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Abstract 

The general mechanisms employed by the immune system have been widely 

understood; but we are still far from knowing how to support the immune system 

for all diseases and functional decline with age. Computational immunology is the 

promising field that uses high-throughput technologies to expand our holistic view. 

This study adopts bioinformatics methods to address questions of both technical 

and biological relevance using gene expression and flow cytometry.  

I used human and mouse co-expression maps to define evolutionary differences 

and similarities not only in the immune system, but also in other tissues, pathways 

and diseases. There is an overall conservation between the mouse and human 

immune system, however there are specific pathways that show signs of 

divergence, e.g. pathways related to the IFN alpha/beta, butyrophilins, defensins, 

prolactin and protein degradation for MHC class I antigen presentation. 

In addition, given the importance of flow cytometry to understanding the immune 

system, I developed the tool flowAI to perform quality control on flow cytometry 

data either automatically or interactively. flowAI detects and removes outliers and 

other anomalies from the aspects of flow cytometry: 1) flow rate, 2) signal 

acquisition, and 3) dynamic range. 

Finally, I analysed RNA-Seq data from 29 immune cell types to derive detailed 

insights on their transcriptional patterns, normalization and deconvolution. The 

cell subsets for which I found minimal gene expression specificity belong to 

memory cells. The transcriptomic composition was determined and expression 

values normalized for mRNA abundance were used to perform absolute 

deconvolution.  

In conclusion, the research areas that will mainly benefit from this thesis are related 

to translation from mouse models to human, standardization of flow cytometry 

analysis, and transcriptomic analysis of blood heterogeneous samples.  
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Preface 

Being admitted in a stimulating PhD programme is half the battle. I think I won 

that half, since it was a programme of 4 years, of which the first year was in 

Liverpool, the second and third year in Singapore, and the last one again in 

Liverpool. Singapore is one of the strongest economies in Asia and it has 

experienced impressive growth in recent decades. The Agency for Science, 

Technology and Research (A*STAR) of Singapore is a governmental body that 

strives to produce excellent research in a competitive global economy. A strategy 

for its mission is the establishment of collaborations with universities from all 

around the word. For the two-year placement in Singapore, I ended up in the 

Singapore Immunology Network (SIgN), an institute that focuses on 

immunological research located in Biopolis, one of the two main poles of 
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relationships. Its flow cytometry facility is the largest in South-East Asia, allowing 

it to rapidly process blood samples from its own employees, as well as the 

neighbouring hospitals.  

When I started my PhD, I had a certain apprehension about the project I was 

embarking on. Upon finishing my masters’ project in bioinformatics analysis on 

lung cancer samples, I thought it would have been the right thing to continue with 

bioinformatics. Over the years, my fascination for how computational methods are 

useful to understand biomedical concepts has grown incessantly. In particular, I 

have been intrigued by the complexity of the immune system and how much 

bioinformatics can help interpret its mechanisms. 
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Chapter 1 Introduction 

The human body is equipped with an elaborate system, i.e. the immune system, to 

protect us from external invaders. Its complexity is the result of thousands of years 

of evolutionary processes. Several biological mechanisms involved in antigen 

recognition, signalling and killing, have been optimized to defeat viruses, bacteria, 

fungi and cancer cells. Despite the discovery of several effective drugs and 

therapies against pathological conditions, a well-functioning immune system 

remains crucial for a healthy life. 

Edward Jenner was a pioneer in the field of immunology whose observations led 

him to develop the first vaccination in 1796. A more recent achievement is the 

development of the hybridoma technology by Georges Kohler and Cesar Milsten 

in 1975 that allowed the mass production of monoclonal antibodies. These, and 

other findings, have contributed to the development of immunotherapy strategies 

that consist of inducing, enhancing or suppressing immune responses in the 

treatment of diseases.  

As technologies progress and high-throughput data volumes increase, the task of 

analysing and interpreting results becomes more overwhelming for biologists. For 

instance, microarray and next generation sequencing technologies require various 

pre-processing algorithms and statistical analyses to discern biological meaning 

from the raw data (de Magalhães et al., 2010; de Magalhães and Tacutu, 2016). 

Another example is the older flow cytometry technology that now requires 

bioinformatics expertise for conclusive data interpretation because of its recent 

advancement. At present, high expectations are placed on high-throughput data 

analysis to unravel immunological complexity. The need to develop and apply 

computational resources to study large scale data on the immune system has 

created the scientific field of computational immunology or immunoinformatics. 
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Thesis Outline 

This thesis consists of six chapters in total. The introduction in the first chapter is 

followed by three independent result chapters which are concluded by the 

discussion and conclusion chapters. The structure reflects the fact my time was 

divided between Singapore and Liverpool during my PhD programme. Due to the 

changes in environment and priorities, I embarked on different projects throughout 

the programme. The projects, however, all share concepts derived from 

immunology, gene expression and flow cytometry, which are elucidated broadly 

in the introduction in chapter 1. The three results chapters, 2-4, expand these 

concepts by giving new insights into immunology and data analysis techniques. 

Chapters 2 and 3 are based on two publications, and chapter 4 is currently under 

review. Since I employ distinctive methods to obtain the results depicted in 

chapters 2-4, I include the methodologies together with the corresponding results 

chapters rather than having a general materials and methods chapter in the outline. 

In chapter 5, I summarize the findings obtained throughout my PhD, putting them 

into context with current research, and present an outlook on potential works in 

computational immunology that could be derived from my thesis. Finally, chapter 

6 gives conclusive remarks on the major findings and the immediate impact that 

those will deliver.  

1.1 The Immune system 

The immune system is generally described as a complex dynamic network. This is 

because it is composed of organs, tissues, cells, molecules and soluble factors that 

interact with each other in constantly changing processes. After a brief 

introduction on the “three lines of defence” of the immune system, I describe the 

different cell types that compose the immune system since it is relevant for chapter 

4, where I report bioinformatics analyses on 29 immune cell types. Later, I detail 

further how they communicate through soluble factors and molecules, and I 

highlight some of the abnormalities that are clinically relevant for the diagnosis 

and therapy of immune system diseases. The understanding of immunological 

processes is necessary to interpret the functional enrichment analyses of related 

gene sets that I report in chapter 2 and 4. Concepts on antibodies and surface 
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receptors are relevant for chapter 3 and 4 where they are used to discriminate 

among different immune cells through flow cytometry. Finally, I introduce the role 

and impact of computational immunology in immunological research that sets the 

befitting context for the entire PhD thesis.  

Three lines of defence 

To protect our body against external invaders the immune system implements three 

lines of defence mechanisms: 

1. The physical barrier 

2. Innate immune system 

3. Adaptive immune system 

The first line of defence, the physical barrier, is essentially constituted of skin, 

mucosa and body secretions. The last-mentioned includes stomach acid, tears, 

earwax and mucus. All these physical barriers, in most cases, passively keep away 

microorganisms from our internal organs (Storey and Jordan, 2008).  

The second line of defence, the innate immune system, mounts non-specific 

immediate responses to the external invaders by recognizing peptides and other 

molecules that are broadly expressed by different microorganisms, or generated 

during disease (Tosi, 2005). 

The third line of defence, the adaptive immune system, adopts more complex 

mechanisms by generating specific responses for any kind of molecule that is not 

produced by the organism itself. Adaptive immune responses require more time 

than the innate response (Parkin and Cohen, 2016).  

1.1.1  The white blood cells 

The cells circulating in the cardiovascular system belong to one of two main 

groups, either red or white blood cells (Figure 1.1). Red blood cells are essentially 

represented by erythrocytes which are charged with the task of carrying oxygen 

throughout the body. White blood cells, also called leukocytes, are part of the 

immune system and are classified in three main categories: granulocytes, 

monocytes and lymphocytes. White blood cells are a mixture of phenotypically 
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and functionally diverse cell types. For example, granulocytes contain multilobed 

nuclei while lymphocytes have a well-rounded nucleus. However, this is an 

example of an extremely different phenotype noticeable even with a normal optical 

microscope. 

Monocytes and lymphocytes are referred to as peripheral blood mononuclear cells 

(PBMCs) because their nuclei are not segmented as for the granulocytes. 

Researchers often use PBMCs because there is a convenient method based on 

density gradient centrifugation to separate these cells from erythrocytes and 

granulocytes. It was developed in the 1964 and it consists of adding a density 

gradient medium (e.g. Ficoll) and a centrifugation step (Bøyum, 1964). 

 Granulocytes are part of the innate immune system and are subdivided into 

neutrophils, basophils and eosinophils. Neutrophils comprise 50-70% of the total 

leucocytes in the blood, which in turn only constitute 2-3% of the body’s 

neutrophils since the rest are found in the bone marrow and in tissues (Storey and 

Jordan, 2008). Neutrophils are summoned by infected tissues where, after 

activation, they proceed to kill microorganisms by engulfment, secretion of anti-

 

Figure 1.1 Schematic representation of haematopoiesis. All immune cells originate from the 
hematopoietic stem cells (HSCs) in the bone marrow. After different developmental stages the immune 
cells are released into the blood stream. Only a small number of developmental stages are reported in this 
representation. 
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microbials, and formation of neutrophils extracellular traps (NETs). Both 

basophils and eosinophils are associated with allergic reactions and their 

frequencies in blood is very low. Basophils constitute about 0-5-1% of white blood 

cells (Ducrest et al., 2005; Jiang et al., 2015), and similarly to mast cells, secrete 

heparin, histamine and leukotrienes after stimulation. Eosinophils account roughly 

for 1-4% of leucocytes and are thought to be associated with chronic allergies (e.g. 

asthma) and in the destruction of parasites that are too large to be phagocytosed; 

however, their role is still not clear (Rosenberg et al., 2013).  

Monocytes are also part of the innate immune system and eventually give rise to 

macrophages distributed throughout the body. Monocytes constitute 5-10% of the 

leukocytes (Gordon and Taylor, 2005), and can be subdivided into classical, 

intermediate and non-classical monocytes (Ziegler-Heitbrock et al., 2010). Each 

of the three classes display its respective functions of phagocytosis activity, 

production of pro-inflammatory cytokines and patrolling activity (Sprangers et al., 

2016). 

Dendritic cells (DCs) are another relevant immune cell type considered to be 

functionally related to monocyte and macrophages (Guilliams et al., 2014). 

Although DCs abundantly reside in tissues, the precursors can also be found in 

blood in low percentages in the blood. Together with macrophages and B cells they 

constitute the professional antigen presenting cells (APC) involved in the 

stimulation of the adaptive response. Dendritic cells have been grouped in two 

main subsets having different ontology and morphology, the myeloid DC (mDC) 

closely related to monocytes and plasmacytoid DC (pDC) morphologically similar 

to plasma cells (Hashimoto et al., 2011; Merad et al., 2013). 

Lymphocytes are subdivided in T cells, B cells and Natural Killer (NK) cells. T 

cell frequency is about 7-24% of leucocytes and they are further subdivided into 

cytotoxic T (Tc) cells, helper T (Th) cells, and regulatory T (Treg) cells. Briefly, 

Tc cells directly destroy tumour cells and virus-infected cells, Th cells promote the 

immune response of other cells such as Tc cells and B cells, and Treg cells 

modulate the immune responses to prevent autoimmune diseases. About 1-7% of 

leukocytes are B cells which, upon maturation into plasma cells, produce large 

quantities of antibodies (Broere et al., 2011). T cells and B cells are part of the 
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adaptive immune system since each cell can only recognise specific epitopes 

thanks to their receptors, T cell receptor (TCR) and B cell receptor (BCR), 

respectively. Moreover, a subset of activated B cells and T cells generated during 

disease are kept in a memory compartment for a more efficient future immune 

response. NK cells are 1-6% of leukocytes and their role is analogous to the one 

of Tc cells. NK cells are considered to be part of the innate immune systems, even 

though it has recently been found that they show also memory properties that are 

typical for the adaptive immune response (O’Sullivan et al., 2015).  

There are more cell types that constitute the circulating immune cells in low 

frequency that are increasingly generating interest among immunologists. Mucosal 

associated invariant T cells (MAIT cells) and γδ T cells, for example, are two 

kinds of so-called “unconventional” T cells because they express an invariant 

TCR. Thus “unconventional” T cells reside at the border between the innate and 

adaptive immune system. Other examples are the innate lymphoid cells, recently 

described as the innate counterpart of helper T cells (Eberl et al., 2015), and 

myeloid-derived suppressor cells (MDSCs) which are considered to inhibit anti-

tumour immune response (Khaled et al., 2013).  

1.1.2 Soluble mediators 

Immune cells continuously patrol tissues or travel throughout the body in a resting 

state, but in the case of infection, certain cell types are activated and drawn via 

chemotaxis to the site of infection/disease. The messengers that regulate the 

immune processes are small soluble mediators that include cytokines, antibodies 

and complement proteins.  

Cytokines 

Cytokines are polypeptides, peptides and glycoproteins mainly secreted by helper 

T cells and macrophages, but also by B cells, mast cells, and other cells outside 

the immune system, such as endothelial cells and fibroblasts.  

The actual classification of cytokines can be rather misleading. This is due to the 

initial assignment of nomenclatures after the discovery of only a single or few 

properties of a cytokine. The name interferon (INF) refers to the resistance activity, 
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hence interference, against viruses (Isaacs and Lindenmann, 1957); the name 

colony-stimulating factors (CSF) denotes the ability of supporting proliferation 

and differentiation of white blood cells (Robinson et al., 1967); the name tumour 

necrosis factor (TNF) derives from the cytotoxic activity towards tumour cells 

(Carswell et al., 1975).  

In 1979, an international workshop was held in order to create a standard 

nomenclature system. The term “interleukin” was proposed for all the cytokines 

involved in the communication between leukocytes (Aarden et al., 1979). 

Subsequently, newly discovered interleukins were named as interleukins followed 

by a sequential number. At the time of writing, the latest member of the interleukin 

family is IL-40 (Catalan-Dibene et al., 2017). Although most cytokines are now 

named interleukins, many still preserve the original name assigned when firstly 

identified (e.g. IFN-α/β, TGF-β, GM-CSF). 

More recently, a new subfamily of cytokines has been identified and named as 

chemokines (Murphy et al., 2000). They are distinguished for their ability to attract 

cells to a specific locus using so-called directed chemotaxis. Chemokines are 

assigned to four groups according to their cysteine residues: C, CC, CXC, and 

CXXXC chemokines. 

The Complement system 

The complement system was first discovered in the 1890s and it is composed of 

about 30 proteins (Nesargikar et al., 2012). The complement proteins act together 

with the aim of destroying foreign pathogens through several mechanisms. The 

mechanisms of action mainly associated with the complement are: opsonisation of 

the pathogenic surface to facilitate phagocytosis, assembly of a membrane pore on 

the pathogenic surface to induce lysis, and promotion as well as modulation of 

immune responses (Holers, 2014). 

Complement proteins act through a sequential process. The activation of the first 

protein of the process is followed by a precise chain of steps known as complement 

cascade. Many of the proteins are zymogens, i.e. inactive precursors that become 

activated after cleavage. The activation of the complement system can be initiated 

through three different activation pathways: the classical, alternative, or lectin 
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(Ricklin et al., 2016). The classical pathway was discovered first and it is triggered 

by the binding of IgM or IgG antigen/antibody complexes to C1q, the first protein 

of the cascade. The alternative pathway is less specific which lead to the 

assumption that it might be a more ancient activation mechanism. It consists of 

casual binding of the C3b protein to amino or hydroxyl groups attached to the 

surfaces of invaders and consequential cascade activation. The lectin pathway has 

a main player called mannose-binding lectin. Mannose is a common carbohydrate 

expressed on the surface of many common pathogens including bacteria, viruses, 

parasites and yeasts (Dunkelberger and Song, 2009).  

Antibodies 

Even though the concept of an antibody (Ab) was introduced more than a century 

ago, the monoclonal antibody (mAb) has been used for applications in research 

and human health-care only after the development of the hybridoma technology in 

1975 (Alkan, 2004; Weiner, 2015). The basic structure of the antibody resembles 

the shape of a Y with two identical heavy chains linked together and two identical 

light chains connected to the heavy chains. The antibody region corresponding to 

the stem of the Y is the constant (Fc) region and its main function is to 

communicate with other component of the immune system. The antibody regions 

corresponding to the two tips of the Y are the variable (Fab) regions that can 

recognize and bind to a specific epitope. The light and heavy variable regions are 

made from the somatic recombination of two (V and J) or three (V, D, and J) gene 

segments. 

Antibodies are also known as immunoglobulins (Igs) and gamma globulins. In 

mammals there are five isotypes of antibodies: IgG, IgM, IgA, IgD, and IgE. They 

are distinguished by the differences in their heavy chain that allow them to 

intervene in different immune responses (Schroeder Jr. and Cavacini, 2016). IgG 

is the most abundant which constitutes 75% of all the antibodies present in the 

serum, and it provides most of the antibody-based immunity. IgA is the second 

most common antibody and it is the main effector of the mucosal immunity (Woof 

and Mestecky, 2005). IgM appears in a pentameric form and it is the main player 

in primary responses, the first encounter of a foreign antigen by the adaptive 

immune system. IgM also constitutes the majority of natural antibodies which are 
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those produced without exposure of foreign antigens (Ehrenstein and Notley, 

2010). IgD is found mostly on mature B cells and its role is still not clear. IgD is 

known to be conserved among species and to cross-link with basophils and mast 

cells to stimulate the innate immune response (Chen and Cerutti, 2011). IgE is the 

last immunoglobulin discovered and it is associated with parasites protection and 

allergic reactions (Wu and Zarrin, 2014). 

1.1.3 Cell surface receptors 

A cell surface receptor is any molecule facing the outside of a cell bound to the 

plasma membrane waiting for a signal to transmit inside the cell. They are 

fundamental in connecting the dynamic network of the immune system by exerting 

functions like antigen recognition, cell-cell communication, adhesion and 

signalling. Surface receptors are also generally referred to as surface markers as 

they are used for the recognition of a specific cell type and as therapeutic targets.  

Many surface markers have been characterized by the specific binding of a mAb. 

However, the reaction of a single clone of mAb to a molecule is not enough to 

distinguish a surface marker. Researchers are confident that a new surface marker 

has been identified only when a number of different mAbs, indicated as cluster of 

differentiation (CD), uniquely react with the same polypeptide (Bernard and 

Boumsell, 1984). The International Workshop on Human Leucocyte 

Differentiation Antigen has been involved in classifying the new surface markers 

identified with mAb over the past three decades (Clark et al., 2016). The naming 

convention consists of adding a sequential number to the prefix CD (e.g. CD1, 

CD2, etc.). Further letters are occasionally added to indicate provisional 

classifications or variants of the same molecule (Engel et al., 2015). According to 

a recent study, even though there are 1,015 genes that code for plasma membrane 

proteins in immune cells and tissues (Diaz-Ramos et al., 2011), only 408 have a 

CD nomenclature (Clark et al., 2016). This is due to the fact that only surface 

markers that are immunogenic in mouse or other animal models are able to 

stimulate the production of mAb (Zola and Swart, 2003).  

The largest group of surface markers belongs to the Ig superfamily (IgSF) and 70% 

of its members have also a CD nomenclature (Diaz-Ramos et al., 2011). Ig 
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domains have a central role for the adaptive immune response. They constitute 

important immune cell surface markers like T cell receptor (TCRs), B cell 

receptors (BCRs), the major histocompatibility complex (MHC), most Fc 

receptors, and some co-receptors, co-stimulatory or inhibitory molecules and 

cytokine receptors (Williams and Barclay, 1988). The second largest group of 

surface markers are chemokine receptors, which belongs to the G-protein coupled 

receptor superfamily with only 15% of its members having a CD nomenclature 

(Diaz-Ramos et al., 2011). Other relevant surface markers are complement 

receptors, some pattern recognition receptors (PPRs), and other cytokine receptors. 

TCRs are heterodimers and belong to two classes: TCR-αβ and TCR-γδ. They are 

distinguished by the type of subunit chain that constitutes the receptors. The TCR-

αβ is made of the α and β chains, as indicated by the name itself, and is expressed 

by the majority of T cells, i.e. about 90-99% of them (Laydon et al., 2015). The 

TCR-γδ is comprised of the γ and δ chains and it represents only 1-10% of the T 

cell repertoire. The function of TCRs is to recognize antigens through an Ig-like 

domain made from the V(D)J segments used to make antibodies. It has been 

claimed that after thymus selection, approximately 2x107 different TCRs are 

produced, and defining how the vast TCR repertoire interacts with antigen 

presentation is an interesting challenge for computational immunologists (Arstila 

et al., 1999; Rossjohn et al., 2015).  

Major histocompatibility complexes (MHC) are the molecules that present the 

antigens to the TCRs. They fall into two classes: MHC-I and MHC-II. The 

difference resides in the way the antigen is pre-processed and in the recognition of 

two different TCR-αβ co-receptors, i.e. CD8 and CD4. MHC-I is expressed by all 

the nucleated cells in the body where the antigen is firstly pre-processed by the 

proteasome in the cytosol and secondly presented though an MHC-I molecule to 

cytotoxic CD8 T cells (Neefjes et al., 2011). MHC-II is expressed in professional 

antigen presenting cells where the antigen is phagocytosed, digested by lysosomes 

and loaded onto MHC-II molecules for presentation to helper CD4 T cells (Roche 

and Furuta, 2015).  

The B-cell receptor (BCR) is the transmembrane protein of the IgSF expressed on 

B cells. Naive B cells express IgD and IgM isotypes that, after recognition of the 
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specific antigen, transmit activation signals into the B cells (Geisberger et al., 

2006). Upon activation, B cells go through a process called isotype-switching, 

where the immunoglobulin isotype changes to IgG, IgE or IgA, and they become 

a plasma cells, a highly productive antibody manufacturer (Tarlinton, 1997). 

Fc receptors are surface molecules that bind the constant regions of antibodies 

(Hogarth, 2015). There are Fc receptors for any class of immunoglobulins and they 

are involved in two main functions: phagocytosis of opsonised microbes and 

release of pro-inflammatory molecules (Woof and Burton, 2004).  

The pattern recognition receptors (PRRs) are the means used by the innate immune 

system to detect the presence of microbes. PPRs recognize pathogen-associated 

molecular patterns (PAMPs) that are recurrent molecules of microbes, and 

damage-associated molecular patterns (DAMPs) that are cell components derived 

from cell degradation (Cao, 2016). There are five main classes of PPRs but only 

two of them are comprised of receptors expressed on the cell surface: Toll-like 

receptors (TLRs) and C-type lectin receptors (CLRs) (Brubaker et al., 2015). 

Cytokine receptors have been classified according to their structures. The largest 

group belong to the class I cytokine receptors characterized by the presence of 

peculiar features, such as a tryptophan-serine-x-serine-tryptophan motif and 

conserved cysteine residues. Class II receptors differ from the class I by lacking 

the tryptophan-serine-x-serine-tryptophan motif. Other cytokine receptor families 

are TNF receptors, IL-1 receptor proteins, TGF-β receptors, and chemokine 

receptors. The chemokine receptors differ substantially from the other receptors as 

they are the only G protein-coupled receptors (Vilček, 2003). Most of the cytokine 

receptors are responsible for the activation of the pleiotropic JAK/STAT signalling 

pathway that leads to proliferation, differentiation, cell migration and apoptosis 

(Rawlings et al., 2004). 

1.1.4 Immune response mechanisms 

Most immune cells originate from the same place, the bone marrow, but they start 

migrating at different maturation stages and to different places. For example, 

neutrophils continuously circulate in the blood stream to fulfil their main role of 

patrolling. Monocytes commit to a more specialized function only after they 
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interact with the environment they are summoned to dwell in. T cells progenitors 

migrate to the thymus for a highly stringent “education” and selection before they 

are released in the blood stream.  

The different immune cell types have very particular functions and by 

communicating with each other they create a powerful network that is resilient to 

many adverse conditions. In case of invasion, for example, the dendritic cells travel 

from the tissues where they reside in, such as skin and mucosa, towards spleens 

and lymph nodes to recruit B cells and T cells with the antigen presentation 

mechanism. In the meantime, since eliciting the adaptive response requires a few 

days, large supply of high motile neutrophils quickly reach the area of infection 

guided by chemokine signalling.  

There are several mechanisms simultaneously implemented by different immune 

cells to generate the dynamic immune network. In this section I will elucidate: 1) 

how immune cells get rid of pathogens though phagocytosis and cell mediated 

cytotoxicity; 2) how the adaptive response is evoked though antigen presentation 

and remembers previous infections through immunological memory; 3) how the 

immune system regulates and controls itself by tolerance and homeostasis.  

Phagocytosis 

It is believed that the mechanism of phagocytosis appeared early in evolution as it 

is used by amoebas as a feeding system (Cosson and Soldati, 2008). Phagocytosis 

has then been adopted as a defence mechanism by some cell types of the innate 

immune system: neutrophils, monocytes, macrophages, dendritic cells, and mast 

cells (Gordon, 2016). They are generally referred to as “professional phagocytes” 

to distinguish them from cells that also uses phagocytosis, but it is not their main 

function, such as epithelial cells, endothelial cells, fibroblasts, and mesenchymal 

cells (Rabinovitch, 1995). Phagocytes can ingest a different variety of foreign 

microbes and particles, including bacteria, viruses, dead cells, protozoa, and dust 

particles (Naik and Harrison, 2013).  

Phagocytosis is carried out in multiple steps. Initially, the phagocyte adheres to the 

target particle with membrane proteins. Then, the particle is engulfed by enclosing 

it in a vacuole called phagosome, which does not have the ability to digest it. 
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Hence, other organelles, lysosomes, fuse with the phagosome membrane to create 

the phagolysosome. Here, the phagocytes kill the microbes or digest the particles 

with reactive-oxygen molecules and hydrolytic enzymes (Naik and Harrison, 

2013). 

To help phagocytes in the recognition or engulfment, foreign particles or microbes 

are sometimes opsonized with either antibodies or proteins of the complement 

system. Hence, the phagocyte can more easily recognize them through Fc receptors 

and complement receptors. Besides the mere role of microbes killing, professional 

phagocytes are also specialized in controlling the adaptive response. T cells and B 

cells are in fact activated by the phagocytes’ production of pro-inflammatory 

cytokines or exposition to foreign peptides through antigen presentation (Naik and 

Harrison, 2013). 

Cell mediated cytotoxicity 

Cytotoxic lymphocytes, that include Tc cells and natural killer (NK) cells, can 

mediate targeted cell death by triggering apoptosis. This can be done in two ways: 

1) exocytosis of cytotoxic granules and 2) engagement of Fas ligand (Feig and 

Peter, 2007). 

The first way of inducing programmed cell death starts with the release of 

cytotoxic granules containing granzymes and perforins within immunological 

synapses. Perforins mediate the delivery of granzymes into the target cell through 

the formation of pores on the membrane (Voskoboinik et al., 2015). Once inside 

the cytoplasm, granzyme molecules induce apoptosis through different 

mechanisms. Granzyme B is the most studied granzyme and it mediates apoptosis 

by activating the caspase cascade (Bots and Medema, 2006). The second way of 

inducing apoptosis is simply carried out by releasing the Fas ligand that then binds 

to the Fas receptor on the target cell. This will activate the extrinsic pathway for 

apoptosis characterized by the initial formation of the death-inducing signalling 

complex (DISC) and subsequent activation of the caspase cascade. 

The way Tc and NK cells trigger apoptosis in the target cell is the same but the 

mechanisms of recognition of the target cell differ substantially (Voskoboinik et 

al., 2015). NK cells, as a part of the innate immune system, have a much fast 
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reaction time compared to Tc cells. They can recognize bacterial cells from their 

conserved residues, such as lypopolysaccharides (LPS), or infected cells as they 

release stress molecules upon viral infection, such as IFN-α and IFN-β (Long et 

al., 2013). Tc cells, instead, can only be activated upon antigen presentation by the 

target cell (Andersen et al., 2006). 

Antigen presentation 

Antigen presentation is the strategy adopted by the immune system to activate its 

adaptive arm. Although antigen presentation is a hallmark feature of the adaptive 

immune system, any cell of the body can take part of it. Essentially antigen 

presentation consists in stimulating the T or B cell receptors by presenting an 

antigen though a MHC molecule (Blum et al., 2013). 

The MHC class I displays mutated or foreign peptides that are already inside the 

cell. All the nucleated cells are committed to expose any sign of irregular activity 

within themselves on their cell surface. The MHC class I binds simultaneously a 

TCR and a CD8 co-receptor expressed on cytotoxic T cells. The MHC class II, 

instead, is only processed and displayed by the so-called antigen presenting cells 

(APCs) that include macrophages, dendritic cells and B cells. They internalize the 

antigen either through phagocytosis (macrophages and dendritic cells) or 

endocytosis (B cells). Once within the cell, the antigen is processed, bound to an 

MHC class II molecule and brought to the cell surface. The MHC class II will only 

bind and activate T helper cells through recognition of a CD4 co-receptor together 

with a TCR. An additional property of APCs, and primarily of DCs, is that they 

can also assemble and present exogenous-derived peptides with MHC class I in a 

process called cross-presentation (Andersen et al., 2006).  

As soon as T cell receptors are triggered, a signalling cascade within the immune 

cell lead to three main responses: 1) cell cycle activation, 2) metabolic changes, 

and 3) increasing of the apoptotic threshold (Wensveen et al., 2012). T cells that 

never encountered its specific antigen are called naive cells and their full activation 

requires multiple steps to avoid erroneous responses. The sole stimulation with 

MHC molecules bring T cells to a hyporesponsive state, generally known as 

anergy (Pennock et al., 2013). Some T cells that have already been activated once, 
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become memory cells and are more easily activated upon infection with the same 

pathogen (see next section). 

Memory  

Immunological memory is another hallmark of adaptive immunity. Once a naive 

lymphocyte has been activated, it clonally expands to increase the effectiveness of 

the immune response against pathogens. As soon as the pathogen is cleared, part 

of the lymphocytes will remain available in case of a secondary infection and they 

will constitute the memory fraction. 

More specifically, some activated B cells differentiate into plasma cells for the 

production of antibodies. Since those cells have a short life, a part of the activated 

B cells differentiates into memory cells and thus persists for several years. The B 

cells are antigen presenting cells, hence they are activated upon binding of Th cells 

to the MHC class II. Th cells that have been successful in recognizing an antigen 

will also differentiate into memory cells to maintain long-term memory and will 

provide a much stronger stimulation to B cells than naive Th cells. Similarly, 

memory Tc cells will lead to faster and more intense secondary responses upon 

binding with MHC class I receptors (Kurtz, 2004).  

More than a decade ago, from studies on invertebrates, it was also speculated that 

memory is not only a feature of the adaptive immune system, but is often adopted 

by the innate arm too (Kurtz, 2005). Newer studies have supported this hypothesis 

auspicating a paradigm shift from the concept that memory is not a feature of cells 

with immediate response such as granulocytes, monocytes and NK cells (Netea et 

al., 2015). 

