a –  superficial; T2b –  deep) 

 

Lymph Nodes (N) 

N0 No regional lymph nodes 

N1 Regional lymph nodes involved 

 

Metastases (M) 

M0 No metastases 

M1 Distant metastases 

 

Histological Grade (G) 

G1 Well differentiated 
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G2 Moderately differentiated 

G3 Poorly differentiated 

G3 Poorly differentiated or undifferentiated 

 

American Joint Committee on Cancer (AJCC) staging 

 

 STAGE 1: 

1A = low grade, small, superficial or deep (T1a-b, N0, M0, G1-2) 

1B = low grade, large, superficial (T2a-b, N0, M0, G1-2) 

 STAGE II: 

IIA = low grade, large, deep (T2b, N0, M0, G1-2) 

IIB = high grade, small, superficial or deep (T1a-b, N0, M0, G3-4) 

IIC = high grade, large, superficial (T2a, N0, M0, G3-4) 

 STAGE III: 

High grade, large, deep (T2B, N0, M0, G3-4) 

 STAGE IV: 

Any metastasis (Any T, N1 or M1, Any (G) 

 

Adapted from Edge et al., 2010 (41) 

 

Overall, tumour grade and size are the most important determinants of prognosis, with 

approximately two-thirds of all sarcomas being high-grade. Another study claims that the 

prognostic risk for metastatic disease is mostly dependent on the histopathologic grade in the 

first two or three years, but after that, the size of the tumour becomes at least as significant as 

grade (42). 

1.1.7 Treatment 

In the UK, soft tissue sarcomas are managed in a specialised sarcoma centre by 

multidisciplinary teams, typically comprising sarcoma specialist surgeons, radiologists, 

medical and clinical oncologists, a specialist sarcoma histopathologist as well as specialist 

nurses and physiotherapists (12). Every patient with a soft-tissue sarcoma will require an 

individualised treatment plan and the management of newly-diagnosed sarcoma is not usually 
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straightforward, therefore, the therapeutic goals are improving survival, avoiding local 

recurrence, maximising function, and minimising morbidity. Treatment of STS is based on the 

size and grade, location of the tumour, and whether the tumour has metastasised. The options 

for treatment of STS are surgery, radiation therapy (local treatment), and chemotherapy 

(systemic treatment)(6).  

1.1.7.1 Surgery 

Surgical excision remains the cornerstone of therapy and is a dominant curative procedure with 

adjuvant (treatment given after the surgery to kill the remaining cancer cells) and neoadjuvant 

RT (treatment given before surgery) for STS in selected patients, except for those patients who 

are surgically inoperable or those who decline surgery if it entails unacceptable functional loss 

(43). The extent of surgery required, along with the optimum combination of radiotherapy, 

remains controversial, but the clinical and pathological factors of the specific tumour need to 

be considered by the surgeon to determine the treatment plan for individual patients. Therefore, 

increased understanding of sarcoma biology as the primary determinant of outcome has led to 

the decrease in radical amputations and the recognition of limb-sparing treatments, often using 

a multimodal team approach (12). 

A recent study at the Memorial Sloan-Kettering Cancer Centre highlighted the need for 

collaborative, inventive approaches for sarcoma patients, as it appears to have reached that 

level with current therapy (44). In recent years, several more accurate descriptions of the 

surgical margin have been used and it is common practice to classify margins as positive or 

negative. A positive margin has been defined as one in which tumour cells are present at, or 

within, 1 mm of the resection margin, but which is otherwise negative. In some reports, margins 

have been documented as grossly positive, microscopically positive, close (5 mm or smaller) 

or negative (45); in others as clear (> 10 mm), close (1–9 mm) or positive (46).  
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Low grade tumours are usually treated by surgical excision with excellent functional prognosis, 

whereas surgery or radiation alone is usually inadequate for the management of high grade 

tumours more than 5 cm in size, locally recurrent, deep in investing fascia, having previous 

inadequate surgery or positive margins, and certain sub-types such as leiomyosarcoma or 

malignant peripheral nerve sheath tumour (12).  

1.1.7.2 Radiotherapy  

External beam RT is the most widely used modality, since its practice in now routine, and its 

application is technically less complex. In a randomised prospective study, it was reported that 

local control, conservative surgery with external beam RT is as effective as amputation in high-

grade STS (47). RT is more commonly given post-operatively than pre-operatively. Post-

operative RT has the following advantages: the operation can be performed without delay, the 

surgical specimen and margins can be accurately histologically analysed, and, in the event of 

wide margins, RT can be omitted. Nevertheless, pre-operative RT may be favoured in efforts 

to reduce the tumour size before surgery, with a view to minimising the resection area, reducing 

the seeding of viable tumour cells over the operative field and reducing the treatment volume.  

However, a randomised trial comparing pre- and post-operative RT, with wound complications 

as an end point, found that pre-operative RT was associated with a greater risk of wound 

complications (48). Pre-operative RT and chemotherapy also cause tumour necrosis, thus 

confound histopathological typing and grading of the surgical specimen. Sequencing of RT 

with surgery has not been proved to provide a reliable benefit for outcome (49). Generally, pre-

operative RT is recommended for large tumours in a difficult location to reduce their size and 

to make conservative surgery possible (50).  
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1.1.7.3 Chemotherapy  

Chemotherapy has poorer results for sarcoma treatment, the effectiveness of neoadjuvant and 

adjuvant therapy for STS is still currently controversial, with little proof in the literature to 

support the use of either. However, it is considered for patients with high grade, large, and deep 

STS to improve patient survival based on the persisting poor survival outcome (50–60%, year 

survival) of high-risk STS patients, despite having good local disease control with surgery and 

radiotherapy (11).  

According to a meta-analysis of 14 randomised trials comprising a total of 1,568 patients, 

doxorubicin-based adjuvant chemotherapy appeared to significantly increase the time to local 

or distant recurrence, improving the overall recurrence-free survival rate in adults with 

localised resectable STS (51). Significant absolute benefits were 6–10% at 10 years, and there 

was some evidence of a trend towards improved overall survival without a clear improvement 

in overall survival. In an Italian randomised co-operative trial, patients with high grade or 

recurrent sarcoma of extremities were randomised to undergo post-operative chemotherapy 

with epirubicin and ifosfamide or observation alone. After a median follow-up of 59 months, 

the treatment did significantly better in median overall survival (75 vs. 46 months) and the 

disease free period (48 vs. 16 months) (52). 

In addition, there is further evidence of neoadjuvant chemotherapy benefitting survival in adult 

STS in the treatment of rhabdomyosarcoma because, unlike most sarcomas, great response 

rates are observed in this sub-type. The importance of neoadjuvant chemotherapy has been 

suggested, since it is sometimes possible to use the response of the sarcoma to such therapy as 

a guide for further treatment or for prognosis (53). A study conducted at the MD Anderson 

Cancer Center found that the sarcoma response to pre-operative chemotherapy gives reliable 

prognostic information, and can identify a sub-group of patients most likely to benefit from 
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conventional adjuvant chemotherapy or those who should be considered for second-line or 

experimental treatments (54).  

Furthermore, chemosensitivity varies significantly between sub-types. Although most STSs 

are generally resistant to chemotherapy, smaller tumours have a higher growth fraction and are 

potentially more chemosensitive, whereas the larger the tumour becomes, the more likely 

chemoresistant clones will spontaneously arise (53).  
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1.1.8 Types of soft tissue tumours studied in this thesis 

The focus of this study is on myxoid and myofibroblastic soft tissue tumours, which are well 

represented in our archival material of adult STS of extremities. 

1.1.8.1 Myxoid soft tissue tumours 

Myxoid soft-tissue tumours comprise a heterogeneous group of mesenchymal tumours 

characterised by the production of a copious extracellular myxoid matrix. Myxoid tissue is not 

a normal tissue in adults and is actively secreted by tumour cells in these lesions. It consists of 

a gelatinous mucopolysaccharide matrix of sulphated and non-sulphated glycosaminoglycans 

(55). Myxoid soft-tissue neoplasms encompass a heterogeneous group of benign, locally 

aggressive, and malignant lesions, commonly affecting the extremities. There is significant 

overlap in the clinical and pathologic characteristics of these tumours, making a precise 

diagnosis challenging. Current developments in understanding the genetic and molecular 

characteristics of these tumours have led to notable advances in their classification, diagnosis, 

and management. For instance, round cell liposarcomas have been reclassified as myxoid 

liposarcomas, and the myxoid variant of malignant fibrous histiocytoma has been reclassified 

as myxofibrosarcoma due to their similar cytogenetic profile (10, 56). The 4th edition of the 

WHO classification of tumours of soft tissue published in 2013, updating the former 2002 

classification, proposed many changes in soft-tissue tumour classification and reported new 

genetic and molecular data for the tumours (3). A simplified classification of myxoid soft-

tissue tumours based on the WHO classification is shown in Table 1-6. 
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Table 1.6 Classification of myxoid soft-tissue tumours (57) 

Benign Malignant 

Myxoma 

Myxolipoma 

Angiomyxoma 

Acral fibromyxoma 

Myxofibrosarcoma 

Low-grade fibromyxoid sarcoma 

Myxoinflammatory fibroblastic sarcoma 

Myxoid Liposarcoma 

Extraskeletal myxoid chondrosarcoma 

Ossifying fibromyxoid tumour 

Adapted from Baheti et al, 2015 (57) 

 

1.1.8.1.1 Myxofibrosarcoma (MFS) 

Myxofibrosarcoma, previously known as the myxoid variant of malignant fibrous 

histiocytoma, is now considered as a distinct entity (58). Myxofibrosarcoma usually manifests 

in the sixth decade, with equal sex predilection and most commonly affects the extremities. It 

may be localised in the subcutaneous tissue, dermis, and intermuscular or intramuscular planes 

(59). Unlike other soft-tissue sarcomas, which are well-defined tumours, myxofibrosarcomas 

have an ill-defined infiltrative margin with an ability for centrifugal spread along fascial and 

vascular planes, which predisposes them to inadequate resections and high recurrence rates in 

50–60% of cases. Local recurrence is associated with the resection margin and low-grade 

tumours can become high grade after recurrence, with a higher tendency for metastases (60, 

61). MRI is the imaging modality of choice for myxofibrosarcomas. MFS appear 

heterogeneous on both T1- and T2-weighted images and lesions are T2 hyperintense with ill-

defined infiltrative margins and inhomogeneous contrast enhancement (62). Metastases are 

more common in high-grade tumours, and lungs are most commonly affected. The differential 

diagnosis involves other myxoid neoplasms (e.g., myxoid liposarcoma and myxoinflammatory 

fibroblastic sarcoma), other soft-tissue tumours (e.g., undifferentiated pleomorphic sarcoma), 

and inflammatory conditions (e.g., nodular fasciitis) (63). The treatment of choice for 
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myxofibrosarcoma is wide surgical excision, with a 5-year survival rate in a recent study of 

158 patients of 77%  (60, 63). 

1.1.8.1.2 Myxoinflammatory Fibroblastic Sarcoma (MIFS) 

Myxoinflammatory fibroblastic sarcoma is a rare low-grade sarcoma first described in 1998 

independently by three separate groups (64-66). It can affect both men and women equally, 

and all age groups. It characteristically involves the extremities and is often termed “acral 

myxoinflammatory fibroblastic sarcoma.” It shows four components on pathologic analysis, 

proliferative fibroblasts (spindle cells), myxoid matrix, inflammatory components, and atypical 

giant cells. In the WHO classification, it is described as being characterised by the translocation 

t(1;10) (3, 10). Patients commonly present with a painless slowly growing mass, but some may 

present with pain or tenderness. On imaging, these tumours are predominantly subcutaneous, 

with well- or ill-defined and infiltrative lesions frequently located along the tendon sheath (67). 

Local recurrence is common, occurring in 28–51% of cases, while metastases are rare. A recent 

retrospective study of 104 cases described a single case of metastasis and 51% local recurrence 

in the 59 patients with follow-up (68). Due to the infrequent incidence of distant metastases, 

the WHO classification has introduced a new term for them, “atypical myxoinflammatory 

fibroblastic tumour,” (10). Wide surgical excision of the tumour is the standard treatment, with 

a negative resection margin correlating with decreased recurrence (68). 

1.1.8.1.3 Fibromyxoid sarcoma (FS) 

Low-grade fibromyxoid sarcoma was first described by Evans in 1987 (also known as Evans 

tumour). It is a rare tumour that equally affects middle-aged men and women, commonly 

involving the extremities, trunk, and deep soft tissue (69, 70). Although FMS is characterised 

by relatively benign pathologic characteristics consisting of bland spindle cells with intermixed 

myxoid and fibrous stroma, it reveals aggressive behaviour with high rates of recurrence and 
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metastases (70). According to the recent WHO classification, MUC4 is a very sensitive and 

specific immunohistochemical marker for low-grade fibromyxoid sarcoma. Also, the presence 

of translocation t(7;16) and the formation of FUS/CREB3L2 fusion gene are also specific 

markers (3). Imaging reveals features consistent with the tumour’s fibrous and myxoid content, 

with MRI showing the fibrous component to be T1 and T2 hypointense and the myxoid 

component to be T1 hypointense and T2 hyperintense (71). Wide surgical excision is the 

treatment of choice, local recurrence is common in the form of multiple lesions, and metastases 

usually affect the lungs (70).  

1.1.8.1.4 Intramuscular Myxoma 

Intramuscular myxoma is the most common benign myxoid tumour consisting of abundant 

myxoid stroma interspersed with benign spindle cells. Women are affected more commonly 

than men (mean patient age, 50–60 years). Although they are most frequently intramuscular 

(82%), they can also be intermuscular or subcutaneous. The lower limb is the most common 

site affected and patients typically present with a slowly growing painless mass. Association 

with fibrous dysplasia has been reported in Mazabraud syndrome, which is characterised by 

multiple myxomas with associated (usually polyostotic) fibrous dysplasia (72-74). On MRI, 

the lesions are well circumscribed with smooth or slightly lobulated margins, homogeneously 

hypointense in T1-weighted images, and extremely hyperintense in T2-weighted images, 

similar to water (75). The choice of treatment for intramuscular myxoma is wide surgical 

excision, with recurrence being rare (72).  
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1.1.8.2 Fibroblastic/Myofibroblastic soft tissue tumours 

Tumours and tumour-like lesions of myofibroblasts may present a diagnostic challenge 

because of the uncertainties in identifying the myofibroblast, its attributes place it midway 

between a fibroblast and a smooth muscle cell, and since it appears capable of functional and 

phenotypic modulation (76). The main features of the myofibroblast include a spindled or 

stellate morphology; immunostaining for a-smooth muscle actin and the extra domain (76, 77).  

However, since most diagnostic tumour pathology is based on phenotypic features of the 

excised lesion, it is an unavoidable fact that a wide range of soft tissue tumours show 

convincing myofibroblastic features. This type of lesion can be divided into four main groups: 

1) the family of reactive fasciitis-like lesions, 2) a group of benign lesions (e.g., 

myofibrolastoma and dermatomyofibroma), 3) the locally aggressive fibromatoses (either 

superficial or deep fibromatosis) and, finally, 4) sarcomas showing myofibroblastic 

differentiation, the latter including myofibroblastic sarcoma (77, 78).  

1.1.8.2.1 Myofibroblastic sarcoma (MS) 

Myofibrosarcomas (myofibroblastic sarcomas) are rare neoplasms which are difficult to 

diagnose because myofibroblasts and fibroblasts appear morphologically similar in H&E 

sections, and reactive and neoplastic myofibroblasts, as well as some smooth muscle tumours, 

can be immunophenotypically indistinguishable. Myofibrosarcomas display a range of 

differentiation. Low- and intermediate-grade myofibrosarcomas are morphologically similar, 

and are distinct from pleomorphic myofibrosarcomas, which are high-grade neoplasms 

formerly classified as malignant fibrous histiocytomas. Other low-grade malignant tumours 

with myofibroblastic differentiation are inflammatory myofibroblastic tumours and infantile 

fibrosarcoma, which have specific genetic rearrangements and are not usually designated as 

myofibrosarcomas (76). The age range of patients with low-grade myofibrosarcoma (LGM) is 
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4–75 years, with a slight male predominance. The tumours range in size from 1.5 to 17 cm and 

most commonly occur in the head and neck region, proximal extremities and trunk, with 

occasional cases in the abdomen or pelvis (79). LGM usually arise in deep soft tissue, but some 

occur in the subcutis or submucosa. Although there can be partial circumscription, the growth 

pattern is predominantly infiltrative, in a fascicular, sheet-like, or occasionally storiform 

arrangement. Mitotic activity is variable but abnormal forms are usually absent (76). LGM are 

immunoreactive for actin (a-SMA and muscle-specific) in a multifocal pattern, fibronectin,  

calponin and less commonly (and more focally), desmin. Cytokeratin, epithelial membrane 

antigen (EMA), S100 protein and CD34 are almost always negative (80, 81). About a third of 

LGM recur locally, especially following incomplete excision. Metastasis, sometimes after a 

long period, has been reported in approximately 10% of published cases, usually to lung, but 

occasionally to other locations. These tumours are best managed by surgical excision, with the 

aim of achieving tumour-free resection margins (76, 77). 

