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Advanced Magnetic Resonance Imaging and Quantitative Analysis Approaches

in Patients with Refractory Focal Epilepsy

 
Barbara Anne Katharina Kreilkamp

Abstract

Background
Epilepsy has a high prevalence of 1%, which makes it the most common serious neurological
disorder. The most difficult to treat type of epilepsy is temporal lobe epilepsy (TLE) with its
most commonly associated lesion being hippocampal sclerosis (HS). About 30-50% of all
patients undergoing resective surgery of epileptogenic tissue continue to have seizures
postoperatively. Indication for this type of surgery is only given when lesions are clearly
visible on magnetic resonance images (MRI). About 30% of all patients with focal epilepsy
do not show an underlying structural lesion upon qualitative neuroradiological MRI
assessment (MRI-negative).

Objectives
The work presented in this thesis uses MRI data to quantitatively investigate structural
differences between brains of patients with focal epilepsy and healthy controls using
automated imaging preprocessing and analysis methods.

Methods
All patients studied in this thesis had electrophysiological evidence of focal epilepsy, and
underwent routine clinical MRI prior to participation in this study. There were two datasets
and both included a cohort of age-matched controls: (i) Patients with TLE and associated HS
who later underwent selective amygdalahippocampectomy (cohort 1) and (ii) MRI-negative
patients with medically refractory focal epilepsy (cohort 2). The participants received high-
resolution routine clinical MRI as well as additional sequences for gray and white matter
(GM/WM) structural imaging. A neuroradiologist reviewed all images prior to analysis.
Hippocampal subfield volume and automated tractography analysis was performed in
patients with TLE and HS and related to post-surgical outcomes, while images of MRI-
negative patients were analyzed using voxel-based morphometry (VBM) and
manual/automated tractography. All studies were designed to detect quantitative differences
between patients and controls, except for the hippocampal subfield analysis as control data
was not available and comparisons were limited to patients with persistent postoperative
seizures and those without.

Results
1. Automated hippocampal subfield analysis (cohort 1):

The high-resolution hippocampal subfield segmentation technique cannot establish a link
between hippocampal subfield volume loss and post-surgical outcome. Ipsilateral and
contralateral hippocampal subfield volumes did not correlate with clinical variables such as
duration of epilepsy and age of onset of epilepsy.

2. Automated WM diffusivity analysis (cohort 1):
Along-the-tract analysis showed that ipsilateral tracts of patients with right/left TLE and HS
were more extensively affected than contralateral tracts and the affected regions within tracts
could be specified. The extent of hippocampal atrophy (HA) was not related to (i) the
diffusion alterations of temporal lobe tracts or (ii) clinical characteristics of patients, whereas
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diffusion alterations of ipsilateral temporal lobe tracts were significantly related to age at
onset of epilepsy, duration of epilepsy and epilepsy burden. Patients without any
postoperative seizure symptoms (excellent outcomes) had more ipsilaterally distributed WM
tract diffusion alterations than patients with persistent postoperative seizures (poorer
outcomes), who were affected bilaterally.

3. Automated epileptogenic lesion detection (cohort 2):
Comparison of individual patients against the controls revealed that focal cortical dysplasia
(FCD) can be detected automatically using statistical thresholds. All sites of dysplasia
reported at the start of the study were detected using this technique. Two additional sites in
two different patients, which had previously escaped neuroradiological assessment, could be
identified. When taking these statistical results into account during re-assessment of the
dedicated epilepsy research MRI, the expert neuroradiologist was able to confirm these as
lesions.

4. Manual and automated WM diffusion tensor imaging (DTI) analysis (cohort 2):
The analysis of consistency across approaches revealed a moderate to good agreement
between extracted tract shape, morphology and space and a strong correlation between
diffusion values extracted with both methods. While whole-tract DTI-metrics determined
using Automated Fiber Quantification (AFQ) revealed correlations with clinical variables
such as age of onset and duration of epilepsy, these correlations were not found using the
manual technique. The manual approach revealed more differences than AFQ in group
comparisons of whole-tract DTI-metrics. Along-the-tract analysis provided within AFQ gave
a more detailed description of localized diffusivity changes along tracts, which correlated
with clinical variables such as age of onset and epilepsy duration.

Conclusions
While hippocampal subfield volume loss in patients with TLE and HS was not related with
any clinical variables or to post-surgical outcomes, WM tract diffusion alterations were more
bilaterally distributed in patients with persistent postoperative seizures, compared to patients
with excellent outcomes. This may indicate that HS as an initial precipitating injury is not
affected by clinical features of the disorder and automated hippocampal subfield mapping
based on MRI is not sufficient to stratify patients according to outcome. Presence of
persisting seizures may depend on other pathological processes such as seizure propagation
through WM tracts and WM integrity. Automated and time-efficient three-dimensional
voxel-based analysis may complement conventional visual assessments in patients with
MRI-negative focal epilepsy and help to identify FCDs escaping routine neuroradiological
assessment. Furthermore, automated along-the-tract analysis may identify widespread
abnormal diffusivity and correlations between WM integrity loss and clinical variables in
patients with MRI-negative epilepsy. However, automated WM tract analysis may differ
from results obtained with manual methods and therefore caution should be exercised when
using automated techniques.
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(temporal segment); ILF = inferior longitudinal fasciculus; UF = uncinate fasciculus;
CAB = cingulum angular bundle. Corrected p-values.

Chapter 7: Neuroradiological Findings in Patients with 'non-lesional' Focal
Epilepsy Revealed by Research Protocol

Table 7.1. Patient Demographic and Clinical Information and Recent MRI-findings.
Bold patient IDs indicate that the previous MRI was available for assessment.
f=female, m=male, SPS=Simple Partial Seizures, SGTCS=Secondary-Generalized
Tonic-Clonic Seizures, A=Absence Seizures, CPS=Complex Partial Seizures,
TL=Temporal Lobe, FL=Frontal Lobe, TP=temporoparietal, FT=frontotemporal.

Table 7.2. Lesions found in the most recent MRI and retrospective comparison to
previous MRI and reports. Epilepsy dedicated research protocol: 2-D coronal FLAIR
MRI with high in-plane resolution (~0.5 mm), 3D T1w/T2w/T2FLAIR imaging.
Technical reasons for previous MRI-negative report in italics.

Chapter 8: Automated Multimodal MRI Analysis for Diagnostic Purposes in
Patients with MRI-negative Epilepsy

Table 8.1. Results of statistical testing on T1w JCT/EXT images after application of
p<0.01 and p<0.05 FWE cluster correction.
The results show that the false positive rate lies between 18% and 53%, while the
true positive rate is high. It was at 100% for the combined JCT and EXT image
analysis. JCT = junction image; EXT = extension image.

Table 8.2. Summary of multimodal statistical testing based on >3.5 cm3 cluster
masks of T1w JCT/EXT testing.
Patients with neuroradiologically determined FCDs (first four rows) and all twelve
patients with no previously identified FCDs with at least one significant result (at
p<0.01 and p<0.05 FWE corrected) in one modality are presented. The arrowheads
indicate an increased (>) and decreased (<) signal in the respective patients' image
compared to controls. These were also the patients that were re-reviewed by a
consultant neuroradiologist. For three patients (34/49/86), none of the images tested
in the multimodal approach with their respective >3.5 cm3 cluster masks reached
significance.

Chapter 9: Manual and Automated Tractography Approaches in Patients with
'non-lesional' and lesional Temporal Lobe Epilepsy

Table 9.1. Demographic and clinical information for all participants.
TLE = Temporal Lobe Epilepsy; SD = Standard Deviation; SGTCS = Secondary-
Generalized Tonic-Clonic Seizure; HS = hippocampal sclerosis.
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Table 9.2. Correlations of whole-tract FA/MD values with variables for both
approaches.
Spearman rho values (R) are shown with FDR corrected p-values (p) for each type of
analysis (manual and automated). Boldface indicates significant effects. UF =
uncinate fasciculus; PHWM = parahippocampal white matter bundle; FA = fractional
anisotropy; MD = mean diffusivity; ipsi = ipsilateral; contra = contralateral.

Table 9.A. Whole-tract diffusion measures for manual (top) versus AFQ (bottom)
tractography.
Abbreviations: M = Mean; SD = Standard Deviation; TLE = Temporal Lobe
Epilepsy; C = Control; l = left; r = right; AFQ = Automated Fiber Quantification; FA
= fractional anisotropy; MD = mean diffusivity (in 10-3 mm2/s); UF = uncinate
fasciculus; PHWM = parahippocampal white matter bundle

Table. 9.B. Comparison of FA/MD values from all tracts between patient groups
according to sex,  presence of HS, SGTCS and history of febrile seizures. 
Mean and standard deviations (in brackets) are presented for each tract. No
significant effects were observed for either manual or AFQ generated tracts. UF =
Uncinate Fasciculus; PHWM = Parahippocampal White Matter Bundle; FA =
fractional anisotropy; MD = mean diffusivity; ipsi = ipsilateral; contra =
contralateral; HS = hippocampal sclerosis; SGTCS = secondary-generalized tonic-
clonic seizures.
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List of Figures

Chapter 1: Introduction

Figure 1.1. Clinical trajectory for patients presenting with seizures.
AED = anti-epileptic drug.

Figure 1.2. Pre-surgical Evaluation in TLE (from Immonen 2010). The trajectory of
the pre-surgical evaluation process is presented from top to bottom. EEG =
electroencephalography; MRI = magnetic resonance imaging; PET = positron-
emission tomography; SPECT = single-photon emission computed tomography;
MEG = magnetoencephalography; AED = anti-epileptic drug.

Figure 1.3. FCD in the left supramarginal gyrus (top) and superior parietal lobule
(bottom).
The related signal appears dark on T1w and bright on T2w/T2FLAIR 3D volume
images. The WCFT neuroradiologist's report stated that the two dysplastic sites may
be interconnected. L = left.

Figure 1.4. Right HS shown on T2FLAIR and T1FLAIR. 
The T2FLAIR image shows hyperintense signal in the hippocampal region, while the
T1FLAIR demonstrates hypointensity of the hippocampal formation with a marked
volume loss. The loss of internal architecture in the right hippocampus is only
marginally visible in both images. T1- and T2FLAIR both show blurring of the
parahippocampal WM, which is a frequent finding co-occurring with HS. Images
were acquired at WCFT. L = left.

Chapter 3: Neuroanatomy

Figure 3.1. Left lateral view of the brain showing the four lobes of the left cortical
hemisphere of the cerebrum, brain stem (light brown) and cerebellum (brown) (from
Human Anatomy Wiki 2017)
Ventrally, the Sylvian fissure separates the frontal lobe (orange) from the temporal
lobe (blue), while caudally this most anterior lobe (frontal lobe) is separated from the
parietal lobe (green) by the central sulcus. The occipital lobe is situated at the very
posterior end of the brain (red area), caudal to the temporal and parietal lobes and
separated via the parietal-occipital sulcus. Separations between lobes are also
indicated with the red lines.
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Figure 3.2. Medial aspect of right limbic lobe with the hippocampus (from
Duvernoy 2005).
The inset (modified from Krebs et al. 2014) shows the limbic lobe (white) with
relation to frontal (orange), temporal (yellow), parietal (green) and occipital (pink)
lobes.
Hippocampal body:
1. Dentate gyrus (margo denticulatus)
2. Cornu ammonis
3. Fimbria placed upwards (arrows) to
show cornu ammonis

Hippocampal head (uncal part):
4. Apex of the uncus
5. Band of Giacomini (uncal extension of
margo denticulatus (1))

5' Uncal sulcus
6. Gyrus uncinatus

The anterior part of the uncus, belonging
to the parahippocampal gyrus (piriform
lobe) is composed of:
7. Semilunar gyrus
8. Prepiriform cortex
9. Gyrus ambiens
10. Entorhinal area
11. Parahippocampal gyrus
12. Collateral sulcus

Hippocampal tail:
13. Gyri of Andreas Retzius (intralimbic
gyrus)
14. Fasciola cinerea prolonging the
dentate gyrus
15. Gyrus fasciolaris, extension of the
cornu ammonis
16. The gyrus subsplenialis prolongs the
gyrus fasciolaris and is itself continued
by the indusium griseum (17) on the
dorsum of the corpus callosum (18)
19. Isthmus
20. Anterior calcarine sulcus
21. Cingulate gyrus
22. Cingulate sulcus
23. Subcallosal area
24. Anterior perforated substance
25. Anterior commissure
26. Fornix
27. Crus of the fornix

The dotted area indicates the limbic lobe.
The a-a line indicates the plane of the
section of Figure 3.8.

Figure 3.3. Stages of brain development (from Tau and Peterson 2010).
A timeline of major developmental events occurring in the development of the
human brain. Six stages are shown.

Figure 3.4.  Cortical development (from Poduri et al. 2013)
(A) A neuroepithelial cell (red) at the VZ serves as progenitor for both a pyramidal
neuron (green-blue) as well as a radial glial cell (gold). (B) A newly differentiated
neuron (blue) migrates along a radial glial fiber. (C) Neurons (blue) continue to
migrate along the outer radial glial cells' process (brown) as intermediate progenitor
cells (small yellow) form. (D) Intermediate progenitor cells begin to generate
neurons (blue). (E) The progenitor cells in the ventricular zone begin to give rise to
astrocytes (dark green). Interneurons (purple) generated elsewhere migrate
tangentially. CP = cortical plate; IZ = intermediate zone; VZ = ventricular zone; oRG
= outer radial glial (outside of VZ).
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Figure 3.5. FCD as a result of suspected somatic mutation in a progenitor cell (from
Poduri et al. 2013).
Healthy progenitor cells (bottom row, blue) give rise to healthy neurons and glial
cells (top five layers, blue), while a progenitor cell with a somatic mutation (red)
generates unhealthy cells (top five layers, red), thus mutated cells are interspersed
with healthy neurons and glial cells. The respective produced funnel-shaped lesion in
the adult brain can be detected in the left frontal lobe on the axial T2w MRI as a
FCD characterized by GM thickening, GM/WM blurring and a transmantle sign
reflecting the funnel shape of the developmental process. However, the right frontal
lobe and other regions of the brain present a sharp GM/WM boundary, healthy GM
thickness and no transmantle sign. R = right.

Figure 3.6. Various types of malformations of cortical development shown on
conventional axial T1w MR images in four different patients.
A detailed description of the images can be found in the right panel. R = right.

Figure 3.7. Illustration of the internal structure of the hippocampus (left, from
Duvernoy et al. 2013) and a corresponding post-mortem view of the hippocampus
after opening of the temporal horn of the lateral ventricle (right, from Duvernoy
1998).
The CA and dentate gyrus (GD) form two interlocking U-shaped laminae. 1
hippocampal body, 2 hippocampal head, 3 hippocampal tail, 4 terminal segment of
the tail, 5 hippocampal digitations, 6 vertical digitations, 7 CA and GD in the medial
surface of the uncus, 8 band of Giacomini, 9 margo denticulatus. A = anterior; L =
lateral; M = medial; P = posterior.

Figure 3.8. Cross-sectional diagram (a) and 9.4T MRI (b) of the right human
hippocampus (from Duvernoy et al. 2013).
The right side of the image is the medial, while the left side is the lateral aspect of the
hippocampus. CA1–CA4, fields of the cornu ammonis with pyramidal cells. Cornu
ammonis: 1 alveus, 2 stratum oriens, 3 stratum pyramidale, 3' stratum lucidum, 4
stratum radiatum, 5 stratum lacunosum, 6 stratum moleculare, 7 vestigial
hippocampal sulcus (note a residual cavity, 7'); dentate gyrus (with granule cells)
with 8 stratum moleculare, 9 stratum granulosum and 10 polymorphic layer; 11
fimbria, 12 margo denticulatus, 13 fimbriodentate sulcus, 14 superficial hippocampal
sulcus, 15 subiculum (transition area of hippocampus and parahippocampal gyrus),
16 choroid plexuses, 17 tail of caudate nucleus, 18 temporal (inferior) horn of the
lateral ventricle.

Figure 3.9. Projections of the hippocampal and parahippocampal regions (from
Duvernoy et al. 2013).
A-E are parts of the neural chain forming the polysynaptic intrahippocampal
pathway. Cornu ammonis: 1 alveus, 2 stratum pyramidale, 3 Schaffer collaterals, 4
axons of pyramidal neurons (mainly to septal nuclei), 5 strata lacunosum and
radiatum, 6 stratum moleculare, 7 vestigial hippocampal sulcus. Dentate gyrus (GD):
8 stratum moleculare, 9 stratum granulosum. CA1, CA3 fields of the cornu ammonis,
SUB subiculum. ENT (Layer II of the entorhinal area) is the origin of this chain; its
large pyramidal neurons are grouped in clusters, giving a granular aspect at the
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entorhinal surface.

Figure 3.10. Left lateral views of major temporal lobe connections with the rest of
the brain (modified from Catani and de Schotten 2008, visualized through
tractography).

Figure 3.11. Hippocampus with Fimbria and Fornix (from RANZCRPart1 2015)
1: hippocampus, 2: fimbria, originating from the alveus within cornu ammonis; 3:
crus of the fornix; 4: hippocampal commissures; 5: body of the fornix; 6: column of
the fornix, post-commissural fornix; 7: pre-commissural fornix; 8: anterior
commissure; 9: mammillary body; S: superior; I = inferior; P = posterior; A =
anterior.

Chapter 4: Review on MRI Physics

Figure 4.1. MR Scanner (A) and the Spinning Proton (B) (from Ajtai et al. 2015). 
As the person is lying in the scanner, a magnetic field is applied parallel to the
person's body (Z-axis), while a radio-frequency wave is applied, which deflects the
proton from the main magnetic field. This makes it possible to encode the proton's
phase (perpendicular Y-axis) while spinning about the axis of B0 (B) and to
determine the proton spin frequency (X-axis) (B, lower arrow) during precession.
Gradually the proton returns to only rotating about its own axis along B0 (steady
state). The diagram in panel B and MR images in general have a different frame of
reference than depicted in panel A (see inset 'diagrams').

Figure 4.2. Conventional MRI sequences with radio-frequency pulses (from Elster
2017).
In order to acquire the MR signal within a spin-echo sequence, a 90˚ radio pulse is
applied. The echo (S) is caused by the 180˚ radio pulse, which acts like a magnetic
barrier and reflects the echo of the first 90˚ decay signal. For an inversion recovery
sequence another 180˚ radio pulse is added before the 90˚ and 180˚ pulses. The time
between the added 180˚ pulse and the 90˚ pulse is called TI. Apart from nulling the
signal from fat and water, the added 180˚ pulse also flips the sign of the
magnetization vector from z to -z. In both sequences, the time between the two 90˚
excitation pulses is termed TR. S = Signal-readout/echo, TE = echo time, TR =
repetition time, TI = inversion time.

Figure 4.3. T1 relaxation time at 3T and derived T1w grayscale image (from Farrall
2015).
T1 relaxation times, defined as the time where 63% of net magnetization has been
regained  (dashed line):  Fat = 370 ms; WM = 830 ms; GM = 1330 ms; CSF = 3600
ms (Gold et al. 2004, Wansapura et al. 1999). A signal readout time at 800 ms
reveals optimal contrast with the tissue-dependent T1 relaxation curves having an
optimal distance between each other (distinct signal differences across tissue types).
MRI was acquired at the WCFT. Figure used and modified with permission of
P r o f e s s o r A n d re w F a r r a l l a t t h e E d i n bu r g h I m a g i n g A c a d e m y
(www.ed.ac.uk/edinburgh-imaging/academy). L = left; R = right.
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Figure 4.4. T2 relaxation times at 3T and derived grayscale T2w image (from Farrall
2015).
T2 relaxation times, defined as the time where 37% of all protons in the tissue have
lost precessional phase coherence: WM = 90 ms; GM = 100 ms; Fat = 180 ms; CSF
= 190 ms.  A signal readout time at 180 ms reveals contrast with T2 relaxation curves
having an optimal distance between each other (distinct signal differences across
tissue types). MRI was acquired at the WCFT. Figure used and modified with
permission of Professor Andrew Farrall at the Edinburgh Imaging Academy
(www.ed.ac.uk/edinburgh-imaging/academy). L = left; R = right.

Figure 4.5. T1w and T2w signal patterns at different time points during brain
development (from National Institutes of Health 2012)
The GM/WM T1w and T2w signal patterns at an age of one week is the reverse of
the pattern seen at an age of one year and older. Information on side of MRI was not
provided in source.

Figure 4.6. Anatomical T1w (top row), T2w (middle row) and T2FLAIR (bottom
row) images in axial, coronal and sagittal views (left to right).
The images were acquired at the WCFT as part of the epilepsy research dedicated
protocol. L = left.

Figure 4.7. Coronal T1- and T2FLAIR images.
These images allow a very accurate depiction of brain tissue within the coronal plane
due to the high in-plane resolution. Note the level of detail within the temporal lobe
(box) and hippocampus (arrow). Images were acquired at the WCFT. L = left.

Figure 4.8. Diffusion Weighted Imaging Sequence (from Le Bihan et al. 2006).
A gradient pulse pair (Gdiff) is used to cause spin phase shifts along their locations.
As in a conventional spin-echo sequence, a 90˚ pulse is applied and during the
application of another 180º pulse diffusing spins remain out of phase (pink circles) as
they are at a different location with respect to the diffusion-sensitizing gradient. All
other proton spins are brought to their initial phase (yellow circles) and emit higher
signals than spins that are out of phase because these respective protons have moved.
The signals of the spinning protons are measured by the readout gradient. Gsl= slice
selection gradient, Gread= readout gradient, Gph-enc= phase-encoding gradient, Gdiff=
diffusion gradient, RF= radio-frequency pulse.

Figure 4.9. Axial sections of whole brain diffusion data.
The first two images on the left of the first row show b0 images (no diffusion
weighting), while the remaining six pertain to volume imaging acquired with
different diffusion gradients (diffusion-weighted images). Note how voxel intensities
across b0 images are the same for the corresponding voxels in the other b0 image
(both b0 images look the same). This is not the case in diffusion-weighted images,
since the proton spins vary according to different diffusion gradients giving rise to
different intensities in these volumes when compared to each other. This is a
necessary feature for tensor estimation. Images were acquired at the WCFT (a subset
of 2 out of 6 b0 and 6 out of 60 diffusion-weighted volumes is presented). L = left.
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Chapter 5: Automated multi-sequence hippocampal subfield segmentation in
refractory temporal lobe epilepsy: Relation to clinical outcomes

Figure 5.1. Anatomical locations of segmented subfields on T1w (left) and T2STIR
images (right) in a patient with right TLE. The same slices are shown for both
images in the hippocampal head (A) and hippocampal body (B). R = Right; CA =
Cornu Ammonis; HATA = Hippocampus-Amygdala Transition Area.

Figure 5.2. Decreased contralateral hippocampal volumes in patients with right TLE
compared to patients with left TLE (hippocampal tail) and vice versa
(presubiculum/HATA). Blue boxplots indicate data distribution, with the median (red
line) and 95% confidence intervals (red triangles). *p(FDR-corr)<0.1; **p(FDR-corr)<0.05;
***p(FDR-corr)<0.01.

Figure 5.3. Significant correlations of ipsilateral hippocampal internal architecture
(HIA) ratings and ipsilateral subfield volumes extracted via Freesurfer. Linear least-
square lines were fitted to the data.

Chapter 6: TRActs Constrained by UnderLying Anatomy (TRACULA) in
Patients with Refractory Epilepsy: Relation to Post-surgical Outcome

Figure 6.1. All reconstructed TRACULA tracts.
Estimated probability tracts from TRACULA are overlaid on T1w (native space,
control) and shown in sagittal (A), axial (B) and coronal (C) views at 20% of
maximum probability. TRACULA tracts analyzed: CAB, SLFt, ILF and UF.
R=Right; L=Left; CC-MIN=corpus callosum (forceps minor); CC-MAJ=corpus
callosum (forceps major); ATR=anterior thalamic radiations; UF=uncinate
fasciculus; ILF=inferior longitudinal fasciculus; CAB=cingulum angular bundle;
SLFt=superior longitudinal fasciculus (temporal segment); SLFp=superior
longitudinal fasciculus (parietal segment); CST=corticospinal tract; CCG=cingulum–
cingulate gyrus bundle.

Figure 6.2. FA Values from TRACULA Tracts ILF, SLFt, UF and CAB.
The plot shows mean center tract FA distributions along with error bars for left and
right tracts of patients with left TLE (red bars), controls (gray bars) and patients with
right TLE (blue bars). Asterisks and bars show significantly reduced FA values for
patients when comparing to controls and between the two patient groups.
*p<0.05;**p<0.01;***p<0.001, corrected for multiple comparisons.

Figure 6.3. MD Values from TRACULA Tracts ILF, SLFt, UF and CAB.
The plot shows mean center tract MD distributions along with error bars for left and
right tracts of patients with left TLE (red bars), controls (gray bars) and patients with
right TLE (blue bars). Asterisks and bars show significantly reduced MD values for
patients when comparing to controls. *p<0.05;**p<0.01;***p<0.001, corrected for
multiple comparisons.
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Figure 6.4. Waypoint comparison p-values along the tracts.
Differences between the patient groups and controls are shown projected onto a T1w
template. Red regions show significantly reduced FA (first row) and increased MD
(second row) relative to controls. Changes are more pronounced in MD than in FA
and patients with left TLE are more bilaterally affected than patients with right TLE.
TLE = Temporal Lobe Epilepsy; FA = fractional anisotropy; MD = mean diffusivity;
SLFt = superior longitudinal fasciculus - temporal segment; CAB = cingulum
angular bundle; ILF = inferior longitudinal fasciculus; UF = uncinate fasciculus.

Figure 6.5. Waypoint correlation p-values along the tracts according to side of
seizure onset. 
Relationships between the DTI-metrics and clinical variables are shown projected
onto a T1w template and mean tract pathways. Red regions show significant
correlations with reduced FA (first row) and increased MD (second row).
Relationships between duration (corrected for age) and FA/MD of ipsilateral anterior
UF and ILF regions and correlations between age at onset (MD of UF/ILF) and
seizure burden (FA of UF) were found. FA = fractional anisotropy; MD = mean
diffusivity; SLFt = superior longitudinal fasciculus - temporal segment; CAB =
cingulum angular bundle; ILF = inferior longitudinal fasciculus; UF = uncinate
fasciculus.

Figure 6.6. Waypoint comparison p-values along the tracts according to outcome.
Differences between the patient groups and controls are shown projected onto a T1w
template. Red regions show significantly reduced FA (first row) and increased MD
(second row) relative to controls. Changes are more pronounced in MD than in FA
and patients with ILAE II-VI are affected in the contralateral SLFt (increase of MD
relative to controls) whereas patients with ILAE I did not show this change.  TLE =
Temporal Lobe Epilepsy;  FA = fractional anisotropy; MD = mean diffusivity; SLFt
= superior longitudinal fasciculus - temporal segment; CAB = cingulum angular
bundle; ILF = inferior longitudinal fasciculus; UF = uncinate fasciculus.

Chapter 7: Neuroradiological Findings in Patients with 'non-lesional' Focal
Epilepsy Revealed by Research Protocol

Figure 7.1. Patient 22: right HS and Small-Vessel Disease. In 2014 this patient
received a dedicated epilepsy protocol at WCFT. Although the T1FLAIR coronal
sequence shows a comparable quality relative to the most recent 2015 T1FLAIR,
Small Vessel Disease and right HS were not detected by the neuroradiologist. HS
and WM lesions related to small vessel disease are increasingly conspicuous on the
most recent T2FLAIR image relative to the 2014 T2FLAIR image, the latter of
which suffers from lower SNR. R = right.

Figure 7.2. Patient 24: right HS. While early images do not show clear evidence of
HS, the expert neuroradiologist termed this as “small right hippocampus” without
explicitly diagnosing HS. This was inappropriately documented and this information
did not reach the consultant neurologist. In the later image right HS was re-
diagnosed. R = right.
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Figure 7.3. Patient 25: bilateral HS. The images from 2009 show bilateral HS as
demonstrated by hyperintensity on T2FLAIR and volume loss on T1FLAIR; this was
referred to as “bilateral small hippocampi” by the expert neuroradiologist. This was
inappropriately documented and the information did not reach the consultant
neurologist. In 2015 the patient was diagnosed with bilateral HS. R = right.

Figure 7.4. Patient 38: left HS. Despite signal hyperintensity on T2FLAIR and
volume loss on T1FLAIR, HS was only diagnosed in 2015. Lesion conspicuity was
similar for both MRI sessions. R = right.

Figure 7.5. Patient 66: left HS. This patient received comparable quality of epilepsy-
dedicated imaging in March and November 2015. However, HS was only diagnosed
on the later images, which show hyperintensity on T1FLAIR and HA on T1FLAIR.
Lesion conspicuity was similar for both MRI sessions. R = right.

Figure 7.6. Patient 56: right HS with parahippocampal WM blurring. In 2012 this
patient received imaging at a general hospital (left: T2w; right: T1w Inversion
Recovery) with an angulation not orthogonal to the long axis of the hippocampus.
HS and parahippocampal WM blurring are more conspicuous on the epilepsy
research image of 2015 (left: T2FLAIR; right: T1FLAIR), particularly relative to the
contralateral hemisphere.  R = right.

Figure 7.7. Patient 61: left temporal encephalocele. Left temporal encephalocele was
diagnosed based on a 3D volume T2w acquisition, which is not routinely acquired in
the evaluation of patients with epilepsy at the WCFT but was part of the study's
dedicated epilepsy research protocol. Note how the lesion is more conspicuous on the
T2w image (below) compared to the T1w (top). Diagnosis was later confirmed with
computed tomography imaging. Older MRIs (all 2D) with large slice thickness (~5
mm) from 2009 failed to reveal this abnormality. L = left; R = right.

Figure 7.8. Patient 65: FCD / gliosis in right superior frontal gyrus. Diagnosis was
made based on the 3D T2FLAIR image of 2015 (green image borders). The
abnormality was not reported on the previous 2D axial T2w image (red image
borders) where only one slice showed the small abnormality. R = right.

Figure 7.9. Formerly 'non-lesional' cases showing lesions using the epilepsy
dedicated research protocol. Numbers refer to patient IDs. Please refer to Table 7.1
for details on each lesion identified. R = right.

Chapter 8: Automated Multimodal MRI Analysis for Diagnostic Purposes in
Patients with MRI-negative Epilepsy

Figure 8.1. Procedure for obtaining T1w junction and extension images (Huppertz et
al. 2005).
Raw T1w images were intensity corrected, normalized and segmented into WM/GM
maps. These were used to obtain GM/WM voxel intensity thresholds. Any voxels
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with intensities of half a standard deviation higher/lower than the mean GM/WM
intensities were saved to a binarized junction image, which was cortex-masked
('AAL' in SPM12). The GM segment was also masked and served as the extension
image. Both resulting images were smoothed with a 6mm FWHM smoothing kernel.
The data of patient 59 is featured here. L =left.

Figure 8.2. General workflow of the applied statistical tests in T1w JCT and EXT
maps.
This graph shows the generation of the binarized cluster masks based on T1w used to
restrict statistical testing for all other imaging modalities to regions that are
potentially dysplastic. Patient 59 is given as an example (cluster in the JCT map). In
the case that any one of the remaining imaging modalities showed a significant
effect, the site was again reviewed by a neuroradiologist. TIV = total intracranial
volume; JCT = T1w junction image; EXT = T1w extension image. FWE = family-
wise error. T-scores: yellow/red bars. L = left.

Figure 8.3. Four patients with dysplasia and true positive findings: results from
individual statistical testing against 40 controls using T1w JCT and EXT maps.
Green bars indicate single patients with two sites of dysplasia. T-scores are
represented for JCT and EXT results. From top to bottom: patients with IDs 51, 56,
59 and 65. JCT = T1w junction image; EXT = T1w extension image. L = left.

Figure 8.4 Reduction of the false positive rate within the patient sample.
An example patient (59) is featured with all clusters found in EXT and these have
been numbered (dorsal → ventral). Based on the statistical test with p<0.01, FWE-
cluster correction at p<0.05, 23 patients presented with false positives (first box).
Cluster extent thresholding at >3500 (>3.5 cm3) voxels reduced this number by eight
patients (second box). Note the reduction of false positives within a single patient.
Using the cluster masks derived from single patients, statistical testing was
performed on other imaging modalities. Three patients had insignificant findings in
all other imaging modalities and were deemed to be non-dysplastic sites (third box).
Overall, the false positive rate was reduced from 53% to 28%. The sites found by the
automated tool in these remaining twelve patients were re-reviewed by a
neuroradiologist. EXT = extension; JCT = junction; FP = false positive; FA =
fractional anisotropy; MD = mean diffusivity; GM/WM = gray/white matter; L =
left.

Figure 8.5. Results of combined >3.5 cm3 cluster masks based on T1w JCT/EXT
analysis.
All clusters of the twelve patients are shown. The corresponding sites in
T1w/T2w/T2FLAIR images were re-reviewed by a consultant neuroradiologist and
clusters (in red) were used as masks in multimodal analysis. HS = hippocampal
sclerosis; l = left; r = right; OL/PL/TL/FL = occipital/parietal/temporal/frontal lobe;
JCT = junction; EXT = extension.
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Chapter 9: Manual and Automated Tractography Approaches in Patients with
'non-lesional' and lesional Temporal Lobe Epilepsy

Figure 9.1. Manual delineation of UF (left) and PHWM (right) tracts.
Tracts were delineated using ROIs drawn on the subjects' FA image in native
diffusion space. 'AND' ROIs (green, purple and orange) served as ROIs where tracts
were allowed to pass through, while 'NOT' ROIs (red and blue) were used to define
the end of tracts. Tract colors define the principle direction of diffusion for single
fibers (red = left/right, blue = inferior/superior, green = anterior/posterior).

Figure 9.2. Dorsal views of the brain showing all bilateral cleaned (left) and clipped 
UF and PHWM AFQ tracts (right).
The colors of the tracts denote the principle direction of diffusion for the midpoint of
the particular fiber (red = left/right, blue = inferior/superior, green =
anterior/posterior). Image rendered in standard ICBM space with MRIcroS tool,
version 2015 (https://www.nitrc.org/plugins/mwiki/index.php/mricros:MainPage). L
= left.

Figure 9.3. Whole-tract diffusion measures for manual (left) versus AFQ (right)
tractography.
For each group and tract median FA/MD values are presented along with respective
standard errors. Using manual tractography, patients with left TLE had significantly
reduced FA values in the left UF and right PHWM and increased MD values in left
and right UF and PHWM, while patients with right TLE had an increase in MD in
the left PHWM compared to controls (top left and bottom left). AFQ was only able
to identify the FA decrease in the right PHWM and MD increase in the right UF for
patients with left TLE (bottom right). FA = fractional anisotropy; MD = mean
diffusivity; UF = uncinate fasciculus; PHWM = parahippocampal white matter
bundle; l = left; r = right. . *p<0.05, corrected for multiple comparisons.

Figure 9.4. Comparison of Patients with right and left TLE versus controls.
The T1w overlay in standard space shows areas of the UF where patients had
decreased FA (left, red areas) and increased MD (right and inset, red areas). rTLE =
right TLE; lTLE = left TLE; FA = fractional anisotropy; MD = mean diffusivity.

Figure 9.5. Patients with HS compared to controls and patients without HS (inset).
The T1w overlay in standard space shows areas of the UF where patients with HS
had decreased FA (top and inset, red areas) and increased MD (bottom, red areas).
FA = fractional anisotropy; MD = mean diffusivity. HS = hippocampal sclerosis.

Figure 9.6. Correlations of DTI-metrics with demographic and clinical variables.
There were correlations between FA (top row) and age, age of onset, seizure burden
and epilepsy duration corrected for age. All FA correlations were negative except for
the correlation with age of onset, which was positive (marked with an asterisk,
younger age of onset was associated with decrease in FA of the ipsilateral PHWM).
There were also correlations between patient MD values (bottom row) and age of
onset (negative, marked with an asterisk) and epilepsy duration corrected for age
(positive).
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Keywords, Glossary and Definitions

Atrophy 

Atrophy is the reduction of brain tissue volume during neuropathological processes,

characterized by decreased neuronal density due to degeneration of neuronal cells in

the affected area.

Contralateral

Related to the opposite side of seizure onset / hippocampal sclerosis. See antonym

“ipsilateral”.

Cryptogenic Focal Epilepsy 

Synonymous with focal epilepsy (see below) with no known cause.

Cytoarchitecture

This is the arrangement of cells in cortical tissue. Cytoarchitectural investigations

allow the characterization of every cell by location, function and the relation to other

cells.

Diffusion Magnetic Resonance Imaging

Diffusion magnetic resonance imaging allows the non-invasive visualization of

hydrogen proton movement (diffusion) in living internal body tissue. As white matter

only allows diffusion in certain directions (anisotropic diffusion), the structure and

anatomy of white matter tracts may be inferred by this imaging technique using the

related computational method (tractography).

Electrophysiological Recordings

Electrophysiological recordings are part of pre-surgical evaluations to investigate

intractable seizures. Non-invasive (scalp) and invasive EEG recordings are used to

identify the source of epileptogenic ictal and interictal neuronal activity.
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Epileptogenic Zone

The epileptogenic zone denotes the region of cortex that generates epileptic seizures. 

Focal Epilepsy

Brain disorder characterized by origination of seizures from a single area of the brain

causing the seizures (= epileptogenic area). Focal epilepsy may originate from an

epileptogenic lesion such as hippocampal sclerosis or focal cortical dysplasia.

Focal Cortical Dysplasia

Circumscribed brain area characterized by abnormal appearance due to

malformations during neuronal development giving rise to abnormal

cytoarchitecture. Focal cortical dysplasia may appear as thickened/thinned cortex,

cortical surface malformation and may have a blurred gray and white matter

boundary.

Gray Matter

Gray matter is the darker tissue of the brain, consisting mainly of nerve cell bodies

(somata), unmyelinated axons and branching dendrites. These cells make up three

types of cortex arranged in concentric rings: allocortex (limbic cortex), mesocortex

(neuronal layer between allocortex and neocortex forming the transitional zone

between the two) and neocortex (makes up most of the cerebral cortex, also termed

isocortex).

Gray Matter Volume Analysis

Gray matter volume of patients and healthy controls are compared via voxel-based

morphometry based on T1w images.

Hippocampal Atrophy 

Reduction of hippocampal volume, which may be qualitatively (by

neuororadiologists) and quantitatively (using statistical MR image analysis) assessed.

In patients with temporal lobe epilepsy, it may be an indicator of hippocampal

sclerosis.
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Hippocampal Axis 

This is the long axis of the hippocampus, running parallel to the midline of the

temporal lobe. In order to correctly diagnose hippocampal sclerosis characterized by

atrophy, it is beneficial to realign the raw MR image perpendicular to this axis.

Hippocampal Sclerosis 

Hippocampal sclerosis is a lesion to the hippocampus associated with temporal lobe

seizures, the epileptogenic lesion is characterized by neuronal loss co-occurring with

hippocampal subfield volume reduction and gliosis.

Hippocampus

The hippocampus is located in allocortex of the medial temporal lobe and serves

memory and navigational functions. Frequently this structure is affected by a loss of

neurons in patients with temporal lobe epilepsy and this lesion (hippocampal

sclerosis) has been associated with causing seizures.

Ictal

Relating to a seizure.

Inter-ictal

Relating to an interval between seizures.

Ipsilateral

Related to the same side of seizure onset / hippocampal sclerosis. See antonym

“contralateral”.

Modulation 

Modulation is used during voxel-based morphometry analysis to compensate for

warping effects that occur when non-linearly registering individual brain MR images

to a standard space brain template (normalization). Specifically, the images are

scaled according to the amount of contraction needed during normalization in order
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to give a more accurate volume measurement.

Morphology 

Form, shape, structure and size of the brain or any of its substructures.

Morphometry 

Morphometry allows the three-dimensional statistical investigation of brain

morphology using computer algorithms.

Magnetic Resonance Imaging 

Magnetic Resonance imaging allows the non-invasive high-resolution visualization

of living internal body tissue, structure and anatomy by measurements of physical

responses of protons to a magnetic field and radio-frequency pulses.

Neuropathology 

Neuropathology is the branch of medicine concerned with disorders of the nervous

system characterized by anatomical or neurophysiological abnormalities (=

neuropathological abnormalities).

Neuropsychology 

Neuropsychology is a branch of psychology that aims to identify the relationship

between an individual's behavior, emotion and cognition and his/her brain function.

 

Pre-surgical Evaluation 

Pre-surgical evaluation is the medical and neuropsychological investigation of

patients to determine the suitability for (resective) brain surgery to treat a

neurological disorder such as epilepsy.

Spatial Normalization 

Spatial normalization is the process of co-registering individual brain MR images to

a template brain image. This is performed before group-wise voxel-based statistical

comparisons can be made so that the MRI brain areas correspond across all study

xxx



participants.

Temporal Lobe Epilepsy

Temporal lobe epilepsy is a neurological disorder and the most common type of

epilepsy. In these patients, the temporal lobe contains the epileptogenic tissue that

generates seizures and this ictal activity may propagate to other regions within the

temporal lobe and other extra-temporal lobe structures.  

Voxel-Based Morphometry

Voxel-based morphometry is an automated statistical approach that allows three-

dimensional analysis of whole brain morphology in individuals or in a group of

patients compared to a control/patient cohort based on voxel-wise statistical testing.

Wada Test

The Wada test is a neuropsychological tool within the pre-surgical evaluation

protocol that allows the assessment of language and memory lateralization in

patients.

White Matter

White matter is the paler tissue of the brain, consisting mainly of nerve fibers with 

their myelin sheaths.
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Abbreviations

2D Two-Dimensional

3D Three-Dimensional

A Absence Seizure

ACPC Anterior Commissure Posterior 

Commissure Realignment of MRI

AFQ Automated Fiber Quantification

C Controls

CA Cornu Ammonis

CAB Cingulum Angular Bundle (=PHWM)

CB Complications at Birth

CNR Contrast-to-Noise Ratio

CPS Complex Partial Seizure

CSF Cerebrospinal Fluid

DTI Diffusion Tensor Imaging

EEG Electroencephalography

EXT Extension Image

F Female

FC Febrile Convulsions

FCD Focal Cortical Dysplasia

FDR False-Discovery-Rate

FF Fimbria-Fornix

FL Frontal Lobe

FLAIR Fluid Attenuated Inversion Recovery 

fMRI Functional Magnetic Resonance 

Imaging

FSE Fast Spin Echo

GM Gray Matter

GS Generalized Seizure

HA Hippocampal Atrophy

HS Hippocampal Sclerosis

ICV Intracranial Volume (=TIV)

ILAE International League Against Epilepsy

ILF Inferior Longitudinal Fasciculus

JCT Junction Image

L Left

M Male

MAP Morphometric Analysis Program

MDT Multi-disciplinary Team

MNI Montreal Neurological Institute

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

PHWM Parahippocampal White Matter 

Bundle (=CAB)

R Right

ROI Region Of Interest

SGTCS Secondary-Generalized Tonic-Clonic

Seizure

SLFt Superior Longitudinal Fasciculus 

(Temporal Segment)

SNR Signal-to-Noise Ratio

SPGR Spoiled Gradient

SPM Statistical Parametric Mapping

SPS Simple Partial Seizure

STIR Short TI Inversion Recovery

SVD Small-Vessel Disease

TIV Total intracranial volume (=ICV)

TL Temporal Lobe

TLE Temporal Lobe Epilepsy

TMI Total Motion Index

TP Temporoparietal

UF Uncinate Fasciculus

VBM Voxel-Based Morphometry

WCFT Walton Centre Foundation Trust

WM White Matter
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1.1 Context and Outline of Thesis

Epilepsy forms an important challenge to scientific and clinical advancement since

about 1% to 2% of the general population is affected by this disorder (WHO 2016,

Neligan et al. 2012, Ngugi et al. 2010). This is especially true for patients with focal

epilepsy, who continue to have seizures despite taking anti-epileptic drugs (AEDs).

This is the case in approximately 30% of all patients (Kwan and Brodie 2000,

Dichter and Brodie 1996). Some patients may be candidates to undergo resective

surgery for removal of the epileptogenic tissue. Surgical resection may completely or

substantially reduce seizure frequency (Wiebe et al. 2001). Patients with focal

epilepsy are more likely to have an underlying structural abnormality, are more likely

to be refractory to medical treatment (Kwan and Brodie 2000) and if the lesion has

been identified on MRI and found to be consistent with the likely seizure onset zone,

these patients are more readily referred for surgery (Wiebe and Jette 2012b).
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However, again in about 30% of patients with focal epilepsy, who would otherwise

be suitable candidates for resective surgery to alleviate seizure frequency, no

underlying epileptogenic lesion is identified (Kwan and Brodie 2000, Dichter and

Brodie 1996). Postoperative outcome is significantly worse in patients without an

identifiable lesion on clinical MRI (Bien et al. 2009, Tellez-Zenteno et al. 2010, Jehi

et al. 2007) and patients are less likely to be referred to surgery. However, despite

careful evaluation of surgical candidacy, 30-40% of all patients will continue to

experience seizures at a follow-up of five years (Annegers et al. 1979, Cockerell et

al. 1995, Cockerell et al. 1997, Janszky et al. 2005). This number may be even higher

(de Tisi et al. 2011) with only 38% of patients being completely seizure-free after

one-year follow-up (Wiebe et al. 2001). It is not completely clear why this is the

case, but recurrence of seizures may be due to occult epileptogenic lesions in the

brain not previously seen on Magnetic Resonance Imaging (MRI). 

This thesis presents different studies pertaining to advanced MRI analyses performed

on data of patients with refractory focal epilepsy: (i) patients with temporal lobe

epilepsy (TLE) who have presented with hippocampal sclerosis (HS) and have had a

good/poor response to surgery; (ii) patients who are not considered for surgery as

their MRI investigations remained inconclusive (MRI-negative). However, the

research objectives for the studies based on two independent datasets are

substantially different: the first project allowed the study of outcome correlates by

analysis of pre-surgical structural changes between patients with excellent and poor

response to surgery, while the lat ter facil i tated a more detai led

qualitative/quantitative MR analysis of patients with debilitating seizures despite

being MRI-negative.

TLE is the most frequent form of medically refractory focal epilepsy (Almeida et al.

2012, Wiebe and Jette 2012a), but it may be amenable to resective surgery. A

controlled trial of surgery for refractory TLE showed that after a 1-year postoperative
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period, 58% of all patients were free from seizures impairing awareness, compared to

only 8% of patients that had been treated medically (Wiebe et al. 2001). TLE is

characterized by widespread GM/WM changes, which extend throughout the brain

(Bernhardt et al. 2013, Keller and Roberts 2008, Richardson 2012, Bonilha and

Keller 2015, Rodríguez-Cruces and Concha 2015, Gross 2011). Extensive brain

changes like these have given rise to the notion that TLE may be considered a brain

network disorder (Berg and Scheffer 2011). HS is the most common

neuropathological correlate of TLE and the preoperative detection of HS on MRI is

related to improved postoperative prognosis after temporal lobectomy (Spencer et al.

2005). Still, 40% of all patients with TLE and associated HS receiving resective

surgery to alleviate seizure frequency do not benefit from surgery (Wiebe et al. 2001,

Engel et al. 1993). It is unknown why some patients continue to experience seizures

after the potentially epileptogenic lesion has been removed surgically. It is likely that

some epileptogenic gray matter (GM) tissue has remained in the brain (Rosenow and

Lüders 2001, Zachenhofer et al. 2011, Surges and Elger 2013). This assumption is

supported by evidence from a study showing that post-surgical outcomes improved

after re-operation where the new surgical lacuna also included residual lesions

(Wyler et al. 1989). Other reasons may include incorrect localization of the seizure

focus at first surgery or post-surgical progression of the underlying disorder (Surges

and Elger 2013), which may also include brain network changes (Berg and Scheffer

2011). Histopathology studies have suggested that patients with HS type 1, which is

associated with a volume loss in hippocampal subfields Cornu Ammonis 1 (CA1)

and CA4 have an earlier initial precipitating injury such as a febrile seizure at an age

of two to three years old and superior outcomes over patients with HS type 2

(neuronal loss only in CA1) and those with HS type 3 (CA4 subfield volume loss)

who experience initial precipitating injuries at a later time point at age six and

beyond (Blümcke et al. 2013, Blümcke et al. 2007). For neuroanatomical details on

hippocampal subfields of healthy individuals see Chapter 3. However, apart from the

fact that patients present with different types of HS preoperatively, it is likely that
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patients have different epileptogenic networks linked to their individual clinical

history (e.g. duration of epilepsy) and predisposing them to varying surgical

outcomes. So far however, it is unclear whether HS is a driving factor for brain

network changes or if the epileptogenic network is influenced by other clinical

factors. It is therefore important to investigate, whether certain structural changes

occurring in epilepsy are related to post-surgical outcomes or the severity/chronicity

of the disorder. The objective of this study was to relate preoperative MR imaging

markers to clinical information and post-surgical outcome in order to assess whether

high-resolution preoperative imaging of the hippocampal formation can predict

surgical outcomes (Study 1) or if network disruption is related to HS, certain clinical

features of the disorder and postoperative outcome (Study 2). These correlations

were performed using T1w data for hippocampal structural analysis and Diffusion

Tensor Imaging (DTI) data was analyzed to reveal any disruption of white matter

(WM) structural brain connectivity.

Patients with focal epilepsy presenting without MRI-visible lesions are classified as

having cryptogenic focal epilepsy (older term, used within this thesis) or focal

epilepsy with no known cause (newer term). The presence of a brain abnormality on

MRI significantly predicts long-term (longer than five years) surgical outcomes

(Berkovic et al. 1995). Both the fact that certain neurons are epileptogenic, therefore

constituting the focal seizure onset zone, which is potentially discernible on

preoperative MRI as an abnormal GM structural alteration (e.g. abnormal patterns of

gyration, HS, GM/WM blurring, cortical thickening) and the fact that seizure activity

propagates via WM connections (epileptogenic network) are important clinical

factors. These should be used as a framework in order to develop neuroimaging

markers for the determination of potential epileptogenic regions in individual

patients. Lesion detection and conspicuousness using a dedicated epilepsy research

MRI protocol at a specialist surgical center may aid in this endeavor (von Oertzen et

al. 2002). However, many subtle image signal changes indicating FCDs may escape
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visual assessment on structural MRI or indeed may not be visible at all. Furthermore,

some MRI require quantitative analysis, as is the case with DTI data. The overall aim

of this study was to identify possible epileptogenic lesions via expert

neuroradiological reassessment of all images (Study 3) and supplementary automated

quantitative analysis (Studies 4 + 5). T1w, T2w, T2FLAIR and DTI data were used

to automatically quantify changes in individual patients as compared to healthy

controls (Study 4) and validated against neuroradiological assessment. Furthermore,

an automated tractography approach was used to identify disrupted structural

networks in patients with TLE on a group level (Study 5), which were compared

against a technique based on manual ROI placements considered the "gold standard"

(Hammers et al. 2007, Van Leemput et al. 2009, Schoene-Bake et al. 2014, Keller et

al. 2012) to identify temporal lobe tracts using tractography (Yeatman et al. 2012)

when histology as a true gold standard is not available.