Tolerance 

The ability to discriminate self-antigens from foreign ones is referred to as 

tolerance (Chaplin, 2010). It consists of the elimination of all the lymphocytes, and 

especially T cells that are reactive to self-antigens. For T cells, this process occurs 

mainly in the thymus (central tolerance) but can also occur in peripheral blood 

(peripheral tolerance). In the thymus, the TCR is exposed to a comprehensive set 

of self-peptides through both the MHC of class I and II. The T cells that recognise 

and bind to an epitope are negatively selected and killed by apoptosis. It has been 
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discovered that antigen presenting cells in the thymus overexpress a transcription 

factor, AIRE, to present hundreds of tissue specific genes (Eldershaw et al., 2011). 

Generally, as soon as T cells leave the thymus, they are safe to circulate without 

causing self-reactions. However, some T cells that react to self-antigens might still 

escape the strict negative selection occurring in the thymus, which makes it 

necessary for other peripheral mechanisms to take over. The escaped T cells are 

killed by other cells of the body though apoptosis induction or their activity is 

suppressed by either T regulatory cells or lack of co-stimulation. When there is a 

lack of co-stimulation, T cells enter into a state of long-term hyporesponsiveness, 

i.e. anergy (Xing and Hogquist, 2012).  

There are also some mechanisms of tolerance for B cells, but usually they are less 

aggressive since B cells require a strong stimulus from T cells to be activated and 

start their differentiation to plasma cells. Central tolerance for B cells occurs in the 

bone marrow where some autoreactive immature B cells can undergo to a process 

called receptor editing instead of apoptosis (Pelanda and Torres, 2012). 

Homeostasis 

At the end of any infection, the body has to restore the balance of immune cell 

components to its ordinary state. To regain cellular homeostasis the body once 

again employs apoptosis to remove the surplus of activated T and B cells (Chaplin, 

2010; Feig and Peter, 2007). 

1.1.5 Immune related diseases and conditions 

The immune system network can be altered at different levels by either the 

deregulation of any of the mechanisms described in the previous section or by an 

overwhelming breach of pathogens. The responsible factors are generally either 

genetic or environmental, and sometimes a combination of both. There are several 

types of immunological disorders and the most relevant can be grouped into one 

of the following categories: infection, immunodeficiency, cancer, allergy, 

autoimmunity, and immunosenescence. 
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Infections 

Infectious diseases are still among the leading causes of death, especially in third 

world countries. They are caused by infectious agents that include bacteria, 

viruses, parasites and fungi and they can spread through different mechanisms 

such as direct contact, vehicles and vectors.  

Most of the common infections, such as influenza, can often be overcome by the 

ordinary immune response. However, there are cases of more overwhelming 

infections that can cause severe chronic conditions or death. Worldwide initiative 

have been taken in eradicating these kind of infections by distributing vaccinations 

and adopting containment measures (Dowdle, 1998). The smallpox is the only 

example of a human disease eradicated worldwide. The eradication of other 

diseases is underway and it is giving satisfactory results. Despite this, researchers 

are still struggling to find definitive treatments for certain infectious agents, such 

as dengue virus, HIV, and new ones are appearing every now and then. 

Immunodeficiency 

Immunodeficiency refers to the state in which the body is incapable or impaired in 

the generation of an immune response. It can be the result of a congenital defect 

(primary immunodeficiency), or the consequence of another condition such as an 

infection (secondary immunodeficiency) (Warrington et al., 2011).  

A total of 130 primary immune deficiencies have been described and they can 

involve both arms of the immune system. An example of the genetic deficiencies 

that affect T and B cells is the severe combined immunodeficiency (SCID) 

(McCusker and Warrington, 2011). Secondary immune deficiencies are far more 

common than primary ones. An evincive example of secondary immunodeficiency 

is the acquired immune deficiency syndrome (AIDS) caused by HIV (Chinen and 

Shearer, 2010). 

Cancers 

Three types of cancer can affect blood cells: leukemia, lymphoma and myeloma. 

There are many overlapping features between the three types of cancer, although 

distinctions can be found.  
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Leukemias can be either acute or chronic, according to the rate of developing, and 

they generally affect peripheral blood cells, both of lymphoid and myeloid lineage. 

Hence there are four main types of leukemia, acute and chronic lymphocytic 

leukemias (ALL and CLL) and acute and chronic myelocytic leukemias (AML and 

CML). A breakthrough discovery that is worth remembering as it pioneered cancer 

genetics is the Philadelphia (Ph) chromosome involved in CMLs and reported in 

1960 (Greaves, 2016). 

Lymphomas mainly arise in lymph nodes and are classified in two types: 

Hodgkin’s and non-Hodgkin lymphomas (HL and NHL). The main difference is 

visible under a normal light microscope as the cells of the Hodgkin lymphoma are 

up to five times larger than normal lymphocytes and are referred to as Reed-

Stenberg cells (Gobbi et al., 2017). NHLs are more common than HLs and they 

are usually associated with viruses and immune deficiencies (Hennessy et al., 

2017). 

Myeloma, also known as multiple myeloma, is a type of cancer that affects only 

plasma cells. Beside the uncontrolled proliferation of malignant cells, this cancer 

is also characterized by other side effects, such as anemia, lytic bone lesions, 

hypercalcemia, and renal disease (Naymagon and Abdul-Hay, 2016). 

Allergies 

Allergies are a set of conditions that are caused by hypersensitivity of the immune 

system towards molecules or substances that are typically not harmful. It affects 

only few parts of the body, such as skin and mucosal tissues, but under certain 

conditions the reaction can be systemic and therefore more dangerous (Tao and 

Raz, 2015). 

Characteristic features of allergies are the expansion of Th2 cells and the isotype 

switching of B cells towards plasma cells that generate IgE antibodies (Holgate 

and Polosa, 2008). It has been speculated that the increase of allergic diseases in 

developed countries is associated with the reduction of exposure to antigens. This 

phenomenon is referred to as “hygiene hypothesis” and it has been supported with 

epidemiological data (Okada et al., 2010).  
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Autoimmunity 

Autoimmune diseases are characterized by the loss of control of the immune 

system and the consequent responses against self-antigens. The causes are strictly 

linked with the malfunctioning of the tolerance mechanisms that I explained in the 

previous section. Autoimmune diseases can be systemic or tissue specific. Well-

known systemic ones include rheumatoid arthritis (RA) and systemic lupus 

erythematosus (SLE). Common tissue specific ones are celiac disease and 

thyroiditis (Perl, 2012). 

In the recent years, with the increasing availability of high throughput sequencing, 

numerous genetic mutations have been associated with autoimmune diseases. In 

some cases, they are caused by the mutation of a single gene, such as the 

transcription factor AIRE involved in the tolerance mechanism (Xing and 

Hogquist, 2012), but many are multigenic and more difficult to characterize 

(Invernizzi and Gershwin, 2009). 

Immunosenescence 

The decline of the immune system functionality because of physiological ageing 

is called immunosenescence. The main observed phenomena driving 

immunosenescence are a decrease in adaptive immunity functionality and 

"inflamma-aging". The latter is the manifestation of a low-grade chronic 

inflammatory state (Franceschi et al., 2000), that is a result of a higher basal 

production of pro-inflammatory cytokines (IL-1β, IL-6, IL 8, TNF and IL-15) 

supported by a decrease of anti-inflammatory cytokines, such as IL-10 (Franceschi 

et al., 2007). The major driving force is the accumulation of oxidative damage that 

elicits the cells of the innate system to the production of cytokines mainly from 

monocytes and macrophages (Cannizzo et al., 2011). 

In addition, thanks to large cohort studies on elderly people, the Immune Risk 

Phenotype (IRP), which is a collection of features associated with an increased risk 

of mortality, has been delineated. IRP includes a higher frequency of CD8+ cells, 

lower frequency of CD4+ cells, an inversion of CD4/CD8 ratio and increase of T 

cells at their last stage of differentiation, such as late effector and memory T cells 

(Ferguson, 1994; Wikby et al., 2002).  
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The strategies currently adopted to contend the immunological frailty are physical 

and mental activity, adequate nutrition, and vaccination. However, research on 

immunosenescence might give further clues on how to aid the immune system 

preserving its functionality also at the molecular level. 

1.1.6 Computational immunology 

The term immunoinformatics was coined during the early 2000s to establish the 

importance of computational analyses for the understanding of the immune system 

(Orosz, 2002; Brusic and Petrovsky, 2003). Immunoinformatics, or computational 

immunology, has since been recognized as an independent field of study although 

it remains strictly related to the parent field of bioinformatics or computational 

biology. 

The establishment of the immunoinformatics field was driven by the accumulation 

of bioinformatics resources for immunological data in the 90s. The International 

ImMunoGeneTics Information System (IMGT) is a database specialized in 

immunoglobulins (Ig), T cell receptors (TCR) and major histocompatibility 

complex (MHC) molecules created in 1989 and it has been identified as the first 

prominent computational immunology effort (Lefranc, 2014). Other notable 

databases storing sequences for MHC ligands and T-cell epitopes were 

subsequently developed, such as MHCPEP (Brusic et al., 1998) and SYFPEITHI 

(Rammensee et al., 1999). Apart from database curation, other popular 

immunoinformatics tasks were the prediction of immunogenicity of complex 

proteins, in silico vaccine design, evolutionary mechanisms and immune system 

modelling integrating large amounts of data (Tomar and De, 2010). In this regard, 

if we consider also the earliest approaches of mathematical modelling of immune 

processes, otherwise called theoretical immunology, as part of the 

immunoinformatics realm, we can even date it back to the 60s (Marchalonis et al., 

1968; Groves et al., 1969). 

Nowadays, computational immunology refers to any bioinformatics task using 

immunological high-throughput data. ImmuneSpace is a great example, as it is not 

only a repository but also a platform for the analysis of all sort of immune-related 

data, such as ELISA, flow cytometry, RNA-seq, Luminex, and CyTof data 
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(Sauteraud et al., 2016). A second noteworthy example is ImmPortGalaxy, whose 

concept is based on the popular Galaxy platform for genomics analysis. Other 

widely used bioinformatics platforms, such as GenePattern and Bioconductor, 

dedicated entire sections to the flow cytometry data analysis that is almost uniquely 

relevant for immunological data. A contribution that I made is reported in Chapter 

3, where I present the package flowAI that is now available from Bioconductor and 

ImmPortGalaxy.  

1.2 Gene expression 

The central dogma is a key concept in biology stating that DNA is transcribed into 

RNA, and RNA is translated into proteins. This process is not reversible, apart 

from some exceptions like retro transcription of DNA from RNA (Crick, 1958). 

To study the composition of DNA, RNA and proteins as a whole, new terms have 

been coined with the “omics” suffix (Lederberg and Mccray, 2001). The gene 

expression as a whole is referred to as transcriptomics and it has become possible 

to study it routinely with the advent of high-throughput technologies like 

microarray and RNA-sequencing.  

Chapter 2 and 4 report analyses based on gene expression profiling using both 

microarrays and RNA-sequencing. In this section, first I describe the technologies 

since understanding their principles is necessary to eliminate all the unwanted 

effects due to the technology itself from gene expression values. Next, I explain 

the principle of experimental design as they are essential to maximize the value of 

the data. Lastly, I describe the state of the art for the bioinformatics methods used 

in gene expression data that are relevant for my thesis.  

1.2.1 DNA microarrays 

Technological principles 

The DNA microarray has been a breakthrough technology to monitor genome-

wide expression levels of biological samples. A typical microarray consists of a 

solid surface holding different DNA molecules ordered at specific locations called 

spots. The DNA molecules are called DNA probes as their function is to hybridize 
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to specific DNA molecules and thus allow for the quantification of transcripts in 

the studied sample. The DNA probes can be either cDNA or oligonucleotides and 

they are fixed to supporting surfaces that are made of nylon membrane, glass, 

plastic, or silicon. Initially, the most common surface used was based on nylon 

membranes. However, they have been almost completely substituted by glass, 

plastic or silicon derived solid surfaces since they provide numerous advantages 

including less sensitivity to light, non-porosity and thermal stability. All these 

features allow easier washing steps, faster hybridization kinetics, better 

discrimination between probes and minimal background fluorescence (Heller, 

2002; Bumgarner, 2013; Dufva, 2009). 

Initially microarrays have been commonly distinguished and classified according 

to the arrayed material, cDNA or oligonucleotides. However, nowadays it is more 

convenient to classify microarrays based on their manufacturing technique since 

cDNA microarrays are rarely used anymore. Most of the techniques used to fix 

DNA probes on the supporting surfaces were developed during the 80s and 90s 

(Bumgarner, 2013) and they can be grouped in three main categories: 

• Spotting 

• In-situ synthesis 

• Self-assembling 

The first approach, spotting or printing, consists of fixing DNA fragments 

previously amplified or synthetized on the supporting surface. Robotic spotters 

have been designed to automatically collect DNA fragments stored in microtiter 

dishes and to release them on the supporting surface (DeRisi et al., 1996). Printed 

arrays are the only ones used for both cDNA or oligonucleotides, whereby the 

cDNA probe is obtained by PCR amplification and the oligonucleotide is 

chemically synthesized. The other two approaches, in situ synthesis and self-

assembling, only use oligonucleotides. 

The second approach, in situ synthesis, consists of the generation of 

oligonucleotides directly on the solid surface (Miller and Tang, 2009). This 

approach has been used by the companies Affymetrix, Roche NimbleGen and 

Agilent Technologies using different synthesis procedures.  
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The oligonucleotide probes of the Affymetrix GeneChips are synthesized by using 

nucleotides bound to photolabile protecting groups. When light is directed on the 

nucleotides, the protecting groups are decoupled and a new nucleotide can be 

added. A photolithographic mask is used by Affymetrix to avoid the addition of 

unwanted nucleotides to a growing oligonucleotide chain. The operation is 

iterative, and in the end each DNA probe will be a 25-mer oligonucleotide. The 

DNA probes are arranged in probe pairs and probe sets. Probe pairs of one perfect 

match and one mismatch are used to detect non-specific binding and reduce 

background noise. Probe sets of 11-20 probe pairs specific for each transcript are 

used to increase the specificity for transcripts. Affymetrix has been widely 

successful in generating standard genome-wide chip arrays for various animal 

species. However, the building of a series of photolithographic masks for the 

assembling of the pre-defined oligonucleotides on the solid support is a limiting 

factor for the generation of customized arrays.  

Roche NimbleGen invented a new method in which the photo-deprotection step is 

performed by micro-mirrors (Nuwaysir et al., 2002). This methodology still 

benefits from the usage of cheap reagents of photolithography and at the same time 

provides more flexibility for oligonucleotide synthesis.  

Agilent Technologies, instead, uses a completely different technology based on 

inkjet printing that consists of releasing a nucleotide in a defined spot combined 

with deprotection and coupling steps (Hughes et al., 2001). The synthesized 

oligonucleotides are 60 base pairs long. Here, probe pairs and probe sets are no 

longer required since the longer nucleotides provide a sensitivity and specificity 

almost comparable to cDNA arrays (Barrett and Kawasaki, 2003). 

The third approach, self-assembling, consists in the random disposal of beads 

conjugated with DNA probes to the supporting surface (Ferguson et al., 2000). 

This is the most recent technology and the manufacturing company is Illumina. 

The challenging part of this technology is the recognition of the DNA probe 

deposited in each spot (referred to as “decoding the array”). The most recent 

method consists of a series of hybridizations with known labelled DNA sequences 

that not only allows to map the beads in the array but also to test it before the actual 

experiment (Bumgarner, 2013).  
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 Library preparation 

To quantify the gene expression of the target sample, the mRNA must be pre-

processed prior to hybridization to the DNA probes and scanning with the 

detection system. After extraction, the mRNA is converted to either cDNA or 

cRNA and amplified. During amplification, the DNA fragments are labelled with 

a fluorochrome to allow their detection. The labelling techniques can be 

distinguished in two main types: the Cy3/Cy5 system for a two-colour experiment 

and the streptavidin/phycoerythrin system for one-colour experiments (Figure 

1.2). The two-colour experiments are less common and are performed only with 

certain models of Agilent Technologies microarrays and customized microarray. 

They consist on the simultaneous hybridization on the microarray of two different 

samples, usually reference and experimental samples, labelled with two different 

fluorescent molecules, Cy3 and Cy5. After hybridization, the detection system 

records the relative gene expression profile of the two samples. The one-colour 

 

Figure 1.2 Schematic representation of two methods to perform gene expression profiling. In 
the case on the left, two different samples are labelled with two fluorochromes, Cy3 and Cy5, 
and the gene expression values of the disease sample is in relation to the reference sample. In 
the case on the right, the sample is biotinylated and the gene expression values are absolute. 
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experiment is the technique of choice of popular microarray chips from Affymetrix 

and Illumina. The target cDNA or cRNA is first labelled with biotin and then 

stained with fluorescently labelled streptavidin. 

Data pre-processing 

Various pre-processing steps are necessary for the raw data before any statistical 

or mathematical algorithm can be applied. Each microarray technology needs its 

own set of pre-processing algorithms. Currently, new methods for microarray data 

analysis are rarely produced anymore since there are pre-processing pipelines that 

are sufficiently robust. The RNA sequencing technology, however, has recently 

gathered more popularity and is expected to completely substitute DNA 

microarrays in the near future.  

A generalized pre-processing pipeline for microarray data consists of three main 

steps: background correction, normalization, and transformation. Some of the 

algorithms can be used for different microarray types, but often customized 

algorithms and additional pre-processing steps are necessary to have optimized 

pipelines.  

The first step of microarray data pre-processing, background correction, consists 

of removing the background noise from the foreground signal. As a matter of fact, 

the signal recorded from each spot is a sum of the fluorescence due to probe-target 

hybridization and background noise. The simplest way to eliminate the 

background noise is to subtract the mean or median value of the pixels surrounding 

the spot from the foreground signal. This procedure, however, has been criticized 

to be overly simplistic, since it does not take spatial variations into account and 

produces negative values. More sophisticated methods have been developed to 

produce only positive intensities. The most frequently used method is the 

background correction step included in the robust multi- array average (RMA) 

method (Irizarry et al., 2003), developed originally for Affymetrix but then 

generalized for other chips and named normexp (Ritchie et al., 2007; Shi et al., 

2010).  

Data normalisation consists of the removal of whole scale changes within or 

between arrays that are due to technical procedures rather that biological factors. 
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Often, the variation is explained by different amounts of starting material used for 

the hybridization. Within-array normalisations are meant to adjust for spatial 

effects within the chip itself or to adjust the values of two-colour microarrays. 

Between-array normalisations are used to adjust intensities across a set of one-

colour microarrays. Early methods consisted of the alignment of the intensity 

values to either the mean, median or the 75th percentile of all microarrays. However, 

more complex methods have been developed to account for the non-linear 

relationship between arrays. Loess and quantile are two reliable normalization 

methods although ultimately the quantile normalization has become more popular 

for its simplicity and applicability to various technologies (Bolstad et al., 2003; 

Reimers, 2010). 

Data transformation is the procedure of converting a set of values into a 

corresponding set of transformed values with properties that are more useful for 

downstream analysis. The raw values of microarray data follow a heavily right 

skewed distribution and the variance is heteroscedastic. In other words, raw data 

have very few large values and the variance is not constant across ranges of values. 

It is common practice to transform the values to make the distribution symmetric 

and to stabilize the variance in order to apply parametric statistical methods and to 

more easily visualize patterns in the data through scatterplots or other graphs. The 

simplest transformation method is the logarithmic function. This method is still 

widely used; however, it has been pointed out that although it stabilizes the 

variance for large values, it also inflates the variance for small values and cannot 

handle the negative values produced by some background correction methods 

(Rocke and Durbin, 2001). Hence, new variance stabilization transformation 

methods have been developed that are able to produce linear values for low ranges 

and values similar to logs for high ranges (Durbin et al., 2002; Huber et al., 2002).  

1.2.2 RNA sequencing 

Technological principles 

Sequencing technologies are rapidly evolving, and nowadays it is possible to 

generate various kinds of information by deciphering nucleic acid compositions, 

including gene expression profiling with RNA sequencing (Figure 1.3). The next 
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generation sequencing (NGS) technologies, introduced in the early 21st century, 

have the outstanding feature of generating massive amount of data at reduced time 

and affordable costs. The various NGS technologies have been recently classified 

in two groups according to the way the DNA is sequenced: sequencing by 

synthesis (SBS) using DNA polymerase and sequencing by ligation (SBL) using 

DNA ligase (Goodwin et al., 2016). Another debated classification divides NGS 

technologies into second and third generation sequencing where the main 

distinction lies in the ability of the latter technologies to sequence single DNA 

molecules in real time. Real time sequencing is still not widely used although they 

bring several advantages, such as the elimination of possible bias due to DNA 

amplification, reduction of the cost of reagents, and reduction of running time. 

SBS technologies are the 454, the Illumina platform, Ion Torrent, Helicos, and 

Single Molecule Real Time (SMRT). SBL technologies are SOLiD and the 

 

Figure 1.3 Schematic representation of the steps involved in deep sequencing. After extraction 
from the sample, the nucleic acid material is fragmented and the sequences with desired length 
are selected. If required by the technology, the DNA templates are amplified. Common 
amplification methods are emulsion PCR and bridge amplification. Lastly, the DNA templates 
are sequenced and the incorporation of nucleotides is revealed by signals such as photons, 
fluorescence or hydrogen ions. 
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Complete Genomics platform. Recently the Oxford Nanopore Technology (ONT) 

has been released that does not enter in any of the two categories since it sequences 

upon the 3D conformation of a DNA segment. Of the ones cited only Helicos, 

SMRT and ONT are able to sequence single molecules. However, currently 

Illumina remains the predominant technology on the market. 

The approach used in several Illumina sequencing models to amplify a single DNA 

template in multiple copies is called bridge amplification. After having extracted 

the DNA/RNA from the sample, the single DNA molecule hybridizes on the 

surface of a flow cell and through repetitive PCR steps it forms clusters of DNA 

copies. A second amplification approach is called emulsion PCR and it has been 

adopted by 454, SOLiD and Ion Torrent. It consists of ligating a single DNA 

template to a bead floating in a droplet of a water-oil emulsion and generating 

copies ligated to the surface of the bead with PCR. 

The next step is the sequencing of the DNA templates. Illumina uses nucleotides 

modified as reversible terminators bound to a fluorescent molecule specific for 

each of the four different nucleotides. The decoding of the nucleic acid is cyclic. 

At each cycle, in each spot of the flow cell, a new nucleotide is incorporated, the 

fluorescence emitted is recoded, and the added base is decoded (Mardis, 2008). 

Most of the NGS technologies use fluorochomes to reveal which nucleotides have 

been added, however there are other methods that rely on the emission of photons, 

the 454 system, or hydrogen ions, the Ion Torrent. 

The applications relying on NGS technologies can be grouped in two categories 

depending on whether the final aim is to read or count nucleic acids. Applications 

that only require reading DNA/RNA are de novo assembly for the building of new 

genomes and resequencing for the search of genomic variants. Applications that 

are based on counting are RNA sequencing (RNA-Seq) for the gene expression 

profiling and ChIP-Seq/RIP-Seq for the discovery of interaction between 

DNA/RNA and proteins. In some cases, both reading and counting can be used at 

the same time; for example, when it is necessary to profile the gene expression of 

new mRNA or microRNA fragments. 
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RNA-Seq provides several advantages compared to microarrays. One advantage 

is that the quantification of the mRNA molecules provided by RNA-Seq is digital 

in nature and therefore it allows an exact quantification of gene expression. The 

microarray, instead, remains a semi-quantitative technology because of probe 

saturation. Another strength is that the RNA-Seq does not rely on transcript 

annotation data as the microarray does. As a matter of fact, RNA-Seq always gives 

an exhaustive gene expression profiling that includes transcripts not mapped 

before or new transcript isoforms (Malone and Oliver, 2011). 

Library preparation 

The RNA library preparation differs according to the sequencing platform used. 

However, most of them share similar strategies to isolate and amplify the starting 

material. Total RNA is extracted from the biological sample and the quality is 

verified with capillary gel electrophoresis. Next, the type of RNA required for the 

experiment is isolated. For example, in the case of mRNA, beads ligated to poly T 

oligomers are used to separate the mRNA from the remaining non-coding RNA. 

This is a crucial step, especially because it removes rRNA that constitutes more 

than 90% of total RNA and could severely undermine the quality of the data 

analysis. The mRNA is then fragmented according to the requirements of the 

technology. The Illumina HiSeq2000, for example, require fragments ~200–250 

nt long. The fragments are converted in cDNA, ligated to adapters and amplified 

with PCR (Chu and Corey, 2012; Griffith et al., 2015). The adapters ligated to the 

cDNA fragments are specific for each platform and are used both for amplification 

and sequencing.  

Different library preparation strategies have been developed to either improve 

efficiency or to overcome specific drawbacks of sequencing technologies. For 

example, Illumina can sequence both the 3’and 5’ ends of a cDNA molecule by 

ligating different adapters to the two ends. The application is called paired end 

(PE) sequencing and it helps in the accurate mapping of short reads and detection 

of structural variants (Mardis, 2013). Multiplexing is another strategy frequently 

adopted. It consists of ligating unique indexing sequences to the cDNA molecules 

of different biological samples. The samples can be then pooled together for 

sequencing and then sorted again right before data analysis (Smith et al., 2010).  
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Data pre-processing 

About 10 years have passed since the first RNA-Seq experiments were performed 

(Lister et al., 2008; Nagalakshmi et al., 2008; Mortazavi et al., 2008). Till now, 

several pre-processing methods have been developed and robust analysis pipelines 

have been defined. The general data pre-processing pipeline includes quality 

control, mapping to a reference genome, read counting and normalization. 

However, there is still room for improvements and several research groups are 

currently involved in it (Conesa et al., 2016).  

Quality assessment is a fundamental step not only at the beginning but also at 

different next stages of data pre-processing. A widely used tool is FastQC 

(Andrews, 2010). Several quality control metrics are implemented by the tool and 

it produces several charts to check: per base quality, GC content, duplicated 

sequences and other problematics that are encountered during sequencing. 

Trimming or filtering tools, like Cutadapt or trimmomatic (Bolger et al., 2014), 

can be used in case there are anomalies generated in the phase of library 

preparation or that are particular for some types of experiments. For example, in 

some cases it is necessary to trim the end of long reads, as the quality of base 

calling generally tends to decrease as sequencing progress. 

The next step consists of the identification of transcripts associated with the 

sequenced reads. This can be done by mapping the reads either to a reference 

genome or to a reference transcriptome, or by assembling the reads and hence 

building the transcriptome de novo. The Tuxedo suite is constituted by TopHat and 

Cufflinks, where the two tools perform both functionalities, mapping and 

assembling, respectively (Trapnell et al., 2012). In general, however, if a reference 

genome is available it is sufficient and often preferable to only map the reads to 

the genome. A more recent tool, STAR, has become quite popular because it can 

map reads more efficiently than TopHat (Dobin et al., 2013). Both TopHat and 

STAR have been defined as “Splice-Aware Alignment Tools” as they can 

recognize splice junctions within a read and map segments of that read to separated 

genomic locations (Williams et al., 2014). More recently, tools that use k-mer 

heuristic methods to map the reads to a reference transcriptome, such as kallisto 
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and salmon, have been appraised for their speed and accuracy (Soneson et al., 

2016). 

After the mapping step, it is preferable to visually asses the quality of the 

alignment. Integrative genomics viewer (IGV) and Savant (Robinson et al., 2011; 

Fiume et al., 2012) are two popular genome browser software used to visualize the 

files containing the mapping information, i.e. SAM or BAM files.  

The next pre-processing step is the translation of the mapped reads to abundance 

estimates. The easiest way is to count how many reads are aligned against each 

feature (e.g. a gene or transcript). The tools HTSeq and featureCounts are widely 

used for this step. They provide also a series of options for how to count multi-

mapping reads and the choice of the option can influence the results significantly 

(Robert and Watson, 2015).  

Transcript or gene counts need to be normalized for technical artefacts to be 

comparable between samples and sometimes also within the sample itself. Three 

simple normalization methods that correct for sequencing depth and feature length 

are: RPKM (Reads Per Kilobase Million), FPKM (Fragments Per Kilobase 

Million) and TPM (Transcripts Per Kilobase Million). RPKM was developed first 

for single-end RNA-Seq experiments. FPKM is based on RPKM and it is designed 

to normalize paired-end RNA-Seq data (Trapnell et al., 2010). TPM, instead, is a 

different method that recently is becoming more popular as it is more robust in the 

comparison of samples that undergo different library preparations (Li et al., 2009). 

Other technical artefacts that might introduce bias in the expression values are: GC 

content, RNA composition, and hexamer random priming. Genomic regions with 

high or low GC content are associated with lower expression abundance and the 

tools EDAseq and cqn are designed to correct for these artefacts (Risso et al., 2011; 

Hansen et al., 2012). The 10% of highly expressed genes can take up to 60% of 

the total read counts (Bullard et al., 2010) and some normalization methods have 

been designed appositely to overcome this caveat. Some examples are the upper 

quartile, the trimmed mean of the M value (TMM), and the method proposed by 

the author of DESeq (Li et al., 2015). There is no consensus on which is the 

preferred normalization method and the choice must be made according to how 

the data have been generated and what are the downstream analyses. For example, 
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within an experiment it might even be possible to compare the raw counts of the 

same transcript across difference samples as some artefacts can cancel each other 

out. 

1.2.3 Experimental designs in gene expression studies 

The key to successfully addressing biological questions is to carefully develop the 

experimental design before starting any kind of laboratory or computational work. 

A thoughtful balancing of the resources available is a crucial aspect of 

experimental design and three factors play a key role: sample size, costs and time. 

The investigator should optimize the three factors considering that the 

improvement of one factor has disadvantageous effects on the other factors. For 

example, it is always preferable to have a large sample size in order to gain 

precision and statistical power. However, when smaller sample sizes are able to 

yield enough precision and significance, it is convenient to avoid wasting time and 

funds for extra experimental units. 

Cornerstone concepts of experimental design were developed in the 30s by Ronald 

Fisher (Fisher, 1935). They are extensively used in any field of research and 

include randomisation, blocking, replication and factorial design (Jackson and 

Cox, 2013; Telford, 2007). They are also frequently used in microarray and RNA-

Seq data analysis with variation or novel approaches to accommodate the 

respective shortcomings of the different technologies.  

Two important concepts are randomisation and blocking which need to be applied 

at every stage of the study. The two concepts are related since they have been both 

devised to avoid unwanted sources of variability. Randomisation consists of the 

random allocation of experimental units to treatments or conditions. For example, 

when testing the effect of a treatment on samples coming from different facilities, 

the samples must be allocated randomly in the experimental groups. Blocking, 

instead, consists of creating heterogeneous blocks containing experimental units 

from all different treatments or conditions. For example, when processing the RNA 

samples on several microarray chips, the samples should be randomly distributed 

in blocks of equal proportions among the different chips to avoid that samples from 

the same condition or the same facility are processed in the same chip. The same 
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approach is used for sequencing flow cells with multiple lanes (Auer and Doerge, 

2010). When possible, randomisation and blocking allow to recognize and adjust 

the data for eventual technical batch effects.  