Pleomorphic high-grade myofibrosarcomas (PHGM) are pleomorphic sarcomas which display 

only fibroblastic and myofibroblastic differentiation. They are not identified in the WHO 2002 

classification as a separate entity from pleomorphic malignant fibrous 

histiocytoma/undifferentiated pleomorphic sarcoma since they are morphologically 

indistinguishable, and immunohistochemistry or electron microscopy are required for their 

identification. There is, however, evidence that myofibroblastic differentiation in pleomorphic 

sarcomas is associated with more aggressive behaviour (82). Most PHGM arise in deep soft 

tissue in adults, predominantly in lower limb and trunk, with occasional cases in the head and 

neck (76). 

Macroscopically, PHGM are large solid tumours with haemorrhage and necrosis. 

Histologically, they are composed of pleomorphic spindles and polygonal or large epithelioid 
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cells arranged in fascicular and storiform patterns, with frequently abnormal mitotic activity. 

PHGM are high-grade sarcomas with recurrence in a third of cases and metastasis in over 70%. 

These tumours, like pleomorphic sarcomas with myogenic differentiation, have a poorer 

outcome than undifferentiated sarcomas (77, 82). 

1.1.8.2.2 Fibromatosis 

The term fibromatosis includes a broad range of morphologically related lesions which are 

divided into superficial and deep subgroups. Superficial (fascial) fibromatoses include palmar 

fibromatosis (Dupuytren contracture), plantar fibromatosis (Ledderhose disease), penile 

fibromatosis (Peyronie disease) and knuckle pads (76). The lesions in this group are 

characterised by their small size, slow growth, origin from fascia/aponeurosis and less 

aggressive behaviour. Deep (musculoaponeurotic) fibromatoses include extra-abdominal 

fibromatosis (extra-abdominal desmoid), abdominal fibromatosis (abdominal desmoid) and 

intra-abdominal fibromatosis (intra-abdominal desmoid), which can be further subdivided into 

pelvic and mesenteric fibromatosis and Gardner syndrome. The deep fibromatoses arise from 

deep structures, attain large size and have relatively more rapid growth (83). 

Histologically, fibromatoses are un-encapsulated spindle cell lesions with an infiltrative growth 

pattern. The cells are embedded in a collagenous stroma, arranged in long sweeping fascicles. 

The cells show no pleomorphism and mitotic figures are rare. The immunophenotype is 

positive for MSA and SMA and negative for desmin, h-caldesmon, and S-100. Seventy to 75% 

of cases show positivity for β-catenin (76, 84). The best method of treatment is excision by 

surgery. However, adjuvant therapy should be considered for cases with positive surgical 

margins, multiplicity of the tumour, inoperable tumours and severe adhesion (85).  
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1.1.9 The Microenvironment in Soft Tissue Sarcoma 

The microenvironment of neoplasms is comprised of multiple stromal cell types and 

extracellular matrix proteins in addition to the cancer cells. Carcinomas are composed of two 

compartments, a stromal compartment of fibroblasts and myofibroblasts and an epithelial 

compartment of malignant epithelial cells. The stromal compartment is usually involved in 

functional and structural support of tumour growth (86). This desmoplastic benign stroma 

accounts for 30–90% of the specimens. Both compartments contribute to the tumour matrix 

regarding their respective gene products. In contrast, sarcomas mainly have only one 

compartment, the malignant mesenchymal cell that largely produces the sarcoma matrix and 

contributes essentially to its gene products. Although sarcomas also contain a benign stromal 

part, this component is often observed to be 1% of the specimens. Hence, the predominant 

compartment in sarcomas is comprised of the malignant mesenchymal cells (87).  

These mesenchymal cells produce extracellular matrix (ECM) which is defined as a network 

of molecules, mostly proteins and carbohydrates which bind cells together. The main function 

of the ECM is to provide support and anchorage to cells. Furthermore, its components help in 

modulating other cell functions such as development, migration and proliferation (88). The 

ECM has various components including collagens, proteoglycans, hyaluronans, glycoproteins, 

elastin, fibronectins and laminins (89). Synthesis and degradation of the ECM is performed by 

a specialised function of mesenchymal cells, the matrix being the result of the balance between 

production and breakdown. However, biomechanical and biochemical signalling systems are 

integrated in this process. Biomechanical loading directs mesenchymal physiology, that is, 

differentiation, proliferation, cell shape and matrix constitution, whilst biochemical signalling 

coordinates the attachment and disconnection of adhesions according to other cellular activities 
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such as growth and proliferation. The cell matrix interacts via transmembrane receptors which 

are generically known as cell adhesion molecules (CAMs) such as integrin receptors (90). 

In 1960, it was described how a primary tumour of sarcoma can evade the anticancer immune 

response by establishing an immune-privileged microenvironment (91). Then in the 1970s, 

Juda Folkman proposed that angiogenesis is essential for solid tumour growth (92). The 

significance of tumour cell intravasation into the vascular system has especially been indicated 

in sarcoma, where vascular invasion, as determined by the presence of tumour cells within any 

location having an endothelial lining, has been recognised as a prognostic factor for metastasis 

(93). Tomlinson et al. (1999) reported that the pattern of angiogenesis is different between 

sarcomas and carcinomas (87), confirming that the capillaries in carcinomas are clustered in 

bursts within the tumour stroma and that the microvessel density in these bursts can be used as 

a prognostic factor. In contrast, microvessel density in sarcomas was revealed to have a more 

homogeneous appearance. A more recent study reinforced this pattern of angiogenesis 

illustrating that angiogenesis was diffuse in high-grade STS and only present in 33% of the 

investigated specimens (94).  

1.1.9.1 Hypoxia in STS 

Hypoxia and oxidative damage is a common characteristic of many solid tumours owing to 

aberrant vascular function and rapid cell division. Tumour cells can survive under conditions 

of low oxygenation by initiating adaptive responses to match oxygen supply with metabolic, 

bioenergetic and redox demands (95). Clinical and experimental studies have long 

demonstrated that tumour hypoxia is associated with increased malignancy, poor prognosis, 

and resistance to radiation and chemotherapy (96). Patients with the most hypoxic soft tissue 

sarcomas have a poorer disease-specific and overall survival, with an increased likelihood of 

metastasis (97, 98).  
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Tumour cell adaptations to hypoxia largely depend on the transcription factor, hypoxia-

inducible factor (HIF), which is activated in low oxygen conditions and is inactive when 

oxygen is sufficient (99). HIFs form heterodimeric complexes constituted of an oxygen-liable 

α subunit and a stable β subunit. Together these subunits bind hypoxia response elements 

(HREs) on several hundred genes that facilitate the adaptation to hypoxia (100) . Mammals 

have three isoforms of HIFα, of which HIF1α and HIF2α are the best characterised. HIF1α is 

ubiquitously expressed, whereas HIF2α and HIF3α are selectively expressed in specific tissue 

types including vascular endothelium and cells of myeloid lineage. HIF activity is controlled 

by the stabilization of HIF1α and HIF2α protein subunits, which increases as cells become 

more hypoxic (100). Like other solid tumours, as sarcomas relinquish their blood supply, 

hypoxia stabilises HIF1α and HIF2α, which bind to HIF, driving the transcription of important 

genes in many aspects of cancer biology including angiogenesis, epithelial-mesenchymal 

transition, invasion, metastasis, and resistance to radiation therapy and chemotherapy (101). 

Based on genome-wide chromatin immunoprecipitation studies, the estimated number of direct 

HIF target genes is greater than 800 (102).  

Finally, there are many recent reports of a regulatory link between the cell oxygen sensors and 

heat shock pathways. The activation of HSPs is critical to adaptation to hypoxia and expression 

of inducible HSPs is regulated by heat shock factors (HSF), in particular HSF-1 (103). Baird 

et al. showed that HSF transcription is up-regulated during hypoxia due to direct binding by 

HIF-1 to HIF-1 response elements in a HSF intron. This rise in HSF transcripts is important 

for the full induction of HSPs during hypoxia and reoxygenation (104). HSPs give transient 

protection from stress, acting as chaperones by regulation of protein folding to ensure accurate 

conformation and translocation (105).  This may explain the ability of malignant cells to sustain 

protein homoeostasis even in the harsh hypoxic microenvironment of the tumour. 
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Consequently, HSPs may account for the ability of tumour cells to tolerate genetic variations 

that would otherwise be lethal (103). 

1.2 Heat Shock Proteins (HSPs) 

1.2.1 Discovery of Heat Shock proteins (HSPs) 

Among the many changes in cellular activity and physiology, the most remarkable event in 

stressed cells is the production of a highly conserved set of proteins, the heat shock or stress 

proteins (106). Intensive research into the structure and function of heat shock proteins (HSPs) 

has been ongoing for the past 30 years. They are of considerable interest since they have been 

shown to have a pivotal role in cell cycle progression and cell death (apoptosis), as well as 

being involved in many disease processes. 

The term heat shock protein (HSP) is used to describe several families of proteins whose 

expression is induced by hyperthermia. The first description of this phenomenon arose from 

the observation that Drosophila larvae exhibited a novel puffing pattern on their giant salivary 

gland chromosomes when they were exposed to higher temperatures (107). Subsequently, 

Ritossa's early experiments demonstrated that these chromosome puffs were also induced in 

the midgut and hindgut of the larvae, indicating that the heat shock response was not tissue-

specific. Furthermore, the same puffing pattern could be generated in isolated salivary glands 

by treatment with 2,4-dinitrophenol, sodium salicylate, sodium azide and release from anoxia. 

These early observations implied two important features of the heat shock response, firstly, the 

universality of the response in all cell types (not tissue-specific), and secondly, the variety of 

cellular stresses which will induce this pattern of specific gene expression (107). 



 
- 46 - 

For many years, all research on heat shock gene expression was performed solely using 

Drosophila larvae and it was not until the late 1970's that the ubiquity of the heat shock response 

was demonstrated. The same typical pattern of gene expression in response to heat shock was 

then shown in chicken embryo fibroblasts (108) and Escherichia Coli (109), and subsequently 

in yeast (110) and plants (111). The heat shock response has since been observed in all 

organisms examined, from archaebacteria to eubacteria, yeasts, plants, invertebrates and 

vertebrates, including humans.  

Examination of the nucleic acid sequence of heat shock genes from distant species and protein 

analysis using monoclonal antibodies has demonstrated that the heat shock proteins are among 

the most abundant and highly conserved proteins in nature (112). Although the term ‘heat 

shock protein’ is still used widely, many environmental and pathophysiological stresses have 

been shown to induce the response, including heavy metals, ethanol, amino acid analogues, 

fever and viral or bacterial infection (113). For this reason, the heat shock proteins are 

frequently referred to as ‘stress proteins’. It should be noted that many of these inducers share 

a capacity to cause protein denaturation, a fact which hints at the major functional role of the 

heat shock proteins as molecular chaperones. This function is vital to the cell, both under 

normal circumstances and following cellular stress. Recently, the term ‘proteostasis’ was used 

to describe the function of chaperones controlling protein synthesis, folding, trafficking, 

aggregation, disaggregation, and degradation (114).  

1.2.2 Nomenclature of HSPs 

Some confusion still arises in the literature regarding the nomenclature used to describe heat 

shock proteins, molecular chaperones and a sub-group of molecular chaperones known as 

chaperonins. Heat shock proteins are also frequently referred to as ‘stress proteins’, a term 
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which reflects the fact that HSP expression is induced by a wide variety of cellular insults other 

than hyperthermia (113), and is therefore perhaps a more appropriate nomenclature.  

Molecular chaperones are defined as a family of unrelated classes of protein which mediate the 

assembly of other cellular polypeptides, but are not components of the final functional 

polypeptide structure (115). As will be described, the ability of molecular chaperones to 

interact with other cellular proteins is vital to the cell, both during normal cell growth and when 

the cell is subjected to some form of environmental or pathophysiological insult. Many, but not 

all, molecular chaperones can be classified as heat shock proteins since their expression can be 

induced by hyperthermia and a variety of other cellular stresses. Similarly, most heat shock 

proteins are now known to perform a molecular chaperone function.  

The term chaperonin is used to describe a specific sub-group of the molecular chaperones, 

comprising a class of sequence-related molecular chaperones found in all bacteria, 

mitochondria and plasmids examined so far (116). One of the remarkable features of the 

chaperonins is the very high degree of structural and functional homology between members 

of this group. Chaperonins are essential components of the cellular chaperone 

mechanism. Chaperonins have two-ring assemblies that comprise a central cavity to which 

unfolded polypeptides attach and where they reach the folded state. Hence, chaperonins able 

to prevent off-pathway reactions and help productive protein folding to the original state in 

ATP-dependent manner (117) 

Finally, client proteins transiently non-covalently bind to HSP and this binding may be 

necessary for their function (118). To date, more than 200 HSP client proteins have been 

identified, involving almost all vital cellular activities and processes, including cell growth, 

proliferation and cell survival (119). For instance, HSP90 clients range from signalling protein 
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kinases through steroid hormone receptors and small G proteins to enzymes and components 

of the telomerase complex, and the list continues to grow (120). 

1.2.3 Function of heat shock proteins as molecular chaperones 

As stated above, HSPs are part of a group known as ‘molecular chaperones’, a nomenclature 

which clearly defines the function of these molecules which accompany unfolded proteins and 

polypeptides during their cellular transport in normal metabolism and help protect these 

proteins and polypeptides whenever they are subjected to stresses that may cause them to 

unfold (121). 

A more detailed definition is that a ‘molecular chaperone’ is a protein that binds to and 

stabilises an otherwise unstable conformer of another protein, and by controlled binding and 

release of the substrate protein facilitates its correct fate in vivo, thus allowing folding, 

oligomeric assembly, transport to and between subcellular compartments, or controlled 

switching between active/inactive conformations (122). Molecular chaperones also bind to and 

prevent aggregation of denatured or partially folded proteins, assisting the correct folding of 

these proteins (123).  

Under conditions of normal cellular growth, the many vital functions which are served by 

molecular chaperones derive from their ability to recognise and modulate the state of folding 

of other cellular proteins (112, 116). In the cell, nascent polypeptide chains emerge from 

ribosomes as unfolded linear chains and a comparable situation exists when polypeptide chains 

are transported across intracellular membranes in an extended state. In such an extended or 

partially folded state, hydrophobic surfaces become exposed, raising the possibility of aberrant 

inter- or intramolecular interactions and the formation of polypeptide aggregates. The major 

role of molecular chaperones appears to be the prevention of these incorrect intermolecular 
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associations between unfolded polypeptide chains, thereby preventing their aggregation and 

assisting in the maintenance of polypeptide chains in a translocation-competent state during 

transport across intracellular membranes (122). 

During stress conditions, partially denatured misfolded proteins accumulate and their exposed 

hydrophobic regions lead them to aggregate. HSPs aid to prevent the change of the 

conformation of other proteins, protecting incorrectly folded proteins against aggregation. 

Upon recovery, they help the refolding of misfolded proteins, but they also can facilitate in the 

proteasomal degradation of peptides that cannot be refolded (124) (Fig. 1).  

 

 

Figure 1.1 Chaperone functions of HSPs. Adapted from Toth et al., 2015 (125). During stress 

conditions, misfolded proteins accumulate and form large aggregates. However, some HSPs (like 

HSP70/HSP40 complex) can bind to misfolded proteins preventing their aggregation and facilitating 

their refolding. On the other hand, they also can assist in the proteosomal degradation of proteins that 

cannot be refolded.    
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1.2.4 Family of heat shock proteins 

The expanding of members in the different HSP families and the inconsistencies in their 

nomenclature and classification have always led to confusion. Originally, mammalian HSPs 

were classified according to their molecular size (126). However, Kampinga et al.  proposed 

new guidelines for the nomenclature and classification of human HSP families. Consequently, 

human HSPs are classified into the following groups: HSPB (small HSP), DNAJ (HSP40), 

HSPA(HSP70), HSPC (HSP90), HSPH (HSP110) and the chaperonin families HSPD/E 

(HSP60/HSP10). This nomenclature is based mainly on the more constant nomenclature 

assigned by the HUGO Gene Nomenclature Committee and adopted in the National Centre of 

Biotechnology Information Entrez Gene database for the heat shock gene (127). Table 1-7 

presents a summary of these proteins, their cellular location and function. 

High molecular weight HSPs are ATP-dependent chaperones, while small HSPs act in an ATP-

independent fashion (128), with each HSP family member being expressed constitutively or 

regulated inductively and is targeted to different subcellular compartments (129). Constitutive 

activation of HSPs may occur in cells even in the absence of environmental stressors. For 

example, HSP90 can constitute up to 1% of total cellular protein in unstressed cells (130) 

indicating that these proteins have a role in maintaining protein conformation even under 

normal conditions. 

Table 1.7 Summary of human HSPs according to their molecular weight, location and function. 

HSP Family Members Molecular weight 

(KDa)/Sequence 

length (a.a.) 