Chapter 1 provides background information concerning the clinical phenotypical

manifestation regarding seizures/syndromes, diagnosis, pre-surgical evaluation and

treatment of focal epilepsy. The later parts of this chapter comprise a brief review of

the routine clinical sequences and advanced imaging techniques. The focus is on the

development and application of structural MRI and justifications for the used

analyses are provided.

Chapter 2 describes the methodology common to all studies (Chapters 5 to 9) while

providing an overview on the materials (acquired data), objectives and hypotheses.

The methodology specific to each individual study is detailed separately in the

relevant chapter. 

As this thesis focusses on MR analysis of patients with TLE in a large sample (total

of 130 patients), Chapter 3 provides a review on gross brain structure and

neuroanatomy of the temporal lobe. In particular this chapter highlights the temporal

lobe's GM substructures and WM structural connections. Since the next largest

cohort of patients presented with potentially epileptogenic lesions, such as FCD
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resulting from cortical malformations during brain development, healthy

neurodevelopment is discussed.

Chapter 4 is a review chapter that provides information on general MR physics and

the specific sequences applied in the clinical/scientific evaluation of patients with

epilepsy. The sequences that form the basis for the studies are described in detail.

Chapter 5 describes the first study (Study 1) in patients with unilateral HS with a

diagnosis of TLE on data collected at a specialized epilepsy center in Bonn,

Germany. An automatic hippocampal subfield mapping technique is applied in order

to assess how different substructures of the hippocampus are affected in patients with

postoperative seizure freedom and those with persistent seizures.  

Chapter 6 details a second study (Study 2) that is conducted on the same patient

population as in Chapter 5. Here, WM tracts diffusivity measures of patients with left

and right TLE were compared to controls and among these two patient groups.

Additionally, correlations of WM tract diffusivity measures with volumetric and

clinical data were investigated. T h i s was done using automated probabilistic

tractography (TRActs Constrained by UnderLying Anatomy, TRACULA) rather

than time-consuming manual tract reconstruction methods.

Chapter 7 is the only qualitative study of this thesis (Study 3) and describes

individual patient cases with a focal onset of epilepsy, these patients have been

reported as presenting without a lesion on previous MRI (MRI-negative). This is the

first study within the thesis on data collected at the Walton Centre Foundation Trust

(WCFT) in Liverpool, United Kingdom. This study was conducted on patients that

have been identified with an epileptogenic lesion in context of the advanced MR

protocol used for this study and retrospectively earlier MRI reports were re-

reviewed.

Chapter 8 details results pertaining to an automated quantitative detection procedure

designed to identify focal cortical dysplasia (FCD) in the patients described in

Chapter 7 (Study 4).
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Chapter 9 describes diffusivity changes along WM tracts in the patient sample

described in Chapter 7 with focal epilepsy using the automated tool Automated Fiber

Quantification (AFQ) on a group level (Study 5).

Chapter 10 provides a discussion of the results together with relevant biological and

clinical implications. Pertinent methodological strengths and limitations are

discussed as well before it concludes with the implications of interpretations and

indicates where future work is still needed.

1.2 Background

This literature review details the characteristics of epilepsy as a neurological disorder

and information on the challenges epilepsy poses to the patients in its various forms

is provided. Section 1.3 and 1.4 describe surgical intervention and pre-surgical

evaluation using inter-ictal scalp electroencephalography (EEG), baseline

neuropsychological assessment, diagnostic MRI, and invasive EEG. Section 1.5

focuses on the specific scientific techniques used in development and application of

advanced structural and functional MRI. Section 1.6 describes the aims of this study.

Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures,

which are involuntary movements of the body that can last from a few milliseconds

to several minutes. This is due to excessive or synchronous neuronal activity in the

central nervous system that may be either genetically determined (McNamara 1999)

or related to injury (Ramon y Cajal 1928). Epilepsy is a severe electrophysiological

disorder of the brain and seizures can have a long-lasting adverse effect on quality of

life of the affected patient (Lee et al. 2015b). Co-morbidities include psychiatric

(Gaitatzis et al. 2004, Gilliam et al. 2003) and cognitive impairment (Braakman et al.

2012), sleep disorders (Jacoby et al. 2015) and migraine (Toldo et al. 2010). A

significant proportion of patients with epilepsy are treated for a psychiatric disorder

(Kanner 2009). Distinct seizure types have been described by the International
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League Against Epilepsy (ILAE) based on characteristic symptoms and signs like

seizure type, cause, age of onset and electroencephalographic patterns (ILAE 1981).

For epilepsy to be diagnosed, the patient must have experienced a minimum of two

unprovoked seizures.

1.2.1 Epileptic Seizures

Broadly the different epileptic seizure types may be classified as being either focal

(with and without impairment of awareness) and generalized seizures (ILAE 1989,

Berg et al. 2010, Morimoto et al. 2004). Focal seizures originate from excessive

neuronal activity coming from one hemisphere of the brain and may be identified by

electrophysiological recordings (EEG) and their semiology, which is the specific

characteristic of the seizure to co-occur with specific movements and this allows

lateralization/localization of the seizure focus (Berg et al. 2010). The focus remains

the same for the recurrence of seizures in a given patient. These types of seizures

may affect awareness (complex partial seizures) or they may not (simple partial

seizures) (Morimoto et al. 2004, Berg et al. 2010). Focal seizures have the potential

to develop into secondary-generalized/convulsive seizures, meaning that the

excessive neuronal activity from the epileptogenic focus rapidly spreads to other

parts of the brain (Morimoto et al. 2004, ILAE 1989). Primary generalized seizures

cannot be located to one single focus as they show a bilateral ictal EEG discharge

(ILAE 1989). Various subtypes of seizures exist, including tonic, atonic, myoclonic

and absence seizures. Atonic seizures are characterized by a sudden loss of muscle

tone while awareness is usually not impaired, they are typically very short, lasting

between one and two seconds. The very brief and sudden involuntary shock-like

muscle contraction is a manifestation of the myoclonic seizure (Kojovic et al. 2011). A

tonic-clonic seizure may occur and manifests itself in ongoing (~1 minute) irregular

jerking (clonic phase) and rigidity (tonic phase), while awareness may rarely be

retained (ILAE 1989). Status epilepticus manifests itself in a similar manner,

however it lasts much longer (>30 minutes). A tonic-clonic seizure may be followed
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by atonia, resulting in a myoclonic-atonic seizure. A negative myoclonic seizure is a

seizure where the sudden and brief loss of muscle tone is compensated with a

voluntary movement (Kojovic et al. 2011). Absence seizures are characterized by a

loss of awareness and memory during the duration of the seizure. It is possible for

these seizures to last several minutes and develop into absence status epilepticus

(Meierkord and Holtkamp 2007).

This thesis focuses on patients with a focal onset of epileptic seizures who do not

respond to medical treatment (first line of treatment) and may benefit from resective

surgery to attain seizure freedom. Consequences of having a seizure involve injuries

and a negative impact on academic success as information cannot be processed by

the brain during a seizure or recovery. A lot of time is spent on avoidance of seizures

(medical treatment/appointments) and recovery, which may compromise the time

otherwise needed to study etc. These aspects may severely impact the patient's

quality of life it is therefore paramount to identify the most appropriate therapy for a

given patient. Surgery may be the only treatment option for patients who do not

respond to AED that may help these patients attain a worthwhile seizure reduction or

even seizure freedom.

1.2.2 Epilepsy Syndromes

Various types of epilepsy syndromes exist and may be broadly classified as

genetically/epigenetically determined (related to autoimmune responses or congenital

malformation in the brain) or provoked after injury/infection of the brain that alters

the brain structure and metabolism. Generally, epilepsy syndromes can either be

idiopathic (have a significant genetic component), symptomatic (seizures are due to a

brain lesion/injury) or cryptogenic (also thought to be symptomatic, but seizures

have an unknown cause). A time period of a few weeks to several years may elapse

between the brain insult and the emergence of the epilepsy (McNamara 1999).
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According to the National Institute of Neurological Disorders and Stroke (2015),

about 2-5% of all infants and young children aged 5 and younger may experience

non-epileptic febrile convulsion, which is the occurrence of a seizure together with a

fever. Febrile convulsions have been associated with a higher risk for developing

epilepsy later in life (Walsh et al. 2017). Children in the first few decades of life may

be affected by Rasmussen's encephalitis, which is a rare and progressive form of

focal epilepsy (Rasmussen et al. 1958) that destroys one hemisphere through

repeated seizures. This disorder causes a progressive decline of neurological

functions that can stretch from a few months to years and the cause may lie in

aberrant auto-immune processes targeting an infection in the brain (Rogers et al.

1994). Another type of epilepsy, which affects children, is Juvenile Myoclonic

Epilepsy where multiple genes must be inherited to produce the phenotype

(McNamara 1999). Epilepsy secondary to FCD usually begins early in life and is

often refractory to AED therapy (Fonseca et al. 2012). The term FCD designates an

entire spectrum of abnormalities of the laminar structure of the cortex (Blümcke et

al. 2011). In patients with frontal lobe epilepsy, FCD is one of the most frequently

found causes for epileptogenic neuronal activity (Kabat and Krol 2012) and may be

amenable to resective surgery (Lemer et al. 2009). In other patients any other lobe of

the brain may show epileptogenic activity (with or without detection of FCD) and the

epilepsy is termed according to the affected lobe. The most difficult to treat type of

epilepsy using AED is TLE, and the most common lesion associated with TLE is HS

(Wiebe and Jette 2012a).

1.3 Surgical Intervention

Approximately 30% of all patients with focal epilepsy are refractory to medical

treatment (Kwan and Brodie 2000). There is no single clear definition of

refractoriness, although a failure of trialing two appropriate AEDs has been

recommended (Berg 2009). Within this thesis, refractoriness was defined as a patient
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having failed at least two AEDs during a minimum course of at least a one-year

period after diagnosis. Consequently, alternative clinical treatments targeting a

seizure reduction become necessary in these cases (Figure 1.1). 

Figure 1.1. Clinical trajectory for patients presenting with seizures.
AED = anti-epileptic drug.

Resective surgery of epileptogenic tissue is the most common choice if treatment

with AEDs has failed. A detailed interdisciplinary preoperative investigation initiated

and conducted by the members of the multidisciplinary team (MDT, consisting of

neurologists, neuropsychologists, electrophysiologists and surgeons) is necessary for

accurate identification of the seizure focus. Surgical margins have to be carefully

delineated so that a maximum of epileptogenic tissue is resected, while preserving

the functions of eloquent cortex (e.g. memory and language functions). Implantation

of a vagal nerve stimulator or brain stimulator may be considered instead if the

targeted brain region's function involves critical skills such as control of limbs or

production/understanding of language and resective surgery would severely impact
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these. Although vagal nerve stimulator seizure reduction rates are inferior to

resective surgery and complete seizure freedom is rarely achieved, results still show

worthwhile seizure reduction rates of a 50% decrease in seizure frequency (Wheeler

et al. 2011, Englot et al. 2011). In about 30% of all patients epilepsy may be

potentially amenable to surgery and so these patients are considered for pre-surgical

evaluation (Duncan 2010), while half of these patients are likely to have resective

surgery (Lhatoo et al. 2003). The presence of postoperative seizure symptoms may

be due to remaining epileptogenic tissue (Sisodiya et al. 1997). Further to

conspicuous epileptogenic lesions, additional cortical and subcortical grey matter

alterations (see reviews by Bernhardt et al. 2009, Keller and Roberts 2008,

Richardson 2012, Bonilha and Keller 2015) and WM tract alterations (see reviews by

Rodriguez-Cruces and Concha 2015, Gross 2011, Bernhardt et al. 2015) may reflect

additional epileptogenic tissue/networks. In particular, patients with temporal plus

epilepsy (primary temporal epileptogenic zone extending into other regions such as

the neighboring insular cortex) seem to more likely to be refractory to surgical

treatment and experience persistent postoperative seizure symptoms (Barba et al.

2017). It is therefore critical that pre-surgical evaluation identifies the epileptogenic

focus and rules out additional lesions or bilateral involvement during seizure

generation (Mansouri et al. 2012). 

1.4 Pre-surgical Evaluation

In order to diagnose epilepsy, multiple steps are necessary (Figure 1.2). In a first step

the patient's history is assessed and this includes information on complications at

birth, previous neurological insult, any other illness and medication.
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Neurological Assessment
Patient history 

Neurological and psychiatric examination 
Seizure semiology 

Surface inter-ictal EEG
High-resolution MRI 

Baseline neuropsychological assessment

Structural Pathology (MRI-positive)
Conclusive and concordant results

in non-invasive evaluation 

No Structural Pathology (MRI-negative)
Non-conclusive or discordant results

in non-invasive evaluation

Potential Use of Other Imaging Modalities
PET / inter-ictal or ictal SPECT / MEG / EEG-videotelemetry

Lateralization of Speech Dominance
Wada, functional MRI

Potential Use of Invasive Monitoring
Evaluation with intracranial electrodes (Subdural strips, grid, depth electrodes)

and EEG-videotelemetry

Resective Surgery
Tailored temporal lobe resection

Selective amygdalohippocampectomy 
Only lesionectomy

No Indication for Resective Surgery
Optimizing AED therapy
Vagal Nerve Stimulation 

Re-evaluation, if new evidence of focal
findings

Figure 1.2. Pre-surgical Evaluation in TLE (from Immonen 2010). The trajectory of the pre-
surgical evaluation process is presented from top to bottom. EEG = electroencephalography;
MRI = magnetic resonance imaging; PET = positron-emission tomography; SPECT = single-
photon emission computed tomography; MEG = magnetoencephalography; AED = anti-
epileptic drug.

In order to understand the nature of the seizures a neurological examination,

assessment of seizure semiology, surface (scalp) inter-ictal EEG and high-resolution

MRI are performed. Neuropsychological evaluation and psychiatric examination are

performed in patients being considered for surgery to (i) identify the damaged brain

region and (ii) to predict potential postoperative cognitive impairments and in some
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cases to rule out psychogenic non-epileptic seizures provoked by emotional states

rather than abnormal epileptogenic neuronal activity. Additional modalities for brain

imaging such as Magnetoencephalography (MEG), Positron Emission Tomography

(PET) and Single-Photon Emission Computed Tomography (SPECT) may be used

when available and especially in cases where scalp EEG and MRI remain

inconclusive.

Upon identification of the seizure onset zone (region of seizure origin), pre-surgical

evaluation of language lateralization/localization (Wada test) and functional MRI are

performed. Results of these investigations have critical importance in the success of

surgery, as peri- and post-surgical damage to brain areas that are indispensable for

defined cortical functions such as language, movement, vision and memory are to be

avoided. If the investigation indicates that it is unlikely that eloquent cortex will be

compromised, then surgery may be considered. Conversely, if the test does not

indicate this, additional invasive monitoring may be warranted before resective

surgery or implantation of stimulators is performed.

1.4.1 Surface Inter-ictal EEG

EEG is the true gold standard procedure for diagnosing epilepsy and allows

electrophysiological recordings of various cortical brain areas through placement of

measurement electrodes on the scalp. Inter-ictal scalp EEG relies on the occurrence

of spikes (electrical activity) in the time period between the occurrence of one

seizure to the next and as such demonstrates cortical hyperexcitability and

hypersynchrony (Pillai and Sperling 2006). Hypersynchronicity refers to a

synchronous bursts of action potentials involving several interconnected neurons and

occurs as a consequence of characteristic membrane depolarization, while

hyperexcitability refers to a state of neurons being unusually or excessively excitable.

EEG has a high temporal resolution in the range of milliseconds, so that these

electrophysiological recordings can simultaneously reflect underlying neuronal
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activity. When a focal ictal discharge is detected, this offers clues about the location

of the epileptogenic region and the specific epilepsy syndrome. Inter-ictal

background rhythms of the brain activity may also indicate what type of epilepsy the

patient may have (Pillai and Sperling 2006, Smith 2005). Additionally, baseline

neuropsychological testing is performed and invasive inter-ictal EEG may be

considered for clearer information on seizure focus localization (Figure 1.2).

Cessation of AED treatment and sleep deprivation can help to induce seizures to

increase the clinical yield of the subsequent EEG (Giorgi et al. 2014, Rizvi et al.

2014, Ellingson et al. 1984). It is not completely clear why sleep deprivation may

elicit epileptogenic activity within the brain (Samsonsen et al. 2016), however, this

procedure is common at clinical centers: surgery is only undertaken after long-term

video monitoring of seizure onset with an appropriate informative outcome (Cascino

2002). Given that the characteristics of an inter-ictal spike can be occasionally

misleading and difficult to localize (due to poor spatial resolution), it is essential to

put EEG findings in clinical context and consider aetiology, physical examination,

seizure semiology and neuroimaging findings (Pillai and Sperling 2006).

1.4.2 Assessment of Preoperative Functional Skills

Prior to surgery, baseline neuropsychological assessment and language lateralization

are performed. These procedures can inform about preoperative functional skills or

deficits and predict postoperative neuropsychological outcomes (Rosenow and

Lüders 2001). Memory and language are the most important cognitive skills that

need to be assessed and lateralized. This is especially true for TLE where verbal and

visual memory may be tested. Loring (2007) reported that side of surgery,

preoperative memory score and age can predict postoperative verbal memory

performance six years after surgery. Impaired postoperative verbal and nonverbal

memory skills have been reported in patients who had average or above average

memory and language skills at baseline (Helmstaedter and Elger 1996, Bonelli et al.

2010). Hermann et al. (1992) reported that patients with histologically proven and
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marked left mesial temporal sclerosis are less likely to show significant memory

decline after surgery. The authors further suggest that surgically induced impairment

of memory function can be avoided by using preoperative hippocampal volumetric

MRI as memory decline correlates with the degree of HS. Apart from these

psychometric tests prior to surgery, the invasive intracarotid sodium amobarbital

procedure, also referred to as the Wada test (Wada and Rasmussen 1960), has

traditionally been used to lateralize language function. The test results are essential

for successful planning of resective surgery. However, many clinical centers have

now replaced the invasive test with functional MRI testing as this forms a valid

alternative to the invasive Wada testing (Klöppel and Büchel 2005, Dym et al. 2011,

Binder 2010), which is still considered to be the clinical gold standard approach

(Pelletier et al. 2007, Alonso et al. 2016). MRI data was not related to pre- and

postoperative memory functions as this would have exceeded the scope of this thesis.

1.4.3 Invasive Inter-ictal and Ictal EEG

Invasive inter-ictal and ictal EEG may be performed when surface EEG does not

yield sufficient information on seizure focus localization. This is the case in about

30% of all patients with TLE (Spencer et al. 1985). Information gained through this

technique can contribute to avoidance of eloquent cortex during resective surgery

and confirm deep cortical seizure onset zones by characteristic spike discharges

(Spencer 2002). Furthermore, invasive EEG can detect unilateral seizure onset zones

in the case of bilateral inter-ictal surface discharges. If the epileptogenic zone

extends beyond visible lesions, inter-ictal EEG may even identify multifocal

epileptogenic lesions (Raymond et al. 1995). The invasive inter-ictal and ictal EEG

measurements are usually combined with simultaneous video recording, which is

then termed EEG video telemetry. This offers the advantage that a seizure can be

recorded on EEG with simultaneous video recordings of any related body

movements and occurrence of speech. The patients who are undergoing video

telemetry, visiting relatives or hospital personnel may mark the onset of a seizure as

16



Chapter 1: Introduction

soon as they become aware of it. Subsequently, the event recorded on a videocamera

and any descriptions of the event can be directly related to the EEG recordings where

electrophysiological discharges may be detectable if a seizure occurred.

1.4.4 Standard Diagnostic MRI

Patients presenting with focal seizures will undergo structural MRI at the start of the

clinical investigation and if necessary also after standard EEG evaluation (to apply

specialized MR imaging techniques). According to the commission report of the

ILAE (Barkovich et al. 1998), neuroimaging for patients undergoing pre-surgical

evaluation should provide data on: “(i) Delineation of structural and functional

abnormalities in the putative epileptogenic region; (ii) Prediction of the nature of

structural pathology in the putative epileptogenic region; (iii) Detection of

abnormalities distant from the putative epileptogenic region and (iv) Identification of

brain regions important for normal function including primary sensorimotor function,

language and memory, and the relation of these regions to the epileptogenic region”.

Neuroimaging can also provide information on lesions not related to epilepsy, which

is important to rule out any other pathophysiological processes given that seizures

may be related to vascular malformations, tumor, infection or neurodevelopmental

structural alterations. Depending on the likely diagnosis, different MRI sequences

may be employed to identify an epileptogenic lesion. For example, 3D MRI

sequences T1-weighted (T1w), T2-weighted (T2w) and T2 fluid-attenuated inversion

recovery (T2FLAIR) are indicated for neocortical epilepsies as FCD may be detected

(Blümcke et al. 2011, Figure 1.3).
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Figure 1.3. FCD in the left supramarginal gyrus (top) and superior parietal lobule (bottom).
The related signal appears dark on T1w and bright on T2w/T2FLAIR 3D volume images.
The WCFT neuroradiologist's report stated that the two dysplastic sites may be
interconnected. L = left.

3D T1w and several imaging 2D coronal (T1FLAIR, T2FLAIR) sequences through

the long axis of the hippocampus are particularly useful in suspected TLE (Duncan

1997). HS is identified by increased cerebrospinal fluid (CSF) space within the

temporal horn of the lateral ventricles, loss of internal architecture (conspicuous on

2D T1FLAIR/T2FLAIR images), volume reduction of the hippocampus

(conspicuous on 3D T1w) and local signal intensity increase as seen on coronal

T2FLAIR images (Spencer 1994, Meiners et al. 1994, Mansouri et al. 2012). Images

depicting this lesion are shown in Figure 1.4. The identification of HS on

preoperative MRI is related to an improved post-surgical outcome in patients with

TLE, particularly if electrophysiological, radiographic and semiological information
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co-localize (Mansouri et al. 2012).

Figure 1.4. Right HS shown on T2FLAIR and T1FLAIR. 
The T2FLAIR image shows hyperintense signal in the hippocampal region, while the
T1FLAIR demonstrates hypointensity of the hippocampal formation with a marked volume
loss. The loss of internal architecture in the right hippocampus is only marginally visible in
both images. T1- and T2FLAIR both show blurring of the parahippocampal WM, which is a
frequent finding co-occurring with HS. Images were acquired at WCFT. L = left.

1.5 Rationale for Advanced MRI of the Brain

In order to advance current standard diagnostic MRI for all patients and especially

for those patients with subtle lesions that may have remained undetected on previous

MRI, additional imaging and clinically informed neuroradiological assessment may

be necessary. This section briefly describes additional sequences along with

neuroradiological assessment and quantitative analysis techniques. 

1.5.1 Additional Research Sequences

Functional magnetic resonance imaging (fMRI) sequences quantifying the blood

oxygen level dependent signal have been applied in patients with epilepsy during rest

(resting-state fMRI) and while performing a task (task-based fMRI). Task-based

fMRI is traditionally used in clinical settings to localize important memory and

language skills prior to surgery (Abou-Khalil 2007, Akanuma et al. 2003,
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Aldenkamp et al. 2003). Patients are presented with a specific task, for example to

memorize and recall words, while the blood oxygen level dependent signal is

measured across the whole brain and correlated with the performed task so as to

identify regions involved in task-related processing. The rationale for using research-

based resting-state fMRI without the application of tasks in patients with epilepsy is

to investigate possible regions of seizure onset and epileptogenic networks on an

individual level (Bettus et al. 2010, Dansereau et al. 2014). Compared to healthy

controls, regional altered blood flow and an altered network and functional

connectivity between different brain regions may be found in patients when

analyzing the data using whole-brain approaches. Another useful MR sequence is

Arterial Spin Labelling, which can measure blood perfusion. The rationale for its

application is that it is assumed that the epileptogenic region may have inter-ictal

hypo-perfusion relative to other regions of the patient's brain (Galazzo et al. 2015). 

Apart from measuring task-based functional connectivity clinically to investigate

pre-surgical functions and to detect altered functional connectivity as compared to

controls in scientific studies, research on structural connectivity has continuously

gained interest. DTI is a technique, which enables researchers to quantify water

diffusivity along the axis of axons and infer structural brain connections and tissue

integrity between different brain areas. This became especially interesting since GM

disruption in patients with epilepsy was thought to affect WM connections close to

the seizure focus and in long-range connections between the seizure focus and other

parts of the brain. For instance, multiple studies to date have shown that patients with

left TLE seem to be more bilaterally affected than patients with right TLE when

compared to controls and that diffusivity alterations are more severe and extensive

ipsilateral to the side of seizure onset (Ahmadi et al. 2009, Yogarajah et al. 2008, Lin

et al. 2008, Imamura et al. 2015). This technique also allows researchers to

investigate correlations between clinical variables such as age of onset of epilepsy

and seizure frequency and WM structural disruption. Manual tractography has been
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the most widely applied technique to achieve mapping of structural connectivity

(Metzler-Baddeley et al. 2011, Wakana et al. 2007) . However, automated

tractography is gaining increased recognition in scientific investigations as they

require less time to implement and are reproducible and some of these automated

tools also allow analysis of correlations between GM and WM structural disruption

(Bonilha et al. 2010, Keller et al. 2017, Yeatman et al. 2012, Yendiki et al. 2011,

Kreilkamp et al. 2017).

Although useful for assessing structural and functional connectivity, underlying

pathobiological processes responsible for these alterations cannot be directly

established through DTI or fMRI analysis. Advanced quantitative mapping of myelin

in GM regions and WM tracts using T1w and T2w data (Van Essen et al. 2012) and

the application of an iron mapping sequence could potentially reveal the underlying

pathological process present in patients with epilepsy. Susceptibility-weighted

imaging (SWI) is used to quantify iron in the brain and is particularly interesting in

patients with epilepsy. Iron has been linked to febrile convulsions (Papageorgiou et

al. 2015, Sharif et al. 2015) and epilepsy (Tombini et al. 2013) and may be associated

with defects in the blood-brain-barrier and the deep GM nuclei that accumulate iron,

leading to deleterious effects (Zhang et al. 2014).

1.5.2 Quantitative Techniques

Quantitative techniques allow comparisons against healthy controls and may

complement traditional qualitative techniques employed by clinicians for first-hand

evaluation. All sequences and derived images listed in 1.5.1 allow qualitative

evaluation through visual assessment. This is a time-consuming process and

diagnostic yield may vary with the quality of MRI and training (Von Oertzen et al.

2002). Additional techniques based on three-dimensional MRI that can quantify

changes in the brain relative to healthy controls have important implications for

studies aiming to characterize side of seizure onset and develop individual
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diagnostics in a clinical setting (Martin et al. 2015).

Region of interest (ROI) analysis allows the a-priori investigation of brain regions

thought to be involved in a disorder. It is a method whereby trained individuals with

expert anatomical knowledge manually place the ROI on MRI of patients, this allows

signal quantification and comparison to ROI values obtained from controls. Through

statistical comparison, a decrease in structural volume or abnormally high/low signal

can be detected. Many studies in epilepsy have successfully utilized the volume-

based approach for the detection of HS (Jack 1994, Marsh et al. 1997, Matsufuji et

al. 2012) and disruption of temporal lobe WM integrity as measured by diffusivity

analysis (Ahmadi et al. 2009, Concha et al. 2005). Most frequently the relevant

studies have focussed on manual delineation of tracts performed by a trained

researcher based on a priori knowledge of neuroanatomy rather than using automated

techniques (Kreilkamp et al. 2017). In patients with TLE, research has focussed on

many temporal lobe tracts such as the cingulum angular bundle (CAB, otherwise

referred to as the parahippocampal white matter bundle, PHWM) (Ahmadi et al.

2009, Yogarajah et al. 2008, Concha et al. 2007), which is the major connection of

the hippocampus with other areas of the brain. The inferior and superior longitudinal

fasciculus (ILF and SLF; Ahmadi et al. 2009, Imamura et al. 2015, Concha et al.

2012, Lin et al. 2008) connect the ventral and dorsoposterior aspects of the temporal

lobe with the visual cortex and with the frontal lobe, respectively. The uncinate

fasciculus (UF; Diehl et al. 2008, Ahmadi et al. 2009, Lin et al. 2008, Concha et al.

2012) forming connections from the temporal pole to the dorsomedial prefrontal

cortex has also been studied. Finally, the fornix (Concha et al. 2007, Concha et al.

2010) has been investigated in patients with TLE as it belongs to the limbic system

and connects the hippocampus with the hypothalamus. More details on these tracts

and connections within the brain are presented in Chapter 3. However, manual

methods are time-consuming and suffer from low reproducibility and reliability,

which strongly justifies the development of newer automated methods that do not

have these disadvantages.
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Automated techniques have a lower time-demand as they circumvent the need for

manual measurements by trained personnel (Leergaard et al. 2012). They are able to

provide higher reliability through reproducible results generated by the same

algorithm, whereas manual measurements may vary from one trained individual to

another. For these reasons, the automated techniques may be readily implemented for

the evaluation of patient MRI in clinical settings. Voxel-based morphometry (VBM)

is a fully automated quantitative technique that allows exploratory analysis of the

whole brain based on T1w data. The approach can be implemented to analyze

various features of brain structure such as cortical thickness and subcortical atrophy.

In patients with epilepsy, it has been successfully applied for the detection of HS

(Bonilha et al. 2010) and FCD (Focke et al. 2008b, Huppertz et al. 2005) relative to

healthy controls. Alternatively, rather than analyzing the whole brain, the ROI

approach can be automated through the use of standard space templates and allows

both regional GM and WM analysis. This requires normalization of the patient's MRI

to a common template, this procedure is offered by many softwares and has been

primarily used to detect WM tract diffusivity alterations (Liu et al. 2014, Scanlon et

al. 2013). Atlas-based tractography works in a similar manner, however rather than

extracting and investigating regions close to tracts, this method allows the more

anatomically correct reconstruction of brain connections through voxel-by-voxel

tractography (Hagler et al. 2009). Although useful for group analysis in research,

these methods still need development before they can be applied to the analysis of

individual patient MR images.

1.6 Motivation and Goals of this Thesis

The overall objective of this thesis was to develop and apply image analysis

techniques in people with intractable focal epilepsy through advanced automated

quantitative MR imaging and analysis. The work presented in this thesis uses data
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collected from MRI-positive and MRI-negative patients to investigate the nature and

significance of structural brain alterations in patients with epilepsy. Advanced post-

processing image analysis techniques were applied to (I) characterize hippocampal

atrophy (HA) and temporal lobe tract abnormalities in patients with refractory TLE

and to investigate the relationship between these abnormalities and postoperative

outcome and (II) to perform a series of quantitative MRI studies in patients with

presumed MRI-negative refractory focal epilepsy to (IIa) implement a fully

automated tool for the detection of lesions in individual patients based on T1w data

and (IIb) to apply an automated tractography technique to DTI data of healthy

controls and patients with non-lesional and lesional TLE and identify WM tract

abnormalities between these groups.

1.6.1 Patients with TLE and Associated HS: Outcome Analysis

TLE is the most difficult type of epilepsy to treat medically, but considerably easier

to treat surgically (Spencer 2002). Electrophysiological recordings indicating a

temporal lobe seizure onset and the identification of HS during pre-surgical

evaluation are the most important factors that allow clinicians to confidently identify

an epileptogenic lesion, which may be amenable to surgery. The salient features that

indicate HS are hippocampal volume loss, MRI signal intensity alterations, loss of

digitations of the hippocampal head and disruption of internal architecture (due to

neuronal loss). So far, however, it is not possible to identify different types of HS by

expert neuroradiological assessment alone and clinicians are usually limited to the

clinically available 1.5 and 3.0 Tesla MRI. Quantitative methods for hippocampal

volume measurements can increase sensitivity in establishing the presence of HS

(Duncan 1997, Woermann et al. 1998). Recently, more detailed automated

quantitative hippocampal subfield mapping techniques based on multi-sequence MRI

have been developed, such as HippocampalSubfields (Iglesias et al. 2015) provided

within Freesurfer (Fischl 2012). It is unknown whether the multi-sequence automated

hippocampal subfield volume analysis:
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1. has any significance for seizure laterality,

2. reveals correlations between hippocampal subfield volume and any clinical

variables such as age of onset, duration and seizure frequency,

3. reveals correlations with postoperative seizure outcomes.

No study to date has yet established whether this automated hippocampal subfield

mapping is able to detect correlations with clinical variables or seizure laterality in

large patient datasets (Sone et al. 2016). Different types of HS identified through

histology have been shown to be related with post-surgical outcomes (Blümcke et al.

2007), however, it remains unclear whether in-vivo MRI analysis approaches can

accomplish this in a similar way. Consequently, it is important to establish whether

preoperative automated mapping of hippocampal subfields can determine the type of

HS and could potentially predict surgical outcomes.

About 45% of patients undergoing resective surgery of the epileptogenic lesion often

present with seizures again during a follow-up of five years (de Tisi et al. 2011).

Recently, the importance of networks during seizure onset and propagation have

been acknowledged (Berg and Scheffer 2011) and this has led to a paradigm shift in

research and clinical practice. Epilepsy is no longer viewed as a sole GM disorder,

but seen in the context of the brain as a dynamic network. DTI data is frequently

used in clinics for neuroradiological assessment of gliomas (Inoue et al. 2005) and

may be used during pre-surgical evaluation in order to avoid damage to WM tracts

connecting eloquent cortex (Anastasopoulos et al. 2014, Bello et al. 2008), but DTI

has not yet found application in the clinical assessment of TLE to determine

disrupted WM connectivity. In order to achieve this, it is necessary to apply

quantitative tractography techniques. This method has been applied in epilepsy

research and requires a trained individual to make time-consuming measurements,

while more recent techniques allow automated measurements. Additionally, rather

than being limited to diffusion values extracted from whole tracts, this method allows
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along-the-tract (waypoint) diffusivity measurements. It is unknown whether the

automated tractography technique:

1. has any significance for seizure laterality,

2. could reveal correlations between diffusion values along temporal lobe tracts

and the extent of gross hippocampal volume loss,

3. could reveal correlations between diffusion values extracted using whole /

waypoint tract analysis and any clinical variables such as age of onset,

duration and seizure frequency,

4. could reveal correlations between diffusion values extracted using waypoint

tract analysis with postoperative seizure outcomes.

Given that automated tractography techniques provide substantial benefits for

analyzing structural connectivity in a time-efficient, reproducible and reliable way

over manual approaches, it is important to implement automated analysis

approaches. Once their usefulness has been established through scientific research,

these techniques may also be potentially readily implemented in clinical settings.

Although it is important to assess the underlying dynamic pathobiological process

underlying TLE with associated HS, the relationship between HA and WM tract

alterations has not yet been established (Rodriguez-Cruces and Concha 2015). For

these reasons, a study reported in this thesis was used to investigate this.

The above research questions were investigated in this thesis in an archival study,

which involved data collected on patients with TLE and associated HS and healthy

controls. The data for these studies had been acquired at a specialized epilepsy center

in Bonn, Germany and featured an extensive dataset where clinical variables and

post-surgical outcome were also documented. This allowed the characterization of

HA and temporal lobe tract abnormalities in patients with refractory TLE and to

investigate the relationship between these abnormalities, clinical variables and

postoperative outcome. Based on this data, multiple quantitative MRI studies were
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performed by the use of automated hippocampal subfield segmentation (Chapter 5)

and WM tractography analyses (Chapter 6).

1.6.2 Patients with MRI-negative Focal Epilepsy

Patients who do not present with an underlying lesion on MRI (non-lesional), are less

likely to achieve seizure freedom after epilepsy surgery: only 50% achieve short-

term seizure freedom (Cohen-Gadol et al. 2005, Khan et al. 2014). In these patients

with non-lesional epilepsy as determined by MRI, pre-surgical evaluation may only

rely on other clinical assessments such as semiology, (invasive) inter-ictal EEG and

video-telemetry. It is therefore important to utilize the most advanced MRI protocols

and expert neuroradiological assessments during the diagnostic process (see Chapter

7) in order to identify potentially epileptogenic lesions (Von Oertzen et al. 2002). In

patients with presumed MRI-negative refractory focal epilepsy, it is important to

establish whether subtle lesions may be detectable on advanced MRI using

quantitative methods, so that the best surgical seizure outcomes can be attained after

surgery. FCD is a common lesion associated with medically refractory epilepsy

(Sisodiya 2004, Fauser et al. 2004) and often epileptogenic (Fauser and Schulze-

Bonhage 2006). Many automated quantitative whole-brain analysis approaches have

been employed to identify potentially epileptogenic lesions such as FCDs. However,

so far it remains unclear:

1. whether previously neuroradiologically diagnosed FCDs could also be

identified by a fully automated integrated testing tool based on statistical

significant differences of individual patients as compared to healthy controls

(only T1w data),

2. how a newly developed automated multi-modal quantitative lesion detection

technique compares to expert neuroradiological evaluation.

Although previous studies have promoted the use of automated voxel-based lesion

detection approaches, clinical usefulness remains limited due to the necessity for
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expert neuroradiologists to re-evaluate the identified sites for true presence of FCDs

(Huppertz 2013). Therefore, this thesis presents the results of a study conducted with

the aim of applying statistical significance testing in order to identify sites of FCD

and implement multi-modal statistical testing through the use of the novel automated

approach.

However, for the reasons presented in Section 1.6.1 it is important to extend studies

in epilepsy from GM to WM analysis through structural connectivity analysis using

DTI tractography. Automated DTI tractography provides substantial benefits over

manual tractography techniques (see Section 1.6.1 and Chapter 6), while the manual

approach is considered gold-standard in the absence of neuroanatomical data

(Wakana et al. 2007). Automated tractography techniques are being increasingly

employed in research as they are readily available for efficient use. However,

previous studies have failed to complete extended validation of these methods and it

is therefore important to establish:

1. whether the automated WM tract analysis provides similar whole tract

diffusion characteristics to manual tractography in patients with TLE,

2. whether manual and automated tractography reveal similar correlations

between diffusion values of whole tracts and any clinical variables such as

age of onset, duration and seizure frequency,

3. whether the automated tractography technique can reveal additional

information through along-the-tract analysis,

4. whether differences between patients with lesional and non-lesional TLE can

be detected using automated tractography.

Previous research has only investigated correlations of FA values extracted from

manual versus automated approaches (Yeatman et al. 2012). To date, no information

has been provided with respect to comparisons between automated and manual

tractography with relation to whole tract location and shape. Additionally, a study
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comparing diffusion characteristics of WM tracts in healthy controls and patients

with non-lesional and lesional TLE based on automated tractography techniques has

not yet been performed.

The above research questions on patients with non-lesional and lesional epilepsy

were investigated in this thesis through the use of prospectively collected data. The

data for these studies was acquired at the WCFT in Liverpool, United Kingdom and

involved healthy controls and patients with focal refractory epilepsy whose previous

MRI did not indicate any lesions. Based on this data, multiple quantitative MRI

studies were performed in order to implement a fully automated tool for the detection

of lesions in individual patients (Chapter 8) and to apply an automated tractography

technique to DTI data of healthy controls and patients with non-lesional and lesional

TLE in order to identify WM tract abnormalities between these groups (Chapter 9).
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2.1 Organization of Chapter 2

The aims of this thesis can be classified into two different general categories: (i) the

investigation of neuroimaging correlates of persistent postoperative seizures in

patients with TLE and associated HS undergoing amygdalahippocampectomy to

alleviate seizures and (ii) the application of a dedicated MRI epilepsy research

protocol and quantitative analysis in patients with 'non-lesional' intractable focal

epilepsy in order to increase the number of patients with MRI-visible lesions. For

both categories, novel automated tools have been implemented on two separate

datasets in order to allow time-efficient and reproducible group- and individual-

based analyses that are potentially adaptable to clinical settings. Wherever possible,

quantitative comparisons were made between automated and manual techniques.
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This chapter details the aims, materials, participants, methodology and objectives of

all individual studies. As there are two different datasets, the first subsections of

sections 2.2 and 2.3 introduce the relevant research questions and present the

associated demographic and clinical information. The participant characteristics and

details pertaining to MR sequences presented in Section 2.2 include information

from these publications: Keller et al. (2015a), Kreilkamp et al. (2017), Elkommos et

al. (2016). Sections 2.2.2.3 and 2.3.2.3 detail the methodology common to all

quantitative MRI studies. The final subsections of 2.2 and 2.3 present the study

objectives and hypotheses for the analysis specific to each individual study. The

objective of Chapter 2 is to provide an overview of all studies conducted within this

thesis and how they relate. More detailed information about MR sequences, MR

analysis methods, their development and context within the clinical and scientific

literature can be found in Chapter 4.

2.2 Refractory Temporal Lobe Epilepsy with Hippocampal Sclerosis

2.2.1 Introduction

The objective of this study was to investigate the relationship between quantitative

preoperative MR imaging markers, clinical data and post-surgical outcomes in order

to assess whether preoperative imaging of the hippocampal formation can predict

surgical outcomes (Study 1) and whether WM tract disruption is related to HS,

clinical characteristics of the disorder and postoperative outcome (Study 2). These

investigations were performed using T1w and T2 Short TI Inversion Recovery

(T2STIR) data for hippocampal structural analysis and diffusion tensor imaging

(DTI) data was analyzed to reveal any disruption of diffusion metrics in WM tracts.
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2.2.2 Methodology

2.2.2.1 Materials and Participants

Imaging data was acquired between July 2006 and January 2013 at the Life and

Brain Center and the University Hospital Bonn, Germany using a 3T Magnetom Trio

MR system (Siemens, Erlangen, Germany) with an eight-channel head coil. The

study was approved by the local ethical board. All participants provided written

informed consent (Keller et al. 2015b). Demographic and clinical data is presented in

Table 2.1.

Variable
Patients with

left TLE
Patients with

right TLE
Controls

N 73 40 58

Mean age  (SD), years 40.6 (12.9) 41.4 (14.4) 39.6 (13.4)

Sex (female/male) 46/27 16/24 34/24

Mean age at diagnosis  (SD), years 17.1 (12.1) 17.3 (12.5) N/A

Mean duration of epilepsy (SD), years 23.4 (13.6) 23.7 (16.1) N/A

History of FC (no/yes) 36/21 22/10 N/A

History of SGTCS (no/yes) 31/28 20/9 N/A

Seizure frequency (SD), months 9.2 (15.7) 7.5 (16.8) N/A

ILAE I / ILAE II-VI 26/29 20/8 N/A

T1w 73 40 58

T2STIR 70 36 N/A

DTI 41 23 44

Postoperative T1w 34 18 N/A

Table 2.1. Demographic, clinical and MR imaging information for all participants of Studies
1 & 2.
Details of individual patients/controls can be found in Table 2.A (Appendix: Raw Data).
TLE = temporal lobe epilepsy; SD = standard deviation;  SGTCS = secondary-generalized
tonic-clonic seizure; FC = febrile convulsions.

The study comprised 113 patients with well-characterized mesial TLE and

radiological evidence of HS (mean age 40.9 years (SD 13.3); 62 female; 73 with left
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TLE, 40 with right TLE) who were being evaluated for suitability for neurosurgery at

University Hospital Bonn, Germany.

Each patient underwent a detailed pre-surgical program, including comprehensive

seizure semiology assessment, MRI, neuropsychological assessment, interictal

electroencephalography and if clinically necessary, additional invasive

electrophysiological recordings, as reported recently (Keller et al. 2015a, Kral et al.

2002). All patients showed evidence of a unilateral temporal lobe seizure onset with

concomitant ipsilateral HS. Conventional indicators of HS were diagnosed by an

experienced neuroradiologist (Keller et al. 2015a). No patient had bilateral HS, or

evidence of a potential secondary epileptogenic lesion. Age of patient, age at

diagnosis of epilepsy, duration of epilepsy, history of childhood febrile convulsions

(FC) and incidence of secondary-generalized tonic-clonic seizures (SGTCS) were

recorded for all patients. Patients who underwent temporal lobe surgery

(standardized amygdalohippocampectomy) received postoperative follow up for a

period of up to two years after surgery and outcome assessment using the ILAE

outcome classification system (Wieser et al. 2001). 58 age- and sex-matched controls

without any neurologic or psychiatric history (mean age 39.6 (SD 13.4); 34 female)

were also recruited into the study. 

2.2.2.2 Applied MR Sequences

T1w magnetization-prepared rapid acquisition gradient echo (MPRAGE) images

were acquired (160 slices, repetition time [TR]=1,300 ms, inversion time [TI]=650

ms, echo time [TE]=3.97 ms, resolution=1.0 x 1.0 x 1.0 mm, flip angle=10°,

acquisition time = 7:00 mins) for all controls and patients prior to surgery. A high in-

plane resolution T2STIR sequence in the coronal plane angulated perpendicular to

the long axis of the hippocampus (40 slices, TR = 5600 ms, TI = 100 ms, TE = 18

ms, resolution 0.45 x 0.45 x 2.0 mm, flip angle 0°,  acquisition time = 3:40 min) was

acquired for all patients (Elkommos et al. 2016). Postoperative T1w MPRAGE
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images were also acquired for 52 patients. Furthermore, diffusion-weighted images

(DWI, single shot spin-echo planar imaging sequence, TR=1,200 ms, TE=100 ms, 72

axial slices, resolution=1.726 x 1.726 x 1.7mm, no cardiac gating, GRAPPA

acceleration factor=2.0; acquisition time = 9:30 min) were acquired for 64 patients

(preoperatively) and 44 controls within the same scanning session. Diffusion

gradients were equally distributed along 60 directions (b-value=1000 s/mm2).

Additionally, seven datasets with no diffusion weighting (b-value=0 s/mm2) were

acquired initially and interleaved after each block of ten DWI.

2.2.2.3 Quantitative MRI Analysis

All image pre-processing and analysis was performed on an iMAC running OSX

Yosemite 10.10.5. Freesurfer version 5.3 was used for initial T1w-based brain

s e g m e n t a t i o n ( F i s c h l 2 0 1 2 ) a n d F r e e s u r f e r v e r s i o n 6 .0

(https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields, Iglesias et al.

2015) subsequently allowed the extraction of high-resolution hippocampal subfield

volumes based on T2STIR (Study 1). DTI pre-processing was achieved by following

the ENIGMA pre-processing steps (http://enigma.ini.usc.edu/protocols/dti-

protocols/) with FSL (Smith et al. 2004) and was used as an input to TRACULA

version 1.56 (Yendiki et al. 2011) within Freesurfer version 5.3 for probabilistic tract

reconstruction (Study 2). Hippocampal volumes corrected for intracranial volume

(ICV) extracted through Freesurfer version 5.3 were also used in this study for

clinical correlations. Statistical analysis for both studies was performed using

MATLAB 2015b.

2.2.3 Objectives and Hypotheses

2.2.3.1 Automated Quantitative MRI of the Hippocampus: Study 1

The aim of this study was to investigate the relationship between the preoperative

volumes of hippocampal subfields volumes and postoperative seizure outcome in

patients with refractory TLE using a novel automated MRI multi-sequence
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segmentation technique based on T1w and T2STIR data. The automated

hippocampal segmentation algorithm was used to identify 12 subfields in each

hippocampus and to  investigate whether volumes of subfields were related to the

side of seizure onset and postoperative outcomes. The detailed methodology and all

results of this study are presented in Chapter 5.

Objective 5.1

To investigate the relationship between preoperative hippocampal subfield

volumes and clinical and surgical outcomes in patients with refractory TLE

using a new MRI multi-sequence segmentation technique. It was hypothesized

that post-surgical outcome was related to preoperative hippocampal subfield volume.

For example, as ILAE HS type 1 is manifest as predominant loss of neurons and

gliosis in CA1 and CA4 subfields and has been associated with an early seizure onset

and improved seizure outcome after temporal lobe surgery (Blümcke et al. 2013), it

was hypothesized that atrophy in these regions would be related to favorable post-

surgical outcomes. Furthermore, as HS is the result of an initial precipitating injury

(Pitkänen and Lukasiuk 2011, Blume 2006, Goldberg and Coulter 2013), it was

assumed that clinical features such as age of onset, duration of epilepsy and seizure

frequency would not be related with the degree of atrophy of gross hippocampal

volume or of any subfields.

Objective 5.2

To determine the relationship between hippocampal subfield volumes and semi-

quantitative hippocampal internal architecture (HIA) ratings. I t was

hypothesized that the semi-quantitative HIA ratings (visual scoring assessments

representing a marker for loss of internal hippocampal architecture, an important

feature of HS (Elkommos et al. 2016)) would correlate with whole hippocampal and

subfield volumes.
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2.2.3.2 Automated Quantitative MRI of Temporal Lobe Tracts: Study 2

A detailed understanding of WM tract alterations in patients with TLE is important

as it may provide useful information for likely side of seizure onset, cognitive

impairment and postoperative prognosis. Importantly, WM tract analysis can provide

quantitative information not visible to the human eye from raw (diffusion) MRI as an

addition to conventional structural MRI (e.g. T1w). Most frequently, quantitative

DTI studies have relied on manual reconstruction of tract bundles. In the present

study, an automated WM tractography analysis approach to quantify temporal lobe

WM tract alterations in TLE was used to determine the relationships between tract

alterations, the extent of HA and clinical characteristics of the disorder. Alterations

of DTI scalar metrics along WM tracts were investigated with respect to

hippocampal volume. The relationships between WM tract alterations and duration

of epilepsy, age of onset of epilepsy, seizure burden (defined as a function of seizure

frequency and duration of epilepsy) and post-surgical outcomes were also explored.

The detailed methodology and all results of this study are presented in Chapter 6.

Objective 6.1

To investigate diffusion alterations of whole temporal lobe WM tracts in

patients with left and right TLE relative to healthy controls using an automated

probabilistic tractography approach. It was hypothesized that the automated

method can identify diffusivity changes (in FA and MD values of temporal lobe WM

tracts) relative to controls and among the two patient groups.

Objective 6.2

To investigate alterations along WM tracts using waypoint comparisons for

ipsilateral and contralateral tracts between patient groups based on side of

seizure onset and other clinical factors (e.g. history of febrile seizures). It was

hypothesized that WM tract diffusivity measures in patients are more extensively

affected ipsilaterally and in the presence of unfavorable clinical factors such as
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greater seizure frequency, longer epilepsy duration, history of SGTC/febrile seizures,

and earlier age of onset.