Another fundamental concept of experimental design is the replication. Replicates 

in biomedical research are distinguished as either biological or technical. 

Biological replicates are concerned in showing the variation due to biological 

diversity while technical replicates are used to discern from the data the variation 

due to different protocol and equipment. Technical replicates are usually reserved 

for the testing of the equipment and protocols to ensure that they are robust and 

reliable. Once this is established, they are no longer needed during data generation 

as they should not produce significant variation (Bell, 2016; Vaux, 2012). 

Biological replicates, instead, are always required and it is common practice to use 

a minimum number of three replicates. A caveat to consider is that humans cannot 

be kept in a controlled environment unlike animal models; therefore, larger sample 

sizes are usually necessary to account for the increased variability. Ideally, a power 

analysis should be performed to determine the sample size required to test a 

hypothesis with a certain degree of confidence. 

Typically, the main objective of an experiment is a comparison between control 

and treatment groups. However, there are cases where the researcher wishes to 

answer more than one question with the same experimental units. A factorial 

design is the combination of two or more designs that allows to address multiple 

questions in one single experiment. The different conditions or treatments to test 

are called factors and each factor is composed of two or more categories called 

levels. With factorial designs, it is not only possible to test the effect of each factor 

singularly, but also the interaction effect that the combination of two or more 

factors can have on the outcome of interest (Jackson and Cox, 2013). For example, 

the dependent variables of a linear model can be arranged through a factorial 

design and this is an important concept in gene expression analysis that will be 

elaborated further in the next section. 

There are experimental design concepts that are specific for gene expression 

analysis, and sometimes for either the microarray or the RNA-Seq technology. For 

example, the dye-swapping design has been developed after it has been shown that 
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dyes used for two colour microarrays have gene-specific bias. It consists of 

repeating microarray experiments by reversing the Cy3 and Cy5 labelling between 

samples of different experimental group (Churchill, 2002). Instead, sequencing 

depth is a concept specific for deep sequencing, hence RNA-Seq, and it refers to 

the number of time the same DNA fragment is sequenced. It is fundamental having 

multiple copies of the same fragment to be confident that the sequence generated 

is free from sequencing errors. The choice of the sequencing depth is based on 

various factors, such as the transcriptome complexity, the technology used, the 

cost of each running cycle, and the accuracy needed (Fang and Cui, 2011). Finally, 

pooling is a concept used for gene expression analysis independently of the 

technology at hand. Pooling is the process of combining several samples into one. 

It can be necessary when the amount of RNA from each sample is not enough or 

when the processing of individual samples is too expensive. However, the process 

of pooling itself can introduce unwanted variability, for example when mixing 

samples at different proportions (Kennedy and Cui, 2011).  

1.2.4 Differential expression 

The most common analysis when using gene expression data is undoubtedly the 

retrieval of a list of genes that are differentially expressed between two or more 

conditions. Often, this will result in long lists of differentially expressed genes 

(DEGs) whose biological relevance needs to be explored more. Because it is 

impractical to explain the role of each gene singularly, it is common practice to 

make a functional enrichment analysis (de Magalhães et al., 2010). This analysis 

reveals if there is an unexpected proportion of genes among the DEGs with related 

functionality. More details will be given on functional enrichment after an 

elucidation on the methods used for the retrieval of DEG.  

A rudimental way to find DEGs would be by ranking the genes according to the 

average log-ratio between two groups of samples, and select an arbitrary cut-off. 

However, biological samples generally show high variability, and just taking 

differences of the means to identify DEGs is not robust to large variance and 

outliers. The analysis of variance comes in handy, as it can determine if the 

difference between the averages of two or more groups is truly significant. The t-

test is used when only two groups of samples need to be compared. Assuming that 
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for each gene there are two vectors of gene expression values, one for control !" =

	(&', … , &*+) and one for treatment !- = 	 (&', … , &*.) samples, the t-test can be 

computed with: 
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where the sample variance 12 divided by n observations is the standard error. This 

is the Welch’s t-test, a variant of the more popular Student’s t-test that assumes 

samples with unequal variance and unequal sample size, that is a common situation 

for gene expression experiments (Hatfield et al., 2003).  

For more complicated experimental designs, ANOVA, is used instead. The 

simplest form is the one-way ANOVA that can analyse only one factor, that is a 

categorical variable that indicates the groups of memberships of all samples. A 

one-way ANOVA testing a factor with two levels only, control and treatment for 

example, corresponds to a simple t-test. Experimental designs with two factors are 

tested with a two-way ANOVA that not only allows for the testing of the main 

effects but also the interaction effect. ANOVA allows to test any number of factors 

in a single analysis, however it is common practice to not exceed the three factors 

to avoid dealing with too many interaction effects at once. 

Both the t-test and ANOVA are two powerful techniques widely accepted for gene 

expression analysis. However, they present limitations when dealing with two 

common caveats. The first caveat is that the sample size n is usually small for 

biological experiments and therefore the variance is poorly estimated. A second 

caveat is that the experimental designs are often quite complex; mostly due to 

intricate designs for two colour microarrays or to the inclusion of different 

phenotypes and treatment conditions. Both caveats are generally addressed by 

using a Bayesian approach and linear modelling, respectively. 

The Bayesian approach makes the statistical estimation a more dynamic procedure 

compared to the frequentist approach. In fact, the Bayesian theorem states that 

parameters should be estimated from the new collected data by including prior 
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knowledge. The concept has been used to create a moderated t-statistic that 

substitutes the conventional standard error with a modified one that acquires 

information across the entire dataset (Hatfield et al., 2003). The procedure is called 

empirical Bayes because the prior distribution is empirically estimated from the 

data. From its introduction at the beginning of the 2000s, it has been implemented 

by several researchers for gene expression analysis (Efron et al., 2001; Baldi and 

Long, 2001; Lönnstedt and Speed, 2002).  

The use of a linear model, instead, is a statistical framework that allows to easily 

accommodate and handle complex experimental designs. It can be expressed in 

matrix algebra notation as: 

 5 = 67 + 	8 (1.2) 

where Y is the matrix with the gene expression dataset of dimension g genes by n 

RNA samples, X is the design matrix of dimension n x p, and 8 is a vector of 

residuals. The predictors p can be either factors or covariates, so that both ANOVA 

and regression can be performed with this linear model framework. The usefulness 

of linear models in gene expression analysis was firstly stated in 2001 by Kerr and 

Churchill. Through a contrast matrix, all the required combinations between 

treatments or phenotypes can be tested without changing the original model. A 

single contrast can be defined as 9:7, where c is a column vector with a number 

of rows equal to the number of coefficients in 7 and it contains a 0 in 

correspondence to the coefficients to exclude from the contrast. For example, in 

case it is necessary to compare the first two ; coefficients out of three, the contrast 

would look like 9: = 1,−1, 0 . 

The R package limma implements both the empirical Bayes method to moderate 

the variance and the linear model framework to facilitate the comparison of multi-

level factors. In addition, it can also pre-process raw data and assign weight to 

RNA samples to discriminate between low and high quality data. It was originally 

designed for microarray data analysis, but recently it has been adapted for RNA-

Seq analysis as well (Smyth, 2004; Ritchie et al., 2015). 
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The last step of differential gene expression analysis is to correct the p-values or 

the significance level to account for the occurrence of Type I error during multiple 

testing procedures. Current methods are either controlling the Type I error among 

the entire set of statistical tests, hence belonging to the familywise error rate 

(FWER) category, or among the significant tests only, hence belonging to the false 

discovery rate (FDR) category (Benjamini and Hochberg, 1995). Bonferroni is the 

oldest but also the most stringent FWER method and it assumes that all the 

conducted tests are independent. Because gene expression values are often not 

independent within each other, it is accepted and often suggested to use less 

stringent methods of the FDR category (Storey and Tibshirani, 2003).  

1.2.5 Functional enrichment analysis 

A typical differential expression analysis can identify hundreds to thousands of 

DEGs. A functional enrichment analysis consists of looking at the pathways or 

functions “enriched” by all the DEGs together instead of understanding their role 

singularly. The databases frequently used to retrieve gene sets with a determined 

function are Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG), yet any database containing gene sets annotated with any biological 

phenomenon can be used for the analysis. Enrichment analysis tools can be 

classified in two main categories according to the approach used to perform the 

analysis: Over-Representation Analysis (ORA) and Functional Class Scoring 

(FCS) (Tarca et al., 2013). 

The ORA methods consist in the analysis of contingency table for the enrichment 

of gene sets. The preferred statistical tests for this approach are either 

hypergeometric test or the Fisher’s exact test (Rivals et al., 2006) and the methods 

are usually implemented as a stand-alone (e.g. GOstats) or web (e.g. DAVID and 

Enricr) application (Dennis et al., 2003; Falcon and Gentleman, 2006; Chen et al., 

2013). The main drawback of this approach is that it relies on a selection of genes 

based on an arbitrary p-value cut-off; hence it cannot incorporate the fold-change 

information in the analysis and it wrongly assumes that differential expression of 

the genes is always independent of each other.  
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The FCS methods consist of the analysis of fold changes or any kind of sample 

statistics associated with each gene from the gene expression analysis. The most 

popular one is Gene Set Enrichment Analysis (GSEA) based on a weighted 

Kolmogorov–Smirnov test on a gene list ranked according to the change in gene 

expression between two conditions (Subramanian et al., 2005). FCS methods 

attempt to solve the drawbacks listed for ORA methods, although they have not 

been free of criticism. For example, it has been pointed out that GSEA is only able 

to enrich gene sets from either up- or down-regulated genes, neglecting the fact 

that, in biological pathways, the up-regulation of one gene can be associated with 

the inhibition and therefore down-regulation of another gene (Saxena et al., 2006). 

A plethora of enrichment analysis tools have been produced and although the 

respective authors claim innovative features, the results obtained by the different 

methods are often consistent. A comparison of ORA methods suggested that a 

hypergeometric test together with a two-side test for the computation of the p-

value (Rivals et al., 2006) is the preferred technique. GOstats is based on the 

suggested method and distributed as R package, while DAVID and Enrichr, built 

upon the Fisher’s exact test, provide a friendly-user interface that do not require 

statistical or programming knowledge for the analysis.  

1.2.6 Other bioinformatics analyses  

Differential expression and functional enrichment analysis are routinely performed 

on transcriptomic data; however, there are several other bioinformatics analyses 

that can be applied to explore gene expression data. In this section, I discuss some 

additional bioinformatics analyses relevant for my thesis, i.e. clustering, co-

expression network, and deconvolution analysis (Figure 1.4). Other analyses that 

I do not explain but that are still worth mentioning include classification (Libbrecht 

and Noble, 2015), differential variability (Ho et al., 2008) and survival analysis 

(Pagnotta et al., 2013; Park, 2005). 

In the contest of machine learning, clustering is the unsupervised method to assign 

new classes to a set of unclassified samples, oppositely to classification that is the 

supervised method to assign unclassified samples to pre-defined classes. 

Clustering is more frequently performed and the two most common methods used 
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are hierarchical and K-means clustering, that are reported graphically through 

dendrograms and multi-dimensional scaling plots, respectively (D’haeseleer, 

2005). 

Co-expression network analyses consist of the generation of networks where each 

node is a gene and each edge indicates a pair of co-expressed genes. Similarity 

measures, like correlation or mutual information, are used to define the strength of 

co-expression among two genes, and clustering methods are used to define 

modules. Once the co-expression maps are built, several information can be 

retrieved from single genes or modules of genes (Leal et al., 2014). For instance, 

the function for genes not yet annotated can be deduced using the guilt by 

association principle and regulatory functions can be presumed by a relative large 

number of connections. Regarding the modules, several techniques can be applied 

to find the ones that are differentially co-expressed, changed in structure, or present 

in a subgroup of samples (van Dam et al., 2017). In chapter 2, I report an additional 

usage of co-expression maps, i.e. the comparison between species by adding 

homology information. 

 

Figure 1.4 Workflow of a typical gene expression analysis. 
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Deconvolution is a method that is used to extract the signal of single components 

from a mixed sample. I used this method in chapter 4 for the deconvolution of gene 

expression data from PBMC using the gene signatures of 29 immune cell types. 

Although this approach is still not widely used, it is promising for the analysis of 

cancer and blood samples. Gene expression deconvolution was performed the first 

time using a linear least squares approach to extract proportions of cells at different 

cell-cycle (Lu et al., 2003). However, the most influential work was done on 

immune cell types using an iterative linear least squares approach to avoid negative 

results (Abbas et al., 2009). A more recent method called CIBERSORT also 

brought large attention. It is based on support vector regression and the authors 

claim it is more robust to noise compared to previous methodologies (Newman et 

al., 2015). 

1.3 Flow cytometry 

Flow cytometry (FCM) is a technology based on the idea of analyzing immune 

cell types at a single cell resolution (Fulwyler, 1965; Robinson and Roederer, 

2015). Since its invention, it has never succumbed to newer technologies, on the 

contrary, the flow cytometry has been continuously improved and it has become 

more and more popular for both biological research and clinical diagnostics.  

I used flow cytometry data for the result chapters 3 and 4. In chapter 3, I developed 

a tool for the interactive and automatic quality control of FCM data while in 

chapter 4 I immunophenotyped samples and used the immune cell proportions for 

downstream bioinformatics analyses. Since I cover both technical and functional 

aspects of FCM throughout my thesis, a thorough explanation of both the 

technology and its applications are necessary.  

1.3.1 The technology 

In the last 50 years, the performance of flow cytometry has considerably increased. 

Numerous components of flow cytometry have been improved to ameliorate 

efficiency, sensitivity and costs. For example, the technology was originally able 

to detect only 1 or 2 parameters per cell while now it is possible to simultaneously 
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measure up to 30 parameters. However, the principles of the flow cytometry 

technology have never changed and they can be schematized in three main 

components (Recktenwald, 1993; Adan et al., 2016). They are: 

• the fluidic system 

• the optical system 

• the electronic system 

In addition to these three fundamental components, a device to separate single cells 

is added to the flow cytometry models used for sorting (Figure 1.5).  

 

Figure 1.5 Schematic representation of a flow cytometry instrument with ability of cell sorting. 
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The fluidic system 

The fluidic system directs the cells in a flow stream that pass through a laser beam 

for interrogation. The basic principle employed for the fluidic system is called 

hydrodynamic focusing. To achieve it, two fluids are necessary: one is the solution 

containing the sample, and the second one is called sheath fluid and is generally 

phosphate buffered saline (PBS).  

Both the sample solution and the sheath fluid are driven into a flow cell in a laminar 

flow by applying pressure. The sheath fluid is forced to enter the flow cell first and 

then the sample solution is injected into the center of the sheath fluid at a lower 

pressure. The hydrodynamic focusing is obtained because both fluids move in a 

laminar fashion with a different flow rate, hence they do not mix with each other. 

The strategy of creating a co-axial flow allows to change the flow rate and the 

diameter of the core stream, which contains the sample, in real time.  

When running an experiment, hydrodynamic focusing settings should be evaluated 

in conjunction to the kind of sample analyzed. Ideally, the flow rate of the sample 

should be at a speed where the cross-sectional area of sample stream allows only 

a single cell at a time to pass through the interrogation point. The increase in the 

diameter of the sample stream is proportional to the increase of the flow rate. A 

high flow rate has the advantage of reducing the time for each experiment. 

However, this also increases the cross-sectional area of the sample stream allowing 

doublets or more than two cells to pass at the same time through the interrogation 

point and to generate composite signals. Generally, it is possible to use a high flow 

rate for the analysis of surface markers, but for analyses that require a higher 

resolution, DNA for example, a slow flow rate is strongly suggested. 

The optical system 

The optical system can be further separated in two parts: the excitation optics and 

the collection optics. The excitation optics consists of one or multiple lasers and 

lenses that focus a beam of light to the interrogation point. The collection optics 

encapsulate a series of mirrors, light filters, and the optical detectors that route and 

collect the light coming from the cell or particle.  
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The collected light can be scattered light or fluorescence light. The scattered light 

gives morphological information of the cell. The light diffracted by the cell and 

collected on the same line of the laser beam direction is called forward scattered 

(FSC) and it is indicative of cell size. The light scattered in different directions by 

granules inside the cell and collected at 90° from the laser beam direction is called 

side scattered (SSC) and is indicative for granularity or internal complexity of the 

cell. The fluorescence light, instead, derives from fluorescence molecules. When 

a fluorescence molecule is hit by light at a certain wavelength, the light is adsorbed 

and the fluorophore emits light at a larger wavelength. This phenomenon is 

described as Stokes Shift. The amount of light emitted is proportional to the 

number of fluorophores that are bound to the cell or particle passing through the 

detection point. 

The number of lasers installed on a flow cytometry instrument vary across models. 

The first flow cytometry model was built with a single argon ion laser at 488 nm. 

The laser is used for the detection of both scatter light and fluorophores excited at 

488 nm such as fluorescein. The latest flow cytometry models integrate up to five 

lasers that can be either gas or solid state based. Moreover, the choice of the laser 

wavelengths is customizable among UV, violet, blue, green, yellow and red ranges 

of light.  

In combination to multiple lasers, light filters are needed in order to use a wide 

range of different fluorophores. Filters separate the light deriving from the 

excitation with a single laser beam in different sets of light wavelengths. There are 

long pass (LP), short pass (SP), and band pass (BP) filters. They can respectively 

transmit light above, below and within a range of a certain wavelength. For 

example, the filter LP520 transmits light with wavelengths above 520 nm, while 

the filter BP520/20 transmits light with wavelengths between 510 and 530 nm. 

Defining the right combination of fluorophores and filters is crucial for the setup 

of a flow cytometry experiment. Good setups allow to increase the number of 

fluorophores that can be used simultaneously. 

The last component of the optical system are the light detectors. A photodiode is 

used for the detection of FSC light. Photomultiplier tubes (PMTs) are used for any 

other channel, SSC light and fluorophores, as they are not as bright as FCS. A 
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photon, as soon as it enters the optical detector, is converted in electronic signal 

(see next section). 

The electronic system 

As soon as a photon hits the optical detector, a voltage pulse is generated. The 

optical detectors are not able to recognize specific wavelengths and hence a careful 

choice of the filters is necessary to discern the signal from the different 

fluorophores for each detector. The signal generated depends on two factors: the 

density and the brightness of the fluorophore. The amplitude of the electron pulse 

is proportional to the number of photons that hit the detector and it is possible to 

increase the sensitivity of photomultiplier tubes by increasing the applied voltage. 

Hence, when setting up a new experiment with a new set of fluorophores it is 

necessary to optimize the voltage applied to all the PMT. Ideally, the lowest 

voltage that gives the lowest coefficient of variation of dim fluorescence intensities 

should be chosen (Maecker and Trotter, 2006).  

When multiple lasers are installed in a flow cytometry instrument, the signal 

derived from each laser is recorded at different time points for the same cell. The 

electronic system is also charged of assigning the right signals to the corresponding 

cell by taking into account the flow rate. Any anomaly in the flow rate, laser 

alignment or electronic system can generate loss of signal or improper allocation 

of the signal.  

Once the voltage pulse is generated, an Analog-to-Digital Converter (ADC) is used 

to transform it to a digital number for the downstream data analysis. Early ADC 

had a resolution of 210 = 1,024 (10-bit) discrete analog levels and therefore they 

could assign a value between 0 and 1023 only. Because the expression of antigens 

on the surface of cells increases exponentially, log amplifiers were used to 

“transform” the voltage pulse before conversion. Nowadays, the new 16-bit ADCs 

assign up to 218 = 262,144 discrete levels, therefore log amplifiers have been 

substituted with linear amplifiers and the data can be logarithmically transformed 

in a downstream data analysis pre-processing step (Macey, 2007). 
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Cell sorting 

A great feature of flow cytometry is that cells remain alive meanwhile the pass 

through the flow cell for phenotypization and hence they can be collected for 

further analysis. The fluorescence-activated cell sorting (FACS) is an instrument 

that, additionally to the fluidics, optical and electronic systems, integrates an 

apparatus to sort the cell-types of interest.  

In FACS the cell pass through the interrogation point in a stream-in-air flow. As 

soon as the cells are interrogated, a piezoelectric crystal vibrates the stream 

breaking it into droplets. By using a specific vibration energy, each droplet will 

contain no more than one single cell. Right after the droplet formation, a positive 

or negative charge is applied to the droplets containing the cell of interest. Charged 

plates deflect the charged droplets to apposite containers while the remaining cells 

are directed to a waste tank. Stream-in-air instruments can sort 4-6 cell types at a 

rate of 30,000 cells per second. 

A more recent sorting approach relies on a catcher tube instead. As soon as the 

cells are interrogated, a catcher tube moves in and out to select the cell type of 

interest at a maximum rate of 500 cells per second. The performance of the catcher 

tube technology is still inferior to the stream-in-air one, however, it has the 

advantages that does not require a dedicated operator and is more suitable for 

hazardous samples (Davies, 2007). 

1.3.2 Panel design 

The process of choosing the antibodies, fluorophores and flow cytometry settings 

for answering a specific biological question is called panel design. The main 

challenge of panel design is the ability of simultaneously measuring a large number 

of surface markers without losing specificity. This is not trivial as designing and 

optimizing panels for novel experiments with no background information might 

require several months and abundant resources.  

Compared to the earliest experiments where it was possible to measure only 1-2 

surface markers, it is now relatively easy to target 15 markers (Bendall et al., 

2012a). Moreover, with the increase of the number of fluorophores available and 
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the number of lasers installed in a flow cytometer, it is now possible to create 

panels that can measure up to 30 characteristics of a single cell. However, this is 

still a burden that even highly experienced researchers try to avoid if it is not 

strictly necessary. The reason for this is that fluorophores usually emit light within 

a large range of wavelengths, hence it is often impractical to exactly discriminate 

between two or more signals. 

Fluorophores 

Although in the past it was possible to excite only at a few wavelengths, this is not 

a limiting factor anymore. As noted in the section describing the optical system, 

the latest flow cytometry models are built with up to 5 lasers emitting light in the 

UV, violet, blue, yellow-green and red range with the possibility of choice among 

multiple wavelengths. Instead, the most limiting factor that is still present 

nowadays is the availability of fluorophores with desirable properties. An ideal 

fluorophore should be stable to environmental conditions, have a narrow emission 

wavelengths range and a large brightness. A useful parameter for fluorophores 

used in flow cytometry is the stain index. It gives a value proportional to the ability 

of the fluorophores to separate the positive population from the background noise 

(Maecker et al., 2004). It is formulated as: 

 ?@ = 	
A* − AB
2	1*

 (1.3) 

where A* and AB are the means of the negative and positive populations, and 1* is 

the standard deviation of the negative population.  

The temporal development of fluorophores for flow cytometry usage is depicted 

in Figure 1.6. They can be grouped in three broad classes: organic compounds, 

proteins, and quantum dots. The first fluorophore used in flow cytometry was the 

fluorescein isothiocyanate (FITC), an organic compound derived from fluorescein. 

It is approximately excited at 495 nm (blue color) and emits at 519 nm (green 

color). The first antibody labelled with FITC was generated in 1941 by Albert 

Coons and its group. However, the discovery of most of the fluorescent probes 

used nowadays is attributed to the company formerly called Molecular Probes 

founded in 1975, now owned by Thermo Fisher (Jameson, 2014). Widely used 
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organic compounds developed by Molecular Probes are Texas Red and the dyes 

of the Alexa Fluor family. Texas Red emits light in the far red, while Alexa Fluor 

dyes emits at wavelengths that span the entire light spectra. They are synthesized 

by the sulfonation of more traditional organic fluorophores with the purpose of 

making them more stable, brighter, and less pH-sensitive. Another family of 

organic fluorophores that have larger brightness compared to traditional 

compounds are the Brilliant violets dyes. They have been recently developed by 

Sirigen Ltd that is now owned by Becton Dickinson (BD).  

The fluorescent proteins commonly used in flow cytometry are either 

Phycobiliproteins or GFP-like proteins. Phycoerythrin (PE) and allophycocyanin 

(APC) are two phycobiliproteins in use for the last 25 years (Figure 1.6). They are 

still widely used because they are stable, can be stored for long periods of time and 

have high quantum yield (Murphy and Lagarias, 1997). Fluorescent proteins of the 

GFP-like family are instead isolated from various sea animals, such as the jellyfish 

Aequorea Victoria and have been used primarily in fluorescence microscopy 

(Telford, 2007). The last class of relevant fluorophores are the quantum dots 

 

Figure 1.6 Fluorophores used in flow cytometry from 1970 to 2010. Figure taken from (Bendall 
et al., 2012b). 
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(Qdots). They are nanocrystals made of semiconductor material and they have 

recently proved to have excellent fluorescent properties. They have almost all the 

desirable properties as they are bright, have narrow emission, and high 

photostability (Chattopadhyay et al., 2006). 

To increase the number of available options, a strategy often used is to covalently 

bind two fluorophores where one is the donor and the other one is the acceptor. 

The donor molecule is excited by the laser, and its emission light excite the 

acceptor molecule that is then recorded by the detector. They are referred to as 

tandem dyes, they have often the advantage of a larger Stroke Shifts compared to 

single dyes. However, they are generally less stable as they tend to degrade more 

quickly if exposed to light, to oxygen radicals or to temperature variations.  

Optimization 

The reason why designing a panel is not a trivial process is that the researcher has 

to keep in mind the properties of the fluorophores and the instrument in use. In 

some cases, also the affinity of specific antibody clones for the targeted antigen is 

a crucial matter and it requires thorough testing. Besides the knowledge of 

experiment components, other optimization steps for panel design are antibody 

titration and the implementation of different types of controls.  

There are few tips that need to be taken in consideration when choosing the 

fluorophores. For example, the antigen with higher density should be combined 

with a less bright fluorophore (Hulspas et al., 2009). Another suggestion is to avoid 

using two fluorophores with spectral overlap for antigens expressed on the same 

cell type. However, the same fluorophore can be used for antigens expressed in 

two different cell types if they can be distinguished by other lineage markers.  

After the antibody clones conjugated with fluorophores have been chosen for the 

targeting of specific antigens, they have to be titrated. This step is also fundamental 

as either low or large amounts of antibodies would cause loss of sensitivity. With 

too few antibodies not all the antigen will bind to an antibody. With too many 

antibodies, instead, the background signal would increase because of a higher 

chance of having non-specific binding. The antibody titration should be performed 

any time a new lot of antibodies is purchased and for any type of sample. It is 
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important that time, temperature and cell concentration are kept constant during 

titration (McCarthy, 2007). 

Several types of controls have been developed in order to optimize various aspect 

of a flow cytometry panel. Three steps are generally fundamental for designing 

new panels: 1) setting the voltage of optical detectors, 2) compensation for spectral 

overlap, 3) setting threshold to each negative population (Maecker and Trotter, 

2006). The first step is done by using unstained cells or beads. If auto fluorescence 

values produce high signals, the voltage applied should be lowered while making 

sure that dim populations still produce a positive signal. The second step is done 

with a series of controls generally referred to as single stain controls. It consists of 

staining aliquots of a sample or beads with one fluorophore at a time and verify 

the spillover in all the channels. This will allow to subtract the spillover values 

from each channel with a procedure called compensation. The third step can be 

done with the fluorescence-minus-one (FMO) control, where aliquots of a sample 

are stained with a set of fluorophores comprising the full panel minus one 

fluorophore. This allows the verification of the values given by the negative 

population in the missing channel. The isotype control is also a common type of 

controlling methodology, and it consists of using antibodies that are affine to an 

irrelevant antigen. The antibody has to be an isotype of the one used to bind the 

antigen so that it is able to reveal any non-specific binding to the constant region 

of the antibody. However, this method has been criticized since numerous isotype 

controls widely used are not reliable (Maecker and Trotter, 2006). 

Compensation 

The data processing step aimed to remove the spillover of fluorophores from each 

channel is called compensation. The procedure is a matrix algebra operation where 

a compensation value specific for each fluorophore is subtracted to the signal 

recorded by the detector in order to obtain a better estimate. Tung et al. (2004) 

formulated the matrix operation of compensation for four fluorophores as: 
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where D stands for dye and it represent the value recorded for each fluorophore, 

M is a factor that accounts for the spillover, and S is the new estimated signal.  

The single stain controls are fundamental to calculate the spillover caused by each 

fluorophore on each channel. The compensation values (M values) to use in the 

equation (1.4) are calculated by inverting the spectral overlap values derived from 

the single stains. The current flow cytometry instruments automatically calculate 

the compensation values and apply them to the uncompensated data. Earliest 

procedures consisted of manually compensating the values by looking at 

logarithmically transformed data. However, this is highly error-prone as in 

multicolor experiments it is impractical and often impossible to simultaneously 

adjust for the spillover of all fluorophores (Herzenberg et al., 2006). 

1.3.3 Gating 

The procedure of characterization of cell populations from flow cytometry data is 

referred to as gating. It consists of delineating the cells that correspond to a specific 

cell type from biplots of two antigens. Gating is generally performed manually by 

using software that provide a graphic user interface, such as flowJo, FACSDiva or 

FCSExpress. However, the development of computational algorithms for 

automatic gating have been recently promoted so that the data analysis can become 

more efficient and reliable. 

To select a cell population of interest from a multicolor panel, it is often necessary 

to perform multiple sequential gating steps. A strong immunological knowledge is 

necessary for the characterization of particular cell types. Generally, cell types 

with low frequency require more gating steps for their identification as they are 

only revealed after the exclusion of more abundant cell types. However, there are 

few initial gating steps that are equal for any panel of surface markers.  
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The first common gating steps consists of plotting each fluorophore versus time 

(Figure 1.7). Ideally the pattern of values should remain constant over time. Any 

irregularity in the fluidic, optical or electronic system might be detected in this step 

and gated out. The second step consists of the removal of doublets. A way to 

achieve this is by plotting FSC-A versus FSC-H, with A and H being the measure 

of the area and the height of a cell, respectively. All events that have an area larger 

than the height are possibly derived from a clump of cells, generally called 

doublets, that passed through the interrogation point. The single cells are then 

filtered by gating only the events that have similar FSC-A and FSC-H. A third step 

consists on removing all the debris. By plotting FSC-A versus SSC-A, all the 

values below a threshold, that is usually around 50,000 for the present-day 

instruments, are considered not to be cells as they are too small. Moreover, from 

the same plot it is expected to detect three major immune cell populations with 

distinct morphological features of a whole-blood sample, i.e. lymphocytes, 

monocytes and granulocytes. Lymphocytes are the smallest cells with no 

granularity, monocytes are the largest cells with low granularity, while 

granulocytes have an intermediate size and high granularity (Figure 1.7). 

Additional gating steps for cleaning the data are the removal of dead and unwanted 

cells. Dead cell can be stained by using dyes that penetrate through damaged 

membranes and that bind to either DNA, such as DAPI and 7-AAD, or free amines 

in the cytoplasm, such as dyes of the LIVE/DEAD® family (Perfetto et al., 2010). 

To identify unwanted cells, instead, a single fluorophore can be dedicated to stain 

specific lineage markers. For example, for the identification of B cells and classical 

monocytes, the same fluorophore can be used to target CD19 and CD14. The 

channel used for gating out unwanted cells is generally called dump channel. 