Intracellular Location 

Small HSPs HSP10 10/102 Mitochondria 

HSP27 22/205 Cytosol/Nucleus 

HSP40 38/340 Cytosol 
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HSP40/DNAJ 

family 

DNAJA1 44/397 Nucleus/Cytosol 

DNAJA3 52/480 Cytosol 

CY40 40/370 Cytosol 

HSP60 HSP60 61/573 Mitochondria 

CCT1 60/556 Cytosol Cytoskeleton 

HSP70 HSP70 70/641 Cytosol 

HSP70-2 70/641 Cell surface 

HSP72 70/639 Cytosol 

HSP73(HSC70) 70/646 Cytosol 

Grp78 72/654 Endoplasmic reticulum 

HSP90 HSP90 86/732 Cytosol 

HSP90B 84/724 Cytosol 

Grp97 92/803 Cytosol/Endoplasmic 

reticulum 

TRAP1 75/704 Mitochondria 

(adapted from Khalil et al., 2011 (126)) 

 

1.2.4.1 HSPB (small heat shock protein) family 

Small heat shock proteins (HSPB) are present in all type of cells and play vital roles in cell 

biology. They are fundamental components of the cellular protein quality control system, 

acting as the first line of defence against conditions that influence protein homeostasis and 

proteome stability (131). The small heat shock proteins have molecular weights in the range 

16–40 kDa and are characterised by a conserved C-terminal domain of 100 amino acids, 

referred to as the alpha-crystallin domain (ACD) (132). From a structural point of view, HSPBs 
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can exist in the form of monomers and dimers, but can also assemble into large multimeric 

complexes that vary in size and contain up to 24–40 subunits. Association of monomers into 

large complexes, as well as dissociation of large oligomers into dimers and monomers, is 

modulated by sHSP post-translational modification, including phosphorylation, which, in turn, 

regulates sHSP functions (133). The mammalian HSPB family contains at least 10 members, 

the best-studied of which are HSPB1 (HSP27), HSPB4 (αA crystallin) and HSPB5 (α B-

crystallin) (133, 134). Both HSPB1 and HSPB5 are constitutively expressed in a variety of 

tissues, however, their expression is up-regulated under stress conditions and in several 

diseases (134). Some members, like HSPB5, HSPB1, HSPB2 (MKBP), are highly expressed 

in cardiac and skeletal muscles (135). 

Small HSPs functions are very diverse including chaperone-like activity and modulation of 

cytoskeleton stability. As a consequence of their role as chaperones towards diverse clients, 

which influences client fate (refolding or degradation) and due to their role as stabilizing agents 

of the cytoskeleton, sHSPs participate indirectly in the regulation of complex processes such 

as the response and adaptation to cell stress, thermotolerance, cell differentiation, cell 

movement, cell apoptosis, and development (136, 137). Thus, malfunction of HSPs can have 

adverse effects in many diseases, causing a wide range of pathologies including 

cardiomyopathy, myofibrillar myopathy, motor neuron diseases and cataracts (131). As the 

ATP level of the cells can reduce severely during stress conditions, these HSPBs act in an ATP 

independent manner. After stress recovery, when the ATP level has been returned, the 

sequestered damaged proteins can be transferred to ATP-dependent chaperone, like the 

HSPA/DNAJ (HSP70/HSP40) complex, which can facilitate the refolding or the degradation 

of these proteins (136, 138, 139). 
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1.2.4.2 DNAJ (HSP40) family 

The DNAJ (HSP40) family is the largest human HSP family consisting of at least 50 members 

(127) characterised by a conserved, usually N-terminal J-domain, through which they bind to 

HSPA (HSP70) proteins. They are fundamental in protein folding, refolding and translocation 

as they are responsible for the stimulation of HSPA ATPase activity (140). DNAJ proteins can 

bind substrate peptides and transfer them to HSPA, while the J-domain facilitates ATP 

hydrolysis. Several members of DNAJ family also regulate the activity of other HSPs, like 

HSPC (HSP90) proteins. They can be found in various cell compartments, such as cytosol, 

nucleus, endoplasmic reticulum (ER), mitochondria, endosomes and ribosomes, with some of 

them showing tissue specific expression (140). 

1.2.4.3 HSP60 (chaperonin) family 

The chaperonin family of HSPs comprise two major subgroups, the GroEL (hsp60) family and 

members of the TCP-1 ring complex (TRiC) family, both of which have an essential function 

in promoting the ATP-dependent folding of proteins during normal growth and following 

cellular stress (127). Members of the GroEL family are found in mammalian mitochondria, 

where their major function is to promote the folding and assembly of imported proteins and the 

binding of heat-denatured mitochondrial proteins (112). The TRiC chaperonins are found in 

archaebacterial and the eukaryotic cytosol, and although fewer studies on the function of this 

subgroup have been reported, the available data on the structure of these proteins suggests that 

they are also important in providing a folding compartment for polypeptide assembly. 
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1.2.4.4 HSPA (HSP70) family 

Members of this family are highly conserved ATPases, identified in both prokaryotes and most 

compartments of eukaryotic cells. The human HSP70 family consists of 13 members with 

similar structural and functional properties. HSPA1A (HSP70-1) and HSPA1B (HSP70-2) only 

vary in two amino acids, and probably because they are totally interchangeable proteins, are 

usually referred to as HSPA1 (HSP70) (127). In eukaryotes, there are four essential proteins, 

constitutively expressed HSC70 (HSP73 or HSPA8), mitochondrial mtHSP70, endoplasmic 

reticulum-localised GRP78/Bip and stress-inducible HSP70 (HSP72 or HSPA1) which is 

simply called HSP70 (141). 

They have two main functional domains, an N-terminal ATPase-binding domain (ABD) 

responsible for substrate binding and refolding, and a C-terminal peptide-binding domain 

(PBD) to help the release of the client protein after ATP hydrolysis (142). HSP70 chaperone 

activity is regulated by different co-chaperones, e.g. Hip, CHIP or Bag-1. These co-chaperones 

bind to HSP70 and modulate its chaperone function by enhancing or reducing HSP70 affinity 

for substrates through the stabilisation of the ADP or ATP bound state of HSP70 (119). 

1.2.4.5 HSPC (HSP90) family 

HSPC (HSP90) family is the most well studied member of the heat shock protein families. 

Genetically, this family encodes five members (HSPC1-5) (127), which are the most abundant 

proteins in cells, producing 1–2% of the total cellular proteins. They can be found in different 

cell compartments such as cytosol, ER and the mitochondria (143). The most important 

members of the HSP90 family are inducible HSP90α (HSP90AA1) and constitutive HSP90β 

(HSP90AB1) isoforms (now also called HSPC1 and HSPC3, respectively), which are 

expressed by two distinct genes whose protein products are mainly cytoplasmic. The HSP90α 

was determined to be constitutively expressed at a low level, but strongly heat inducible. In 
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contrast, the HSP90β gene is expressed constitutively at a much higher level and is only weakly 

inducible following a heat shock (144). Members of the HSPC family are homodimers 

composed of three functional domains, an amino-terminal ATP binding domain, a charged 

middle linker domain, and a carboxyl-terminal dimerization domain. They are an ATP 

dependent molecular chaperon and there are over 200 HSP90 identified “client proteins” 

reported to interact with HSP90, compromising a variation of functional pathways for cell 

proliferation, growth and survival (144).  

1.2.4.6 HSPH (HSP110) family 

The human HSPH (HSP110) family contains three cytosolic and one ER specific members. 

They are highly homologous to HSPA proteins, but they have a longer linker region between 

the N-terminal ATPase domain and the C-terminal peptide-binding domain (127). A HSP110 

family member has been described as a co-chaperone for HSP9. HSPH family members also 

cooperate with HSPA (HSP70) in protein folding, as they function as nucleotide exchange 

factors, removing ADP after ATP hydrolysis (145). 

1.2.5 Transcriptional regulation of HSP activity 

The induction of the expression of genes encoding HSPs in response to various stresses is 

regulated by a family of transcription heat shock factors (HSFs). Under stress conditions, these 

regulators activate the heat shock genes by binding to the heat shock elements found in the 

promoter region of the HSP genes. In humans, six types of HSFs have been identified namely 

HSF1, HSF2, HSF4, HSF5, HSFX and HSFY (146). HSF3 has been described for mice but not 

humans (147). The earliest-discovered and most widely studied HSF is HSF1, which plays a 

fundamental role in the heat shock response (148). HSF1 is expressed in almost all tissues and 

cell types, activated in response to different cellular stressors. while other members of the HSF 
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family are mainly involved in normal development, cell differentiation and life span regulation 

(149). HSFs are varied in size, but all of them contain an N-terminal DNA-binding domain, a 

hydrophobic oligomerization domain as well as a C-terminal transactivation domain (148). 

The inactive, monomeric form of HSF is separated in the cytoplasm of unstressed cells by 

binding to various HSPs, such as HSPC (HSP90), HSPA (HSP70) or DNAJ (HSP40). During 

stress conditions, the amount of partially denatured proteins gradually increases, and these 

proteins upon binding to HSPs, release HSFs. The released HSFs undergo trimerisation, 

phosphorylation and translocate to the nucleus, where they bind to its target sites (heat-shock 

elements) in the regulatory region of heat shock induced genes and activate them. This 

activation is fast, the DNA-binding form of HSF can be identified within minutes following 

heat treatment (150). The activation of heat shock genes leads to increased expression of HSPs, 

which then associate with HSF. In this way, HSPs negatively regulate the expression of heat 

shock genes via an auto-regulatory loop. For example, the activity of HSF1 is down-regulated 

by the binding of HSP70 to its transactivation domain, resulting in the repression of heat shock 

gene transcription. Also, there is an interaction between HSP-binding factor 1 (HSPB1) with 

the active HSF1, thereby inhibiting the capacity of HSF-1 to bind DNA (148, 150). 
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Figure 1.2 Activation of the heat shock protein (HSP) by specific stimuli and their protective effect. 

Adapted from Shi et al., 1998 (150). 

 

Figure 1.3 Transcriptional regulation of heat shock proteins. Adapted from Toth et al., 2015 

(125). The inactive form of HSF is segregated in the cytoplasm of unstressed cells by binding to different 

HSPs, such as HSPC (HSP90) or HSPA (HSP70). During stress conditions, the amount of denatured proteins 

increases (1), which can bind to HSPs, thus releasing the HSFs (2). The released HSFs undergo trimerization, 

phosphorylation and translocate to the nucleus (3), where they bind to the HSE of the promoters of heat shock 

induced genes and activate them (4). The newly synthesized HSPs than associate with HSF, thereby negatively 

regulate their own expression via an autoregulatory loop (5). On the other hand there is an alternative, 

membrane-associated “thermosensor” that can initiate heat shock gene activation. During heat stress, the 

membrane fluidity rapidly increases (6), which can activate stress sensing and signalling pathways leading to the 

elevated expression of HSPs, and this transcription activation is also mediated by HSF1 (7).  
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1.2.6 The role of heat shock proteins in cancer  

There is overwhelming evidence that heat shock proteins are expressed at elevated levels in a 

range of cancers and form an encouraging environment that is essential for tumour 

development (151, 152). HSP expression appears essential in many of the distinctive traits of 

malignant cells as described by Douglas Hanahan and Robert Weinberg in their article in 2000, 

“The hallmarks of cancer” , including uncontrolled proliferation, insensitivity to anti-growth 

signals, avoidance of cell senescence, evading apoptosis, as well as the acquisition of powerful 

capacities for angiogenesis and metastasis (153, 154).  

 

1.2.6.1 Tumour proliferation and avoidance of senescence 

Cell proliferation in adult tissues is not a default state and most cells have long ceased growing 

at this stage. In cancer, growth control is deregulated and proliferation resumes (155). Most of 

the receptors and enzymes that constitute the cascade are oncogenic when expressed at elevated 

levels or activated through mutation. Many of these proteins are clients of HSP90, therefore, 

amplification of HSP90 is permissive for unrestrained proliferation (156). Thus, HSP90 

chaperone complexes maintain the signalling circuitry that underlies the capacity of many 

cancers for independent growth (157). There is some suggestion that HSP70 is also required in 

a similar way, because inactivation of this chaperone led to inhibition of proliferation in murine 

mammary tumour cells (158). 

HSPs contribute to limitless proliferation by avoidance of senescence. Normal cells resist 

transformation by having a limited number of permitted divisions (159). This system is based 

on the lack of replication of chromosome ends at each cell division; the capping structures at 

the chromosome ends become progressively shortened, leading to arrest of further division and 
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cell senescence (160, 161). Cancer cells evade the senescence program by deploying the 

enzyme telomerase, which replaces the shortening ends of telomeres (161). HSP90 binds to 

telomerase and is required for its efficient function (162), thus, HSP90 might deter senescence 

by chaperoning telomerase and overcoming the erosion of telomeres over time when expressed 

to high levels, as in cancer. 

In addition, one of the principal factors that controls the development of cancer is p53, a protein 

with a role in mediating growth arrest and apoptosis in response to DNA damage. Expression 

of HSP70 and HSP90 increases to high levels in tumours with mutated p53 and both 

chaperones may have roles in stabilizing the altered conformation of the mutant p53 (163, 164). 

Also, HSP27 and HSP70 inhibit the effector arm of the senescence pathway by reducing the 

effectiveness of p53 in promoting cell senescence (165, 166). P53 transcriptionally upregulates 

cell cycle protein p21, which directly arrests proliferation and this process is inhibited by high 

levels of HSP70 (167).  

1.2.6.2 Angiogenesis 

Under hypoxic conditions, tumour cells are able to deploy HIFs, proteins that can sense the 

low oxygen environment and mediate the expression of growth factors, such as vascular 

endothelial growth factor (VEGF), thereby increases the growth of the tumour capillary 

network and angiogenesis (168). 

Also, several critical mediators in this angiogenic signalling pathway, including HIF, VEGF-

receptor and Nuclear factor-κB (NF-κB) are dependent upon HSPs for their function (169). 

Indeed, HIF-1 is stabilised by HSP90 in hypoxic conditions (170). HSP27 becomes 

proangiogenic when released from tumour cells and can bind to receptors, stimulating VEGF 

transcription through an alternative pathway involving the factor NF-κB (171). 
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1.2.6.3 Invasion and metastasis 

Tumour metastasis is a complex process in which cancer cells acquire specific capabilities 

(154) and elevated expression of each of the HSPs strongly promotes metastasis. An increase 

in HSP90 is associated with metastasis, largely due its capacity to chaperone focal adhesion 

kinase, integrin linked kinase and the receptor tyrosine kinases, ErbB2 and MET (172). HSP90 

was found on the cell surface and in conditioned medium of tumour cells, where it acted as a 

molecular chaperone to help in the activation of matrix metalloproteinase-2 (MMP-2) leading 

to elevated tumour invasiveness. Activated MMP-2 protease digests many of the essential 

ECM components surrounding tumour tissue, thereby facilitating tumour invasion (172, 173).  

In addition, HSP27 expression also favours metastasis though its effects on a process known 

as the epithelial-mesenchymal transition (EMT), in which cells switch from a compact shape 

to a spindle shape and gain enhanced cell motility (174). 

1.2.6.4 Anti-apoptosis 

Two main pathways for apoptosis induction have been recognised, intrinsic and extrinsic. The 

hallmarks of the intrinsic pathway are mitochondrial involvement and the production of the 

‘apoptosome’. In the intrinsic pathway, cell death signals cause the release of the cytochrome 

complex (Cyt c) from the mitochondria, which then attaches to the apoptosis protease 

activating factor-1 (Apaf-1), inducing oligomerization and ultimate recruitment of procaspase-

9. Apoptosome formation results in the activation of caspase-9, which triggers the caspase 

pathway by activating the downstream caspase-3 (175). Cancer cells have been shown to 

deploy a range of mechanisms to evade apoptosis (176). Remarkably, HSP27, HSP70 and 

HSP90 have been shown to interact directly with protein intermediates in the apoptosis 

pathways and are potent inhibitors of apoptosis (176, 177). HSP27 inhibits apoptosis through 

its capacity to block multiple steps in these death pathways, including inhibiting cytochrome c 
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and SMAC Diablo release from mitochondria, as well as antagonizing caspases 3 and 9 (178, 

179). HSP70 is likewise a versatile inhibitor, blocking the c-jun kinase pathway of programmed 

cell death and interrupting cytochrome c release from mitochondria (177, 180). Also, HSP70 

functions at the post-mitochondrial level by interacting with the apoptosis-inducing factor 

(AIF) and Apaf-1 (181). HSP90 and its co-chaperones also modulate and mediate tumour cell 

apoptosis via interaction with Akt kinase, tumour necrosis factor (TNF) receptor, HER2/ErbB2 

receptor, and NF-κB (176, 182). 

The way that various HSPs behave in the cell death machinery is still controversial and the 

detailed signalling pathways that lead to apoptosis are far from being understood. However, 

HSPs 27, 70 and 90 are now established anti-apoptotic proteins (176, 177). 

1.2.6.5 Resistance to chemotherapy 

Since the cytoprotective effect of HSPs is essential for cancer cell survival, it is not surprising 

that HSPs targeted therapy is considered as a potential pharmacological intervention strategy 

for cancer treatment. To that end, there are currently thirteen HSP90 inhibitors being clinical 

evaluated in cancer patients (183). Most investigations to identify HSP90 inhibitors have 

concentrated on ligands binding to the N-terminal ATP-binding site, which interrupts HSP90’s 

ATPase activity and the ongoing ATP-dependent folding cycle. As this cyclic event requires 

multiple co-chaperone proteins, inhibition results in the destabilization, ubiquitination, and 

ultimately, proteasomal degradation of the client proteins simultaneously causing the 

disruption of multiple oncogenic signalling pathways. 

However, one of the crucial problems with HSP90 inhibition is the increase of HSP70 after 

treatment, which can reduce cell death induced by HSP90 inhibitors and therefore buffer their 

anti-tumour efficacy in the clinic. These disappointing results may be related to inherent HSP90 

inhibitors toxicity and induction of HSP70 by calcium mobilization and activation of the TGF-
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β signalling pathway. Thus, HSP70 inhibition combined with anti-HSP90 compounds may 

eliminate the toxic side-effects of HSP90 inhibitors, enhancing the synergistic efficacy for the 

treatment of cancer. 