Objective 6.3

To determine the relationship between regional WM tract diffusivity and the

degree of  hippocampal (subfield) atrophy in patients with TLE. As HS is seen as

an initial precipitating injury (Pitkänen and Lukasiuk 2011), it was hypothesized that

no relationship between hippocampal volume and WM tract diffusion characteristics

would be found, but rather that regional WM tract diffusivity is mediated by

unfavorable clinical factors of the disorder such as epilepsy duration and age of

onset.

Objective 6.4

To investigate whether patients with postoperative seizures and those who were

rendered seizure free after surgery could be differentiated based on

preoperative WM tract diffusivity measures. It was hypothesized that patients

w i t h persistent postoperative seizures would have more extensive abnormal

diffusivity measures in ipsi- and contralateral temporal lobe tracts (such as the

uncinate fasciculus (UF) and cingulum angular bundle (CAB)) than patients who

were rendered seizure free.

2.3 Focal 'Non-lesional' and Lesional Epilepsy

2.3.1 Introduction

The overall aim of this study was to identify possible epileptogenic lesions by virtue

of expert neuroradiological reassessment of an epilepsy research dedicated MRI

protocol (Study 3) and automated quantitative analysis (Studies 4 and 5). T1w, T2w,

T2FLAIR and DTI data were used to automatically quantify structural changes in

individual patients relative to healthy controls, which were validated against
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neuroradiological assessment (Study 4). An automated tractography approach was

used to determine WM tract diffusivity abnormalities in patients with TLE on a

group level (Study 5), which was compared to a manual tractography technique.

2.3.2 Methodology

2.3.2.1 Materials and Participants

The study was conducted at the WCFT, Liverpool, UK between November 2014 and

April 2016. A 3.0 Tesla General Electric Discovery MR750 scanner (Waukesha, WI,

USA) with a 32-channel head coil was used for acquisition of MR images. The study

was approved by the ethical board of the University of Liverpool (Liverpool Central

REC, 14/NW/0332, University of Liverpool sponsorship, UoL001021) and National

Health Service R&D with a National Institute of Health Research adoption (The

Walton Centre NHS Foundation Trust, RG127-14) for the application of MRI

scanning and collection of previous clinical data in patients with refractory focal

epilepsy. All participants provided written informed consent. 

43 patients were recruited on the basis of having a focal onset of seizures, being

refractory to medical treatment and showing no lesion on previous clinical MR

imaging. The mean age of patients was 31.6 (SD=11) years and 26 of these were

female (Table 2.2). Most patients had either a unilateral temporal (N=24) or

unilateral frontal lobe (N=13) onset. Two participants had a bilateral (one with a

temporal and the other with a frontal onset), two had a temporal-parietal, one patient

had a frontotemporal and another had an unknown localization of seizure onset. 42

controls were recruited on the basis of having no neurological or psychiatric

disorders. Mean age of controls was 32.3 (SD=8.7) years (Table 2.2).

2.3.2.2 Applied MR Sequences

Acquisition comprised a 3D axial T1w fast-spin-gradient (FSPGR) image with

Phased Array Uniformity Enhancement (PURE) signal inhomogeneity correction
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(140 slices, TR=8.2 ms, TI=450 ms, TE=3.22 ms, flip angle=12, with 1mm isotropic

voxel size, acquisition time: 3:48 mins) for all participants. Axial 3D T2w CUBE

images (with PURE correction, 312 slices, TR=2500 ms, TI = N/A, TE=71.2 ms, flip

angle=90, with 0.5 mm isotropic voxel size) and 3D sagittal CUBE T2 fluid-

attenuated inversion recovery (T2FLAIR) with PURE (312 slices, TR=6000 ms,

TI=50 ms, TE=127.1 ms, flip angle=90 with 0.5mm isotropic voxel size) were also

acquired.

Variable
Patients with

left TLE
Patients with

right TLE
Patients with

other foci
Controls

N 16 8 19 42

Mean age  (SD), years 32.1 (11.4) 31.8 (12.3) 31.1 (10.7) 32.3 (8.7)

Sex (female/male) 10/6 5/3 11/8 25/17

Mean age at diagnosis (SD), years 15.8 (11.4) 18.1 (11.6) 14.2 (9.3) N/A

Mean duration of epilepsy (SD), 

years
16.4 (10.7) 13.7 (15.5) 16.9 (10.3) N/A

History of febrile convulsions 

(no/yes)
12/4 7/1 18/1 N/A

History of SGTCS (no/yes) 5/11 3/5 3/16 N/A

History of brain infection (no/yes) 16/0 4/4 17/2 N/A

Complications at birth (no/yes) 16/0 6/2 17/2 N/A

Seizure frequency (SD), months 4.9 (8.9) 3.4 (4.7) 7.3 (12.1) N/A

Table 2.2. Demographic and clinical information for all participants of Studies 3-5.
Patients with other onsets included (14 patients with a frontal lobe onset and five patients
with other onsets: see text). All participants underwent the same imaging protocol. Details of
individual patients/controls can be found in Table 2.B (Appendix: Raw Data). TLE =
temporal lobe epilepsy; SD = standard deviation; SGTCS = secondary-generalized tonic-
clonic seizure.

It took 3:18 minutes to acquire the T2w image and 7:27 minutes to acquire the

T2FLAIR CUBE image. DTI data were acquired using a 60-direction spin echo pulse

sequence (66 slices, TR = 8000ms,  TI = N/A, TE = 82 ms, flip angle = 90, voxel
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size = 1x1x2 mm, no cardiac gating, with ASSET, b-value = 1000 s/mm2; FOV =

256 mm) with six b0 images without diffusion weighting. The acquisition time was

8:56 minutes. Additionally, a T1FLAIR coronal image (52 slices, TR = N/A, TI =

920 ms, TE = 9.94 ms, flip angle = 111, voxel size = 0.4x0.4x3mm) and a T2FLAIR

coronal image (40 slices, TR = 12000 ms, TI = 2713 ms, TE = 98.7 ms, flip angle =

160, voxel size = 0.86x0.86x4 mm) were acquired for patients (diagnostic purposes)

and controls. Acquisition times for these coronal images were four minutes for

T1FLAIR and 3:24 minutes for T2FLAIR. Every MR image acquired within this

study was obtained for all participants (patients and controls) and assessed by a

consultant neuroradiologist at the WCFT (Study 3). One participant (control) had to

be excluded from further analysis due to a structural lesion (meningioma) and

another dataset had to be excluded as this control had received a different T1w

sequence (rather than the T1w FSPGR). Resting-state functional MRI, Arterial-Spin-

Labelling and Susceptibility-weighted Angiography imaging were also acquired

within this study but not analyzed within this thesis.

2.3.2.3 Quantitative MRI Analysis

For Study 4, image pre-processing and statistical analysis was performed on an

iMAC running OSX Yosemite 10.10.5 and Human Connectome Project (HCP)

workbench software (Glasser and Van Essen 2011) was used to automatically set the

origin of the T1w image to the anterior commissure. DTI data was pre-processed

using the ENIGMA preprocessing steps to mitigate effects of image artifacts

(http://enigma.ini.usc.edu/protocols/dti-protocols/) using FSL (Smith et al. 2004).

Finally, image pre-processing and statistical testing was achieved through the

computational anatomy toolbox (CAT12) within Statistical Parametric Mapping

(SPM12; Wellcome Department of Cognitive Neurology, www.fil.ion.ucl.ac.uk)

using an automated in-house MATLAB 2015b script.

For Study 5, image pre-processing and statistical analysis was performed on a
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MacBookPro laptop running OSX Yosemite 10.10.5. Diffusion Toolkit version 0.6.3

(http://www.trackvis.org) was used for manual tractography and AFQ (Yeatman et

al. 2012) was used for automatic deterministic tractography on the previously pre-

processed DTI data from Study 4. Statistical analysis was performed using

MATLAB 2015b.

2.3.3 Objectives and Hypotheses

2.3.3.1 Neuroradiological Assessment and Clinical Findings: Study 3

Patients with epilepsy who were deemed to be MRI-negative by virtue of earlier non-

specialist MRI assessment were included in the study. Localization of seizure onset

had been evaluated using seizure semiology and EEG. These patient cases were re-

evaluated with the present protocol using diagnostic assessment of multiple MRI

sequences by an experienced neuroradiologist with specialist experience in detecting

epileptogenic lesions. Wherever possible, findings were related to the etiology and

history of the patient and possible correlations were discussed. Clinical reports were

gathered throughout the whole duration of the study and the relevant information was

updated accordingly. The detailed methodology and all results of this study are

presented in Chapter 7.

Objective 7.1

The ultimate aim of this study was to evaluate whether a dedicated epilepsy

research protocol with expert image re-evaluation can increase identification of

patients with lesions. The earlier MRI was included in an evaluation of lesion

conspicuity to qualitatively re-evaluate factors likely to have contributed to the new

presentation of a lesion. It was hypothesized that multiple factors such as image

quality, lesion conspicuity on standard MRI (not specialized in depicting epilepsy-

related lesions) and neuroradiologists' expertise in identifying epilepsy-related

lesions contribute to varying results of MRI reports.
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2.3.3.2 Automated Epileptogenic Lesion     Detection: Study 4

The objective of this study was similar to the preceding study, however rather than

assessing images by expert visual assessment, an automated quantitative voxel-based

lesion detection technique was used. Voxel-based parametric testing was used to

determine individual differences in feature maps between individual patients and the

cohort controls. Detailed methodology and results are presented in Chapter 8. 

Objective 8.1

The objective of this study was to implement and automatize a previously

developed lesion detection technique and to apply this to T1w images of patients

with cryptogenic focal epilepsy. It was hypothesized that neuroradiologically

identified lesions by virtue of the dedicated epilepsy research MRI could also be

detected using the automated voxel-based approach based on T1w images.

Objective 8.2

A further objective was to incorporate other MR images into the automated

voxel-based approach in order to improve sensitivity and specificity of the

approach. It was hypothesized that the automated tool in conjunction with

multimodality testing (with the incorporation of T2w/T2FLAIR/DTI data) can

identify previously undetected epileptogenic lesions while reducing the false positive

rate based on multimodal testing.

2.3.3.3 Automated Tract Reconstruction: Study 5

The aim of this study was to identify diffusion alterations in WM tracts such as the

fimbria-fornix (FF), uncinate fasciculus (UF) and parahippocampal white-matter

bundle (PHWM) in patients with cryptogenic focal epilepsy using an automated

technique, which could be potentially implemented in a clinical setting. The

automated tractography technique was employed in controls, patients with TLE and

HS (as established by the neuroradiological assessment based on the epilepsy
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dedicated research MRI) and patients with TLE without HS to explore group

differences between controls and patient groups. It was investigated whether WM

diffusivity changes were related to clinical variables including age of onset of

epilepsy, duration of epilepsy, seizure frequency and presence of SGTCS.

Furthermore, a comparison of the automated tractography approach and a manual

tract reconstruction technique was performed. Methodological details and results of

this study are presented in Chapter 9.

Objective 9.1

The first objective was to investigate the agreement between manually and

automatically generated tracts in patients with TLE. Furthermore, consistency

between the automated and manual approaches with respect to whole tract

diffusivity metrics (FA/MD), detection of diffusivity abnormalities in tracts of

patients with TLE and clinical correlations with diffusion metrics were

investigated. It was hypothesized that manual and automated methods produce tracts

of the same shape, volume and at similar locations and in order to assess this, the

Dice coefficient was computed. Moreover, it was hypothesized that DTI-metrics

extracted from WM tracts using the two different approaches are consistent (high

correlations of FA/MD values across approaches) and that significant group-wise

results of whole-tract diffusion measures arising of comparisons between the two

patient groups and controls were also comparable. It was hypothesized that AFQ

would identify the same number of group-wise differences and correlations.

Objective 9.2

The second objective of this chapter was to investigate whether along-the-tract

diffusivity analysis of FF, UF and PHWM within the automated tractography

approach can reveal correlations with clinical variables and group differences

between patients with left/right TLE, those with HS, those without and controls

and provide more detailed information than the manual approach. It was
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hypothesized that the along-the-tract analysis offered within the automated

tractography approach would confirm previous group-wise findings, detect

correlations with clinical variables and that it could reveal more detail in diffusivity

alterations regarding correlations with clinical variables such as age of onset of

epilepsy and epilepsy duration and when investigating diffusivity alterations in

patients with HS, those without and controls.
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3.1 Organization of Chapter 3

The two most frequent causes of medically refractory focal epilepsy are HS and

malformations of cortical development such as FCD, which forms the largest

subgroup of these type of lesions (Martin et al. 2015). Together, HS and FCD

constitute about 50% of all surgical pathology in patients affected by epilepsy

(Miyata et al. 2013). In order to understand the underlying structural and functional

brain alterations in patients with epilepsy presenting with HS and/or FCD, the

present chapter seeks to present background information on healthy brain structure,

function and development. Chapter 3 provides an overview of the gross cerebral

neuroanatomy, the basics of brain development with a special focus on neuronal

migration, the temporal lobe and the major structural connections of the temporal

lobe with other areas of the brain. Particular emphasis is given to the temporal lobe

and hippocampus as most patients investigated in this thesis have TLE with

associated HS. Another subset of investigated patients presented with FCD. The
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presence of subtle dysplastic lesions in patients with focal epilepsy and previous

unremarkable MRI and an initial precipitating injury (e.g. HS) in patients with TLE

may facilitate the development of epileptogenic brain structures or networks. The

background of neurodevelopment, neuroanatomy and cytoarchitecture relevant for

understanding the primary pathologies in intractable focal epilepsy (i.e. HS and

FCD) is presented within this chapter as an understanding of healthy structure and

function may facilitate the investigation of underlying pathological mechanisms

found in focal epilepsy.

3.2 Neuroanatomy of the Cerebrum

3.2.1 Divisions

The nervous system is composed of the central and peripheral nervous system. While

brain and spinal cord form the central nervous system, the peripheral nervous system

is formed by all remaining nerves and nerve cell clusters (ganglia). The brain is

composed by the cerebrum consisting of the two hemispheres with cerebral cortex

and respective underlying WM, the diencephalon (formed by the thalamus and

hypothalamus), and the cerebellum and brain stem. The downward continuation of

the brain stem constitutes the spinal cord. There are four major divisions of the

cerebrum: the frontal, temporal, parietal and occipital lobes. Major cortical sulci

appearing as furrows in the cortical surface separate these lobes: ventrally, the frontal

lobe is separated from the temporal lobe by the Sylvian fissure, while the central

sulcus separates the frontal lobe at the more anterior position from the parietal lobe at

the posterior aspect of the brain and caudally the parietal-occipital sulcus denotes the

limits between the parietal, temporal and occipital lobe (Figure 3.1).
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Figure 3.1. Left lateral view of the brain showing the four lobes of the left cortical
hemisphere of the cerebrum, brain stem (light brown) and cerebellum (brown) (from Human
Anatomy Wiki 2017).
Ventrally, the Sylvian fissure separates the frontal lobe (orange) from the temporal lobe
(blue), while caudally this most anterior lobe (frontal lobe) is separated from the parietal lobe
(green) by the central sulcus. The occipital lobe is situated at the very posterior end of the
brain (red area), caudal to the temporal and parietal lobes and separated via the parietal-
occipital sulcus. Separations between lobes are also indicated with the red lines. 

Medially, an additional lobe is often described: the limbic lobe (Duvernoy 2005),

which includes the thalamic nuclei and temporal and frontal lobe structures (Figure

3.2).
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Figure 3.2. Medial aspect of right limbic lobe with the hippocampus (from Duvernoy 2005).
The inset (modified from Krebs et al. 2014) shows the limbic lobe (white) with relation to
frontal (orange), temporal (yellow), parietal (green) and occipital (pink) lobes.
Hippocampal body:

1. Dentate gyrus (margo denticulatus)
2. Cornu ammonis
3. Fimbria placed upwards (arrows) to

show cornu ammonis

Hippocampal head (uncal part):
4. Apex of the uncus
5. Band of Giacomini (uncal extension of

margo denticulatus (1))
5' Uncal sulcus

6. Gyrus uncinatus

The anterior part of the uncus, belonging to the
parahippocampal gyrus (piriform lobe) is
composed of:

7. Semilunar gyrus
8. Prepiriform cortex
9. Gyrus ambiens
10. Entorhinal area
11. Parahippocampal gyrus
12. Collateral sulcus

Hippocampal tail:
13. Gyri of Andreas Retzius (intralimbic gyrus)
14. Fasciola cinerea prolonging the dentate gyrus
15. Gyrus fasciolaris, extension of the cornu
ammonis
16. The gyrus subsplenialis prolongs the gyrus
fasciolaris and is itself continued by the indusium
griseum (17) on the dorsum of the corpus callosum
(18)
19. Isthmus
20. Anterior calcarine sulcus
21. Cingulate gyrus
22. Cingulate sulcus
23. Subcallosal area
24. Anterior perforated substance
25. Anterior commissure
26. Fornix
27. Crus of the fornix

The dotted area indicates the limbic lobe. The a-a
line indicates the plane of the section of Figure
3.8.
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Specifically, the limbic system comprises the hippocampus, fornix, mammillary

bodies (situated at the anterior end of the fornix), anterior thalamus (an almond-

shaped structure situated immediately below the fornix), cingulum and the

parahippocampal gyrus (Mark et al. 1993, Duvernoy 2005, Friedman and Chou

2007).

All lobes have different functions, which have been investigated in fMRI and lesion

studies. The frontal lobe is responsible for higher executive functions (e.g. critical

thinking/judgement, attention and planning). Evidence for some of these functions

has been found most spectacularly by the investigation of Phineas Gage, a railway

worker who suffered a severe injury to his frontal lobe after an accident where an

iron tamping rod pierced his face, skull and brain. Shortly after the accident and his

recovery, Gage's contractors found that “the equilibrium or balance … between his

intellectual faculties and animal propensities, seems to have been destroyed. He is

fitful, irreverent, indulging at times in the grossest profanity …, devising many plans

of future operation, which are no sooner arranged than they are abandoned in turn for

others appearing more feasible” (Harlow 1868). The case of Phineas Gage illustrated

to the doctors at the time that damage to the frontal lobe may cause dramatic changes

in personality and behavior, while sensation, movement and consciousness remain

intact (Mesulam 2002). The frontal lobe is the last lobe to mature in children and

WM development in this lobe lags behind other cortical areas (Huttenlocher 1990,

Mrzljak et al. 1990). Fuster (2002) has stated that the intellectual maturation depends

on the ability to organize behavior and cognition into goal-directed structures of

action and attention, language, and creativity are all dependent on these

organizational skills. Various fMRI studies have confirmed that regions within the

frontal lobe play a pivotal role in emotional processing (Quarto et al. 2016), planning

(Novais-Santos et al. 2007, Boghi et al. 2006), critical thinking (Cao et al. 2016) and

attention (Fazio et al. 2016). Among other things, the temporal lobe processes

auditory input (Squire et al. 2001), with one of its major functions being language
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comprehension (Jackson et al. 2005) and memory (Squire et al. 2004, Squire et al.

2001). The functions of the hippocampus, one of the most important structures of the

brain, which lies within the temporal lobe, are discussed in more detail in subsection

3.3. While the parietal lobe concerns itself with tactile, motor functions and sensory

input (Fogassi and Luppino 2005, Penfield and Rasmussen 1950, Culham and

Valyear 2006), the occipital lobe integrates visual information received through the

optic nerves (Toosy et al. 2004) and structures of the limbic lobe are activated during

processing of emotions (Lee et al. 2016), identification of danger (Surguladze et al.

2003) and formation of new memories (Friedman and Chou 2007). Proper

anatomical development of the lobes with their complex structures is critical for their

correct functioning.

3.2.2 Brain Development

According to Barkovich (2005), the development of the cerebral cortex is a stepwise

process and includes both sequential and simultaneous steps. The individual steps

necessary for brain development are regulated by genes and their respective

expression. Many malformations of cortical development are caused by genetic

defects, map to certain chromosomes (Dobyns et al. 1996, Piao et al. 2002, Guerrini

and Marini 2006) and may cause epilepsy (Kuzniecky 2015, Barkovich et al. 2012,

Barkovic et al. 1997). 

Brain development begins with neurulation, the process during which the neural

plate develops into the neural tube. At about 20 days of gestation, the three major

developmental divisions of the brain (fore-, mid- and hindbrain) can be distinguished

(Barkovich 2005). Eventually the forebrain develops into the telencephalon

(containing the two cerebral hemispheres) and diencephalon (containing thalamus,

hypothalamus, epithalamus and subthalamus). The midbrain develops into the

cerebral peduncle and superior and inferior colliculus situated within the brain stem

while the hindbrain later develops into the medulla oblongata, pons and cerebellum.

After neurulation and after four weeks of gestation, neuronal proliferation of
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precursor cells occurs. These will constitute the cytoarchitecture of the cerebral

cortex once proliferation and subsequent migration of these new neurons has

completed (see Figure 3.3 for a timeline and Figure 3.4 for a summary on these cell

stages). During migration, programmed neuronal cell death commences (apoptosis),

primarily affecting proliferating precursor cells (Lossi and Merighi 2003, Blaschke et

al. 1996). The density of synapses grows and the process of synaptogenesis begins in

the 19th week of gestation. Finally, in the 29th week of gestation, while migration,

apoptosis and synaptogenesis are still in progress, myelination begins and continues

into early adulthood (Tau and Peterson 2010).

Figure 3.3. Stages of brain development (from Tau and Peterson 2010).
A timeline of major developmental events occurring in the development of the human brain.
Six stages are shown.
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Figure 3.4.  Cortical development (from Poduri et al. 2013)
(A) A neuroepithelial cell (red) at the VZ serves as progenitor for both a pyramidal neuron
(green-blue) as well as a radial glial cell (gold). (B) A newly differentiated neuron (blue)
migrates along a radial glial fiber. (C) Neurons (blue) continue to migrate along the outer
radial glial cells' process (brown) as intermediate progenitor cells (small yellow) form. (D)
Intermediate progenitor cells begin to generate neurons (blue). (E) The progenitor cells in the
ventricular zone begin to give rise to astrocytes (dark green). Interneurons (purple) generated
elsewhere migrate tangentially. CP = cortical plate; IZ = intermediate zone; VZ = ventricular
zone; oRG = outer radial glial (outside of VZ).

3.2.3 Malformations of Cortical Development

Some epilepsies may be due to failed neuronal migration causing malformations of

cortical development, which presents as abnormal neuronal position and

differentiation from GM (Barkovich et al. 2005). This can result in FCDs (Barkovich

et al. 2012), which were initially described by Taylor et al. (1971) and have later
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been linked to abnormal stem cell development (Barkovich et al. 1997). According to

Barkovich et al. (2012) certain FCDs can be classified as ‘malformations secondary

to abnormal post-migrational development’ since some evidence suggests that injury

to the cortex during cortical development may cause FCDs. Correct development of

the cerebral cortex's laminar structure is essential for healthy brain development,

meaning that any failure may cause malformations, which in turn may lead to mental

impairment and/or epilepsy. The neurons of the neuronal tube are called precursor

cells or neural stem cells and these undifferentiated cells undergo symmetric mitotic

divisions (Ronan et al. 2013), generating new stem cells or neuroblasts that will

eventually differentiate into neurons and glial cells (Guerrini and Marini 2006,

Poduri et al. 2013, Fernandez et al. 2016). After the continued division of many

precursor cells, called the proliferation stage (Guerrini and Marini 2006, Tau and

Peterson 2010), the ventricular zone is established. Apical radial glial cells, serving

as primary progenitor cells, generate neurons through asymmetric division directly

and indirectly through secondary intermediate progenitor cells and basal radial glial

cells (Fernandez et al. 2016, Barry et al. 2014). During the following migration stage

some neurons leave this zone to build the marginal zone at the pial surface, while the

intermediate neurons differentiate into different types of neurons, giving rise to the

intermediate zone. The cortical layer is built in an inside-out fashion, where every

successive generation of neurons surpasses another (Guerrini and Marini 2006).

There are three modes of neuronal migration: radial (along the fibers of the radial

glial cells) including somal translocation (only the soma of the neuron is moved),

tangential (interneurons moving away from other parts of the brain), and multipolar

migration (Cooper 2014). According to Nadarajah and Parnavelas (2002), somal

translocation is the most common mode of migration during early cortical

development, while radial migration occurs more often in the more mature cortex

and multipolar migration is prevalent when neurons enter the intermediate zone

(Cooper 2014). Cortical organization within the six cortical layers is achieved

through apoptosis and synaptogensis, until each layer contains different types of
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neurons with distinct connections and functions (Guerrini and Marini 2006). At the

earliest stages, the cortical plate only consists of two to three cell bodies (~15 μm),

however, eventually the mature cerebral cortex spans two to four mm in thickness

(Poduri et al. 2013). Genetic mutations can cause disorders of neuronal migration

and cerebral cortical organization through the abnormal neuronal and glial cell

differentiation (Barkovich et al. 1997, Guerrini and Marini 2006, Barkovich et al.

2005). Thus neurons of abnormal size and morphology are generated during the

proliferation stage (Guerrini and Marini 2006, Figure 3.5).

Figure 3.5. FCD as a result of suspected somatic mutation in a progenitor cell (from Poduri
et al. 2013).
Healthy progenitor cells (bottom row, blue) give rise to healthy neurons and glial cells (top
five layers, blue), while a progenitor cell with a somatic mutation (red) generates unhealthy
cells (top five layers, red), thus mutated cells are interspersed with healthy neurons and glial
cells. The respective produced funnel-shaped lesion in the adult brain can be detected in the
left frontal lobe on the axial T2w MRI as a FCD characterized by GM thickening, GM/WM
blurring and a transmantle sign reflecting the funnel shape of the developmental process.
However, the right frontal lobe and other regions of the brain present a sharp GM/WM
boundary, healthy GM thickness and no transmantle sign. R = right.

Barkovich et al. (2005) have classified malformations of cortical development into

three categories based on the developmental stage at which the malformation

occurred: (1) cortical dysplasia (FCD, as shown in Figure 3.5) during neuronal and
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glial proliferation or apoptosis, (2) heterotopia (presence of GM within WM) as a

result of abnormal neuronal migration, and (3) polymicrogyria (multiplication of

small gyri in certain areas) occurring after late cortical migration and organization.

Examples of these malformations with the two subtypes of heterotopia can be found

in Figure 3.6. Other malformations of cortical development not shown here include

schizencephaly, characterized by a cleft in the brain, literally “split brain” and

lissencephaly, “smooth brain”. Each of these malformations arise from interferences

with these three developmental stages and may display varying degrees of

epileptogenicity (Palmini 2011).

Figure 3.6. Various types of malformations of cortical development shown on conventional
axial T1w MR images in four different patients.
A detailed description of the images can be found in the right panel. R = right.

The first widely accepted uniform terminology regarding pathological classification
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of FCDs was described by Palmini et al. (2004). However, this has now been revised

by an ILAE task force (Blümcke et al. 2011): Microscopically identifiable FCDs may

present either as radial (FCD type Ia) or tangential (FCD type Ib) dyslamination of

the neocortex in one or multiple lobes. According to the authors, FCD type II is an

isolated lesion characterized by cortical dyslamination and dysmorphic neurons

without (type IIa) or with balloon cells (type IIb). Additionally, Blümcke et al.

(2011) have included a novel description of FCD type III, which co-occur with

another lesion. Following this new terminology, FCDs can occur with HS (type IIIa),

with epilepsy-associated tumors (type IIIb), adjacent to vascular malformations (type

IIIc) or epileptogenic lesions acquired in early life such as glio-mesodermal scarring

resulting from perinatal hemorrhagic brain injury (type IIId). Some FCDs present

with GM/WM junction blurring, GM thickening and abnormal signal intensities on

MRI (Palmini 2011, Barkovich et al. 1997, Lerner et al. 2009). Other FCDs may be

even more subtle and present with atrophy of GM/WM and are not necessarily

visible on MRI (Tassi et al. 2002, Lerner et al. 2009) such as type IIa (Blümcke et al.

2011). Cells of the transcortical FCD type IIb (Blümcke et al. 2011, first described

by Taylor et al. (1971) as Taylor dysplasia) have been frequently described in

patients with epilepsy and may stem from mutated radial glial progenitors

(Lamparello et al. 2007). This type of FCD appears with a transmantle sign

extending to the ventricles on MRI (Bronen et al. 1997, Tassi et al. 2002). Even

though MRI can often contribute to the detection of FCDs, there are no highly

sensitive imaging parameters available that can reliably differentiate among FCD

subtypes (Blümcke et al. 2011). Less frequently, patients with TLE without HS may

present with encephalocele arising from neural tube defect or trauma (Vargas et al.

2008). Amygdala enlargement has also been linked to TLE and may be the result of a

chronic neuroinflammatory process or related to FCDs (Lv et al. 2014, Kim et al.

2012). The MRI of patients with focal epilepsy may show presence of gliosis

(Cendes et al. 2016), which is caused by proliferation and hypertrophy of astrocytes

(Bernasconi et al. 2011). Postoperatively, gliosis may be found in the sclerotic
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hippocampus (Spencer 2002) or the FCD (Blümcke et al. 2011) in histopathological

examinations.

3.3 Temporal Lobe

3.3.1 Hippocampus

The human hippocampus is present in the left and right medial temporal lobes and

appears as an arc-shaped cortical fold (Figure 3.7). It has a rostro-caudal extent of

approximately 5 cm (Insausti and Amaral 2012). Functionally it is classified as being

part of the limbic lobe (Figure 3.2). The relevance of this structure to epilepsy is

summarized in Table 3.1 at the end of this chapter. The hippocampus is situated at

the caudal aspect from the amygdala and borders dorsally on the parahippocampal

gyrus, laterally on the temporal horn of the lateral ventricle and caudally on the

splenium (Duvernoy 2005). The hippocampus has three parts: the head (anterior),

body (middle) and tail (posterior) and is formed by the dentate gyrus and CA. These

two laminar structures belong to the older of the two evolutionary developmental

cortices, the archeocortex (instead of neocortex). The dentate gyrus and the CA are

embedded into each other (Duvernoy 2005, Duvernoy et al. 2013) and are described

in more detail within the following section.
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Figure 3.7. Illustration of the internal structure of the hippocampus (left, from Duvernoy et
al. 2013) and a corresponding post-mortem view of the hippocampus after opening of the
temporal horn of the lateral ventricle (right, from Duvernoy 1998).
The CA and dentate gyrus (GD) form two interlocking U-shaped laminae. 1 hippocampal
body, 2 hippocampal head, 3 hippocampal tail, 4 terminal segment of the tail, 5 hippocampal
digitations, 6 vertical digitations, 7 CA and GD in the medial surface of the uncus, 8 band of
Giacomini, 9 margo denticulatus. A = anterior; L = lateral; M = medial; P = posterior.

3.3.2 Hippocampal Internal Architecture

The CA can be divided into three cytoarchitectonic layers including the stratum

oriens, stratum pyramidale and the molecular zone (composed of the stratum

radiatum, stratum lacunosum and stratum moleculare; Lorente de No 1934), while

the dentate gyrus is composed of the strata moleculare, strata granulosum and

polymorphic layer (Duvernoy et al. 2013). Instead of having six neuronal layers like

neocortex, both of these hippocampal structures have only three cytoarchitectonic
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layers, which is characteristic for archeocortex (Figure 3.8).

Figure 3.8. Cross-sectional diagram (a) and 9.4T MRI (b) of the right human hippocampus
(from Duvernoy et al. 2013).
The right side of the image is the medial, while the left side is the lateral aspect of the
hippocampus. CA1–CA4, fields of the cornu ammonis with pyramidal cells. Cornu
ammonis: 1 alveus, 2 stratum oriens, 3 stratum pyramidale, 3' stratum lucidum, 4 stratum
radiatum, 5 stratum lacunosum, 6 stratum moleculare, 7 vestigial hippocampal sulcus (note a
residual cavity, 7'); dentate gyrus (with granule cells) with 8 stratum moleculare, 9 stratum
granulosum and 10 polymorphic layer; 11 fimbria, 12 margo denticulatus, 13 fimbriodentate
sulcus, 14 superficial hippocampal sulcus, 15 subiculum (transition area of hippocampus and
parahippocampal gyrus), 16 choroid plexuses, 17 tail of caudate nucleus, 18 temporal
(inferior) horn of the lateral ventricle.
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The stratum pyramidale of the CA has four different cytoarchitectonic subfields,

CA1-4, which are defined by different characteristics of the neurons found in these

areas (Lorente de No 1934). CA1 is the continuation of the subiculum and neurons in

this large region have a triangular shape and are less densely packed than the oval-

shaped neurons found in CA2, a region that is dense and narrow in comparison

(Duvernoy et al. 2013, Braak 1980). CA3 is situated at the genu (bend) of the CA.

The dentate gyrus envelops the CA4 region of the CA, which consists of few sizeable

ovoid neurons among the large mossy myelinated fibers of CA4 (Duvernoy et al.

2013).

The dentate gyrus and CA1-3 regions are separated from one another via the

hippocampal sulcus and some residual cavities (Duvernoy et al. 2013, Insausti and

Amaral 2012). The stratum granulosum is the main layer of the dentate gyrus,

consisting of small round densely packed granular neurons with mossy fibers

traversing the polymorphic layer and reaching into CA3-4 (Duvernoy et al. 2013).

Dendrites from the basal poles of granular neurons extend into the stratum

moleculare, which is a thick region separated from the CA by the vestigial

hippocampal sulcus (Duvernoy et al. 2013). The polymorphic and molecular layers

have only few interneurons and the polymorphic layer unites the stratum granulosum

with CA4 (Duvernoy et al. 2013, Lim et al. 1997).

3.3.3 Hippocampal Functions and Projections

Functions of the hippocampus include early memory storage, formation of long-term

memory (learning) and spatial navigation and according to Duvernoy et al. (2013),

regulation of emotional behavior, certain aspects of motor control and regulation of

hypothalamic functions are also part of hippocampal functions. A most notable

primary contribution to the knowledge on memory functions of the hippocampus is

the study of H.M., a patient treated for mesial temporal epilepsy with epilepsy

surgery including bilateral hippocampal resections. This resulted in H.M. becoming
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seizure-free, however, postoperatively he had been severely impaired in his ability to

form new semantic knowledge (Schmolck et al. 2002) or learn new words, while

being able to retain preoperatively acquired knowledge on correct grammatical and

lexical usage (Kensinger et al. 2001). Maguire et al. (2006) conducted a virtual

reality study on a London taxi driver with bilateral hippocampal lesions and found

that he was impaired in novel navigational tasks compared to colleagues not affected

by hippocampal damage, but performed equally when asked to choose routes learned

40 years ago. Draganski et al. (2006) conducted a longitudinal study on students of

medicine preparing for their preliminary medical examination. The authors were able

to show that the hippocampal volume increases during the participant's continued

studies relative to those of sex-, age- and education-matched controls. They therefore

concluded that the hippocampus as structural component contributes crucially during

learning of new information and formation and consolidation of memories, which

has also been shown by animal model and human lesion studies (Insausti et al. 2013,

Mishkin 1978, Squire 1992, Squire et al. 1990, Squire and Wixted 2011). Amnesia

may be caused by circumscribed lesions to the hippocampus (Kesner and Goodrich-

Hunsaker 2010, Zola-Morgan et al. 1989, 1986, Insausti et al. 2013). Recent studies

have shown that the hippocampus is involved in the formation of both types of

declarative memory: episodic (relating to events and their relations,

autobiographical) and semantic (relating to facts and concepts) memory (Burgess et

al. 2002, Schmolck et al. 2002, Sormaz et al. 2017, Kaneda et al. 2017). This has also

been shown by various fMRI studies (Strange et al. 1999, Cohen et al. 1999,

Schacter et al. 1999). The anterior hippocampus has been linked to episodic memory

and imagination, while the posterior hippocampus seems to be involved in navigation

and both regions serve visual scene perception (Zeidman and Maguire 2016).

However, these functions cannot be understood as completely segregated

hippocampal functions, for example other studies have shown involvement of the

posterior hippocampus in the other substructure's functions such as episodic memory

(Bonnici et al. 2012) and imagination (Gaesser et al. 2013). Some studies have also
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suggested that the hippocampi of each of the two hemispheres subserve different

tasks (Golby et al. 2001) with the left aiding verbal functions (Sepeta et al. 2016) and

the right being involved in spatial encoding (Wei et al. 2016). Research in patients

with TLE has confirmed these findings (Bonelli et al. 2013), as patients with left

TLE and associated ipsilateral hippocampal dysfunction are more likely to have

verbal memory impairments (Helmstaedter et al. 1997, Gleissner et al. 2004, Bonelli

et al. 2010), while patients with right TLE and HS have been found to have spatial

and visual memory impairments (Barr 1997, Bonelli et al. 2010, Lee et al. 2002).

Nevertheless, in some patients compensatory mechanisms may come into effect even

prior to surgery that allow recruitment of extra-temporal regions for specific

memory-related tasks (Sidhu et al. 2013) and some post-surgical memory

impairments may be temporary (Gleissner et al. 2004). Furthermore, animal studies

have revealed that the hippocampus may be involved in emotional processing (Yang

and Liang 2014, Yamamuro et al. 2010, Kaneda et al. 2017, Bannerman et al. 2003)

and many of these studies have related these processes to effects on memory

performance. These studies not only demonstrate the crucial role of the hippocampus

in neuroplasticity (Eriksson et al. 1998), short-term information storage, memory,

learning and spatial navigation, but also that the hippocampus is a constant assessor

and distributor of information to many other parts of the brain for long-term storage.

This is shown by the fact that long-term knowledge storage does not depend on the

hippocampus as shown in the case of the taxi driver with bilateral hippocampal

damage and patient H.M. Indeed, the hippocampal projections are more complex

than those of the rest of the cortex. While neocortical connections mostly allow bi-

directional communication between different brain areas, hippocampal connections

are specialized for uni-directional afferent and efferent (in- and outward) projections.

Despite its relatively small size, the entorhinal area, which is located at the

ventromedial aspect of the hippocampus within the parahippocampal gyrus, forms

the principal input (Szirmai et al. 2012, Duvernoy et al. 2013, Insausti and Amaral

2012). The polysynaptic intrahippocampal pathway, also called the perforant path, is
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composed of a long neuronal chain connecting the entorhinal cortex with the dentate

gyrus, CA3, CA1 and the subiculum (Duvernoy et al. 2013, Figure 3.9). The fibers,

originating from the entorhinal cortex, merge in the angular bundle, travel caudally

and perforate through the subiculum (Insausti and Amaral 2012). Some of these

fibers project to CA3/CA1 first before reaching the dentate gyrus while others

directly terminate in the stratum moleculare of the dentate gyrus (Insausti and

Amaral 2012). The excitatory neurotransmitter in the perforant path is glutamate

(White et al. 1977), which may be enhanced in patients with epilepsy (Scimemi et al.

2006). The mossy fibers, which are fine and non-myelinated, form connections

between neurons of the dentate gyrus with the oval-shaped neurons of the less

densely packed CA3 region (Lim et al. 1997, Buhl and Whittington 2006, Duvernoy

et al. 2013, Lorente de No 1934) and CA4 regions of the hippocampus (Duvernoy et

al. 2013, Insausti and Amaral 2012). The connections of pyramidal cells between

CA3 and CA1 are called Schaffer collaterals (Schaffer 1892, Szirmai et al. 2012).
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Figure 3.9. Projections of the hippocampal and parahippocampal regions (from Duvernoy et
al. 2013).
A-E are parts of the neural chain forming the polysynaptic intrahippocampal pathway. Cornu
ammonis: 1 alveus, 2 stratum pyramidale, 3 Schaffer collaterals, 4 axons of pyramidal
neurons (mainly to septal nuclei), 5 strata lacunosum and radiatum, 6 stratum moleculare, 7
vestigial hippocampal sulcus. Dentate gyrus (GD): 8 stratum moleculare, 9 stratum
granulosum. CA1, CA3 fields of the cornu ammonis, SUB subiculum. ENT (Layer II of the
entorhinal area) is the origin of this chain; its large pyramidal neurons are grouped in
clusters, giving a granular aspect at the entorhinal surface.

Ramon y Cajal (1893) and Lorente de No (1934) both mention commissural

connections between both the left and right hippocampus, these belong to the

external regulatory circuit (Duvernoy et al. 2013, Insausti and Amaral 2012) and

provide input to CA1 and CA3 (Traub and Miles 1991a). The commissural fibers

enter and exit the hippocampus via the fimbria. The hippocampus has been found to

64



Chapter 3: Neuroanatomy

have both excitatory and inhibitory circuitry (Lim et al. 1997, Traub and Miles

1991a, Duvernoy et al. 2013), which have been extensively studied in living rodents

and primates. According to Traub and Miles (1991b), the two types of circuits can be

split into the recurrent excitatory connections between CA3 (Miles and Wong 1986,

Le Duigou et al. 2014) and CA1 pyramidal cells (Christian and Dudek 1988) and

inhibitory cells activated by collateral and afferent fibers (Newberry and Nicoll,

1984, Andersen et al. 1963, Traub and Miles 1991b). The complex multi-synaptic

hippocampal communication depends on intact hippocampal subfields (i.e. CA1-4)

and may be disturbed in patients with HS (Falconer 1974, Liu et al. 2012, Deyo and

Lytton 1997). For a detailed review of hippocampal connectivity the reader is

referred to Insausti and Amaral (2012).

3.4 Temporal Lobe Connectivity

Three distinct GM regions can be identified within the temporal lobe as cortical

ridges between the clefts on the brain surface (Figure 3.1). These are the superior,

middle and inferior gyri as seen from top to bottom on the lateral aspect of the

temporal lobe surface. The medial aspect of this lobe consists of the

parahippocampal (ventrally) and intralimbic gyrus (dorsally, mainly formed by

hippocampus, Figure 3.2) (Duvernoy 2005). All of these gyri are connected with

other GM regions of the brain through WM tracts such as the FF, CAB (PHWM),

ILF, SLF and the UF (Figure 3.10). Details on the individual trajectories of these

temporal lobe tracts are described in the following subsections and their relevance to

epilepsy is summarized in Table 3.1 at the end of this chapter.
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Figure 3.10. Left lateral views of major temporal lobe connections with the rest of the brain
(modified from Catani and de Schotten 2008, visualized through tractography).

3.4.1 Fimbria and Fornix

The fimbria forms the continuation of the alveus situated within the CA. It is a

prominent WM connection travelling dorsomedially along the hippocampus (Figure

3.8, Figure 3.10 (blue tract) and Figure 3.11). This WM tract connects the

hippocampus with the fornix (Figure 3.2) and allows long-range connections to other

structures such as the mammillary bodies and hypothalamus (Figure 3.11). The

fimbria and fornix are both part of the limbic system. The associative pathways

within the alveus and fimbria connect areas of the same hemisphere, are mostly

efferent and originate from CA1 pyramidal cells and the subiculum (Christian and

Dudek 1988, Kiernan 2012). Furthermore, the hippocampal commissures form

afferent connections between the left and right hippocampi, which form a bridge

between the two hemispheres directly after neuronal projections pass the crus of the

fornices (Figure 3.11). 
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Figure 3.11. Hippocampus with Fimbria and Fornix (from RANZCRPart1 2015)
1: hippocampus, 2: fimbria, originating from the alveus within cornu ammonis; 3: crus of the
fornix; 4: hippocampal commissures; 5: body of the fornix; 6: column of the fornix, post-
commissural fornix; 7: pre-commissural fornix; 8: anterior commissure; 9: mammillary
body; S: superior; I = inferior; P = posterior; A = anterior.

The columns of the fornix connect with the mammillary bodies, which in turn project

to the hypothalamus. Several of the subcortical afferents, e.g. amygdala and

thalamus, enter the hippocampal formation through the fornix (Insausti and Amaral

2012). The precommissural fornix connects hippocampal fibers arising from the CA,

subiculum and entorhinal cortex with the ventral striatum (nucleus accumbens) with

innervation of the lateral septal nucleus (Duvernoy et al. 2013, Insausti and Amaral

2012). Fornical connections have been shown to be involved in memory networks

(Hescham et al. 2017).
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3.4.2 Parahippocampal Cingulum

The parahippocampal cingulum is located adjacent to the ventral aspect of the

hippocampal head and body within the parahippocampal gyrus  (Figure 3.10, black

tract). It is part of the cingulum, a long C-shaped WM association pathway belonging

to the limbic system within the cingulate gyrus (Figure 3.2). It is situated

immediately dorsal to the corpus callosum and reaches from below the rostrum of the

corpus callosum in the frontal lobe (subcallosal gyrus), bends around the splenium of

the corpus callosum, continuing into the area immediately below the hippocampus

and terminating in the entorhinal cortex of the medial temporal lobe (Hagler et al.

2009). Largely, the cingulum is composed of fibers originating in the anterior

thalamic nucleus and the hippocampus (Brodal 1981, Duvernoy et al. 2013) that

project to the parahippocampal gyrus. The GM areas connected via the cingulum

have been shown to be involved in the modulation of behavior (Alexander and

Brown 2011), sensory and cognitive processes such as spatial navigation and

memory (Vogt et al. 1992) and emotions (Vogt 2005). The parahippocampal

cingulum is in close correspondence with the amygdaloid region, which also

constitutes an important involvement in affective behavior (Vogt et al. 1992).

3.4.3 Inferior Longitudinal Fasciculus

The ILF connects the temporal lobe with the occipital lobe and travels along the

ventral aspect of the lateral ventricles (Figure 3.10, green tract). The ILF is an

associative fiber bundle lying in the central portions of temporal and occipital lobes

(Jellison et al. 2004, Catani and Thiebaut de Schotten 2008). It has short and long

fibers that connect visual areas to the hippocampus and amygdala (Catani and

Thiebaut de Schotten 2008, Catani et al. 2003). It can be easily identified by

following the WM of the anterior temporal lobe posteriorly, traveling past the

junction of frontal and temporal branches of the anterior floor of the external capsule,

while excluding the most posterior temporal lobe WM, before arriving at the tip of

the occipital horn (Catani and Thiebaut de Schotten 2008). The ILF has been shown

68



Chapter 3: Neuroanatomy

to be connected to GM areas associated with functions such as face recognition

(Grossi et al. 2014, Fischer et al. 2016), visual perception (Shinoura et al. 2010,

Ffytche and Catani 2005, Catani and Thiebaut de Schotten 2008), reading (Epelbaum

et al. 2008, Sarubbo et al. 2015), visual memory (Shinoura et al. 2007) and functions

related to language (Mandonnet et al. 2007, Catani and Thiebaut de Schotten 2008).

3.4.4 Superior Longitudinal Fasciculus

The SLF can be found in both brain hemispheres and can be divided into the parietal

segment and the arc-shaped arcuate fasciculus also termed superior longitudinal

fasciculus temporal segment (SLFt, Figure 3.10, yellow tract). The SLF forms a

connection of the temporal, parietal and the frontal lobe (Hagler et al. 2009, Kiernan

2012, Catani and Thiebaut de Schotten 2008). The SLFt is an association pathway

composed of long and short WM fibers and the fibers at the frontal region run

perpendicularly to the projection fibers of the corona radiata, arch around the Sylvian

fissure before ending in the temporal lobe. Specifically, one of its most important

links is the left-hemispheric interconnection of Wernicke's area within the posterior

part of the superior temporal gyrus and Broca's area within the inferior frontal gyrus

(Kiernan 2012, Catani et al. 2005). The WM bundle has been associated with

phonological language (Shinoura et al. 2013) and reading (Travis et al. 2016,

Thiebaut de Schotten et al. 2014) functions in humans and is the largest association

bundle in humans (Jellison et al. 2004). The functions of the SLFt have been related

to unilateral neglect (Thiebaut de Schotten et al. 2008), prosody (Cattaneo 2013) and

semantics (Catani and Thiebaut de Schotten 2008). A direct and indirect connectivity

pathway (Catani and Mesulam 2008) has been established in the SLFt through

research on aphasia and using DTI studies.

3.4.5 Uncinate Fasciculus

The UF is an associative pathway that connects the ipsilateral anterior temporal lobe

with the ventral aspect of the prefrontal cortex and is considered to be part of the
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limbic system (Figure 3.10, purple tract). The more anteriorly placed temporal fibers

of the UF run medially to the fibers of the ILF, enter the external capsule, arch

forward around the Sylvian fissure and medially into the orbitofrontal cortex, and

eventually merge with fibers from the inferior frontal occipital fasciculus (Catani and

Thiebaut de Schotten 2008). Language (Agosta et al. 2010, Catani and Mesulam

2008), memory (Diehl et al. 2008, Papagno et al. 2016) and functions related to

emotion processing have been associated with connectivity mediated by the UF (Von

der Heide et al. 2013).
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Structure Relation to Epilepsy Selected References

Hippocampus

Structure within the limbic system and part of
the temporal lobe; may be epileptogenic in 
patients with TLE constituting HS; patients 
may have verbal/visual memory impairments 
based on side of HS (left/right, respectively)

Duvernoy et al. 2013,  
Bonelli et al. 2010,  
Helmstaedter et al. 1997

Fimbria-Fornix

Structure within the limbic system and part of
the temporal lobe; hippocampal commissures 
form afferent connections between the left 
and right hippocampi; may play a part in 
propagation of seizures and may be able to 
stratify patients with TLE with and without 
HS

Duvernoy et al. 2013,
Insausti & Amaral 2012,
Concha et al. 2009

Parahippocampal
Cingulum

Structure within the limbic system and part of
the temporal lobe; connects the hippocamus 
with the amygdala and frontal lobe; may play 
a part in propagation of seizures; may be 
directly linked with the epileptogenic network
and resection of the parahippocampal area 
may be related to post-surgical outcomes.