 

Figure 1.7 Initial standard gating steps for cleaning the data from technical anomalies (first 
gate), clump of cells (second gate) and debris (third gate). The last gate shows how to select the 
three major cell types from forward and side scatter channel.  
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After the pre-processing gating steps the data should be clean of technical 

anomalies, doublets, debris, dead and unwanted cells. As stated before, using 

information on size and granularity obtained from forward and side scatter light 

makes it possible to discriminate only among the three major cell types 

lymphocytes, monocytes and granulocytes. Any other cell type can only be 

distinguished by fluorescent signal of labelled markers. There are a set of lineage 

markers that are routinely used to recognize major immune cell types. For 

example, the leucocyte common antigen, CD45, is expressed on all leucocytes, 

CD3 on T cells, CD19 on B cells, CD56 on NK cells and CD14 on classical 

monocytes. Other cell types can be recognized only through a specific combination 

of markers, since a surface marker is generally expressed on multiple cell types.  

Recognizing cell populations can be a complex task as there is not always a clear 

separation between two cell types. Instead, often there is an indefinite number or 

intermediary cells that give a continuum of surface marker signals. It is not always 

clear how to place a gate and, when multiple sequential gating steps are performed, 

it is difficult to keep track of previous gates. A solution offered by most of the 

current software is backgating. The gate used to define the final cell population 

can reveal all the events that have been gated out in the previous gates. This 

strategy helps verifying if there are precedent gates whose stringency should be 

adjusted.  

1.3.4 Research and clinical relevance  

At the beginning of this chapter I already stated the importance of flow cytometry 

in the characterization of immunological conditions. I also claimed that over the 

last decades it never succumbed to newer technologies, but rather has been 

increasingly adopted for new research and clinical applications. Flow cytometry, 

together with equipment like centrifuges and PCRs, is often considered an 

essential member of a laboratory asset.  

In research settings, besides the immunophenotyping of immune cells via the 

characterization of surface markers, flow cytometry can be used to scrutinise also 

molecules in the cytoplasmic and nuclear compartments (Adan et al., 2017). For 

example, it is possible to measure cell viability through fluorochromes that enter 
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disrupted cells and stain organelles or other cell components. Apoptotic processes 

are also detectable through different approaches, such as the detection of active 

caspases, under-expression of Bcl2, or DNA fragmentation. Other essential 

intracellular detections are the measurement of the telomere length, intracellular 

cytokines and cell cycle stages (Lauzon et al., 2000; Pozarowski and 

Darzynkiewicz, 2004; Adan et al., 2017). 

In clinical settings, flow cytometry is invaluable for the diagnosis of certain 

pathologies. Here, both intracellular and extracellular measurements can be used 

as indicators of the pathologies. For example, the detection of an increase in DNA 

content can be associated with malignant cells. Moreover, together with 

immunophenotyping information, it is possible to identify the immune cell type 

that are tumorigenic (Betters, 2015). Often, a particular immune disease can more 

simply be associated with an imbalanced proportion of immune cell types. For 

instance, granulocytosis and neutropenia are respectively detected by an 

abnormally large number of granulocytes and an abnormally low number of 

neutrophils. An HIV infection is associated with substantial loss of CD4+ T cells 

and immune deficiencies in general need to be treated according to the leucocyte 

subsets that is absent within the immune system (Oliveira and Fleisher; Virgo and 

Gibbs, 2012). As reported in the section describing the immune system, an 

inversion of CD4/CD8 ratio is indicative of immunosencence. 

Beside the diagnosis of cancers and immune deficiencies, other clinical 

applications that benefit from flow cytometry are cell therapy and pre-transplant 

cross-matching (Jaye et al., 2012). 

1.3.5 Computational approaches 

Flow cytometry is a technology originally born to produce data for only few 

markers, hence immunologists used to analyze the data using 2D plotting and other 

basic visualization methods. The technology, however, has substantially improved 

since its inception and nowadays it is possible to analyze up to 30 markers at a 

time in a single experiment. Therefore, traditional methods of data analysis are 

becoming increasingly laborious, error-prone and poorly reproducible. 
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Recently, several computational tools have been developed in order to analyze 

Flow Cytometry Standard (FCS) data in an automatic or semi-automatic way and 

a wide range of tools have been distributed by Bioconductor. The essential package 

is flowCore as it enables to perform basic manipulations on FCS files such as 

importing, compensation and transformation (Hahne et al., 2009). Consequently, 

a series of complementary packages have been developed providing the possibility 

to perform further operations, such as visualization, quality assessment, statistical 

analysis and automated gating. Notably, the SPADE and flowSOM algorithms can 

create tree structures whose nodes are populations identified in an unsupervised 

manner (Qiu et al., 2011; Van Gassen et al., 2015). Also, the packages CYT and 

CytofKit provides a plethora of methods for performing dimensionality reduction, 

such as PCA and tSNE, and clustering on both flow and mass cytometry data 

(Amir et al., 2013; Chen et al., 2016).  

To improve and promote the computational methods for flow cytometry analysis, 

a competition, flowCAP, on the most recent software is periodically held 

(Aghaeepour et al., 2013). The flowCAP challenges demonstrated that the 

computational approaches now available are sufficiently mature to give accurate 

and reproducible automatic gatings. Moreover, computational approaches can 

delineate new immune cell types from multiparametric data and correlate them 

with clinical outcomes in an unbiased and efficient manner that is superior to 

manual analysis (Aghaeepour et al., 2016).  

1.4 Research questions 

My thesis focuses on developing and employing computational approaches, 

mainly for the understanding of the immune system but also for other aspects of 

biomedical research. The computational approaches treated here cover various 

aspects of immunoinformatics, ranging from methods that answer questions with 

a biological emphasis to questions that consider only technical aspects of data 

analysis. My goal was to intersect experimental immunology and computational 

approaches by equally balancing my interest for both subjects. Hence, with the use 

of two kinds of data commonly produced by biomedical research labs, flow 

cytometry and gene expression, I addressed topics for both biological and technical 
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areas of interest with an inclination towards the advancement of immunological 

knowledge. 

Chapter 2 focuses on the understanding of evolutionary differences between 

human and mouse using large scale data. This was driven by the fact that numerous 

studies are conducted in mice for convenience but only few can be translated to 

human due to unknown evolutionary differences. Using gene homology 

information and co-expression networks built from gene expression data of human 

and mouse samples I set up four conservation parameters applicable to gene sets. 

Essentially, the four parameters are four different ways to measure the 

evolutionary distance of a gene set. Hence, the main questions addressed are: 

which pathways, tissues and/or diseases are conserved in terms of co-expression, 

network connectivity and homology? In more detail, which processes of the 

immune system are the most similar and which are most dissimilar between mouse 

and human? 

Chapter 3 reports the development of a quality control tool to advance automation 

and standardization of flow cytometry data analysis. In recent years, flow 

cytometry slowly joined the family of high-throughput technologies but its data 

analysis continues to be prevalently manual and subjective. There is still a lack of 

bioinformatics algorithms capable of handling the increase in data output of flow 

cytometry. My contribution consists of the development of a bioinformatics tool 

capable of detecting and removing anomalies from flow cytometry data. It 

addresses the questions: is it possible to discern anomalies from flow cytometry 

data in an unbiased way? Is it possible to make this process automatic? 

Chapter 4 contains both technical and biological insights as I used RNA-Seq data 

from 29 immune cell types to address questions on gene expression heterogeneity, 

mRNA composition, and deconvolution. Immunological research is generally 

done on mixed immune samples, and there is still a poor understanding of the 

contribution of specific cell types to the generation of high-throughput 

transcriptomic data. The questions I address in this chapter are: how do 

transcriptomic profiles differ between different immune cell types? What is the 

best strategy to account for differences in mRNA yield when normalizing for gene 
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expression data? To what extent can we trust the deconvolution algorithms 

available and which are the immune cell types more suitable for this approach?  
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Chapter 2 Evolutionary differences between 

human and mouse tissues, pathways and 

diseases with a focus on the immune system 

using co-expression and genomic information 

The work presented in this chapter has been extended from the publication below 
in which I was the first author. 

Monaco G, van Dam S, Casal Novo Ribeiro JL, Larbi A, de Magalhães JP. A 
comparison of human and mouse gene co-expression networks reveals 
conservation and divergence at the tissue, pathway and disease levels. BMC 
Evol Biol. 2015 Nov 20;15:259. doi: 10.1186/s12862-015-0534-7  
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2.1 Introduction 

The divergence of mice and humans from a common ancestor occurred 

approximately 90 million years ago (Hedges et al., 2006). Because of close 

evolutionary affinities with the human species and because of numerous properties 

that facilitate its handling, the mouse has been used as an animal model in 

biomedical research to study mammalian development, diseases and to test drugs 

for over 50 years (Ueda et al., 2006; Van Dam and De Deyn, 2011; Cheon and 

Orsulic, 2011). Although there has been great progress in understanding the 

genetics, anatomy and physiology of the mouse, the attrition rate of compounds 

efficacious in mouse models that fail in the Phase II clinical trials is still high 

(Arrowsmith, 2011). This evidences the lack of a comprehensive knowledge of the 

molecular differences between mice and humans and limits the translation of 

mouse studies to humans (de Magalhães, 2014). 

Similarities and differences between mice and humans have been studied at 

different levels and more recently, research at a molecular level has benefitted 

from the application of high-throughput technologies. On the one hand, about 90% 

of the human and mouse genome regions have comparable synteny and 

orthologous genes have 78.5% of amino acid identity (Waterston et al., 2002). On 

the other hand, both lineages have undergone gene duplication in their evolution 

and, for example, genes related to olfaction, immunity and reproduction expanded, 

suggesting an extended functionality, in the rodent lineage (Waterston et al., 

2002).  

Liao and Zhang performed a large scale microarray analysis to evaluate the 

divergence in gene expression between mice and humans, reporting that only 16% 

of the human-mouse orthologous genes have expression profiles as divergent as 

random genes (Liao and Zhang, 2006). Zheng-Bradley et al. (2010) conducted a 

principal component analysis (PCA) on a merged dataset, containing gene 

expression data from mouse and human tissues, in order to capture the factors that 

mostly account for the variability of the dataset. Among the great heterogeneity of 

experimental conditions, the orthologous genes clustered in the top principal 

components according to tissue specificity, in particular liver, muscle and nervous 
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cells, indicating a strong similarity of gene expression profiles between mice and 

human tissues (Zheng-Bradley et al., 2010). Nevertheless, whether the gene 

expression patterns cluster by tissues or by species was recently questioned and it 

seemed to be mostly related to the data available instead of the methodology used 

(Lin et al., 2014). This might be caused by the presence of both tissue and species 

specific genes, and the dominance of one of the two sets determines the clustering 

patterns (Breschi et al., 2016). 

Another powerful approach utilizing transcriptomic resources is the construction 

of co-expression maps (Wren, 2009). For a collection of samples, the gene 

expression profiles of pairs of genes are compared using a similarity metric. 

Consequently, a threshold on the similarity measure is selected in order to build a 

co-expression network where the nodes are the genes and the edges are the links 

between genes that are co-expressed (Leal et al., 2014).  

Numerous analysis approaches have been applied to co-expression maps to infer 

gene function information from single tissues, entire organisms or across species 

(Klomp and Furge, 2012; Hansen et al., 2014), but they are also employed to 

determine the differences and similarities between species (Stuart et al., 2003; 

Oldham et al., 2006). Tsaparas et al. compared the mouse and human co-

expression networks created from 28 shared tissues (Tsaparas et al., 2006). They 

firstly investigated the topology of the networks showing the conservation of the 

scale-free properties at a global level but high dissimilarity of the co-expression 

patterns of orthologous genes. Secondly, the functional similarity of co-expressed 

gene pairs were significant compared to randomized networks and specific genes 

of the immune systems and sexual reproduction were highly interconnected 

although this two classes are known to be more prone to positive selection 

(Tsaparas et al., 2006). 

Other research based on a comparison of co-expression maps of human and mouse 

brain tissue showed that gene interactions were highly conserved in the nervous 

system and revealed a cluster of genes specific to humans for Alzheimer’s disease 

(Miller et al., 2010). Analysis of co-expression maps can also reveal the preserved 

interactions in sets of genes known to be associated with a certain condition or 

function (Netotea et al., 2014), and using a method based on conserved co-
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expression has recently listed the most diverged and conserved GO categories 

(Yue et al., 2014).  

The current challenge is to explore and derive biological meaning from the vast 

amount of potentially informative data available. A small number of genome-wide 

scale analyses focused on the evolutionary aspects determining differences and 

similarities between mice and humans have been conducted, often relying on a 

limited number of orthologs and on small condition-specific datasets for the 

comparison. In addition, only few results were confirmed in multiple works, such 

as the gene expression conservation of the brain (Liao and Zhang, 2006; Chan et 

al., 2009; Miller et al., 2010), the highest divergence rate in testis (Chan et al., 

2009; Brawand et al., 2011; Necsulea and Kaessmann, 2014), and the high number 

of functional duplicated olfaction-related genes in mice (Gilad et al., 2003; Young 

et al., 2002).  

Regarding the immune system, no definitive conclusions have been made 

regarding its conservation. It has been shown that, the overall architecture of the 

immune system and the tissue morphology is well preserved (Haley, 2003). 

However, at the molecular level it has been reported that both the genomics and 

transcriptomics are overall diverged (Waterston et al., 2002; Yue et al., 2014). 

Similarities and differences have been studied (Mestas and Hughes, 2004; 

Mingueneau et al., 2013), but they are not exhaustive as they are done on candidate 

genes or relatively small datasets and some of the findings could not be 

reproduced. 

I believe that the use of co-expression maps built on an ample number of gene 

expression datasets would give a more comprehensive and reliable understanding 

of the degree of functional homology between mouse and human processes. The 

envisioned outputs include the following: 1) understand the relationship between 

different biological systems; 2) identify the best working models to dissect specific 

mechanisms; 3) reducing the attrition rate in Phase 2 studies; 4) provide hypothesis 

in growing health issues and research fields such as aging, dementia or metabolic 

diseases. 
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Therefore, I compared and contrasted human and mouse co-expression maps, 

obtained from GeneFriends (van Dam et al., 2012), an online tool entailing a co-

expression analysis of over 60,000 microarray samples using the latest homology 

annotation on approximately 16,000 genes. I explored the co-expression maps on 

a systems-level view primarily using a new parameter of conservation based on 

the number of commonly co-expressed genes (CCG) between humans and mice. 

Hence different biological aspects were considered, such as the association of the 

conservation of co-expression connectivity with selective pressure, patterns of 

duplications after speciation, functional enrichment in genes with conserved and 

diverged co-expression connectivity, and the evolutionary changes in 30 different 

tissues, 1,930 pathways and 208 diseases. This analysis led to the identification of 

gene interactions conserved through the two species independently of tissue, age, 

gender, health status and stimuli. 

2.2 Methods 

2.2.1 Data collection  

Co-expression networks of humans and mice were obtained from GeneFriends 

version 3.0 (van Dam et al., 2012). They were built using microarray data from 

3571 sets for the human map and 4164 sets for the mouse map 

(http://genefriends.org/about/), that in both cases they correspond to 

approximately 60,000 microarray chips and 20,000 experimental conditions. 

The human and mouse co-expression maps contain information on interactions 

among 19,727 and 22,766 genes respectively labelled with Entrez Gene identifiers 

(Genome assemblies: GRCh38 for human and GRCm38 for mouse). Biomart 

Ensembl was used to retrieve the homologous gene pairs and the nonsynonymous 

(dN) and synonymous (dS) substitution values. Among the list of homologous 

pairs, 14,846 had a one-to-one orthologous relationship, 1,211 had a one-to-many 

orthologous relationship and 1,016 had a many-to-many orthologous relationship, 

adding up to 17,074 pairs of genes with sequence homology. 

The gene sets used to decipher the evolutionary pattern of tissues, pathways and 

diseases were retrieved from four different online sources. Lists of RefSeq IDs 
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specific for 30 human tissues have been retrieved from the TIGER database (Liu 

et al., 2008), and Biomart Ensembl was used to convert Refseq IDs in Entrez IDs. 

The genes were specifically expressed in at least one of 30 different tissues 

catalogued by TIGER: Bladder, Blood, Bone, Bone Marrow, Brain, Cervix, Colon, 

Eye, Heart, Kidney, Larynx, Liver, Lung, Lymph node, Mammary gland, Muscle, 

Ovary, Pancreas, Peripheral nervous system, Placenta, Prostate, Skin, Small 

intestine, Soft tissue, Spleen, Stomach, Testis, Thymus, Tongue, Uterus (Liu et al., 

2008).  

A total collection of 1,930 pathway gene lists were retrieved from the Reactome 

database (Joshi-Tope et al., 2005). The Reactome pathways are grouped in 26 

broad categories and within each category the pathways are hierarchically 

organized. All the pathways containing less then 3 genes were removed from the 

analysis for a total of 1,720 gene sets. 

The disease gene sets derive from of an accurate selection (Zhang et al., 2010) of 

gene related diseases formerly made for the Genetic Association Database (GAD, 

Becker et al. 2004). GAD contains gene records collected from the survey of 

publications on candidate gene studies and genome wide association studies 

(GWAS), but Zhang et al. selected only the genes positively associated with a 

disease and that were annotated with a MeSH term were included in the collection. 

Because GWAS studies are known to be hardly reproducible, a more stringent 

filtering was applied compared to the Reactome database and I removed the 

diseases reporting less than 10 genes. Hence, from the 1,317 diseases contained in 

the downloaded file, I continued the analysis with only 207 disease gene sets. In 

addition, I included an aging gene set retrieved from the GenAge database (build 

17, human dataset with 298 genes), for a total of 208 diseases gene sets (Tacutu et 

al., 2013).  

2.2.2 Statistical analysis and data distributions 

The R software was used to perform statistical analyses and other operations on 

the data (Supplement 1). The kruskal-wallis rank sum test, Spearman correlation, 

Mann Whitney U test, F-test, Fisher’s exact test and multiple test corrections have 

been performed using pre-built packages. The set of data used were tested for 
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normality with the Shapiro test and for skewness using the R package moments. 

For all the distributions, I rejected the null hypothesis of normality and I depicted 

right-skewness (dN/dS values: Shapiro test W=0.82 with p-value < 2.2e-16, 

skewness = 1.78; number of commonly co-expressed genes: Shapiro test W=0.96 

with p-value < 2.2e-16, skewness = 0.57; network connectivity in human: Shapiro 

test W= 0.65 with p-value <2.2e-16, skewness = 3.57; network connectivity in 

mouse: Shapiro test W= 0.57 with p values < 2.2e-16, skewness = 3.93). 

2.2.3 Number of commonly co-expressed genes and functional 

annotation analysis 

For each gene of both the human and mouse co-expression maps, I arranged the 

co-expressed genes by decreasing co-expression value and the top 5% co-

expressed genes were selected. Hence, because the two co-expression maps are 

different in size, for each human gene we obtained 968 genes and for each mouse 

gene 1,138 genes. Next, for each homolog I counted how many homologs 

commonly appeared as co-expressed in both the human and the mouse lists and I 

referred at it as number of commonly co-expressed genes (NCCGs). DAVID was 

used to perform the enrichment analysis (Dennis et al., 2003) on the two gene lists 

derived from the human counterpart of the top 5% and bottom 5% of homologous 

pairs ranked by the NCCGs. The clustering tool of DAVID was used to report the 

results using as background the entire set of homologous genes. GSEA analysis 

was performed in the pre-ranked mode using the “classic” option for the 

calculation of the enrichment score. 

2.2.4 Co-expression maps and construction of directed networks 

Co-expression maps have been created using a vote counting approach. Precisely 

it was counted how many times the expression of two genes were simultaneously 

increased or decreased across the different conditions of each dataset and the 

obtained value was normalized with how often the two genes were not co-regulated 

(van Dam et al., 2012). Genes that are regularly associated in any condition have 

higher co-expression value compared to genes associated with different genes in 

various conditions.  
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Subsequently, I built two directed networks from both the human and mouse co-

expression maps. For each gene, I retrieved all the top co-expressed genes using a 

percentage threshold. I chose the threshold of 1% since it allows more significant 

and detailed results in comparison to a higher threshold and, at the same time, it 

does not strongly reduce the sensitivity compared to a more stringent threshold as 

also argued in previous works (Ala et al., 2008; Pellegrino et al., 2004). Moreover, 

a percentage threshold instead of one based on co-expression values is preferable 

since I aim to compare data coming from species-specific array where the 

expression levels are incomparable given the different hybridization properties 

(Liao and Zhang, 2006).  

A network is mathematically defined by G=(V,E) where V is the set of nodes and 

E is the set of edges. The basic structure of a network is the adjacency matrix A(G) 

with an mxm size and, referring to our networks, the variable m is the number of 

genes, where Aij=1 if gene i and gene j are connected and Aij=0 otherwise. To 

obtain directed edges, also called arcs, where Aij≠Aji, I assigned a directed edge 

from the node i to the node j only if i is present among the top 1% of co-expressed 

genes of j. The building and the topological analysis of the two networks were 

performed in R, with custom scripts and the igraph package (Csárdi and Nepusz, 

2006). 

2.2.5 Differential connected genes and functional annotation 

analysis 

The number of edges attached to a node in a complex network is defined by 

connectivity or degree (k). Therefore, the number of nodes that interact with the i-

th node is evaluated in terms of adjacency matrix as:  

 HI = 	 (JIK)
L

KM'

 (2.1) 

Considering that I have two biological networks based on homologous genes 

between mouse and human where each node represents a gene, I defined k1(i) and 

k2(i’) the connectivity of the homologous genes in the human (1) and mouse (2) 

networks, respectively. The connectivity values were normalized in respect to the 
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size of the networks since they are built using a percentage threshold and the total 

number of genes is different in human and mouse.  

To calculate the differential connectivity values, I divided the connectivity 

numbers of each homolog by each other adding 10 in both the terms of the division 

in order to reduce the disproportionate fold change in connectivity among low 

values:  

 DNOOP N, NQ = (P' N + 10)/	(P2 NQ + 	10) (2.2) 

To better handle the differential connectivity values, I calculated the negative 

reciprocal for values comprised between 0 and 1, and later I subtracted 1 to positive 

values and added 1 on negative values. In this way, genes with a value greater than 

0 are more connected in human while genes with a value less than 0 are more 

connected in mice. To obtain differential connectivity values, we also tested the 

logarithm fold-change of the connectivity values and it gave similar results. 

As for the genes ranked by the number of commonly co-expressed genes, I 

performed an enrichment analysis with DAVID ranking our dataset according to 

the value of differential connectivity and using the top 5% and bottom 5% of 

human homologs for the DAVID cluster analysis. The top 5% of genes correspond 

to the homologs with higher connectivity in human, while the bottom 5% of genes 

correspond to the homologs with higher connectivity in mouse. 

2.2.6 Tissue, pathway and disease analysis 

The analysis on tissues, pathways and diseases gene sets was performed in the 

same way. For each gene set I reported four different parameters describing 

evolutionary aspects: (i) the conservation of co-expression in terms of the number 

of homologs commonly co-expressed, (ii) differential connectivity, (iii) ratio of 

duplication events and (iv) the ratio of non-homologous genes (Figure A.1). 

(i) The conservation of co-expression and (ii) the differential connectivity of a gene 

set was calculated using a Mann Whitney U test on the values of each gene set and 

the remaining genes. As a measure of variation, I used the median of the difference 
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between a sample of values of the gene set and a sample of values of the remaining 

genes.  

(iii) The ratio of duplication events and (iv) the ratio of non-homologous genes of 

each gene set were tested using the Fisher’s exact test. (iii) The proportion of 

duplicated genes of a gene set was compared with the proportion of duplicated 

genes in the remaining genes, and in a similar way (iv) I compared the proportion 

of non-homologous genes. 

The genes co-expressed with each gene set were retrieved in the following way. 

The re-occurring of a commonly co-expressed gene among the homologs of a gene 

set was calculate in terms of relative frequency. To assess the significance of 

association of a gene with the gene set, a permutation analysis with 1,000 iteration 

was performed on a number of homologs equal to the size of the gene set that were 

randomly selected from the entire dataset. The p-values were determined as a 

fraction of permutation values that are at least as extreme as the original value. 

Lastly, the multiple testing correction using Benjamini & Hochberg method was 

applied for each set of p-values. 

2.3 Results  

I obtained and analysed the human and mouse co-expression maps from 

GeneFriends v3.0 (van Dam et al., 2012). These maps have been constructed from 

the expression levels of 19,727 human genes in 4,164 datasets and 22,766 mouse 

genes in 3,571 datasets from the GEO database (Barrett et al., 2007). The co-

expression maps contain a co-expression value for each possible gene-pair, i.e. a 

measure of gene expression similarity given by the frequency a pair of genes is 

differentially up- or down-regulated together in all datasets (van Dam et al., 2012). 

2.3.1 Homologous relationships and molecular evolution rates 

To establish evolutionary differences and similarities between the human and 

mouse co-expression maps, I performed the analysis using the fraction of genes 

that have a homologue in both humans and mice, corresponding to 16,080 unique 

genes in humans and 16,463 unique genes in mice. Homologous genes can be one-
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to-one orthologs when they have an unequivocal relationship, but also one-to-

many or many-to-many orthologs, which occur when a duplication event, after 

speciation, leads to the formation of multiple genes (paralogs) with similar 

function or sequence in one or both species (Koonin, 2005). In the dataset, 14,846 

genes were one-to-one orthologs, while the remaining mouse and human homologs 

had a one-to-many or many-to-many relationship (see Methods).  

One aspect of species evolution is the magnitude of natural selection that acts on 

protein-coding sequences indicated by the dN/dS ratio (Yang and Bielawski, 

2000). The homologous gene lists and the dN and dS values were retrieved from 

Biomart Ensembl (Methods) and, to evaluate the impact of duplication events on 

the coding sequence divergence of humans and mice, I compared the dN/dS ratios 

of homologous genes with different types of homology (Figure 2.1). As expected, 

one-to-one orthologs have the lowest dN/dS ratio which progressively increases in 

one-to-many and many-to-many orthologs.  

 

Figure 2.1 Comparison of the distribution of dN/dS values among homologs with different 
orthologous relationships, accordingly one-to-one, one-to-many and many-to-many. The 
Kruskal-Wallis test was used to determine that the three distribution are significantly different 
(Kluskal-Wallis chi-squared = 1366, df =2, p-value = 1.66e-297), and a post hoc analysis (Mann-
Whitney test and Bonferroni correction) revealed that all the pairwise comparisons were 
significantly different. 
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Consequently, considering the higher likelihood for duplicated genes to have 

diverged, the subsequent analysis in this work have been performed using both the 

entire sets of genes and one-to-one orthologs only, and we reported relevant 

differences when necessary.  

2.3.2  Commonly co-expressed genes in humans and mice 

As a first step in comparing the mouse and human co-expression maps, the 

conservation of co-expression connectivity for each gene was determined. For this 

analysis, all the orthologous relationships were used. For each gene, I selected its 

top 5% of co-expressed genes from the human and mouse maps and determined 

the number of overlapping homologs, that I called number of commonly co-

expressed genes (NCCGs), see Supplement 2. The percentage threshold of 5% 

was determined to be the best choice among the tested values from 1 to 10%, even 

though the selection of other thresholds would not have considerably changed the 

results (Figure 2.2).  

I first tested the hypothesis that non-synonymous substitutions on protein coding 

genes influence the conservation of co-expression connectivity. To do so, I 

determined the Spearman’s correlation between the NCCGs in humans and mice 

with the dN/dS ratio values. As expected, a negative correlation was found, with a 

very similar correlation coefficient both when using the entire set of homologous 

pairs (rho= -0.19, p-value= 1.24e-134) and only one-to-one orthologs (rho= -0.14, 

p-value = 4.04e-65, Figure 2.3). A p-value was also re-calculated using a 

permutation test with 10,000 iteration and it confirmed the trend (p-value < 1e-04 

in both cases). Co-expression connectivity changes are more likely in genes 

undergoing faster molecular evolution changes. 

Homologs that have high or low NCCGs can reveal which pathways and molecular 

functions are more or less conserved between the two species. To investigate this, 

genes were then ranked according to the NCCGs and the top 5% and the bottom 

5% of the ranked list were selected for functional enrichment analysis using 

DAVID (Dennis et al., 2003). The results show that genes with the strongest  
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conserved co-expression connectivity are mainly operating in the extracellular 

matrix as they are involved in functions like signal transmission, cell adhesion, 

immune response and chemotaxis (Table 2.1). On the other hand, genes with the 

least conserved co-expression are associated mainly to sensory systems, in 

particular olfaction and gustatory system, and in the nucleus, as supported by the 

fact that the strongest enrichment is for several zinc finger domains, which are 

embedded in transcription factors and allow the establishments of contacts along 

the DNA (Table 2.1, Supplement 3: sheets 1-2). 

To uncover inconsistencies due to the inclusion of one-to-many and many-to-many 

orthologs, I performed the same DAVID analysis using only one-to-one orthologs. 

The main difference in this analysis is the emerging of transcription regulation 

terms as significantly enriched for the bottom 5% genes (Supplement 3: sheets 3- 

 

Figure 2.2 Comparison of thresholds used to retrieve the number of commonly co-expressed 
genes (NCCGs). Threshold percentages from 1 to 10 were used to retrieve the NCCGs from the 
human and mouse co-expression maps (Methods). The number of CGGs for each threshold was 
correlated (Spearman’s method) with the number of CGGs found with other thresholds. The mean 
and standard errors of the correlations of each threshold with the other ones is reported on the y-
axis. Following the line of the chart, it can be observed that the best threshold selection is 5% 
since it correlates the most with the other percentage thresholds. The mean correlation value was 
found to be no lower than 0.93, indicating that the choice of the threshold does not substantially 
influence the ranking of homologs in terms of NCCGs.  
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4). Because the choice of a percentage threshold of 5% was arbitrary, I also 

employed GSEA (Subramanian et al., 2005) and reported in Supplement 3 (sheets 

5-8), though results were similar. 

 

 

 

Figure 2.3 Comparison of the NCCGs among homologs divided in equally sized bins generated 
according to quartiles of dN/dS values. The black boxes represent the entire set of homologous 
pairs, while the grey boxes represent the subset of homologous pairs with a one-to-one 
relationship only. The range of dN/dS values in the x-axis are indicative of both sets of genes, 
and they were obtained by summing and then averaging corresponding quartiles. The choice of 
four bins was arbitrary but equal trends were obtained dividing the value in 10 bins or from a 
linear regression line fitted to the data (data not shown). 
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Table 2.1 DAVID analysis of the top and bottom 5% of homologous human genes ranked by 
the NCCGs. In the table are reported the key components selected from functional clusters 
that obtained an enrichment score greater than or equal to 4 (see Supplement 3 for the full 
results). 