1.2.7 Expression of studied HSPs (HSP27, HSP70 & HSP90) in various tumour 

types 

In the literature, there is overwhelming evidence that heat shock proteins are expressed at 

elevated levels in a range of cancers (126, 152). This thesis focuses on HSP27, HSP70, and 

HSP90, the most widely reported chaperones in the literature. 

1.2.7.1 HSP27  

HSP27 (HSPB1) is a member of the small HSP family and acts as an ATP-independent 

chaperone. The primary structure of HSP27 is highly homologous to other members of the HSP 

family, containing the conserved α-crystalline domain and differing in the C- and N-terminal 

regions. HSP27 is expressed in all human tissues (184), mainly residing in the cytosol (185). 

In the field of oncology, HSP27 has been found intracellularly and the extracellularly, with 

increased levels detected in various types of cancer such as ovarian, prostate, brain and breast 

cancers (126, 152, 186).  

1.2.7.2 HSP70  

The HSP70 superfamily consists of at least 13 members. There are four major proteins, 

constitutively expressed HSC70 (HSP73 or HSPA8), mitochondrial mtHSP70, endoplasmic 

reticulum-localised GRP78/Bip and stress-inducible HSP70 (HSP72 or HSPA1), simply 

referred to as HSP70 (127). The extensively studied inducible HSP70 (HSPA1A or HSP72) 

has ATP-dependent chaperone properties (187) and is over-expressed in various tumours such 
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as gastric adenocarcinomas (188), hepatocarcinoma (189) and oesophageal cancer (190). 

Myung et al. studied HSP70 expression in human tumour cell lines and showed that HeLa 

cells, osteosarcoma, A-673 (rhabdomyosarcoma), CaOv-3 (ovarian adenocarcinoma), as well 

as malignant melanoma expressed HSP70 (191).  

1.2.7.3 HSP90  

HSP90 belongs to another important class of the HSPC family and is a highly abundant ATP-

dependent chaperone protein expressed by all eukaryotic cells (127, 192). It accounts for 1–

2% of total cellular proteins, increasing upon induction from baseline levels to 4–6%. It has 

two main isoforms, HSP90α (inducible form) and HSP90β (constitutive form) (144). Like other 

HSPs, HSP90 over-expression has been related to the prognosis and evolution of neoplasia. 

Moreover, this family of HSPs is considered the classic chaperone family in cancer (126, 152, 

193).  
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1.3 Thesis Hypothesis 

1.3.1 The Rationale of the current study 

Soft tissue sarcomas are a rare and a heterogeneous group of malignancies originating from 

mesenchymal tissue. The rarity of soft tissue sarcomas, coupled with their diversity, is 

challenging for researchers to understand their natural history, prognosis and management. 

Hence, further research is essential to understand the cellular and molecular variability of soft 

tissue sarcomas, which may provide insights into the clinical heterogeneity of the disease and 

its pathology. Among the many changes in cellular activity and physiology, the most 

remarkable event in stressed cells is the production of a highly-conserved set of proteins called 

heat shock proteins (HSPs). Intensive research into the structure and function of HSPs has been 

ongoing for the past 20 years. They are of considerable interest since they have been shown to 

have a pivotal role in cell cycle progression and cell death (apoptosis), and to be involved in 

many disease processes (152). In addition, they found to be increased in many solid tumours 

and haematological malignancies (126).  

Among the heat shock proteins, HSP27, HSP70 and HSP90 are the most commonly studied. 

They are potent anti-apoptotic proteins, associating with essential apoptotic factors, thereby 

blocking this cell death process at different levels (176). There are several reports about the 

prognostic role of anti-apoptotic HSP27, HSP70 and HSP90 in various tumour types. 

Furthermore, it has been reported that over-expression of HSPs is associated with poor 

prognosis, such as HSP27 in breast malignancy (193), HSP70 in pancreatic adenocarcinoma 

and HSP90 in gastrointestinal stromal tumours (194). According to Uozaki et al., the over-

expression of HSP27 has the strongest negative prognostic value for conventional 

osteosarcoma (195). Despite the importance of HSP activity in various tumours, little is known 
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about the role of HSPs in soft tissue sarcomas. In a proteomic study, Suehara et al. 

demonstrated that the expression levels of HSP27 were associated with histological grading 

and patient survival in leiomyosarcoma (196). Recently, Bekki et al. reported that HSP90 is 

highly expressed in undifferentiated pleomorphic sarcoma (UPS) using 

immunohistochemistry, concluding that it is a poor prognostic factor (197).  

1.3.2 Hypothesis 

Based on the literature review, given the importance of HSPs (notably HSP27, HSP70 and 

HSP90) in malignancies and their participation in different hallmarks of cancer, it is 

hypothesised that HSPs (particularly HSP27, HSP70 and HSP90) are highly expressed in 

myofibroblastic/fibroblastic sarcoma, and there is a relationship between overexpression of 

these HSPs and the prognostic clinical pathological features of soft tissue sarcomas.  

1.3.3 Null Hypothesis 

The hypotheses are individually or collectively not true. 

1.3.4 Aim & objective 

1.3.4.1 Primary aim 

The primary aim of the present study is to evaluate the expression of selected HSPs (HSP27, 

HSP70, HSP90) in adult myofibroblastic/fibroblastic sarcomas of the extremities by 

immunohistochemistry (IHC).  
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1.3.4.2 Secondary aims 

1. To study the association between the expression of HSPs and the subtype of 

myofibroblastic/fibroblastic sarcoma. 

2. To compare the expression of HSPs between sarcoma and non-metastasising soft tissue 

tumours in general. 

3. To assess the relationship between the expression of these HSPs and the grade of 

sarcomas (high grade vs low grade). 

4. To investigate the relationship between the expression of HSPs with other 

clinicopathological parameters (age, gender, tumour site, tumour size and metastasis). 
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Chapter Two 

Materials & Methods 
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2  Materials & Methods 

2.1 Patients and tissue samples 

The study was conducted under the Liverpool Musculoskeletal Biobank ethical approval 

(NRES North West Liverpool Central Reference 15/NW/0661) and sponsored by the 

University of Liverpool (reference UoL001223). Informed patient consent for using the 

samples for research purposes was obtained from all patients prior to surgery. 

2.1.1  Patient samples 

Soft tissue samples were obtained from adult soft tissue neoplasms of the extremity resected 

from patients who attended the Northwest Orthopaedic Oncology service in Liverpool from 

2006 to 2016 and who had no history of preoperative radiotherapy or chemotherapy.  

The inclusion criteria for patients were: 

- Adult with soft tissue sarcoma of the extremities 

- Consented  

- No prior treatment with radiotherapy or chemotherapy 

- Detailed clinical information available.  

Detailed clinical pathological parameters (age and sex, tumour site, size, stage, grade and 

distant metastasis) for most of the cases were taken directly from the surgical pathology report 

and patients’ files. The histological diagnosis of soft tissue tumours was made by a specialist 

sarcoma pathologist at Royal Liverpool University Hospital based on World Health 

Organization (WHO) criteria and widely accepted morphological and immunohistochemically 

characteristics. For histological grading, the French Fédération Nationale des Centres de Lutte 
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Contre le Cancer (FNCLCC) system was used. Tumours were classified as upper extremity if 

they were located at, or distal to, the clavicle, lower extremity if they were at, or distal to, the 

pelvic brim. The maximum macroscopic size of the tumour was obtained from the pathology 

report.  

2.1.2 Tissue samples 

All tissue samples were archival paraffin-embedded, formalin-fixed tissue blocks from adult 

soft tissue neoplasms of the extremity resected from patients who attended the Northwest 

Orthopaedic Oncology service in Liverpool from 2006 to 2016, obtained from the Liverpool 

Tissue bank.  

The criteria for tissue selection were:  

1. Availability of informed consent.  

2. Blocks of tissue from the most appropriate region of the tumour by a senior sarcoma 

pathologist consultant: 

o representing tumour cells   

o representing the highest grade in the sample 

o away from necrotic tissue 

o avoid of tumour capsule or reactive tissue 

3. Sufficient tumour tissue present.   

4. Availability of relevant clinical information.   

 

Once the blocks had been selected, sequential 4 μm sections of paraffin block were cut using 

a rotary microtome (Microm, Oxford, UK) from the corresponding formalin-fixed, paraffin-

embedded (FFPE) tissue blocks. 
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2.2  Haematoxylin and eosin (H&E) staining procedure 

One section from each FFPE tissue block was stained with haematoxylin and eosin by the 

Liverpool Tissue Biobank used for histological assessment.  

2.3 Immunohistochemistry (IHC) 

2.3.1 Basics of immunohistochemistry 

Immunohistochemistry (IHC) is a powerful method for localizing specific antigens in formalin-

fixed, paraffin-embedded (FFPE) tissues based on antigen-antibody interaction (198). It is now 

identified as an essential element and an important tool, both in diagnostic and research-

orientated cellular pathology. The technique involves the detection of specific or very selective 

cellular epitopes with an antibody and appropriate labelling system. Immunohistochemistry 

can be performed on cytological compounds, frozen sections and paraffin-embedded 

histological sections (199, 200). The basic steps of an immunohistochemistry protocol are 

detailed in appendix B.   

2.3.1.1 Fixation and section cutting 

The process of fixation is essential for tissue and antigen preservation as it stabilises the 

proteins. The general principle is that the fixatives form cross-links between proteins, thereby 

stabilising the cytoskeletal structure. Formaldehyde (formalin) is the fixative of choice for 

routine histology, therefore, any retrospective studies using patient samples will involve the 

use of immunohistochemistry on formalin-fixed, paraffin-embedded blocks. The aldehydes 

form cross-links between protein molecules, the reaction being with the basic amino acid lysine 

(200, 201). All tissues used in this study are formalin-fixed, paraffin-embedded blocks. 
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Generally, unless otherwise specified, sections for IHC were cut at 3 μm, 4 μm or 5 μm. Thicker 

sections may cause difficulty during staining, creating problems in interpretation due to the 

multi-layering of cells. In this study, sequential 4 μm sections of the paraffin block were cut 

using a rotary microtome from the corresponding formalin-fixed, paraffin-embedded (FFPE) 

tissue blocks. This was performed by an experienced technician from the tissue bank at the 

University of Liverpool using a microtome (Microm). The tissues were then placed on labelled 

superior Adhesive Slides (Apex, Leica, UK) and dried overnight in a 37°C oven.  

2.3.1.2 Antigen retrieval (AR) 

Antigen retrieval is the method by which antigens that have been masked through fixation and 

processing, are unmasked prior to immunostaining. There are two main methods for antigen 

retrieval, proteolytic and heat-mediated. Of these two, heat mediated antigen retrieval (HMAR) 

is the most effective on most antigens (201). For this study, HMAR was performed using the 

Dako PT-Link with a high pH. The protocol for PT-Link antigen retrieval is in appendix C.  

The main advantage of HMAR over proteolytic digestion is that heating times to retrieve 

antigens tend to be uniform, regardless of the amount of time spent in fixative. This is in 

contrast to the variability in digestion times required when using enzymes. The main pitfall 

with HMAR is that extreme care must be taken not to allow the sections to dry, as this destroys 

antigenicity (200). 

2.3.1.3 Blocking of endogenous peroxidase 

Peroxidase results in the decomposition of hydrogen peroxide and is a common property of all 

haemoproteins, myoglobin, cytochrome, and catalases. Using the immunohistochemical 

method with one of the reagents labelled with peroxidase requires blocking of the endogenous 

peroxidase present in tissues, which would give a false positive reaction with the applied 
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chromogen (201). In this study, this process was performed by pre-treating sections with Dako 

Envision-Flex block (Dako, UK Ltd.) which exhausts the endogenous enzyme.  

2.3.1.4 Candidate proteins (primary antibodies)  

An antigen can be defined as a molecule (protein, carbohydrate, or lipid) that binds with an 

antibody, and is usually composed of a number of epitopes or antigenic determinant groups. 

An epitope consists of a small amino acid sequence which binds to the variable region of the 

antibody. Due to differences in their manufacture, a monoclonal antibody will only recognise 

one epitope on an antigen, whereas a polyclonal antibody will recognise many epitopes on an 

antigen. The vast majority of primary antibodies available for use on human tissue are made in 

either rabbits or mice. Generally, monoclonal antibodies are preferable to polyclonal 

antibodies, as they tend to be more specific (200).  

In this study, expression of selected heat shock proteins was examined in soft tissue tumours 

using immunohistochemistry. The expression of HSP27, HSP70 & HSP90 was investigated to 

examine their potential role in soft tissue sarcoma and to gain an insight into the pathobiology 

of connective tissue tumours.  

The first antibody is anti-HSP27 primary antibody from Abcam Ltd (UK) is a mouse 

monoclonal (G3.1) to heat shock 27 kDa protein, HSPB1. It reacts with mouse, rat and human 

antigens. Mouse monoclonal IgG1 is suitable for use as an isotype control with this antibody. 

HSPB1 is localised mainly in cytoplasm and detected in many tissues, including gallbladder, 

smooth and skeletal muscles. This antibody was used in immunohistochemistry on human 

tissue in previous research (202, 203). 

The second antibody is anti-HSP70 primary antibody from Abcam, a mouse monoclonal (5A5) 

to heat shock 70 kDa protein 1B, HSPA1B. This antibody recognises human and mouse 
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antigens. Epitope mapping with a panel of HSP70 deletion mutants suggests that the epitope 

recognised is located between amino acids 122–264 of human HSP 70, a region that has been 

shown to be involved in ATP binding. Mouse monoclonal IgG1, is suitable for use as an isotype 

control with this antibody. HSPA1B is testis-specific and localised in the cytoplasm. This 

antibody was used in immunohistochemistry on human tissue in previous research (204, 205). 

The third antibody in this study is anti-HSP90 antibody from Abcam, a mouse monoclonal 

(AC88) to heat shock 84.7 kDa protein, HSP90 alpha and 83.2 kDa protein, HSP90 beta. It 

recognises both HSP alpha and beta in human. The epitope of this antibody has been mapped 

to amino acid residues 604–697 of the human HSP90 sequence. It is localised in the cytoplasm 

and nucleus. This antibody was used in immunohistochemistry on human tissue in previous 

research (206). 

Antibodies for use in immunohistochemistry were optimised by trial runs covering a range of 

concentrations and dilutions (1:100, 1:250 & 1:500) using a PT-link antigen retrieval (AR) 

method. Table 2-1 summarises the primary antibodies of the HSPs used in this study. 

 

Table 2.1 List of HSP primary antibodies used in the study 

Primary Antibody Source Isotype Clonality Clone number Dilution used 

Anti-HSP27 

Antibody 

Abcam 

(ab2790) 

IgG1 Mouse Monoclonal G3.1 1:500 

Anti-HSP70 

Antibody 

Abcam 

(ab2787) 

IgG1 Mouse Monoclonal 5A5 1:100 

Anti-HSP90 

Antibody 

Abcam 

(ab13492) 

IgG1 Mouse Monoclonal AC88 1:500 (10 

µg/ml) 

 



 
- 74 - 

2.3.1.5 Tissue controls used in the study 

Staining control cases were included across experiments to check for the consistency and 

reliability of the immunostaining technique. According to the literature, Human Protein Atlas 

and manufacturer’s recommendations, the positive controls were gallbladder tissue for HSP70, 

skin for HSP27 and testis for HSP90. For negative controls, all staining steps were applied to 

the same positive control tissue except that the mouse non-immune IgG (Dako) was substituted 

in place of the primary mouse antibody at the same dilution as the respective primary antibody. 

Figure 2.1 shows positive and negative tissue controls for various HSPs. 

 

Figure 2.1: Positive and negative tissue controls 

for various HSPs.  

(A) Skin tissue, negative control for HSP27 (1:500), (B) Skin 

tissue (Keratinocytes), positive control for HSP27 (1:500), (C) Gall 
bladder tissue, negative control for HSP70 (1:100), (D) Gall 

bladder tissue (Glandular cells), positive control for HSP70 

(1:100), (E) Testis tissue, negative control for HSP90 (1:500), and 

(F) Testis tissue (Cells in seminiferous ducts), positive control for 
HSP90 (1:500). Magnification: x10. 
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2.3.1.6 Staining methods 

There is a wide variety of immunohistochemical staining methods available today, but the best 

and most reliable of these are the avidin-biotin and polymer-based systems (200). In this study, 

a polymer-based immunohistochemical method was chosen for the best possible staining.  

Polymer-based methods can be either a two- or three-layer system. In the two-layer system, the 

secondary antibody is part of the polymer molecule and the secondary antibody is conjugated 

to the polymer as a large number of enzyme molecules. The EnVision kit, available from Dako, 

is an example of a two-layer polymer system used in this study (Figure 2.2). In the three-layer 

system, the secondary antibody is applied unconjugated, then the tertiary antibody which is 

conjugated to the polymer along with enzyme molecules. The main advantage of polymer-

based systems is that they can be used on tissues containing a lot of endogenous biotin without 

producing background staining (200). 

 

 

Figure 2.2 The basic immunohistochemistry sequence - a polymer-based method.  
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2.3.1.7 Enzyme labels and chromogens  

Enzymes are the most widely used labels in immunohistochemistry, and incubation with a 

chromogen using a standard histochemical method produces a stable, coloured reaction end-

product suitable for the light microscope. In addition, the variety of enzymes and chromogens 

available allow the user a choice of colour for the reaction end-product. Horseradish peroxidase 

labelling + DAB (3,3′diaminobenzidine tetrahydrochloride) were used in this study and remain 

the most commonly used combination of enzyme and chromogen in immunocytochemistry. 