Vogt et al. 1992,
Liu et al. 2012,
Thivard et al. 2005,
Bonilha et al. 2007,

Inferior
Longitudinal
Fasciculus

Part of the temporal lobe; connection of 
visual areas (occipital lobe) with 
hippocampus (temporal lobe); may play a 
part in propagation of seizures and its 
diffusion values may be useful for seizure 
focus lateralization

Catani & Thiebaut de 
Schotten 2008,
Catani et al. 2003, 
Concha et al. 2012

Superior
Longitudinal
Fasciculus
(temporal
segment)

Connects the temporal lobe with the frontal 
lobe; strongly involved in language skills; 
may play a part in propagation of seizures, 
especially in temporal plus epilepsies

Shinoura et al. 2013,
Catani & Mesulam 2008,
Ahmadi et al. 2009,
Liu et al. 2012,
Barba et al. 2017

Uncinate
Fasciculus

Structure within the limbic system and part of
the temporal lobe; connects the temporal lobe
with the frontal lobe; may play a part in 
propagation of seizures; may be able to 
stratify patients and controls; larger resections
of the uncinate have been related to better 
postoperative seizure outcomes

Catani & Thiebaut de 
Schotten 2008,
Concha et al. 2012,
Keller et al. 2016

Table 3.1. Brain Structures and Their Relation to Epilepsy.
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4.1 Introduction

This chapter gives an overview providing sufficient background for the MR

sequences acquired and analyzed. It is not intended to be a detailed description of

principles underlying MRI acquisition as this would go beyond the scope of this

thesis. All structural brain imaging sequences used within the studies are described in

the subsections along with the rationale and context of applying them to patients with

epilepsy. For instance, the 3D T1w image is used clinically to assess gross brain

structure and scientifically for mapping the hippocampal volume and other GM

structures in quantitative analysis. For preoperative evaluation, most epilepsy centers

include either a 2D or 3D T2w sequence and a T2FLAIR sequence and these

sequences have been especially useful for the detection of FCDs clinically (Lerner et

al. 2009) and have also been used in quantitative MRI studies (Focke et al. 2008b,

72



Chapter 4: Review on MR Physics

Focke et al. 2009, Martin et al. 2015). Coronal sequences are used during pre-

surgical evaluation in order to assess the presence of HS (Wieshmann et al. 1996).  It

has become increasingly important to assess WM abnormalities in patients with

epilepsy to investigate the whole scope of underlying pathobiological processes in

epilepsy. This is discussed in section 4.7 of this chapter, which includes information

from Kreilkamp et al. (2017). A summary of all used MR sequences with respective

rationale and context of applications in patients with epilepsy can be found at the end

of this Chapter in Table 4.1. From an imaging perspective, the aforementioned

sequences have an acquisition time of approximately four to ten minutes, whereas

another “fast” MR imaging technique, called Echo Planar Imaging (EPI), is able to

provide full spatial encoding within a single radio-frequency excitation, thus

allowing to image time-dependent physiological processes that occur in seconds and

even milliseconds (MacIntosh and Graham 2013). Diffusion imaging using EPI

makes use of the fact that water (i.e. hydrogen protons) moves along WM tracts of

the brain and the imaging-derived metrics allow researchers and clinicians to infer

the state of WM integrity (Section 4.7). Fast imaging comes at a cost of lower signal-

to-noise ratio (SNR) and geometric distortions, which makes extensive image post-

processing necessary. For these reasons, DTI is not commonly used in the first MRI

assessment of patients with epilepsy. However, it has found a broad application in

scientific research and has been clinically used at later stages, e.g. for preoperative

evaluation in order to avoid damage to important WM tracts connecting areas of

eloquent cortex (Duncan et al. 2016; see Chapter 1).

4.2 Basic Principles of MR Image Acquisition

The phenomenon of nuclear magnetic resonance was first discovered in the first half

of the 20th century (Bloch 1946, Purcell et al. 1946) and started to revolutionize

diagnostic procedures from the 70s since brain structure could be visualized in high

detail without exposure to radiation. The discoveries of Paul Lauterbur and Peter
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Mansfield in the 70s allowed scientists to advance imaging from a single (temporal)

to a second (spatial) dimension and to mathematically analyze MRI signals that had

been acquired through fast imaging techniques, respectively (Geva 2006). In 1970,

Raymond Damadian started probing the use of MRI as a medical diagnostic tool by

imaging different animal tissue types and was able to detect cancerous tissue as its

MRI signal had a longer relaxation time than non-cancerous tissue (Damadian 1971,

Geva 2006). By 1974, he received the first ever patent in the field of MRI for his

scanner and method for detecting cancer (Damadian 1974). The discovery soon

spread within the field of medicine with scanners being available from the beginning

of the 1980s and rapidly found applications in various disorders and diseases. 

Instead of relying on X-rays, the MRI scanner uses magnetism in conjunction with

radio wave transmission to produce images of human or animal anatomy. MR

utilizes inherent physical properties of nuclear particles found in tissue, namely the

fact that the electrically charged atomic protons precess (spin around their own axis).

The imaging sample is placed in a strong magnetic field while a radio-frequency

wave is transmitted and subsequently the protons' response to this wave can be

measured (Figure 4.1). Human tissue mostly contains hydrogen atoms (the hydrogen

atomic nucleus is a single proton) and since different tissues have a different nuclear

density and have different relaxation times this accounts for varying contrasts across

tissues. Gradients have to be applied so that the signals can be localized. In

particular, for a single plane a linearly increasing frequency-encoding gradient is

applied. 
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Figure 4.1. MR Scanner (A) and the Spinning Proton (B) (from Ajtai et al. 2015). 
As the person is lying in the scanner, a magnetic field is applied parallel to the person's body
(Z-axis), while a radio-frequency wave is applied, which deflects the proton from the main
magnetic field. This makes it possible to encode the proton's phase (perpendicular Y-axis)
while spinning about the axis of B0 (B) and to determine the proton spin frequency (X-axis)
(B, lower arrow) during precession. Gradually the proton returns to only rotating about its
own axis along B0 (steady state). The diagram in panel B and MR images in general have a
different frame of reference than depicted in panel A (see inset 'diagrams').

Slight variations of the proton spins' frequencies and phase makes it possible to

assign the emitted signal to one location in the 2D image plane. 3D images of human

tissue are acquired by slice-selection. This is made feasible by using a magnetic field

gradient: rather than having the same field strength in the entire tissue, a gradient is

applied. This causes slight variations in the resonant frequencies. All of these slight

variations in magnetic field strength, frequency and phase influence the protons'

precession and an emitted signal can be captured and assigned to a specific location

in 3D space. All MR sequences follow this principle and are described in the

following sections along with their indication in patients with epilepsy. The Spin-

Echo pulse sequence is the conventional way of acquiring MR signal (Figure 4.2)

and yet another radio-frequency pulse can be added to this sequence, which has

effects on image contrast and appearance (i.e. by using an inversion recovery

sequence).
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Figure 4.2. Conventional MRI sequences with radio-frequency pulses (from Elster 2017).
In order to acquire the MR signal within a spin-echo sequence, a 90˚ radio pulse is applied.
The echo (S) is caused by the 180˚ radio pulse, which acts like a magnetic barrier and
reflects the echo of the first 90˚ decay signal. For an inversion recovery sequence another
180˚ radio pulse is added before the 90˚ and 180˚ pulses. The time between the added 180˚
pulse and the 90˚ pulse is called TI. Apart from nulling the signal from fat and water, the
added 180˚ pulse also flips the sign of the magnetization vector from z to -z. In both
sequences, the time between the two 90˚ excitation pulses is termed TR. S = Signal-
readout/echo, TE = echo time, TR = repetition time, TI = inversion time.

4.3 3D Volume T1-weighted Imaging

4.3.1 Principles

The design of a T1w sequence is based on the so-called spin-lattice (longitudinal,

measured on z-axis) relaxation emitted by the hydrogen protons (Johnson et al.

2005). The energy is emitted to the lattice (surroundings) of the protons. Hydrogen

protons are projected into the transverse plane by the application of a radio-
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frequency pulse and as the effect wears off, the spins return to equilibrium and align

again with the static magnetic field (Johnson et al. 2005). The T1 relaxation is

defined as the time when the protons in the tissue have reached 63% of their

equilibrium value, i.e. the original magnetization (Figure 4.3). As such, the T1

relaxation times are associated with the magnetic field strength. T1 relaxation times

differs across different tissue types: Fat appears brightest (shortest T1), WM is bright

at a short relaxation rate, while GM and CSF emit the least signal and have a longer

T1 relaxation rate (MacIntosh and Graham 2013).

Figure 4.3. T1 relaxation time at 3T and derived T1w grayscale image (from Farrall 2015).
T1 relaxation times, defined as the time where 63% of net magnetization has been regained
(dashed line):  Fat = 370 ms; WM = 830 ms; GM = 1330 ms; CSF = 3600 ms (Gold et al.
2004, Wansapura et al. 1999). A signal readout time at 800 ms reveals optimal contrast with
the tissue-dependent T1 relaxation curves having an optimal distance between each other
(distinct signal differences across tissue types). MRI was acquired at the WCFT. Figure used
and modified with permission of Professor Andrew Farrall at the Edinburgh Imaging
Academy (www.ed.ac.uk/edinburgh-imaging/academy). L = left; R = right.

A 3 Tesla T1w image may be acquired using an inversion recovery sequence or
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using a spin-echo sequence with a short repetition time (TR, the time between

repetitions of the pulse sequence) and a short time to echo (TE, the time at which

sampling of the magnetization signal occurs), at about <750 ms (Figure 4.3) and 40

ms respectively.

4.3.2 Applications

The application of T1w sequences has become standard procedure in medicine and

science as its high contrast between tissues allows a multitude of scientific and

clinical investigations on anatomical images (Figure 4.3). The medical use of T1w

images allows diagnostic assessment of abnormal brain structure and any lesions

such as tumors and cysts. For research purposes the T1w sequence can be used to

segment GM, WM and CSF in order to restrict analysis to certain tissue classes

(Kurth et al. 2015a) or brain structures of interest (Fischl et al. 2002). T1w images

can also further be used to analyze cortical thickness (Hutton et al. 2009) and related

brain atrophy (Ashburner and Friston 2000), all of which can contribute to a deeper

understanding of pathologic mechanisms in neurological conditions (Giorgio and De

Stefano 2013) and are especially relevant for patients with epilepsy (Sisodiya et al.

1995a, Sisodiya et al. 1995b).

4.4 3D Volume T2-weighted Imaging

4.4.1 Principles

The functionality of the T2-weighted (T2w) sequence is based on the spin-spin

relaxation time along the transverse plane (X- and Y-axis). As protons are projected

into the transverse plane they initially all spin in the same phase. However, related

field inhomogeneities and intrinsic T2 effects present in different tissue types cause

the protons to spin differently (e.g. slower) and loose phase coherence with other

protons (Johnson et al. 2005) resulting in a loss of magnetization. T2 relaxation time

is defined as the time when transverse magnetization has lost 37% of its initial value
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due to incoherence of hydrogen proton spins (Figure 4.4).

Figure 4.4. T2 relaxation times at 3T and derived grayscale T2w image (from Farrall 2015).
T2 relaxation times, defined as the time where 37% of all protons in the tissue have lost
precessional phase coherence: WM = 90 ms; GM = 100 ms; Fat = 180 ms; CSF = 190 ms.  A
signal readout time at 180 ms reveals contrast with T2 relaxation curves having an optimal
distance between each other (distinct signal differences across tissue types). MRI was
acquired at the WCFT. Figure used and modified with permission of Professor Andrew
Farrall at the Edinburgh Imaging Academy  (www.ed.ac.uk/edinburgh-imaging/academy). 
L = left; R = right.

Similarly as for T1 relaxation, different tissue types will show different relaxation

times, where fat appears dark (short relaxation time), with GM having short T2 and

WM even shorter relaxation times while liquid appears light (longest relaxation rate

as there is almost no field inhomogeneity). A 3 Tesla T2w sequence requires a long

TR (typically at >2000 ms) and long TE (approximately 100 ms) and may also be

acquired using an inversion recovery sequence (e.g. Short TI Inversion Recovery,

STIR).
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4.4.2 Applications

In many epilepsy centers, along with the T1w image, often also either a 2D or 3D

T2w image is acquired for patients for anatomical imaging. A 3D T2w sequence may

prove especially useful for some cases (e.g. encephalocele, edema, atrophy or

Rasmussen's encephalitis (Kuzniecky and Jackson 2005)), in pre-surgical evaluation

and for various research purposes as it provides a whole-brain image with high SNR

without distortions. According to Mansouri et al. (2012), the imaging protocol for

patients with suspected neocortical epilepsy should include a whole head thin

sectioned 3D T1w and T2w sequence. The 2D T2w sequence can be acquired so that

a resulting image can depict a higher in-plane resolution than a 3D sequence (i.e.

<0.5 mm in two dimensions). Often however, a 2D sequence does not cover the

entire brain, but is set up to depict parts of the brain that are especially important for

clinicians to evaluate. The T2w image shows a similar contrast to diffusion images

sampled using EPI, however as T2w is sampled without an EPI sequence and

diffusion-sensitizing gradient, it does not suffer from susceptibility effects.

Consequently, the T2w image may be used to correct for geometric distortions within

diffusion images (Ardekani and Sinha 2005). As the signal of T1w and T2w images

complement each other they may be used to visualize myelin in the brain and can be

used to account for field inhomogeneities (Glasser and Van Essen 2011). On T2w

images, WM appears dark only after full myelination, at about two years of age

(Figure 4.5). Before then, the appearance of WM on T2w images is much brighter. In

T1w images, the reverse is true as WM gradually changes from hypointense to

hyperintense signal relative to GM. GM signal intensities largely stay very similar,

whereas WM signal changes during brain development. WM is mostly unmyelinated

at birth, which is reflected by T1 and T2 relaxation times that are distinctly different

compared to those of older children and adults (Figure 4.5). Not surprisingly, the

MRI techniques typically used for myelin assessment in infants are T1w and T2w

sequences (Welker and Patton 2012). It is likely that patients with early onsets of

epilepsy show altered patterns of myelination during neurodevelopment due to an
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early insult. Changed diffusivity values (Section 4.7) may indicate altered myelin

content in WM tracts (Yeatman et al. 2012) and the evidence of changed diffusivity

in patients with TLE is abundant (Section 4.7.2). These changes may be directly

detectable using T1w/T2w based myelin mapping (Glasser and Van Essen 2011).

Figure 4.5. T1w and T2w signal patterns at different time points during brain development
(from National Institutes of Health 2012)
The GM/WM T1w and T2w signal patterns at an age of one week is the reverse of the
pattern seen at an age of one year and older. Information on side of MRI was not provided in
source.

4.5 3D Volume T2FLAIR

4.5.1 Principles

The principles pertaining to the acquisition of a 3D T2w image are also relevant for

the 3D T2FLAIR, which is a pulse sequence that can image brain tissue while

suppressing signal from fluids. The T2FLAIR image is acquired using an inversion
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recovery sequence (Figure 4.2). Furthermore, a long TR is used, giving rise to a

heavily T2w image (Okuda et al. 1999, Figure 4.4). However, at this point the fluid

has neither longitudinal nor transverse net magnetization and its signal is suppressed

(Bitar et al. 2006). This is achieved by the initial 180˚ radio-frequency pulse

followed by a long inversion time to allow fluid to attain equilibrium so that no net

magnetization remains (Figure 4.6, bottom row).

Figure 4.6. Anatomical T1w (top row), T2w (middle row) and T2FLAIR (bottom row)
images in axial, coronal and sagittal views (left to right).
The images were acquired at the WCFT as part of the epilepsy research dedicated protocol. 
L = left.

82



Chapter 4: Review on MR Physics

The nulling of liquid signal is useful when the periphery of cortex and periventricular

regions close to CSF have to be investigated. In the following section also other

clinical and scientific applications are discussed.

4.5.2 Applications

The 3D volume T2FLAIR has proved to be very useful for a wide range of

neurological conditions. These include the detection of FCD (Focke et al. 2008b,

Rugg-Gunn et al. 2005), which largely has been based on scientific quantitative

approaches, and further clinical applications such as in patients with infarction

(Shiono et al. 1996, Tsuchiya et al. 1997, Jain et al. 2016), increased blood–brain-

barrier permeability and plasma leakage (Haller et al. 2013), tumor-related

infiltration/metastatic lesions (Bitar et al. 2006), lesions related to multiple sclerosis

(Hittmair et al. 1996, Hashemi et al. 1995), subarachnoid hemorrhage (Noguchi et al.

1995) and meningitis (Vaswani et al. 2014).

4.6 High-resolution Coronal FLAIR Sequences

4.6.1 Principles

Another clinical application of the FLAIR sequence is shown by the use of 2D high-

resolution coronal images typically acquired at smaller voxel sizes (e.g. 0.5x0.5x3

mm) compared to 3D sequences. 2D coronal T1- and T2FLAIR images are acquired

using an inversion-recovery sequence (Figure 4.2) and provide high anatomical detail

within the temporal lobes, as they are aligned with the long axis of the hippocampus

(Kuzniecky 2002) and have small in-plane voxel sizes (Figure 4.7).
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Figure 4.7. Coronal T1- and T2FLAIR images.
These images allow a very accurate depiction of brain tissue within the coronal plane due to
the high in-plane resolution. Note the level of detail within the temporal lobe (box) and
hippocampus (arrow). Images were acquired at the WCFT. L = left.

SNR and contrast-to-noise ratio (CNR) of in-plane voxels are critically and

positively influenced by increasing the through-plane slice thickness and reducing

the number of total slices (reducing the imaging matrix size). The rationale for

acquiring these images is to be able to depict smaller structures within the temporal

lobes and gross anatomy of this region to ultimately increase the diagnostic yield in

patients with epilepsy. These images permit the visualization of HS, amygdala

enlargement and GM/WM blurring (presence of dysplasia)  within the area of the

temporal lobes.

4.6.2 Applications

These images have become a clinical standard in evaluating brain structures like the

hippocampus, amygdala and other structures of the temporal lobes in patients with

mesial TLE owing to the high in-plane resolution (Howe et al. 2010, Duncan 1997).

Aligning the images along the hippocampal axis allows for visualization of

hippocampal volume, intensity and subfields, which is crucial when diagnosing HS.
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The volume of the hippocampus and integrity of hippocampal subfields can be

visually determined on the 2D coronal T1FLAIR image, while the T2FLAIR image

is useful for determining hyperintense signal from within the hippocampus and

atrophy, both of these are features indicating HS (Dinner et al. 1998, Spencer 1994,

Mansouri et al. 2012). In HS, neuronal cell death is followed by replacement with

gliotic tissue in affected subfields of the hippocampus and this effect can be

measured using semi-quantitative hippocampal internal architecture (HIA) ratings

(Ver Hoef et al. 2013a). Coronal images without the application of a FLAIR

sequence, which have been perpendicularly aligned with the long axis of the

hippocampus, have been investigated using HIA ratings (Elkommos et al. 2016) and

other quantitative studies based on data collected on patients with TLE, which are

performed on the entire hippocampal structure by manually measuring the volume

via stereology and associated point counting (Mackay et al. 2000, Roberts et al.

1994). However, automated analysis techniques such as voxel-based volume

estimation (Keller et al. 2002a) are not dependent on image alignment with the long

axis of the hippocampus and are typically not performed on FLAIR but on T1w

images. Furthermore, subfield and entorhinal volumes have been investigated with

automated subfield quantification tools (Sone et al. 2016, Schoene-Bake et al. 2014).

Manually and automatically obtained volume measures can be quantitatively

compared to volumes acquired in healthy controls to determine the extent of

gliosis/atrophy and correlate these measures with clinical variables (duration of

epilepsy, age of onset, seizure frequency, etc.) and outcome. Specifically, the

identification of HS on preoperative MRI has been shown to correlate with good

postoperative seizure outcomes (Spencer et al. 2005, Chapter 1), this is discussed in

more detail in Chapters 5 and 6.
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4.7 Diffusion Tensor Imaging

4.7.1 Principles

DTI aims to visualize WM tracts in the whole human brain through quantifying

microscopic motion of hydrogen protons. DTI makes use of the fact that this motion

can be restricted along WM tracts (anisotropic), while hydrogen protons that are

located elsewhere in the brain (e.g. in CSF) will move freely (isotropic). The EPI

sequence is the most common way of acquiring DTI data as it allows fast imaging of

the whole brain to determine diffusion within WM structures. Instead of acquiring

just a single line of imaging data as is the case with the spin-echo imaging sequence,

EPI allows the acquisition of multiple lines within each TR period after a single

radio-frequency excitation (Poustchi-Amin et al. 2001). There are many ways to

acquire EPI data. For example, this may be achieved by fast oscillation of the

frequency-encoding (readout) gradient. The detailed principles governing acquisition

and physics of diffusion weighted imaging are described in Figure 4.8. Acquisition

involves multiple 3D images of the brain with the application of different diffusion

gradients in order to determine motion of the hydrogen protons in certain directions.

From this information the principle direction of diffusion for all hydrogen protons

can be determined. WM tracts can be modeled using the most commonly employed

method, which is also the oldest, the tensor estimation model (Basser et al. 1994). In

order to achieve this, a minimum of six DWI are required, while it is also necessary

to acquire an image without diffusion weighting (equivalent to a T2w image) (Figure

4.9).
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Figure 4.8. Diffusion Weighted Imaging Sequence (from Le Bihan et al. 2006).
A gradient pulse pair (Gdiff) is used to cause spin phase shifts along their locations. As in a
conventional spin-echo sequence, a 90˚ pulse is applied and during the application of another
180º pulse diffusing spins remain out of phase (pink circles) as they are at a different
location with respect to the diffusion-sensitizing gradient. All other proton spins are brought
to their initial phase (yellow circles) and emit higher signals than spins that are out of phase
because these respective protons have moved. The signals of the spinning protons are
measured by the readout gradient. Gsl= slice selection gradient, Gread= readout gradient, Gph-enc=
phase-encoding gradient, Gdiff= diffusion gradient, RF= radio-frequency pulse.

High signal within b0 images reflects the random Brownian motion of water

molecules (i.e. protons), which occurs in all directions (isotropic diffusion) in CSF in

the ventricles of the brain and between the pial surface and skull. In contrast to this,

the low b0 image signal found in brain tissue indicates restricted diffusion and in the

case of WM tracts, the diffusion is highly anisotropic meaning that the water

molecules can only move in the direction of the particular tracts. To probe different

directions of hydrogen proton motion, diffusion-sensitizing gradients are applied in

diffusion-weighted images. As proton motion is random in CSF (and not directed in
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any one particular direction), liquid appears dark on all diffusion-weighted images,

while water protons that follow the trajectory of tracts are restricted in certain

directions only. These protons do not emit a high signal, as they are out of phase and

have moved to a different location (along the tract) relative to the diffusion-

sensitizing gradient during acquisition. Diffusion of hydrogen protons present in GM

are restricted in all directions, this is why the signal in this tissue class always

appears brighter than in areas with WM tracts, regardless of which diffusion

direction was applied.

Figure 4.9. Axial sections of whole brain diffusion data.
The first two images on the left of the first row show b0 images (no diffusion weighting),
while the remaining six pertain to volume imaging acquired with different diffusion
gradients (diffusion-weighted images). Note how voxel intensities across b0 images are the
same for the corresponding voxels in the other b0 image (both b0 images look the same).
This is not the case in diffusion-weighted images, since the proton spins vary according to
different diffusion gradients giving rise to different intensities in these volumes when
compared to each other. This is a necessary feature for tensor estimation. Images were
acquired at the WCFT (a subset of 2 out of 6 b0 and 6 out of 60 diffusion-weighted volumes
is presented). L = left.

88



Chapter 4: Review on MR Physics

However, before the diffusion tensor can be computed, images have to be post-

processed to account for distortion and motion. This can be performed on the console

of the scanner but also by using tools developed by the scientific community such as

FSL (Smith et al. 2004), TRACULA (Yendiki et al. 2011) or AFQ (Yeatman et al.

2012). Most frequently, the tensor-derived scalar metrics apparent diffusion

coefficient, fractional anisotropy (FA) and mean diffusivity (MD) are analyzed in

scientific studies. Axial and radial diffusivity also provide additional information on

WM tract integrity. For a detailed description of how to compute the diffusion tensor

and derived metrics, the reader is referred to Soares et al. (2013) and Jellison et al.

(2004). The apparent diffusion coefficient has proved useful for assessment of stroke

and cancer (Le Bihan 2014), while in patients with epilepsy, FA and MD are most

frequently assessed to provide a measure on integrity of individual WM tracts

connecting different brain areas (Otte et al. 2012, Chapter 3). Within this thesis, the

analysis was restricted to FA and MD values in order to provide a straightforward

presentation and explanation of results. 

4.7.2 Analysis Approaches

4.7.2.1 Manual Methods

DTI has received a lot of attention clinically and scientifically since its development

in the 80s. In 1984, Denis Le Bihan started to perform studies on the development of

DTI to differentiate gliomas from liver tumors (Le Bihan 2014). However, he

quickly decided to probe tissue within the brain instead as the first images suffered

from motion artifacts (due to breathing) and found a way to image diffusion

properties of tissues when working with Peter Basser (Basser et al. 1994). Apparent

diffusion coefficient maps are used to achieve mapping of glioma appearing as

hyperintense imaging signal and each voxel represents microscopic hydrogen proton

motion in the order of mm2/s. Additionally, computing the diffusion tensor from

DWI, which allows subsequent tractography, has facilitated visualization of WM

tracts and quantification of associated diffusion metrics along the tracts (Le Bihan et
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al. 2006, Le Bihan 2014, Basser et al. 1994). This method has provided clinicians

with important information about location of tracts that connect eloquent cortex,

which must not be damaged during resective surgery (James et al. 2015, Sivakanthan

et al. 2016, Duncan et al. 2016). There are a variety of ways to reconstruct WM tracts

from DTI data. The most frequently applied have been manual tractography

techniques that require a trained researcher to segment individual tract bundles based

on known anatomical features. Using these approaches, previous studies have

reported significant alterations in DTI scalar metrics, such as FA and MD, of the

parahippocampal fibers (Ahmadi et al. 2009, Yogarajah et al. 2008, Concha et al.

2007), ILF (Ahmadi et al. 2009, Imamura et al. 2015, Concha et al. 2012), SLF

(Ahmadi et al. 2009, Concha et al. 2012, Lin et al. 2008), UF (Ahmadi et al. 2009,

Rodrigo et al. 2007, Diehl et al. 2008, Lin et al. 2008, Concha et al. 2012) and FF

(Concha et al. 2005, Concha et al. 2007, Concha et al. 2010). However, manual

tractography suffers from low reproducibility and is very time-consuming as ROIs

have to be drawn in GM and surrounding WM where tracts are thought to originate

or end (Leergaard et al. 2012). So that a significant practical limitation of manual

tractography methods is the availability of trained personnel and the time consuming

nature of making measurements. Similar to advantages associated with the evolution

of automated morphometric techniques from manual volumetric approaches based on

T1w data (Bonilha and Keller 2015), a technique that automatically reconstructs

probabilistic WM tract bundles could circumnavigate some of the shortcomings of

manual tractography approaches.

4.7.2.2 Automated Methods

Many software developers have continued to provide automated tractography tools

together with pre-defined ROIs in WM tract atlases (Yendiki et al. 2011, Yeatman et

al. 2012, Hagler et al. 2009), thus contributing to the scientific endeavor of

circumventing drawbacks inherent in manual techniques. Automated tools will

facilitate studies with large sample sizes, which will be essential for establishing a
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connectome for the human brain (Marcus et al. 2011) and decrypting network

disorders such as epilepsy (Hagler et al. 2009, Richardson 2012, Imamura et al.

2015). In order to investigate WM diffusivity, automated methods can allow whole-

brain analysis, rather than being restricted to pre-chosen ROIs. Similarly, automated

tractography allows visualization and quantification of WM tracts of the entire brain,

as a reference tractography atlas is used. This method can be performed in native

patient space or in standard space and both allow group comparisons. Additionally,

automated tools such as TRACULA enable researchers to investigate tissue

characteristics of WM tracts in relation to morphometric analyses of subcortical and

cortical structures (Storsve et al. 2016, Sølsnes et al. 2016) and along tracts, which

can resolve subtle intra-tract microstructural changes and relationships with

morphometric abnormalities. There is only limited anatomical specificity provided in

conventional tractography studies in TLE, as techniques are typically restricted to the

analysis of whole-tract diffusion alterations. Information obtained from whole-tract

analyses are limited because there may be significant variations in diffusion

characteristics along the length of WM tracts (Johnson et al. 2013), and it is likely

that some pathological tract alterations occur in circumscribed regions within tracts

and not along entire tracts in patients with TLE. Therefore it is important to develop

methods that permit analysis of within-tract tissue characteristics in patients with

TLE (Concha et al. 2012, Glenn et al. 2016). These features are particularly

interesting for individual patient comparisons against a healthy control cohort

(Martin et al. 2015).
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Image Rationale Applications

3D T1w
whole brain imaging: 
SNR and CNR are optimal to 
depict brain structure

clinical: myelination during 
development, anatomy, lesions and 
malformations;
scientific: segmentation of 
WM/GM/CSF; analysis of atrophy and 
malformations

3D T2w
whole brain imaging: 
SNR and CNR allow depiction of 
brain structure

clinical: myelination during 
development, lesions (encephalocele, 
edema) and malformations (atrophy or 
Rasmussen's encephalitis);
scientific: image alignment (for DTI), 
may aid in T1w-based GM pial 
segmentation 

3D T2FLAIR
whole brain imaging: 
simultaneous suppression of CSF

clinical and scientific: lesions at 
peripheral areas of cortex and 
periventricular regions (e.g. dysplasia)

2D Coronal
T1FLAIR

detailed imaging:
temporal lobe structures; SNR and
CNR are optimal in the imaged 
2D plane

clinical: lesions within temporal lobes 
(e.g. volume of hippocampi)

2D Coronal
T2FLAIR

detailed imaging:
temporal lobe structures; SNR 
optimal in imaged 2D plane

clinical: lesions within temporal lobes 
(e.g. hyperintense signal in HS)

DTI
whole brain imaging: 
WM tract structure/integrity

clinical: trajectory of WM tracts (pre-
surgical evaluation)
scientific: brain network disorders (e.g. 
epilepsy)

Table 4.1. Summary of MRI sequences used within this study of patients with focal epilepsy.
SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio; CSF = cerebrospinal fluid; HS =
hippocampal sclerosis.
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5.1 Introduction

Quantitative MRI techniques provide sensitive surrogate markers of HS (Cascino et

al. 1991, Jackson et al. 1990). Global HA is most frequently quantified on T1w MRI

in patients with TLE, and has been correlated with various clinical features of the

disorder in some studies, including age of onset of intractable seizures, duration of

epilepsy, a history of childhood febrile seizures, and postoperative seizure outcome

(Fuerst et al. 2001, Salmenpera et al. 1998, Tasch et al. 1999, Jack et al. 1992,

Wieshmann et al. 2008). However, other studies have failed to report these

associations (Cendes et al. 1993, Keller et al. 2015b, Mueller et al. 2012). A potential

reason for these discrepancies could be the fact that hippocampal volume alone is not

a reliable predictor of post-surgical outcome (Bonilha and Keller 2015, Quigg et al.

1997, Goh et al. 2014, Mueller et al. 2012) or even of the presence or absence of HS

(Jackson et al. 1990 and Jackson et al. 1994 respectively). Indeed, hippocampal

volume asymmetry has also been demonstrated in age-matched healthy controls

regardless of image presentation (radiological versus neurological) during manual

measurements (Rogers et al. 2012). Apart from hippocampal volume also the
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hippocampal internal architecture (HIA) and variations in signal intensities should be

taken into account when assessing a patient's MRI clinically (Wieshmann et al.

2008). Signal intensity assessment and semi-quantitative HIA ratings are made based

on high-resolution coronal MRI, which allow the detailed slice-wise assessment of

gross temporal lobe and GM structures due to their high SNR and CNR. The HIA

ratings can indicate severity and type of HS and may even reliably show correlations

with various clinical features of the disorder (Ver Hoef et al. 2013a, Ver Hoef et al.

2013b). Consequently, identifying relationships between clinical features and

quantitative characteristics of the hippocampus in TLE is important as they may offer

insights into the pathophysiology of the disorder, inter-individual patient

heterogeneity, and may provide the basis for imaging prognostic markers of

treatment outcome.

The ILAE Commission on Diagnostic Methods have reported three principle patterns

of HS based on histopathological analysis (Blümcke et al. 2013). The most common

pattern of cell loss, ILAE HS type 1, is manifest as predominant loss of neurons and

gliosis in CA1 and CA4 subfields (Blümcke et al. 2013, Blümcke et al. 2007, Thom

et al. 2010). ILAE HS type 2 and 3 are less common patterns of HS, manifest as

pathological changes predominantly in CA1 or CA4, respectively (Blümcke et al.

2013, Blümcke et al. 2007, Thom et al. 2010). Importantly, these patterns of HS

appear to be related to various clinical aspects of TLE and may have significance for

postoperative prognosis. ILAE HS type 1 is more frequently associated with a history

of initial precipitating injuries in early childhood, an early seizure onset and

improved seizure outcome after temporal lobe surgery (Blümcke et al. 2013,

Blümcke et al. 2007, Thom et al. 2010, Giulioni et al. 2013, Na et al. 2015). ILAE

HS type 2 and 3 appear to be associated with a later age of onset and a less favorable

postoperative outcome (Blümcke et al. 2013, Blümcke et al. 2007, Thom et al. 2010,

Giulioni et al. 2013, Na et al. 2015), although there are some inconsistencies in these

relationships (Deleo et al. 2016). Given the clinical relevance of regional
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hippocampal subfield pathology in TLE, it is important to develop and apply MRI

approaches that permit assessment of hippocampal subfield structure and volume in

this patient group, particularly if such non-invasive imaging measures can be used to

predict treatment outcome.

There have been significant advances in the development of MRI techniques for the

segmentation and volume estimation of hippocampal subfields. Manual delineation

techniques applied to high-field (i.e. ≥ 4 Tesla) MRI are the most reliable approaches

to identify the approximate location of subfields in individual subjects (Prudent et al.

2010, Kerchner et al. 2010, Wisse et al. 2012, Huang et al. 2013, Malykhin et al.

2010, Mueller et al. 2011, Mueller et al. 2009, Mueller et al. 2007, Mueller and

Weiner 2009). Automated hippocampal subfield approaches applied to high-field

MRI have also been described (Wisse et al. 2016). However, applications of these

approaches are constrained by the necessity of non-clinical high-field MRI scanners

and the time-inefficient manner of manual tracing. There have therefore been

developments of automated hippocampal subfield techniques that can be applied to

clinically acquired (i.e. ≤ 3 Tesla) MRI data (Van Leemput et al. 2009, Pipitone et al.

2014, Yushkevich et al. 2015a, Winston et al. 2013a). The approach described by

Van Leemput et al. (2009) has proved to be particularly popular, given this method’s

release in context of the freely available Freesurfer software (http://freesurfer.net,

Fischl 2012). This technique was previously applied to investigate hippocampal

subfield alterations in patients with TLE (Schoene-Bake et al. 2014). However, there

have been concerns raised with this approach, including reliance on low-resolution

T1w images and an imprecise parcellation scheme (Wisse et al. 2014). Recently, a

revised automated hippocampal subfield technique has been introduced that has

improved anatomical delineation of the constituent parts of the hippocampus based

on multi-sequence ex-vivo 7T MRI, including standard resolution T1w images and

high in-plane resolution T2w images (Iglesias et al. 2015). In a large sample of

patients with refractory TLE and HS who underwent conventional T1w and high-
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resolution T2STIR MRI, this latest approach was applied to investigate whether

preoperative in-vivo hippocampal subfield analysis had significance for laterality,

postoperative seizure control, semi-quantitative HIA ratings and other clinical

features of TLE.

The aim of this study was to investigate the clinical and surgical outcome correlates

of preoperative hippocampal subfield volumes in patients with refractory TLE using

a novel automated MRI multi-sequence segmentation technique. An automated

hippocampal segmentation algorithm was used to identify 12 subfields in each

hippocampus and relate these to epilepsy laterality and postoperative outcomes.

Objective 5.1

To investigate the relationship between preoperative hippocampal subfield

volumes and clinical and surgical outcomes in patients with refractory TLE

using a new MRI multi-sequence segmentation technique. 

It was hypothesized that post-surgical outcome was related to preoperative

hippocampal subfield volume. For example, as ILAE HS type 1, is manifest as

predominant loss of neurons and gliosis in CA1 and CA4 subfields and has been

associated with an early seizure onset and improved seizure outcome after temporal

lobe surgery (Blümcke et al. 2013), it was hypothesized that atrophy in these regions

would be related to favorable post-surgical outcomes. Furthermore, as HS is an

initial precipitating injury (Pitkänen and Lukasiuk 2011, Blume 2006, Goldberg and

Coulter 2013), it was assumed that clinical features such as age of onset, duration of

epilepsy and seizure frequency would not be related with the degree of atrophy of

gross hippocampal volume or of any subfields.

Objective 5.2

To determine the relationship between hippocampal subfield volumes and semi-
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quantitative hippocampal internal architecture (HIA) ratings.

It was hypothesized that the semi-quantitative HIA ratings (visual scoring

assessments representing a marker for loss of internal hippocampal architecture, an

important feature of HS (Elkommos et al. 2016)) would correlate with whole

hippocampal and subfield volumes.

5.2 Methods

5.2.1 Participants

106 patients with well-characterized mesial TLE and radiological evidence of HS

(mean age = 40.3 years (SD 13.6); 58 female; 70 with left TLE, 36 with right TLE)

who were being evaluated for suitability for neurosurgery at University Hospital

Bonn, Germany were studied. Each patient underwent a detailed pre-surgical

program, including comprehensive seizure semiology assessment, MRI,

neuropsychological assessment, interictal electroencephalography and if clinically

necessary, additional invasive electrophysiological recordings, as reported recently

(Keller et al. 2015a). All patients showed evidence of a unilateral temporal lobe

seizure onset with concomitant ipsilateral HS. Conventional indicators of HS were

diagnosed by an experienced neuroradiologist (Keller et al. 2015a). No patient had

bilateral HS or evidence of a potential secondary epileptogenic lesion. Age of

patient, age at diagnosis of epilepsy, duration of epilepsy, history of childhood FC

and incidence of SGTCS were recorded for all patients. Patients who underwent

temporal lobe surgery (standardized amygdalohippocampectomy) received

postoperative follow up for a period of up to two years after surgery and outcome

assessment using the ILAE outcome classification system (Wieser et al. 2001).

5.2.2 MRI Acquisition

All patients underwent MRI at the Life & Brain Center in Bonn on a 3 Tesla scanner

(Magnetom Trio, Siemens, Erlangen, Germany) using an eight-channel head coil.

For the purposes of the present study, two MRI sequences, including a 3D T1w

97



Chapter 5: Multi-sequence Hipppocampal Subfield Segmentation

MPRAGE image (160 slices, TR = 1300 ms, TI = 650 ms, TE = 3.97 ms, resolution

1.0 × 1.0 × 1.0 mm, flip angle 10°) and a high in-plane resolution T2STIR sequence

in the coronal plane angulated perpendicular to the long axis of the hippocampus (40

slices, TR = 5600 ms, TI = 100 ms, TE = 18 ms, resolution 0.45 x 0.45 x 2.0 mm,

flip angle = 0°) were acquired.

5.2.3 MRI Analysis

For each patient quantitative automated segmentation and cortical parcellation of

T1w data were performed using Freesurfer 5.3.0 (Fischl 2012). The standard

Freesurfer “recon-all” processing stream was used, which provides surfaces and

morphometry data for each subject in addition to GM/WM segmentations. Automatic

labelling and volume estimation of hippocampal subfields was guided by the

segmentation of the whole hippocampus (previous step) and performed using the

adaptive segmentation technique described by Iglesias et al. (2015) in context of

Freesurfer 6 (https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields).

Figure 5.1 shows the anatomical locations of the hippocampal subfields on T1w and

T2STIR images in a patient with right TLE after the use of this software module.
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Figure 5.1. Anatomical locations of segmented subfields on T1w (left) and T2STIR images
(right) in a patient with right TLE. The same slices are shown for both images in the
hippocampal head (A) and hippocampal body (B). R = Right; CA = Cornu Ammonis; HATA
= Hippocampus-Amygdala Transition Area.
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The protocol co-registered T1w and T2STIR data and used these images

simultaneously to generate labels and volumes for the whole hippocampus and 12

hippocampal subfields:

1. Parasubiculum

2. Presubiculum

3. Subiculum

4. CA1

5. CA2/CA3

6. CA4

7. Granule cell layer of the dentate gyrus (GC-DG)

8. Hippocampus-amygdala transition area (HATA)

9. Fimbria

10. Molecular Layer

11. Hippocampal fissure

12. Hippocampal tail

Semi-quantitative HIA ratings have been shown to be a significant predictor of the

laterality of seizure onset in TLE (Ver Hoef et al. 2013a, Elkommos et al. 2016) and

were integrated into image analysis in order to determine whether HIA correlated

with gross hippocampal and subfield volumes as estimated by Freesurfer. Each

T2STIR image slice that depicted the hippocampus was graded with a score of ‘1’

when no internal architecture was discernible to ‘4’ where excellent internal

architecture differentiation could be appreciated (Elkommos et al. 2016). The rater

(Dr Samia Elkommos) was blinded to patient clinical information such as outcome

and laterality and the images were rated on consecutive coronal T2STIR sections in a

rostral to caudal direction.

5.2.4 Statistical Analysis

All statistical analyses were performed using MATLAB 2015b. Group comparison

analyses were performed using the unpaired Mann-Whitney U test (data non-
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normally distributed, p<0.05), and included analysis of effects of laterality of

epilepsy and postoperative outcome on subfield volume. With respect to

postoperative outcome, comparisons were made between patients who attained a

postoperative outcome of ILAE I (complete seizure freedom) relative to ILAE II-VI

(persistent postoperative seizures) (Keller et al. 2015a). Relationships between

subfield volume and continuous clinical data, including age of onset of epilepsy,

epilepsy duration, seizure frequency and estimated seizure burden, were investigated

using Spearman correlation coefficients. Seizure burden was defined as equal to

log10(frequencyxduration), with the logarithm being applied to accommodate

patients with very high seizure frequency. Correlations were performed corrected for

patient age. Relationships between categorical relationships, including postoperative

outcome and sex, side of TLE, history of childhood FC and presence of SGTCS was

investigated using Chi-Squared tests of independence. Furthermore, the relationships

between HIA ratings and automatically extracted Freesurfer subfield volumes were

investigated. Gross hippocampal and subfield volumes were corrected for ICV and

statistical tests were corrected for multiple comparisons using the False-Discovery-

Rate (FDR) procedure (Benjamini and Hochberg 1995). 

5.3 Results

The accuracy of the hippocampal subfield labels was visually checked for all

patients. The subfields of one hippocampus in three patients could not be

successfully generated due to motion artifacts. Therefore analyses were restricted to

the 103 with successful reconstructions. 

5.3.1 Volumes and Clinical Correlations

Table 5.1 shows the comparison of ipsilateral and contralateral subfield volumes

between patients with left and right TLE. There were no significant differences in

subfield volumes of the ipsilateral hippocampi between patients with left and right

TLE.
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Side Region TLE Mean SD Z p-value (FDR-corr.)

Ipsilateral Hippocampal Tail Left 0.025 0.007
0.15 0.96

Right 0.025 0.005
Subiculum Left 0.022 0.005

1.89 0.37
Right 0.020 0.003

CA1 Left 0.032 0.009
-0.72 0.76

Right 0.032 0.007

Hippocampal Fissure Left 0.008 0.002 1.3 0.53
Right 0.008 0.002

Presubiculum Left 0.015 0.004
2.6 0.11

Right 0.014 0.003
Parasubiculum Left 0.003 0.001

1.3 0.53
Right 0.003 0.001

Molecular Layer HP Left 0.029 0.006
0.32 0.96

Right 0.028 0.005
GC-ML-DG Left 0.015 0.004

0.21 0.96
Right 0.015 0.003

CA2/3 Left 0.010 0.003
-0.85 0.74

Right 0.010 0.003
CA4 Left 0.013 0.003

0.05 0.96
Right 0.012 0.003

Fimbria Left 0.004 0.001
1.48 0.53

Right 0.004 0.001
HATA Left 0.004 0.001

1.16 0.53
Right 0.004 0.001

Whole Hippocampus Left 0.170 0.040
0.46 0.93

Right 0.166 0.030

Contralateral Hippocampal Tail Left 0.036 0.006
3.3 0.01

Right 0.032 0.005
Subiculum Left 0.028 0.005

-1.02 0.52
Right 0.028 0.004

CA1 Left 0.045 0.008
-1.7 0.32

Right 0.043 0.006
Hippocampal Fissure Left 0.088 0.002

0.74 0.55
Right 0.084 0.002

Presubiculum Left 0.018 0.003
-2.4 0.08

Right 0.019 0.003
Parasubiculum Left 0.004 0.001

-1.23 0.52
Right 0.004 0.001

Molecular layer HP Left 0.038 0.007
1.14 0.52

Right 0.036 0.005
GC-ML-DG Left 0.021 0.004

0.43 0.67
Right 0.021 0.003

CA2/3 Left 0.015 0.003
0.58 0.61

Right 0.015 0.003
CA4 Left 0.018 0.003

0.82 0.54
Right 0.017 0.002

Fimbria Left 0.005 0.001
-0.88 0.54

Right 0.005 0.002
HATA Left 0.0045 0.001

-2.66 0.05
Right 0.005 0.001

Whole Hippocampus Left 0.230 0.036
0.99 0.52

Right 0.225 0.028

Table 5.1.  Comparison of Subfield Volumes Corrected for ICV in Patients with Left/Right
TLE.

Patients with right TLE had reduced ICV corrected volumes of the contralateral
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hippocampal tail (Z=3.3, p(FDR-corr)=0.01), and patients with left TLE had lower

contralateral presubiculum (Z=-2.4, p(FDR-corr)=0.08) and HATA (Z=-2.66, p(FDR-

corr)=0.05) volumes relative to the corresponding patient group (Table 5.1; Figure

5.2). For patients as a whole group, and patients with left and right TLE separately,

there were no significant relationships between age of onset, duration of epilepsy

corrected for age, seizure frequency/burden, incidence of SGTCS/febrile convulsions

and hippocampal subfield volumes (p(FDR-corr)>0.05).

Figure 5.2. Decreased contralateral hippocampal volumes in patients with right TLE
compared to patients with left TLE (hippocampal tail) and vice versa (presubiculum/HATA).
Blue boxplots indicate data distribution, with the median (red line) and 95% confidence
intervals (red triangles). *p(FDR-corr)<0.1; **p(FDR-corr)<0.05; ***p(FDR-corr)<0.01.

5.3.2 Outcome

Of the 103 with successful reconstructions, 76 patients had received

amygdalohippocampectomy and postoperative outcome assessment. Of these
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patients, 41 (54%) patients had an excellent postoperative seizure outcome (ILAE I)

and 35 (46%) had a suboptimal outcome (ILAE II-VI) (minimum 12 months follow

up, mean 23 months). A breakdown of clinical variables according to outcome is

provided in Table 5.2. An increased number of males had an excellent outcome

compared to females (χ2=4.5, p<0.05), and right-sided patients had fewer suboptimal

outcomes (χ2=3.7 p=0.05). There were no significant differences between outcome

groups in incidence of febrile/SGTC seizures, age, age at onset of epilepsy, duration

of epilepsy, seizure frequency or seizure burden.

Variable ILAE I ILAE II-VI Statistics

N 41 (54%) 35 (46%) -

Outcomes I = 41

II = 7
III = 14 
IV = 11
V = 3

VI = 0 

-

left / right TLE 23/18 27/8 χ2 =3.7, p=0.05

female / male 17/24 23/12 χ2 =4.5, p=0.04

Febrile Seizures, no / yes 28/13 21/14 χ2 =0.6, p=0.45

SGTCS, no / yes 25/16 21/14 χ2 =0.01, p=0.93

Age 38.3 (12.4) 39.1 (14.2) Z=-0.08, p=0.94

Onset 15.9 (11.94) 14.9 (11.5) Z=0.27, p=0.79

Duration Corrected for Age 0.58 (0.29) 0.59 (0.3) Z=-0.06, p=0.95

Seizure Frequency 8.8 (16.5) 8.4 (15.6) Z=-0.75, p=0.45

Seizure Burden 1.87 (0.52) 1.89 (0.52) Z=-0.14, p=0.89

Table 5.2. Clinical Variables According to Surgery Outcome.
TLE = Temporal Lobe Epilepsy; SGTCS = Secondary-Generalized Tonic-Clonic Seizures.

When all patients were considered together, there were no significant differences in

the volume of ipsilateral or contralateral hippocampal subfields between those with

excellent and suboptimal outcomes (p(FDR-corr)>0.05; Table 5.3).
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Side Region Outcome Mean SD Z p-value (FDR-corr.)

Ipsilateral
Hippocampal Tail

ILAE I 0.026 0.006
-0.570 0.690

ILAE II-VI 0.026 0.007

Subiculum
ILAE I 0.022 0.005

-0.830 0.690
ILAE II-VI 0.022 0.005

CA1
ILAE I 0.033 0.009

-0.780 0.690
ILAE II-VI 0.033 0.008

Hippocampal Fissure ILAE I 0.008 0.002 0.323 0.750
ILAE II-VI 0.008 0.002

Presubiculum
ILAE I 0.015 0.004

-1.271 0.690
ILAE II-VI 0.015 0.003

Parasubiculum
ILAE I 0.003 0.001

-2.011 0.580
ILAE II-VI 0.004 0.001

Molecular Layer HP ILAE I 0.029 0.006
-0.552 0.690

ILAE II-VI 0.029 0.006
GC-ML-DG ILAE I 0.015 0.004

-0.667 0.690
ILAE II-VI 0.015 0.004

CA2/3 ILAE I 0.011 0.003
-0.323 0.750

ILAE II-VI 0.011 0.003
CA4 ILAE I 0.013 0.004

-0.552 0.690
ILAE II-VI 0.013 0.003

Fimbria ILAE I 0.004 0.001
-0.761 0.690

ILAE II-VI 0.004 0.001
HATA ILAE I 0.004 0.001

-0.866 0.690
ILAE II-VI 0.004 0.001

Whole Hippocampus ILAE I 0.174 0.042
-0.865 0.690

ILAE II-VI 0.177 0.039

Contralateral Hippocampal Tail ILAE I 0.034 0.005
-0.020 0.980

ILAE II-VI 0.035 0.008
Subiculum ILAE I 0.028 0.004

0.560 0.980
ILAE II-VI 0.028 0.005

CA1 ILAE I 0.044 0.007
-0.410 0.980

ILAE II-VI 0.045 0.009
Hippocampal Fissure ILAE I 0.087 0.002

-0.230 0.980
ILAE II-VI 0.089 0.002

Presubiculum ILAE I 0.018 0.002
0.150 0.980

ILAE II-VI 0.018 0.004
Parasubiculum ILAE I 0.004 0.001

-1.060 0.980
ILAE II-VI 0.004 0.001

Molecular layer HP ILAE I 0.037 0.006
-0.220 0.980

ILAE II-VI 0.038 0.007
GC-ML-DG ILAE I 0.021 0.004

-0.896 0.980
ILAE II-VI 0.021 0.004

CA2/3 ILAE I 0.015 0.003
-0.125 0.980

ILAE II-VI 0.015 0.003
CA4 ILAE I 0.017 0.003

-0.750 0.980
ILAE II-VI 0.018 0.003

Fimbria ILAE I 0.005 0.001
0.042 0.980

ILAE II-VI 0.005 0.001
HATA ILAE I 0.005 0.001

-0.021 0.980
ILAE II-VI 0.005 0.001

Whole Hippocampus ILAE I 0.229 0.032
-0.240 0.980

ILAE II-VI 0.231 0.039

Table 5.3. Comparison of Subfield Volumes Corrected for ICV in Patients with Outcomes
ILAE I versus ILAE II-VI.