Homologs with conserved connectivity 
Enrichment Score Functional annotation Benjamini 

33.66 
Signal peptide  1.22E-36 
glycoprotein 2.32E-35 
disulfide bond 3.56E-27 

27.85 Cell adhesion 5.67E-27 
19.52 Extracellular matrix 5.75E-18 

10.95 Response to wounding 1.84E-12 
defense response 4.18E-08 

9.40 Basement membrane 7.21E-07 

8.78 glycosaminoglycan binding 2.06E-08 
polysaccharide binding 2.68E-08 

8.27 plasma membrane part 6.18E-13 
8.03 topological domain: Extracellular 3.45E-12 
6.98 Immunoglobulin domain 1.47E-13 
6.75 Cell motion 1.29E-07 
6.29 Chemotaxis 7.33E-06 
6.27 EGF-like region, conserved site 1.46E-09 

4.26 Hydroxylysine 2.82E-09 
Collagen triple helix repeat 6.18E-06 

4.09 Cytoskeletal protein binding 2.10E-04 
Homologs with diverged connectivity 

Enrichment Score Functional annotation Benjamini 

7.09 
Zinc finger, C2H2-like 2.30E-10 
DNA binding 2.00E-05 
Transcription 4.99E-05 

6.48 
sensory perception of chemical 
stimulus 

4.00E-13 

olfactory receptor activity 2.57E-11 
4.24 Mammalian taste receptor 2.16E-05 
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2.3.3 Exploring gene co-expression connectivity using directed 

networks 

To further explore and compare gene co-expression connectivity between mice 

and humans, I extracted directed networks from the co-expression maps. For the 

directed networks, each node corresponds to a gene and each arc indicates a pair 

of co-expressed genes. Directionality to each edge was given if one gene of the 

pair was co-expressed to the other one but not vice versa (see Methods).  

Network topology 

The global topology of biological networks has been shown to have a scale-free 

behaviour that follows a power law distribution, which is expressed 

mathematically as S H ~	HUV (Barabási and Oltvai, 2004; Stelzl et al., 2005; Zhu 

et al., 2007). In scale free networks, nodes are not randomly connected, but rather 

display a tendency to connect to nodes that have many links. Therefore, the 

topology of the network is dominated by a small number of nodes with high 

connectivity, called hubs, and a large number of poorly connected nodes (Barabási 

and Albert, 1999). As previously demonstrated (Tsaparas et al., 2006), the power 

law distribution fits the data, the topology of the networks was similar in mice and 

humans and no relevant differences could be observed (Figure 2.4).  

 

Figure 2.4 Log-log plots of the degree distributions of (a) human and (b) mouse networks. Both 
cases follow a power law distribution with no relevant topological differences. The parameters 
of the power law distribution are the exponent (y) and the minimum connectivity value k (kmin), 
which have been estimated for both networks (y=-3.552 and kmin=1091 for the human network; 
y=4.158 and kmin=1707 for the mouse network). 
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Relation of network connectivity with number of commonly co-

expressed genes and dN/dS values.  

The scale-free behaviour of the human and mouse networks indicates that the 

network connectivity among genes is characterized by an exponential trend line. 

Therefore, the diverse connectivity of genes in a network might have an effect on 

the number of interactions that result to be conserved among two species. For this 

reason, I performed a Spearman’s correlation between the NCCGs and the network 

connectivity of the genes in mice and humans, obtaining in both cases a positive 

association (human: rho= 0.34, p-value < 5e-324; mouse: rho= 0.32, p-value < 5e-

324). Nevertheless, there is a positive correlation between connectivity values and 

dN/dS values (human: rho= 0.06, p-value= 1.022e-15; mouse: rho= 0.08, p-value 

= 8.17e-29), that vanishes in humans and becomes weaker in mice if using only 

ono-to-one orthologs (mouse: rho= 0.048, p-value = 6.61e-07) but that increases 

if using one-to-many and many-to-many only (human: rho= 0.20, p-value= 1.45e-

21; mouse: rho= 0.13, p-value = 2.72e-09) showing that after duplication events 

the new genes may play pivotal roles in establishing new species-specific co-

expression connections. A permutation analysis confirmed the significance of the 

results for all cases (p-value < 1e-04). 

Loss or gain of co-expression connectivity in mice and humans 

From an evolutionary perspective, to evaluate the changes in network connectivity 

between mice and humans, I calculated a value of differential connectivity for each 

gene. The values were obtained by dividing the two network connectivity values 

of each orthologous pair (Methods and Supplement 2). The range of connectivity 

values is generally similar in human and mouse across the different orthologous 

categories apart from the non-homologous genes where we notice an increased 

connectivity in mice compared to humans (Figure 2.5).  

I ranked the homologs according to the differential connectivity values and, as for 

the previous analysis, I selected the top and bottom 5% from the entire list to 

perform the functional enrichment analysis. Genes with higher connectivity in 

humans are members of tumor-specific antigens (MAGE) and keratin family, and 

enrich functions involved in signal transmission and immune response mediated  
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by INF-α. Genes more connected in the mouse are largely related to olfactory 

activity, revealing that the divergence of this pathway is related to an increased 

functionality in mouse (Table 2.2, Supplement 4). The DAVID analysis was 

repeated using only one-to-one homologs and I noticed the absence of the 

annotations related to the interferon alpha and to the MAGE protein (Supplement 

4). 

 

 

 

 

 

 

Figure 2.5 Network connectivity in different categories of genes defined on the basis of 
homology relationship between mouse and human. In the figure, the central symbol indicates 
the median and the error bars extending from the symbols indicate the interquartile range. The 
network connectivity generally extends in a similar range for the gene categories, apart from the 
non-homologous genes which shows an overall increase in connectivity in the mouse species. 
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2.3.4 Conservation and divergence of immune system gene sets 

and others related to tissues, other pathways and diseases  

During mammalian evolution, the molecular components of different tissues, 

pathways and diseases go through different structural and functional changes. The 

tolerance of molecular changes largely varies among gene sets with different 

functions. For this section, I used four parameters to examine the conservation and 

divergence of curated gene sets that represent tissues, pathways and diseases. The 

four parameters are: (i) conservation of co-expression, which is based on the 

median NCCGs of a gene set; (ii) differential connectivity, which indicates the 

overall increase or decrease of connectivity for a gene set in the mouse or in 

humans; (iii) proportion of duplication events, which detects deviations in the ratio 

of one-to-many and many-to-many orthologs of a gene set compared to the entire 

set of genes; and (iv) the proportion of non-homologous genes, which detects 

Table 2.2 DAVID analysis of the top and bottom 5% homologous human genes ranked by 
differential connectivity (top genes are highly connected in human, bottom genes are highly 
connected in mouse). In the table are reported the key elements selected from functional clusters 
that obtained an enrichment score greater than or equal to 3 (see Supplement 4 for the full 
results). 

Higher connectivity in Human 

Enrichment Score Functional annotation Benjamini 

7.95 
Signal peptide  4.52E-09 
glycoprotein 8.34E-05 
Disulfide bond 2.61E-08 

3.93 
Interferon alpha 9.08E-06 
Autoimmune thyroid disease 1.94E-04 
Antigen processing and presentation 0.00665 

3.87 tumor antigen 0.008748 
MAGE protein 0.024607 

3.19 region of interest:Coil 2 0.007066 
keratin 0.001462 

Higher connectivity in Mouse 
Enrichment Score Functional annotation Benjamini 

4.21 
sensory perception of chemical 
stimulus 

1.80E-05 

olfactory receptor activity 3.67E-06 
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deviations in the ratio of non-homologs of a gene set compared to the entire set of 

genes (Figure A.1, Supplement 5 and Methods).  

Because of its superior quality, I used human gene sets for the analysis. I used gene 

sets specific for 30 tissues retrieved from the TIGER database (Liu et al., 2008), 

1,930 pathways retrieved from the Reactome Database v61 (Joshi-Tope et al., 

2005), and 208 including diseases from the Genetic Association Database (GAD, 

Zhang et al. 2010) and an aging gene set from the GenAge Database (Tacutu et al., 

2013).  

Lastly, for each gene set I also retrieved and reported novel candidate associated 

genes conserved both in humans and mice by counting how many times a gene 

was associated with the homologs of a gene set and calculating the significance 

using a permutation test (Supplement 6, Methods).  

Immune system: overall conserved with high proportion of duplicated 

genes 

The gene connectivity within the immune system is overall conserved, although it 

is characterized by a high proportion of duplicated genes (Figure 2.6). This 

suggests that there might be specific immune functions that are diverged. An 

advantage of using the Reactome database is that it provides an exhaustive list of 

biological processes in a hierarchical structure. Regarding the immune system, the 

pathways with immune functionalities are divided in three main branches: 

cytokine signalling, adaptive immunity and innate immunity. Here, I explore all 

the pathways related to the immune system up to the fourth hierarchical level.  

Among the pathways involved in the cytokine signalling, the ones involved with 

prolactin, growth hormone and interferon alpha/beta signalling appear to be 

divergent with an increased connectivity in humans only when including one-to-

many and many-to-many orthologs in the analysis. Pathways related to interleukin 

and interferon gamma signalling show instead significant conserved trends for the 

NCCGs and gene connectivity (Figure 2.6a,b,c). 

The few processes of the innate immune system that show signs of divergence are 

related to IRF7 activation by TRAF6 and to antimicrobial activity through  
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Figure 2.6 Evaluation of conservation of pathway-specific gene sets with immune functionality 
selected from the Reactome database. All the 99 pathways of the first four hierarchical levels are 
reported. In bold red, bold blue, bold black and regular black are the gene sets of the first, second, third 
and fourth level, respectively. For panel a and b I used the NCCGs and the differential connectivity 
values, respectively, and on the x-axis is reported the median of the difference between the values of a 
sample of a gene set and a of sample of the remaining genes. In panel c I reported the odds ratio of 
homologous genes that underwent duplication (one-to-many and many-to-many homologs), and in 
panel d I reported the odds ratio of non-homologous genes (Methods). The analysis has been 
performed both on the entire set of homologs (bars in black) and on one-to-one orthologs only (bars in 
grey) with asterisks indicating the significant results (FDR <0.05). For other details refer to Methods 
and Figure A.1. 
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defensins. IRF7 is a regulator of type I interferons (Ning et al., 2011) and its 

divergence is related to the one observed for IFN alpha/beta with an increased 

connectivity for duplicated genes. Defensins are antimicrobial peptides and its 

divergence between human and mouse has already been reported in previous 

works (Risso, 2000; Ouellette and Selsted, 1996).  

 Regarding the adaptive immune system, there are only two processes that 

significantly diverged in terms of commonly co-expressed genes. The immune 

modulation by butyrophilins is the more diverged one with also a higher proportion 

of duplicated genes. The second diverged process is the ubiquitination and 

proteasome degradation acting for the MHC class I antigen presentation (Figure 

2.6a,c). 

Tissues analysis: few cases of divergence  

There is an overall tendency of conservation in the 30 tissue-specific gene sets; all 

gene sets contain a low proportion of non-homologous genes, and 20 out of 30 

contain genes with conserved co-expression patterns (Figure 2.7). Differential 

connectivity values seem to be biased towards human versus mice (Figure 2.7), 

and a possible interpretation is that in human the post-transcriptional processes 

contribute to a greater variety of proteins and therefore interactions (Barbosa-

Morais et al., 2012). On the other hand, mouse has a greater amount of total 

annotated protein-coding genes (Church et al., 2009), and non-homologous genes 

are mainly responsible for the formation of new interactions (Figure 2.5).  

The conservation of brain and bone is striking, since they are the top two results 

among the tissues which have a higher conservation of co-expression connectivity 

(Figure 2.7) as well as having a relatively low ratio of duplications among their 

tissue specific genes (Figure 2.7c). When looking for novel associated homologs 

with tissue gene sets, I noticed that for the brain, the top 36 genes significantly 

establish a connection with 70-90% of the homologs of the gene set (Supplement 

6: sheets 1 and 4). Thus, this also suggests a high degree of interconnectivity for 

brain specific genes with other related genes that are not strictly tissue-specific.  
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On the other hand, testis, eye, skin, pancreas and lung are the tissues whose co-

expression connectivity was diverged the most (Figure 2.7a). I also noticed some 

inconsistencies when comparing the results obtained using the entire list of 

homologs and only one-to-one orthologs. For instance, the divergence of co-

expression and the increase of network connectivity in human of genes expressed 

in the skin dissipated when considering only homologs with a one-to-one 

relationship. In this case, this behaviour can be associated with a higher rate of 

one-to-many and many-to many homologs indicating that the duplicated genes 

specific for the skin tissue have a great impact in determining its divergence 

(Figure 2.7b, Supplement 5). 

Validation and novel insight on the remaining Reactome pathways  

After having analysed the immune system pathways in greater detail, I explored 

the remaining Reactome pathways belonging to 25 broad categories (Figure A.1, 

Figure A.2, Figure A.3, Figure A.4, Supplement 5).  

 

Figure 2.7 Evaluation of conservation of 30 tissue-specific gene sets. The tissues are ranked 
according to the level of conservation in terms of common co-expression (a) The way the results 
were retrieved for the four panels a-d are described in the Methods, Figure A.1 and Figure 2.6. 
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From a quick look at the full set of Reactome pathways, it is noticeable that most 

of the pathways show sign of conservation. The conserved pathways seem to be 

mostly involved in extracellular matrix organization, cell cycle, DNA replication, 

cell-cell communication, hemostasis, muscle contraction and signal transduction. 

The diverged pathways, instead, seem to be mostly related to chromatin 

organization, digestion and reproduction. However, there are exceptions within 

each category and some of them will be briefly reported here. 

Regarding the pathways related to activities with DNA, on the one hand, various 

stages and checkpoints of mitosis and chromosome maintenance are conserved, 

including DNA replication and DNA repair. On the other hand, genes involved in 

the pairing and recombination between homologous chromosomes during meiosis 

and in chromatin organization show a low NCCGs (Figure A.2, Figure A.3). 

Moreover, a better examination of telomere maintenance processes indicates that 

the co-expression connectivity is significantly conserved for the telomere 

extension mechanism but diverged for the packaging of telomere ends in 

conjunction with other divergence features, such us a higher proportion of 

duplicated and non-homologous genes (Supplement 5).  

The gene set related to gene expression is slightly diverged (Figure A.3) and more 

specifically the divergence is mainly due to genes involved in promoter opening 

(Supplement 5). From the analysis made to retrieve novel candidate genes 

associated with gene sets, I report that is strongly associated with pathways 

involved in transcription and RNA degradation (Supplement 6: sheets 3 and 4). 

Moreover, OIP5 was previously associated with centromeres in the G1 phase of 

cell cycle (Hayashi et al., 2004) and with different types of tumors, such as gastric, 

testis (Nakamura et al., 2007) and clear cell renal cell carcinoma (Gong et al., 

2013). 

Probably the least conserved pathway within the Reactome database is the one 

involved the olfactory signalling since it has significant features of divergence for 

three of the parameters considered with an increased connectivity in the mouse 

(Figure A.4, Supplement 5). This confirms my previous results obtained with the 

DAVID analysis, and since the divergence of this sense between mice and humans 
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is well-known (Niimura and Nei, 2005; Gilad et al., 2003), it underpins the 

reliability of the approaches used and confidence in the results obtained.  

Lastly, a diverged pathway that is worth mentioning because of its central role in 

apoptosis and cancer is the phosphoinositide 3-kinase (PI3K) signalling cascade 

(Yuan and Cantley, 2008; Carnero and Paramio, 2014). Despite its low proportion 

of duplicated genes and non-homologous genes, the genes of the PI3K cascade are 

divergent in terms of co-expression (Supplement 5). Given the importance of this 

pathway in research I reported a table in the Supplement 5 (sheet 4) that includes 

a list of the commonly co-expressed homologs for the genes involved in the PI3K 

cascade that are less conserved. Surprisingly, the list comprises also the crucial 

mTOR and AKT2 genes. 

Disease Analysis: an exhaustive conservation 

Since there is some controversy on the reliability of gene-disease association 

determined by genetic association studies, I used a curated repository of Genetic 

Association Database (GAD, Becker et al. 2004), validated by filtering and 

retaining only the genes that have a published evidence of being positively disease-

associated and MeSH annotated (Zhang et al., 2010).  

The analysis performed on 208 gene-sets revealed more modest p-values and 

statistics when compared to the results obtained on tissue and pathway gene sets 

(Supplement 5). Concerning the conservation of co-expression, the median value 

of commonly co-expressed genes of 80 disease related gene-sets is significantly 

higher compared to the remaining genes. Among the 80 gene-sets, the top most 

conserved gene sets are related to cardiovascular diseases, diabetes mellitus type 

2 and aging. Moreover, the MeSH classes used to catalogue the diseases 

(Lipscomb, 2000) that occur recurrently are Nervous System Diseases and 

Cardiovascular Diseases (respectively the 61% and 50% of all the disease gene 

sets). Aging, diabetes mellitus type 2 and hypertension are the top 3 significant 

gene-sets with low proportion of non-homologous genes, displaying also a high 

conservation of co-expression (Supplement 5). 

Among the diverged diseases, hypercholesterolemia, a nutritional and metabolic 

disease, is the only pathology that shows an increased connectivity in mouse. On 
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the opposite side, 13 diseases show a significantly increased connectivity in 

human, with 8 of them being classified among the neoplasm MeSH category. 

However, they do not reach a significant threshold anymore performing the 

analysis on one-to-one orthologs only. 

2.4 Discussion and conclusions 

This study presents a comprehensive analysis of mouse and human transcriptional 

evolutionary changes exploiting co-expression maps and other genomic 

information. It is well known that the variability of gene expression does not only 

depend on conditions and tissues, but is also influenced by numerous other sources 

of biological and technical factors that are hardly controllable (Zakharkin et al., 

2005). The utilization of larger collections of microarrays can help eliminate the 

noise created by single factors and conditions, highlighting the canonical 

interactions that occur in an organism. The choice of using only mice and humans 

was driven by the fact that those are the two mammalian species with the most 

abundant data. Co-expression tools are usually employed to verify interactions in 

a single organism, but they can be used also to verify if interactions are preserved 

among different species. The human-mouse maps comparison conducted here 

aims to make researchers aware of the components that warrant further 

investigation based on their evolutionary changes, including in the context of 

biomedical research and drug testing.  

Even though I verified that the overall structures of both networks are scale-free 

in agreement with previous results (Tsaparas et al., 2006), issues have been 

reported when comparing co-expression networks (Lu et al., 2009). As a result of 

these problems, in a few occasions inconsistent results were drawn from different 

cross-species comparisons on transcriptomic data (Zheng-Bradley et al., 2010; 

Chan et al., 2009; Miller et al., 2010). To partially overcome such problems, my 

methodology utilizes a percentage based thresholds as cut-off for network 

interactions instead of coefficient values based on correlation. Additionally, even 

though the use of the same percentage threshold for the two networks might still 

not provide an absolute value of conservation when comparing lists of homologs, 
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it does not affect the way the gene sets are ranked in terms of conservation, 

assuring that they are comparable relatively to each other.  

I firstly focused the attention on the conservation of connectivity based on the 

number of commonly co-expressed genes (NCCGs) between humans and mice, 

and despite the principle has already been used in other works (Netotea et al., 2014; 

Yue et al., 2014), its construction is innovative. The role of NCCGs in the 

understanding of evolutionary changes was validated by determining their 

association with dN/dS values, which is a well-known parameter of molecular 

evolution rate. Moreover, I also integrated information on difference in network 

connectivity, recurrence of duplications and non-homology, highlighting the set of 

genes that were influenced by multiple criteria simultaneously.  

The findings reported here are frequently consistent with facts previously claimed 

in the literature. I found an overall high grade of conservation among human and 

mouse on molecular and cellular mechanisms associated with tissues, diseases and 

aging that is consistent with previous results (Tacutu et al., 2011; de Magalhães 

and Church, 2007; Liao and Zhang, 2006).  

The immune system, for which I dedicated an entire section, shows an overall 

conservation of gene-connectivity even though it has a high proportion of 

duplicated genes. The latter finding agrees with the first comprehensive study on 

the mouse genomics (Waterston et al., 2002). Accordingly, a study on the mouse 

transcriptomics also shows an overall conservation with signs of divergence (Shay 

et al., 2013) without explaining the pathways involved. In this study, I found that 

the duplicated genes contribute to the divergence in co-expression of the IFN 

alpha/beta and prolactin pathways. Other divergent co-expression that does not 

involve gene duplication regards the genes transcribing for butyrophilins and 

defensins and the genes involved in the ubiquitination and proteasome degradation 

for the MHC class I antigen presentation. 

Among the tissue gene sets, the brain shows the strongest conserved connectivity 

as well as a significantly low proportion of duplicated genes. The pattern of 

expression and interaction of the central nervous system was already reported to 

be highly preserved across species (Chan et al., 2009; Miller et al., 2010). Another 
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tissue also found to be strongly conserved, but not reported in previous studies, is 

bone.  

Reproductive organs have been reported as amongst the most divergent tissues, 

instead (Khaitovich et al., 2005; Voolstra et al., 2007), in agreement with my 

observation that they have the least well conserved co-expression pattern. 

Nevertheless, I failed to observe a significant difference in the rate of duplications 

among testis-related genes although this was reported in a previous work (Church 

et al., 2009). In another work, the eye was included among the tissues with 

relatively higher conservation of gene expression (Chan et al., 2009), but in my 

analysis, it proved to have a low number of commonly co-expressed genes, which 

warrants further analyses. The divergence of the skin tissue in terms of conserved 

connectivity depends partially from the inclusion of a group of genes of the keratin 

and MAGE family having one-to-many or many-to-many homologous 

relationship. I found that both families also showed a significant increase of 

connectivity in human as revealed by the functional enrichment analysis on 

differentially connected genes. MAGE genes are tumour-specific proteins mainly 

associated with melanoma, and it has already been suggested of being positive 

selected among species (Zhao et al., 2012).The keratin family is composed of 

genes that are expressed either in epithelial cells or in keratinized tissues such as 

hair and nails. The keratin genes enriched in my DAVID analysis belong to the 

epithelial group (Moll et al., 2008) and it may be a possible explanation for the 

increased thickness of human dermis and epidermis compared to the mouse skin 

(Schneider, 2012).  

The strong divergence of the olfactory system, encountered in all the conservation 

parameters considered with an increased connectivity in mouse, is in agreement 

with the fact that mice do not usually rely on sight to chase food (Young et al., 

2002; He et al., 2013). Regarding the extracellular matrix, a striking conservation 

was found for almost all the related sub-processes. The regulation of cell division, 

DNA replication and DNA repair are very well conserved functions, while some 

elements involved in the transcriptional regulation are diverged, and in particular, 

transcription factors of the C2H2 family and histone interactions in the promoter 

opening. Based on this observation I postulate that the transcriptional regulation 
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has a major role in determining evolutionary divergence among the two species. 

For example, it is well known that one of the causes of this divergence is the gain 

of complexity of the splicing system in human (Barbosa-Morais et al., 2012). 

However, this requires further investigation and high expectations are pinned on 

the RNA-Seq technology.  

Genes involved in cardiovascular diseases resulted to be overall conserved both in 

terms of co-expressed genes and proportion of homologous genes, but their 

network connectivity was increased in the mouse. This fits the findings showing 

that genes specific for the HDL-mediated lipid transport pathway and the blood 

tissue are highly connected in mouse. The lipoprotein metabolism pathway shows 

the same behaviour even though is no longer significant after multiple test 

correction (Supplement 5). Accordingly, it has already been shown that no inbred 

strains of mouse fed with a chew diet can develop atherosclerosis (Stylianou et al., 

2012; Mukhopadhyay, 2013). This warrant a deeper investigation of molecular 

interactions involved in lipid metabolism in the mouse.  

As suggested in a recent work, there is a lack of mouse models where the 

functionality of main effector genes of the PI3K cascade is altered by the 

manipulation of their regulators (Carnero and Paramio, 2014). This can be 

explained by the presence of essential genes of the PI3K pathway that are 

remarkably poorly conserved in terms of preservation of co-expression, and even 

more strikingly I found that the first top four diverged genes of this pathway are 

the crucial mTOR, PIK3R4, AKT2, FGF23. Therefore, knowing which are the few 

homologs that are commonly co-expressed with these genes, as reported in 

Supplement 5, pinpoint mouse targets for testing processes such as cancer 

progression and glucose metabolism defects caused by the de-regulation of the 

PI3K/Akt signalling.  

In conclusion, I believe that this study gives a comprehensive and detailed list of 

the conserved and diverged elements between mouse and humans. The reliability 

of my results is proved by the fact that numerous findings were in agreement with 

previous studies. Before commencing any experimentation on the mouse model, 

the results presented here should be consulted to avoid or validate possible mouse-

human inconsistencies. 
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2.5 Supporting data 

The full co-expression maps are available from the Zenodo Repository, 

https://doi.org/10.5281/zenodo.32579. 

Supplementary files 

Supplement 1 Custom computer scripts used to perform the analyses. 

Supplement 2 Gene co-expression and connectivity. List of humans and mice 

homologous genes annotated with HGNC symbols together with further 

information retrieved from Biomart Ensembl and from the analysis of co-

expression maps (Entrez IDs, Homology Type, dN/ dS, number of homologs from 

the top 5% co-expressed genes in humans and mice, number of commonly co-

expressed genes, connectivity values in humans and mice, differential 

connectivity) 

Supplement 3 Functional enrichment analysis of genes with high and low number 

of commonly co-expressed genes. Sheet 1: Functional annotation clustering 

conducted with DAVID of the top 5 % of homologs ranked by the number of 

commonly co-expressed genes. Sheet 2: Functional annotation clustering 

conducted with DAVID of the bottom 5 % of homologs ranked by the number of 

commonly co-expressed genes. Sheets 3 and 4: Same analysis as sheet 1 and 2 but 

using one-to-one homologous genes only. Sheets 5–8: Functional enrichment 

analysis using the GSEA method on the same gene lists as described for sheets 1–

4.  

Supplement 4 Functional analysis of genes differentially connected between mice 

and humans. Sheet 1: Functional annotation clustering conducted with DAVID of 

the top 5 % of homologs ranked by differential connectivity. Sheet 2: Functional 

annotation clustering conducted with DAVID of the bottom 5 % of homologs 

ranked by differential connectivity. Sheets 3 and 4: Same analysis as sheet 1 and 

2 but using one-to-one homologous genes only. Sheets 5–8: Functional enrichment 

analysis using the GSEA method on the same gene lists as described for sheet 1–

4.  
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Supplement 5 Evolutionary changes of gene sets described by the four parameters 

of conservation explained in the manuscript. Sheet 1: results using tissue gene sets. 

Sheet 2: results using pathway gene sets. Sheet 3: results using disease gene sets.  

Supplement 6 Novel candidate conserved homologs associated with genes sets. 

Sheet 1: results using tissue gene sets. Sheet 2: results using pathway gene sets. 

Sheet 3: results using disease gene sets. Sheets 4, 5 and 6: Same analysis as sheet 

1, 2 and 3 but using one-to-one homologous genes only. 
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Chapter 3 flowAI: an R package to 

automatically and interactively perform 

quality control on flow cytometry data  

The work presented in this chapter is included in a publication in which I am the 
first author. 

Monaco G, Chen H, Poidinger M, Chen J, de Magalhães JP, Larbi A. flowAI: 
automatic and interactive anomaly discerning tools for flow cytometry data. 
Bioinformatics. 2016 Aug 15;32(16):2473-80. doi: 
10.1093/bioinformatics/btw191. 
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3.1 Introduction  

Flow cytometry (FCM) is a laser-based methodology designed to capture the 

physical and biochemical characteristics of a cell or a particle in a stream of fluid. 

Fluorescence-conjugated antibodies are used to target antigens expressed inside or 

at the surface of the cells of interest. As cells pass through the laser (excitation), 

the fluorophore will change its state of energy and emit a light (emission) that is 

captured by a series of detectors. Flow cytometry applications have been 

developed mainly for both research and clinical settings in medicine but also for 

other non-biomedical domains such as marine and plant biology. The most 

common application is the immunephenotyping of blood samples and thus the 

quantification of the number and frequency of various immune cell populations. 

In haematology, FCM is the technology of choice, as, for example, it requires only 

few drops of blood to diagnose leukaemia through the detection of the perturbation 

of normal cell frequencies (Brown and Wittwer, 2000). Moreover, FCM helped 

increase our understanding of cellular functions of the immune system and is 

widely used in cell cycle analysis, pre-transplant cross-matching, cell sorting, 

apoptosis, vaccine development and other applications that scrutinize cellular 

properties (Mulley and Kanellis, 2011; Pozarowski and Darzynkiewicz, 2004; 

Vermes et al., 2000; Jaye et al., 2012).  

The data are stored in Flow Cytometry Standard (FCS) files, that include the 

fluorescence and scattered light levels for each cell that passed through the laser 

beams. Nowadays it is possible to analyse up to 30 markers at a time in a single 

staining panel by using an equal number of different fluorophores detected in 

separate channels. The common approach used to analyse the data produced by 

FCM is to visually select cells of interest through 1 or 2 markers known to be 

highly specific. However, to delineate the high heterogeneity of immune cell 

populations, it is necessary to look simultaneously at the whole staining panel. 

Principal component analysis has been used to study the complexity of CD8 T cell 

populations as they are characterized by intermediate phenotypes with a 

continuum of expression of different combinations of cytokines and surface 

markers (Newell et al., 2012). Another dimensionality reduction technique called 

t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008; 
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Shekhar et al., 2014; Becher et al., 2014) was successfully applied to identify 

ambiguous cell populations, including monocyte-macrophage intermediates and 

granulocyte variants in a mass cytometry experiment based on a 38-antibody panel 

(Becher et al., 2014).  

Several computational tools that aim to automatically characterize cell populations 

without losing multi-dimensional information are constantly developed and 

periodically benchmarked by the FlowCAP consortium (Aghaeepour et al., 2013). 

Undoubtedly, the widest range of tools has been distributed by the Bioconductor 

platform based on the R programming language. The root package for flow 

cytometry data is flowCore, since it defines the container class and it enables to 

perform essential manipulations such as compensation and transformation (Hahne 

et al., 2009). In addition, a series of complementary packages has been developed 

for further operations, such as visualization, quality assessment, statistical analysis 

and automated gating (Sarkar et al., 2008; Hahne et al.; Finak et al., 2012).  

To accompany and support the large development of automatic methods to define 

populations, it is important to use high quality flow cytometry data as input. This 

becomes essential for experiments looking deeper into the complexity of cell 

distribution. For instance, target cell sub-populations may represent as low as 

0.05% of the total cell population suggesting that minute variation in the quality 

of the data may lead to false positive results or loss of signal. Standardization, 

calibration and quality control guidelines using beads have been defined to ensure 

that the signal acquired is the most accurate and with the least variation (Oldaker, 

2007; Perfetto et al., 2006). Nonetheless, these procedures are not always carefully 

monitored and even having the FCM instrument at optimal conditions before 

sample processing does not exclude electronic drifts or fluidic instability issues at 

the time of data recording. An R package, flowQ (Gentleman et al., 2006; 

Bashashati and Brinkman, 2009), creates concise reports of quality checks on 

single and multi-panel experiments to highlight issues that can be encountered in 

data acquisition. The reports indicate the number of cells, percentage of boundary 

events and anomalies on the fluidics and signal acquisition over time. Another 

package, flowClean (Fletez-Brant et al., 2016), determines and marks low quality 

cells using compositional data analysis. In brief, it splits the time in equally sized  
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 bins and flags the events that are within time frames containing unusual ratios of 

cell populations. However, flowQ does not actively detect and remove the 

anomalies and flowClean is poorly intuitive and thus it does not allow to infer the 

source of the anomalies.  