DAB precipitates to a brown reaction end-product when in the presence of peroxidase and 

hydrogen peroxide (hydrogen peroxide is in solution with the DAB). A by-product of the 

reaction of hydrogen peroxide (the substrate) with peroxidase (the enzyme) is an oxygen 

radical, which acts on DAB and precipitates it at the antigenic site. 

2.3.1.8  Immunostaining procedure using a Dako autostainer 

Immunohistochemistry was performed on 4 µm sections cut from the corresponding formalin-

fixed, paraffin-embedded (FFPE) tissue blocks and the slides were stained on a Dako 

autostainer, an automated slide processing system designed to automate manual staining 

methods routinely used in immunocytochemistry. Briefly, study tissue sections with control 

tissues were run in each assay performed. Slides were labelled with antibody, dilution and date 

using a pencil. Then, slides were placed in the PT-Link (Dako), heated to 96°C, held for 20 

minutes, and returned to 65°C (approx. 1 hour 10 minutes). After that, slides were washed with 

Flex-Wash buffer for 5–15 min and then placed on staining tray. 

Following antigen retrieval, the slides were stained on an autostainer (Dako UK Ltd, Ely, 

Cambridgeshire, UK). Endogenous peroxidases were blocked with a proprietary peroxidase 
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blocking solution (Dako) applied to each section for 10 min. Sections were then washed in Flex 

wash buffer, prior to incubation with the monoclonal primary antibodies for HSP27, HSP70 

and HSP90 (Abcam, UK Ltd) at the appropriate dilution (Table 2.4) for 30 min at room 

temperature. The dilution of the primary antibodies was chosen by testing a range of dilutions 

on positive and negative control sections. Negative control sections were incubated with mouse 

IgG1(Dako, UK Ltd) at the same concentration as the primary antibody. Bound antibody was 

detected using the Dako mouse linker and incubated for 20 min, then, DAB (Dako flex system) 

was added to each slide and incubated at room temperature for 20 min. Finally, the sections 

were counterstained with haematoxylin, dehydrated through the ethanol series and cleared in 

xylene in the fume hood, and mounted with DPX resinous mountant (Merck Chemicals Ltd, 

Nottingham, UK). A trained person supervised the staining procedure to ensure all the steps 

are performed correctly. The slides were examined for the quality of staining by the supervisor. 

The staining was satisfactory and there was no need to repeat any marker. 

2.4 Immunohistochemistry (IHC) analysis and assessment 

2.4.1 Automated quantitative analysis  

Following IHC staining, all slides were scanned digitally using an Aperio Image Scanner. 

Multiple snapshots (digital TIFF images) of the chosen area were captured at x10 

magnification. The number of images varied from 5–10, depending on the size of the selected 

area. Areas of necrotic tumour or those with excess tissue oedema or haemorrhage were avoided. 

In order to eliminate assessment bias, all snapshot images were blinded to the investigator. 

Image analysis was performed using Image J software (version Fiji-wind64). The markers were 

quantified as percentage of area of section stained according to the technique of Hartig et al. 

using image J software (207). This technique relies on choosing the colour deconvolution that 
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eliminates background noise. For colour detection, the colour selection is used to select and 

reserve the positive colour pixels while the background colour pixels are eliminated. After that, 

H DAB vector used to isolate the DAB stain. Staining can be assessed by setting “threshold” 

using the thresholding tool in ImageJ software. Then, the software measures the total DAB 

percentage (positive colour pixels) of section stained area, which is related to the specific 

tissue, based on the antibody used.With my supervisor (Dr Joseph Alsousou), we created a 

macro code (see appendix D) that will automatically perform the colour deconvolution and 

select the brown DAB stain, set the threshold and measure the area fraction and DAB intensity. 

The average of  DAB intensity percentage of stained area for each case was taken When run 

on many slide samples, the results matched the expected manual calculation and visual 

inspection. However, our automated analytic method (ImageJ) did not consider cellularity of 

tumours which might lead to some calculation bias. 

2.4.2 Semi-quantitative scoring 

For the purpose of this study, IHC slides were also analysed semi-quantitatively by two 

observers; an inexperienced investigator (the author) and a pathologist (Dr Susha Varghese). 

They were viewed blind to the clinical and pathological diagnosis. High inter-observer 

agreement was confirmed using Cohen’s Kappa coefficient (k = 0.91, P < 0.001). In case of 

inter-observer differences, consensus was achieved through simultaneous reassessment of the 

respective specimen by both investigators. 

At least five fields were used to evaluate expression of HSPs for each case under a standard 

light microscope (x400) or digital image(40x). Then, a semi-quantitative estimate was made 

using a immunoreactive score (IRS) as described by Remmele et al.,1987 (208).  Expression 

of HSPs was assessed by determination of IHC staining based on the intensity of 
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immunostaining and the percentage of stained tumour cells. Immunostaining was scored as 0 

(no immunostaining), 1 (weak immunostaining), 2 (moderate immunostaining), or 3 (strong 

immunostaining). The percentage of positive tumour cells was scored as 0 (none), 1 (< 10%), 

2 (10–50%), 3 (51–80%), or 4 (> 80%). Multiplication of the scores for intensity and 

percentage resulted in the immunoreactive score (IRS) ranging from 0 to 12 (Table 2-2). For 

the statistical analysis, expression of HSPs was dichotomised into either low expression (score 

0–3), or high expression (score 4–12). Similar method of analysis for IHC staining of HSPs 

was used in many previous cancer studies including breast and colon cancers  (209-211). 

Table 2.2 Immunoreactive score (IRS) according to Remmele and Stegner, 1987 (208) 

A (Percentage of positive cells) B (Intensity of staining)  IRS score (multiplication of A and 

B) 

0 = no positive cells 0 = no colour 0-1 = negative 

1 = < 10% of positive cells  1 = mild reaction 2-3 = weak 

2 = 10-50% positive cells 2 = moderate reaction 4-8 = moderate 

3 = 50-80% positive cells 3 = intense reaction 9-12 = strong 

4 = > 80% positive cells   

 

2.4.3  Relationship between automated quantitative analysis and semi-

quantitative scoring 

The relationship between automated quantitative analysis (% of staining area) and semi-

quantitative scoring (IRS scoring) was investigated using Spearman’s rank order correlation. 

There was a positive correlation between the two variables (p < 0.05), with high levels of 

automated % staining area associated with higher IRS. 
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2.5 Clinical follow-up 

Patients had follow-up appointments every 3 months for the first 3 years after surgery, every 6 

months for the next 2 years, and yearly thereafter. The presence or absence of recurrence was 

confirmed by computed tomography (CT) or magnetic resonance imaging (MRI) every 12 

months after surgery. Follow-up was calculated from the day of primary surgery and overall 

survival (OS) was calculated from the date of surgery to the date of death. 

2.6 Statistical analysis 

Statistical analyses were performed using the software package SPSS, version 22.0 (SPSS, 

Chicago, IL), at the University of Liverpool with the advice and assistance of my supervisors. 

In all statistical analyses, the initial step was to assess whether the data were normally 

distributed. This is performed automatically by SPSS, which superimposes a normal curve on 

the data histogram and using Shapiro Wilk’s test. Wherever there was uncertainty or two data 

sets were to be compared in which there were both normally and non-normally distributed data, 

non-parametric statistics were used. This means that the analyses might be less sensitive than 

had it been possible to apply parametric statistics, but this was considered an advantage as it 

decreased the likelihood of obtaining false positive relationships between biomarker 

expression and biological/clinical significance. All data were recorded onto datasheets in 

Microsoft Office Excel Software and then transferred to the SPSS (Statistical Package for 

Social Sciences) version 22. Different tests were used for different aspects of the analysis as 

these analyses were better applied to each data set/ combination of data sets. Thus:  

▪ Parametric data were described as means +/- standard deviation, whilst non-

parametric data were reported as median with ranges. With regards to 

categorical data, they were presented in number & percentages.  

▪ Categorical data were compared by chi-square or Fisher’s exact tests. 
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▪ The Mann-Whitney U test was used to test for differences between two 

independent groups on a continuous measure. 

▪ The Kruskal Wallis test was used to test for differences between more than two 

independent groups on continuous variables. 

▪ The Spearman’s rank order test was used to test correlation between two non-

parametric continuous variables. 

▪ OS was calculated using the Kaplan-Meier method. Death from disease was 

taken as the endpoint for disease-specific survival, patients dying from other 

causes were censored at the date of death.  

Results were deemed statistically significant at a P value of less than 0.05 (2-tailed). 
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3 Results 

3.1 Normality test for continuous variables 

This study had categorical, ordinal and continuous variables, requiring different statistical 

analysis for the different type of variables. For continuous variables, it is important to assess if 

data is normally distributed (parametric) or not (non-parametric), because different statistical 

tests are used for parametric and non-parametric data. The Shapiro-Wilk statistical test was 

used to assess the normality of the distribution of the continuous data. In this study, a P value 

less than 0.05 was considered significant, which suggests violation of the assumption of 

normality (Table 3-1). Hence, non-parametric tests were used for continuous variables.  

Table 3.1 Normality tests for continuous variables 

  Shapiro-Wilk 

Statistic df Sig. 

Age (year) 0.922 43 0.006 

Size of tumour (mm) 0.916 43 0.004 

HSP27 staining 0.912 43 0.003 

HSP70 staining 0.933 43 0.015 

HSP90 staining 0.620 43 0.000 
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3.2 Clinical and pathological characteristics of patients and tumour types 

This study included 43 patients with myofibroblastic/fibroblastic tumours of the extremities, 

35 patients (81.4%) had sarcoma tumours, and only eight patients (18.4%) had non-

metastasising tumours. The subtypes of tumours were myxofibrosarcomas (n = 26), 

myofibroblastic sarcomas (n = 3), fibromyxoid sarcomas (n = 3), myxoinflammatory 

fibroblastic sarcomas (n = 3), myxomas (n = 3) and fibromatosis (n = 3) as shown in Figure 

3.1. 

 

 

Figure 3.1 Number of cases for each type of tumour 
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3.2.1 Clinicopathological parameters of soft tissue sarcomas 

There were 35 myofibroblastic/fibroblastic sarcomas included in this study, 17 (48.6%) were 

men, and 18 (51.4%) were women. The median age of patients with sarcomas was 70.0 years 

at diagnosis (range 27–94 years). The median maximum diameter of a tumour was 81.1 mm 

(range 35–150 mm). Tumours were histologically FNCLCC grade I in 7 (20%), grade II in 5 

(14.3%) and grade III in 24 (68.7%). The tumour was located in the upper limb in 11 patients 

(31.4%) and the lower limb in 24 (68.5%) patients. A total of 8 patients (22.8%) developed 

metastatic disease, of which, 7 had FNCLCC grade III at presentation and one patient had a 

grade II tumour. Three patients had metastasis at the time of diagnosis. Metastases were in the 

lung in seven patients and groin lymph node in one. Table 3.2 summaries clinicopathological 

features for patients with STSs.  

Table 3.2 Clinical and pathological characteristics for patients with sarcomas. 

  MFS  

(n=26) 

MS  

(n=3) 

MIFS  

(n=3) 

FS  

(n=3) 

Total 

(n=35) 

Gender Male 11 1 3 2 17 (48.6) 

Female 15 2 0 1 18 (51.4) 

Age 

(years) 

Median 69.0 81.0 75.0 59.0 70.0 

Range 27-94 80-83 68-82 54-68 27–94 

Site  Upper Limb 6 1 2 2 11 (31.4) 

Lower Limb 20 2 1 1 24 (68.6) 

Size  

(mm)  

Median 84.0 72.0 80.0 61.0 81.0 

Range 35-150 58-100 50-100 55-65 35–150 

Grade Low Grade 3 1 0 2  7 (20) 

Intermediate 

Grade 

3 0 1 1  5 (14.3) 

High Grade 20 2 2 0  24 (68.7) 

Metastasis No Metastasis 19 3 2 3 24 (88.6) 

Metastasis 7 0 1 0 8 (11.4) 

Number (%), MFS (myxofibrosarcoma), MS (myofibroblastic sarcoma), MIFS (myxoinflammatory fibroblastic 

sarcoma), FS (fibromyxoid sarcoma). 
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3.2.2 Clinicopathological parameters of Non-metastasising Tumors 

There were eight non-metastasising myofibroblastic/fibroblastic tumours included in this 

study, four (50%) males and four (50%) females. The median age of patients was 41.8 years at 

diagnosis (range 24–65 years). These tumours had a median size of 50.6 mm (range 40-58mm), 

six tumours (75%) were in the lower limb and two (25%) were in the upper limb extremity.  

Table 3.3 summaries clinicopathological features for patients with non-metastasising tumours.  

Table 3.3 Clinical and pathological characteristics for patients with non-metastasising tumours 

  Myxoma 

(n=3) 

Fibromatosis 

(n=5) 

Total  

(n=8) 

Gender Male 3 1 4 (50) 

Female 0 4 4 (50) 

Age  

(years) 

Median 60.6 54.33 41.8 

Range 58-65 50-58 24-65 

Site  

(mm) 

Upper Limb 0 2 2 (25) 

Lower Limb 3 3 6 (75) 

Size  Median 30.6 3 50.6 

Range 24-38 40-56 40-58 

Number (%). 
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3.2.3 Comparison between myofibroblastic/fibroblastic sarcomas and their non-

metastasising counterparts  

Comparison of clinicopathological features between myofibroblastic/fibroblastic sarcomas  

and their non-metastasising counterparts are summarised in table 3-4.   

Table 3.4 Clinicopathological comparison between myofibroblastic/fibroblastic sarcomas and their 

non-metastasising counterparts 

  Total Myofibroblastic/ 

Fibroblastic 

Sarcomas 

Non-

metastasising 

tumours  

P-value 

 
  (n=35) (n=8) 

Gender          0.94 

  Male  21 17 4   

Female  22 18 4   

Age (years)          0.001* 

  Median   74.0 36.8   

Range   27-94 24-65   

Site          0.72 

  Upper Limb  13 11 2   

Lower Limb  30 24 6   

Size (mm)         0.002* 

  Median   80.0 50.0   

Range   25-150 40-58   

Number (%). Statistical analysis based on Fisher’s exact test for categorical variables, Mann-Whitney test for 

continuous variables, p < 0.05 indicates a significant association. 

Fisher’s exact test revealed that there was no statistical significance difference (p = 0.94) in 

gender between myofibroblastic /fibroblastic sarcomas (male = 17, female = 18) and non-

metastasising tumours (male = 4, female = 4). Furthermore, there was also no statistically 
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significant (p = 0.72) association between the tumour site and type of tumour soft tissue 

sarcoma tumours (upper limb =11, lower limb = 24) and non-metastasising tumours (upper 

limb = 2, lower limb = 6). 

However, a Mann-Whitney U test revealed a significant difference (U = 31.000, Z = -3.403, p 

= 0.001) in the age of sarcoma patients (median = 74, n = 35) and  patients with non-

metastasising tumours (median = 36, n = 8). The effect size (r value) is 0.5, and this would be 

considered a strong effect size according to Cohen’s criteria (212). Myofibroblastic/fibroblastic 

sarcoma had a higher median age of patients (median = 74) than non-metastasising tumours 

(median = 36).  Similarly, a Mann-Whitney U test revealed a statistical significant difference 

(U = 41.000, Z = -3.098, p = 0.001) in the size of sarcoma patients (median = 80, n = 35) and 

patients with non-metastasising tumours (median = 50, n=8). The r value is 0.4 and considered 

a medium effect size. Soft tissue sarcoma tumours had a higher median size (median = 80) than 

non-metastasising tumours (median = 50). Figure 3.2 illustrates comparison of patient age and 

tumour size between myofibroblastic/fibroblastic sarcomas and their non-metastasising 

counterparts. 
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Figure 3.2 Comparison of patient age and tumour size between myofibroblastic/fibroblastic sarcoma 

and their non-metastasising counterparts’ tumours. Sarcoma patients had a higher median age and a 

higher median tumour size than non-metastasising tumours (p<0.05).
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3.3 Overview of IHC staining of HSPs in neoplastic and non-neoplastic cells 

IHC staining of HSPs were demonstrated in non-neoplastic and neoplastic cells. The 

distribution and amount of stain in non-neoplastic cells are detailed in Table 3-5. The staining 

patterns of malignant cells are the subject of this section of the thesis.  In terms of analysis, the 

vast majority of cells present in tumour tissue were neoplastic cells, other cells present in low 

numbers were macrophages and endothelial cells.  

Immunoreactive staining of anti-HSP27 was detected mainly in the cytoplasm of tumour cells. 

However, IHC staining for anti-HSP27 was positive in non-neoplastic cells such as endothelial 

cells, inflammatory cells and fibroblasts. Furthermore, it was found that HSP27 was expressed 

in the extracellular matrix. Figure 3.3 shows an example of HSP27 staining in 

myxofibrosarcoma.  

IHC staining of anti-HSP70 was found in both the nucleus and cytoplasm of tumour cells. 

Although HSP70 staining is negative in most non-neoplastic cells, such as endothelial cells and 

inflammatory cells, it does show some trace staining in the extracellular matrix. Figure 3.4 

shows an example of IHC staining of anti-HSP70 in myxofibrosarcoma and demonstrates the 

pattern of staining in neoplastic and non-neoplastic cells. 

Similarly, IHC staining of HSP90 was detected in both nucleus and cytoplasm of tumour cells. 

However, endothelial and inflammatory cells were also positive for HSP90 staining. 