No significant differences were observed between outcome groups when patients
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with left or right TLE were considered separately. Significant correlations were

observed between semi-quantitative ipsilateral HIA ratings and ipsilateral

hippocampal tail (rho=0.31; p(FDR-corr)<0.05), subiculum (rho=0.25; p(FDR-corr)<0.05),

CA1 (rho=0.35; p(FDR-corr)<0.05), parasubiculum (rho=0.25; p(FDR-corr)<0.05), molecular

layer (rho=0.33; p(FDR-corr)<0.05), CA2/3 (rho=0.32; p(FDR-corr)<0.05), CA4 (rho=0.26;

p(FDR-corr)<0.05) and the whole hippocampal volume (rho=0.3; p(FDR-corr)<0.05). All of

these significant relationships are shown in Figure 5.3.

Figure 5.3. Significant correlations of ipsilateral hippocampal internal architecture (HIA)
ratings and ipsilateral subfield volumes extracted via Freesurfer. Linear least-square lines
were fitted to the data.
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There were no correlations between contralateral HIA ratings and contralateral

hippocampal or subfield volumes (p(FDR-corr)>0.05). 

5.4 Summary

Objective 5.1: 

Preoperative hippocampal subfield volumes and clinical and surgical outcomes

Firstly, patients with left TLE had significantly decreased volume of the contralateral

presubiculum and HATA regions relative to patients with right TLE. Conversely,

patients with right TLE had significantly smaller contralateral hippocampal tail

volumes relative to patients with left TLE. Contrary to the initial hypothesis, it was

found that the high-resolution hippocampal subfield segmentation technique cannot

establish a link between hippocampal subfield volume loss and post-surgical

outcome.

Objective 5.2

Hippocampal subfield volumes and semi-quantitative HIA ratings

Ipsilateral and contralateral hippocampal subfield volumes did not correlate with

duration of epilepsy, age of onset of epilepsy, epilepsy burden, a history of febrile

seizures or prevalence of SGTCS. Semi-quantitative HIA ratings were significantly

related to several hippocampal subfield volumes.
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6.1 Introduction

Extrahippocampal abnormalities have been frequently described in TLE, including

cortical and subcortical GM alterations demonstrated using morphometric techniques

(see reviews by Bernhardt et al. 2013, Keller and Roberts 2008, Richardson 2012,

Bonilha and Keller 2015) and WM tract alterations using DTI and tractography (see

reviews by Rodríguez-Cruces and Concha 2015, Gross 2011). Tractography

approaches have proved to be particularly interesting as they can provide quantitative

information regarding neuroanatomical structure and pathology that exist beyond

conventional visual analysis of MRI, and may yet provide important information on

cognitive deficits and treatment prognosis in people with epilepsy. Furthermore, the
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recent revision of seizure disorder definitions to acknowledge the importance of

networks for the onset of focal seizures (Berg and Scheffer 2011) has encouraged a

new direction of imaging research to model neuroimaging data in context of

structural and functional networks and connectivity (Richardson 2012).

Reconstruction of WM tracts from DTI data represent the most frequently applied

technique of generating structural connectivity in the human brain (Jellison et al.

2004, Mori et al. 2009). 

There are a variety of ways to reconstruct WM tracts from DTI data. The most

frequently applied have been manual tractography techniques that require a trained

researcher to segment individual tract bundles based on known anatomical features.

Using these approaches, previous studies have reported significant alterations in DTI

scalar metrics, such as FA and MD of the parahippocampal fibers (Ahmadi et al.

2009, Yogarajah et al. 2008, Concha et al. 2007), ILF (Ahmadi et al. 2009, Imamura

et al. 2015, Concha et al. 2012) and SLF (Ahmadi et al. 2009, Concha et al. 2012,

Lin et al. 2008), UF (Ahmadi et al. 2009, Rodrigo et al. 2007, Diehl et al. 2008, Lin

et al. 2008, Concha et al. 2012) and FF (Concha et al. 2005, Concha et al. 2007,

Concha et al. 2010). However, a significant practical limitation of manual

tractography methods is the availability of trained personnel and the time consuming

nature of making measurements. Similar to advantages associated with the evolution

of automated morphometric techniques from manual volumetric approaches based on

T1w MRI data (Bonilha and Keller 2015), a technique that automatically

reconstructs probabilistic WM tract bundles could circumnavigate some of the

shortcomings of manual tractography approaches. 

Freesurfer software (Fischl 2012) has continued to develop and provide freely

available tools along with community support for morphometric and tractographic

analyses. In context of this software, Tracts Constrained by Underlying Anatomy

(TRACULA, Yendiki et al. 2011) offers the opportunity to automatically reconstruct
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major WM bundles. A significant advantage of this approach is that the automated

reconstruction of tracts is performed in each subject's native space without warping

to standard space and tissue characteristics of WM tracts can be investigated in

relation to morphometric analyses of subcortical and cortical structures (Storsve et al.

2016, Sølsnes et al. 2016). This is particularly interesting in TLE with associated HS

as relationships between extent of damage to the epileptogenic hippocampus and

tract tissue characteristics can be investigated. HS may occur in response to an initial

precipitating injury prior to a period of epileptogenesis that later gives rise to the

onset of recurrent spontaneous seizures (Pitkänen and Lukasiuk 2011, Blume 2006,

Goldberg and Coulter 2013). However, the etiology of extrahippocampal brain

alterations in TLE remains unknown. Some morphometric MRI studies have

suggested that the extent of HA is correlated with the degree of extrahippocampal

temporal lobe atrophy (Moran et al. 2001, Bonilha et al. 2010, Mueller et al. 2010,

McMillan et al. 2004), suggesting that a common process of gross atrophy may

occur. However, less is known about the relationship between HA and WM tract

alterations (Rodriguez-Cruces and Concha 2015). One study revealed a correlation

between the extent of HA and WM tract alterations (Scanlon et al. 2013) but another

study reported no relationship (Concha et al. 2012). In the present study, the

relationships between extent of HA, as quantified using Freesurfer morphometric

tools, temporal lobe WM tract alterations, and various clinical aspects of TLE were

computed.

There is only limited anatomical specificity provided in conventional tractography

studies in TLE, as techniques are typically restricted to the analysis of whole-tract

diffusion alterations. Information obtained from whole-tract analyses are limited

because there may be significant variations in diffusion characteristics along the

length of WM tracts (Johnson et al. 2013), and it is likely that some pathological tract

alterations occur in circumscribed regions within tracts and not along entire tracts in

patients with TLE. Therefore it is important to develop methods that permit analysis
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of within-tract tissue characteristics in patients with TLE (Concha et al. 2012, Glenn

et al. 2016). In the present study, TRACULA methods were applied in order to

investigate within-tract alterations in TLE, and to determine whether these regional

alterations are influenced by the extent of HA and clinical variables. Unlike other

methods frequently used that are limited to confined WM structural diffusivity

analysis via ROI analysis (Keller et al. 2012) or tract-based spatial statistics (Smith et

al. 2006) based on diffusion metric maps in the standard International Consortium for

Brain Mapping (ICBM) template space, TRACULA allows whole-brain

tractography. Despite the potential advantages of utilizing automated tractography

approaches, TRACULA has only recently been used in an increased number of

clinical studies, including schizophrenia (Yendiki et al. 2011), bipolar disorder

(Sprooten et al. 2016), myotonic dystrophy (Wozniak et al. 2014) and Alzheimer's

disease (Lee et al. 2015a). Even though neuroscientists are paying more attention to

tract analysis techniques such as TRACULA, there have been no applications to date

in epilepsy, which is characterized by regional GM and WM pathology.

6.1.1 Objectives and Hypotheses

The overall goal of the present study was to apply an automated probabilistic

tractography approach and to determine the extent of pre-surgical diffusion

alterations in patients with TLE and whether these would be correlated with clinical

variables or degree of HA. There were four study objectives:

Objective 6.1

To investigate diffusion alterations of whole temporal lobe WM tracts in

patients with left and right TLE relative to healthy controls using an automated

probabilistic tractography approach. It was hypothesized that the automated

method can identify diffusivity changes (in FA and MD values of temporal lobe WM

tracts) relative to controls and among the two patient groups.
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Objective 6.2

To investigate alterations along WM tracts using waypoint comparisons for

ipsilateral and contralateral tracts between patient groups based on side of

seizure onset and other clinical factors (e.g. history of febrile seizures). It was

hypothesized that WM tract diffusivity measures in patients are more extensively

affected ipsilaterally and in the presence of unfavorable clinical factors such as

greater seizure frequency, longer epilepsy duration, history of SGTC/febrile seizures,

and earlier age of onset.

Objective 6.3

To determine the relationship between regional WM tract diffusivity and the

degree of  hippocampal (subfield) atrophy in patients with TLE. As HS is seen as

an initial precipitating injury (Pitkänen and Lukasiuk 2011), it was hypothesized that

no relationship between hippocampal volume and WM tract diffusion characteristics

would be found, but rather that regional WM tract diffusivity is mediated by

unfavorable clinical factors of the disorder such as epilepsy duration and age of

onset.

Objective 6.4

To investigate whether patients with postoperative seizures and those who were

rendered seizure free after surgery could be differentiated based on

preoperative WM tract diffusivity measures. It was hypothesized that patients

with persistent postoperative seizures would have more extensive abnormal

diffusivity measures in ipsi- and contralateral temporal lobe tracts (such as the UF

and CAB) than patients who were rendered seizure free.

6.1.2 Organization of Chapter

Demographic and clinical details of all study participants, the methods of diffusion

imaging processing, tractography and statistical analyses are presented in Section
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6.2. Results from group-wise statistical testing and correlation analysis are presented

in Section 6.3. Within Section 6.4 the significant findings from this study are briefly

presented in relation to the objectives.

6.2 Methods

6.2.1 Participants

64 patients with well-characterized TLE and associated ipsilateral HS (41 patients

with left TLE, 23 patients with right TLE) and 44 age- and sex-matched controls

were studied. Age and sex did not differ significantly between patients and controls

and no significant difference in any of the clinical variables (p>0.05) between

patients with left and right TLE were found (Table 6.1). 

Radiological evidence of HS was assessed by an experienced neuroradiologist using

standard criteria, including hippocampal volume loss and internal structural

disruption on T1w MRI and/or hyperintensities on T2w/FLAIR images (Keller et al.

2015a, 2015b). There was no evidence of bilateral HS in any patient or of a

secondary extrahippocampal lesion that may have contributed to seizures (Keller et

al. 2015a). All patients underwent comprehensive pre-surgical evaluation, and all had

a confident diagnosis of mesial TLE based on semiological, electrophysiological and

imaging investigations (Kral et al . 2002). All patients underwent

amygdalahippocampectomy and HS was confirmed histologically using standard

criteria (Blümcke et al. 2013). Post-surgical seizure outcome was assessed using the

ILAE outcome classification system (Wieser et al. 2001). All patients had a

minimum of 1 year and an average of 2 years of postoperative follow-up. All patients

and controls provided written informed consent and the local ethics committee

approved this study (Keller et al. 2015b).
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Variable
Group Statistics

Left TLE Right TLE Controls Statistic p-value

N 41 (38%) 23 (21%) 44 (41%) - -

Sex (female / male) 26 / 15 10 / 13 29 / 15 χ2 (2) = 3.5 0.2 

Febrile seizures (no / yes) 20 / 8 10 / 5 - χ2 (1) = 0.1 0.8

SGTCS (no / yes) 15 / 13 9 / 6 - χ2 (1) = 0.2 0.7

Outcome

(ILAE I / ILAE II-VI)
9 / 16 10 / 5 - Χ2 (1) =  3.5 0.06

Variables with Mean (SD)

Age (years) 43.8 (13) 41.3 (14.9) 43.2 (14.2) F (2, 107) = 0.24 0.8

Age at onset in years 18 (12.3) 14.3 (11.5) - T (62) = 1.2 0.3

Duration in years 22.7 (13.1) 22 (17.5) - T (62) = 0.17 0.9

Seizure frequency, months 5.4 (3.9) 9.4 (22.4) - T (41) = -0.9 0.4

Seizure burden 1.9 (0.45) 1.8 (0.44) - T (41) = 0.9 0.4

Table 6.1. Demographic and Clinical Variables According to Seizure Laterality.
Abbreviation: TLE = Temporal Lobe Epilepsy. The conducted statistical tests were Chi-
Squared tests of independence for the first three variables; one-way ANOVA for age and
unpaired two-tailed t-tests for all remaining clinical variables.

6.2.2 MR Acquisition

Each participant underwent MRI at the Life & Brain Center in Bonn on a 3 Tesla

scanner. 3D T1w and DTI were acquired for all participants. All scanning and

imaging parameters are detailed in Chapter 2, Section 2.2.

6.2.3 Data Pre-processing

For each participant automated segmentation and cortical parcellation of T1w data

was performed using Freesurfer version 5.3.0. The standard Freesurfer “recon-all”

processing stream was used, which provides surfaces and morphometry data for each

subject (Keller et al. 2012) in addition to GM/WM segmentations. This information

was also subsequently used to restrict tractography analysis to WM. However, before

tensor fitting and tractography were performed within Freesurfer (TRACULA
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version 1.56), DTI data was processed using the ENIGMA DTI-preprocessing steps

(http://enigma.ini.usc.edu/protocols/dti-protocols/). In particular, the first b0 image

was used as a reference for co-registration of subsequent b0 images (FSL FLIRT,

Smith et al. 2004). The resulting co-registered b0 images were averaged and served

as a reference image during motion correction on the diffusion-weighted images. The

gradient table information was adjusted accordingly (Leemans and Jones 2009).

Subsequently the data was processed in order to account for geometric distortions,

this was performed on the mean b0 image via the T1w image. In order to achieve

distortion correction, the T1w image was rigidly aligned with the mean b0 image

(Smith et al. 2004) and the mean b0 image was nonlinearly registered to this T1w

image in d i f fus ion space u s ing Advanced Norma l iza t i on Too l s

(http://stnava.github.io/ANTs/). The resulting nonlinear registration information was

used to unwarp subsequent diffusion-weighted images in native diffusion space.

TRACULA's default tensor fitting and tract reconstruction pipelines using the ball-

and-stick model were applied to the pre-processed data.

6.2.4 Quality Assessment after Pre-processing

The DTI data, T1w Freesurfer segmentations and anatomical alignment of the co-

registered b0/T1 images were assessed visually. TRACULA's performance in tract

reconstruction was then visually appraised so that any failed reconstructions could be

re-initialized in order to recover the tracts.

As DTI-derived scalar metrics have been shown to vary with SNR (Farrell et al.

2007), the SNR for every diffusion-weighted image was calculated through

TRACULA using the mean of the signal intensity of the whole brain WM divided by

the standard deviation of the same area. All SNR values were averaged for each

participant for further statistical analysis. As all SNR values are derived from whole-

brain images acquired on the same scanner, variability is expected to be low and

normally distributed. The data was tested for normality and for differences in mean
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SNR of all three groups using a One-Way ANOVA (data normally distributed,

Lilliefors p>0.05).

Diffusion metrics have been shown to be vulnerable to differences in motion across

patient-control cohorts. Therefore any differences in the total motion index (TMI)

between patients with left and right TLE and controls were assessed. The TMI has

been previously defined as a summary value, which takes average

translation/rotation, slice dropout and dropout severity into account and may reduce

the number of false positives when used as a nuisance regressor during analysis of

data collected on study participants who have moved differently (Yendiki et al.

2013). The data was tested for normality and for differences in mean TMI of all three

groups using a Kruskal-Wallis ANOVA (data non-normally distributed,

Lilliefors<0.05). Multiple comparison correction was performed using the Dunn-

Sidak approach (Dunn 1964).

6.2.5 Extraction of Volumes and Tracts

For patients and controls ICV, left and right hippocampal volumes were extracted

from Freesurfer's recon-all segmentation step (Table 6.2). Subsequently, tract DTI-

derived scalar metrics (FA and MD) were extracted for those tracts previously

reported to be affected in patients with TLE using manual tractography techniques.

The following temporal lobe tracts were analyzed: the SLFt, ILF, UF and CAB

(otherwise referred to as PHWM) (Figure 6.1). Unfortunately, TRACULA does not

provide tract reconstruction of the fornix, therefore it was not possible to investigate

this structure in the present study. TRACULA directly provides tract mean DTI-

derived metric values. Value extraction was confined to the center of the tract for all

tracts investigated (the average over the highest-probability path) as extraction from

a larger tract region with a lower pathway probability may potentially occlude any

localized effects as more voxels not showing any effects would be included. 
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M (SD) in mm3
Comparisons

(corrected p-values)
Statistics

Variable Side lTLE C rTLE

LTLE

vs

C

lTLE

vs

rTLE

C

vs

rTLE

Χ2-

statistic

p-

value

Intracranial

volume (ICV)

whole

brain

1504800

(261470)

1645200

(122970)

1568100

(23783)
<0.05 0.79 0.47 6.6 <0.05

Hippocampal

volume

corrected for

ICV (%)

left
0.2

(0.06)

0.27

(0.02)

0.27

(0.03)
<0.001 <0.001 0.9 35.2 <0.001

right
0.3

(0.05)

0.27

(0.02)

0.2

(0.04)
0.9 <0.001 <0.001 40.5 <0.001

Table 6.2. Kruskal-Wallis ANOVA Comparing Volumes across all groups.
M = Mean; SD = Standard Deviation; TLE = Temporal Lobe Epilepsy; C = Control; r =
right; l = left.

6.2.6 Statistical Analysis

Results were considered significant at p<0.05. Statistical testing was performed using

a Macintosh Laptop OSX 10.9.2 running MATLAB R2015b. As native space

volumes and tracts cannot be assumed to be normally distributed due to inter-subject

variability the normality of the data was tested. Given that the data pertaining to

hippocampal/intracranial volumes and DTI-derived metric values were non-normally

distributed (Lilliefors p<0.05), non-parametric tests were used for analysis. Patient-

control group comparisons on hippocampal volumes and ICV were performed using

a Kruskal-Wallis ANOVA, with a Dunn-Sidak correction for multiple comparisons

(Dunn 1964). Patient-control group comparisons on mean tract diffusion metrics

were performed using a non-parametric ANCOVA with a single regression model

accounting for both multiple comparisons and TMI (Conover and Iman 1982).
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Figure 6.1. All reconstructed TRACULA tracts.
Estimated probability tracts from TRACULA are overlaid on T1w (native space, control) and shown
in sagittal (A), axial (B) and coronal (C) views at 20% of maximum probability. TRACULA tracts
analyzed: CAB, SLFt, ILF and UF. R=Right; L=Left; CC-MIN=corpus callosum (forceps minor); CC-
MAJ=corpus callosum (forceps major); ATR=anterior thalamic radiations; UF=uncinate fasciculus;
ILF=inferior longitudinal fasciculus; CAB=cingulum angular bundle; SLFt=superior longitudinal
fasciculus (temporal segment); SLFp=superior longitudinal fasciculus (parietal segment);
CST=corticospinal tract; CCG=cingulum–cingulate gyrus bundle.
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Additionally the patients were dichotomously grouped according to presence of

childhood FC and SGTCS and differences in DTI-metrics using the unpaired

Wilcoxon-rank-sum test were investigated. TRACULA offers a DTI-metric value

along the trajectory of a pathway through generating a weighted average of the

respective values over all sampled paths for a particular tract. As native space tracts

had a slightly different length for each data set and the endings did not always

correspond, shorter tracts contained some NaN ('not a number') waypoints, which

were ignored in statistical testing. This comparison was based solely on native space

tract values and did not represent a voxel-based approach, where each voxel

represents the same type of region of tissue after normalization to standard space.

However, in order to visualize differences between patients and controls along the

different tracts, mean tract paths in MNI space were generated. Waypoint average

FA/MD values along the native space tracts were separately compared between

patients with left/right TLE and controls using a non-parametric ANCOVA and a

single regression model, which accounted for both multiple comparisons and TMI.

The unpaired Wilcoxon-Rank-Sum test was performed on patients with and without

history of childhood FC and presence of SGTCS. As multiple locations along a tract

were analyzed, significance levels were corrected with the FDR procedure by

Benjamini and Hochberg (1995) and considered significant at p<0.05. 

Correlations between whole-tract and waypoint DTI-metrics with extent of HA and

clinical information were investigated using Pearson product-moment linear

correlation coefficients. Clinical information included age, age at onset of epilepsy,

duration of epilepsy and seizure burden. Hippocampal volume was corrected for ICV

and duration was corrected for patient age to control for the effects of normal brain

maturation. Seizure burden was defined as log10(frequency x duration). The

logarithm was applied in order to accommodate patients with very high seizure

frequency. Significance levels were corrected with the FDR procedure and

considered significant at p<0.05. 
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Finally, waypoint tract diffusion metrics of patients with optimal (ILAE I) and

suboptimal (ILAE II-VI) post-surgical outcomes were compared to those of the

controls. In order to achieve this, the data collected on patients with right TLE

(N=23) was side-flipped to allow ipsilateral/contralateral analysis. The same

proportion (36%) of controls (N=16) was also side-flipped to avoid any left-right

bias (Keller et al. 2015a). Correlations between waypoint DTI-metrics and outcome

were investigated using the Pearson product-moment linear correlation coefficients.

6.3 Results

6.3.1 Data Quality Assessment

Visual assessment revealed satisfactory T1w Freesurfer segmentations and excellent

anatomical agreement between b0 and T1w images after co-registration. Using the

conventional image processing stream for TRACULA, at least one tract was only

partially reconstructed in 50 participants (46%). However, all tracts were

successfully reconstructed after reinitialization.

No significant difference between groups were found for SNR (left TLE:

Mean=4.02, SD=0.22; right TLE: Mean=4.03, SD=0.21; controls: Mean=3.94,

SD=0.19); F(2,107)=2.15 p=0.12. However, the study did show that the TMI was

significantly different between patients with left TLE (mean TMI = -0.6, SD = 0.95),

right TLE (mean TMI = -0.7, SD = 0.99) and controls (mean TMI = 1.2, SD = 0.99)

(X2(2,107)=52.1 p=4.9*10-12. Post hoc testing revealed that controls had a higher

TMI than either patient group (p<0.001), whereas the two patient groups did not

differ significantly among each other (p=0.9). The TMI value was entered as a

nuisance regressor into the non-parametric ANCOVA in order to mitigate

confounding effects on patient-control comparisons (Yendiki et al. 2013).
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6.3.2 Patients vs Controls 

6.3.2.1 Volumes

There were no differences in ICV between patient groups. However, ICV was

significantly smaller for patients with left TLE relative to controls (Table 6.2).

Patients with left TLE and right TLE had significantly smaller ipsilateral

hippocampal volumes (corrected for ICV) than controls. There was no evidence of

contralateral HA in patients relative to controls. None of the demographic (age) or

clinical variables (age at onset, duration corrected for age and seizure burden)

correlated with ipsilateral hippocampal volumes (corrected for ICV).

6.3.2.2 Whole-tract Diffusion Metric Analysis

Whole-tract FA values are presented in Figure 6.2 and Table 6.3. Patients with left

TLE had a significant decrease in FA of all tracts (except ipsilateral SLFT) in both

hemispheres compared to controls. Relative to controls, patients with right TLE had

a significant decrease in FA in all ipsilateral tracts, and a decrease in FA in

contralateral UF and CAB.

Figure 6.2. FA Values from TRACULA Tracts ILF, SLFt, UF and CAB.
The plot shows mean center tract FA distributions along with error bars for left and right tracts of
patients with left TLE (red bars), controls (gray bars) and patients with right TLE (blue bars).
Asterisks and bars show significantly reduced FA values for patients when comparing to controls and
between the two patient groups. *p<0.05;**p<0.01;***p<0.001, corrected for multiple comparisons.
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M (SD)
p-values

from regression model
Statistics

Tract Side lTLE C rTLE

lTLE

vs

C

lTLE

vs

rTLE

C

vs

rTLE

F-statistic p-value

SLFt
left 0.46 (0.04) 0.49 (0.05) 0.46 (0.05) 0.2 0.9 0.33 4 <0.05

right 0.41 (0.04) 0.44 (0.04) 0.41 (0.04) <0.01 0.69 <0.01 7.05 <0.01

ILF
left 0.44 (0.04) 0.48 (0.04) 0.46 (0.03) <0.01 <0.05 0.29 4.06 <0.05

right 0.42 (0.05) 0.46 (0.04) 0.42 (0.04) <0.001 0.59 <0.001 11.78 <0.001

UF
left 0.32 (0.04) 0.37 (0.03) 0.35 (0.03) <0.001 <0.01 <0.01 16.5 <0.001

right 0.35 (0.03) 0.38 (0.03) 0.35 (0.03) <0.01 0.68 <0.01 7.01 <0.01

CAB
left 0.3 (0.05) 0.36 (0.05) 0.33 (0.04) <0.001 0.09 <0.01 6.2 <0.01

right 0.32 (0.06) 0.35 (0.04) 0.29 (0.04) <0.05 <0.01 <0.001 15.2 <0.001

Table 6.3. Non-parametric ANCOVA Comparing FA across all groups.
M = Mean; SD = Standard Deviation; TLE = Temporal Lobe Epilepsy; C = Control; l = left;
r = right; FA = fractional anisotropy; SLFt = superior longitudinal fasciculus (temporal
segment); ILF = inferior longitudinal fasciculus; UF = uncinate fasciculus; CAB = cingulum
angular bundle.  Corrected p-values.

Additionally, a significant decrease in FA in the left UF and ILF in patients with left

TLE relative to patients with right TLE and a significant decrease in FA in patients

with right TLE in the right CAB relative to patients with left TLE were detected.

Across all patients, whole-tract FA values did not correlate with ipsilateral

hippocampal volumes. There were significant correlations between patient age and

FA in the ipsilateral (rho=-0.4, p<0.01) and contralateral (rho=-0.26, p<0.05) UF and

the contralateral SLFt (rho=-0.36, p<0.01). Duration of epilepsy (corrected for age)

was significantly correlated with FA in the contralateral UF (rho=-0.27, p<0.05).

Seizure burden was significantly correlated with FA values in the ipsilateral (rho=-

0.33, p<0.05) and contralateral (rho=-0.32, p<0.05) UF. Age at onset of epilepsy and

seizure frequency did not correlate with FA in any tract. Whole-tract MD values are

presented in Figure 6.3 and Table 6.4. Larger patient-control differences were

observed in MD relative to FA. Patients with left and right TLE had bilateral increase

in MD of all tracts (except for left SLFT in patients with right TLE) relative to
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controls. Additionally, increased MD in the left CAB in patients with left TLE

relative to patients with right TLE and increased MD in the right UF in patients with

right TLE relative to patients with left TLE were found. Whole-tract MD values did

not correlate with ipsilateral hippocampal volume.

Figure 6.3. MD Values from TRACULA Tracts ILF, SLFt, UF and CAB.
The plot shows mean center tract MD distributions along with error bars for left and right
tracts of patients with left TLE (red bars), controls (gray bars) and patients with right TLE
(blue bars). Asterisks and bars show significantly reduced MD values for patients when
comparing to controls. *p<0.05;**p<0.01;***p<0.001, corrected for multiple comparisons.

Age correlated with the MD of the ipsilateral SLFt (rho=0.35, p<0.01). Duration of

epilepsy (corrected for age) was significantly correlated with MD in the ipsilateral

(rho=0.3, p<0.05) and contralateral (rho=0.46, p<0.001) UF and with the

contralateral ILF (rho=0.3, p<0.05). Seizure burden was significantly correlated with

MD in the contralateral UF (rho=0.31, p<0.05). Age at onset of epilepsy was

significantly correlated with MD of the contralateral UF (rho=-0.35, p<0.01). Seizure

frequency did not correlate with any diffusion measure. There were no significant

differences in FA or MD of any tract between patients with / without a history of

childhood FC, or between those with / without secondary seizure generalization

(p>0.05).
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M (SD) (in 10-4 mm2/s) p-values from regression model Statistics

Tract Side lTLE C rTLE

lTLE

vs

C

lTLE

vs

rTLE

C

vs

rTLE

F-statistic p-value

SLFt
left 7.2 (0.4) 6.9 (0.4) 7.1 (0.4) <0.01 0.5 0.07 6.5 <0.01

right 7.8 (0.4) 7.2 (0.4) 7.7 (0.3) <0.001 0.17 <0.001 20.5 <0.001

ILF
left 8.4 (0.4) 7.8 (0.5) 8.2 (0.4) <0.001 0.28 <0.05 17.24 <0.001

right 8.4 (0.6) 7.7 (0.5) 8.7 (0.5) <0.001 0.06 <0.001 41.8 <0.001

UF
left 8.9 (1) 7.9 (0.6) 8.7 (0.5) <0.001 0.74 <0.001 18.9 <0.001

right 8.7 (0.6) 7.8 (0.7) 8.9 (0.5) <0.001 <0.05 <0.001 33.02 <0.001

CAB
left 8.7 (0.5) 7.7 (0.5) 8.4 (0.4) <0.001 <0.05 <0.001 26.8 <0.001

right 8.4 (0.6) 7.5 (0.6) 8.7 (0.6) <0.001 0.14 <0.001 38.2 <0.001

Table 6.4. Non-parametric ANCOVA Comparing MD across all groups.
M = Mean; SD = Standard Deviation; TLE = Temporal Lobe Epilepsy; C = Control; l = left;
r = right; FA = fractional anisotropy; SLFt = superior longitudinal fasciculus (temporal
segment); ILF = inferior longitudinal fasciculus; UF = uncinate fasciculus; CAB = cingulum
angular bundle. Corrected p-values.

6.3.2.3 Waypoint Diffusion Metric Analysis

Waypoint comparisons along the native tracts are shown in Figure 6.4 and revealed

regionally reduced FA within the UF, ILF and CAB, predominantly ipsilateral to

seizure onset, with fewer widespread changes in contralateral tracts. For both patient

groups, tract alterations were more widespread in analysis of MD and affected ipsi-

and contralateral tracts.
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Figure 6.4. Waypoint comparison p-values along the tracts.
Differences between the patient groups and controls are shown projected onto a T1w
template. Red regions show significantly reduced FA (first row) and increased MD (second
row) relative to controls. Changes are more pronounced in MD than in FA and patients with
left TLE are more bilaterally affected than patients with right TLE. TLE = Temporal Lobe
Epilepsy; FA = fractional anisotropy; MD = mean diffusivity; SLFt = superior longitudinal
fasciculus - temporal segment; CAB = cingulum angular bundle; ILF = inferior longitudinal
fasciculus; UF = uncinate fasciculus.

For both FA and MD, patients with left TLE showed more extensive bilateral

changes (FA of contralateral ILF/UF, MD of SLFt) than patients with right TLE

(only a small region affected in FA of contralateral ILF, MD abnormalities were not

observed in at least a third of the length of contralateral tracts). Along-the-tract DTI-

metrics and extent of ipsilateral HA were not correlated. There were significant
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correlations between patient age and FA of the bilateral UF/SLFt and MD

contralaterally. Correlations between FA/MD and clinical variables are shown in

Figure 6.5. Duration of epilepsy was significantly correlated with FA and MD in

anterior temporal sections of UF and ILF. Younger age at onset of TLE did not

correlate with FA, but there was a significant correlation with MD in the anterior

temporal lobe portions of the ipsilateral UF and ILF. Seizure burden was

significantly correlated with FA in anterior regions of the ipsilateral UF. Seizure

frequency did not correlate with any diffusion measure.

Figure 6.5. Waypoint correlation p-values along the tracts according to side of seizure onset. 
Relationships between the DTI-metrics and clinical variables are shown projected onto a
T1w template and mean tract pathways. Red regions show significant correlations with
reduced FA (first row) and increased MD (second row). Relationships between duration
(corrected for age) and FA/MD of ipsilateral anterior UF and ILF regions and correlations
between age at onset (MD of UF/ILF) and seizure burden (FA of UF) were found. FA =
fractional anisotropy; MD = mean diffusivity; SLFt = superior longitudinal fasciculus -
temporal segment; CAB = cingulum angular bundle; ILF = inferior longitudinal fasciculus;
UF = uncinate fasciculus.

There were no significant differences in FA or MD along any tract between patients

with / without a history of childhood FC, or between those with / without secondary

seizure generalization (p>0.05). Results obtained from comparing FA and MD values

of patients with excellent outcomes (ILAE I) and suboptimal outcomes (ILAE II-VI)
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against controls are presented in Figure 6.6.

Figure 6.6. Waypoint comparison p-values along the tracts according to outcome.
Differences between the patient groups and controls are shown projected onto a T1w
template. Red regions show significantly reduced FA (first row) and increased MD (second
row) relative to controls. Changes are more pronounced in MD than in FA and patients with
ILAE II-IV are affected in the contralateral SLFt (increase of MD relative to controls)
whereas patients with ILAE I did not show this change. TLE = Temporal Lobe Epilepsy;  FA
= fractional anisotropy; MD = mean diffusivity; SLFt = superior longitudinal fasciculus -
temporal segment; CAB = cingulum angular bundle; ILF = inferior longitudinal fasciculus;
UF = uncinate fasciculus.

When comparing patients with ILAE I outcomes against controls, a decrease in FA

in anterior and posterior sections of the ipsilateral CAB and along the entire length of
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the ipsilateral ILF with relative sparing of the ipsilateral UF could be noted.

Contralaterally, only two (CAB) and one (ILF) small region within those tracts

showed a decrease in FA relative to controls survived FDR correction. Ipsilaterally,

the FA values of the UF, anterior ILF and posterior CAB were decreased in patients

with ILAE II-VI relative to controls. Within this patient group, an increase in MD

values of the contralateral SLF was found relative to controls, which was not seen in

patients with excellent outcomes. In summary, diffusion alterations are more

pronounced in MD than in FA measures and patients with ILAE I showed ipsilateral

diffusion alterations when compared to controls, while patients with suboptimal

outcomes (ILAE II-VI) also showed contralateral diffusion alterations when

compared to controls. Waypoint diffusion metrics did not show any correlation with

outcome.

6.4 Summary

The overall aim of this study was to apply a novel automated WM tractography

approach to patients with TLE and established HS and healthy controls. There were

four primary objectives of the present study. 

Objective 6.1

Diffusion alterations of whole temporal lobe WM tracts in patients relative to

healthy controls

Whole-tract FA/MD abnormalities were observed in nearly all temporal lobe tracts

investigated (except left SLFt), the effects being observed bilaterally, but most

strongly ipsilaterally. Tract diffusion alterations were more strongly bilaterally

distributed in patients with left TLE. 
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Objective 6.2

Diffusion alterations along ipsi- and contralateral temporal lobe WM tracts

This investigation confirmed that in patients with right/left TLE ipsilateral tracts

were more extensively affected than contralateral tracts. Additionally, specific

regions within tracts that demonstrate these alterations in diffusion characteristics

could be identified. For example, patients with right TLE mainly showed decreased

FA in the temperopolar regions of the UF and ILF, while patients with left TLE were

affected throughout the length of the temporal tracts. No alterations were found

between patients with SGTCS/FC and those without.

Objective 6.3

Regional WM tract diffusivity and degree of hippocampal (subfield) atrophy

The extent of HA was not related to (i) the degree of FA and MD alterations of

temporal lobe tracts or (ii) the clinical characteristics of patients, whereas diffusion

alterations of ipsilateral temporal lobe tracts were significantly related to age at onset

of epilepsy, duration of epilepsy and epilepsy burden but not frequency of seizures.

Objective 6.4 

Preoperative WM tract diffusivity measures in patients with and without

postoperative seizure symptoms

Although not statistically significant (p=0.06), this study showed a trend that patients

with right-sided TLE were more likely to be seizure-free after surgery, than those

with left-sided TLE. Patients with excellent outcomes had more ipsilaterally

distributed WM tract diffusion alterations than patients with persistent postoperative

seizures, who were affected more extensively and bilaterally.
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7.1 Introduction

The detection of a brain abnormality on MRI (Tellez-Zenteno et al. 2010, Lerner et

al. 2009, Mosewich et al. 2000, Jehi et al. 2007) in addition to concordant focal EEG

spike discharges (Siegel et al. 2004, Janszky et al. 2000, Berg et al. 2003) has been

related to good surgical outcomes, while patients with no remarkable MRI findings

are rendered seizure free less often (Berg et al. 2003, Holmes et al. 2000, Scott et al.

1999). Unfortunately, it is not uncommon for patients with severe seizure activity to

present with an unremarkable MRI. However, it is likely that (subtle) epileptogenic

lesions are not detected on routine clinical MRI and contribute to ongoing seizure

activity. It is important that (i) the MRI protocol and (ii) subsequent qualitative and

quantitative assessment of the images is specifically tailored for patients with

epilepsy so that potentially small lesions causing debilitating seizures can be detected

and treated. Several publications so far have discussed the factors that can increase

accuracy of lesion detection through MRI in clinical practice (ILAE 1997, von

Oertzen et al. 2002, Duncan et al. 2016, Friedman 2014). In one study, outcome after

surgery improved significantly with the introduction of an epilepsy dedicated MRI

protocol, which allowed depiction of epilepsy related lesions (e.g. HS) rather than

applying a standardized MRI protocol not suitable for identifying these lesions (von

Oertzen et al. 2002). Nevertheless, the authors state that even with a dedicated
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protocol, optimization of acquisition parameters (e.g. angulation according to the

presumed seizure onset zone) may be necessary for individual patients (von Oertzen

et al. 2002). Overall, when correlating radiological findings with histopathology,

neuropathological diagnoses were predicted correctly in 89% of epilepsy dedicated

MRI reports but only by 22% of 'non-expert' reports (MRI assessed by radiologists

not attached to epilepsy centers) based on standard MRI (von Oertzen et al. 2002).

Consequently, an early referral to a specialist epilepsy center may increase the lesion

detection rate. Hardware may also play a role: Phal et al. (2008) and Winston et al.

(2013b) reported an up to 30% increase in diagnostic yield of 3 Tesla images versus

1.5 Tesla, which is mainly due to a higher SNR facilitating detection of focal

epileptogenic lesions. 

The goal of this study of patients with focal refractory epilepsy was to apply a

dedicated epilepsy research protocol for patients with 'non-lesional' epilepsy. This

required the recruited patients to have received previous clinical MRI (no dedicated

epilepsy research protocol) with no discernible brain abnormality. Patients with

imaging performed on 1.5 Tesla and 3 Tesla scanners, with and without dedicated

clinical epilepsy protocols were included. Considering the previous reports of

increased diagnostic yield using 3T as opposed to 1.5 Tesla MRI (Phal et al. 2008,

Winston et al. 2013b) and the application of epilepsy dedicated MRI protocols (von

Oertzen et al. 2002), the objective of the present chapter was to determine whether

the use of a dedicated epilepsy research protocol in a specialist hospital of neurology

and neurosurgery would benefit lesion conspicuity and identification.

Importantly, a subset of MRI could be assessed to illustrate if MR hardware, image

signal decay due to artifacts (e.g. head motion), radiological expertise or the protocol

had an influence on the individual diagnosis at the time. Failure to identify lesions

earlier may have multiple reasons and may be directly linked to lesion conspicuity.

The work conducted in this chapter may provide important clinical information on

the number of patients who have epileptogenic lesions but have unremarkable MRI

by virtue of previous imaging protocols not dedicated to highlight epileptogenic
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lesions. Identification of an underlying brain abnormality can potentially afford

important implications for treatment consequences, such as earlier referral for

epilepsy surgery for patients with focal medically refractory epilepsies. According to

Wiebe and Jette (2012b) surgery has been shown to be cost-effective (Wiebe et al.

1996), to save lives (Bell et al. 2010) and improve quality of life through seizure

frequency reduction (Seiam et al. 2011). Consequently, epilepsy surgery may afford

many advantages over the continued use of AEDs for the individual patient.

Objective 7.1

The ultimate aim of this study was to evaluate whether a dedicated epilepsy

research protocol with expert image re-evaluation can increase identification of

patients with lesions. The earlier MRI was included in an evaluation of lesion

conspicuity to qualitatively re-evaluate factors likely to have contributed to the new

presentation of a lesion. It was hypothesized that multiple factors such as image

quality, lesion conspicuity on standard MRI (not specialized in depicting epilepsy-

related lesions) and neuroradiologists' expertise in identifying epilepsy-related

lesions contribute to varying results of MRI reports.

7.2 Materials and Methods

43 patients (26 female; mean age +/-std = 31.6 +/-11, range 19-61) with focal

refractory epilepsy who had failed at least two trials of AED treatments were studied.

Patients were prospectively recruited into the study if previous clinical MRI was

deemed to be 'non-lesional' by the clinicians involved in the initial assessment (this

included general radiologists at other trusts and neuroradiologists at the WCFT).

Localization of seizure onset had been thoroughly evaluated using seizure semiology

and scalp EEG investigations at the WCFT in Liverpool, UK. All technical details

pertaining to hard- and software are detailed in Chapter 2. Each participant received

3D T1w, T2w, T2FLAIR sequences and two coronal images (2D T1FLAIR and

T2FLAIR) aligned with the long axis of the hippocampus and these were assessed by

a neuroradiologist. In those patients, who had a lesion identified on the most recent
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dedicated epilepsy research MRI, the previous clinical MRI was included. The

previous clinical MRI of individual patients was re-evaluated through

neuroradiological reassessment (performed by Dr Kumar Das and Dr Shubhabrata

Biswas) in order to determine the factors influencing the accuracy and confidence of

visual lesion detection.The details of the scanner hardware (e.g. 3T and 32-channel

head coil) and sequence acquisition parameters are described in Chapter 4.

Demographic and clinical information for all patients are summarized in Chapter 2

and detailed in Appendix I: Raw Data.

7.3 Results

Scanning with the dedicated epilepsy-dedicated protocol, 29/43 (67%) patients

remained MRI-negative after investigation by a consultant neuroradiologist.

However, 14/43 (33%) patients were found to have potentially epileptogenic brain

lesions. Diagnostic information for these patients is presented in Table 7.1.

All available images are presented in the results sections along with clinically

relevant information for each patient. 11/14 (79%) previously 'non-lesional' patients

had EEG-imaging concordant localization features (except for patients with IDs

59/65/84) rendering them potential candidates for resective surgery. This had been

assessed during the multidisciplinary team meetings considering results from MRI,

neurophysiological and neuropsychological testing. For eight of the 14 patients

(57%) previous MRI was available for retrospective evaluation (from WCFT and one

other trust). The other images could not be retrieved as they had been acquired at

other trusts. This section initially presents the eight cases with a new identifiable

lesion for whom previous MRIs were available. Subsequently, the remaining six

cases for whom previous MRI was not obtainable are presented.
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ID Sex Age
Infection/

febrile
convulsion

Onset Duration EEG Type
Frequency
(per week)

Finding

22 f 54 no/no 5 50 right TL
SPS,

SGTCS,
CPS

2
right HS & Small-vessel-

disease

24 f 39 yes/yes 36 2.5 right TL SGTCS 0.5

right HS & right
cerebello-pontine angle

cystic lesion -
epidermoid

25 m 47 no/no 34 13 bilateral TL
A,

SGTCS,
CPS

2 bilateral HS

27 f 38 no/yes 7 31 left TL
CPS,

SGTCS
0.5 left HS

38 f 30 no/no 15 15 left TL SGTCS 1 left HS

51 f 43 no/yes 6 37 left TL
SGTCS,

CPS
2

left HS & left TL pole
FCD & Small-vessel-

disease/Rasmussen's/Enc
ephalitis

56 f 23 yes/no 6 17 right TL
A,

CPS
2.5

right HS and right
parahippocampal FCD

59 f 27 no/no 6 21 bilateral FL
CPS,

SGTCS
7

FCD in left
supramarginal gyrus &

left parietal lobule

61 f 36 no/yes 30 6 left TL SGTCS 2 per year
left temporal

encephalocele

65 m 22 no/no 5 17 left TL

A,
CPS,
SPS,

SGTCS

6
FCD/gliosis in right

superior frontal gyrus 

66 m 18 no/no 10 8 left TL
CPS,
SPS,

SGTCS
1 left HS

69 m 29 no/no 10 19 right TP
CPS,

SGTCS
7 right cortical gliosis

81 f 40 no/yes 7 33 left TL A 2 left HS

84 f 19 no/no 18 1 left FT
CPS,

SGTCS
35

left amygdala
enlargement

Table 7.1. Patient Demographic and Clinical Information and Recent MRI-findings. Bold
patient IDs indicate that the previous MRI was available for assessment (N=8). f=female,
m=male, SPS=Simple Partial Seizures, SGTCS=Secondary-Generalized Tonic-Clonic
Seizures, A=Absence Seizures, CPS=Complex Partial Seizures, TL=Temporal Lobe,
FL=Frontal Lobe, TP=temporoparietal, FT=frontotemporal.
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ID 22 24 25 38 66 56 61 65

Lesion

right HS
& 

Small-
vessel-
disease

right HS &
right

cerebello-
pontine
angle
cystic

lesion -
epidermoid

bilateral
HS

left HS left HS

right HS
and right para-
hippocampal

FCD

left
temporal

ence-
phalocele

FCD/ gliosis in right
superior frontal gyrus 

MRI

epilepsy
protocol

at
WCFT

epilepsy
protocol at

WCFT

epilepsy
protocol
at WCFT

epilepsy
protocol
at WCFT

epilepsy
protocol
at WCFT

standard
protocol at
other trust

epilepsy
protocol at

WCFT

epilepsy protocol at
WCFT

Reason
Low
SNR

motion
artifacts

and 
human
factor:
docu-

mentation

human
factor:
docu-

mentation

human
factor: 

not
reported

human
factor: 

not
reported

angulation not
orthogonal to

the long axis of
the

hippocampus

2D MRI
only (large

slice
thickness,
~5 mm)

2D MRI only (large slice
thickness, ~5 mm)

Figure 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8

Table 7.2. Lesions found in the most recent MRI and retrospective comparison to previous
MRI and reports. Epilepsy dedicated research protocol: 2D coronal FLAIR MRI with high
in-plane resolution (~0.5 mm), 3D T1w/T2w/T2FLAIR imaging. Technical reasons for
previous MRI-negative report in italics.

The reasons for lesions not being reported in this dataset were multifactorial and

were due to the following factors (Table 7.2):

1. General technical issues affecting image quality and lesion conspicuity:

◦ Low SNR (Figure 7.1) and movement artifacts (Figure 7.2) have

contributed to loss of lesion conspicuity on the T2FLAIR images.

Consequently, the lesion was not identified as HS (Figure 7.1, Figure

7.2). 

◦ The previous MRI was not part of a dedicated epilepsy (research)

protocol, revealed some technical issues and therefore did not clearly

show the lesion (poor angulation along the long axis of the hippocampus:

Figure 7.6; large slice thickness: Figure 7.7 & Figure 7.8).

2. Human factors leading to lesions not being identified:

◦ Clinical team previously evaluating the patient cases does not document

lesion (Figure 7.4, Figure 7.5).
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◦ The standard MRI was reviewed and reported as 'non-lesional' by a

general radiologist, although the lesion was visible (Figure 7.6).

◦ Loss of information during communication: Neuroradiologist referred to

the abnormality without stating “hippocampal sclerosis” and subsequently

the information was inappropriately documented (Figure 7.2 & Figure

7.3) and did not reach the consultant neurologist. Rather, the hippocampi

for these patients were referred to as “small”, e.g.: “small appearance of

the left hippocampus” (patient with ID 24) and “bilateral small

hippocampi” (patient with ID 25).

In-vivo MRI is the most reliable and frequent imaging method used to provide

information on macroscopic brain structure, and in the presence of varying data

quality it is often impossible for neuroradiologists to evaluate the definite presence of

lesions. Indeed, in one case where the quality of the image was not sufficient (Figure

7.2), the neuroradiologist preferred to make use of the wording “small

hippocampus”. High lesion conspicuity on good quality MRI is the core

characteristic for neuroradiologist to be able to confidently report an abnormality.

The lesion that most frequently escaped the attention of clinicians was HS (nine

cases, of which two had an additional FCD), followed by FCDs (two cases), and

others including gliosis, encephalocele and amygdala enlargement (one case each).
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Figure 7.1. Patient 22: right HS and Small-Vessel Disease. In 2014 this patient received a
dedicated epilepsy protocol at WCFT. Although the T1FLAIR coronal sequence shows a
comparable quality relative to the most recent 2015 T1FLAIR, Small Vessel Disease and
right HS were not detected by the neuroradiologist. HS and WM lesions related to small
vessel disease are increasingly conspicuous on the most recent T2FLAIR image relative to
the 2014 T2FLAIR image, the latter of which suffers from lower SNR. R = right.

Figure 7.2. Patient 24: right HS. While early images do not show clear evidence of HS, the
expert neuroradiologist termed this as “small right hippocampus” without explicitly
diagnosing HS. This was inappropriately documented and this information did not reach the
consultant neurologist. In the later image right HS was re-diagnosed. R = right.
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Figure 7.3. Patient 25: bilateral HS. The images from 2009 show bilateral HS as
demonstrated by hyperintensity on T2FLAIR and volume loss on T1FLAIR; this was
referred to as “bilateral small hippocampi” by the expert neuroradiologist. This was
inappropriately documented and the information did not reach the consultant neurologist. In
2015 the patient was diagnosed with bilateral HS. R = right.

Figure 7.4. Patient 38: left HS. Despite signal hyperintensity on T2FLAIR and volume loss
on T1FLAIR, HS was only diagnosed in 2015. Lesion conspicuity was similar for both MRI
sessions. R = right.
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Figure 7.5. Patient 66: left HS. This patient received comparable quality of epilepsy-
dedicated imaging in March and November 2015. However, HS was only diagnosed on the
later images, which show hyperintensity on T1FLAIR and HA on T1FLAIR. Lesion
conspicuity was similar for both MRI sessions. R = right.