Here, I present a package called flowAI that provides two solutions, one automatic 

and one interactive, to discard cells from flow cytometry data that do not reach 

appropriate quality standards. The workflow adapts and expands previous ideas 

with methods never implemented before to provide a more objective, efficient and 

intuitive solution for the quality control of flow cytometry data.  

3.2 Implementation and methods 

3.2.1 The software 

Both the automatic and interactive methods have been implemented in the R 

package flowAI and distributed by the Bioconductor platform 

(http://bioconductor.org/packages/flowAI/). More recently the automatic 

algorithm has also been implement in ImmPortGalaxy (Thomas et al., 2016) and 

flowJo (Tree Star, Ashland, Oregon). My tools incorporate functionalities from 

several other R packages. For example, the automatic method integrates functions 

from the mFilter (Balcilar, 2007) and changepoint (Killick and Eckley, 2014) 

packages in the algorithms aiming to automatically detect the anomalies. The 

interactive method, instead, leverages on the R shiny framework (Chang et al., 

2015) to build the web graphical interface.  

3.2.2 Workflow 

The entire quality control analysis of flowAI consists of three main steps to detect 

and remove anomalies from FCM data complementary for both the automatic and 

the manual methods (Figure 3.1).  
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3.2.3 Flow Rate check 

The first step evaluates the steadiness of the flow rate of the analysis. The flow 

rate is reconstructed by reporting the number of cells acquired per unit of time. 

This is only possible for FCS files of version equal or greater than 3.0 which 

implement the keyword $TIMESTEP to allow for kinetic analysis (Seamer et al., 

1997). The keyword stores a value corresponding to the resolution of the “Time” 

channel in terms of seconds or fractions of a second. Ideally, the detection of 

 

Figure 3.1 Workflow of the quality control of flow cytometry data using the flowAI package. Data 
can be processed manually with a Shiny application or automatically with the call of an R function. 
The steps are complementary for both cases. On the one hand, the manual method allows the user 
to interactively choose appropriate thresholds on plots portraying flow rate and signal acquisition 
through visual inspection. On the other hand, the automatic method performs this selection through 
anomaly detection algorithms. Both the interactive and automatic methods eliminate negative 
outliers and events recorded at the upper limit of the dynamic range. 
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anomalies in the flow rate check could be performed at the maximum time 

resolution allowed by the flow cytometry instrument. However, the setting of a 

larger time step for the analysis greatly decreases the running time and memory 

usage. 

A stable flow rate of FCM instruments can be pictured by a line with non-periodic 

fluctuations but with a constant variation. The anomalies in the flow rate that 

mostly affect the quality of signal acquisition are abrupt surges and significant 

changes in the speed of the fluid generally caused by factors such as debris and air 

intrusion in the fluidic system. To discard anomalies through the interactive 

method, users can adjust two horizontal sliding bars to eliminate flow rate surges 

and two vertical sliding bars to discard regions at the beginning and the end of the 

flow rate where the instabilities mostly occur. Instead, for the automatic version I 

designed an anomaly detection algorithm built upon the generalized extreme 

studentized deviate (ESD) test (Rosner, 1983) and optimized to work on time 

series data.  

As stated in a review of outlier detection methods, the anomalies are contextual to 

the nature of the data (Chandola et al., 2009) and hence it is preferable to develop 

techniques customized for the domain of interest. The patterns depicted by the flow 

rate of FCM data are generally similar to the ones treated by economists, engineers 

and social scientists in time series analyses, whose basic idea is to extract 

additional information from time series data by splitting it in its components.  

As a first step for my automatic method, I implemented the Christiano-Fitzgerald 

band pass filter (Christiano and Fitzgerald, 2003; Balcilar, 2007) to split the value 

(yt), corresponding to the number of events recorded at the time point t, into the 

trend (τt) and cyclical (ct) components:  

 &- = W- +	X- (3.1) 

The trend component will be a smooth line that indicates long-term increase or 

decrease in the flow rate, while the cyclical component will contain the non-

periodic fluctuations and abrupt surges from the trend line.  
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Secondly, the flow rate values are penalized by adding or subtracting the 

corresponding absolute values of the cyclical component according to their 

direction from their median: 

 &. YZ3- = 	
&- + |X-|, &- ≥ ]Z^N_3(&)
&- − |X-|, &- < ]Z^N_3(&)

 (3.2) 

Lastly, the generalized ESD test is applied on the penalized flow rate to detect the 

anomalies. This method, with an iterative process, searches for a number of 

outliers not exceeding a predefined threshold k for a dataset of sample size n, 

performing a k number of r tests a':c = 	a', a2, … , ac . At each iteration, an 

observation &. YZ3- is tested as a potential outlier and it is removed from the data 

before the next iteration. An exemplary iteration has the following steps: 

1. Extraction of the observation that largely deviates from the central 

tendency indicator (mean or median) scaled by the measure of dispersion 

(standard deviation or median absolute deviation): 

 aI = 	
max	{ &. YZ3- − ]Z^N_3 & : /	h	3}	

GJD(&)
 (3.3) 

2. Computation of the critical value lambda λi from the t distribution using a 

defined level of significance α. The observation &. YZ3- is flagged as an 

outlier if the computed r statistic value is higher than lambda: ri > λi. 

3. The observation ri is removed from the data, and the sample size is then 

reduced to n – 1.  

The procedure uses the median and the median absolute deviation (MAD) because, 

particularly in presence of outliers, they are a more robust alternative to the mean 

and standard deviation (Leys et al., 2013). 

3.2.4 Signal acquisition check  

The second step verifies the stability of the signal acquired over time. A common 

practice to verify the quality of signal acquisition is to use Levy-Jennings-type 

graphs, where fluorescence is plotted against time (Barnett and Reilly, 2007). A 

stable signal acquisition should produce intensity values whose distribution is 
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consistent throughout the course of the entire experiment. This is the expected 

behaviour if we assume that cells from a heterogeneous sample are randomly 

aspirated by the FCM tube over time. Therefore, changes in the signal intensities 

are not due to biological variation but rather to technical issues such as defective 

laser-detection system, voltage instability or poor quality of sample preparation, 

for example, inadequate vortexing.  

For each channel, flowAI creates Levy-Jennings-type graphs by splitting the 

intensity values of a marker in equally sized bins and plotting their median against 

time. This method is already implemented by the flowQ package, where the user 

can infer the quality of an FCS file from the visualization of time line plots. 

However, in addition to that, flowAI allows the removal of the regions with an 

unstable signal. As for the flow rate, this operation can be performed manually 

through visual inspection or automatically. The latter method implements a step 

detection algorithm to identify shifts in the mean and variance of the intensity 

values. The algorithm used, binary segmentation, is implemented in the 

changepoint package (Killick and Eckley, 2014). Its basic concept has been firstly 

described by the genetists Edwards and Cavalli-Sforza as a new clustering method 

based on the analysis of variance (Edwards and Cavalli-Sforza, 1965). This 

method is computationally fast and most frequently used among the changepoint 

detection methods. 

This approach iteratively splits the data in two groups at a time simply applying 

the method of least squares. In my case, given an ordered set of n fluorescence 

values m1:n = (m1, m2, …, mi, …, mn) corresponding to the medians of all bins, the 

total sum of squares (SST) from their mean is calculated as a measure of 

dispersion:  

 ??j = (]' −])2
*

IM'

 (3.4) 

A changepoint mi that splits the data in two segments, s1 = (m1, …, mi) and s2 = 

(mi+1, …, mn), is detected when the cost function, represented by the within-groups 

sum of squares (SSW), is minimized: 
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 arg	min
I

	 (]o' −	]o')2 	+ (]o2 −	]o2)2
*

o2MIp'

I

q'M'

 (3.5) 

The minimization of the cost function (3.5) is equivalent to the maximization of 

the between-group sum of squares (SSB), and the sum between SSW and SSB 

results in the SST.  

In flowAI I used a variant of this method provided by the changepoint package 

that not only searches for shifts in the mean but also in the variance. The same 

procedure is then repeated on each new segment created. The search of new 

changepoints terminates either if the minimized cost function is higher than a 

defined threshold or if a pre-established maximum number of changepoints has 

been detected.  

The binary segmentation algorithm is performed independently on each 

fluorescence channel and lastly the longest region that does not contain 

changepoints in any of the channels is chosen as the high quality one. 

3.2.5 Dynamic range check 

A third quality step is performed on the lower and upper limit of the dynamic 

range. Signals recorded by flow cytometry instruments can only fall within a 

determined dynamic range. The last generation of flow cytometry has reached a 

dynamic range of 224 channels (Novo and Wood, 2008), but most of the 

instruments nowadays used in laboratories and clinics have a range of 218. Due to 

this limitation, all measurements with a real value higher than the upper limit will 

be recorded at the last channel of the dynamic range causing an accumulation of 

signals that is not directly comparable with the rest of the data. These values are 

commonly called margin events. My package allows the removal of events where 

at least one of the parameters has an intensity value at the upper limit of the 

dynamic range. 

The values of the lower limit are treated in a different way. For the signal of the 

light scatter channels (reflecting the morphology of the cells) any value less than 

zero is removed. Instead, for the immunofluorescence channel, small fluctuations 
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in the range of negative values are usually acceptable since they are the by-product 

of standard operations such as correction of background noise, auto fluorescence 

and spectral overlap. Nonetheless, technical issues, such as flow rate surges or 

voltage instability, can exacerbate the magnitude of a negative value to an 

unacceptable range, that would also interfere with the downstream signal 

processing, such as logicle transformation or automatic gating.  

The flowAI package uses an outlier detection method to remove the outliers among 

the negative values. Every value that is inferior to a certain threshold is labelled as 

outlier and consequently removed. For each channel, a threshold referred to as Z-

score is computed with a method recommended by Iglewicz and Hoaglin (1993). 

The formula is given in (3.6), where the threshold is obtained for a set of n negative 

values x1:n = (x1, …, xn):  

 r = 	
−	3.5	GJD(A':*)

0.6745
+ ]Z^N_3(A':*) (3.6) 

Alternatively to the removal of negative outliers, the lower limit of the dynamic 

range can be truncated at the cut-off suggested by the FCS file. This method was 

previously adopted as pre-processing step for the cleaning of flow cytometry data 

from erroneous measurement (Qian et al., 2012; Van Gassen et al., 2016). 

3.2.6 Results evaluation 

At the completion of the analysis with the automatic method, a report is generated 

indicating the percentage of cells that did not pass the quality checks and a series 

of graphs showing where the anomalies in terms of time and parameters were 

detected. My suggestion is to firstly run the automatic method with default settings 

on a small sample of flow cytometry data, secondly customize the settings if 

necessary, thirdly perform the quality control automatically on the entire dataset, 

and lastly intervene manually only for those files whose automatic control is not 

able to meet the accuracy required.  
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3.3 Results and discussion 

Here, I provide analysis results obtained using the automatic method in flowAI on 

several FCM data. I studied the nature of the abnormalities detected in each quality 

control step and then I evaluated the overall improvement of computational 

analysis with the cleaned data.  

3.3.1 Overview of the datasets 

A total of 4,469 flow cytometry files from 11 different datasets, precisely 2 in-

house and 9 from the online database FlowRepository (Spidlen et al., 2012), were 

used for my evaluation. The two in-house datasets contain 84 samples each, and 

are part of a larger project called the Singapore Longitudinal Aging Study (SLAS). 

Ethical approval was obtained from the National University of Singapore 

Institutional Review Board for SLAS blood collection and experiments. A 

different panel was used for the two datasets. Panel 1 consisted of 16 antibodies 

targeting markers for the overall white blood cell populations: CD16, CD4, CD38, 

CD62L, CD19, CD66b, CD45, CD27, CD56, CD3, CD8, CD14, CD123, HLA-

DR. Panel 2 consisted of 14 antibodies targeting the B lymphocyte populations: 

CD19, CD20, CD21, CD23, CD24, CD27, CD38, IgG, IgM, IgD, HLA-DR. 

Regarding the 9 datasets retrieved online, I selected the ones used for the flowCAP 

contests. Data and details are available on flowrepository.org under the IDs with 

the prefix FR-FCM- and followed by: ZZYA, ZZZU, ZZY2, ZZY3, ZZYY, ZZY6, 

ZZYZ, ZZZV, ZZ99.  

3.3.2 Examination of anomalies in FCM data from different 

perspectives 

In this section, the anomalies detected in each quality control step is analysed 

separately. The main consideration is that even though my workflow schematizes 

the quality control in three different steps, they are usually strictly related. For 

example, a surge in the flow rate often corresponds to an unstable signal 

acquisition that in turn would potentially result in a value in the upper margin or 

in the negative outlier space of the dynamic range. Nonetheless, given the high 

variability of anomalies that can occur in a flow cytometry experiment, the division 
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of the quality control in the three steps defined in my work is necessary to assure 

the detection of those anomalies that are not visible from a single perspective.  

Here, I focus on the file 220662.fcs from the ZZZV dataset to show how a 

complete quality control with flowAI works on an FCS file. In addition, numerous 

other examples are reported in the appendix. 

Surges and trend shifts in the flow rate 

The flow rate was recreated dividing the time channel of an FCS file in equal 

intervals with a time step of 1/10 of a second. Fluidics’ stability in the sample is a 

good indicator for the absence of anomalies such as clogging and air bubbles in 

the flow cell and other disturbances in the flow stream. My algorithm has been 

designed to acknowledge cyclical patterns to detect local anomalies, i.e. surges, as 

well as to remove global anomalies, i.e. large deviations of the trend from the 

median flow rate (Figure 3.2). From all the FCS files analysed, I verified that the 

beginning and the end of the flow rate are the regions where irregularities occur 

the most. Flow cytometry experts recognize these patterns as being frequent and 

mainly due to air bubbles, debris or clogged cells (Figure A.5). In Figure 3.2a the 

flow rate takes about 10 seconds to stabilize but usually strong fluctuations vanish 

more quickly (Figure A.5a and Figure A.6a). Nevertheless, there are cases of 

flow rate surges interspersed over the entire course of the experiment (Figure A.7a 

and Figure A.8a) possibly caused by clusters of debris suddenly aspirated by the 

flow cytometry tube (Figure A.8a-c). However, even though it was not always 

possible to associate flow rate surges with debris or clogged cells, surges removal 

is still necessary because of their association with signal intensity variation.  

Lastly, in an FCS file I observed a steady change of the flow rate, and hence the 

signal, in the last part of the analysis. The resulting low quality cells have a 

distribution uniformly shifted compared to the one of the high-quality cells. This 

is probably due to the manipulation of the speed settings by the instrument operator 

during the running of the experiment (Figure A.9). 
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Figure 3.2 Quality control results of the file 220662.fcs from the ZZZV dataset. The plots (a) 
and (b) were extracted from the report generated by the automatic method of the flowAI package 
using default settings. (a) Strong fluctuations are detected in the flow rate at the beginning of 
the experiment. The anomalies detected are indicated with green circles. (b) Changepoint 
detection in signal intensity over time represented as median of equally sized bins. The region 
discarded is complementary to the one detected as instable in the flow rate check. The yellow 
region is selected as being steady and therefore categorized as high quality. (c) ECDF curves of 
raw intensity values of the low (in red) and high (shades of blue) quality events of the PE Tx 
RD-A channel. The sample size of the three high quality samplings equals the number of low 
quality events detected. (d) Density plots of the logicle transformed data of the PE Tx RD-A 
channel using the logicle parameters estimated from raw data (green line), from data with 
negative values truncated at -111 (blue line), and from data without negative outliers (red line). 
The density curves vary among the three sets of data indicating the repercussions on the 
estimation of the logicle parameters according to the dynamic range used for the data. 
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Mean and variance deviation from stable acquisition regions 

For each channel, the signal acquisition over time is reconstructed firstly dividing 

the total number of cells in equally sized bins and secondly calculating the median 

value of each bin. The output is graphically shown with line plots (Figure 3.2b). 

Mean and variance shifts in the signal acquisition are detected using the binary 

segmentation method from the changepoint package (see Implementation and 

methods).  

In most of the analysed cases, signal instability is strongly related to flow rate 

fluctuations (Figure 3.2, Figure A.5, Figure A.6, Figure A.8, Figure A.9). 

However, anomalies caused by laser-detection systems can eventually occur 

independently of the speed variations of the flow rate. In Figure A.7, for example, 

the numerous flow rate surges are hardly detectable in the signal plots and the 

channels storing the signal elicited by the green laser (G780-A, G710-A, G660-A 

and G610-A) show a delay in the reaching of stability that warrants a careful 

monitoring of the functionality of that specific laser-detection system.  

In Figure A.8, even though the flow rate surges are associated clearly with the 

signal plots, the signal acquisition gradually weakens at different rates in different 

channels after a first region of steadiness (FSC-A, FSC-H and APC-A), while in 

other channels it remains constant for a longer period. In this rare case, other 

technical issues should be investigated. Some of the factors that might cause less 

common anomalies, but should be kept in mind, are laser power instability, 

detection system irregularities, poor quality of the sheath fluid and accumulation 

of dirt in the flow cell.  

Refining the dynamic range: removal of negative outliers and margin 

events 

Because of the quantum nature of light, both the scatter and fluorescence channel 

values cannot theoretically fall in the negative range of values. However, because 

of the background and noise correction of the optical detection system of flow 

cytometry instruments, negative values are recorded for both light scatter and 

immunofluorescence channels. This problem is also exacerbated by instable signal 

acquisition, for instance during flow rate surges (Figure A.6a-c and Figure A.7a-
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c), or by compensation, where a value proportionate to the spectra overlap of other 

channels is subtracted from each channel. Negative estimates are considered part 

of a negative population of cells with a low mean and a large coefficient of 

variation. Therefore, with the logarithmic transformation not being able to handle 

negative values, new transformation methods have been developed. Probably the 

most popular one is the logicle transformation, also called “bi-exponential” (Parks 

et al., 2006). With this method, values with an absolute small magnitude are scaled 

linearly, while large values are scaled in a log-like fashion. The transition from the 

linear to the logarithmic scaling is defined by the ω parameter of the formula. It 

determines the width of the linearized data and its value is estimated from the fifth 

percentile of the values below zero. I noticed that this estimation method lacks 

accuracy when the outliers in the negative range are more than 5% of negative 

values and precision when the negative values acquired are low and with sparse 

values. To overcome the arbitrary estimation of the ω parameter, a cut-off at the 

value -111 has been suggested (Qian et al., 2012). Nevertheless, this procedure 

does not have any theoretical explanation either and, as the authors of the logicle 

transformation method also implied, the truncation of the values would deform the 

distribution of the negative population and result in an improper estimation of its 

statistics (Parks et al., 2006). The idea I adopted, instead, is to use an outlier 

detection method to remove only the negative values that stray from the ones that 

compactly aggregate around zero. Generally speaking, with this approach, I expect 

a better estimation of the parameters for negative cell populations, since the data 

are neither affected by outliers nor by a truncation to an arbitrary threshold. 

Overall, although this procedure might not give any substantial advantage for 

downstream manual analysis, it should improve the quality of the results for any 

kind of automatic analysis, from simple statistics calculations to gating. In Figure 

3.2d, I depicted the differences among the distributions of the logicle transformed 

data for a channel of the 220662.fcs file where the ω parameter was estimated: 1) 

on the raw data, 2) after truncating the data at -111 and 3) after removing the 

negative outliers.  

A last issue to consider when analysing FCM data is the signal which value 

exceeds the limitations of the machine, thus generating the so-called margin 

events. In fact, the signal can only be recorded up to the upper value of a dynamic 
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range pre-set by the manufacturer of a FCM instrument. Therefore, it is impractical 

to discern subpopulations of cells whose values are all stored at the upper value of 

the dynamic range. This is already a common practice especially among 

computational biologists that require clean data to improve the quality of the 

analysis which is why I implemented it in my pipeline. 

3.3.3 Overall improvement using computational methods 

In the previous sections, I described each step of my pipeline separately in order 

to examine the anomalies from different perspectives. Instead, in this section I look 

at the final results using approaches that analyse the multi-dimensional data in its 

entire complexity.  

Disappearance of undefined populations in high quality data 

I used SPADE to identify and visualize populations from high dimensional flow 

cytometry data (Qiu et al., 2011). In brief, SPADE firstly prunes high density 

regions, secondly identifies clusters and thirdly links them together with a 

minimum spanning tree. 

The SPADE results before and after quality control of the file 220662.fcs are 

reported in Figure 3.3a. The FCS file was part of an experiment designed to 

identify the functionality of CD4 and CD8 T cells in response to an HIV 

vaccination through intracellular cytokines staining. Looking at the SPADE results 

through the markers CD3, CD4 and CD8 it is possible to identify CD4 T cells at 

the bottom-right branch and CD8 T cells at the top-right branch (Figure 3.3a).  

The analysis was made with default settings and from the 200 populations 

identified by SPADE in the original file 43 disappeared in the high-quality data 

(Figure 3.3). From the examination of the data reporting the coefficient of 

variation, a high variability was found for the markers CD3 and CD8 in the 

discarded populations. One may also suspect that those are new undefined 

populations that solicit further investigation. However, plotting the CD3 channel 

against FSC-A with the flowJo software, it was possible to identify the faulty 

populations only in the files with high instability in the flow rate (Figure 3.3b). 
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Erratic populations revealed using dimensionality reduction  

Another approach consisted in applying a dimensionality reduction method, t-SNE 

(Maaten and Hinton, 2008), to capture non-linear relationships in the high 

dimensional space with the intensity values of high and low quality events. For the 

analysis, I used the R package cytofkit (Chen et al., 2016) that includes an 

algorithm based on support vector machine to identify the clusters from the new 

components defined by t-SNE (Figure 3.4a-b). 

 

Figure 3.3 Quality control and SPADE analysis on the file 220662.fcs file from the ZZZV dataset. (a) 
SPADE analysis before and after quality control with flowAI. The raw intensity median values and 
the coefficient of variation of the CD3, CD4 and CD8 channels are used as color-code for the 
populations identified by SPADE. The nodes removed by the quality control (in grey) correspond to 
the ones with high coefficient of variation. (b) Comparison of quality control using manual gating, 
flowAI and flowClean. The CD3 channel is plotted against the FSC-A channel and the negative 
population disappears after quality control using manual gating and the automatic method of flowAI. 
With flowClean the negative population becomes less dense but it is not completely removed. The 
negative population is not present in other files of the ZZZV dataset without anomalies. 

−2384.63 2384.63

raw median

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

CD3 (PE Tx RD-A)

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

0.62 20.82

CV

  Before QC

  After QC

−1625.3 1625.3

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

raw median

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

−1430.08 1430.08

raw median

CD4 (FITC-A)

1.68 20.41

CV

CD8 (PE Cy55-A)

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● Removed population

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

CD3 (PE Tx RD-A)

−2384.63 2384.63

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

1.36 6.50

raw median CV

0 50K 100K 150K 200K 250K
FSC-A

C
D

3 
(P

E
-T

x-
R

D
-A

)

Raw file

flowAI flowClean

Time, CD3 subset
77.0

0 100K 200K 300K 400K
Time

0

-103

103

104

105

FSC-A

C
D

3 
(P

E
-T

x-
R

D
-A

)

FlowJo

C
D

3 
(P

E
-T

x-
R

D
-A

)

FSC-A FSC-A

C
D

3 
(P

E
-T

x-
R

D
-A

)

a b

0

-103

103

104

105

0

-103

103

104

105

0

-103

103

104

105

0 50K 100K 150K 200K 250K

0 50K 100K 150K 200K 250K

0 50K 100K 150K 200K 250K



 

105 

 

 

Figure 3.4 t-SNE analysis on low and high quality data extracted from two FCS files of the SLAS 
dataset (Panel 2), one file for (a-c) and one for (d). The FCS file used for (a-c) is the same used for 
Figure A.5 (a) Density based clustering obtained with the cytofkit R package on the two 
dimensions produced by the t-SNE dimensionality reduction method. The clustering method, built 
upon a support vector machine algorithm, detected nine clusters. (b) Low and high quality events 
are indicated in red and blue, respectively. Low quality events partially form irregularly shaped 
sub-populations and partially superimpose with high quality events. The superimposed low quality 
events show anomalies in only one or few channels, therefore, the multi-dimensional based 
approach still maps them together with the high-quality events. The events in the clusters M1 and 
M2 can be visually classified as part of the same clusters in the t-SNE 2D plot, but do not cluster 
together in the analysis with cytofkit. (c-d) tSNE analysis obtained after the removal of debris, 
margin events in the scatter parameters, doublets and dead cells. In (c) a faulty population of cells 
recorded as margin events in the CD19 channel was detected as low quality. (d) In this case, the 
low-quality events form complementary clusters that do not overlap with the high-quality events 
because of a consistent shift in the intensity signal. 
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Using 2D plots of the first two components, I noticed that in most of the files a 

fraction of low quality cells was still superimposing to the populations of high 

quality cells while a remaining fraction formed separate sub-populations of events. 

In an FCS file from the SLAS dataset (Panel 1), I ascertained that the new 

populations in the low-quality data mainly derived from dead cells and margin 

events; the borders are jagged and the shape is irregular reflecting the erratic nature 

of the acquired signal (Figure 3.4b). In contrast, the populations of high quality 

cells have smooth borders and a regular round shape. 

T-SNE was then computed on B cell populations pre-processed with flowJo, where 

debris, doublets and dead cells were removed (Figure 3.4c-d). In Figure 3.4c an 

irregular CD19 population was revealed that was not found in the analysis of the 

raw data (Figure 3.4b). Further analysis revealed that the expression values of the 

CD19 channel were recorded at the upper margin of the dynamic range. This 

demonstrates that anomalies in only one channel can be easily camouflaged as 

valid cell populations in a multi-dimensional analysis if a careful quality control 

has not been applied beforehand. Lastly, in Figure 3.4d, a significant shift in the 

average acquisition signal was visible in the t-SNE analysis by the formation of 

adjacent complementary population.  

In summary, I advocate the importance of making a comprehensive cleaning on 

the data from different perspectives. Once faulty signals are included in 

downstream analysis, it becomes hard to detect them and they would eventually 

lead to false discoveries. 

3.3.4 Benchmarking and performance 

The automatic method in flowAI was compared with a manual quality control 

using flowJo and the R package flowClean. The flowQ package was excluded from 

the comparison because it does not actively detect anomalies.  

Agreement assessment using flowJo, flowAI and flowClean 

The time channel is a fundamental element of an FCS file to perform quality 

control after acquisition. The datasets ZZYA, ZZY2, ZZY3, ZZYY, ZZY6 and 

ZZYZ seemed to be already pre-processed and did not have a proper time channel. 
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Although flowAI is still able to check the signal and dynamic range of a FCS file 

without the time channel, it is impossible for flowClean and impractical for flowJo 

to do the quality control. Therefore, only the remaining datasets with a proper time 

channel were used for the benchmarking.  

The flowJo analysis was executed by removing the margin events from the FSC-

A and SSC-A scatterplot and unstable acquisition regions from the channel with 

more visible anomalies plotted against time. Regarding flowClean, and the 

automatic method in flowAI, they were both run with default settings. The kappa 

statistic was used as a metric for the agreement of two quality control methods on 

each FCS file. For each dataset, the median of the significant kappa coefficients 

has been reported in Table 3.1. For the Cohen’s kappa test, a minimum value of 

anomalies was required to reach the significance level.  

Overall, flowAI showed a stronger agreement with the manual quality control and 

it was the most stringent with respect to the detection of anomalies, while 

flowClean was the most tolerant (Table 3.1 and Figure 3.3a), Nonetheless, both 

flowAI and flowClean still require a fine tuning of the settings for certain datasets 

to perform optimally. For example, better agreements would have been reached 

for the SLAS panel I dataset if less stringent settings were used for flowAI. In this 

respect, a decisive advantage of flowAI is its intuitiveness. In fact, based on the 

flow rate and signal plots, it is relatively easy to establish if the settings have to be 

more or less stringent. On the contrary, I found the diagnostic plot produced by 

flowClean harder to interpret. 

Table 3.1 Pairwise agreement scores among the quality control made manually with flowJo, and 
automatically with flowAI and flowClean. 

Dataset (n)* Median kappa coefficients (n)**  

 flowJo - flowAI flowJo - flowClean flowAI - flowClean 

ZZZV (240) 0.9 (177) 0.25 (88) 0.26 (86) 

ZZZU (308) 0.33 (255) 0.33 (3) 0.26 (64) 

ZZ99 (766)  0.81 (390) 0.7 (327) 0.82 (328) 

SLAS panel I (84) 0.07 (73) 0.23 (4) 0.018 (3) 

SLAS panel II (84) 0.57 (82) 0.1 (43) 0.07 (39) 

* total number of files per dataset 
** total number of Cohen’s kappa tests with p-value < 0.05 selected for the calculation of the median kappa coefficient  
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Running time 

The running time of the automatic method in flowAI was measured on a laptop 

with a 2.7 GHz CPU and 16 GB of RAM. I used four batches of datasets to evaluate 

the time performance. Each batch consists of five datasets of increasing size (100, 

500, 1,000, 1,500 and 2,000 MB) formed using an increasing number of FCS files 

with same size, number of events and parameters (Figure 3.5a).  

The speed of flowAI is mostly influenced by the size of the FCS file rather than 

the number of parameters or events and the creation of the graphics for the full 

report takes the largest fraction of time. The possibility of creating a mini report 

containing only the percentages of anomalies is provided but it is discouraged for 

now, unless the user is sure of the nature of all the anomalies in the entire dataset. 

On the contrary, the running time for flowClean increases considerably with the 

number of parameters because of its way of defining cell populations through 

combinations of positive signals from the different parameters (Figure 3.5b). 

Overall, flowAI performance was faster for all the datasets used and, in particular, 

at least 3 times faster when using FCS files with 22 parameters (Figure 3.5). 

 

Figure 3.5 Running time of a quality control analysis with the automatic method of (a) flowAI 
and (b) flowClean. (a) The graphics’ creation for the full report, which is fundamental for an 
accurate examination, takes a considerable amount of time. Alternatively, a mini-report 
containing only the percentages of anomalies is produced without significant running time 
increase. (b) In comparison with flowAI, the analysis with flowClean takes longer, especially 
with an increasing number of parameters.  
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3.4 Conclusions 

Over the last few years we have seen increasing efforts in automating pipelines for 

biomedical data analysis through computational algorithms. However, flow 

cytometry is still largely dependent on manual analysis since usually the data 

produced has high variability that requires human interpretation. Often, the 

analysis demands high expertise and the results are still conditioned by a subjective 

evaluation. My idea was born from the intention of removing the technical 

variability of flow cytometry data in an objective way, thus reducing subjectivism 

in interpretations and improving the performance of downstream computational 

analyses. This is especially the case when a high number of files is analysed and 

when anomalies are generated by multiple sources. 