Nevertheless, it was almost negative in the extracellular matrix. Figure 3.5 shows an example 

of IHC staining of HSP90 in myxofibrosarcoma and demonstrates the pattern of staining in 

neoplastic and non-neoplastic cells. 
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Figure 3.3 Example of IHC staining of HSP27 in myxofibrosarcoma showing the pattern of staining 

in neoplastic and non-neoplastic cells. Different magnifications, x2, x4, x10 and x40. IHC staining 

of anti-HSP27 was detected mainly in the cytoplasm of tumour cells. However, IHC staining for anti-

HSP27 was also positive in non-neoplastic cells such as endothelial cells, inflammatory cells and 

fibroblasts. 
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Figure 3.4 Example of IHC staining of HSP70 in myxofibrosarcoma showing the pattern of staining in 

neoplastic and non-neoplastic cells. Different magnifications, x2, x4, x10 and x40. IHC staining of anti-

HSP70 was found in both the nucleus and cytoplasm of tumour cells. However, HSP70 staining is 

negative in most non-neoplastic cells, such as endothelial cells and inflammatory cells. 
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Figure 3.5 Example of IHC staining of HSP90 in myxofibrosarcoma showing the pattern of staining 

in neoplastic and non-neoplastic cells. Different magnifications, x2, x4, x10 and x40. IHC staining 

of HSP90 was detected in both nucleus and cytoplasm of tumour cells. However, endothelial and 

inflammatory cells were also positive for HSP90 staining 
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3.4 HSP27 expression  

3.4.1 Expression of HSP27 in different tumour types 

IHC staining of anti-HSP27 was positive in all tumour types included in this study. However, 

a Kruskal-Wallis Test revealed that there is no significant statistical difference in HSP27 

expression across the tumour subtypes (Chi-Square = 6.05, df = 5, P = 0.2). Table 3-6 

summarises staining of HSP27 in various type of tumours and figure 3.7 shows an example of 

the HSP27 staining in various type of the tumours.  

Table 3.5 Summary of HSP27 staining in different type of tumours 

  HSP27 Staining (%)* 

Median Range Mean SD 

Myxofibrosarcoma (n=26) 28.09 1.09-93.42 29.76 20.96 

Myofibroblastic sarcoma (n=3) 78.34 31.61-85.31 65.09 29.20 

Myxoinflammatory fibroblastic 

sarcoma (n=3) 

47.38 1.89-94.30 47.86 46.21 

Fibromyxoid sarcoma (n=3) 39.47 12.13-51.27 34.29 20.08 

Myxoma (n=3) 14.91 12.18-26.54 17.88 7.63 

Fibromatosis (n=5) 21.09 0.67-42.81 19.83 18.52 

*% of area of section stained using automated analysis 
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Figure 3.3 Examples of expression of HSP27 in different tumour types. Magnification scale: 300 µm. 

A) HSP27 expression in Myxofibrosarcoma. B) HSP27 expression in Myofibroblastic sarcoma. C) HSP27 

expression in MIFS. D) HSP27 expression in Fibromyxoid sarcoma. E) HSP27 expression in Myxoma. F)  

HSP27 expression in Fibromatosis.  

A B 

C D 

E F 
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3.4.2 Comparison of HSP27 expression between STS tumours and non-

metastasising tumours 

Overall expression of HSP27 in soft tissue sarcoma (median = 31.61, n = 35) was higher than 

in non-metastasising tumours (median = 18.00, n = 8). However, there is no statistically 

significantly difference in HSP27 expression between two groups using a Mann-Whitney U 

Test (Z = - 1.67, p = 0.9).  

 

Figure 3.4 Comparison of HSP27 staining between STS tumours and non-metastasising tumours. There 

was no statistically significantly difference between two groups 
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3.4.3 Relationship between HSP27 expression and the grade of STSs 

The relationship between HSP27 expression and grade of STSs was investigated using 

Spearman’s rank order correlation. Although, high levels of HSP27 were associated with a 

higher grade of soft tissue sarcoma, this was not statistically significant (rs = 0.29, p = 0.08). 

Figure 3.10 demonstrates an example of HSP27 expression in different grade of STSs. 

 

Figure 3.5 Relationship between HSP27 staining and the grade of STS. There was no statistically 

significant. 
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Figure 3.6 HSP27 expression in different grade of Myxofibrosarcoma.  

A) Low expression of HSP27 in low grade myxofibrosarcoma. B) Strong expression of HSP27 in high grade of 

myxofibrosarcoma. 

  

A 

B 
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3.4.4 Relationship between HSP27 expression and clinicopathological features 

Table 3-7 illustrates the relationship between the percentage of HSP27 expression and clinical 

features of soft tissue tumours included in this study. 

Table 3.6 Relationship between HSP27 expression and clinicopathological features of tumours 

  HSP27 staining (%) 
 

Median Minimum Maximum Mean Standard 

Deviation 

Male (n=21) 
 

31.61 1.09 94.30 30.41 21.25 

Female (n=22) 
 

24.79 .67 93.42 33.16 27.31 

Upper Limb (n=13) 
 

39.47 .67 93.42 35.86 25.61 

Lower Limb (n=30) 
 

26.56 1.09 94.30 30.07 23.93 

No Metastasis (n=4) 
 

29.09 .67 93.42 30.06 22.58 

Metastasis (n=39) 
 

44.82 11.78 94.30 48.93 36.98 

*% of area of section stained using automated analysis 

The relationship between HSP27 expression and the age of patients was investigated using 

Spearman’s rank order correlation. There was no statistically significant correlation between 

the two parameters (rs = 0.17, p = 0.2). Also, Spearman’s test showed that there was no 

statistically significant correlation between HSP27 expression and the size of a tumour (rs = - 

0.029, p = 0.8). 

A Mann-Whitney U Test revealed no significant difference (z = -.17, p = 0.8) in the HSP27 

expression of males (median = 31.61, n = 21) and females (median = 24.79, n = 22). Also, a 

Mann-Whitney U Test revealed no significant difference (z = -.95, p = 0.3) in the HSP27 

expression between upper limb tumours (median = 39.47, n = 13) and lower limb tumours 

(median = 26.56, n = 30).  

Although median percentage of HSP27 expression metastatic group was higher than the non-

metastatic group, a Mann-Whitney U Test revealed that there was no significant difference (z 
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= -.96, p = 0.4) in the HSP27 expression between non-metastatic patients (median = 29.09, n 

= 31) and metastatic patients (median = 44.82, n = 4). 

 

 

Figure 3.7 Relationship between HSP27 expression (% of staining area) and clinical features (patient 

age, size of tumour, gender, tumour site and metastasis). Not significant statistically.  
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3.5 HSP70 expression 

3.5.1 Expression of HSP70 in different tumour types 

Table 3-8 summarises staining of HSP70 in various type of tumours. A Kruskal-Wallis Test 

revealed that there was a significant statistical difference in HSP70 expression across six 

tumour subtypes included in this study (Chi-Square = 11.4, df = 5, p = 0.044). 

Myxofibrosarcoma tumours had a higher median HSP70 expression (median = 19.22) than the 

other groups. Pairwise comparisons were executed using Dunn’s procedure with a Bonferroni 

correction for multiple comparisons. Values were derived from mean ranks unless specified 

otherwise and adjusted p-values were reviewed. The post hoc analysis revealed a statistically 

significant difference (p= 0.006) between the myxofibrosarcoma group (median = 19.22) and 

myxoma group (median = 3.86). However, no significant difference was found between other 

types of tumours. 

Table 3.7 HSP70 expression in different tumour types 

 
HSP70 staining (%) 

Median Minimum Maximum Mean SD 

Myxofibrosarcoma (n=26) 19.22 .22 54.26 20.86 12.36 

Myofibroblastic sarcoma 

(n=3) 

11.90 10.26 21.56 14.57 6.11 

Myxoinflammatory 

fibroblastic sarcoma (n=3) 

12.30 11.57 32.42 18.76 11.83 

Fibromyxoid sarcoma 

(n=3) 

5.66 5.21 19.77 10.21 8.28 

Myxoma (n=3) 3.86 2.46 5.38 3.90 1.46 

Fibromatosis (n=5) 6.46 2.09 24.46 10.05 8.63 

*% of area of section stained using automated analysis 
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Figure 3.8 Examples of IHC staining of HSP70 in different type of tumours.  

A) HSP70 expression in myxofibrosarcoma, B) HSP70 expression in myofibroblastic sarcoma, C) HSP70 

expression in myxoinflammatory fibroblastic sarcoma, D) HSP70 expression in fibromyxoid sarcoma, E) 

HSP70 expression in myxoma, and F) HSP70 expression in fibromatosis. Magnification scale: 300 µm. 

A B 

C D 

E F 
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3.5.2 Relationship between HSP70 expression and grade of STSs 

The relationship between HSP70 expression and grade of STSs was investigated using 

Spearman’s rank order correlation. There was a medium, positive correlation between the two 

variables (rs = 0.33, p = 0.02), with high levels of HSP70 associated with a higher grade of soft 

tissue sarcoma (Figure 3.10). An example of HSP70 expression in a different grade is 

demonstrated in figure 3-11. 

 

 

Figure 3.9 Relationship between HSP70 staining and the grade of STS. There was a positive correlation 

between the two variables.  
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Figure 3.10 HSP70 expression in different grade of Myxofibrosarcoma.  

A) Low expression of HSP70 in low grade myxofibrosarcoma and B) strong expression of HSP70 in high grade 

of myxofibrosarcoma. 

A 

B 
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3.5.3 Comparison of HSP70 expression between STSs and non-metastasising 

tumours 

Soft tissue sarcoma tumours have a higher median expression of HSP70 (median = 16.50) than 

non-metastasising soft tissue tumours (median = 5.90). A Mann-Whitney U Test revealed that 

there was a statistical significant difference (U = 52.00, z = -2.746, p = 0.005) in the expression 

of HSP70 between STS tumours (median = 16.50, n = 35) and non-metastasising soft tissue 

tumours (median = 5.90, n = 8). The r value was 0.4, a medium effect size using Cohen’s 

criteria. Figure 3.12 illustrates the comparison of HSP70 expression between STSs and non-

metastasising tumours.  

 

Figure 3.11 Comparison of HSP70 staining between STS tumours and non-metastasising tumours. 

There was a statistically significant difference in HSP70 expression between two groups.  
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3.5.4 Relationship between HSP70 expression and clinicopathological features 

Table 3-9 illustrates the relationship between the percentage of HSP70 staining and 

clinicopathological features of soft tissue tumours included in this study. 

Table 3.8 Relationship between HSP70 expression and clinicopathological features of tumours 

  HSP70 staining (%) 

Median Minimum Maximum Mean Standard 

Deviation 

Male (n=21) 13.49 2.46 34.69 15.69 10.05 

Female (n=22) 16.69 .22 54.26 18.43 13.49 

Upper Limb (n=13) 14.08 5.21 54.26 18.68 13.20 

Lower Limb (n=30) 14.22 .22 39.34 16.40 11.42 

No Metastasis 

(n=39) 

14.31 .22 54.26 17.46 12.37 

Metastasis (n=4) 13.22 8.99 18.41 13.46 3.93 

*% of area of section stained using automated analysis 

The relationship between HSP70 expression and the age of patients was investigated using 

Spearman’s rank order correlation. There was no statistically significant correlation between 

the two parameters (rs = 0.13, p = 0.39). Furthermore, a Mann-Whitney U Test revealed no 

statistical significant difference (z = -.65, p = 0.51) in the HSP70 expression of males (median 

= 13.49, n = 21) and females (median = 16.69, n = 22). In addition, there was no statistical 

significant difference (z = -0.39, p = 0.7) in the HSP70 expression between upper limb tumours 

(median = 14.08, n = 13) and lower limb tumours (median = 14.22, n = 30).  

The relationship between HSP70 expression and the size of tumours was investigated using 

Spearman’s rank order correlation. There was no statistically significant correlation between 

the two variables (rs = 0.218, p = 0.16). 
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A Mann-Whitney U Test revealed no significant difference (z = -.37, p = 0.73, r =0.05) in the 

HSP70 expression between non-metastatic patients (median = 14.31, n = 39) and metastatic 

patients (median = 13.22, n = 4).  

 

Figure 3.12 Relationship between HSP70 expression (% of staining area) and clinical features (patient 

age, size of tumour, gender, tumour site and metastasis). Not significant statistically.  
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3.6 HSP90 Expression 

3.6.1 Expression of HSP90 in different tumour subtypes 

Table 3.10 summarises expression of HSP90 in various type of tumours. A Kruskal-Wallis 

Test revealed that there is no significant statistical difference in HSP90 expression across six 

tumour subtypes included in this study (Chi-Square = 2.85, df = 5, p = 0.72). An example of 

IHC staining of HSP90 in different type of tumours is demonstrated in figure 3.14. 

Table 3.9 Expression of HSP90 in different tumour subtypes 

  HSP90 staining (%) 

Median Minimum Maximum Mean Standard Deviation 

Myxofibrosarcoma 

(n=26) 

1.59 .12 51.57 6.33 11.37 

Myofibroblastic 

sarcoma (n=3) 

10.19 1.61 14.89 8.90 6.73 

Myxoinflammatory 

fibroblastic 

sarcoma (n=3) 

1.12 .58 10.96 4.22 5.84 

Fibromyxoid 

sarcoma (n=3) 

.18 .17 2.95 1.10 1.60 

Myxoma (n=3) 2.48 .11 9.24 3.94 4.74 

Fibromatosis (n=5) .38 .13 25.31 5.42 11.12 

*% of area of section stained using automated analysis 
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Figure 3.13 Examples of IHC staining of HSP90 in different type of tumours.  

A) HSP70 expression in myxofibrosarcoma, B) HSP90 expression in myofibroblastic sarcoma, C) HSP90 

expression in myxoinflmmatory fibroblastic sarcoma, D) HSP90 expression in fibromyxoid sarcoma, E) HSP90 

expression in myxoma, and F) HSP90 expression in fibromatosis. Magnification scale: 300 µm. 

A B 

C D 

E F 
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3.6.2 Relationship between HSP90 expression and grade of STSs 

The relationship between HSP90 expression and grade of STSs was investigated using 

Spearman’s rank order correlation, with no significant correlation between the two variables 

(rs = 0.14, p = 0.34). Figure 3.15 illustrates the relationship between HSP90 expression and the 

grade of STSs. 

 

 

Figure 3.14 Relationship between HSP90 staining and the grade of STS. There was no significant 

relationship.  
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3.6.3 Comparison of HSP90 expression between STSs and non-metastasising 

tumours 

A Mann-Whitney U Test revealed that there is no statistical significant difference (U = 118.00, 

z = -0.687, p = 0.51, r = 0.1) in the expression of HSP70 between STS tumours (median = 1.61, 

n = 35) and non-metastasising soft tissue tumours (median = 0.75, n = 8). Figure 3.16 illustrates 

the comparison of HSP90 expression between STSs and non-metastasising tumours.  

 

 

Figure 3.15 Comparison of HSP90 staining between STS tumours and non-metastasising tumours. 

There was no significant difference between two groups.  
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3.6.4 Relationship between HSP90 expression and clinicopathological features 

Table 3.11 illustrates the relationship between the percentage of HSP70 staining and 

clinicopathological features of soft tissue tumours included in this study. A Mann-Whitney U 

Test detected no significant difference (U = 179.00, z = -1.26, p = 0.2) in the HSP90 expression 

of males (median = 0.58, n = 21) compared to females (median = 2.36, n = 22). 

 

Table 3.10 Relationship between HSP90 expression and clinicopathological features 

  HSP90 staining (%) 

Median Minimum Maximum Mean Standard 

Deviation 

Male (n=21) .58 .11 51.57 5.40 11.69 

Female (n=22) 2.36 .12 25.82 6.04 7.93 

Upper Limb 

(n=13) 

1.12 .13 51.57 8.76 15.02 

Lower Limb 

(n=30) 

1.59 .11 25.82 4.41 6.38 

No Metastasis 

(n=39) 

1.12 .11 51.57 5.66 10.20 

Metastasis (n=4) 6.23 1.24 11.74 6.36 5.77 

*% of area of section stained using automated analysis 

Also, the relationship between HSP90 expression and the age of patients was investigated using 

Spearman’s rank order correlation, with no statistically significant correlation between the two 

parameters (rs = 0.06, p = 0.69). Similarly, there was no statistically significant correlation (rs 

= -0.18, p = 0.22) between HSP90 expression and the size of tumours. 

A Mann-Whitney U Test revealed no statistical significant difference (z = -0.71, p = 0.48) in 

the HSP90 expression between upper limb tumours (median = 1.12, n = 13) and lower limb 

tumours (median = 1.59, n=30). Likewise, there was no significant difference (U = 50.00, z = 
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-1.17, p = 0.26) in the HSP90 expression between the non-metastatic patient group (median = 

1.12, n = 39) and metastatic patient group (median = 6.23, n=4).  

 

 

Figure 3.16 Relationship between HSP90 expression (% of staining area) and clinicopathological 

features (patient age, size of tumour, gender, tumour site and metastasis). Not significant statistically.  
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3.7 Correlations between the expression of heat shock proteins 

The relationship between HSP27 expression and HSP70 expression was investigated using 

Spearman’s rank order correlation. There was a medium, positive correlation between the two 

variables (rs = 0.43, p = 0.004), with high levels of HSP27 associated with higher levels of 

HSP70. On the other hand, there was no significant correlation between HSP27 expression and 

HSP90 expression (rs = 0.69, p = 0.65), or between HSP70 expression and HSP90 expression 

(rs = 0.16, p = 0.3). Figure 3.18 shows the correlations between the expression of the heat shock 

proteins. 