Figure 7.6. Patient 56: right HS with parahippocampal WM blurring. In 2012 this patient
received imaging at a general hospital (left: T2w; right: T1w Inversion Recovery) with an
angulation not orthogonal to the long axis of the hippocampus. HS and parahippocampal
WM blurring are more conspicuous on the epilepsy research image of 2015 (left: T2FLAIR;
right: T1FLAIR), particularly relative to the contralateral hemisphere.  R = right.
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Figure 7.7. Patient 61: left temporal encephalocele. Left temporal encephalocele was
diagnosed based on a 3D volume T2w acquisition, which is not routinely acquired in the
evaluation of patients with epilepsy at the WCFT but was part of the study's dedicated
epilepsy research protocol. Note how the lesion is more conspicuous on the T2w image
(below) compared to the T1w (top). Diagnosis was later confirmed with computed
tomography imaging. Older MRIs (all 2D) with large slice thickness (~5 mm) from 2009
failed to reveal this abnormality. L = left; R = right.
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Figure 7.8. Patient 65: FCD / gliosis in right superior frontal gyrus. Diagnosis was made
based on the 3D T2FLAIR image of 2015 (green image borders). The abnormality was not
reported on the previous 2D axial T2w image (red image borders) where only one slice
showed the small abnormality. R = right.

The previous images for patients 27, 51, 59, 69, 81 and 84 could not be retrieved. All

lesions reported for these patients were conspicuous on the most recent images

acquired using the dedicated epilepsy research protocol (Figure 7.9).
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Figure 7.9. Formerly 'non-lesional' cases showing lesions using the epilepsy dedicated
research protocol. Numbers refer to patient IDs. Please refer to Table 7.1 for details on each
lesion identified. R = right.
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7.4 Discussion

The objective of this chapter was to review new MRI presentations of brain lesions

using an epilepsy-dedicated MRI protocol in a cohort of patients with refractory

focal epilepsy who were previously deemed to be non-lesional and to attempt to

ascertain the potential reasons for why lesions were previously not identified. 33% of

all patients recruited had a newly identified brain lesion. The primary factors

explaining the newly identified lesions were the choice of MRI sequences, imaging

parameters (in particular: no previous use of a dedicated epilepsy (research) protocol,

including the lack of angulation orthogonal to the long axis of the hippocampus and

large slice thickness), data quality (motion artifacts and low SNR), lesion not

reported (human factor) and loss of information through incomplete documentation

(wording: “small hippocampus” versus “hippocampal sclerosis”).

The results presented here indicate that one important factor for why lesions had

previously escaped the attention of the reporting neuroradiologist may be the choice

of sequence with lesions being more conspicuous on dedicated epilepsy protocols

(ILAE 1997, von Oertzen et al. 2002, Duncan et al. 2016, Friedman 2014).

According to Duncan et al. (2016), Duncan (1997) and ILAE (1997), 3D whole-brain

T1w and T2w and 2D FLAIR imaging should be included in an effective epilepsy

dedicated protocol. Additional, apart from the specific choice of the sequence itself,

lesion conspicuity may be influenced by data quality, slice thickness, angulation and

resolution. Expert neuroradiologist reassessment using epilepsy dedicated MRI can

detect HS with sensitivity and specificity of over 90% (von Oertzen et al. 2002,

Oppenheim et al. 1998) . Two images not routinely acquired in the evaluation of

patients with epilepsy at the WCFT proved useful for the detection of FCDs/gliosis

(3D T2FLAIR) and encephalocele (3D T2w). Tschampa et al. (2015) have

previously indicated that 2D/3D T2FLAIR sequences are equally useful for detecting

FCDs visually, while Friedman (2014) stated that the whole-brain coronal 3D T2w

sequence can be helpful in detecting encephalocele and may be superior over T1w

(Toledano et al. 2016). Encephaloceles may be an under-appreciated etiology of TLE
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(Saavalainen et al. 2015). Additionally, an isotropic voxel size may increase the

diagnostic yield as it can cover multiple locations within the brain and may identify

small lesions, such as encephalocele or gliosis. It has been previously reported that

image artifacts such as subject motion can affect lesion conspicuity (Phal et al.

2008). As a rule, when patients moved excessively during the recently applied

epilepsy research dedicated protocol, MRI was reacquired in order to avoid motion

artifacts. Regarding human factors, the lesion most frequently left unreported was HS

(nine cases), which was also reported in a previous study (von Oertzen et al. 2002).

These authors reported that HS was overlooked in 86% of cases when the MRI was

read by general radiologists relative to expert neuroradiologists. In this sample, FCDs

accounted for the second most frequent lesions left unreported (four cases). Multiple

sites of gliosis and unilateral amygdala enlargement were identified in two different

patients on their most recent epilepsy dedicated research MRI conducted in the

context of this study. Unfortunately, the previous MRI was not available in these

cases. The review presented here has shown several patients with multiple lesion

sites, therefore it is important that neuroradiologists are aware of the satisfaction-of-

search effect (Berbaum et al. 1990) and continue radiological assessment even when

epilepsy-related lesions have already been identified. Another important point relates

to the communication between neuroradiologists and clinicians. A recent study on

patients with frontotemporal dementia has found that diagnostic information may be

inappropriately reported (limited factual description with incomplete misleading

interpretation of MRI) unless MRIs are jointly reviewed and discussed by

neurologists and neuroradiologists (Dewer et al. 2016). In the present study, the

apparent hesitation in officially diagnosing hippocampal volume loss on MRI as HS

has resulted in two patients being misclassified as non-lesional. Therefore,

neuroradiologists and clinicians may benefit from an equidistant rating scale where it

is possible for the consultant neuroradiologist to indicate how confident they are in

reporting an abnormality and to state reasons for why their confidence is very

high/high/medium/low or very low (e.g. due to slice angulation/motion artifacts). A

similar rating scale has been used by some centers to record the degree of atrophy in

patients (Dewer et al. 2016, Kipps et al. 2007, Scheltens et al. 1995), the likelihood
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of presence of FCD (Wang et al. 2015) and artifacts (Phal et al. 2008). A confidence

rating scale may facilitate reacquisition with appropriate and individualized sequence

parameters if necessary, but certainly this should be subject to further research.

Even though the true positive rate of 33% within this investigation of a realistic

clinical setting is large and potentially clinically significant for individual patients,

one limitation remains the fact that results are based on a small sample size. It is

striking however, that the true positive rate of 33% also reflects the commonly

reported number of patients with medically refractory focal epilepsy who do not

benefit from epilepsy surgery. This may possibly indicate that remaining (additional)

lesional tissue has indeed not been appreciated on MRI before surgery. Another

limitation of this dataset is that it does not allow the direct comparison of individual

sequence acquisition parameters or of MR hardware. The type of MR sequences and

the data quality varied for all initial clinical MR studies, which were not part of the

more recently applied epilepsy dedicated protocol and acquired at different time

points. As in the example of an initial negative report based on MRI with poor

quality and lesion conspicuity, the lesion may not have been appreciated due to

artifacts, human factors or both (i.e. retrospectively the lesion is discernible on the

initial MRI even when taking the artifacts into account). This also reflected the

opinion of the consultant neurologist and neuroradiologists who retrospectively re-

evaluated the initial MRI: in almost all cases the reasons for leaving an abnormality

unreported remain multifactorial. Consequently this made it difficult to attribute a

single reason to leaving a lesion unreported. A prospective study where MRI is

evaluated by an expert neuroradiologist in a blinded fashion (e.g. one with motion

artifacts, one without in the same patient etc.) may resolve some of these open

questions. Nevertheless, this retrospective study of previous MRI in a realistic

clinical setting was capable of shedding light onto the factors that may influence

everyday clinical practice. An acknowledgement of these being multifactorial may

facilitate a deeper understanding and reevaluation of current MR protocols,

neuroradiological assessment and communication between clinicians.
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In conclusion, it is important for all clinicians to continuously proceed in the detailed

assessment of lesions on in-vivo MRI and discuss difficult patient cases in MDT

meetings. Only this way it is possible to identify (multiple) lesions in one patient.

Most importantly, a dedicated epilepsy protocol for the sake of conspicuity and

confidence in reporting lesions should be followed. In some cases, where technical

issues such as movement or wrong angulation may compromise diagnostic

evaluation, it may be worth re-acquiring the data. For patients who remain 'non-

lesional' it may be apt to also acquire 3D T2FLAIR and 3D T2w data as this can

increase the lesion pick-up-rate, is easily implemented and can be performed at low

costs concerning acquisition times. As a direct result of this translational study using

research dedicated MRI, clinicians at the WCFT members of the MDT have now

started to request 3D T2FLAIR images for patients with refractory focal epilepsy and

previous inconclusive MRI. This study showed that if abnormalities are not reported

by the particular term for the lesion (e.g. “hippocampal sclerosis”), the information is

likely to be inappropriately documented and may not reach the consultant

neurologist. Ultimately, consideration of all the interdependent factors mentioned in

this review have important implications for (i) treatment options for the individual

patient, especially regarding epilepsy surgery performed on newly identified

epileptogenic lesions and (ii) study populations that may have been confounded by

undetected lesions in patient samples if sequences are not dedicated to depicting

epilepsy lesions and MRI is not reassessed through an expert neuroradiologist. These

factors may influence everyday clinical practice and research in lesional epilepsy,

which emphasize the need to follow a general discussion on this topic for the

ultimate benefit of the current and future patients on a clinical and scientific basis. As

some lesions may be too subtle to appreciate on MRI, even through expert

neuroradiological assessment, it is important to develop automated lesion analysis

tools, which allow reliable whole-brain quantitative comparison of a single patient's

MRI with those acquired from healthy controls. Therefore, this thesis chapter is

followed by the introduction of a novel automated and reproducible quantitative

detection tool for FCDs (Chapter 8), which may assist in human reassessment of

MRI.
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8.1 Introduction

The high anatomic specificity of MRI may depict focal lesions and can be expertly

assessed by visual analysis through neuroradiologists (Von Oertzen et al. 2002). It is

important to find ways to improve the diagnostic yield from MRI through optimized

MRI protocols (see Chapter 7), expert neuroradiological assessment (also Chapter 7)

and quantitative analysis of post-processed volumetric MRI (this chapter; Sisodiya et

al. 1995a).

This chapter focuses on quantitative analysis to improve detection of FCD, which is

a common lesion associated with medically refractory epilepsy (Sisodiya 2004,

Fauser et al. 2004) and often epileptogenic (Fauser and Schulze-Bonhage 2006). It is

the most common lesion in children (Bast et al. 2006, Woermann and Vollmar 2009)

and is the third most common lesion after HS and tumors in adult patients (Lerner et

al. 2009, Becker et al. 2006, Von Oertzen 2014). Within this study, a dedicated

epilepsy research protocol was performed on patients with medically refractory focal

epilepsy, who were deemed to be non-lesional based on previous MRI. The most
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recent MRIs conducted in context of this study allowed (i) a clinical diagnostic

assessment by an experienced neuroradiologist at the WCFT (Chapter 7) and (ii) the

application of an automated quantitative voxel-based lesion detection technique on

patients' MRIs in order to find potentially epileptogenic lesions such as FCDs (this

chapter).

FCD is a type of cortical malformation that is neuroradiologically characterized by

cortical thickening, GM/WM blurring and transmantle signs, which are abnormal

extensions of GM towards the ventricles (Barkovich et al. 1997, Huppertz et al.

2005). FCDs may show increased signal on T2w or T2FLAIR images, cortical

thinning, localized brain atrophy but others may not be discernible on structural MRI

(Blümcke et al. 2011). FCDs are the result of genetic defects or environmental insult

during the stages of brain development that lead to disruptions of neuronal

proliferation, migration and organization (Tassi et al. 2002, Barkovich et al. 2005,

Palmini et al. 2004, Sisodiya 2004, Sarkisian et al. 2008). The different types of

FCDs and MRI presentations are described in Chapter 3 (neuroanatomy and brain

development).

Many efforts have been made to automatically identify lesions in patients with

epilepsy using quantitative MRI analysis. The approaches used involve voxel-based

analysis (Kassubek et al. 2002, Merschhemke et al. 2003, Bonilha et al. 2006, Focke

et al. 2008b, Focke et al. 2009, Colliot et al. 2006, Rugg-Gunn et al. 2005), cortical

surface mapping (Besson et al. 2008, Huppertz et al. 2008, Bastos et al. 1999) and

texture analysis (Antel et al. 2003, Bernasconi et al. 2001). All of the lesions found in

these studies have been defined either neuroradiologically (Rugg-Gunn et al. 2005,

Antel et al. 2003), neurophysiologically (Kassubek et al. 2002, Focke et al. 2009) or

histopathologically (Huppertz et al. 2005, Wang et al. 2015, Focke et al. 2008b,

Colliot et al. 2006, Bastos et al. 1999, Huppertz et al. 2008, Bernasconi et al. 2001,

Bonilha et al. 2006). Huppertz et al. (2005) have published a method on FCD

detection using 3D T1w images and the Morphometric Analysis Program (MAP)

developed by these authors is used by a dozen clinical centers worldwide (Huppertz
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2013). Approaches allowing the extraction of certain MRI features not easily

accessible by visual analysis may provide supplementary information (Martin et al.

2015, Huppertz et al. 2005). These types of individualized quantitative methods

highlighting features of FCDs demonstrated high sensitivity in lesion detection

accuracy with significant histopathological correlations (Huppertz et al. 2005, Colliot

et al. 2006). Wang et al. (2015) have applied MAP and were able to show that

neuroradiological assessment of results provided by the automated lesion detection

tool can identify subtle FCDs in patients. The patients undergoing resective surgery

attained postoperative seizure freedom and the areas deemed to be dysplastic by

MAP could be confirmed through histological examination (Wang et al. 2015).

However, despite the recent addition of cortical thickness analysis to MAP (Huppertz

2013), no further development towards an integrated multi-contrast approach has

been implemented into this tool. Rather, MAP results have been retrospectively

evaluated by neuroradiologists and marked manually as being either a true or false

positive finding (Huppertz 2013, Wang et al. 2015). Other significant drawbacks of

the MAP software include the fact that it is not freely available despite the use of

reproducible segmentation and normalization algorithms submitted in context of

Statistical Parametric Mapping (SPM; Wellcome Department of Imaging

Neuroscience Group, London, UK; http://www.fl.ion.ucl.ac.uk) and that it has not

been adapted to most recent SPM versions. However, these offer significant

improvements in image segmentation and spatial normalization (co-registration of

individual T1w to standard space, which allows group comparisons) compared to

older versions (Ashburner and Friston 2005, Ashburner 2007, Dahnke et al. 2012,

Malone et al. 2015, Farokhian et al. 2017). The improvements to image processing

may affect MAP results, since MAP heavily relies on anatomical accuracy of co-

registrations and tissue segmentation. Furthermore, the MAP tool has not been

extensively tested on control cohorts without FCDs and so information on false

positives is still lacking. Few studies have investigated false-positive generation

through similar analysis using T2FLAIR imaging in patients with FCDs (Focke et al.

2008b, Focke et al. 2009, Martin et al. 2017). Similar to the work performed by

149



Chapter 8: Automated Epileptogenic Lesion Detection

Wang et al. (2015), which is the only publication to date reviewing MAP in light of

false positives, it is important to perform appraisal of control-control comparisons

when using the MAP tool and to address the issue of false positive findings. False

positive rates have been shown to decrease when reevaluation of suspicious MAP

regions was performed by a trained neuroradiologist (Wang et al. 2015). However, a

tool which integrates high sensitivity and specificity would be most beneficial to

clinical practice as time-consuming reevaluation of many false positive findings in

patients and controls could be avoided, providing more resources for patients with

true positive findings. False positive findings could potentially be mitigated by the

introduction of another sensitive measure like T2w (House et al. 2013, Wang et al.

2015, Rugg-Gunn et al. 2005) and T2FLAIR intensities (Focke et al. 2009). For the

detection of FCDs it can be essential to study suspicious areas on all these images

(Colombo et al. 2009, Bernasconi et al. 2011). Furthermore, since the present study

involved DTI, it was possible to investigate the sensitive measures (FA and MD) in

context of FCD. In order to achieve this, FA/MD values were compared between

patients and controls. DTI has proved useful in the analysis of WM disruption in

epilepsy (Keller et al. 2013, Rugg-Gunn et al. 2001, Bonilha et al. 2010), while MD

has been shown to be especially sensitive (Concha et al. 2012, Glenn et al. 2016,

Keller et al. 2017). It is likely that abnormal cortical development influences WM

integrity and anatomy during brain development (Rakic and Schwaab 1988, Lee et

al. 2004, Widjaja et al. 2009, Widjaja et al. 2007) and that these changes persist

through adulthood. 

Two issues were addressed within the present study in order to evaluate whether

diagnosis may be facilitated by: (i) an automated lesion detection procedure

combined with continued integration of novel improved software tools and (ii) the

reduction of false positives using a novel automated approach on multi-modal

images. The MAP algorithm was implemented into the most recent version of SPM.

As the MAP tool alone does not provide statistics with its results but is based on

visual assessment only, in this study MAP is extended to include individualized

statistics aiming to facilitate quantitative lesion detection. It was evaluated whether
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previously reported lesions could be automatically identified using the automated

voxel-based method and whether additional lesions could be identified in the cohort

of patients with MRI-negative epilepsy. In an attempt to reduce the number of false

positives and provide reliable automated information for the detection of legitimate

epileptogenic lesions, the diffusion characteristics of clusters deemed to be

structurally different in individual patients relative to controls were mapped. All

study results are obtained with the use of the latest segmentation algorithms and

appropriate statistical testing on multi-modal images accounting for age, sex and

ICV. Thereby, in contrast to recent studies applying MAP, all current methodological

standards have been followed in order to develop an automated lesion detection tool.

This approach is particularly promising for patients with MRI-occult FCDs as this is

the most common histopathological finding in patients with refractory cryptogenic

epilepsy (Bernasconi et al. 2011, Taylor et al. 1971, Sisodiya 2004). It is therefore

especially important to continue the development of an automated, time-efficient and

reproducible lesion detection tool in patients with 'non-lesional' epilepsy.

Objective 8.1

The objective of this study was to implement and automatize a previously

developed lesion detection technique and to apply this to T1w images of patients

with cryptogenic focal epilepsy. It was hypothesized that neuroradiologically

identified lesions by virtue of the dedicated epilepsy research MRI could also be

detected using the automated voxel-based approach based on T1w images.

Objective 8.2

A further objective was to incorporate other MR images into the automated

voxel-based approach in order to improve sensitivity and specificity of the

approach. It was hypothesized that the automated tool in conjunction with

multimodality testing (with the incorporation of T2w/T2FLAIR/DTI data) can

identify previously undetected epileptogenic lesions while reducing the false positive

rate based on multimodal testing.
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8.2 Methods

8.2.1 Participants

40 healthy controls (23 female) and 43 patients (26 female) with focal refractory

epilepsy were prospectively recruited on the basis of failing multiple AED treatments

and showing no lesion on previous MRI (see Chapter 2). Localization of seizure

onset had been thoroughly evaluated using seizure semiology and surface EEG

investigations. All relevant demographic and clinical information can be viewed in

Chapter 2 and Appendix I: Raw Data.

8.2.2 MRI Acquisition

Each participant received 3D T1w, T2w, T2FLAIR, DTI and two coronal sequences

(2D T1FLAIR and T2FLAIR) aligned with the long axis of the hippocampus. The

latter two sequences were acquired for diagnostic purposes only. For details on

image acquisition see Chapter 2. A specialist neuroradiologist with long-term clinical

experience in evaluating MRI for patients with epilepsy performed diagnostic

assessment of the images for structural lesions.

8.2.3 Data Pre-processing

A modified version of the automated FCD detection procedure was applied to the

T1w images (Huppertz et al. 2005). Specifically, Human Connectome Project (HCP)

workbench software (Glasser and Van Essen 2011) was used to set the origin of the

T1w image to the anterior commissioner and T2w and T2FLAIR images were

linearly co-registered to this T1w image using SPM12. Before co-registration to

native T1w image space, DTI data was processed using the ENIGMA DTI

p r e p r o c e s s i n g s t e p s t o m i t i g a t e e f f e c t s o f i m a g e a r t i f a c t s

(http://enigma.ini.usc.edu/protocols/dti-protocols/). In particular, the first b0 image

was used as a reference for co-registration of the five subsequent b0 images (FSL

FLIRT, Smith et al. 2004). The resulting co-registered b0 images were averaged and

served as a reference image during motion and distortion correction performed on the

DWIs. In order to achieve distortion correction, the T2w image was rigidly aligned
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with the mean b0 image (Smith et al. 2004). The mean b0 image and the T2w image

in diffusion space were thus combined to a pair of images with the first image

representing geometric distortions while the T2w image served as the reference.

From this pair the susceptibility-induced off-resonance field was estimated

(Andersson et al. 2003) and the two images were combined into a single corrected

one, which was then brain-extracted. The DWIs were corrected for motion and the

resulting nonlinear registration information from the distortion correction step was

used to unwarp subsequent DWIs in native diffusion space (Andersson and

Sotiropoulos 2016). The gradient table information was adjusted according to the

rigid body motion parameters (Leemans and Jones 2009). FA and MD maps were

calculated within FSL (Smith et al. 2004) and co-registered to the T1w image. 

8.2.4 Generation of Feature Maps 

Automated GM/WM segmentation of T1w data was performed using the

Computational Anatomy Toolbox (CAT12) in SPM12 while simultaneously

applying registration to ICBM template space through DARTEL (Ashburner 2007).

After segmentation, the homogeneity of normalized and intensity corrected T1w

images were separately evaluated for patients and controls using the CAT12 tool.

The total intracranial volume (TIV) was also estimated in order to correct for

different head volume. The warp field resulting from the registration to template

space was applied to the co-registered intensity-corrected T2w, T2FLAIR and

FA/MD images so that these would be in the same space as the normalized T1w

image. T1w junction (providing information of blurred GM/WM area through voxel

intensities that are neither clear GM nor WM tissue) and extension (providing

information of GM thickness) images were generated using the previously published

procedures based on T1w segmentations (Huppertz et al. 2005, Kassubek et al. 2002)

and subsequently smoothed with a 6mm Gaussian kernel (Kassubek et al. 2002,

Wilke et al. 2003) (Figure 8.1). For this procedure, unmodulated images with non-

linear registration and default normalization were used (Wilke et al. 2003). Using the

T1w segmentations, T2w images were also processed to acquire T2w junction maps

(House et al. 2013) and T2FLAIR junction maps were also computed. In order to
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achieve this, the same procedure as described in Huppertz et al. (2005) was used on

T2w images (House et al. 2013) and T2FLAIR images. As a novel addition, T2w

extension maps using the Kassubek et al. (2002) technique were also computed. This

was performed using the binary T1w GM segment mask, which was multiplied with

the T2w image in order to obtain T2w image intensities. This resulted in the T2w

extension map, which provided information on T2w signal within GM areas. The

same approach was performed on the T2FLAIR images. For the T2FLAIR maximum

(MAX) map, the T2FLAIR image had been thresholded to show the voxels with

intensities higher than two SD above the mean intensity of GM (which has higher

intensities in T2FLAIR image compared to WM). All images were smoothed with a

6 mm Gaussian kernel.
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Figure 8.1. Procedure for obtaining T1w junction and extension images (Huppertz et al.
2005).
Raw T1w images were intensity corrected, normalized and segmented into WM/GM maps.
These were used to obtain GM/WM voxel intensity thresholds. Any voxels with intensities
of half a standard deviation higher/lower than the mean GM/WM intensities were saved to a
binarized junction image, which was cortex-masked ('AAL' in SPM12). The GM segment
was also masked and served as the extension image. Both resulting images were smoothed
with a 6mm FWHM smoothing kernel. The data of patient 59 is featured here. L =left.
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8.2.5 Statistical Analysis

The smoothed T1w junction (JCT) and extension (EXT) images of all controls were

averaged. These mean JCT/EXT images were each thresholded at their average

whole-brain signal intensity, binarized and used as a mask during statistical analysis.

Separate two-sample t-tests (Focke et al. 2008b) with assumptions of equal variance

and non-independence were used to determine individual patient-control group and

individual control-control group differences (Salmond et al. 2002, Colliot et al. 2006)

within smoothed T1w JCT/EXT maps. TIV, sex and age were considered as

covariates. A general workflow of the applied statistical tests can be viewed in

Figure 8.2. Statistical thresholds were an uncorrected p<0.01 (voxel-level) and

p<0.05 FWE-cluster corrected (Focke et al. 2009). This liberal threshold was used in

order to facilitate the detection of lesions, even at the cost of an increasing number of

false positives, which has been recently discussed (Scarpazza et al. 2013). Sensitivity

for lesion detection is important for an automated tool used in clinical settings and

specificity should be improved for the sake of time-efficiency. Therefore, all

significant clusters of more than 3.5 cm3 (3500 voxels) gained through the individual

statistical testing on T1w JCT/EXT maps served as masks. The threshold of a 3.5

cm3 cluster was defined based on the size of every true positive cluster, i.e. all lesions

suggestive of an FCD as reported by the consultant neuroradiologist at the start of the

study.
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Figure 8.2. General workflow of the applied statistical tests in T1w JCT and EXT maps.
This graph shows the generation of the binarized cluster masks based on T1w used to restrict
statistical testing for all other imaging modalities to regions that are potentially dysplastic.
Patient 59 is given as an example (cluster in the JCT map). In the case that any one of the
remaining imaging modalities showed a significant effect, the site was again reviewed by a
neuroradiologist. TIV = total intracranial volume; JCT = T1w junction image; EXT = T1w
extension image. FWE = family-wise error. T-scores: yellow/red bars. L = left.
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The resulting >3.5 cm3 cluster masks were used in individual patient-control

comparisons based on normalized and 6mm-smoothed T2w JCT/EXT images,

T2FLAIR JCT/EXT/MAX images and GM/WM FA and MD images during voxel-

based analysis in SPM12. The initial clinical diagnostic report was used as a

reference for determining the presence of FCD and classifying the T1w JCT/EXT

clusters as true positives.

8.3 Results

8.3.1 Data Quality Assessment

The Wilcoxon Sign-Rank test revealed that there were no significant age differences

between controls (mean age +/- std = 32.4 +/- 8.8) and patients (mean age +/-std =

31.6 +/-11); z=0.45, p=0.7, data non-normally distributed (Lilliefors, p<0.05). The

sample homogeneity of the normalized and intensity corrected T1w images was in an

acceptable range of correlations ranging from 0.96 to 0.98.

8.3.2 Neurological Assessment and Statistical Analysis of Feature Maps

29 patients remained MRI-negative after diagnostic reassessment of the epilepsy

research dedicated MR protocol. However, 14 patients (33%) were found to have at

least one epileptogenic lesion. Of these, seven had HS, two had dual pathology (HS

& FCD), two had dysplasia, one patient had amygdala enlargement, another had

encephalocele and one patient had gliosis (see Chapter 7). Of the 14 patients with

lesions, eleven had lesions concordant with the likely epileptogenic region as

identified by EEG. Five of six and four of six sites of dysplasia were separately

detected by T1w JCT/EXT images respectively, while both images together detected

all sites of dysplasia (100%). Two sites that the tool found could be confirmed by the

neuroradiologist as FCDs that had been previously missed. These sites can be

appreciated in Figure 8.3, in the second row (left PHWM GM/WM blurring, patient

51) and in the third row (right FCD in temporal pole, patient 56). All true positives

originating from the T1w image analysis are shown in Figure 8.3.
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Figure 8.3. Four patients with dysplasia and true positive findings: results from individual
statistical testing against 40 controls using T1w JCT and EXT maps.
Green bars indicate single patients with two sites of dysplasia. T-scores are represented for
JCT and EXT results. From top to bottom: patients with IDs 51, 56, 59 and 65. JCT = T1w
junction image; EXT = T1w extension image. L = left.

The true and false positive rates for significant clusters of the respective feature maps

can be viewed in Table 8.1.
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Patients Controls

 T1w
Junction

T1w
Extension

Combination
JCT + EXT

 T1w
Junction

T1w
Extension

Combination
JCT + EXT

True
Positive
Sites

83%
(5/6)

67%
(4/6)

100%
(6/6)

N/A N/A N/A

False
Positives

53%
(23/43)

30%
(13/43)

53%
(23/43)

35%
(14/40)

18%
(7/40)

50% 
(20/40)

Table 8.1 Results of statistical testing on T1w JCT/EXT images after application of p<0.01
and p<0.05 FWE cluster correction.
The results show that the false positive rate lies between 18% and 53%, while the true
positive rate is high. It was at 100% for the combined JCT and EXT image analysis. JCT =
junction image; EXT = extension image.

Overall the candidate regions evaluated with the statistical test for both T1w

JCT/EXT images were 29/43 (67%) patients (including true positives). For 20/40

(50%) controls, statistical testing on the T1w JCT/EXT images revealed at least one

false positive per control. Since these were found in the controls, they were deemed

to be non-dysplastic sites, i.e. false positives, and did not form the basis for any

further testing.

8.3.3 Multi-modal Analysis Based on MAP Clusters

23 patients showed no true positives at all, however false positives in at least one

area of the brain in either a T1w JCT or EXT cluster were found. Clusters were

thresholded at the true positive lesion cluster size of 3.5 cm3 (eliminating eight

patients with false positives). The resulting masks of potential lesion sites in 15

patients and the four patients with true positive dysplastic lesions served as ROIs for

testing of FA/MD/T2FLAIR/T2w images. In the case that any of these image

modalities were significantly different from controls, those clusters served as basis

for re-review by a consultant neuroradiologist. Three patients showed suspicious

JCT/EXT images but testing on the clusters remained statistically insignificant in any

of the other image modalities (FA/MD (both GM/WM) and T2w JCT/EXT,

T2FLAIR JCT/EXT/MAX) and were thus deemed to be false positives. The original
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false positive number was reduced from 23 (these had only been counted if the

patient showed only false positives) to twelve, where eight had been eliminated

based on the >3.5 cm3 cluster threshold and another three based on the multi-

modality test (Figure 8.4). These twelve patients showing abnormalities in also the

other image modalities were re-evaluated once more by the consultant

neuroradiologist on the basis of the location of the JCT/EXT map clusters. These

patients are shown in Figure 8.5 and resulting multimodal ROI testing is shown in

Table 8.2.

161



Chapter 8: Automated Epileptogenic Lesion Detection

Figure 8.4 Reduction of the false positive rate within the patient sample.
An example patient (59) is featured with all clusters found in EXT and these have been
numbered (dorsal → ventral). Based on the statistical test with p<0.01, FWE-cluster
correction at p<0.05, 23 patients presented with false positives (first box). Cluster extent
thresholding at >3500 (>3.5 cm3) voxels reduced this number by eight patients (second box).
Note the reduction of false positives within a single patient. Using the cluster masks derived
from single patients, statistical testing was performed on other imaging modalities. Three
patients had insignificant findings in all other imaging modalities and were deemed to be
non-dysplastic sites (third box). Overall, the false positive rate was reduced from 53% to
28%. The sites found by the automated tool in these remaining twelve patients were re-
reviewed by a neuroradiologist. EXT = extension; JCT = junction; FP = false positive; FA =
fractional anisotropy; MD = mean diffusivity; GM/WM = gray/white matter; L = left.
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Figure 8.5. Results of combined >3.5 cm3 cluster masks based on T1w JCT/EXT analysis.
All clusters of the twelve patients are shown. The corresponding sites in T1w/T2w/T2FLAIR
images were re-reviewed by a consultant neuroradiologist and clusters (in red) were used as
masks in multimodal analysis. HS = hippocampal sclerosis; l = left; r = right; OL/PL/TL/FL
= occipital/parietal/temporal/frontal lobe; JCT = junction; EXT = extension.
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ID FA
GM

FA
WM

MD
GM

MD
WM

T2w
JCT

T2w
EXT

T2FLAIR
JCT

T2FLAIR
EXT

T2FLAIR
MAX

Neuro-
radiologist

51 < > < < lesion

56 > lesion

59 > < > < < > lesion

65 > lesion

10 > no lesion

11 > > no lesion

15 < < < no lesion

22 > > > rHS, no FCD

27 > > > lHS, no FCD

32 > no lesion

42 > > no lesion

54 > no lesion

68 > no lesion

79 > no lesion

82 > < > < > no lesion

85 > no lesion

Table 8.2. Summary of multimodal statistical testing based on >3.5 cm3 cluster masks of
T1w JCT/EXT testing.
Patients with neuroradiologically determined FCDs (first four rows) and all twelve patients
with no previously identified FCDs with at least one significant result (at p<0.01 and p<0.05
FWE corrected) in one modality are presented. The arrowheads indicate an increased (>) and
decreased (<) signal in the respective patients' image compared to controls. These were also
the patients that were re-reviewed by a consultant neuroradiologist. For three patients
(34/49/86), none of the images tested in the multimodal approach with their respective >3.5
cm3 cluster masks reached significance.

8.4 Summary

The overall aim of this study was to apply a dedicated epilepsy protocol in order to

increase the reliable diagnostic yield of MRI in patients with refractory focal

epilepsy who were previously reported to be non-lesional. There were two objectives

of this study.
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Objective 8.1

Automatization of a lesion detection technique and application to MRI of

patients with cryptogenic focal epilepsy

CAT12 in SPM12 permitted the implementation of the previously published method

by Huppertz et al. (2005) using a fully automated approach. This identified 100% of

dysplastic lesions through statistical testing on T1w JCT/EXT images, when results

were combined. This means that all sites of dysplasia reported at the start of the

study were detected using this technique. Two additional sites in two different

patients (left parahippocampal FCD in patient 51 and right temporal pole FCD in

patient 56), which had previously escaped neuroradiological assessment, could be

identified and were neuroradiologically confirmed. 

Objective 8.2

Incorporation of other MRI modalities and effects on sensitivity and specificity

The number of false positives generated through EXT/JCT images (which were 1.5

to 2 times higher than the size of the false positive rate reported in Wang et al. (2015)

due to the very low statistical threshold applied in this study) could be reduced by

using a cluster threshold (>3.5 cm3) on EXT/JCT images and voxel-based analysis of

all significant clusters in FA/MD/T2FLAIR and T2w images from 23 patients to

twelve. Of the twelve remaining patients with suspicious areas according to the

individualized statistical test, none were reported to have an abnormality suggestive

of FCD based on time-efficient neuroradiological reassessment guided by the

detection tool.
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9.1 Introduction

Quantitative analysis can extend conventional visual assessment of MRI and is

especially useful when modeling network connections in the brain. This can be

achieved by using tractography analysis approaches, which shed light on structural

connectivity and neuroanatomical structure and may be particularly useful for

investigating potentially epileptogenic networks. Typically this is performed using

manual tractography, however, recently automated tools that automatically

reconstruct WM pathways have been developed (see also Chapter 6). Automated

approaches are more time and resource efficient compared to manual approaches as
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they do not require time-consuming delineation of tracts by trained researchers

(Hagler  et al. 2009).

AFQ (https://github.com/jyeatman/AFQ) is a novel tool, which allows investigation

of WM tract diffusion alterations in standard space (Yeatman et al. 2012). It has been

predominantly used to assess WM changes along tracts, which is especially useful

for the study of network disorders. Diffusion characteristics have been shown to vary

along tracts in healthy individuals (Johnson et al. 2013), in preterm children and

adolescents (Travis et al. 2015a, Travis et al. 2016, Sølsnes et al. 2016), in patients

with anorexia nervosa (Travis et al. 2015b), autism spectrum disorder (Libero et al.

2015), depression (Sacchet et al. 2014a, Sacchet et al. 2014b) and in patients with

TLE (Keller et al. 2017, Glenn et al. 2016, Concha et al. 2012). In patients with TLE,

these localized changes are possibly related to the severity and chronicity of the

disorder rather than to an initial precipitating injury like HS (Kreilkamp et al. 2017).

The recent interest in automated tractography using AFQ is promising for the study

of neurological and psychological disorders, however evidence for significant

correlations with manual tractography is still sparse. So far, Yeatman et al. (2012)

have been the only authors to publish information comparing AFQ to manual

tractography, which is considered to be the gold-standard (Wakana et al. 2007).

However, this information is limited to correlations of FA, diffusion values obtained

from manual versus automated tractography (Yeatman et al. 2012). To date, no

information has been provided with respect to comparisons between AFQ and

manual tractography with relation to whole tract shape, size and location

(morphology), the estimation of diffusion measures and consistency of results

pertaining to differences in diffusion characteristics between groups across these

different approaches. However, these measures are necessary to contribute to a

deeper understanding of how manual tractography techniques (typically assessing

whole-tract diffusion characteristics based on manual tractography) relate to novel
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automated tools and how reliable tractography using AFQ may be. This type of

validation has already been performed in volumetric WM analysis in clinical settings

(Zijdenbos et al. 1994) and can easily be implemented using the Dice coefficient

(Dice 1945). While it is important to develop automated whole-tract and along-the-

tract diffusion tractography methods (Concha et al. 2012, Glenn et al. 2016, Keller et

al. 2017, Kreilkamp et al. 2017), it should not come at the cost of disregarding the

large quantity of previous research using manual methods. Automated techniques

provide substantial benefits as they circumvent the need for extensive training of

researchers to perform manual measurements and provide reproducible algorithms

that can be applied to multiple datasets in an efficient manner. Recent literature has

relied on these novel automated methods even though they have not been extensively

validated in healthy controls and patients with brain disorders apart from few

exceptions (such as TRACULA (Yendiki et al. 2011), Chapter 6). In the absence of

neuroanatomical data, manual techniques are considered to be closest to the ground

truth and are regarded as the "gold standard" when performing tractography studies

(Yeatman et al. 2012). For these reasons, AFQ and manual tractography approaches

were applied in patients with TLE with and without HS and healthy controls

(Mueller et al. 2006, Liu et al. 2012). These cited studies have shown more

widespread WM alterations in patients with TLE and associated HS. Therefore, an

aim of this study was to apply these comparisons using the manual and novel

automated tractography approaches.

AFQ additionally offered the possibility to extract diffusion metrics along tracts

(unlike the manual approach) and perform (i) comparisons across patient groups

defined by seizure onset laterality and (ii) correlations of these values with clinical

variables. The FF (Concha et al. 2005, Concha et al. 2009, Concha et al. 2010),

PHWM (Ahmadi et al. 2009, Keller et al. 2012) and UF (Lin et al. 2008, Ahmadi et

al. 2009) tracts were analyzed due to their central involvement in TLE. The FF was
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also included in WM tract analysis for the automated approach as it is readily

available, which is not the case for manual tractography. WM alterations within this

tract have been shown to differentially affected in patients with excellent post-

surgical outcomes and those without when compared to controls (Keller et al. 2017).

 

9.1.1 Objectives

There were two objectives for the study presented in this chapter.

Objective 9.1

The first objective was to investigate the agreement between manually and

automatically generated tracts in patients with TLE. Furthermore, consistency

between the automated and manual approaches with respect to whole tract

diffusivity metrics (FA/MD), detection of diffusivity abnormalities in tracts of

patients with TLE and clinical correlations with diffusion metrics were

investigated.

It was hypothesized that manual and automated methods produce tracts of the same

shape, volume and at similar locations and in order to assess this, the Dice coefficient

was computed. Moreover, it was hypothesized that DTI-metrics extracted from WM

tracts using the two different approaches are consistent (high correlations of FA/MD

values across approaches) and that significant group-wise results of whole-tract

diffusion measures arising of comparisons between the two patient groups and

controls are also comparable. The number of significant group differences and

correlations found by AFQ and manual tractography as the "gold standard" were

directly compared. It was hypothesized that AFQ would identify the same number of

group-wise differences and correlations.
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Objective 9.2

The second objective of this chapter was to investigate whether along-the-tract

diffusivity analysis of FF, UF and PHWM within the automated tractography

approach can reveal correlations with clinical variables and group differences

between patients with left/right TLE, with HS, those without and controls and

provide more detailed information than the manual approach.

It was hypothesized that the along-the-tract analysis offered within the automated

tractography approach would confirm previous group-wise findings, detect

correlations with clinical variables and that it could reveal more detail in diffusivity

alterations regarding correlations with clinical variables such as age of onset of

epilepsy and epilepsy duration and when investigating diffusivity alterations in

patients with HS, those without and controls.

9.1.2 Organization of Chapter 

Demographic and clinical details of all the participants studied, methods relating to

manual and automated tractography and statistical analysis are presented in Section

9.2. Results from comparisons between manual and automated tractography

techniques and group comparison studies as well as correlation studies are separated

and presented in Section 9.3. A summary of significant findings from this study is

detailed in Section 9.4 together with the chapter objectives.

9.2 Materials and Methods

9.2.1 Participants

Demographic and clinical characteristics are detailed in Table 9.1. A history of brain

infection was positive if the patient reported to have had meningitis or encephalitis.
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Seizure burden was calculated as log(duration of epilepsy x seizure frequency per

week). For all details regarding acquisition parameters for the used sequences the

reader is referred to Chapter 2, Section 2.3.

Variable Patients with left TLE Patients with right TLE Controls

N 16 8 40

Sex (female/male) 10/6 5/3 23/17

Mean age in years (SD) 32.1 (11.4) 31.8 (12.3) 32.4 (8.7)

History of infection (no/yes) 16/0 4/4 -

History of febrile seizures (no/yes) 12/4 7/1 -

SGTCS (no/yes) 5/11 3/5 -

Mean age of onset (SD) 15.8 (11.4) 18.1 (11.6) -

Mean seizure burden (SD) 1.4 (0.5) 1.3 (0.7) -

Mean duration corrected for age (SD) 0.5 (0.3) 0.4 (0.3) -

Mean seizure frequency per week (SD) 4.9 (8.9) 3.4 (4.7) -

Presence of HS (no/yes) 12/4 4/4 -

Table 9.1. Demographic and clinical information for all participants.
TLE = Temporal Lobe Epilepsy; SD = Standard Deviation; SGTCS = Secondary-
Generalized Tonic-Clonic Seizure; HS = hippocampal sclerosis.

9.2.2 Data Preprocessing and Quality Assurance

Before tensor fitting and tractography were performed, DTI data was processed using

F M R I B S o f t w a r e L i b r a r y ( F S L ) v e r s i o n 5 . 0 . 9

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) according to the ENIGMA DTI-

p r e p r o c e s s i n g s t e p s t o m i t i g a t e e f f e c t s o f i m a g e a r t i f a c t s

(http://enigma.ini.usc.edu/protocols/dti-protocols/). In particular, the first b0 image

was used as a reference for co-registration of the five subsequent b0 images (FSL

FLIRT, Smith et al. 2004).

The resulting co-registered b0 images were averaged and served as a reference image
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during motion and distortion correction on the diffusion-weighted images. In order to

achieve distortion correction, the T2w image was rigidly aligned with the mean b0

image (Smith et al. 2004). The mean b0 image and the T2w image in diffusion space

were thus combined to a pair of images with the first image representing geometric

distortions while the T2w image served as an anatomically correct reference. From

this pair the susceptibility-induced off-resonance field was estimated (Andersson et

al. 2003) and the two images were combined into a single corrected one, which was

then brain-extracted. The diffusion-weighted images were corrected for motion and

the resulting nonlinear registration information from the distortion correction step

was used to unwarp subsequent diffusion-weighted images in native diffusion space

(Andersson and Sotiropoulos 2016). The gradient table information was adjusted

according to the rigid body motion parameters (Leemans and Jones 2009). 

A recent publication (Yendiki et al. 2013) has introduced a value to characterize

gross motion: TMI, which serves as a summary value for magnitudes of translational

and rotational motion. As DTI data aims to accurately assess microscopic motion in

order to derive tissue diffusion metrics, it is important to consider macroscopic

motion, which may otherwise have confounding effects on group-wise differences.

Changes in TMI between patients with left TLE, right TLE and controls were

assessed by using the Kruskal-Wallis ANOVA (data non-normally distributed,

Lilliefors Test p<0.05). Another possible confounding factor in DTI analysis are

variations in SNR, which has been shown to alter diffusion metrics (Farrell et al.

2007). Any effects of SNR on FA/MD group comparisons were ruled out by

performing a Kruskal-Wallis ANOVA on SNR values extracted from the motion

corrected data (FSL eddy), which had subsequently been used during tensor

estimation. Specifically, the AFQ WM segmentation map was used and thresholded

at 0.9, it was then used to mask the motion corrected diffusion-weighted images and

extract mean and standard deviations for WM intensities to compute the ratio of the
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two (→ SNR), similarly proposed in TRACULA (Yendiki et al. 2011).

9.2.3 Manual and Automated Tractography

Manual tractography was performed in Diffusion Toolkit version 0.6.3

(http://www.trackvis.org) using the 2nd order Runge-Kutta tract propagation

algorithm in native diffusion space [step size of 1mm, angle threshold of 35º]. After

tensor estimation and whole-brain tractography the UF and PHWM were analyzed.

To achieve this, these two temporal lobe tracts were extracted using ROI placement

on the native diffusion space FA image. Specifically, ‘AND’ and ‘NOT’ ROIs were

placed based on a previously published method to delineate fibers belonging to either

UF or PHWM bundles (Metzler-Baddeley et al. 2011) (Figure 9.1). For conventional

whole-ROI analysis of FA and MD, tract density images were saved for bilateral UF

and PHWM tracts and binarized. 

Figure 9.1. Manual delineation of UF (left) and PHWM (right) tracts.
Tracts were delineated using ROIs drawn on the subjects' FA image in native diffusion
space. 'AND' ROIs (green, purple and orange) served as ROIs where tracts were allowed to
pass through, while 'NOT' ROIs (red and blue) were used to define the end of tracts. Tract
colors define the principle direction of diffusion for single fibers (red = left/right, blue =
inferior/superior, green = anterior/posterior).

Automated whole-brain AFQ tractography was run using default parameters: 4th

order Runge-Kutta approach (Yeatman et al. 2012) based on the Euler method (step
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size of 1mm, angle threshold of 35º; Basser et al. 2000). However, before this, AFQ

performed a series of preprocessing steps automatically, including T1w co-

registration for each diffusion-weighted image, brain extraction (Smith 2002) and

voxel-wise estimation of the diffusion tensor. After whole-brain tractography, AFQ

non-linearly co-registered the mean b0 image to the ICBM template and the inverse

transformation was used to map the normalized ICBM WM ROIs provided within

AFQ to the individual subject space. The ends of AFQ fiber bundles were defined by

these ROIs and tracts were subsequently clipped and classified as belonging to the

respective tracts by AFQ (Figure 9.2). These steps were performed in individual T1w

image space within AFQ.

For conventional whole-ROI analysis of FA and MD, tract density images were

saved for bilateral UF and PHWM tracts and binarized. After tract segmentation,

tract cores for UF, PHWM and FF (not available in manual tractography) were

identified and FA/MD value profiles for each tract were calculated based on the

weighted-mean approach, where FA/MD values of fibers close to the tract core

contribute more to the along-the-tract measures than fibers distant to the core. This

allowed tract profile group (Travis et al. 2015a, Yeatman et al. 2012, Keller et al.

2017) and correlation analysis within AFQ.
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Figure 9.2. Dorsal views of the brain showing all bilateral cleaned (left) and clipped UF and 
PHWM AFQ tracts (right).
The colors of the tracts denote the principle direction of diffusion for the midpoint of the
particular fiber (red = left/right, blue = inferior/superior, green = anterior/posterior). Image
r e n d e r e d i n s t a n d a r d I C B M s p a c e w i t h M R I c r o S t o o l , v e r s i o n 2015
(https://www.nitrc.org/plugins/mwiki/index.php/mricros:MainPage). L = left.

9.2.4 Statistical Analysis

Differences in demographic information between all three groups was assessed with

a Kruskal-Wallis ANOVA (age) and chi-square test of independence (sex). An

unpaired two-tailed Wilcoxon-Rank-Sum test was used to assess differences in

continuous clinical variables (age of onset, seizure burden, epilepsy duration

corrected for age and seizure frequency per week) of patient groups (right and left

TLE & patients with and without HS) while a chi-square test of independence was

used for dichotomous variables relating to history of infection, febrile seizures and

SGTCS. 
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The number of significant group differences found between AFQ and manual

tractography were directly compared. To achieve this, the manual tracts were clipped

to the same length as the AFQ fibers using the AFQ ROI endings in all three

dimensions (x/y/z) and whole-tract FA (thresholded at FA>0.2) and MD values were

extracted from both tractography approaches using FSL software (Smith et al. 2004).

All data was non-normally distributed (Lilliefors, p<0.05), and therefore a non-

parametric Kruskal-Wallis ANOVA was used to investigate differences between

participant groups (patients with left/right TLE and controls). Post-hoc analysis was

conducted using the Bonferroni correction procedure. Furthermore, whole-tract

FA/MD value correlations between approaches were assessed using the Spearman

correlation coefficient w i t h Bonferroni multiple comparison correction. Tract

morphology of all clipped fibers generated either by AFQ or the manual method

were assessed using the Dice coefficient (Dice 1945). The following results from

Dice coefficient analysis indicated poor agreement (<0.2), fair agreement (0.2-0.4),

moderate agreement (0.4-0.6), good agreement (0.6-0.8) and excellent agreement

(0.8-1.00) as previously discussed (Cicchetti 1994, Zijdenbos et al. 1994).

Additionally, gross volumes of automatically and manually generated tracts were

assessed using a paired Wilcoxon-Sign-Rank test. Correlations between whole-tract

diffusion metrics and various clinical measures were also investigated using the

Spearman Rank Correlation Coefficient. These included seizure burden (log(duration

of epilepsy x seizure frequency per week)), age of onset, duration of epilepsy

corrected for age, seizure frequency per week, and age. After investigating

correlations pertaining to the automated and manual approach, both sets of results

were separately corrected for multiple comparisons according to the FDR procedure.

For every tractography approach, the Wilcoxon-Rank-Sum test was used to assess

any differences between diffusion metrics and sex, the presence of HS, febrile

seizures and SGTCS. After testing this, results derived from both tractography
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approaches were corrected using the FDR procedure separately.

AFQ additionally allowed the analysis of diffusion metrics along the tracts (tract

profile analysis). Using this approach, comparisons were made between patients with

left TLE, right TLE and controls. A comparison between patients with HS and those

without and controls was also conducted. For this analysis, the patients with right

TLE were side-flipped and a subset of controls was also side-flipped to account for

inter-hemispheric differences (Keller et al. 2015a). The reason for performing this

was to allow the investigation of ipsilateral and contralateral effects with a sufficient

number of participants (N=8). Finally, demographic (age, sex) and clinical variables

(age of onset, duration of epilepsy corrected for age, seizure burden and frequency,

history of febrile and SGTC seizures) were correlated with diffusion characteristics

as generated by AFQ tract profile analysis. Along-the-tract diffusion value and

correlation analysis were corrected for multiple comparisons using the FDR

procedure. Results were considered significant at p<0.05.