I defined an approach and created an R package, flowAI, to automatically or 

interactively detect anomalies in flow cytometry data. The interactive method is 

built using the R shiny framework while the automatic method implements 

different algorithms within an R function, that include outlier and changepoint 

detection. Both the automatic and interactive methods perform three 

complimentary steps of quality control on three aspects: 1) flow rate, 2) signal 

acquisition and 3) dynamic range. The first step consists in the removal the 

anomalous patterns and peaks from the flow rate. The second step consists in 

checking the stability of the signal over time for each channel and removal of shifts 

in mean and variance. Lastly, the third step consists in the removal of the margin 

events and negative outliers from the upper and lower sides of dynamic range.  

From the use of the flowAI package, I expect a general improvement in the quality 

of research that employs flow cytometry instruments. Removing events with 

erratic intensity values will facilitate different aspects of flow cytometry analysis 

such as: 1) more effective compensation since the overlapping signal is subtracted 

only from real values; 2) more accurate detection of rare cells due to the removal 

of background noise; 3) easier characterization of the nature of an ambiguous cell 

population (either as undefined cell type or as technical issue).  

When doing the quality control for a new FCS dataset, I suggest using the 

automatic method first on a small set of FCS files to infer the optimal setting for 
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the dataset in use. In fact, the reports produced by flowAI are intuitive and 

therefore they allow to easily understand the source of recurrent anomalies in the 

flow cytometry experiment. Next, after having customized the settings, the 

automatic method of flowAI should be run on the entire dataset. Lastly, because 

the automatic quality control might still not meet the expectations for certain FCS 

files, the checking of the full reports reveals where it is necessary to intervene 

manually or with the interactive method of flowAI.  

The previous paragraph states a limitation of flowAI that could be potentially 

overcome by the dynamic adjustment of the settings of the automatic method. 

However, for now it remains an open question that warrants further investigation. 

An additional consideration is that flowAI is designed to detect anomalies within 

a single FCS file, hence, other tools are necessary to check for anomalies between 

batches of FCS files.  

In conclusion, my quality control approach produces a comprehensive check of 

the flow cytometry data implementing algorithms never employed before. I 

recommend the usage of flowAI as a first pre-processing step of the data right after 

they are obtained from the flow cytometry instrument so that all the downstream 

analyses, from compensation to detection or rare cells, will benefit from it.  

3.5 Supporting data 

The flowAI package is available from Bioconductor: 

https://doi.org/doi:10.18129/B9.bioc.flowAI. The automatic algorithm of 

flowAI is also available from ImmPortGalaxy (https://immportgalaxy.org) and 

as a flowJo plug-in (Tree Star, Ashland, Oregon). 
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Chapter 4 Transcriptomic signatures of 

human immune cells with clues on mRNA 

composition and absolute deconvolution  
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4.1 Introduction 

The cellular heterogeneity of the immune system is essential for generating diverse 

and targeted immune responses. All immune cells derive from hematopoietic stem 

cells (HSCs), most HSCs reside in the bone marrow, but a small percentage also 

circulates in the blood and placenta (Krause et al., 1996; Lee et al., 2010). Through 

self-renewal, HSCs generate common lymphoid progenitors (CLPs) and common 

myeloid progenitors (CMPs) (Selvarajoo, 2013). T cells, B cells, natural killer 

(NK) cells and plasmacytoid dendritic cells (pDCs) derive from the CLPs; while 

monocytes, granulocytes and myeloid dendritic cells (mDCs) derive from the 

CMPs. These major classes of immune cells can be further subdivided in more 

specific cell types according to their function or maturation stage. 

Investigations into the immune system are often conducted on peripheral 

mononuclear cells (PBMCs) as these are relatively easy to isolate. PBMCs 

comprise lymphocytes, monocytes, NK and dendritic cells (DCs) and often they 

also contain a small fraction of low-density (LD) granulocytes that have been 

generally associated with diseases (Deng et al., 2016; Wright et al., 2016). 

However, studying the PBMCs in their entirety can sometimes lead to inconclusive 

results, as generally it is not yet possible to accurately ascertain which is the 

specific immune cell type responsible for a given signal.  

An effective solution to discern specific immune cell type signals from a 

heterogeneous sample is to use a deconvolution approach. The various 

deconvolution methods developed so far can extract cell proportions, gene specific 

signals or both from mixed samples (Shen-orr and Gaujoux, 2013). The methods 

have been developed and tested on few transcriptomic datasets at the microarray 

level only (Abbas et al., 2005; Novershtern et al., 2011); however, no 

comprehensive analyses at the RNA-Seq level have been produced yet. 

Here, using RNA sequencing, I studied the heterogeneity of 29 immune cell types 

that constitute the PBMC. My results unveil both biological and technical aspects 

of their data analysis that include: 1) gene expression patterns and signatures, 2) 

RNA complexity and its normalization, 3) absolute deconvolution. 
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4.2 Materials and methods 

Donors 

Blood from four Singaporean healthy individuals (S1 cohort) aged 20-35 years (2 

males and 2 females) was collected for transcriptomic profiling of 29 immune cell 

types. Blood from the S1 cohort and from a further nine Singaporean healthy 

individuals (S1Plus cohort) aged 20-35 years (9 males and 4 females) were used 

to isolate PBMCs and to optimize absolute deconvolution from RNA-Seq and 

microarray data. Samples were collected under pseudo-anonymized conditions. 

The identity of each subject was coded and all subjects signed an informed consent 

(IRB number NUS-IRB 10-250). To keep sources of variability at minimum, each 

donor sample was collected and processed at the same time of day (between 9 and 

11 am) under fasting conditions.  

Blood processing 

BD Vacutainer® Mononuclear Cell Preparation Tubes (CPTTM; Becton Dickinson, 

USA) were used for the blood collection (8 ml/CPTTM). The tubes were centrifuged 

for 20 minutes at 1650 relative centrifugal force (RCF) with no brake. The plasma 

was removed and the PBMC layers were transferred to a falcon tube. The cells 

were washed by adding about 10mL of buffer solution made of 95% phophate-

buffered saline (PBS; Thermo Fisher Scientific, USA) and 5% fetal bovine serum 

(FBS; Thermo Fisher Scientific, USA) for each CPTTM. The solution was 

centrifuged for 5 minutes at 340 RCF and after re-suspension, the cells were 

counted using a haemocytometer and split according to the downstream 

experiment. At this stage, aliquots of ~5x106 PBMCs were separated and lysed in 

1mL of TRIzol® (Thermo Fisher Scientific, USA) and then stored at -80°C.  

Antibody panel design and staining 

Four antibody staining panels were designed to immunophenotype and sort the 29 

immune cell types from the following broader categories: 1) CD4 T cells (panel 

1); 2) CD8 T cells, mucosal associated invariant T (MAIT) cells and γδ T cells 

(panel 2); 3) B cells and progenitor cells (panel 3); and 4) monocytes, NK cells, 

DCs and LD granulocytes (panel 4). The 29 cell types were chosen to cover the 
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majority of cells that constitute a PBMC sample. For a complete list of the subtypes 

see Table A.1. The antibody panels were designed and optimized over a first set 

of blood withdrawal. The antibody clones were purchased either from BioLegend, 

BD, or Miltenyi Biotec (Table A.1). For the staining of CCR7, I used the clone 

G043H7 with a pre-incubation step at 37°C at 10 min. Clone G043H7 proved to 

give a better staining index compared to the previously suggested clone 150503 

(Maecker, 2012). General staining was performed at 4°C for 25 minutes; cells were 

then washed and re-suspended in a buffer solution of 5% FBS, 2 mM of ethylene-

diamine-tetra-acetic acid (EDTA; First Base Laboratories, Malaysia) and rest of 

PBS.  

Immunophenotyping 

After isolation, aliquots of 1x106 PBMCs were stained with each antibody panel. 

The solutions were vortexed thoroughly and the samples of the S1Plus (panel 1-4) 

cohort were immunophenotyped with the flow cytometers BD Symphony. The 

quality of the flow cytometry data was verified with flowAI (Monaco et al., 

2016).The flow cytometry data were automatically compensated with the 

FACSDiva software (Becton Dickinson, USA) and gated using the FlowJo 

software (USA).  

FACS Sorting  

From the S1 cohort, ~2-3x108 PBMCs were separated into CD3+ and CD3- 

populations using magnetic beads. The CD3+ fraction was then split into two 

equally sized aliquots for the staining of T cells (panels 1 and 2). The CD3- fraction 

was also split into two aliquots, one aliquot of 60% for the staining of B cells and 

progenitors (panel 3), and one aliquot of 40% for the staining of monocytes, 

dendritic cells, NK cells and low-density granulocytes (panel 4). After staining, 

the immune cells were sorted using the following FACS machines: a BD Influx 

for panel 1 and 3, a FACS Aria 5 for panel 2, and a FACS Aria 4 for panel 4. All 

cells were stained and sorted within 7 hours after blood withdrawal and kept on 

ice between processing steps. After sorting, cells were lysed in TRIzol and stored 

at -80°C. 
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RNA extraction and quantification 

The total RNA of all samples (PBMCs from S1Plus and 29 immune cell types from 

the S1 cohort) was extracted for gene expression analysis. A double extraction 

protocol was used: 1) RNA isolation by TRIzol® extraction and 2) Qiagen RNeasy 

Micro clean-up procedure (Qiagen, USA). The quality of all RNA samples was 

assessed with the Agilent 2100 Bioanalyzer. The RNA Integrity Number (RIN) for 

two samples of CD4 TEMRA was not available as the total RNA obtained was too low; 

hence they were also excluded from further analysis. The RIN of the remaining 

samples ranged between 6.2 and 9.6 and it was considered sufficiently high. The 

RNA concentration was determined using a Quant-iTTM RiboGreen ® RNA Assay 

Kit (Thermo Fisher Scientific, USA).  

Microarray and RNA-Seq data acquisition 

The RNA from 13 PBMC samples of the S1Plus cohort were used for the 

microarray analysis with the Illumina HT12-v4. The cDNA was amplified with 

the TargetAmp™ 2Round aRNA Amplification Kit 2.0 (Epicentre, USA) and the 

data was exported with GenomeStudio. 

The RNA samples of the S1 and S1Plus cohorts were used for RNA-Seq analysis 

with the Illumina HiSeq 2000. The cDNA libraries were prepared from 2 ng of 

total RNA and 1 μl of a 1:50,000 dilution of external RNA control consortium 

(ERCC) RNA Spike in controls (Thermo Fisher Scientific, USA) using 

SMARTSeq v2 protocol (Picelli et al., 2014) with the following modifications: 1) 

use of 20µM template-switching oligos (TSO), 2) use of 250 pg of cDNA with 1:5 

reaction of the Illumina Nextera XT kit. The length distribution of the cDNA 

libraries was monitored using a DNA High Sensitivity Reagent Kit (Perkin Elmer). 

All samples were subjected to an indexed PE sequencing run of 2x51 cycles (16 

samples/lane). In total, 114 samples (two samples of CD4 TEMRA and four samples 

for each of the remaining 28 immune cell types) of the S1 cohort and all 13 samples 

of the S1Plus cohort were taken forward for further analysis. 

Microarray and RNA-Seq data pre-processing 

The microarray data were quantile normalized and corrected for batch effects with 

ComBat (Johnson et al., 2007). For the cross-platform normalization I selected 
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genes with a Pearson’s correlation > 0.7 from the corresponding microarray and 

RNA-Seq PBMC samples of the S1Plus cohort. The upper quartile of the 

microarray values was then divided by the upper quartile of the RNA-Seq 

expression values. The resulting scaling factor was then used to normalize the full 

set of microarray genes. The maximum value of the resulting microarray dataset 

was 2500.  

The genome assembly and annotation for the RNA-Seq data analysis was 

downloaded from GENCODE (version 26). The quality of the RNA-Seq data was 

assessed with FastQC. The software kallisto was used to pseudo-align the reads to 

the transcriptome and get the transcript expression values. The R package tximport 

was used to summarize the transcript expression values into gene expression 

values. The MultiQC software was used to assess and summarize the performance 

of all the pre-processing steps. The counts were normalized for sequencing depth 

and gene length using the Transcript per Million (TPM) method (Li et al., 2009). 

The effect of GC content was explored with the EDAseq package (Risso et al., 

2011). The normalization of the TPM values for mRNA abundance was performed 

using scaling factors derived as following: 1) dividing Quanti-iTTM Assay values by 

FACS enumeration, 2) inverting the trimmed mean of M-values (TMM) (Robinson 

and Oshlack, 2010), and 3) using my method based on LLSR deconvolution and 

optimization (see Deconvolution section). These 3 normalizations are abbreviated 

as TPMTMM, TPMFACS, and TPM{{|}, respectively. The tilde on top of the subscript 

abbreviation of the mRNA normalization procedure indicates that the scaling 

factor is a central tendency estimation (e.g. median) for a cell type instead of a 

single sample. 

Transcriptomic analyses 

To explore the transcriptomic landscape of the 29 immune cell types I used log2 

TPM values and I kept only the genes with a row count ≥ 4 in at least three samples 

(unless otherwise indicated). All analyses were performed in the R environment 

(custom scripts in Supplement 7). 
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The Rtsne package and the prcomp function from the stats package were used to 

perform the t-SNE and PCA analysis, respectively. The hierarchical clustering was 

built using the hclust function with Euclidean distances.  

The transcriptomic hematopoietic tree was generated using the Spearman’s 

correlation coefficient (1-ρ) as pairwise distances and the neighbor-joining 

approach for the clustering. Bootstrap values were calculated for each node to 

show the consistency of the branching patterns. These values were calculated by 

building 100 trees from randomly sampled genes with replacement and retrieving 

the number of times each branch conserved the topology of the consensus tree. 

The tree and bootstrap values were generated with the R package ape.  

For circos plot visualization, I summarized the TPM expression values of the genes 

belonging to contiguous genomic regions of 15 Mbp. The R package circlize was 

then used to generate the circos plots. 

The analyses described were not only applied to the 29 immune cell type 

classification, but also to broader categories (Supplement 8). The differentially 

expressed genes (DEGs) were found with the limma package on both the TPM and 

TPMTMM values. For the design matrix, each cell type or category was contrasted 

against the remaining samples. The PBMC samples were only included for linear 

model fitting but they were excluded from any contrast. The R package WGCNA 

was used to find the modules of DEG and co-expressed genes on TPM values, and 

to perform the Gene Ontology (GO) enrichment of the modules (Supplement 9). 

The heatmaps have been produced with the R package ComplexHeatmap (Gu et 

al., 2016). The enrichment analysis of the DEGs for each cell type and cell 

category on TPMTMM was performed with the fisher.test function in R using the 

Reactome databases V61 (Fabregat et al., 2016) (Supplement 10).  

Deconvolution analyses 

Deconvolution was used to first estimate scaling factors to normalize for mRNA 

abundance and then to estimate cell-types proportions. The signature matrices 

were built using the median TPM expression values of each cell type or category 

that were eventually normalized for mRNA abundance. Uninformative genes were 

removed using the results obtained from the differential expression analysis on the 
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TPM values. I ranked the genes by their q value and I kept the ones with a fold 

change > 2 and a q-value < 0.05 (false discovery rate). A set of filtering procedures 

was performed to remove noisy genes with: 1) very low expression (sum of all 

sample < 50), 2) very high expression (at least one cell type > 5000), 3) poor 

specificity (log2 difference < 0.1 between the first and second cell types with 

highest expression), and 4) a further set of 31 genes having at least one of the 

criteria just described but that were not excluded by the arbitrary thresholds 

applied. Whenever possible, cell types that on their own gave poor deconvolution 

results were included in broader categories.  

To retrieve the scaling factors to normalize the TPM values for mRNA yield, I 

adopted a basic deconvolution method based on linear multiple regression. The 

model is described as: 

 ~	 = b'�Ä + b2�Å + ⋯+ b*�É + e (4.1) 

where y is the gene expression of a mixed sample (in my case PBMCs), x1,x2,…,xn, 

are the gene expression of each immune cell type, and b1, b2,…, bn, are the 

coefficients describing the change of y with respect to x. Italic bold characters 

indicate vectors of numbers, while italic characters are single numbers. In this 

model, there is no intercept term because the regression is forced to pass through 

the origin. In other words, when all the predictor variables (the expression of all 

the immune cells) are 0, also the response variable (the expression of the mixed 

sample) must be 0.  

When the gene expression values are correctly normalized and correspond to the 

real absolute gene expression, the b coefficient correspond to the immune cell 

proportion only. When the gene expression values are not normalized by mRNA 

yield (i.e. TPM values), the b coefficients account for both immune cell proportion 

and mRNA yield. In this case, the model can be re-written as: 

 ~	 = b'1'�Ä + b212�Å + ⋯+ b*1*�É + e,    b	 > 0
1 > 0

 (4.2) 
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where the b coefficients account for the cell proportions, the s values account for 

mRNA yield values, and both the b and s values are positive numbers. We cannot 

estimate both the b coefficients and s values with the gene expression values only. 

However, we can estimate the s values by knowing the real flow cytometry 

proportion. The strategy I adopted consisted of using an optimization algorithm to 

find the s values that minimize the root mean square error (RMSE) between the b 

coefficients and the real proportions calculated by flow cytometry. Therefore, for 

each cell type: 

 min
o∈(Ü,á)

(7 − àâ)2
ä

ãM'

 (4.3) 

where the vectors b and pr are respectively the estimated and real proportions of 

one immune cell type for a set of k individuals; and ll and ul are optional lower and 

upper limits for the s value. For the optimization procedure, I used the optimize 

function from the R stats package, which uses a combination of golden section 

search and successive parabolic interpolation (R Core Team, 2017; Brent, 1973). 

The analysis was repeated on the set of signature matrices of increasing size and 

the mean estimates were calculated over the entire set of results. 

To estimate cell type proportions, first, I compared the performance of five 

deconvolution methods with or without noisy genes and with increasing 

collinearity in the signature matrix. The methods compared are: linear least squares 

regression (LLSR), non-negative linear least square regression (NLLSR) (Abbas 

et al., 2009), robust linear regression (RLR), quadratic programming (QP) (Gong 

et al., 2011) and CIBERSORT (Newman et al., 2015). Filtered signature matrices 

with low condition numbers, calculated with the function kappa in R, for both 

RNA-Seq and microarray deconvolution are reported in Supplement 11 together 

with the full signature matrices. Second, I used LLSR and the filtered signature 

matrices with low condition numbers to obtain optimal deconvolution results of 

16 and 18 cell types or categories for microarray and RNA-Seq, respectively. 
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4.3 Results 

4.3.1 Study design 

Blood samples from four Singaporean individuals (S1 cohort) were sorted from 

for transcriptomic analysis by RNA-Seq of 29 immune cell types. Additionally, 

PBMC samples of 13 Singaporean individuals (S1Plus cohort) were collected for 

transcriptomic analysis with both RNA-Seq and microarray technologies, and for 

flow cytometry-based immunophenotyping of the 29 immune cell types 

(Materials and Methods). Figure 4.1 shows a schematic representation of the 

workflow.  

The 29 immune cell types for this study were chosen based on functional relevance 

and discriminatory ability. I made sure that each cell could only be assigned to one 

cell type and that by merging all the cell types would reconstitute a complete 

PBMC sample.  

 

Figure 4.1 Representation of the isolation of the 29 cell types from blood. The blood is collected 
in a CPTTM to isolate the PBMCs first. Then, aliquots of the obtained PBMCs are used for 
transcriptomic profiling and staining with 4 antibody panels for cell sorting and 
immunophenotyping. Before cell sorting, the PBMCs are split in CD3+ cells CD3- with 
magnetic beads to maximize the number of cells obtained during sorting. After sorting, the 29 
immune cell types obtained are used for RNA-Seq profiling. 
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The gene expression profiles of the 29 immune cell types (S1 cohort) were first 

used to get an overview of the similarities and differences between cell types 

through clustering, differential expression, and co-expression network analysis. 

Two aspects of transcriptome composition were then explored: gene expression 

proportions and mRNA abundance (S1 cohort). Lastly, gene expression of PBMCs 

and flow cytometry proportions were used to investigate normalization and 

deconvolution algorithms.  

4.3.2 Transcriptomic relationships and ontogeny 

I explored the relationships between the 29 immune cell types using 

dimensionality reduction and clustering methods on the TPM expression values 

(Figure 4.2 and Figure A.11). Although with TPM values it is not possible to 

compare the gene expression in absolute terms, as they are not adjusted for mRNA 

abundance, it is nonetheless possible to correctly compare the gene expression 

proportions.  

My analysis confirms that generally the immune cell types that are more closely 

related have also more similar gene expression patterns, however I still found few 

 

Figure 4.2 Immune cell types relationship. (a) t-SNE analysis of the genes that are expressed in 
at least one cell type. Each plot highlights the PBMCs and the cell types processed in each of the 
four staining panels. (b) Transcriptomic hematopoietic tree of the 29 immune cell types fixing 
the progenitor cells as the root of the tree. 
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exceptions. The t-SNE analysis (Figure 4.2a) shows that, for some cell types 

(progenitors, plasmablasts, low-density (LD) neutrophils, LD basophils, and 

pDCs), the samples of different individuals clustered so closely that only one dot 

is visible in the plots. The naive compartments of the CD4 T cells and CD8 T cells 

showed high similarity as they clustered more closely together than with their 

corresponding memory subsets. The T-cell memory subsets formed two separate 

clusters: the CD4 T effector memory RA (EMRA) aggregated with the CD8 T 

effector memory (EM) and CD8 TEMRA, and the CD8 T central memory (CM) 

aggregated with the remaining CD4 memory subsets. A closer look into the 

expression of genes related to degranulation activity, namely granzyme B (GZMB) 

and perforin (PRF1), revealed increased expression levels in the CD4 TEMRA 

compared to the remaining CD4 T memory, in accordance with previous results 

(Marshall and Swain, 2011). 

Some cell types, such as the mature T cells subtypes, mature B cells subtypes and 

intermediate (I) and non-classical (NC) monocytes, did not form distinct clusters. 

The hierarchical cluster (Figure A.11) reveals that the gene signatures of these 

subtypes were more strongly influenced by the inter-individual variability than by 

the cell type differences.  

The transcriptomic hematopoietic tree illustrated in Figure 4.2b is another way to 

visualize the relationship between cell types. Here, I observed that the pDCs did 

not cluster with any broader group and they were the most closely related cell type 

to progenitor cells. The naive T and B cells, although being at an early maturation 

stage, already exhibited a well-defined phenotype as they clustered far from the 

progenitor cells. 

4.3.3 Differentially expressed and co-expressed gene modules 

The landscape of the dataset was explored with both TPM and TPMTMM expression 

values. TPM values highlight the difference in gene expression proportions, while 

TPMTMM values highlight the differences from a core of similarly expressed genes. 

The importance of distinguishing between TPM and TPMTMM will be later explained 

in more detail. The cell types were also grouped in broader categories and the 

analysis was repeated on those. 
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I performed a differential expression analysis first with the R package limma, 

contrasting each cell type or category with the remaining samples (Supplement 

8). The heatmap in Figure 4.3 reports the log2 TPM values of modules of DEG 

with corresponding GO enrichment. Figure A.12 shows extra information on the 

modules selection and inter-correlation. Figure 4.4 and Figure A.13 reports the 

heatmap and information on co-expression modules selection, instead. 

The two heatmaps highlight two important aspects of the transcriptional landscape 

of the 29 cell types: 1) genes that are specific for a defined cell type (Figure 4.3), 

and 2) genes similar patterns independently of cell type specificity (Figure 4.4). 

The heatmap on DEG reveals the high-quality of the transcriptomic data, as each 

cell type or category enriches for known relevant GO terms. A comparison of the 

 

Figure 4.3 Heatmap of DEGs between each cell type or category and remaining samples. Modules 
of genes were found by hierarchical clustering on Euclidean distance (Figure A.12). The most 
relevant GO terms associated with each module are reported on the left. The top DEGs are reported 
on the right (Full list in Supplement 7). 
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genes specific (fold change > 2 and a q-value < 0.05) for four major cell types (T 

cells, B cells, NK and DC) was performed with two publicly available collections 

of specific markers retrieved with microarray data (Abbas et al., 2005; Bindea et 

al., 2013). Between the four cell types, B cells showed the greatest overlap 

indicating that they might be less prone to inter-individual variability Figure A.14. 

Another expected and validating finding is that the modules in the co-expression 

map that are highly expressed in all or almost all the samples enrich for basal 

metabolic functions. Figure A.13c shows the distribution of the connectivity  

 

Figure 4.4 Heatmap of modules of co-expressed genes. The adjacency matrix has been built on 
pairwise bicorrelations. The matrix has been then converted in a topological overlap matrix (TOM) 
with WGCNA. The modules of genes were retrieved using hierarchical clustering on the TOM and 
then merging similar modules (Figure A.13). The most relevant GO terms associated with each 
module are reported on the left. For each module, the genes with higher intra-modular connectivity 
are reported on the right (Full list in Supplement 7). 
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values of each co-expression module. Modules 8, 3, 11 and 7 (ordered by 

decreasing q-value) were enriched for the transcription factors and co-factors 

retrieved from the public resource AnimalTFDB (Zhang et al., 2015), and the four  

modules are all related to transcriptional activity. Most of the transcription factors 

and co-factors however, were either not expressed in any immune cell (38% of 

them) or were too central to belong to a specific module (36% of them). 

The heatmap on co-expressed genes shows some overlap with the DEG one, 

although most of the modules are expressed by undefined cell categories or show 

variation across individuals instead of cell types. The Supplement 9 contains the 

list of genes belonging to each module and it is a source of potential candidate 

markers. 

The DEG of each cell type and category retrieved from the TPMTMM normalization 

(q value < 0.05) were used to perform an enrichment analysis on the gene sets of 

the Reactome database (Supplement 10). Selected pathways are reported as violin 

plots in Figure A.15 and Figure A.16. Two notable results were the enrichment 

of the mitotic cell cycle for plasmablasts, and the down-regulation of non-coding 

RNA activities for LD neutrophils. Moreover, there are additional results that 

might be relevant only in specific contexts and hence are not elucidated here.  

The RNA-Seq data is also a good resource to explore immune cell housekeeping 

(HK) genes. As a starting point, I retrieved two publicly available list of HK genes 

(Eisenberg and Levanon, 2013; Hsiao et al., 2001). The median TPM value of 

these HK genes was used as a scaling factor to normalize the TPM values for 

mRNA abundance. The HK scaling factors generated a Pearson’s correlation of 

0.86 with the inverted TMM scaling factors, demonstrating that the two methods 

have a similar normalization effect. For each gene, the mean and standard 

deviation of the TPMTMM values was calculated (Supplement 10). As expected, the 

standard deviation of the known HK gene lists has a lower standard deviation than 

the remaining genes (data not shown). However, there are numerous discordant 

cases. To provide a new list of reference genes, I highlighted the genes with 

variance < 0.5 and mean expression > 4 (Supplement 10). Notably, 58% of the 

list overlapped with the genes reported by Eisenberg and Levanon (2013).  
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Moreover, the commonly used HK genes GAPDH and ACTB, although expressed 

in all cells, were under-expressed in lymphoid cells and over-expressed in myeloid 

cells. 

4.3.4 mRNA composition part 1: proportions 

The TPM normalization scales all the expression values so that their sum is always 

106 in e 

ach sample which creates the possibility to compare proportions between samples. 

However, in the case of samples where the total mRNA is dominated by the 

expression of only few genes, the remaining fraction of genes will show very small 

expression values. Moreover, in comparison to microarray, the effect of having 

few genes responsible for most of the mRNA is generally more evident with the 

RNA-Seq technology as it does not have an upper limit in the dynamic range 

(Bullard et al., 2010).  

Comparing cumulative TPM expression between different immune cell types 

makes possible to identify profound differences in the mRNA composition in 

terms of proportions. Figure 4.5 shows that in plasmablasts and neutrophils, 

relatively few genes are responsible for the largest fraction of total mRNA. An 

 

Figure 4.5 Composition of the gene expression in terms of proportions. (a) The cumulative sum of 
the median TPM values of nine relevant cell types or categories. The cumulative sum was 
calculated from values sorted in a decreasing order. (b) The number of genes for all 29 cell types 
that contribute for 80% of the cumulative sum of TPM values (106). This number corresponds to 
the dashed red line in (a). 
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opposite profile is given by progenitor cells with a lower number of dominant 

genes. This finding is in line with the fact that these cells are not committed to a 

specialized function yet (Kingsley et al., 2013). Moreover, this also explains why 

in the heatmaps of Figure 4.3 and Figure 4.4 plasmablast and neutrophil samples 

have a substantial different scaling from the other samples. I generated circos plots 

to visualize the genomic regions and the genes that contribute the most to the total 

mRNA in the different immune cell types (Figure A.17, Figure A.18, and Figure 

A.19). As expected, the hotspots of expression in plasmablasts are located in the 

chromosomes 2, 14, and 22 for the production of immunoglobulins.  

Because the same amount of RNA starting material for each cell type, was used 

for the RNA-Seq profiling of the 29 immune cell types, the effect of masking the 

expression of low-expressed genes by few dominant genes is noticeable when 

using raw counts. When exploring the effect of GC content with the EDASeq tool, 

I found that the expression tends to increase at medium values of GC content in 

accordance with findings by the EDASeq developers (Risso et al., 2011) (Figure 

A.20). Nonetheless, neutrophils, plasmablasts show a lower and progenitors show 

a higher GC content effect in comparison to other cell types. From my 

interpretation, this is not actually due to a different GC content effect, but rather to 

differences in mRNA abundance that will be elucidated in the next section. 

4.3.5 mRNA composition part 2: abundance 

The fact alone that plasmablasts and LD neutrophils have a similar composition in 

terms of proportions, is not enough to assume that they have similar complexity. 

A second factor that must be considered is total mRNA yield, which can vary 

greatly among cell types likely due to two main factors: 1) cell size and 2) 

metabolic activity. 

Estimations of the mRNA yield per cell type are generally not made when using 

standard methods of library preparation for gene expression analysis. Moreover, 

commonly used devices to count cells within a sample, such as haemocytometers, 

are poorly accurate. In my case, however, the FACS sorting gave me the exact 

enumeration of each cell type. Hence, by dividing the total RNA yield obtained 

from the RNA quantification assay (see Materials and Methods) by the 
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corresponding number of cells obtained from the FACS analysis, we obtained an 

estimation of the RNA yield produced by a single cell for each immune cell type 

sample (Figure 4.6a). The results indicated high mRNA yield for plasmablasts, 

DCs and monocytes and low mRNA yield for LD granulocytes, progenitor cells 

and CD4 TEMRA.  