  

Figure 3.17 Correlations between the expression of the heat shock proteins. There was only a positive 

correlation between HSP27 expression and HSP70 expression.  
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3.8 Survival analysis 

Overall survival in the 35 cases of soft tissue sarcomas ranged from 2 to 120 months. Patients 

were classified as alive (n = 24), dead (n = 8), or lost to follow-up (n = 3). The Kaplan-Meier 

method (the log-rank test) was used for analysis of survival, revealing no significant association 

between survival and HSP27, HSP70, or HSP90 expressions. However, there was only a 

significant relationship between metastasis and survival (p = 0.001). Analysis of all 

clinicopathological variables for overall survival in STS patients is illustrated in table 3.12. 

Table 3.11 Analysis of all clinicopathological variables for overall survival in STS patients 

Variable P value 

Gender 0.42 

Age 0.76 

Site 0.66 

Size 0.07 

Grade 0.19 

Metastasis 0.001* 

HSP27 0.13 

HSP70 0.48 

HSP90 0.58 

Kaplan-Meier method using log-rank test for statistical significance; p < 0.05. 
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Chapter Four 

Discussion 
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4 Discussion 

Soft tissue sarcomas are a rare and a heterogeneous group of malignancies that originate from 

mesenchymal tissue. Their rarity, coupled with their variety, is challenging for investigators to 

understand their natural history, prognosis and management. Soft tissue sarcoma tumours are 

well known for their aggressiveness and resistance to anticancer therapy. 

The heat shock proteins (HSP) constitute a superfamily of chaperone proteins present in all 

cells and in all cell compartments, operating in a complex interplay with a 

synergistic/overlapping multiplicity of functions, even though the common effect is cell 

protection and cell survival. Several reasons explain the need for investigating HSPs in STSs: 

(1) these molecules function as chaperones of tumorigenesis, (2) they are associated with 

disease aggressiveness and with resistance to anticancer therapies including radiotherapy and 

chemotherapy, and (3) they can be used as targets for therapies. 

However, only limited work has been conducted on the role of HSPs in connective tissue 

tumours, so much of the current knowledge about HSPs relates to carcinomas rather than 

sarcomas. The work presented in this thesis is based on the hypothesis that similar mechanisms 

of HSPs may be involved in tumorigenesis and aggressiveness in sarcomas as in carcinomas. 

Hence, the present study was performed to clarify the expression of those HSPs in soft tissue 

sarcomas. This work focused on the expression of HSP27, HSP70 and HSP90 in 

myofibroblastic/fibroblastic sarcoma (STS) of extremities, with a final goal to provide further 

insight on the biological behaviours of STS by focusing on the correlations between the 

expression of each protein and clinicopathological parameters. To the best of our knowledge, 

this is the first study to investigate the three selected HSPs (HSP27, HSP70 and HSP90) in 

adult myofibroblastic/fibroblastic sarcomas of extremities. 



 
118 

Due to the rarity of sarcomas, the present study focused on archived tissue to obtain sufficient 

material for the study. The material was formalin-fixed and paraffin embedded, and there was 

limited clinical and pathological data available. These constraints limited the techniques that 

could be employed to examine the expression of the chosen biomarkers, to 

immunohistochemistry (IHC) and in situ hybridization. Immunohistochemistry was chosen 

because by studying the expression of protein, one of the unknowns in investigating HSPs, 

translation of mRNA into protein, was eliminated.  

Although the majority of results were not clear cut, a number of significant findings did emerge 

from the present study. In view of the fact that there is a lack of similar data on STS, it was 

considered appropriate for a discussion of the study findings and comparison of the results to 

other types of tumours in the literature. 

4.1 Discussion of the study findings and those described in the literature 

Surrogates were used to assess the importance of HSP expression and regulation to tumour 

behaviour in the absence of any specific markers.  Of particular interest, was the relationship 

of expression of HSPs to histological grading, which is the best indicator of the aggressiveness 

of those tumours to date. In addition, tumours of different levels of malignancy (from benign 

to highly aggressive) were compared to identify patterns of biomarker expression that most 

clearly related to tumorigenesis. A total of 43 tumours were available for this study as archival 

formalin-fixed, paraffin-embedded tissue blocks.  

4.1.1 Clinicopathological Parameters  

With regard to clinicopathological features of sarcoma tumours and non-metastasising 

tumours, this study showed that patient age and size of tumour were statistically significantly 
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different between these two groups (p = 0001), as malignant tumours occurred in older patients 

and had a larger size than non-metastasising tumours. Overall, the incidence of soft-tissue 

sarcomas increases significantly with age, with more than 65% of cases occurring in patients 

aged 50 and over (5). Furthermore, there was a significant correlation between the size of tumour 

and grade of soft tissue sarcoma; a large tumour size associated with a higher grade of soft tissue 

sarcoma (p = 0.04). Similarly, a study by Stojadinovic et al. showed that a large tumour size was 

consistently associated with a higher grade and a poor prognosis of STS (39). 

4.1.2 Expression of HSP27  

In this study, the staining of HSP27 was positive in all types of soft tissue tumours. Although 

HSP27 was more highly expressed in sarcoma tumours, particularly myofibroblastic sarcoma 

and MIFS compared to non-metastasising tumours, there was no significant statistical 

difference in expression between the non-metastasising and sarcoma tumours. Similarly, there 

was a trend for high HSP27 expression in high-grade STSs and metastatic group; however, this 

was not statistically significant. Furthermore, there were no statistically significant differences 

in relation to age, gender, tumour size, tumour site and survival outcome.  

In the oncology field, many studies have found that HSP27 was overexpressed in a wide range 

of malignant cells and tissue compared to normal tissue. For example, Wataba et al. in an IHC 

study found that HSP27 was overexpressed in hyperplastic endometrium and carcinoma 

compared to normal endometrium tissue (213). Also, in a study of biopsy samples from prostate 

cancer patients, expression of intracellular HSP27 expression in prostate cancer tissue was up-

regulated compared to the controls (214). Rui et al. also demonstrated that HSP27 levels in 

serum were significantly higher in breast cancer patients compared to healthy controls (215). 

Similarly, Grzegrzolka et al. found that HSP27 expression was significantly higher in 101 



 
120 

patients with invasive ductal breast carcinoma compared to 20 patients with benign fibrocystic 

lesions (209).  

Many studies have investigated the correlation of HSP27 expression with grade and poor 

survival in many cancer tissues. For instance, King et al. examined expression of HSP27 in 58 

patients with hepatocellular cancer and adjacent non-cancerous liver tissue by IHC, finding a 

significantly higher distribution of HSP-27 expression in HCC tissues compared with adjacent 

non-cancerous liver tissues and that HSP-27 expression was positively correlated with a 

histologic tumour grade and poor survival rate (216). HSP27 expression was also strongly 

correlated with poor survival in patients with rectal tumours (217). Assimakopoulou et al. 

reported that HSP27 expression was correlated with histological grades of astrocytoma (218). 

Similarly, Moon et al. found that significantly high levels of HSP27 expression in conventional 

osteosarcoma compared to low-grade osteosarcoma and it was significantly related to distant 

metastasis with a tendency toward poor survival (219). Recently, Shuangjiang et al. found in 

their meta-analysis that high HSP27 expression can be an effective biomarker for predicting 

poor clinicopathological parameters of non-small cell lung cancer, including the degree of 

differentiation, lymphatic metastasis, TNM stage, histological subtypes and tumour size (220). 

In contrast, HSP27 expression has been associated with good prognosis in endometrial 

adenocarcinomas, oesophageal cancer, and in malignant fibrous histiocytomas. Muzio et al. 

analysed 79 cases of oral squamous cell carcinoma and 10 cases of normal mucosa for HSP27 

expression by IHC. They found that patients with reduced HSP27 expression had more 

aggressive (higher grade and poorly differentiated) carcinoma, with a poor survival rate (221). 

In malignant fibrous histiocytoma, Tetu et al. (1992) evaluated by IHC the prognostic influence 

of the expression of HSP27 in 43 malignant fibrous histiocytomas, finding that HSP-27 
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expression was associated with a more favourable prognosis, and a significant correlation was 

observed with overall survival and metastasis-free survival (222). 

Taken together, these results suggest that HSP27 plays a role in tumorigenesis and is a marker 

of aggressiveness of STSs, but not useful in diagnostic immunopathology. However, further 

experimentation is needed to investigate the biological functions of HSP27 proteins, that is, 

potential pleiotropic function in soft tissue sarcoma.  

4.1.3 Expression of HSP70  

In broad terms, this study showed that HSP70 expression was higher in 

myofibroblastic/fibroblastic sarcomas than the non-metastasising counterpart. Unlike HSP27, 

there was a significant statistical difference in the expression of HSP70 between sarcomas and 

non-metastasising tumours (p < 0.05). Similar to HSP27, there was a positive correlation 

between expression of HSP70 and the grade of STSs, with high levels of HSP70 associated 

with a higher grade of STSs. However, there was no significant relationship between HSP70 

expression and patient age, gender, tumour location, tumour size, metastasis and survival. 

There is extensive evidence in the literature that HSP70 is overexpressed in many cancers, and 

that high expression of this chaperone correlates with increased tumour grade and poor 

prognosis. A comparative pilot study of protein profiles of human hepatocellular carcinoma 

and non-tumour human liver samples showed that HSP70 is over expressed (2 fold) in the 

tumour cells compared to the non-tumor tissue (223). Isomoto et al. demonstrated that there is 

a significant correlation between HSP70 and HSP40 expression and histopathological typing 

of gastric cancer and concluded that these HSPs are less frequently expressed in 

undifferentiated carcinomas than in differentiated types (194). In colon cancer, Bauer et al. 

studied 355 primary resected colon carcinoma by IHC and found that high HSP70 expression 
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is associated with tumour grade, distant metastasis and poor clinical outcome in colon cancer 

(210). In bladder cancer, Syrigos et al. found that HSP70 overexpression correlated positively 

with the grade and stage of bladder carcinoma. Also, HSP-70 expression correlated closely 

with a poor outcome of 58 patients with bladder carcinoma. Furthermore, HSP70 

overexpression correlated with increased cell proliferation rate and malignancy (224). Alexious 

et al. reported a significant positive correlation between proliferation rate index and aggressive 

subtype of medulloblastomas (225).  

In contrast, there are some tumour types where a lower expression of HSP70 is observed 

compared with adjusted normal tissue and there is no correlation between HSP70 levels and 

survival. For example, in patients with renal cancer, Santarosa et al. (1997) reported that 

HSP70-1 upregulation was associated with a better prognosis, irrespective of stage and 

histological grade (226). Similarly, Ramp et al. (2007) showed that HSP70 expression was 

decreased from well (G1) to poorly differentiated renal cell carcinoma (227). In oesophageal 

squamous cell carcinoma, Nakajima et al. found that HSP70 expression is frequently reduced 

in 102 patients with oesophageal squamous cell carcinoma and reduction of HSP 70 expression 

was significantly correlated with poor prognosis (228). In chondrosarcoma, Trieb et al. 

investigated IHC expression of HSP72 in 37 chondrosarcoma sections and 10 chondroma 

sections, finding a decreased HSP72 expression in chondrosarcoma correlating with low 

differentiation (229).  

4.1.4 Expression of HSP90 

HSP90 expression was rather different to that of HSP27 and HSP70; there is less expression 

of HSP90 across all type of tumours. Furthermore, there was no relationship between HSP90 

expression and clinicopathological parameters and survival. 
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Our results are in agreement with previous studies suggesting a decreased expression of HSP90 

in some types of tumours. Wang et al. (2014) investigated HSP90 expression in 32 cases of 

myxofibrosarcoma and 29 myxoid liposarcomas (MLS) by IHC. Only 4 cases of 

myxofibrosarcoma showed scattered HSP90 positivity, while all cases of MLS showed positive 

staining for HSP90. No correlation was found between expression of HSP90 and tumour size 

or grade (230). Nabu et al. (1998) reported that high expression of HSP90 was significantly 

correlated with lower tumour grade and a favourable prognosis in 44 endometrial carcinoma 

patients (231). Zagouri et al. (2010) reported that there was a statistically significant decrease 

in HSP90 expression in infiltrative lobular carcinomas of the breast of 32 patients compared to 

the adjacent normal breast ducts and lobules tissue (232). 

On the other hand, there is a large body of evidence supporting that HSP 90 is over-expressed 

in many cancers and is associated with high grade and poor survival. HSP90 has been found 

elevated in medulloblastoma, and there was a significant positive correlation between the 

expression of HSP90 and poor survival (225). In breast cancer, significant increased expression 

of HSP90 has been found in ductal carcinomas and associated with the higher malignant 

phenotype and poor survival (232, 233). Furthermore, Lim et al. reported that HSP90 

expression showed a strong association with poor prognostic factors of hepatocellular 

carcinoma, vascular invasion and metastasis (234). Similar findings were observed in bladder 

cancer, where the HSP90 level was correlated with a high-grade tumour (235). 

In this study, HSP90 was expressed in very low levels across all types of soft tissue tumours 

and there was no association between its expression, prognosis and other clinical variables, 

which may indicate that HSP90 may only play a minor role in soft tissue tumours. 
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4.2 Data relating to sarcoma tumour behaviour 

In this study, attempts have been made to correlate the expression of different biomarkers with 

clinical outcome in soft tissue sarcomas. To date, most of the prognostic aspects of the 

behaviour of a particular patient’s tumour are related back to the likelihood data derived from 

pooling information from groups of tumours, and there is nothing that can be used to predict 

the behaviour of a patient-specific tumour. However, it is the biological behaviour of neoplastic 

cells within tumours that are responsible for the resultant clinical outcomes. 

STS are a rare heterogeneous group of uncommon malignancies of mesenchymal origin, and 

new improved prognostic biomarkers are required to identify patients at high-risk for 

metastasis. Several known prognostic factors influence survival and outcome in sarcomas, such 

as location, age of the patient, surgical margins, tumour size, tumour subtypes, tumour grade 

genetic factors, unplanned excision and metastasis. However, the relevant prognostic value of 

each of these factors continues to be highly controversial (236). 

The most important property influencing the clinical outcome of malignant tumours is their 

ability to invade and metastasise. Metastasis represents a significant clinical adverse predictor, 

since curative treatment is not usually achievable as conventional chemotherapy is limited in 

its effectiveness, with around 30% of all patients showing no improvement in their survival 

rates following treatment (237). Significantly, some tumours with the same lineage, 

histological diagnosis and grade do respond to chemotherapy, whilst other, apparently 

identical, tumours do not. Why this should be is unknown, but clearly demonstrates that the 

underlying susceptibility has therapeutic and prognostic implications. 

Tumour grade is the most predictive time-honoured factor of distant metastatic disease and 

most likely to influence a decision to initiate treatment with adjuvant therapy. Hence, the 
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grading process is important in its ability to indicate clinical behaviour and the type of 

therapeutic intervention (2). Histological grading of STS consists of a low, intermediate and 

high grade. The higher the grade, the stronger the correlation with the occurrence of metastases 

and shorter patient survival. An earlier study found that the metastatic potential of low-grade 

sarcomas is 5–10%, of intermediate-grade 25–30%, and of high-grade is approximately 50–

60% (32). Nonetheless, it is the impact of histological type which represents the principal 

confounding factor in grading, such that for some sarcomas, grade is less important than 

subtype in defining a behaviour such as synovial sarcoma (15). For others, the usual grading 

criteria are not applicable, for example, clear cell sarcoma tumour, which shows aggressive 

behaviour no matter what its histological appearance (2). The influence of tumour subtype has 

been considered an important factor that confounds grading systems in sarcomas. However, this 

may be related to other prognostic factors such as grade, in that some tumours such as synovial 

sarcoma are always high grade and others like well differentiated liposarcomas are invariably low 

grade (15). 

Another prognostic factor that has been found to influence survival and metastasis in STS is 

age. In this respect, two studies have reported a better outcome for patients younger than 40 

years compared to those older than 40 years at diagnosis (238, 239). Furthermore, tumour size 

is related to metastasis and survival in sarcomas; the smaller the tumour, the more likely it is 

to result in a universally good outcome. Geer et al. (1992) (240) provided support for the theory 

that in tumours of the extremities, small tumour size (< 5cm) carries a universally good 

prognosis, irrespective of grade, depth or location, and have found that surgical excision alone 

is usually sufficient to treat these tumours (240). Conversely, another study by Stojadinovic et 

al. (2002) shows that a large tumour size (> 10cm) has been consistently associated with a poor 

prognosis due to a high rate of metastatic recurrence (39). 
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It is widely held that by understanding the biology of cancer cells, it might be possible to 

individualise therapy and to produce much clearer and biologically more pertinent markers of 

tumour behaviour and potential response to specific treatments (154). In the current study, 

attempts have been initiated to identify such criteria in this poorly understood group of tumours 

by investigating potential interesting molecular biomarkers that have shown to have a pivotal 

role in tumorigenesis and aggressiveness in many types of cancer cell.  

As in all early studies of cancer biology and its relationship to cell and tumour behaviour, little 

is known about the role of HSPs in soft tissue sarcomas. In a proteomic study, Suehara et al. 

demonstrated that the expression of HSP27 was associated with histological grading and 

patient survival in Leiomyosarcoma (196). Furthermore, Bekki et al. published recently that 

HSP90 is highly expressed in undifferentiated pleomorphic sarcoma (UPS) and is considered 

as a poor prognostic factor (197). Data of relevance to understanding how biomarker 

expression should be analysed, that is, the need to take into account expression of what at first 

might appear to be key biomarkers in benign tumours, have also been identified.  