9.3 Results

9.3.1 Statistics: Demographic and Clinical Information

All demographic/clinical information (Table 9.1) underwent statistical testing

between patients with left/right TLE and controls. There were no differences

between the three groups concerning age (χ²(2,63)=0.3, p=0.9) or sex (χ²(2)=0.9,

p=0.6). Analysis of differences in age of onset (Z=-0.46, p=0.7), seizure frequency

(Z=0.22, p=0.8), burden (Z=0.28, p=0.8) and duration corrected for age (Z=0.89,

p=0.4) did not reveal any significant effect with respect to side of seizure onset.

There were also no differences in clinical information between patients with left/right

TLE: history of febrile seizures (χ²(1)=0.03, p(Yate)=0.9), infection (χ²(1)=3.8,
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p(Yate)=0.051) and SGTCS (χ²(1)=0.02, p(Yate)=0.9). However, as the chi-square test is

inappropriate for data where any expected frequency is below 1 or if the expected

frequency is less than 5 in more than 20% of subgroups (Preacher 2001), results

could only be considered to be accurate when Yate's correction was performed on the

statistics (Yates 1934). As this was the case for these variables, results were reported

here only after Yate's correction had been employed (p(Yate)).

9.3.2 Manual versus Automated Tractography

9.3.2.1 Quality Control

Before comparing any DTI-derived metrics motion differences between groups were

assessed. However, no differences in TMI between controls (Mean = 0.3 ; SD = 1.6),

patients with left TLE (Mean = 0.4; SD = 1.4) and patients with right TLE were

found (Mean = 0.02; SD =1.3); χ²(2,63) = 0.3, p = 0.9. The mean SNR for diffusion-

weighted images did not differ among groups: controls (Mean = 2.9; SD = 0.1),

patients with left TLE (Mean = 2.8; SD = 0.1) and patients with right TLE (Mean =

2.8; SD = 0.2); χ²(2,63) = 4.1, p = 0.1.

9.3.2.2 DTI-metrics

Significant results in whole WM tract FA/MD (ROI) values across patient and

control groups are shown in Figure 9.3 and Table 9.A (Appendix II: Supplementary

Material). For AFQ group analysis, patients with left TLE had significantly reduced

FA in the right PHWM and increased MD in the right UF relative to controls. These

changes were also identified by the manual method, however, additional changes

were found for patients with left TLE when compared to controls: decreased FA in

the left UF, increased MD in the left UF and in the right PHWM and patients with

right TLE had increased MD in the left PHWM.
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Figure 9.3. Whole-tract diffusion measures for manual (left) versus AFQ (right)
tractography.
For each group and tract median FA/MD values are presented along with respective standard
errors. Using manual tractography, patients with left TLE had significantly reduced FA
values in the left UF and right PHWM and increased MD values in left and right UF and
PHWM, while patients with right TLE had an increase in MD in the left PHWM compared
to controls (top left and bottom left). AFQ was only able to identify the FA decrease in the
right PHWM and MD increase in the right UF for patients with left TLE (bottom right). FA
= fractional anisotropy; MD = mean diffusivity; UF = uncinate fasciculus; PHWM =
parahippocampal white matter bundle; l = left; r = right. *p<0.05, corrected for multiple
comparisons.

FA values extracted from the two different approaches were significantly correlated

for each tract: left UF (R = 0.6, p<0.001), right UF (R = 0.8, p<0.001), left PHWM

(R = 0.7, p<0.001), right PHWM (R = 0.7, p<0.001). The agreement between MD
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values extracted from AFQ and from the manual measurements also correlated well

for left UF (R = 0.8, p<0.001) and right UF (R = 0.8, p<0.001), whereas left PHWM

(R = 0.4, p<0.01) and right PHWM (R = 0.3; p<0.05) could not be considered

significant after performing Bonferroni correction; p(corr) = α/n = 0.05/8 = 0.006.

9.3.2.3 Consistency of Tracts

The automatically reconstructed fiber tracts had increased volume (Mean = 1457; SD

= 630) when compared to manual tracts (Mean = 1018; SD = 566); paired Wilcoxon-

Sign-Rank test (Z = 12.3; p<0.001). Tract morphology between automated and

manual tractography approaches were assessed using the dice coefficients. The

respective results for tract ROIs were 0.54 (+/-0.12) for the left UF, 0.57 (+/-0.14)

for the right UF, 0.6 (+/-0.12) for the right PHWM and 0.6 (+/-0.08) for the left

PHWM. Based on the framework proposed by Cicchetti (1994), the agreement

between the two methods was moderate for UF (bilateral) and good for PHWM

(bilateral). A visual assessment also revealed that shape and location of the tracts

matched each other across tractography methods and the same tract center voxels

were identified with excellent overlap (Dice Coefficients), however, the automated

tractography approach yielded slightly larger tract estimates (see above).

9.3.2.4 Correlations Between Whole-tract DTI Metrics and Clinical Variables

No correlations between clinical variables and DTI-metrics extracted through manual

tractography (Table 9.2) were found. However, for data extracted from AFQ, there

were significant correlations between age of onset and ipsilateral PHWM FA (R =

0.6; p(FDR)<0.05) and MD (R = -0.6; p(FDR)<0.05), duration of epilepsy and ipsilateral

PHWM MD (R = 0.8; p(FDR)<0.01), which survived correction for age (R = 0.7;

p(FDR)<0.01). For dichotomous variables (sex, HS, SGTCS, history of febrile seizures)

no significant effects were observed using both tractography approaches and are

presented in Table 9.B (Appendix II: Supplementary Material).
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Manual Tractography Automated Tractography
Tract

Metric

Side Age Age of

Onset

Burden Duration Duration

(corr.

Age)

Fre-

quency

Age Age of

Onset

Burden Duration Duration

(corr.

Age)

Fre-

quency

UF

FA

ipsi
R=-0.6

p=0.1

R=0.01

p=1

R=-0.4

p=0.3

R=-0.4

p=0.2

R=-0.3

p=0.6

R=-0.2

p=0.7

R=-0.4

p=0.3

R=0.01

p=1

R=-0.1

p=1

R=-0.2

p=0.6

R=-0.1

p=0.8

R=-0.1

p=0.8

contra
R=0.1

p=0.8

R=0.5

p=0.2

R=-0.1

p=1

R=-0.3

p=0.4

R=-0.4

p=0.2

R=0.2

p=0.7

R=-0.2

p=0.5

R=0.3

p=0.4

R=-0.3

p=0.5

R=-0.5

p=0.1

R=-0.4

p=0.2

R=0.1

p=1

UF

MD

ipsi
R=0.3

p=0.4

R=-0.1

p=0.9

R=-0.1

p=1

R=0.3

p=0.5

R=0.2

p=0.7

R=-0.2

p=0.6

R=0.1

p=0.8

R=-0.3

p=0.5

R=-0.1

p=0.9

R=0.2

p=0.5

R=0.3

p=0.5

R=-0.2

p=0.5

contra
R=0.01

p=1

R=-0.5

p=0.1

R=0.2

p=0.7

R=0.5

p=0.1

R=0.6

p=0.1

R=0.01

p=1

R=0.1

p=0.9

R=-0.4

p=0.3

R=0.3

p=0.4

R=0.5

p=0.1

R=0.5

p=0.1

R=0.1

p=0.8

PHWM

FA

ipsi
R=-0.03

p=1

R=0.6

p=0.1

R=-0.2

p=0.7

R=-0.4

p=0.2

R=-0.5

p=0.1

R=0.02

p=1

R=-0.1

p=0.8

R=0.6

p=0.02

R=-0.2

p=0.5

R=-0.5

p=0.1

R=-0.6

p=0.1

R=-0.02

p=1

contra
R=-0.1

p=1

R=0.4

p=0.2

R=-0.01

p=1

R=-0.3

p=0.4

R=-0.3

p=0.4

R=0.02

p=1

R=-0.02

p=1

R=0.4

p=0.2

R=0.01

p=1

R=-0.4

p=0.3

R=-0.4

p=0.3

R=0.1

p=0.9

PHWM

MD

ipsi
R=0.4

p=0.2

R=-0.3

p=0.5

R=0.1

p=1

R=0.5

p=0.2

R=0.4

p=0.2

R=-0.2

p=0.6

R=0.3

p=0.3

R=-0.6

p=0.02

R=0.3

p=0.3

R=0.8

p<0.001

R=0.7

p<0.01

R=-0.02

p=1

contra
R=0.4

p=0.2

R=0.02

p=1

R=-0.1

p=1

R=0.3

p=0.5

R=0.2

p=0.7

R=-0.2

p=0.6

R=0.3

p=0.3

R=-0.1

p=0.9

R=0.2

p=0.6

R=0.4

p=0.2

R=0.3

p=0.5

R=0.01

p=1

Table 9.2. Correlations of whole-tract FA/MD values with variables for both approaches.
Spearman rho values (R) are shown with FDR corrected p-values (p) for each type of
analysis (manual and automated). Boldface indicates significant effects. UF = uncinate
fasciculus; PHWM = parahippocampal white matter bundle; FA = fractional anisotropy; MD
= mean diffusivity; ipsi = ipsilateral; contra = contralateral.

9.3.3 Tract Profile Analysis (AFQ) 

In contrast to the manual tractography method, AFQ software also allowed the

automated analysis of FA/MD values along tract cores. A significantly reduced FA in

a small area of the right UF in patients with right TLE relative to controls was found,

while patients with left TLE had significantly increased MD in two small regions of

the left UF and in large portions of the right UF relative to controls (Figure 9.4).
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Figure 9.4. Comparison of Patients with right and left TLE versus controls.
The T1w overlay in standard space shows areas of the UF where patients had decreased FA
(left, red areas) and increased MD (right and inset, red areas). rTLE = right TLE; lTLE = left
TLE; FA = fractional anisotropy; MD = mean diffusivity.

Furthermore, patients with and without HS were compared to controls. There was

significantly decreased FA in the frontal part of the ipsilateral UF and significantly

increased MD in the frontal and temporal parts of the contralateral UF in patients

with HS compared to controls (Figure 9.5). There were no significant differences

between patients without HS and controls. Patients with HS had significantly

decreased FA in the frontal part of the contralateral UF relative to patients without

HS (Figure 9.5).
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Figure 9.5. Patients with HS compared to controls and patients without HS (inset).
The T1w overlay in standard space shows areas of the UF where patients with HS had
decreased FA (top and inset, red areas) and increased MD (bottom, red areas). FA =
fractional anisotropy; MD = mean diffusivity. HS = hippocampal sclerosis.
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For all patients, correlations between FA/MD tract profile values and demographic /

clinical variables were investigated. Several significant correlations were found,

including age (ipsilateral decrease of FA in UF with increasing age), younger age at

onset (decrease of FA in ipsilateral PHWM; increase of MD in ipsilateral PHWM

and contralateral UF), increased seizure burden (correlated with a decrease in FA in a

small posterior section of the contralateral PHWM) and a longer epilepsy duration

corrected for age (correlated with a decrease of FA in ipsilateral and contralateral

PHWM and an increase of MD in ipsilateral PHWM and contralateral UF). No

correlations were found between FA/MD values of the FF and clinical variables

(Figure 9.6).

Figure 9.6. Correlations of DTI-metrics with demographic and clinical variables.
There were correlations between FA (top row) and age, age of onset, seizure burden and
epilepsy duration corrected for age. All FA correlations were negative except for the
correlation with age of onset, which was positive (marked with an asterisk, younger age of
onset was associated with decrease in FA of the ipsilateral PHWM). There were also
correlations between patient MD values (bottom row) and age of onset (negative, marked
with an asterisk) and epilepsy duration corrected for age (positive).
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9.4 Summary 

There were two objectives for this study.

Objective 9.1

Agreement between manual and automated tractography

A whole-tract analysis approach is feasible with both tractography approaches

(manual and AFQ). The analysis of consistency across approaches revealed a high

degree of similarity in Dice Coefficients for the extracted tract shape, morphology

and space (Dice coefficients at moderate to good agreement) and a strong correlation

between FA/MD values extracted with both methods. The sensitivity of the

tractography approaches differed within group FA/MD analysis regarding significant

differences found across patients and controls. The manual approach revealed more

differences than AFQ in group comparisons of whole-tract DTI-metrics. No

correlations between whole-tract diffusion characteristics and clinical variables

survived correction for multiple comparisons using the manual approach. In contrast

to this, the whole-tract DTI-metrics determined using AFQ revealed correlations with

clinical variables such as age of onset and duration of epilepsy corrected for age.

Objective 9.2

Along-the-tract diffusivity analysis of FF, UF and PHWM using automated

tractography

The results obtained through conventional whole-tract diffusivity analysis between

patients with left/right TLE and controls and correlation analysis were also

confirmed through the along-the-tract analysis provided within AFQ. Overall, AFQ's

along-the-tract analysis gave a more detailed description of localized diffusivity
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changes that correlated with age, age of onset, seizure burden and epilepsy duration

corrected for age. No correlations were found between FA/MD values of the FF and

clinical variables. While there were significant diffusivity alterations in patients with

HS compared to controls and compared to patients without HS, no abnormal

diffusivity alterations were observed in patients without HS.
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10.1 Organization of Chapter 10

This chapter provides a detailed discussion on the quantitative results reported in

Chapters 5-9, other than Chapter 7, the qualitative findings of which were discussed

in that chapter. Chapter 10 starts with a summary of all results in Section 10.2, the

methodological strengths and limitations are discussed in Section 10.3, the

interpretations and implications of the studies are discussed in Section 10.4. Finally,

future directions are discussed in Section 10.5, which also includes the conclusions
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of this thesis. Information from Kreilkamp et al. (2017) has been included in this

chapter.

10.2 Summary of Results 

10.2.1 Automatic Hippocampal Subfield Segmentation in Patients with TLE and 

HS

The present study is the first to use a novel multi-contrast approach to improve

automated hippocampal subfield segmentation in TLE and relate these measures to

HIA ratings and clinical features. In this study, four primary findings have been

reported. Firstly, patients with left TLE had decreased volume of the contralateral

presubiculum and HATA relative to patients with right TLE. Conversely, patients

with right TLE had significantly smaller contralateral hippocampal tail volumes

relative to patients with left TLE. Secondly, ipsilateral and contralateral hippocampal

subfield volumes did not correlate with duration of epilepsy, age of onset of epilepsy,

epilepsy burden, a history of febrile seizures or prevalence of SGTCS. Thirdly, the

volume of ipsilateral or contralateral hippocampal subfields was not associated with

postoperative outcome. Finally, semi-quantitative hippocampal architecture ratings

were significantly related to several hippocampal subfield volumes. 

10.2.2 Automated Tractography Analysis in Patients with TLE and HS

There were four primary objectives of this study. Firstly, diffusion alterations of

whole temporal lobe tracts were investigated in patients with TLE relative to healthy

controls using an automated tractography approach. Whole-tract FA/MD

abnormalities were observed in nearly all temporal lobe tracts investigated, the

effects being observed bilaterally, but most strongly ipsilaterally. Tract diffusion

alterations were more strongly bilaterally distributed in patients with left TLE.

Secondly, an investigation of within-tract alterations using waypoint comparisons

confirmed that ipsilateral tracts were more extensively affected than contralateral

tracts. This approach also identified specific regions within tracts that demonstrated

alterations in diffusion characteristics. Thirdly, the relationship between regional
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tract alterations, the degree of the HA and clinical features of TLE (such as duration

of epilepsy, seizure frequency) was assessed. This study showed that extent of HA

was not related to (i) the degree of FA and MD alterations of temporal lobe tracts or

(ii) the clinical characteristics of patients, whereas diffusion alterations of ipsilateral

temporal lobe tracts were significantly related to age at onset of epilepsy, duration of

epilepsy and epilepsy burden. Finally, the aim was to establish whether preoperative

temporal lobe WM tract diffusivity measures differed between patients who were

surgically rendered seizure free and those who had persistent postoperative seizures

relative to controls. Outcome analysis revealed that patients with favorable outcomes

and those experiencing postoperative seizures had a different pattern of FA/MD

alterations along tracts relative to controls, to the extent that patients with

postoperative seizures were affected more bilaterally relative to those rendered

seizure free.

10.2.3 Neuroradiological Findings in Patients with 'Non-lesional' Focal Epilepsy

29 patients remained MRI-negative after reassessment by a neuroradiologist

experienced in the evaluation of epileptogenic lesions. 33% of all patients had at

least one potentially epileptogenic lesion (seven had HS, two had dual pathology (HS

and FCD), two had dysplasia, one patient had amygdala enlargement, one had

encephalocele and one patient had gliosis), which went undetected on previous

clinical MRI. Of these 14 patients with lesions, eleven had lesions concordant with

the likely epileptogenic region as identified by EEG. The full discussion and

conclusions of these qualitative results can be found in Chapter 7.

10.2.4 Automatic Detection of Focal Cortical Dysplasia

CAT12 in SPM12 permitted the implementation of the previously published method

by Huppertz et al. (2005) using a fully automated approach. This tool identified

100% of dysplastic lesions in previously non-lesional patients with epilepsy when

both feature maps depicting the GM/WM junction and extent of GM thickness were

used together. Additionally, two sites not previously identified were identified using

the automated FCD detection technique. The number of false positives generated
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through EXT/JCT images could be reduced by using a cluster threshold (>3.5 cm3)

on EXT/JCT images and voxel-based analysis of all significant clusters in

FA/MD/T2FLAIR and T2w images from 23 patients to twelve. All sites of dysplasia

reported at the start of the study were detected using this technique, while also two

additional sites could be identified. Of the twelve remaining patients with suspicious

areas according to the individualized statistical testing, none were reported to be

abnormal based on neuroradiological re-assessment.

10.2.5 Automatic Fiber Quantification in Patients with TLE

A whole-tract analysis approach is feasible with both tractography approaches

(manual and AFQ). The analysis of consistency across approaches revealed a high

degree of similarity in Dice Coefficients for the extracted tract shape and space (Dice

coefficients at moderate to good agreement) and a strong correlation between

FA/MD values extracted with both methods. The manual approach revealed more

differences in FA/MD values than AFQ when comparing whole-tract DTI-metrics

between patients and controls. When using the manual tractography approach, no

correlations between whole-tract diffusion characteristics and clinical variables

survived correction for multiple comparisons. In contrast to this, the whole-tract

DTI-metrics determined using AFQ revealed correlations with clinical variables

including age of onset of epilepsy and duration of epilepsy. These were also

confirmed through AFQ's along-the-tract analysis, which provided a more detailed

description of localized diffusivity changes along tracts, which correlated with age,

age of onset of epilepsy, seizure burden and duration of epilepsy. Furthermore,

imaging data was compared between patients with and without HS to controls. There

was significantly decreased FA in the frontal part of the ipsilateral UF and

significantly increased MD in the frontal and temporal parts of the contralateral UF

in patients with HS compared to controls. There were no significant differences

between patients without HS and controls. Patients with HS had significantly

decreased FA in the frontal part of the contralateral UF relative to patients without

HS.
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10.3 Methodology, Strengths and Limitations

10.3.1 Cross-Sectional Study Design

Many publications to date have applied cross-sectional study designs to report on

pathobiological processes and underlying brain alterations related to clinical features

(e.g. seizure laterality, age of onset / duration of epilepsy) in patients with focal

epilepsies (Ahmadi et al. 2009, Liu et al. 2016, Kemmotsu et al. 2011, Glenn et al.

2016) and those that underwent epilepsy surgery (Concha et al. 2007, Keller et al.

2017). Although a cross-sectional study design is a favorable choice concerning

time-effectiveness and access to the same MR hardware and associated post-

processing methods, it often comes at the cost of recruiting a heterogeneous patient

population. Patients may differ in age, age of onset and duration of epilepsy,

medication, types of seizures and seizure frequency. When these factors are not

accounted for, they may mask the underlying pathological processes present in GM

and WM that characterize focal epilepsy. In particular, a cross-sectional study design

does not allow researchers to make causal inferences about time-dependent and

specific disorder-related changes in either patient groups or individual patients when

comparing them to healthy controls or among each other. 

Longitudinal studies do not have these disadvantages and would allow more

meaningful conclusions. However, longitudinal studies may suffer from participant

attrition. Efforts to map structural and functional changes in study groups over time

have been undertaken in neurodevelopment (Houston et al. 2014) and

neurodegenerative diseases such as Alzheimer's disease (Wang et al. 2016b) or

multiple sclerosis (Furby et al. 2010). Ongoing neurobiological processes contribute

to progression of the brain development / disorder and this may also be true for

epilepsy where time-dependent clinical patterns could be investigated in longitudinal

studies. Neurobiological and pathological processes are interdependent and likely

influence the outcomes of brain structural and functional studies. Longitudinal

studies allow the investigation of different research questions, e.g. whether

diffusivity alterations progress with continuing seizures (Keller et al. 2012) or
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whether these may be reversible after surgery has been performed (Concha et al.

2007, Kemmotsu et al. 2014). Consequently, longitudinal studies may provide

insights into the etiology of diffusion alterations in temporal lobe WM tracts.

10.3.2 Clinical Variables

It is important to investigate correlations of underlying brain alterations with clinical

variables in order to assess whether brain alterations found in patients with focal

epilepsy may be primary or secondary in nature. Studies to date have investigated

whether certain brain areas are susceptible to damage resulting from the presence of

febrile convulsions/SGTCS, certain types of seizures, recurrent seizures (seizure

frequency), duration of epilepsy, age of onset or post-surgical outcomes and

contradictory results have been reported. Some studies report that structural

alterations correlate with duration (Keller et al. 2012, Keller et al. 2015b, Kreilkamp

et al. 2017) and age of onset of epilepsy (Lin et al. 2008, Keller et al. 2002b).

However, other studies were not able to establish relationships of GM/WM

alterations with age of onset (Keller et al. 2015b) or with duration (Moran et al.

2001), which may be due to smaller sample sizes, the subtle nature of the alterations

and the application of conservative statistical thresholds (Bernasconi et al. 2004). In

this work, hippocampal subfield and gross hippocampal volume did not correlate

with any clinical variables, whereas for the same dataset on patients with TLE and

associated HS correlations between WM tract alterations and age of onset, duration

and seizure burden were found. DTI waypoint analysis revealed where these

alterations occurred, however correlations between tract measurements and clinical

data cannot be attributed without caution. In particular, measures of seizure

frequency may be biased as there is no objective way of measuring occurrence of

seizures and this information is often only obtainable through reports given by

relatives and friends observing the patient. Furthermore, the correlation of duration

of epilepsy to seizure-induced brain damage does not allow inferences about

causality given the cross-sectional nature of the present study. Longitudinal studies

are required to characterize the multifactorial relationship between seizures, clinical

features of the disorder, medication, co-morbidities and WM tract alterations.
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10.3.3 In Vivo Hippocampal Subfield Mapping

The higher-resolution multi-contrast approach used in the present study clearly pro-

vided an improved segmentation of hippocampal subfields compared to an automat-

ed approach based solely on T1w images (Schoene-Bake et al. 2014). There are,

however, important considerations that should be made. Firstly, it should be empha-

sized that it is currently impossible to obtain an estimate of neuronal density from

MRI determined hippocampal subfields, and the goal of in-vivo imaging methods is

to obtain an estimate volume of the approximate location of subfields. This likely ex-

plains the discrepancy between histopathology-outcome, imaging-clinical variable

and imaging-outcome correlations in patients with TLE. The combination of standard

T1w images with a higher resolution T2STIR sequence, as applied in the present

study, improves the delineation of the approximate location of the subfields. A meta-

analysis of studies reporting hippocampal subfield neuronal loss revealed statistically

significant neuronal loss in all CA regions in patients with HS relative to control

specimens and CA1 was preferentially affected (Steve et al. 2014). It is an important

point to consider hippocampal subfields or regions separately when analyzing hip-

pocampal volume metrics based on pre-surgical MRI in relation to outcome as differ-

ent types of HS are related to different post-surgical outcomes (Blümcke et al. 2013).

Unfortunately, due to the lack of healthy control data, this present study was unable

to assess relationships between outcome and different types of HS as assessed by au-

tomated hippocampal subfield mapping. Healthy control data was not available be-

cause the high-resolution T2STIR sequence was acquired only for patients being

considered for surgery. Even though all patients who participated in the present study

were deemed to have unilateral HS, quantitative analysis of subfields did reveal some

contralateral changes in patients with left/right TLE. 

Other methodological issues that should be mentioned include the fact that hip-

pocampal subfield mapping might be influenced by differences in image quality and

motion across subjects (Iglesias et al. 2015). Some boundaries between structures

might not be easily delineated as even in the training data some interfaces cannot be
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detected (Yushkevich et al. 2015b). Furthermore, patients received individual epilep-

sy surgery as clinically indicated, for example with a trans-sylvian (~50%) or sub-

temporal (~50%) access to the pathologic hippocampus, which was then removed in

sections (trans-sylvian) or in its entirety (subtemporal). Within this archival study,

detailed microscopic information of intact hippocampal subfields from surgical spec-

imens was not available for comparison to the automatically delineated hippocampal

subfields based on MRI. However, this study is useful as it shows that in-vivo ipsilat-

eral semi-quantitative continuous HIA ratings were significantly related to multiple

automatically extracted ipsilateral hippocampal subfield volumes. This is an impor-

tant finding and may indicate that automatic subfield mapping can reflect some clini-

cal features present in different manifestations of HS. However, in the absence of a

gold-standard procedure for in-vivo subfield mapping, estimation of hippocampal

subfield volumes might only be used as an approximation for HS with inherent neu-

ronal cell loss. Nevertheless, an automated technique for hippocampal volume ex-

traction, which is sensitive to different patterns of HS could indeed complement pa-

tient clinical information in a reproducible and time-efficient way prior to surgery

and further research in this direction using data from healthy controls and long-term

surgical outcomes is warranted. 

10.3.4 Automated Tractography of Temporal Lobe Tracts

The TRACULA results presented in Chapter 6 closely correspond to those of time-

consuming manual tractography studies (Ahmadi et al. 2009, Yogarajah et al. 2008,

Rodrigo et al. 2007, Diehl et al. 2008, Lin et al. 2008). The automated tractography

approach utilized here has several advantages over manual approaches, including an

improved reproducibility of measurements, increased time efficiency and no reliance

on trained human anatomists. The utilization of automated image analysis

techniques, particularly those that are performed in native space, is favorable over

manual ones if such techniques are incorporated into clinical evaluation of patients,

particularly given the high levels of reproducibility. TRACULA uses reproducible

tracking protocols validated on a set of healthy training subjects and has been shown

to be sensitive to WM changes in patients (Yendiki et al. 2011). Automated
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techniques for tract reconstruction will have important implications for studies

aiming to characterize side of seizure onset and develop individual diagnostics in a

clinical setting (Martin et al. 2015) due to its low demands on time and higher

reliability (Leergaard et al. 2012). TRACULA constrains tractography to WM voxels

using an anatomically correct T1w based segmentation mask. Diffusion-weighted

imaging may suffer from geometric distortions that can affect the accuracy of tract

anatomy (Yendiki et al. 2011). The application of a b0/T1w co-registration approach

can mitigate the effects of potentially distorted voxels so that tracts can be

successfully reconstructed. Furthermore, SNR was computed and the analysis

confirmed that mean SNR values for diffusion-weighted images were comparable

across groups. However, motion was different across patients/controls and therefore

the TMI for all participants was entered as a nuisance regressor into the analysis to

mitigate confounding effects of motion differences between groups (Yendiki et al.

2013). Ultimately motion artifacts remain an important challenge for any DTI study,

since macroscopic head motion can easily influence the microscopic diffusion

measurements, which DTI studies aim to characterize. As DTI-derived scalar metrics

are dependent on the SNR measures of the data (Farrell et al. 2007) and motion

(Yendiki et al. 2013), this has implications for studies investigating subtle differences

between different types of disorders or when comparing patients to controls. These

measures should be computed and accounted for during statistical analysis as

performed in the present study. Ultimately, a comparison to the gold-standard

manual tractography approach should also be performed. 

In Chapter 9 a direct comparison of manual and automated tractography (AFQ)

approaches revealed that tracts generated by these two approaches spatially

corresponded reasonably well given the results from Dice Coefficient analysis.

However, minor differences were found (i) in tract volume, where the automated

approach showed increased volume relative to the manual approach (ii) in group

analysis where AFQ did not identify as many tracts with abnormal diffusivity values

in patients with left TLE when compared to the manual approach and (iii) the whole-

tract correlation analysis with clinical variables only showed significant results when
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using AFQ relative to the manual approach. It is likely that the difference in tract

volume stemmed from the fact that only the second-order Runge-Kutta algorithm

was available for the manual approach, while for AFQ the default tractography

algorithm had been set at the forth-oder Runge-Kutta algorithm by the developers

(Yeatman et al. 2012). As diffusion metrics were thus sampled from a larger tract

volume within the automated approach, this may also explain why whole-tract

diffusion alterations present in the manual approach were not detected with the

automated approach in patients with left TLE. Another reason for these differences

may be the fact that the manual approach was performed in patient native space,

while the automated approach relied on co-registration of ROIs to define the tracts in

standard space. Conversely, when investigating correlations between whole-tract

diffusion metrics and clinical variables, these were only detected when using AFQ.

These findings were replicated using AFQ's along-the-tract analysis. It is difficult to

assess why some group results were not identified by AFQ, while clinical

correlations with DTI-metrics could be found. Ultimately, studies aiming to compare

these two tractography approaches in more detail should harmonize identical

tractography algorithms to run in the same space (either subject-specific native or

standard space) so that stronger conclusions may be justified and the automated

approach with the closest correspondence to manual approaches (including waypoint

analysis) can be identified.

In order to investigate the relationship between DTI-metrics and clinical variables

and group diffusivity alterations across patients with and without HS and controls,

the information obtained for each tract had to be side-flipped in patients with right

TLE and a corresponding subset of controls in both studies (TRACULA and AFQ)

reported within this thesis. This is a common procedure and often necessary, as the

prevalence of right TLE is lower than that of left TLE (Giovagnoli 2001, Manaut et

al. 2002, Njiokiktjien 2005). Although side-flipping has been performed in many

previous studies aiming to assess correlations and group-wise differences in small

sample sizes (Keller et al. 2015a, Coan et al. 2014, Imamura et al. 2015, Mueller et

al. 2006, Fonseca et al. 2012), one limitation of this is that the analysis does not
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allow judgements on diffusivity alterations that are dependent on right- or left-sided

hemispheric differences.

10.3.5 Voxel-based Analysis

In the present study, a modified version of a previously published epileptogenic

lesion detection algorithm was applied (MAP; Huppertz 2013). The aim was to use

the novel segmentation algorithms within the newest version of SPM, which are

superior to the previous SPM version used by MAP (Dahnke et al. 2012, Farokhian

et al. 2017) and to maintain the same computational steps for T1w-derived feature

maps (Huppertz et al. 2005, Huppertz et al. 2008, Huppertz 2013, Kassubek et al.

2002, Wilke et al. 2003) in order to determine the sensitivity of this approach when

using automated voxel-based statistical analysis. Recently, Wang et al. (2016a) have

emphasized the need for a statistical thresholding method to improve sensitivity,

specificity and consistency of the applied automated approach in order to circumvent

the need for extensive neuroradiological evaluation of feature maps. The strengths of

the automated voxel-based approach include the fact that it does not entail manual

lesion drawing unlike other semi-automatic tools requiring a priori information not

available in patients with MRI-negative epilepsy. Furthermore, it is able to operate in

3D and identify multifocal lesions. 

This is in contrast to a recently developed surface-based approach (Adler et al.

2017a), which is unable to identify multiple FCD sites in a patient as it makes

reference to the corresponding contralateral region to evaluate deviations in cortical

surface features such as folding and thickness. One important criticism to make here

is that patients with epilepsy also show contralateral alterations in cortical surface

features (Kemmotsu et al. 2011, Kim et al. 2016) and extensive structural

disorganization may be detectable using GM volume analysis (Sisodiya et al. 1995b).

The pathological features of the disorder may compromise the ability of the surface-

based approach developed by Adler et al. (2017a) to depict suspicious regions as the

contralateral side cannot be used as a control. Therefore, a 3D voxel-based approach,

which allows simultaneous analysis of multiple slices across the whole brain without
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the use of a-priori information may be useful for patients with MRI-negative epilepsy

who may show multi-focal lesion upon re-evaluation. It is important to account for

age- and sex-matched healthy controls when assessing patients for possible

epileptogenic lesions using any statistical tool. Within the study presented here, this

had been considered, furthermore age and sex had been entered as covariates during

voxel-based analysis. Other studies such as Adler et al. (2017a) have reported on

differences in age between patients and controls where the mean age differed by

three years between the two participant groups. Especially in a paediatric cohort this

signifies a large heterogeneity as neurodevelopment is at very different stages at

three and ten years of age for example (Giedd et al. 2015), which were the respective

ages of the youngest patient and control (Adler et al. 2017a).

However, cortical surface mapping can afford additional information also relevant to

FCDs such as 3D surface complexity including local gyrification, sulcal depth and

curvature (Yotter et al. 2011, Thesen et al. 2011) and investigation of surrounding

tissue by geodesic distance mapping (Hong et al. 2017). This additional information

may render surface-based superior to voxel-based approaches when attempting to

detect very subtle and small FCDs. The reasons for this are that voxel-based

approaches are susceptible to partial volume effects (Kurth et al. 2015b) owing to

their volume-based averaging procedures, thus the detection of spatially restricted

lesions in folded cortex may be limited (Thesen et al. 2011). Even though these are

features not obtainable with voxel-based techniques, the neuroradiologically verified

approach used within this thesis was still able to detect suspicious areas suggestive of

FCD with a sensitivity of 100%, which is 30% higher than those achieved by

surface-based methods that have been histopathologically verified (Hong et al. 2014,

Adler et al. 2017a). The high sensitivity achieved with the voxel-based approach in

the present study has also been demonstrated by Huppertz et al. (2005). One other

difference in the study conducted within this thesis and Adler et al. (2017a) was that

data was acquired on a 3 Tesla magnet in the study presented within this thesis, while

Adler and colleagues acquired the data on a 1.5 Tesla MRI scanner. Indeed, it cannot

be ruled out that this may in part account for differences in results seen in sensitivity
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73% (at 1.5 Tesla) versus 100% (3.0 Tesla) lesion detection rate. Consequently,

differences in these results may not be solely attributed to the criticism raised on the

surface-based approach but may also be due to improved segmentation based on 3.0

Tesla MRI with higher CNR as compared to 1.5 Tesla (Wagner et al. 2011).

However, it is worth noting that Hong et al. (2014) have tested their data on 1.5 and

3 Tesla and have found similar sensitivity across field strengths for their automated

surface-based approach. 

The liberal threshold of p<0.01 (voxel-level) and FWE p<0.05 (cluster-level) may

possibly be changed to p<0.001 and FWE p<0.05, a threshold that has been

previously used in other publications (Focke et al. 2008b). The false positive rate was

1.5 to 2 times higher than the false positive rate reported by Wang et al. (2015) due

to the liberal statistical threshold applied in this study. Applying a more stringent

statistical threshold may help to avoid false positives and increase specificity when

identifying a given pathology. In order to reduce the number of false positives the

cluster extent threshold of 3.5 cm3 was used as this was the smallest

neuroradiologically confirmed FCD size found in the present dataset. As this

threshold was inspired by the size of clinically defined FCD sites in this particular

dataset, caution should be exercised when blindly applying this threshold to other

datasets with potentially smaller FCDs. In particular, small FCDs found at the

bottom of deep sulci may be overlooked by neuroradiologists (Besson et al. 2008)

and may be left undetected by an automated voxel-based tool that has a high cluster

size threshold. In contrast to this, surface-based approaches have been used to afford

information on depth and curvature measures of the inner cortical surface with higher

spatial resolution (Adler et al. 2017a, 2017b, Besson et al. 2008). However, these

statistical and cluster-based thresholds can be adjusted in future studies and tested for

their performance regarding specificity and sensitivity. Another fact that may have

contributed to the high number of false positives found here and in a previous study

(Wang et al. 2015), when using the approach developed by Huppertz et al. (2013), is

that GM/WM intensities are estimated from whole brain MRI before masking out the

cerebellum and deep GM nuclei. It is possible that the derived thresholds are
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compromised by signal intensities derived from these subcortical and cerebellar

regions as they do not reflect GM and WM intensities of areas within the cerebral

cortex. Since the local adaptive segmentation offered in CAT12 takes local intensity

differences into account (Dahnke et al. 2012), it would be contra-productive to

discard this detailed information before computation of the GM/WM intensity

boundary thresholds.

10.4 Interpretations and Clinical Implications

10.4.1 Hippocampus and TLE

Although left and right TLE do not differ in the extent of atrophy of the

epileptogenic hippocampal subfields, patients with left TLE had significantly

reduced volumes of the contralateral presubiculum and HATA relative to patients

with right TLE. This is a new finding and suggests that left TLE may be associated

with a bihemispheric hippocampal subfield alteration in these particular regions. For

patients with right TLE, lower volumes in the contralateral hippocampal tail relative

to patients with left TLE were found. There is an inconsistent literature on the effects

of TLE laterality on the distribution of brain damage, with some indicating

increasingly bilateral changes in left TLE (Keller et al. 2012, Coan et al. 2009), in

right TLE (Garcia-Fiñana et al. 2006, Pail et al. 2010) and some studies suggesting

equivalence (Liu et al. 2016). Just one of these studies (Liu et al. 2016) has entered

the hippocampal asymmetry (right>left) found in healthy controls (Rogers et al.

2012, Pedraza et al. 2004) as a confounding factor during statistical analysis. It is

possible that natural cerebral asymmetry of this structure may account for some

differences found in patients, in particular since regional differences in bilateral

hippocampal volume have been found in controls (Rogers et al. 2012).

Unfortunately, since T2STIR images were not available for healthy controls, the

present study was unable to resolve this, so that this would be a worthwhile addition

to future studies. Differences in hippocampal subfield volume loss may be linked to

different pathobiological processes, such as neuronal loss and altered microstructural

organization (Keller et al. 2012) sensitive to age (Small et al. 2011) or may be related
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to features inherent in natural hemispheric asymmetry as found in healthy controls'

hippocampal volume with the right being larger than the left hippocampus (Szabo et

al. 2001, Thompson et al. 2009) and function (Golby et al. 2001, Sepeta et al. 2016,

Wei et al. 2016, Burgess et al. 2002). Further detailed research using structural,

functional and histopathological data is needed in order to fully disentangle these

different effects and to arrive at biologically meaningful conclusions.

Whether recurrent seizures cause progressive brain damage is a contentious issue. In

the absence of longitudinal data, cross-sectional studies have correlated brain

compartment volume with duration of epilepsy as a surrogate marker of progressive

damage due to seizure chronicity. There is inconsistency in the literature with respect

to hippocampal and extrahippocampal volume loss and duration of TLE (Fuerst et al.

2001, Salmenpera et al. 1998, Tasch et al. 1999, Theodore et al. 1999, Jack et al.

1992, Cendes et al. 1993, Keller et al. 2015b, Mueller et al. 2012, Keller et al. 2012).

Given that duration of epilepsy and chronological age are related, it is important to

correct clinical correlations for patient age to determine whether brain atrophy is

driven by epilepsy-related factors or normal age-related maturation. In the present

study it was reported that subfields of the epileptogenic and contralateral

hippocampus are not correlated with clinical variables. These results suggest that

hippocampal subfields are not susceptible to damage resulting from recurrent

seizures, the general chronicity of the disorder, age of onset or the presence of febrile

convulsions/SGTCS. This is consistent with previous work that indicates that HS

may be a direct and immediate consequence of an initial precipitating injury (e.g.

febrile seizures / infection / genetic defects) and hippocampal subfield volume loss

may not be primarily influenced by the chronicity/severity of the disorder since the

majority of neuron loss occurs during epileptogenesis before onset of seizures

(Mathern et al. 1996, Pitkänen and Lukasiuk 2011, Davies et al. 1996). It is worth

noting, however, that one study found an inverse relationship of epilepsy duration

(corrected for age) and volumes of left CA1, presubiculum, and subiculum in left

TLE and right CA1 in right TLE (Kim et al. 2015).
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With respect to postoperative outcome, harmonizing results from histopathological

studies of hippocampal subfield neuronal loss and imaging studies of hippocampal

subfield volume loss is difficult because of the inherent differences in the resolution

of tissue characteristics. Postoperative outcome has been shown to be superior in

patients with TLE who, after resection, were retrospectively shown to have classical

patterns of HS (i.e. preservation of CA2 neurons) or total HS (i.e. neuronal loss

throughout the CA), whereas patients with circumscribed neuronal loss of CA1 or

CA4 tend to have poorer outcomes (Blümcke et al. 2013, Blümcke et al. 2007, Thom

et al. 2010, Giulioni et al. 2013, Na et al. 2015). Mathern et al. (1996) had previously

reported that patients with initial precipitating injuries were more likely to benefit

from surgery and had neuronal cell loss in CA1 and presubiculum regions. No

volume differences in preoperative hippocampal subfields between 41 patients with

an excellent postoperative outcome and 35 patients with a suboptimal outcome were

identified. This is likely due to the fact that there is histopathological variability in

HS across patients, which is not identifiable on MRI. To varying degrees, patients

with left and right TLE both showed contralateral volume reduction and this may be

interpreted to indicate increased bilateral mesial temporal damage, potentially

reflecting a bihemispheric seizure disorder, which would be less amenable to surgical

intervention. Specifically, contralateral hippocampal subfield volumetric changes

confined to certain regions in patients with right or left TLE may have differential

impact on surgical outcomes. In fact, this study showed that overall patients with

right TLE were more likely to be seizure free, which is concordant with results

showing that these patients are more likely to be affected in multiple hippocampal

subfields ipsilaterally rather than bilaterally, and they only showed regional changes

in one hippocampal subfield volume confined to the contralateral hippocampal tail

when compared to patients with left TLE. 

10.4.2 Temporal Lobe WM Tracts and TLE

Consistent with previous studies investigating diffusion characteristics of the ILF,

SLF, cingulum and UF using manual DTI tractography approaches (Ahmadi et al.

2009, Yogarajah et al. 2008, Rodrigo et al. 2007, Diehl et al. 2008, Lin et al. 2008),
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this study demonstrated significant alterations in bihemispheric temporal lobe tract

diffusion characteristics in patients with unilateral TLE using the fully automated

TRACULA tractography pipelines. Diffusion measurement analysis revealed that

patients with left TLE are more bilaterally affected than patients with right TLE,

which is a finding consistent with the literature (Ahmadi et al. 2009, Keller et al.

2012, Kemmotsu et al. 2011) and the contralateral hippocampal subfield volume loss

found in patients with left TLE. Furthermore, DTI waypoint comparisons localized

the bilateral diffusion changes more precisely within tracts. However, it should be

noted that other studies investigating GM have reported increasingly bilateral brain

alterations in patients with right TLE (Garcia-Fiñana et al. 2006, Pail et al. 2010).

One explanation for this may be that the groups were heterogenous in the work of

Pail et al. (2010) reporting that patients with left TLE took a greater number of AEDs

than patients with right TLE who did not take as many drugs. The fact that patients

with left TLE were prescribed a greater number of AEDs or the fact that their

medical condition was probably worse than in the other patient group may have

influenced structural degeneration of the brain. Garcia-Fiñana et al. (2006) reported

that contralateral hippocampal volumes were reduced in patients with right TLE but

not in patients with left TLE. However, no differences in clinical characteristics were

found between patients with left and right TLE and these authors are one of the few

in the field who also presented evidence of homoscedacity (normal distribution) of

the data before performing statistical testing between groups. Generally however, it

is now accepted that patients with left TLE are more bilaterally affected than patients

with right TLE (McDonald et al. 2008, Keller et al. 2002a, Bonilha et al. 2007b).

FA and MD have proved to be useful in characterizing microstructural brain damage

in patients with TLE (McDonald et al. 2008, Keller et al. 2012). FA is a measure of

microstructural integrity computed through a normalized ratio of radial/axial

diffusivities (Alexander et al. 2007, Soares et al. 2013) and could therefore imply

multiple microstructural changes (e.g. demyelination, loss of axons, increased inter-

axonal space). MD, as a directionally averaged value, that takes all diffusivity

measures into equal account, may demonstrate the magnitude of fluid viscosity and is
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sensitive to cellularity, edema and necrosis (Alexander et al. 2011). Therefore, MD

may potentially permit inferences about microstructure regarding loss of axon

membrane and thus provide in-vivo measurements that strongly relate to

histopathology. In fact, a recent study on correlations between diffusion alterations

(FA and MD) and histology found that preoperative diffusion alterations were related

to an increase in extra-axonal fraction, reduced cumulative axonal membrane

circumference and myelin of the resected tissue (Concha et al. 2010). Interestingly,

MD was more sensitive than FA in determining differences between patients versus

controls and was able to detect extensive bilateral effects. These findings are

consistent with those reported in other studies that have employed within-tract

analyses to demonstrate increased alterations in MD in patients with mesial TLE

(Concha et al. 2012, Glenn et al. 2016, Keller et al. 2017), although similar findings

have not been reported in patients with cryptogenic TLE (Keller et al. 2013). The

inconsistencies may in part be explained by different types of analysis approaches,

as, for example, a tract-based approach has been shown to be more sensitive than

voxel-based ones (Focke et al. 2008a). Furthermore, some studies have found that

diffusivity measures have a higher spatial correspondence with discharges from

stereo-electroencephalography than anisotropy measures (Thivard et al. 2006, Guye

et al. 2007), may be superior in detecting occult damage (Rugg-Gunn et al. 2001) and

have been linked to dynamics of seizure activity (Yu and Tan 2008).

In contrast to recent publications using automated whole-tract tractography in

standard space (Hagler et al. 2009) and in accordance with other deterministic

automated (Glenn et al. 2016) an d manual (Concha et al. 2012) along-the-tract

approaches, the present study demonstrated that automated probabilistic tractography

can detect alterations along temporal lobe tracts in native space. The study presented

here revealed that TRACULA's waypoint analysis is sensitive to within-tract

differences, which may have useful diagnostic (e.g. identification of occult damage)

and prognostic (e.g. development of imaging biomarkers) applications. Along-the-

tract analysis revealed no correlations with ipsilateral hippocampal volume, which is

consistent with previously conducted manual deterministic tractography (Concha et
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al. 2012) and ROI analysis (Keller et al. 2012, Bonilha et al. 2010). However,

another study reported that extrahippocampal FA, approximately located in the

ipsilateral superior segment of the cingulum and other extratemporal tracts not

assessed in the present study, was correlated with hippocampal volume (Scanlon et

al. 2013). These latter findings were also reported in the cohort of healthy controls

within the same study. 

An earlier age at onset of epilepsy, longer duration of epilepsy and increased

epilepsy burden were related to greater diffusion alterations of temporal lobe WM

tracts, but not the extent of HA. A correlation between duration of epilepsy and

extrahippocampal alterations has been reported in studies (Chiang et al. 2016,

Govindan et al. 2008, Lin et al. 2008, Keller et al. 2012). Given the relationships

between clinical variables and tissue characteristics along WM tracts, and the

absence of this relationship with hippocampal volume, these findings may suggest

that the development of hippocampal and WM abnormalities are governed by

independent developmental mechanisms. The development of mesial TLE is thought

to begin with an initial precipitating injury or condition, such as febrile seizures,

infection, genetic defects, trauma, stroke or hypoxic damage, which sets in process a

period of epileptogenesis. This is a latent period of aberrant neuroplasticity that later

supports the onset of spontaneous seizures (Mathern et al. 1996, Pitkänen and

Lukasiuk 2011). It has been suggested that the initial precipitating event, and

potentially the years of aberrant hippocampal plasticity, are the primary factors in the

development of HS, which can be present prior to the onset of habitual seizures

(Mathern et al. 1996). This may be the reason why the present study, like several

other studies (Cendes et al. 1993, Davies et al. 1996, Keller et al. 2012, Keller et al.

2002b) report no relationships between the extent of HA and age at onset and

duration of epilepsy. However, these clinical variables appear more significant in the

development of extrahippocampal WM tract abnormalities, which may be influenced

by the chronicity of TLE and therefore are likely to be secondary in nature. Other

studies have reported relationships between diffusion characteristics of WM and the

chronicity of TLE (Glenn et al. 2016, Keller et al. 2012). However, other studies

205



Chapter 10: Discussion and Conclusion

have failed to show a relationship between diffusivity measures and duration of

epilepsy (Thivard et al. 2005) or age at onset of epilepsy (Thivard et al. 2005, Keller

et al. 2012). The only other study to date investigating correlations between along-

the-tract diffusion characteristics and seizure burden reported correlations only with

diffusional kurtosis measures of microstructure, but not diffusion tensor measures

(Glenn et al. 2016). However, this previous study was performed in standard space,

while TRACULA outputs longer tracts in native space, which may account for the

differences seen with respect to correlations with seizure burden.

 

This study showed the trend (p=0.06) that patients with right-sided TLE were more

likely to be seizure-free after surgery, than those with left-sided TLE. In fact, this

statistical test was significant (p<0.05) when more patients were included (Chapter

5). Patients with excellent outcomes had more ipsilaterally distributed WM tract

diffusion alterations than patients with persistent postoperative seizures, who were

affected more extensively and bilaterally. This is consistent with previous studies

using DTI (Keller et al. 2017, Keller et al. 2015a). In particular, the study presented

here reported that in patients with postoperative seizures, MD values of the

contralateral SLFt were increased relative to controls, however, this change was not

seen in patients without postoperative seizures. Altered diffusivity in the contralateral

SLFt close to the insular cortex may indicate the presence of temporal plus epilepsy

which would be less amenable to surgery than TLE (Section 1.3). A previously

published study (Keller et al. 2017) using an automated deterministic tractography

approach has found the contralateral PHWM to be more affected in patients with

postoperative seizures. Although results of the study presented here did not

corroborate this clearly, the posterior part of the contralateral PHWM seemed to be

more extensively affected in these patients relative to patients who attained seizure

freedom when comparing the patient groups to controls. These results indicate that

patients with postoperative seizures have ipsi- and contralateral WM diffusion

alterations. Therefore, these bilateral structural alterations may compromise

attainment of excellent seizure outcomes in patients. Additionally, an FA decrease in

the ipsilateral UF was found in patients with persistent seizures relative to controls,
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whereas this change was not observed in patients who attained seizure freedom.