In this study, HSP expression was not significantly correlated with survival or metastatic 

disease, which might be due to the size of our sample or the follow-up interval. However, our 

data showed that high expression of HSP was associated with a clinical indicator of poor 

prognosis, the largest tumour diameter and the highest grade. This is the most significant 

clinical prognostic indicator for high risk of metastasis in STS (2). The biomarkers also showed 

differences in expression across the range of tumours. In general terms, some biomarker 

expression varied across the benign/malignant divide and others varied with the grade. In this 

discussion, variation across the benign/malignant divide is seen as evidence of an association 

with “malignant behaviour” (i.e. in some way the expression of the gene relates to the cellular 

changes associated with the development of a malignant phenotype). The expression of some 
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biomarkers not only varied across the benign/malignant divide, but also with the grade of the 

tumour. As increasing grade is, in general terms, associated with a poor outlook, these 

biomarkers are described as being associated with aggressiveness as well as the development 

of a malignant phenotype.  

In these analyses, the distinctions made must be seen within the context of tumour group size 

and data spread, and as such, cannot be taken as definitive but rather, in a study such as this, 

one of the first of its type in the field, as providing insight into the behaviour of sarcoma cells 

and whole tumours. The precise significance of these data is difficult to assess. Creating ratios 

of two sets of numbers generated as these have been, is open to criticism but they nevertheless, 

do stress potential and actual differences between different tumour types.  

4.3 Discussion on variation in expression of HSPs in tumours 

The reason for the discrepancy in the expression of different HSPs in various tumours in the 

literature is not very clear. The differences might be explained by heterogeneity of the tumour, 

differences in the stage of the disease, treatment modalities, immunohistochemical methods, 

case selection, and possible differences in embedding and processing techniques. However, the 

heterogeneity of expression of HSPs raises the question of what factor(s) might influence the 

differential expression of HSPs in different type and grade of the tumour. Indeed, could the 

higher expression of HSPs be related to tumour necrosis, proliferation or the presence of a 

specific type of molecule. In particular, it raises the question “if we could establish the 

signalling mechanism for HSPs production, could this be a therapeutic target”.  

HSP genes are activated at the transcriptional level by HSF1 and the capability of cells to react 

to stress by rising their HSP levels depends on the action of binding to the promoter regions of 

all HSP genes to activate their immediate and massive transcription (148, 186, 241). However, 
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the pathways of induction of HSPs in cancer are still under intense investigation, and no clear 

consensus has yet emerged. Such mechanisms may include transcription and translation of 

HSPs due to coupling of HSF1 expression to malignant cell signal transduction.  

Furthermore, research on gene expression in neoplasm has noted that the coupling between 

transcription and translation is often interrupted. A study of HSP gene expression in prostate 

carcinoma showed that HSP mRNA expression and protein expression altered considerably 

and that the levels of some HSPs were increased, while HSP mRNA levels were not notably 

changed (242). However, a popular rationale for HSP increases in cancer is the “addiction to 

chaperones” hypothesis. According to this hypothesis, HSP increases are fed in cancer through 

the proliferation of mutated proteins due to the “mutator phenotype” correlated with cancer, to 

increases in total levels of mRNA translation that accompany transformation and raised protein 

expression due to the polyploidy of many cancerous cells (243, 244). Therefore, addiction is 

caused by the demand for HSPs to chaperone the raised protein load that accompanies 

transformation and the instability of many mutant proteins. As elevated protein expression and 

gene mutation are thought to be key drivers of tumour progression, an increased supply of 

molecular chaperones is needed to sustain the addiction. This is an attractive hypothesis as it 

links the findings in oncology with what is speculated to be the driving reason for HSP 

induction during stress. Though this mechanism is difficult to test, there is significant indirect 

evidence to suggest its merit, coming from studies of HSP inhibitors in cancer and there is 

considerable evidence gained by examining inhibitors of HSP90 in vitro studies. For example, 

animal experiments and clinical trials have suggested that inhibiting HSP90 using small 

molecule inhibitors causes the depletion of a broad spectrum of oncogenes (presumably due to 

unfolding and proteolysis) and inhibition of tumour growth(183).  
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Finally, confronted with such complex systems of production, activation and regulation, the 

prospect of unravelling the involvement of HSPs in sarcoma behaviour and the outcome is 

daunting. A criticism of this study might be that it is not all inclusive, but faced with this level 

of complexity and a general paucity of previous literature about HSP expression in sarcomas, 

the approach adopted here has been to extrapolate from what is known, working within the 

limits of the available material. 

4.4 Limitations of this study 

This is a study based on the use of immunohistochemical identification of biomarker 

expression in archived formalin-fixed, wax-embedded tissue, resulting in several limitations. 

First, the sample size was small due to the difficulty in finding more samples to assess more 

types of sarcoma and the rarity of tumours arising from soft tissues. Furthermore, this study 

relied on only one block from each tumour, which was taken for research only. Therefore, the 

concern was always related to the constraints of using archived tissue biopsy. In addition, the 

current study was limited by the relatively small sample size of some subgroups, which may 

not have been sufficient to overcome the influences of the histological heterogeneity, thus 

limiting the conclusive power of the study. 

Due to the rarity of sarcomas, the present study focused on archived tissue to obtain sufficient 

material for the study. This material was formalin-fixed and paraffin embedded, with limited 

clinical and pathological data available. These constraints limited the techniques that could be 

employed to examine the expression of the chosen biomarkers to IHC and in situ hybridisation. 

IHC was chosen because by studying the expression of protein, one of the unknowns in 

investigating HSPs, translation of mRNA into protein, was eliminated.  
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Another concern is the limitations of IHC. IHC is a well-established, broadly accepted 

technique in both clinical and experimental medical research. However, IHC also has many 

limitations because it is a multi-step procedure and each step is vital. According to current IHC 

concepts, the challenges can be divided into three main variables, pre-analytical, analytical and 

post-analytical variables. Pre-analytical variables of IHC include any steps in obtaining the 

tissue sample, tissue processing, tissue fixation, and elements of tissue handling. Analytical 

variables include slide thickness, selection of antibody clones and their titration, determining 

the detection systems and antigen retrieval procedure. Finally, post-analytical variables of IHC 

include interpretation and reporting of the results. Despite all current recommendations, post-

analytical variables are the most frivolous part of many studies using IHC. Hence, the most 

important step of IHC is the final scoring system. Although there is no gold standard for HSP 

expression scoring system, both automated analytic systems and semi-quantitative scoring 

systems were used in this study to reduce the subjectivity of values scores and increase 

repeatability of scoring systems. However, our automated analytic method (ImageJ) did not 

consider cellularity of tumours which might lead to some calculation bias. Moreover, it is 

expensive and time-consuming, and for these reasons, it was not possible to test for more HSPs 

and, therefore, conduct more comprehensive research into HSPs in STS tumours.  

Another limitation is relating key molecules to one another. In the context of this study, HSPs 

are complexly activated and inhibited, so translating from IHC-expression into enzyme activity 

is impossible. However, there are real constraints on examining the activity of proteins in a 

very small area of tissue and IHC is the best way to address research questions that might then 

lead to the design of different and more appropriate experiments. The constraints of examining 

for HSP activity are related to production (whether all the proteins present in the cytoplasm are 

excreted), activation (some HSPs use other proteins, including HSPs to activate themselves) 



 
131 

and inhibition, hence, experiments were conducted to compare expression of the various 

molecules.  

A final limitation of this study is inadequate access to patient data and absence of 

comprehensive follow-up information. Without such data, survival analyses are not possible. 

In cancer studies with an extended follow-up, there are data on early and late recurrences as 

well as metastases. This study has not “closed the loop” in respect of the issue of assessing 

whether HSP expression might assist in patient management prospectively. As such, it would 

be of great importance to conduct follow-up studies to determine whether, for instance, levels 

of HSP expression can help to assign patients to different treatment strategies or to identify 

prognostic factors that may lead to the identification of novel targets for therapy.  

The limitations addressed above bring into focus the urgent need to improve the existing 

understanding of active biological processes and underlying mechanisms of disease 

progression in sarcoma. Possible ways forward are discussed under the further work in section 

5.2. 
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5 Conclusion & Future Work 

5.1 General Conclusions 

Soft tissue sarcomas have generally been studied less extensively than carcinomas, so the 

advances in biological understanding that have led to improved diagnosis and treatment of 

carcinomas have yet to be translated into soft tissue sarcoma. Although rare, they represent an 

important group of cancers, of which the biology is relatively unknown and therefore, they 

require further investigation. However, because of their rarity, obtaining these tumours to study 

is difficult and, hence, any work that can be done on archived tissue could be very important.  

This thesis examined the expression of HSP27, HSP70 and HSP90 in adult 

myofibroblastic/fibroblastic tumours of extremities using immunohistochemistry. The study 

showed differences in expression related to markers of behaviour and aggressiveness in these 

tumours that might form the basis of more focused investigations in the future.  

In conclusion, there was a statistically significant difference in HSP70 expression between 

myofibroblastic/fibroblastic sarcoma and non-metastasising tumours; HSP70 expression was 

higher in sarcoma than non-metastasising counterparts. Also, HSP70 was positively correlated 

with the grade of STSs, with elevated levels of HSP70 associated with a higher grade of STSs. 

Although HSP27 expression was higher in malignant than benign tumours, there was no 

statistically significant. Also, there was no significant positive correlation between HSP27 

expression and clinicopathological features of STSs. On the other hand, HSP90 expression is 

relatively low in all myofibroblastic/fibroblastic tumours compared to other studied HSPs. 

There was no statistically significant difference in HSP90 expression between sarcoma and 

non-metastasising tumours. Also, there was no correlation between HSP90 expression and 
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clinicopathological features of STSs. Finally, there was no significant relationship found 

between staining of any of the studied biomarkers and the age and sex of the patients.  

The findings of this study indicate that HSP70 and, to a lesser extent, HSP27 might have a role 

in sarcoma behaviour (as defined by the surrogates of tumour type and grade) and may provide 

prognostic information for clinicians in the future. Further studies evaluating HSPs in 

sarcomas, within the newly described model, may provide a new avenue of treatment for 

sarcoma patients.  

5.2 Future Work 

HSPs are well-established as having a complex and key role in tumour growth, invasion, 

metastasis, and tumour progression. The findings presented in this thesis have raised several 

questions in areas that would provide interesting topics for future investigations. The key 

purpose of further study should explain the invasion and haematogenous spread of sarcomas 

in order to understand why some patients survive and others die. The results of this study have 

raised many issues that could guide further work. Some issues reflect the limitations of the 

study and the material available. The main suggestions for future work consequent upon these 

are:  

➢ More sarcomas and their benign counterparts need to be tested. This study has shown 

that not all benign tumours express biomarkers in the same way and some behave in 

unexpected ways that affect how expression in malignant tumours should be 

interpreted.  

➢ Even though IHC is one of the best methods for examining protein expression in the 

core tissue of sarcomas, other technologies may need to be applied to the problem of 

mechanisms of invasion. The key to this would be taking the findings from this in vivo 

study and testing them in cell-based in vitro systems.  

➢ More comparisons will need to be made between gene expression and outcome (e.g. 

not just survival but perhaps also a response to drugs etc.).  
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➢ The key to overcoming some of these problems is the development of a dedicated soft 

tissue tumour bank, probably at the national level, of fresh and processed tissue and 

other samples (e.g. blood) from patients with these rare tumours to allow studies of 

sufficient size to be undertaken with statistical validity.  

Some areas of further study directly relate to the findings, some require expansion, some further 

investigation and others putting into the context of an increasing knowledge base, the most 

urgent being functional studies to establish the role of HSPs in the STS. The key message of 

this thesis, as derived from the data presented, is that the HSPs are expressed in human STS of 

extremities in both benign and malignant tumours, but their function, particularly the roles of 

HSPs, is not completely understood. Therefore, functional studies are required to establish the 

role of the HSPs in the STS. This raises many questions such as, does blocking the expression 

of HSPs increase or decrease the activation of some HSPs and other enzymes, including HSPs 

to activate themselves? or does increasing the expression of HSPs increase or decrease tumour 

progression? Moreover, further investigation into the regulation of HSPs in human soft tissue 

sarcoma of extremities is required; there is much more to learn about how HSPs are regulated 

in STS. The effects of HSP expression in human STS and the role of HSF as inducer facilitators 

of HSPs activity have not been examined in detail, therefore, investigating the effect of 

different HSPs and HSF expression in human STS of extremities will further the understanding 

of how the HSPs and HSFs are regulated in STS. 

These questions could be answered by investigations using more advanced methodologies than 

those possible in this study, such as the development of “knock-down” models of tumour cells 

for individual HSPs in a sequence-specific manner and thus, enable the function of each HSP 

to be investigated. Finally, the process of carcinogenesis involves a complex array of genetic 

and epigenetic alterations, which contribute to cancer pathogenesis (245), eventually resulting 

in a unique malignant tissue. This may alter the HSP context and behaviour dramatically, 
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therefore, it is important to determine whether changes in the expression of the HSPs at 

genomic or proteomic levels is of importance to cancer prevention, diagnosis, prognosis and 

treatment. 
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Appendix A: LBIH Biobank Patient Consent Form 
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Appendix B: Basic steps of an immunohistochemistry protocol 

 

fixation/processing/embedding 

↓ 

section cutting/microtomy 

↓ 

dewaxing sections and taking to water 

↓ 

antigen retrieval 

↓ 

peroxidase block 

↓ 

primary antibody 

↓ 

secondary antibody 

↓ 

tertiary layer 

↓ 

chromogen 

↓ 

counterstain 

↓ 

dehydrate, clear and mount sections 
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Appendix C: Immunohistochemistry Protocol - Using PT-Linker & 

DAKO Autostainer 

This protocol is adapted from Liverpool Ocular Oncology Research Group (LOORG) 

1. Turn on PT-Link and press “Run” to begin heating to 65°C (approx 20 minutes).  

2. Label slides with antibody, dilution and date, using a pencil. 

3. When 65°C is reached, place slides in staining rack. The PT Link will heat to 96°C, hold for 20 

minutes, and return to 65°C (approx 1 hour 10 minutes) 

4. Wash with Envision Flex-Wash buffer and place on DAKO. 

5. Add 100µl Envision-Flex block and incubate at room temperature (RT) for 5 minutes. 

6. Bring reagents required for staining run to room temperature and then programmed all required 

agents. 

7. Then, load the reagent vials according to the Reagent Layout Map, ensuring that enough reagent 

is in the vials to complete the programmed run. 

8. Dilute primary antibody to appropriate concentration using antibody diluent (Envision-Flex). 

Add 100µl primary antibody, cover and incubate at room temperature for 30 minutes. 

9. Add 100µl of appropriate linker (i.e. mouse for mouse primary antibody) and incubate at room 

temperature for 15 minutes. 

10. Add 100µl of HRP and incubate at room temperature for 20 minutes. 

11. Make up DAB (make fresh each time, using empty autostainer vial), 1 drop of DAB per 1ml of 

DAB substrate buffer. Add 100µl DAB solution to each slide then incubate at room temperature 

for 20 minutes. Place any waste DAB in the hazardous waste container attached to the 

autostainer then rinse tube well with a small volume of Milton. 

12. Dip in distilled water. 

13. Transfer slides to horse-shaped rack. 30 seconds - 1 minute in haematoxylin. This time will 

vary depending on your haematoxylin batch! 

14. Place rack into a bath of running tap water until the water runs clear. 

15. Dip in and immediately remove rack from the acid alcohol. 

16. Place rack back into the bath of running tap water until the slides are no longer pink. 

17. Dip in Scott’s tap water/ammonia water for 30 seconds. 

18. Place rack back into the bath of running tap water for 1 minute. 

19. Dehydrate through the ethanol series in the fume hood. This includes 5x IMS (Industrial 

Methylated Spirits) and 2x xylene. Agitate for 10 seconds at each stage, vigorously. 

20. Add one drop of mountant (Aquatex™) to a coverslip and apply to slide removing all air 

bubbles. 
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Appendix D: Macro Code for Image J analysis 

//Image selection code 

title = getTitle(); // get the title of the current image 

imageOfInterest = title+"-(Colour_2)";  // the deconvolved imageName model 
//Colour[1]: 
  Red1=0.6500286; 
  Green1=0.704;031 

  Blue1=0.2860126; 
//Colour[2]: 
  Red2=0.26814753; 
  Green2=0.57031375; 
  Blue2=0.77642715; 
//Colour[3]: 
  Red3=0.7110272; 
  Green3=0.42318153; 
  Blue3=0.5615672; 
run("Colour Deconvolution", "vectors=[User values] show [r1]=Red1 [g1]=Green1 [b1]=Blue1 
[r2]=Red2 [g2]=Green2 [b2]=Blue2 [r3]=Red3 [g3]=Green3 [b3]=Blue3"); 
selectImage(imageOfInterest);  
// select the imageOf Interest 
// change brown image to b/w 

run("8-bit"); 
run("Invert"); 
run("Subtract...", "value=50"); 
setAutoThreshold("Default dark"); 
run("Threshold...");  
setOption("BlackBackground", false); 
setThreshold(80,196);  
run("Measure");  

 

Each heat Shock protein staining had different set Threshold. 
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