Keller et al. (2017) have incorporated measures of surgical lacunae and found that

insufficient resection of the ipsilateral UF could be a contributing factor to

unfavorable surgical outcomes. Bonilha et al. (2007a) and Siegel et al. (1990) have

found that the extent of entorhinal and parahippocampal resections were significantly

related to outcome. It may therefore be especially important to account for sufficient

resection in patients that have altered preoperative diffusion metrics in the vulnerable

UF as found in the study presented in this thesis. These patients may belong to a

particular subtype of refractory TLE that is less responsive to epilepsy surgery

(Bonilha and Keller 2015).

10.4.3 Manual and Automated Tractography in Lesional and 'Non-lesional' TLE

In the present study, temporal lobe tracts were investigated with both manual and

automated tractography approaches. When comparing patients with right TLE to

controls, apart from an increase in MD in the left PHWM using manual tractography,

no diffusion alterations were detected for the tracts analyzed (UF, PHWM and FF in

the automated approach). In contrast to patients with right TLE, patients with left

TLE showed multiple tracts with altered diffusion metrics when compared to

controls. Previous research has suggested that early childhood left hemisphere

damage predominates over right hemisphere damage and the left-right difference is

also present in patients with unilateral TLE (Njiokiktjien 2005), which may indicate

that the left temporal lobe is more vulnerable during development than the right

temporal lobe. To explain this effect, it has been incorrectly argued and concluded

that since the left hemisphere matures much slower than the right hemisphere, the

structures within the left hemisphere would be more vulnerable to initial precipitating

injuries (Keller et al. 2012, Kemmotsu et al. 2011, Miro et al. 2015). It is important

to note that this fact has been cited from the original source (Corballis and Morgan

1978) incorrectly and the contrary is true: the left-right maturational gradient had

been described by Corballis and Morgan (1978) as an earlier and more rapid

development of the left hemisphere compared to the right. In consequence, the left

hemisphere can no longer be considered to be vulnerable due to a slower maturation
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compared to the right as this was not reported initially. More detailed longitudinal

studies are necessary to make any such distinct statements and allow reasoning on

neurodevelopmental factors influencing hemispheric vulnerability. Much like results

in the work conducted on preterm newborns by Mullaart et al. (1995), Njiokiktjien

(2005) has found that cerebral blood flow disturbances are a major cause of cerebral

damage in the left hemisphere, Dabbs (1980) has stated that the right hemisphere

(which is the non-verbal hemisphere in most people) receives more blood than the

left in adults, and this may also be the case for children (Njiokiktjien 2005).

Consequently, ischaemic insults to the brain render the left hemisphere more

vulnerable and may cause damage to the hippocampal subfields (Schmidt-Kastner

and Freund 1991) and immature WM that is especially vulnerable to oxygen

deprivation (Nijiokiktjien 2005). Furthermore, there is a significantly higher

prevalence of HS in the left hemisphere relative to the right hemisphere in patients

with TLE (Janszky et al. 2003). However, other pathobiological processes may be at

play such as gene expression, differential biochemical and molecular processes and

pathways that may be either activated or suppressed in certain populations of neurons

and these could potentially influence neuronal response to stress rendering selective

neuronal populations vulnerable or resistant to damage (Michaelis 2012, Bernaudin

et al. 1998).

The study presented here included patients with left and right TLE previously

thought to be non-lesional, but expert neuroradiological assessment of the novel MRI

revealed unilateral HS in eight patients. This way, both of these patient groups with

left- and right-sided TLE included patients with and without unilateral HS. This may

have influenced the results presented within this study and may have biased the WM

diffusivity alterations found in patients with left TLE, while these changes were not

identified in the smaller group of patients with right TLE when compared to controls.

Generally, results presented in this study still corroborate previous work, as it has

appeared that patients with right TLE do not show the more extensive and severe

WM disruption found in patients with left TLE (Ahmadi et al. 2009, Kreilkamp et al.

2017, Keller et al. 2012, Kemmotsu et al. 2011), which may be linked to the fact that
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left and right TLE are etiologically and pathologically distinct subtypes of TLE

(Ahmadi et al. 2009). However, there is a scarcity of publications separately

analyzing data from patients with right TLE with and without associated HS without

performing side-flipping, possibly due to the significantly lower prevalence of this

structural abnormality in patients with right TLE (Janszky et al. 2003).

Mueller et al. (2006) have conducted a study on GM/WM volume on patients with

and without HS and have reported on extensive volume decrease in patients with HS

only, while no changes were found for patients without HS relative to controls. With

respect to diffusion alterations, Concha et al. (2009), Liu et al. (2012) and Campos et

al. (2015) have found that patients with TLE and associated HS had more widespread

diffusion alterations than patients without HS. Results on waypoint diffusion

alterations presented here corroborated this result for both patient groups when

compared to controls, while it was also found that patients with HS had significantly

decreased FA in the frontal part of the contralateral UF relative to patients without

HS. This may indicate differential epileptogenic networks involved in lesional and

non-lesional TLE (Liu et al. 2012) and that a pathologic hippocampus can influence

WM tract integrity on the contralateral hemisphere, a finding that is consistent with

other studies discussing patients with left TLE and HS (Kreilkamp et al. 2017, Keller

et al. 2012, Kemmotsu et al. 2011, Ahmadi et al. 2009, Bonilha et al. 2007b).

However, it should be noted that other studies have reported bilateral changes in

patients with right TLE and HS (Liu et al. 2012, Garcıa-Fiñana et al. 2006, Pail et al.

2010). So far, it is still undetermined why these results are not consistent for every

study conducted on patients with left/right TLE and HS. In order to fully disentangle

WM tract disruption in patients with and without HS and patients with left and right

TLE, future studies should aim to incorporate a much larger number of these

patients. One promising and encouraging step has been taken by the ENIGMA-

Epilepsy project, which aims to harmonize neuroimaging analyses across different

MRI research sites (http://enigma.ini.usc.edu/ongoing/enigma-epilepsy/about-

enigma-epilepsy/).
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Correlations between whole-tract/along-the-tract diffusivity metrics and clinical

variables were investigated. The whole-tract DTI-metrics determined using AFQ

revealed correlations with clinical variables. FA in the ipsilateral PHWM correlated

positively, while MD correlated negatively with age of onset. Furthermore a positive

correlation between MD and duration corrected for age was identified. Although

these correlations did not survive multiple comparison correction within the manual

tractography approach, the results obtained by the automated approach corroborate

previous findings, which are detailed here separately for every correlation. Along-

the-tract analysis within AFQ provided detailed information of localized diffusivity

changes along tracts. In concordance with the whole-tract correlation analysis, a

younger age of onset was associated with decrease in FA of the ipsilateral PHWM,

which was also found by Kemmotsu et al. (2011) in patients with left TLE.

Furthermore, these authors could identify a significant relationship between

decreased FA of the ipsilateral/contralateral UF and age of onset, while in the present

study there was a negative correlation between MD of the ipsilateral PHWM and

contralateral UF with age of onset. These correlations may be expected, as there is

abundant evidence in the literature of decreased cognitive functioning in patients

with early onset epilepsies as this disorder disrupts brain maturation (Elger et al.

2004) and an early onset is likely associated with unfavorable postoperative

outcomes (Kwan and Brodie 2000). There was a negative correlation of seizure

burden with FA in the posterior part of the contralateral PHWM. Previously, a

negative correlation of waypoint FA of the anterior portions of the ipsilateral UF and

seizure burden has been identified (Kreilkamp et al. 2017, Chapter 6) and Glenn et

al. (2016) were also able to establish a positive correlation for MD in the ipsilateral

PHWM with seizure burden. In these studies, seizure burden had been defined as a

function of seizure frequency and epilepsy duration. Within the study presented here,

the same tract locations that showed a relationship with seizure burden also

correlated with epilepsy duration. Consequently, it is difficult to state that these

diffusivity alterations stem from either seizure burden (frequency) or epilepsy

duration and often the information for seizure burden is not acquired as it is

considered to be unreliable (Mueller et al. 2006) as it is dependent on patient
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statements. There was also a negative correlation with epilepsy duration with FA in

the ipsilateral and contralateral PHWM, while MD in the ipsilateral PHWM and

contralateral UF correlated positively with epilepsy duration corrected for age.

Previous studies have also found this negative correlation between duration corrected

for age and FA of ipsilateral (Keller et al. 2012) and contralateral temporal lobe WM

(Kemmotsu et al. 2011). Some other studies have not been able to determine

correlations of diffusivity alterations with clinical variables (Thivard et al. 2005) and

it has been argued that this may be due to small sample sizes (Keller et al. 2012). It

should be added that performing conservative statistical testing taking non-normal

distribution of the data and multiple testing into account, as performed within the

present study (and similarly in Garcia-Fiñana et al. 2006) or not may also influence

reports on significant correlations.

No correlations between clinical variables and fornical FA/MD diffusion

characteristics were found, which is consistent with Concha et al. (2009), who only

found a positive correlation between epilepsy duration corrected for age and

perpendicular diffusivity. However, contrary to the results presented here, those

authors also found that the patients with HS showed a bilateral reduction in fornical

FA and increased perpendicular diffusivity in the FF when compared to controls and

the non-lesional patients. Similarly, Campos et al. (2015) corroborated these results

for patients with HS but did not find any diffusion alterations in patients with non-

lesional TLE and in particular the FF did also not reveal any significant diffusion

changes relative to controls or patients with HS. Concha et al. (2010) who performed

a combined study of fornical FA and evaluation of electron microscopy images on

patients with histologically confirmed HS, was able to show that patients with HS

had decreased FA relative to patients without HS and that this reflected lower density

and higher extra-axonal fraction. The reason for why these alterations were not found

in the present study could lie in the fact that only few patients with HS (N=8) could

be included.
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10.4.4 Dysplasia and Focal Epilepsy

The automated voxel-based lesion detection technique identified 100% of all

neuoradiologically defined dysplastic lesions in patients with previous MRI-negative

epilepsy without time consuming neuroradiological assessment of multiple 3D

feature maps and original 3D MRI as previously described by Huppertz et al. (2013)

and Wang et al. (2015). Upon post-surgical histopathological investigation, FCD is

the most common epileptogenic lesion found in patients with MRI-negative epilepsy

(Wang et al. 2013). In patients with neuronal migratory disorders, such as FCDs, as

many as 25% may have dual pathology and FCDs are likely accompanied by HS

(Cendes et al. 1995, Colombo et al. 2003, Raymond et al. 1994, Kim et al. 2010) or

by another FCD (Fauser et al. 2009). As this is one of the patient groups most likely

to be refractory to surgery (Palmini et al. 1995, Fauser et al. 2009) the application of

automated lesion detection approaches in these patients is most urgently indicated to

identify subtle epileptogenic lesions. Importantly, the present study confirmed that it

is able to identify lesions that were not previously identified on routine MRI

inspection (Huppertz et al. 2005, Huppertz et al. 2008) and can be applied to find

multiple FCD sites in patients with presumed non-lesional epilepsy. Reasons for this

include the fact that voxel-based approaches allow analysis of the whole brain in

three dimensions simultaneously, whereas the neuroradiologist relies on working

memory to integrate information of consecutive 2D MRI slices. Although only a

small number of patients had previously undetected FCDs (N=2) that could be

neuroradiologically confirmed, the study presented here corroborated results of

previous studies where the approach developed by Huppertz et al. (2013) has

increased the diagnostic yield in MRI-negative patients (Huppertz et al. 2005,

Wagner et al. 2011, Wang et al. 2014, Wang et al. 2016a). The approach used within

the present study allows time-efficient and resourceful assessment of T1w images as

it is less computationally expensive and does not require multi-feature cortical

surface mapping. Previously, Hong et al. (2014) have used an automated algorithm

trained on MRI-negative patients with histologically confirmed FCDs and achieved a

sensitivity of 74% and specificity of 100%, where no controls were identified to have

FCDs, although some false positive sites appeared in the patients. Other approaches
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such as Adler et al. (2017a) may be useful in assessing various features of lesions

that have already been visually identified and delineated manually, however, the

sensitivity and specificity for this approach in MRI-negative patients where lesion

masks are not readily available remains to be developed and tested. 

The approach used here is especially useful for time-efficient assessment of patients

with MRI-negative epilepsies and may be applicable to use in all patients with

epilepsy undergoing MR imaging and pre-surgical evaluation. Wang et al. (2011)

and Huppertz et al. (2005) using MAP, have found that the JCT image was superior

to the EXT image in detecting FCD IIa and IIb, which are frequently associated with

GM/WM blurring (Blümcke et al. 2011, Krsek et al. 2009, Muehlebner et al. 2012).

The study presented here does not allow this conclusion, since histopathological data

was not available and partly also because the sample size is so small. However, the

results detailed in Chapter 8 confirm the importance of combining the information

from both feature maps to identify lesions neuroradiologically. For example, the

individual patient results showed that depending on the main feature of FCD found

through the JCT/EXT maps (i.e. extensive GM/WM blurring / transmantle sign /

cortical thickening), one feature map may be superior to the other. Although not

specific to a given pathology, false positive results can be reduced by using a cluster

threshold that reflects the lesion size and original MRIs can be re-reviewed using a

single cluster map as a guide. Interestingly, more false positive sites were found in

patients than in controls, a result also found by Wang et al. (2015), which may

indicate that this approach is to some degree responsive to structural abnormalities

not otherwise identifiable as FCDs, but that may reflect other variations in cortical

structure as previously hypothesized (Colliot et al. 2006, Besson et al. 2008). Even

when the FCD was not detected earlier on MRI, it is possible that the MAP approach

highlights regions that may later be defined as an FCD through neuroradiological

evaluation (Huppertz et al. 2008) as also evidenced by two cases within the study

presented within this thesis. Thus, results shown by the automated lesion detection

approach may indicate a structural abnormality (Hong et al. 2014) or an FCD that

may be histologically verified after surgery. However, caution should be exercised
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when applying invasive EEG studies based on MAP results, as sampling errors can

occur and may fail to accurately identify the epileptogenic area (Tellez-Zenteno et al.

2010).

No noteworthy improvement to reduce false positives were found after FA/MD and

T2w/T2FLAIR feature maps were added to the analysis. However, in some cases, the

JCT/EXT map findings were confirmed by additional abnormal signal in

FA/MD/T2w/T2FLAIR images and in exactly those areas already identified by the

automated lesion detection tool. Especially FA and MD in WM and T2FLAIR JCT

maps showed significantly reduced values when compared to controls. However,

these results were not found consistently for all patients with neuroradiologically

confirmed FCDs, corroborating findings of an earlier study stating that FA/MD

values were unspecific (Eriksson et al. 2001). Nevertheless, these results indicate that

in some patients FA and MD values may decrease in WM areas surrounding FCDs

and that the GM/WM junction on T2FLAIR images is decreased due to blurring of

signal between the two tissue types. While the study presented here reported on

decrease in MD values within areas of FCD, Gross et al. (2005) found that while

patients with obvious WM involvement based on hyperintense T 2 w signal had

decreased FA and increased MD in underlying WM surrounding the FCD, patients

with normal appearing WM below the identified FCD did not show any diffusion

alterations. These results pertaining to FA maps were also confirmed by Princich et

al. (2012), while diffusion abnormalities extended beyond visually determined

boundaries of the FCDs as seen on T2FLAIR/T1w and FCDs were histopathological

determined after patients received surgery. Studies like these have investigated WM

tissue surrounding FCDs and found widespread FA decrease and MD increase (Gross

et al. 2005, Eriksson et al. 2001), which may be related to the severity of the disorder

or to the extent of the MRI-invisible portion of the lesion (Fonseca et al. 2012). In

contrast to the study presented here, which reported on a decrease in MD, other

publications investigating surrounding WM have found an increase in this diffusivity

measure and linked it to defective neurogenesis or cell loss resulting in increased

extracellular space (Eriksson et al. 2001). A possible explanation for this is that the
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study presented within this thesis allowed extraction of FA/MD values at the

immediate FCD location, whereas the previous studies have relied on whole-brain

tract-based-spatial/voxel-based statistics and visual assessment of DTI-derived

FA/MD maps providing an extensive analysis of more distal diffusivity alterations.

FA and MD metrics from within FCDs have not yet been extensively tested as GM

signal may be contaminated with CSF signal (Bhagat and Beaulieu 2004) and the

tensor model was not specifically designed for areas with isotropic diffusion such as

GM. So that generally, based on these and the current studies with limited sample

sizes, alterations in FA/MD are not considered yet to be specific enough for lesion

classification (Adler et al. 2017b). Nevertheless, since these steps were easily

implemented within SPM, the present study has investigated FA/MD values at the

exact FCD locations. However, analyses based on more advanced diffusion

sequences may allow researchers to arrive at more detailed conclusions. For instance,

one study has revealed intracellular volume fraction, a marker of neurite density, to

be reduced in the area of dysplasia (Winston et al. 2014). 

According to Colombo et al. (2003), neuroradiologically defined FCDs can usually

be distinguished between Taylor's type (balloon cells) and those FCDs that do not

have these large dysmorphic neurons. Automated lesion detection tools have not yet

addressed the issue of identifying boundaries of FCDs (Wang et al. 2016a) and

determining FCD subtypes based only on MRI, the latter of which is often achieved

by neuroradiologists as long as the FCD is discernible on MRI. Identifying subtypes

of FCDs will be especially challenging for automated MRI analysis approaches. In

any case a neuroradiological assessment of MRI can contribute to pre-surgical

evaluation. Apart from results obtained through neuroradiological assessment and

automated lesion detection, measurements of electroencephalographic patterns may

vary across different epileptogenic lesions (Perucca et al. 2014). However, the true

gold standard remains the histopathological evaluation, which may also detect

abnormalities consistent of FCD within tissue not found to be abnormal on MRI

(Tassi et al. 2001). The subtype of FCD may even determine surgical outcomes, i.e.

Taylor's type FCD IIb with balloon cells has been associated with a higher
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probability of becoming seizure-free (Tassi et al. 2002).

10.5 Future Directions and Conclusions

10.5.1 Automatic Hippocampal Subfield Segmentation in Patients with TLE and 

HS

Studies based on analysis of surgically resected specimens have shown that different

subtypes of HS are related to postoperative outcome in patients with refractory TLE.

For these findings to have prospective predictive utility, they need to be translated to

imaging approaches that can assess hippocampal subfields ahead of surgery. The

present study has applied a novel automated multi-sequence hippocampal subfield

segmentation technique to a large group of patients with refractory TLE. Neither

semi-quantitative HIA ratings nor this technique, which performs well in mapping

the approximate subfield locations, revealed any clear link between the respective

properties of preoperative hippocampal subfields and postoperative outcome.

Therefore, hippocampal features extracted from MRI are perhaps unlikely to stratify

patients with HS according to outcome. However, the data presented here indicate

that the reasons for favorable and poor outcomes depend on multiple preoperative

factors, which may include side of seizure onset, focal unilateral EEG discharges

(Ravat et al. 2016) and other factors not assessed within this particular study, e.g.

ipsilateral and contralateral extrahippocampal atrophy (Bernhardt et al. 2010,

Bernhardt et al. 2013) and differences in WM tract diffusivity (Glenn et al. 2016,

assessed in Chapter 6). Future studies should endeavor to detail any bihemispheric

epileptogenic activity and structural alterations in patients as this may well lead to

predictive markers for post-surgical outcome in patients with this brain network

disorder.

10.5.2 Automated Tractography Analysis in Patients with TLE and HS

Tractography is increasingly used to perform pre-surgical investigations regarding

tract anatomy so that surgical damage to essential brain pathways can be avoided. In
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particular, DTI is used for (i) pre-surgical tumor resection planning (Witwer et al.

2002, Jellison et al. 2004) and (ii) for identification of the optic radiations before

temporal lobectomy in patients with TLE as damage to this tract may cause visual

field deficits (Mansouri et al. 2012, Wiebe et al. 2001). Furthermore, tractographic

analysis may contribute to the understanding of the underlying pathological

mechanisms of epilepsy as a network disorder since it allows the investigation of

structural brain connectivity and tract integrity. In epilepsy, tracts have been

recognized as crucial components in seizure generation and propagation (Berg and

Scheffer 2011, Richardson 2012) as they connect potentially epileptogenic GM

regions with other GM areas, thus forming the structural connections of brain

networks. Consequently, tractography may provide insight into different patterns of

brain damage related to the laterality, type of epilepsy or epileptogenic lesion while

along-the-tract analysis of diffusion metrics may also allow extraction of detailed

information regarding neuropathology in epilepsy. It may have the potential to

identify certain abnormal brain regions in individual patients (Martin et al. 2015),

allow inferences about seizure onset zones or may even predict surgical outcomes

(Keller et al. 2017). Future tractographic studies should aim to assess image quality,

possible motion confounds and employ appropriate statistics so that subtle

differences in diffusion metrics between individual patients, groups of patients and

controls can be confidently identified and accurate diagnostic markers can be

developed. TRACULA does not only provide detailed tractographic analysis

strategies but also the possibility of detailed quality assurance and control giving

researchers and clinicians a ready-to-use and sensitive tool for automated

tractography. Future studies should consider different patterns of whole-tract and

along-the-tract diffusivity alterations when designing algorithms that could stratify

patients according to post-surgical outcomes based on preoperative diffusion

imaging. A tool which can resolve subtle intra-tract microstructural changes and

relationships with morphometric abnormalities will likely afford important clinical

information for individual patients in the future.

217



Chapter 10: Discussion and Conclusion

10.5.3 Automatic Fiber Quantification in Patients with TLE

Even though there are limitations regarding investigation of WM disruption in

patients with epilepsy due to the small sample size of the patient groups, the main

objective of this study was to compare the manual and automated approaches.

Compared to manual approaches, one of the major strengths when analyzing data via

automated tractography, which performs similarly relative to time-consuming

manual tractography, is the possibility of time-efficient reproducibility, detailed

quality assurance and control giving researchers and clinicians a ready-to-use and

sensitive tool. The present study using automated tractography was able to

corroborate pervious results found when patients with left/right TLE and patients

with/without HS were compared to controls and when clinical correlations were

assessed. Future studies should aim to perform comparisons of automated with

manual tractography via same tractography algorithms implemented into harmonized

protocols, which unfortunately was not feasible in the present study. This will also

aid even larger multi-site research projects to arrive at conclusions and perhaps guide

concrete recommendations on how to use automated tractography approaches to

provide clinically significant information based on trajectory and integrity of the

tracts.

10.5.4 Automatic Detection of Focal Cortical Dysplasia

Although surface-based approaches offer features not obtainable with voxel-based

techniques, the approach used within this thesis was still able to detect suspicious

areas suggestive of FCD. In the absence of histopathological data in the patient

sample presented here, results could only be validated against neuroradiological

assessment. Future studies on these patients should aim to evaluate the results

obtained from automated lesion detection against histopathological data in order to

demonstrate that neuroradiological, non-invasive/invasive electroclinical,

histopathological and automated neuroimaging analysis complement each other as

previously demonstrated (Adler et al. 2017b, Huppertz et al. 2005, Hong et al. 2014).
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The developed MAP tool is still using segmentation algorithms based on SPM5

(Huppertz 2013), which is one of the older SPM packages (Wang et al. 2016a).

However, since then considerable additions to segmentation algorithms have been

performed to enable localization-specific tissue segmentation and these provide

improvements over previous algorithms (Dahnke et al. 2012) that may render voxel-

based results more accurate when investigating patients with epilepsy (Farokhian et

al. 2017). Furthermore, Huppertz et al. (2013) have built GM/WM thresholds based

on whole-brain GM/WM intensities. Future studies should compute the GM/WM

thresholds only from cerebral cortex (without the inclusion of deep GM nuclei and

cerebellum), also since local intensity differences are taken into account and

computed during segmentation (Dahnke et al. 2012).

In the present study, sequential multimodal testing after generation of feature maps

and computation of significant clusters using segmentation based on only T1w

images did not increase specificity of the tool. Future studies should implement

iterative search algorithms that can process multiple MRI or assess diagnostic yield

rendered by simultaneous 3D multi-modal segmentation models. In addition to this,

similar to Wilke et al. (2003), systematic comparisons of different statistical

thresholds to identify the combination that is most sensitive and also specific to

FCDs should be performed on newly developed automated lesion detection tools. It

is likely that small lesions may be missed when concentrating on voxel-based

approaches only. Voxel-based analysis alone does not allow direct comparison of

surface-based or deformation-based features, which is an addition that should be

implemented when using CAT12 in SPM12 with automated lesion detection

approaches and should be subject to further development. Finally, machine-learning

approaches such as those already used in TLE (Rudie et al. 2015, Kamiya et al.

2016) should be tested using a combination of voxel-based and surface-based

approaches in a sufficient number of patients with histologically confirmed FCDs

and age- and sex-matched controls.
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APPENDIX

APPENDIX I: Raw Data

Chapter 2: Materials and Objectives

ID Finding Analysis FC Onset Duration Type Frequency Outcome Age Sex ID Age Sex

L3009 lHS T2STIR 0 6 18 CPS 1 2 24 f c0039 24 f
L3044 lHS T2STIR 1 24 32 CPS, SGTCS 3 1 56 m c0056 27 f
L3210 lHS T2STIR 1 11 14 CPS, SGTCS 5 2 25 f c0067 22 f
L3214 lHS T2STIR 0 33 18 CPS, SGTCS 3 1 51 m c0132 47 f
L3258 lHS T2STIR + DTI 25 27 52 m c0136 26 m
L3287 lHS T2STIR 0 32 1 SPS, CPS, SGTCS 10 2 33 f c0137 30 m
L3310 lHS T2STIR 0 16 13 CPS, SGTCS 5 1 29 f c0187 36 f
L3332 lHS T2STIR 0 2 33 SPS, CPS 4 1 35 f c0303 48 f
L3405 lHS T2STIR 1 13 26 CPS, SGTCS 3 39 f c0306 51 f
L3534 lHS T2STIR 0 1 52 SPS, CPS, SGTCS 6 1 53 m c0324 60 f
L3663 lHS T2STIR 0 14 50 CPS 3 1 64 f c0331 59 m
L4099 lHS T2STIR + DTI 34 22 56 f c0337 47 m
L4187 lHS T2STIR 0 2 51 SPS, CPS, SGTCS 8 2 53 m c0349 50 m
L4194 lHS T2STIR 1 19 9 CPS, SGTCS 7 2 28 m c0359 46 f
L4195 lHS T2STIR 1 5 42 CPS, SGTCS 4 2 47 m c0389 27 f
L4248 lHS T2STIR 0 0 22 CPS 30 1 22 f c0442 24 f
L4258 lHS T2STIR 1 15 5 SPS, CPS 60 20 f c0443 29 m
L4417 lHS T2STIR 0 3 14 SPS, CPS 1 1 17 f c0449 26 f
L4553 lHS T2STIR 1 2 47 SPS, CPS 1 1 49 f c0474 24 f
L4635 lHS T2STIR 0 29 10 CPS, SGTCS 3 1 39 f c0542 44 m
L4695 lHS T2STIR + DTI 5 18 23 f c0627 50 m
L4781 lHS T2STIR 1 6 26 SPS, CPS, SGTCS 7 2 32 f c0660 62 f
L4969 lHS T2STIR + DTI 29 19 48 f c0688 24 f
L4974 lHS DTI 0 15 29 SPS, CPS 4 1 44 f c0773 28 m
L4984 lHS T2STIR 0 33 23 SPS, CPS 30 2 56 f c0923 23 f
L4995 lHS T2STIR + DTI 0 1 42 CPS, SGTCS 2 2 43 f c1088 35 m
L5018 lHS T2STIR + DTI 12 15 27 m c3318 58 f
L5041 lHS T2STIR + DTI 0 21 24 CPS 15 1 45 f c3422 18 f
L5091 lHS T2STIR 0 9 33 SPS, CPS 60 1 42 f c3457 61 f
L5110 lHS T2STIR 1 13 14 SPS, CPS 2 1 27 f c3466 45 m
L5125 lHS T2STIR + DTI 26 26 52 m c3614 39 f
L5187 lHS T2STIR 1 18 12 CPS, SGTCS 5 1 30 f c3614 39 f
L5214 lHS T2STIR 0 18 3 CPS 4 2 21 m c3660 60 f
L5222 lHS T2STIR + DTI 0 13 10 CPS, SGTCS 1 2 23 f c3667 55 f
L5242 lHS T2STIR + DTI 0 13 20 SPS, CPS, SGTCS 2 2 33 f c3728 61 f
L5302 lHS DTI 0 12 42 CPS, SGTCS 6 2 54 f c3734 27 m
L5303 lHS DTI 1 15 34 CPS 1 2 49 f c3768 37 m
L5309 lHS T2STIR + DTI 1 3 43 SPS, CPS 8 2 46 m c3789 44 m
L5351 lHS T2STIR + DTI 28 17 45 f c3790 48 m
L5416 lHS T2STIR + DTI 1 13 19 SPS, CPS 4 2 32 m c3826 42 f
L5424 lHS T2STIR + DTI 0 5 36 SPS, SGTCS 3 1 41 m c3891 59 m
L5433 lHS T2STIR 0 11 33 SPS, CPS 3 2 44 m c3955 46 f
L5436 lHS T2STIR + DTI 1 3 42 CPS 3 1 45 f c4064 32 m
L5438 lHS T2STIR + DTI 1 9 18 CPS, SGTCS 4 1 27 m c4130 38 f
L5447 lHS T2STIR + DTI 0 30 18 SPS, CPS, SGTCS 15 1 48 f c4277 22 m
L5449 lHS T2STIR 0 34 23 SPS, CPS, SGTCS 20 1 57 m c4279 23 f
L5480 lHS T2STIR + DTI 0 29 3 SPS 8 2 32 f c4335 45 m
L5537 lHS T2STIR 0 5 46 SPS, CPS 5 2 51 m c4594 67 f
L5606 lHS T2STIR + DTI 0 9 17 SPS, CPS 4 2 26 f c4597 41 m
L5658 lHS T2STIR + DTI 44 m c4901 46 m
L5702 lHS T2STIR 1 42 9 SPS, CPS, SGTCS 5 2 51 m c4928 45 f
L5757 lHS T2STIR 0 26 24 SPS, CPS 5 1 50 m c4932 31 f
L5777 lHS T2STIR + DTI 0 1 21 SPS, CPS 12 1 22 m c5236 25 f
L5842 lHS T2STIR 1 3 28 SPS, CPS 1 2 31 m c5377 25 f
L5948 lHS T2STIR + DTI 2 34 36 f c5412 48 m
L5959 lHS T2STIR 1 16 8 CPS 90 2 24 f c5511 19 m
L6017 lHS T2STIR + DTI 1 15 35 CPS, SGTCS 6 2 50 f c5673 36 m
L6023 lHS T2STIR + DTI 0 34 36 CPS 6 2 70 f c7174 48 f

Table 2.A. Raw data for patients and controls (Studies 1 & 2). FC = febrile convulsions, l = left, c = control, HS =
hippocampal sclerosis, CPS = complex partial seizure, SPS = simple partial seizure, SGTCS = secondary-
generalized tonic-clonic seizure, m/f = male / female, Onset/Age/Duration in years, frequency per month. 0/1 =
no/yes. Empty cells indicate missing data. DTI = diffusion tensor imaging, T2STIR = T2 Short TI Inversion
Recovery.
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ID Finding Analysis FC Onset Duration Type Frequency Outcome Age Sex

L6077 lHS T2STIR + DTI 0 14 40 SPS, CPS, SGTCS 1 1 54 f
L6078 lHS T2STIR + DTI 1 18 9 SPS, SGTCS 5 1 27 m
L6116 lHS T2STIR + DTI 14 11 25 f
L6126 lHS T2STIR + DTI 0 35 2 CPS, SGTCS 10 1 37 m
L6178 lHS T2STIR + DTI 0 30 5 CPS 2 1 35 m
L6189 lHS T2STIR + DTI 0 17 22 CPS, SGTCS 3 39 m
L6300 lHS T2STIR + DTI 0 36 3 CPS 4 2 39 f
L6369 lHS T2STIR + DTI 17 11 28 f
L6522 lHS T2STIR + DTI 0 21 41 SPS, CPS 2 2 62 f
L6541 lHS T2STIR + DTI 0 47 21 SPS, SGTCS 10 68 f
L6549 lHS T2STIR + DTI 1 15 14 CPS 6 2 29 f
L6794 lHS T2STIR + DTI 0 5 38 CPS 3 2 43 f
L7064 lHS T2STIR + DTI 46 4 50 m
L7193 lHS T2STIR 35 16 51 f
L7220 lHS T2STIR + DTI 21 41 62 f

R1087 rHS DTI 0 39 12 SPS, CPS 1 1 51 m
R3221 rHS T2STIR 0 21 15 CPS 3 1 36 m
R3444 rHS T2STIR 0 25 5 CPS, SGTCS 6 1 30 m
R3463 rHS T2STIR 0 44 14 CPS 5 1 58 m
R3498 rHS T2STIR 1 2 21 CPS 30 2 23 f
R4119 rHS T2STIR 0 31 17 CPS 4 1 48 m
R4523 rHS T2STIR + DTI 1 7 18 CPS 3 1 25 m
R4585 rHS T2STIR + DTI 14 8 22 m
R4700 rHS T2STIR + DTI 1 1 15 CPS, SGTCS 8 2 16 f
R4751 rHS T2STIR 1 20 23 CPS, SGTCS 4 1 43 f
R4858 rHS T2STIR + DTI 1 11 8 SPS, CPS 10 1 19 m
R4972 rHS T2STIR 25 30 55 f
R4993 rHS T2STIR 0 38 3 SPS, CPS 10 1 41 f
R5051 rHS T2STIR 0 6 59 CPS 4 2 65 f
R5141 rHS T2STIR + DTI 4 52 56 f
R5208 rHS T2STIR + DTI 0 5 29 CPS 3 1 34 m
R5219 rHS T2STIR + DTI 0 22 14 SPS, CPS, SGTCS 4 2 36 f
R5249 rHS T2STIR 1 51 52 m
R5346 rHS T2STIR + DTI 6 31 37 m
R5412 rHS T2STIR 1 15 32 CPS 0 1 47 m
R5425 rHS T2STIR 1 12 12 SPS 4 24 m
R5492 rHS T2STIR 0 1 20 CPS 1 1 21 m
R5505 rHS T2STIR 0 17 38 SPS, CPS 1 2 55 f
R5844 rHS T2STIR + DTI 0 1 44 CPS, SGTCS 2 1 45 m
R5968 rHS T2STIR + DTI 22 18 40 m
R5973 rHS T2STIR + DTI 0 7 55 CPS, SGTCS 1 2 62 f
R5974 rHS DTI 0 34 12 SPS, SGTCS 1 1 46 m
R6058 rHS T2STIR + DTI 1 33 4 CPS 5 2 37 m
R6081 rHS T2STIR + DTI 0 24 6 SPS, CPS 90 1 30 m
R6091 rHS DTI 48 f
R6297 rHS T2STIR + DTI 0 11 13 CPS, SGTCS 3 1 24 f
R6426 rHS T2STIR 0 7 30 SPS, CPS 3 1 37 m
R6580 rHS T2STIR 44 16 60 m
R6596 rHS T2STIR + DTI 0 19 7 SPS, CPS 4 2 26 m
R6671 rHS T2STIR + DTI 18 49 67 f
R6770 rHS T2STIR + DTI 27 29 56 f
R6774 rHS T2STIR + DTI 1 12 47 SPS, CPS 4 1 59 f
R6800 rHS T2STIR 1 19 7 CPS, SGTCS 2 1 26 m
R7192 rHS T2STIR + DTI 0 13 35 CPS 2 1 48 f
R7231 rHS DTI 50 m

Table 2.A. (continued). Raw data for patients (Studies 1 & 2). FC = febrile convulsions, r = right, l = left, HS =
hippocampal sclerosis, CPS = complex partial seizure, SPS = simple partial seizure, SGTCS = secondary-
generalized tonic-clonic seizure, m/f = male / female, Onset/Age/Duration in years, frequency per month. 0/1 =
no/yes.  Empty cells indicate missing data. DTI = diffusion tensor imaging, T2STIR = T2 Short TI Inversion
Recovery.
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ID Finding Comorbidity CB FC Infection Onset Duration Localization Type Frequency Family Age Sex Surgery

REF005 0 0 0 0 0 47 14 lTL GS-A, CPS 4 0 61 f
REF007 0 0 0 0 0 19 9 lTL CPS 14 0 28 m
REF010 0 depression 0 0 0 3 22 lTL CPS 3.5 1 25 f
REF011 0 0 1 0 1 10 12 rTL GS-A 1 1 22 m
REF014 0 0 0 0 0 12 10 lFL GS-A, SGTCS, CPS 1 0 22 m
REF015 0 0 0 0 0 6 12 lFL CPS, SGTCS 2.5 0 18 f
REF017 0 N/A 0 0 0 17 10 biFL CPS 46 0 27 f
REF019 0 0 0 0 0 29 12 rTL CPS, SGTCS 2 1 41 f
REF021 0 depression 0 0 0 14 27 lTL GS-A; SGTCS 3.5 1 41 m
REF022 SVD, rHS 0 0 0 0 5 50 rTL SPS, SGTCS, CPS 2 1 54 f Right temporal lobectomy
REF024 rHS anxiety 0 1 1 36 2.5 rTL SGTCS 0.5 1 39 f
REF025 biHS anxiety 0 0 0 34 13 biTL GS-A, SGTCS, CPS 2 0 47 m
REF027 lHS 0 0 1 0 7 31 lTL CPS, SGTCS 0.5 1 38 f
REF030 0 0 0 0 0 12 7 lTL CPS, SGTCS 1 0 19 f
REF031 0 0 0 0 0 6 13 lFL SGTCS, SPS 7 0 19 m
REF032 0 0 0 0 0 29 6 unknown SPS, SGTCS 7 0 35 f
REF034 0 depression 0 0 1 9 43 rFL SPS, SGTCS 3 0 52 m
REF038 lHS 0 unsure 0 0 15 15 lTL SGTCS 1 1 30 f Left temporal lobectomy
REF042 0 0 0 0 0 17 4 lFL SGTCS 0.5 1 21 f
REF044 0 N/A unsure 0 0 28 6 rTL SPS 14 0 34 f
REF049 0 0 0 0 0 17 12 rFL SGTCS 2 1 29 f
REF051 lHS + FCD anorexic 0 1 0 6 37 lTL CPS, SGTCS 2 0 43 f
REF052 0 0 1 0 0 16 3 rTL CPS, SGTCS 2 0 19 m
REF054 0 depression, anxiety 0 0 0 4 41 FL, side unknown SPS 1 1 45 f
REF056 rHS + FCD depression 0 0 1 6 17 rTL GS-A, CPS 2.5 0 23 f Right anterior temporal lobectomy
REF058 0 0 0 0 0 23 15 FL, side unknown SPS, SGTCS 0.06 1 38 m
REF059 FCD depression 0 0 0 6 21 left FCD involved SGTCS, CPS 7 1 27 f
REF061 left encephalocele 0 0 1 0 30 6 LTL SGTCS 2 per year 0 36 f
REF062 0 0 0 0 0 28 11 lTL SGTCS, CPS 1 1 39 m
REF064 0 depression 1 0 0 13 12 rFL SGTCS, CPS,GS-A 2 0 25 f
REF065 FCD depression, memory 0 0 0 5 17 rFL SGTCS, SPS, CPS,GS-A 6 1 22 m
REF066 lHS 0 0 0 0 10 8 lTL SGTCS, CPS,SPS 1 1 18 m
REF068 0 anxiety, low mood 0 0 0 19 9 possibly rTP GS-A, SGTCS 7 0 28 f
REF069 right-sided gliosis 0 1 0 0 10 19 rTP CPS, SGTCS 7 0 29 m
REF079 0 0 0 0 0 13 16 lTL SGTCS 0.25 0 29 m
REF080 0 0 0 0 0 28 22 TL, side unknown CPS 1 0 50 f
REF081 lHS 0 0 1 0 7 33 lTL CPS-A 2 0 40 f Planned: left hippocampectomy
REF082 0 0 0 0 0 13 22 left, lobe unknown CPS, SGTCS 2 0 35 m
REF084 enlarged left amygdala 0 0 0 0 18 1 lTL CPS, SGTCS 35 1 19 f
REF085 0 0 1 1 0 1 21 lFL CPS, SGTCS 35 1 22 f
REF086 0 migraine 0 0 0 4 17 lTL CPS 4 0 21 f
REF087 0 0 0 0 1 15 7 rTL SPS, CPS, SGTCS 2 per year 1 22 m
REF089 0 0 0 0 0 19 8 lTL CPS , SGTCS 1 0 27 m

Table 2.B. Raw data for patients (Studies 3-5). CB = Complications at birth, FC = febrile convulsions, SVD = Small Vessel Disease, r = right, l = left, HS = hippocampal
sclerosis, FCD = focal cortical dysplasia, TL = temporal lobe, FL = frontal lobe, TP = temporoparietal, GS = generalized seizure, A = absence, CPS = complex partial
seizure, SPS = simple partial seizure, SGTCS = secondary-generalized tonic-clonic seizure, m/f = male / female, Family = Family history of epilepsy. Onset/Age/Duration
in years, frequency per week. 0/1 = no/yes. Boldface: presence of potentially epileptogenic lesion (neuroradiological assessment, epilepsy research dedicated MRI).
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Participant Age Sex

REF001 24 f
REF002 22 m
REF003 23 m
REF004 23 m
REF006 22 m
REF008 27 f
REF009 37 m
REF012 25 f
REF013 60 f
REF018 26 f
REF020 50 f
REF023 32 m
REF026 38 f
REF028 28 f
REF029 41 f
REF033 21 f
REF035 33 f
REF036 32 f
REF037 34 f
REF039 37 m
REF040 35 m
REF041 45 f
REF043 26 m
REF045 38 m
REF046 27 f
REF047 45 m
REF048 34 f
REF050 43 m
REF053 25 m
REF055 38 m
REF063 39 f
REF067 26 f
REF071 28 f
REF072 25 f
REF073 32 f
REF074 39 m
REF075 27 f
REF076 34 m
REF077 25 f
REF078 24 f
REF083 24 f
REF088 43 m

Table 2.B. (continued). Raw data for controls (Studies 3-5). m/f = male / female.
Age in years. Controls with IDs REF001 (no T1w FSPGR) and REF072 (structural
lesion) had to be excluded from further imaging analysis (Section 2.3.2.2).
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APPENDIX II: Supplementary Material

Chapter 9: Manual and Automated Tractography Approaches in
Patients with 'non-lesional' and lesional Temporal Lobe Epilepsy

M (SD) p-values (Bonferroni) Statistics

Tract

Metric Side lTLE C rTLE

lTLE

vs

C

lTLE 

vs

 rTLE

C 

vs

rTLE

χ²-statistic p-value

Manual

UF

FA

l 0.46 (0.03) 0.48 (0.03) 0.45 (0.08) <0.05 1 0.7 7.8 <0.05

r 0.45 (0.03) 0.47 (0.03) 0.45 (0.02) - - - 5 0.08

UF

MD

l 0.86 (0.04) 0.82 (0.03) 0.85 (0.05) <0.05 1 0.27 9.7 <0.01

r 0.9 (0.04) 0.86 (0.04) 0.88 (0.03) <0.05 1 0.85 8.6 <0.05

PHWM

FA

l 0.42 (0.05) 0.43 (0.03) 0.42 (0.02) - - - 1.9 0.4

r 0.43 (0.04) 0.45 (0.04) 0.43 (0.05) <0.05 1 1 6.8 <0.05

PHWM

MD

l 0.9 (0.08) 0.88 (0.06) 0.97 (0.12) 0.4 0.8 <0.05 6.7 <0.05

r 0.9 (0.1) 0.84 (0.07) 0.91 (0.1) <0.05 1 0.26 8.7 <0.05

AFQ

UF

FA

l 0.45 (0.03) 0.47 (0.04) 0.47 (0.03) - - - 3.7 0.2

r 0.44 (0.02) 0.45 (0.03) 0.44 (0.02) - - - 3.1 0.2

UF

MD

l 0.84 (0.05) 0.82 (0.03) 0.81 (0.03) - - - 5.2 0.07

r 0.88 (0.03) 0.85 (0.06) 0.87 (0.03) <0.05 1 0.7 6.4 <0.05

PHWM

FA

l 0.39 (0.04) 0.4 (0.03) 0.4 (0.02) - - - 1.3 0.5

r 0.4 (0.03) 0.42 (0.02) 0.41 (0.04) <0.05 0.69 1 7.02 <0.05

PHWM

MD

l 0.97 (0.07) 0.95 (0.07) 0.95 (0.07) - - - 1.2 0.5

r 0.9 (0.05) 0.91 (0.1) 0.91 (0.1) - - - 0.25 0.8

Table 9.A. Whole-tract diffusion measures for manual (top) versus AFQ (bottom)
tractography.
Abbreviations: M = Mean; SD = Standard Deviation; TLE = Temporal Lobe
Epilepsy; C = Control; l = left; r = right; AFQ = Automated Fiber Quantification;
FA = fractional anisotropy; MD = mean diffusivity (in 10-3 mm2/s); UF = uncinate
fasciculus; PHWM = parahippocampal white matter bundle
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UF FA UF MD

(in 10–3mm2/s)

PHWM FA PHWM MD

(in 10–3mm2/s)

Ipsi Contra Ipsi Contra Ipsi Contra Ipsi Contra

MANUAL

female 0.45 (0.03) 0.44 (0.05) 0.87 (0.05) 0.89 (0.06) 0.4 (0.04) 0.42 (0.02) 0.92 (0.08) 0.92 (0.09)

male 0.46 (0.03) 0.46 (0.03) 0.86 (0.03) 0.89 (0.04) 0.4 (0.05) 0.44 (0.04) 0.9 (0.13) 0.94 (0.14)

Z; p(FDR) 0; 1 -0.8; 0.8 0.5; 1 -0.4; 1 -1.3; 0.67 -1.2; 0.68 1.1; 0.69 0.15; 1

SGTCS 0.46 (0.04) 0.45 (0.06) 0.87 (0.05) 0.88 (0.04) 0.44 (0.05) 0.43 (0.03) 0.89 (0.07) 0.91 (0.08)

SGTCS No 0.46 (0.01) 0.44 (0.02) 0.85 (0.03) 0.91 (0.06) 0.41 (0.04) 0.42 (0.03) 0.95 (0.12) 0.96 (0.14)

Z; p(FDR) 0.5; 1 1.4; 0.67 0.96; 0.78 -1.6; 0.67 1.67; 0.67 1.67; 0.67 -1.46; 0.67 -0.76; 0.84

HS 0.45 (0.04) 0.45 (0.03) 0.88 (0.05) 0.89 (0.05) 0.41 (0.05) 0.42 (0.04) 0.95 (0.08) 0.92 (0.08)

HS No 0.46 (0.02) 0.45 (0.05) 0.86 (0.04) 0.89 (0.05) 0.43 (0.05) 0.43 (0.03) 0.9 (0.1) 0.93 (0.12)

Z; p(FDR) -0.2; 1 -0.03; 1 0.6; 0.98 0.03; 1 -1.2; 0.68 -0.2; 1 1.6; 0.67 0.18; 1

Febrile 0.45 (0.04) 0.45 (0.03) 0.87 (0.05) 0.89 (0.06) 0.39 (0.04) 0.41 (0.03) 0.97 (0.07) 0.94 (0.07)

Febrile No 0.46 (0.03) 0.45 (0.05) 0.86 (0.04) 0.89 (0.05) 0.43 (0.05) 0.43 (0.03) 0.9 (0.1) 0.93 (0.1)

Z; p(FDR) 0.16; 1 -0.3; 1 0.16; 1 0; 1 -1.4; 0.67 -1; 0.78 1.8; 0.67 0.8; 0.8

AFQ

female 0.44 (0.02) 0.45 (0.02) 0.86 (0.05) 0.85 (0.04) 0.39 (0.04) 0.39 (0.01) 0.95 (0.08) 0.91 (0.05)

male 0.47 (0.03) 0.46 (0.04) 0.85 (0.03) 0.87 (0.05) 0.42 (0.03) 0.42 (0.04) 0.93 (0.06) 0.92 (0.09)

Z; p(FDR) -2.2; 0.6 -0.1; 1 0.2; 1 -0.84; 0.87 -1.6; 0.63 -1.6; 0.63 0.34; 1 0.03; 1

SGTCS 0.45 (0.03) 0.46 (0.03) 0.86 (0.05) 0.85 (0.04) 0.4 (0.04) 0.41 (0.03) 0.94 (0.08) 0.91 (0.06)

SGTCS No 0.45 (0.01) 0.45 (0.02) 0.83 (0.02) 0.87 (0.04) 0.4 (0.03) 0.4 (0.02) 0.95 (0.07) 0.9 (0.07)

Z; p(FDR) -0.65; 0.87 0.47; 0.97 1.4; 0.7 -0.79; 0.87 0.3; 1 1; 0.87 -0.2; 1 -1; 0.87

HS 0.44 (0.04) 0.45 (0.03) 0.87 (0.06) 0.87 (0.03) 0.38 (0.04) 0.39 (0.02) 0.99 (0.08) 0.92 (0.05)

HS No 0.45 (0.02) 0.45 (0.03) 0.84 (0.03) 0.86 (0.04) 0.41 (0.03) 0.41 (0.03) 0.92 (0.06) 0.92 (0.07)

Z; p(FDR) -0.7; 0.87 -0.7; 0.87 0.67; 0.87 0.5; 0.97 -1.87; 0.6 -0.77; 0.87 1.7; 0.63 0.03; 1

Febrile 0.44 (0.03) 0.44 (0.01) 0.86 (0.06) 0.86 (0.04) 0.37 (0.04) 0.39 (0.02) 0.97 (0.1) 0.92 (0.05)

Febrile No 0.45 (0.03) 0.46 (0.03) 0.85 (0.04) 0.86 (0.04) 0.41 (0.04) 0.41 (0.03) 0.94 (0.6) 0.92 (0.07)

Z; p(FDR) -0.3; 1 -1.1; 0.87 0; 1 0; 1 -1.6; 0.63 -1.4; 0.7 0.7; 0.87 0.14; 1

Table. 9.B. Comparison of FA/MD values from all tracts between patient groups
according to sex,  presence of HS, SGTCS and history of febrile seizures. 
Mean and standard deviations (in brackets) are presented for each tract. No
significant effects were observed for either manual or AFQ generated tracts. UF =
uncinate fasciculus; PHWM = parahippocampal white matter bundle; FA =
fractional anisotropy; MD = mean diffusivity; ipsi = ipsilateral; contra =
contralateral; HS = hippocampal sclerosis; SGTCS = secondary-generalized tonic-
clonic seizures.
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