Then, I reported the inverted TMM values (Robinson and Oshlack, 2010) (Figure 

4.6b) which were used for the TPMTMM normalization and should be proportionate 

to mRNA abundance. By comparing the patterns formed by the two approaches 

(Figure 4.6a,b), we can notice a substantial discordance for few cell types. In 

particular, it is relevant discussing the effect of TMM normalization on the LD 

neutrophils. The TMM method revealed that, similarly to plasmablasts, LD 

neutrophils have few highly-expressed genes that cover the largest part of the total 

mRNA. Hence, the TMM method estimates a high mRNA scaling factor in an 

attempt to normalize the expression of the core gene set (the majority of genes) of 

LD neutrophils with the core gene sets of the remaining cell types. However, the 

 

Figure 4.6 RNA and mRNA abundance estimation and normalization. (a) RNA yield in 
picograms per cell estimated by dividing total RNA yield from FACS enumeration (donors are 
color-coded). (b) mRNA yield scaling factor per cell type obtained by inversing TMM values 
(donors are color-coded). (c) mRNA yield scaling factors obtained with the LLSR deconvolution 
procedure (see Materials and Methods). (d) Total RMSE obtained by comparing the real PBMC 
gene expression with the reconstructed PBMC gene expression using 5 different normalization 
strategies (see Materials and Methods). 
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total RNA output of LD neutrophils was overall lower than that of most of the 

other immune cells, a finding which is in accordance with a previous work 

(Moulding et al., 2001). This demonstrates the danger of relying on purely 

mathematical methods, i.e. TMM (Robinson and Oshlack, 2010) and DESeq 

(Anders and Huber, 2010) for normalizing the mRNA abundance across very 

diverse samples. 

4.3.6 Absolute deconvolution  

Extracting cell type proportions from RNA mixtures is an approach that has gained 

popularity over recent years. After the pioneering work of Abbas et al. (2009), 

several tools for this aim have been developed (Gong et al., 2011; Newman et al., 

2015), but thus far they have only been tested on few microarray datasets and on 

a relatively small number of immune cell types (Shen-orr and Gaujoux, 2013). 

Here, I used the RNA-Seq data to perform absolute deconvolution and to employ 

it as a novel method to obtain scaling factors for mRNA abundance normalization. 

mRNA normalization through deconvolution 

In contrast to differential expression analysis where it might suffice to compare 

counts normalized only for library size, for deconvolution it is necessary to have 

absolute expression values. For example in the case of LD neutrophils, it is not 

acceptable to push the total gene expression up if the overall mRNA output is 

relatively low compared to the remaining cell types. An optimal way to correctly 

normalize RNA-Seq data for deconvolution approaches is by calculating the TPM 

values first and then multiplying these values with a scaled mRNA yield value. 

Although obtaining TPM values is simple, normalizing for mRNA abundance can 

be a tedious procedure. I already demonstrated the inconvenience of relying on the 

mathematical methods to obtain absolute measurements, e.g. 1/TMM. Moreover, 

it is preferable not to use the total RNA yield value estimated from the RNA 

quantification protocol and FACS enumeration for two reasons: 1) the 

quantification has been made on total RNA and 2) the estimate is only accurate for 

a limited dynamic range. 
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Here, I outline a method to estimate scaling factors to normalize TPM values for 

mRNA abundance based on the simplest deconvolution method, i.e. linear least 

square regression (LLSR), and a basic one dimensional optimization procedure. 

Firstly, I built a signature matrix that fulfils the following requirements: 1) 

inclusion of a set of predictor variables (the cell types) so that their total 

proportions sum up to a full PBMC sample, 2) absence of noisy genes, and 3) 

optimal size to control multicollinearity effects. Secondly, I use LLSR to estimate 

the b coefficients from the transcriptomic data of PBMC, the response variable, 

and immune cell types, the predictor variables. The coefficients, however, also 

incorporate an amount corresponding to immune cell proportions and an amount 

corresponding to the mRNA abundance. Thirdly, to separate the latter amount, I 

use an optimization procedure to find the value that minimizes the error between 

the estimated and real cell type proportions obtained by flow cytometry (see 

Materials and Methods). Because the approach only works if the proportions 

estimated by deconvolution correlate well with the real ones, whenever possible I 

grouped cell types that lead to poor Pearson’s correlations (generally < 0.5) into 

broader categories that give better correlations (see the classification used in Table 

A.2, Figure 4.7a and Figure A.21). The progenitor cells were the only cell type 

where we could not improve the results; for these cells, we used the scaling factor 

estimated from the method based on RNA yield and FACS enumeration.  

The procedure was repeated using signature matrices of increasing size and the 

results are reported in Figure 4.6c and the patterns obtained are closer to the ones 

obtained with RNA quantification and FACS enumeration than the ones obtained 

with inverted TMM (Figure 4.6a,c). To benchmark the accuracy of each 

normalization approach, I compared the real gene expression of PBMCs with an 

assembled gene expression obtained by summing the weighted gene expression of 

each cell type composing the PBMC. The weighting was done by multiplying the 

gene expression of each cell type by its flow cytometry proportion. The RMSE 

obtained from the comparison was the lowest when using a TPM normalized by 

scaled mRNA yield obtained with the deconvolution plus optimization procedure 

(Figure 4.6d).  
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Cell types proportions estimated from RNA-Seq PBMC samples 

Estimating the proportions of cell types constituting a mixed sample with 

deconvolution can only work only if there are specific signals for each cell type. 

The fact that a cell type has a low frequency within a mixed sample would not be 

a limitation itself, given that a sufficiently large sequencing depth is used. 

However, together with the lack of specific signal, the low sequencing depth can 

still be a limiting factor for absolute deconvolution.  

As already stated, whenever possible I grouped together the cell types that yielded 

unsatisfying estimations into broader cell categories that showed better results 

(Figure 4.7a and Table A.2). The only cell type for which I could not improve the 

results is the progenitor cell. A possible explanation could be their overall low 

abundancy which rendered the sequencing depth used unable to catch accurate 

signal of specific genes, such as CD34, within the mixed PBMC samples. Another  

caveat was that the progenitors could not be grouped with any other cell type. The 

performance of five deconvolution methods were compared (Figure 4.7b). Noise 

and multicollinearity were evaluated by the absence of gene filtering and by 

increasing the number of genes for the signature matrix, respectively. I found 

CIBERSORT and RLR to be the least affected by both noise and multicollinearity. 

However, all deconvolution methods apart from QP, performed well with a filtered 

and a well-conditioned signature matrix. Two filtered signature matrices of 

different size are included in Supplement 11, and the smallest one, i.e. the well-

conditioned, has been used to generate Figure 4.7a. 
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Cell types proportions estimated from microarray PBMC samples 

Deconvolution was then performed using microarray data for the same PBMC 

samples used for the RNA-Seq deconvolution (S1Plus cohort). The challenge of 

this analysis lies in deconvoluting the signals from microarray data using a 

signature matrix produced with RNA-Seq, a profoundly different gene expression 

platform. In an assessment made by the SEQC/MAQC III consortium, it was 

 

Figure 4.7 Absolute deconvolution results. (a) Deconvolution performed with LLSR on the most 
optimal cell type classification. For each comparison, concordance correlation coefficient (ccc) 
and the Pearson’s correlation coefficient (r) are reported on the top left. (b) Comparison of 5 
deconvolution algorithms. The total RMSE is calculated by summing the quadratic difference 
of the estimated cell types proportions with the real ones retrieved with flow cytometry. 
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shown to be possible to compare gene expression levels deriving from different 

platforms only after appropriate filtering (Consortium, 2014).  

My strategy consisted of filtering the genes with a Pearson’s correlation >0.70 

between RNA-Seq and microarray data and calculating a scaling factor from them 

only. The scaling factor was retrieved by dividing the upper quartile of the 

microarray subset of genes with the upper quartile of the RNA-Seq subset. The 

microarray samples were then divided by the scaling factor. The upper limit of the 

range in the linear scale obtained for the microarray dataset was 2500; this value 

can be used to normalize other Illumina HT12-v4 microarray datasets when using 

the signature matrix provided (Supplement 11).  

The signature matrix for the microarray deconvolution was also built by filtering 

out noisy genes, i.e. very low, very high and poorly specific expressed genes. A 

well-conditioned matrix and a full matrix are available from Supplement 11. As 

fewer genes were available for the microarray platform, some specific genes 

essential for certain cell types were missing and deconvolution results were less 

accurate. However, deconvolution with a well-conditioned signature matrix still 

generated good Pearson’s correlations with real proportions for several cell types 

(r > 0.8 for naïve B cells, memory B cells, plasmablasts, CD8 T memory cells, NK 

cells, and LD basophils; r > 0.6 for naive CD4 T cells and MAIT cells (Figure 

A.21).  

4.4 Discussion 

This study analysed the gene expression profiles of 29 immune cell types 

comprising the PBMC fraction. I explored the data using different approaches 

giving new insights into their transcriptomic landscape, normalization and 

deconvolution. 

The transcriptomic relationships between the 29 immune cell types were first 

explored with dimensionality reduction and clustering methods using TPM 

normalized values. LD neutrophils, LD basophils, plasmablasts, progenitors and 

pDCs showed very distinct profiles. Other cell types were grouped within broader 

categories with different degrees of variability. CD8 T cells with effector 
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functions, CD8 TEM and CD8 TEMRA, clustered together in accordance to a previous 

work (Willinger et al., 2005). They also cluster close to CD4 TEMRA cells, 

unconventional T cells and NK cells; hence they were all associated with 

degranulation activity. A separate group of T cells consisted of CD4 memory T 

cells and CD8 TCM cells. They all have strong cytokine production activity (Pennock 

et al., 2013) and they show large variability within the formed cluster. A distinct 

cluster of T cells was formed by cells with a naive phenotype, independently from 

their commitment into being CD4 or CD8 T cells already. As expected, memory 

T cells with no effector function clustered between cells with a naive and an 

effector phenotype (Willinger et al., 2005).  

The landscape of the gene expression data was further explored by retrieving the 

differentially expressed genes and the co-expressed genes. From an enrichment 

analysis on the module of genes extracted from the two subsets of genes, I defined 

the set of genes involved in different functions and related to single or multiple 

cell type categories. From these modules, it is possible to identify novel candidate 

genes that can be used as either therapeutic target of as discriminatory marker 

(Figure 4.3, Figure 4.4, and Supplement 9).  

The gene expression composition of the 29 immune cell types resulted to be 

particularly different in progenitors, LD neutrophils and plasmablasts. As 

expected, progenitors have the least number of specific genes, as many diverse 

mRNA molecules are produced by its transcriptional machinery. By contrast, LD 

neutrophils and plasmablasts have very few specific genes that contribute greatly 

to the total mRNA composition (Figure 4.5). Although plasmablasts and LD 

neutrophils seem to have a similar composition in terms of gene expression 

proportions, it is known that these two cell types have profound morphological and 

functional differences. This phenomenon lead me to explore another fundamental 

aspect of mRNA composition: mRNA abundance (Figure 4.6). 

The total mRNA output of a cell type is mainly driven by to two main factors: the 

cell size and the metabolic activity. Although for some analyses, such as co-

expression or differential expression analysis, it might not be necessary to 

normalize for mRNA abundance, there are other cases, such as deconvolution, 

where it is essential. However, only few works until now have described the 
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importance of normalizing for mRNA yield (Lovén et al., 2012; Aanes et al., 

2014). There are mathematical methods that can normalize for mRNA abundance 

without information on cell size and metabolic activity, such as TMM and DESeq. 

Although these methods may work well for most cases, they can produce 

erroneous estimations when comparing cell types with substantial differences. 

Since these mathematical methods assume that the majority of genes have similar 

expression levels, they cannot correctly identify cases where the overall 

transcriptional machinery is downregulated or upregulated. This is a disadvantage 

of almost all mathematical methods that could generally be overcome by 

experimentally cataloguing the mRNA yield of all the cell types constituting the 

most commonly studied organisms. Moreover, by also describing the 

morphological and functional properties it might be possible to establish the 

contribution of the different determining factors.  

A reassuring note for mathematical approaches is that biological questions 

generally revolve around searching for genes that are upregulated or 

downregulated relative to a “standard” pattern of expression. Therefore, using 

mathematically based approaches such as TMM and DESeq as normalization 

methods can generate more meaningful biological results than a comparison of 

absolute gene expression values. For example, if the total RNA output of cell type 

A is 100 and of cell type B is 1,000, it might be meaningless to perform a 

differential expression analysis on absolute expression values as all the genes in 

the cell type A would be probably considered downregulated.  

Given the above concern, I used a two-step normalization approach, TPM and 

TMM (TPMTMM), to provide an additional set of resources, enrichment analysis of 

the Reactome pathways and a list of HK genes (Supplement 10). The enrichment 

analysis showed expected findings, such as plasmablasts under active mitotic 

division, but also some novel ones, such as the low non-coding RNA activity of 

LD neutrophils. Regarding the analysis of HK genes, I selected the genes 

expressed in all samples and with a low standard deviation (mean > 4 and sd < 0.5) 

based on log2 TPMTMM values (Supplement 10). I obtained a large overlap, more 

than half, with the HK genes listed recently by Eisenberg and Levanon (2013), but 

there is also a large set of previously undocumented genes that can be used 
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specifically for immunological studies. Moreover, the commonly used HK genes 

GAPDH and ACTB (Quiroz et al., 2010), although expressed in all cells, were 

under-expressed in lymphoid cells compared to myeloid cells, and thus they may 

not be the best HK genes for certain studies. 

As discussed, deconvolution analyses require an absolute normalization of gene 

expression data that might not always be obtained using mathematical approaches 

such as TMM. Hence, I explored the effect of other two approaches. One approach 

consisted by scaling the TPM values with a factor derived from dividing the total 

RNA yield value obtained with the RNA quantification protocol by the total 

number of cells enumerated by FACS (TPMåçé|). Even though this approach is 

conceptually valid, the protocol used has the best accuracy for a limited dynamic 

range and it only provided results on total RNA and not mRNA. The other 

approach that I developed consisted of scaling the TPM values of a factor that 

minimizes the error between flow cytometry and deconvoluted proportions 

(TPM{{|). The most basic deconvolution method, LLSR, was used to estimate the 

proportions to avoid the introduction of extra noise from more complex 

deconvolution methods that are subjected to constraints (Materials and 

Methods).  

The different normalization methods were benchmarked by calculating the error 

value obtained by subtracting real and reconstructed PBMC expression values. 

This analysis confirmed my approach to be the best among all (Figure 4.6d). 

However, I also noticed that normalizing each sample to its specific mRNA yield 

(jSGèêëí) generated better results than using a median cell-type value 

(jSGèêëí). This finding suggests that there is substantial variability in the mRNA 

yield between individuals and although my method produces a single optimized 

value, further studies are required to explore the mRNA yield variability among 

samples belonging to the same cell type. 

The estimation of the mRNA scaling factor trough LLSR and optimization is only 

accurate if the deconvolution algorithm successively picks up cell type specific 

signals within a mixed sample. To obtain optimal results, I grouped B and T cells 

memory subsets and monocytes with non-classical and intermediate phenotypes, 

obtaining a total of 18 cell categories. Progenitor cells were the only cell type for 
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which deconvolution performed poorly and that could not be grouped with other 

cell types. The deconvolution results after normalization for mRNA abundance are 

reported in Figure 4.7a and a well-conditioned signature matrix is available in 

Supplement 11. The results obtained were robust also for cell types with a very 

low frequency in PBMCs, such as pDCs, mDCs, low-density neutrophils and low-

density basophils. 

The optimization procedure was repeated using microarray data for the PBMC 

samples and 16 cell categories were chosen as optimal classification (Figure 

A.21). Overall, the results were less accurate compared to using PBMC RNA-Seq 

data as mixed samples. There are two main disadvantages of the microarray 

platform compared to RNA-Seq: 1) a restricted upper limit due to probe saturation 

(Gong et al., 2011) and 2) the fewer annotated genes for which expression level is 

obtainable. An example of the latter is the lack of the TRDV2 gene expression 

which is essential to deconvolute the signal of Vδ2 yδ T cells. A limitation of both 

microarray and RNA-Seq technology is the background noise for low gene 

expression signals and this is the most plausible explanation why deconvolution 

performed poorly for progenitor cells. This limitation, however, can be overcome 

in RNA-Seq by increasing the sequencing depth and future studies are needed to 

further enhance deconvolution performance. 

This study used only the basic LLSR for all the deconvolution analyses but several 

other deconvolution algorithms that have been made available over recent years 

(Abbas et al., 2009; Gong et al., 2011; Shen-orr and Gaujoux, 2013; Newman et 

al., 2015). I assessed the performance of five deconvolution methods (Figure 

4.7b) and I found RLR and CIBERSORT (Newman et al., 2015) to be the least 

affected by noise and multicollinearity. All methods, however, reached optimal 

performance with a filtered and well-conditioned signature matrix. Nevertheless, 

I believe that in exploratory phases it is always useful to use the basic LLSR 

method as it reveals the sources of noise in the data. Other deconvolution methods 

apply constraints such as non-negativity and total sum to 1 and although this might 

substantially ameliorate the results in some cases, it would also tend to mask causes 

of low-performance.  
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4.5 Conclusions 

In this work, I used RNA-Seq data from PBMCs and 29 immune cell types to 

explore their transcriptional landscape, and give technical insight on normalization 

and absolute deconvolution. 

Regarding the transcriptional landscape, I found that T and B cells cluster more 

closely according to maturation stage than functionality. Hence, if specific 

transcriptomic signal is needed for memory cells, a better classification should be 

developed. T cell memory cells and monocytes show also a high inter-individual 

variability in terms of both gene expression proportions and abundance. Among 

all cell types, plasmablasts and LD neutrophils are characterized by a few set of 

very specific genes that contribute to the total gene expression, the opposite is seen 

in progenitor cells. Regarding mRNA abundance, instead, plasmablasts have the 

highest yield while LD neutrophils have the lowest. Moreover, the mRNA yield 

can vary greatly not only among cell types but also among individuals; hence the 

various implications should be explored in future works.  

Popular normalization methods, such as TMM and DESeq, are valid strategies for 

analyses like differential expression. With the TMM method I found plasmablasts 

to be under mitotic division while LD neutrophils have poor non-coding RNA 

activities compared to other cells. Moreover, as it is unfeasible to discuss all the 

results produced, lists of DEG, functional enrichments, and HK genes have been 

made available for researchers with specific biological questions (Supplements 8-

10). 

Regarding deconvolution, a correct normalization for mRNA abundance is 

necessary to obtain high-quality results. Hence, I developed a new approach based 

on LLSR and optimization to estimate mRNA yield scaling factors for RNA-Seq. 

Absolute deconvolution was then performed optimally on 18 and 16 cell categories 

on RNA-Seq and microarray mixed samples, respectively. The RNA-Seq signature 

matrices are made available for future deconvolution analyses on both RNA-Seq 

and microarray data of PBMCs (Supplement 11). 
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4.6 Supporting data 

The RNA-Seq data of the 29 immune cell types of the S1 cohort and PBMCs of 

the S1 cohort are available from the GEO repository GSE107011. The microarray 

data of the PBMCs of the S1 cohort are available from GSE106898. Both 

mentioned GEO repositories are accessible from the SuperSeries GSE107019. 

Supplement 7 Custom computer scripts used to perform the analyses. 

Supplement 8 Sheet 1: Information on all the cell categories used for differential 

expression analysis. Sheets 2-5: Fold change and FDR values of the DEG found 

using TPM and TPMTMM values. 

Supplement 9 Genes and functional enrichments analysis of the modules of the 

heatmaps built from differentially and co-expressed genes. 

Supplement 10 Sheet 1: functional enrichment analysis of the DEGs using the 

Reactome database. Sheet 2: list of immune cell HK genes. 

Supplement 11 Full and well-conditioned signature matrices for RNA-Seq and 

microarray deconvolution. 
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Chapter 5 General discussion 

My thesis contains a series of novel computational approaches to process and 

analyse high-throughput data in order to answer immunology-based research 

questions. Hence, my work falls in a field known as computational immunology 

or immunoinformatics, that I have introduced in the first chapter. For the result 

chapters, I analysed and interpreted large scale data from microarray, RNA-Seq 

and flow cytometry platforms. In this section I discuss the findings obtained from 

addressing research questions of both biological and technical interest related to 

the immune system and its data processing. I start with the discussion of the results 

from chapter 2 and chapter 4 that put more emphasis on the biological findings, 

and in particular about the differences and similarities of human processes with 

the mouse model ones and on the heterogeneity of the human immune cells. Next, 

I shift to the technical aspects of data analysis by discussing the algorithms 

employed and developed to analyse gene expression data in chapter 2 and 4, and 

flow cytometry data in chapter 3 and 4. Lastly, I speculate on future works that 

could derive from this thesis. 

5.1 The mouse as a model for the immune system 

The mouse is an extensively used animal model in bio-medical research because 

of its advantageous handling properties. However, translating research findings for 

applications on humans is not always possible because of evolutionary differences. 

In chapter 2, I presented a work that elucidated the similarities and differences 

between human and mouse using co-expression maps and homology annotations. 

I used online databases with gene sets related to tissues, pathways and diseases to 

make a comprehensive list of conserved and diverged elements. The gene sets 
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related with the immune system were found to be significantly conserved. 

However, few specific pathways were found to be diverged and they required more 

attention.  

There are a set of pathways that show diverged co-expression only when including 

one-to-many and many-to-many orthologs. This indicated that the divergence is 

due to the genes that duplicated after speciation. Genes related by duplication are 

referred to as paralogs and they are known to be the drivers of neo- or sub- 

functionalization (Koonin, 2005). The pathways showing this pattern are related 

with processing and trafficking of endosomal TLR, as well as signalling of 

interferon alpha/beta, growth hormone and prolactin.  

Another divergent force for a pathway is a high proportion of non-homologous 

genes. This, together with an increased number of paralogs, is probably the cause 

of divergence for processes that involve the antimicrobial peptides defensins. 

Other processes that are diverged are the ones related to butyrophilin family 

interaction and ubiquitination and proteasome degradation for antigen 

presentation. 

This is the first work presenting evolutionary differences of gene sets related to 

biological processes of any scale, from entire systems to small signalling 

pathways. Previous works have either focused on single diverged genes (Mestas 

and Hughes, 2004; Shay et al., 2013) or on entire tissues and large processes 

(Waterston et al., 2002; Breschi et al., 2016). A similar findings with these works 

include the large proportion of duplicated genes (Waterston et al., 2002; Shay et 

al., 2013) and the divergence of defensins (Mestas and Hughes, 2004). 

The co-expression maps used in my work were built from gene expression data of 

multiple tissues and conditions (van Dam et al., 2012). Collecting everything that 

was publicly available allowed to be more confident of the results because the 

noise of low quality data is minimized by the large sample size. Nonetheless, I 

believe that the size of publicly data is still not large enough to allow robust meta-

analysis for all single tissues or cell types. Moreover, biological processes 

generally involve the interaction among different system, and a selection of 

specific tissues or conditions would probably hide part of the processes.  
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A consideration that might be relevant is that gene expression profiles can be 

strongly influenced by the environment. We must remember that most of the 

mouse studies are done in pathogen free conditions where the immune system is 

generally either poorly or specifically challenged. This can produce differences 

between human and certain laboratory mouse strains that are not driven by 

evolutionary forces. However, since this is a recent phenomenon and I did not 

compare single genes, it is likely that the consideration stated in this paragraph 

does not have a significant impact on my work. 

5.2 Immune system heterogeneity 

The immune system is a complex dynamic network and the heterogeneity of its 

components has not been fully deciphered yet. In chapter 4 I used gene expression 

data to explore the molecular heterogeneity of 29 immune cell types composing 

the PBMCs. Those include 8 types of CD4 T cell, 4 of CD8 T cell, 3 of 

unconventional T cell, 5 of B cell, 3 of monocytes, 2 of dendritic cell, 2 of low-

density granulocytes, NK cells and progenitor cells.  

As expected, the t-SNE and clustering analyses showed that immune cells 

generally form very tight clusters with cells of the same type that in turn form less 

tight cluster with cell types of the same lineage. However, there are some 

exceptions. T cells cluster more closely according to their maturation stage than to 

their main function, e.g. helper or cytotoxic. Moreover, CD4 TEMRA show a more 

similar expression profile with T CD8 memory than with T CD4 memory 

suggesting a switch of functionality for the CD4 T cells in their last stage of 

maturation that has never been described before. CD8 TCM and CD8 TEMRA cluster 

more closely together compared to CD8 TEM, validating a previous finding 

(Willinger et al., 2005).  

Regarding the gene expression composition in terms of proportions, I found that 

the largest fraction of mRNA of plasmablasts and neutrophils is dominated by the 

expression of fewer genes compared to the remaining cell types. The opposite was 

found for progenitor cells, where a large fraction of mRNA is composed of a more 

heterogeneous number of protein-coding genes.  
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Another aspect of gene expression composition, however, is also the mRNA yield. 

As a matter of fact, when I considered this aspect, I found plasmablasts and 

neutrophils to have an opposite profile. The cell types with largest mRNA output 

were plasmablasts, monocytes and dendritic cells, while the cell types with the 

lowest mRNA output were low-density neutrophils, low-density basophils and TEMRA 

cells. 

Modules of differentially expressed genes and co-expressed genes were also 

retrieved and reported. Because this was the first work using RNA-Seq to compare 

such large numbers of different immune cell types, the resources provided are of 

great interest for immunologists that search for novel marker and target genes.  

A limitation of this work is the relatively low sequencing depth used for RNA-

Seq, as it does not allow to capture the signal for very lowly expressed genes. 

Another limitation is the relatively small sample size for each cell type. I used only 

2 samples for CD4 TEMRA and only 4 samples for the remaining cell types of young 

individuals. It is known, that transcriptomics variability increase with age because 

of inheritable factors (Brodin et al., 2015; Martinez-Jimenez et al., 2017) and some 

of the genes that proved to be specific in my work might reveal higher variability 

when using larger sample sizes or samples from elderly individuals. 

5.3 Gene expression data analysis and its applications 

Microarray and RNA-Seq are the two technologies that made it possible to analyse 

large scale gene expression profiles. Having the information on thousands of genes 

presents the researcher with a paradigm shift in the way the research question is 

formulated. From an approach that asks the question “which kind of data do I have 

to collect to validate my hypothesis?” we can shift to “which hypothesis can I make 

with the data I collected?”. In other words, we pass from a hypothesis-driven to a 

data-driven approach, and it is not only valid for bioinformatics but also for other 

research fields (Jaeger and Halliday, 1998; Kimmelman et al., 2014).  

The works reported in chapter 2 and 4 are examples of data-driven approaches. In 

chapter 2, I used co-expression maps built from thousands of datasets (van Dam et 

al., 2012) to find evolutionary differences between mouse and human on hundreds 



 

144 

of gene sets. Although I focused my attention on the immune system, I reported 

the results for an extensive list of tissue, pathway and disease gene sets. This 

allowed me to obtain unexpected results as I was not limited to test only few 

candidate gene sets. In chapter 4, I showed a different application called 

deconvolution that consists of retrieving the proportion of specific components 

from mixed samples. My mixed samples were PBMCs and using the distinct gene 

signatures of specific immune cell types I was able to perform absolute 

deconvolution, a task that was hypothesised to be a potential future endeavour in 

a recent review (Shen-orr and Gaujoux, 2013). My work in this case consisted of 

the optimization of this method, not in the determination of a biological 

conclusion. However, with the results I presented, absolute deconvolution can be 

used to make biological advancements by estimating immune cell types 

proportions from gene expression data of tissues from different conditions.  

Limitations of gene expression analysis are generally related to small sample sizes 

and technological caveats. For example, microarray data can only detect the 

expression of a pre-set number of genes and the dynamic range suffers of 

background noise and probe saturation in the lower and upper limit. However, in 

chapter 4 I show that deconvolution from microarray data of PBMC samples is 

still possible at least for major cell types. 

The RNA-Seq technology overcomes the limitation of microarrays and generates 

better deconvolution results (chapter 4). However, I still encountered some 

obstacles as there is still not a consensus on the optimal RNA-Seq data pre-

processing. The normalization of RNA-Seq data was the main obstacle, as it is 

laborious to reduce the bias introduced by the several steps of library preparation. 

The data were first normalized for sequencing depth and gene length with the TPM 

procedure. Next, the data were normalized for mRNA yield using a deconvolution 

based algorithm that I developed (chapter 4). The importance of normalizing the 

data for mRNA yield has already been stated in previous works (Lovén et al., 2012; 

Aanes et al., 2014). However, for simplicity, purely mathematical methods, such 

as TMM and DESeq, are still more widespread (Li et al., 2015). A second 

limitation of RNA-Seq that I could not overcome as it is imbedded with the 

technology, is the inability to detect the signal for very lowly expressed genes. 
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Nevertheless, contrarily to microarrays, this limitation can be overcome by 

increasing the sequencing depth.  

5.4 Flow cytometry in bioinformatics  

Even though flow cytometry is a relatively old technology, it continues being the 

technology of choice among immunologists. Because of its legacy, the analysis of 

flow cytometry data is still largely carried out with manual and time consuming 

approaches. However, large efforts have been made recently to create 

bioinformatics tools to standardize data analysis (Aghaeepour et al., 2013). 

In this context, I gave my contribution by developing flowAI, a tool to discern 

anomalies from flow cytometry data in an automatic or interactive fashion (chapter 

3). flowAI operates by detecting and removing anomalies from 3 properties of flow 

cytometry: 1) flow rate, 2) signal acquisition and 3) dynamic range. A limitation 

of flowAI is that it requires the manual adjustment of the settings to operate 

optimally for different datasets, however, flowAI still presents several advantages 

compared to previous algorithms. flowQ, for example, verifies the same aspects of 

flow cytometry, but it produces less clear graphics and it does neither detect nor 

removes the anomalies (Gentleman et al., 2006). A more recent software, 

flowClean, removes the anomalies automatically but it provides a poorly intuitive 

report and requires larger computer resources (Fletez-Brant et al., 2016).  

Flow cytometry data was also used in chapter 4 to calculate the proportion of 

immune cell types to validate deconvolution algorithms. The quality control and 

the removal of anomalies was performed with flowAI. The gating analysis was 

performed manually using flowJo, although there are already tools that can be used 

for automatic gating and should be considered for future analyses (Finak et al., 

2014; Malek et al., 2015).  

5.5 Future works 

Due to the heterogeneity of the immune system, my thesis and previous works only 

mark the beginning of a long journey. Therefore, in this section I present some 
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directions for future projects that aim at a more comprehensive understanding of 

the immune system. 

Increasing the sample size 

As for many biological components, gene expression is highly influenced by 

genetic and environmental factors. The variability among individuals can only be 

discovered by increasing the sample size of an experiment. For instance, any work 

I presented in this thesis would likely give further insights by just increasing the 

sample size. In addition, detailed clinical information on each individual would 

allow to associate gene expression with factors such as diseases, age or ethnicity. 

More specifically, increasing the sample size would allow to: 1) discriminate the 

genes, or modules of genes, whose expression remains constant from those whose 

expression increases in variability; 2) make more robust assumptions on the 

differences between human and mouse gene expression; 3) create a more stable 

signature matrix for deconvolution by excluding the genes that show increased 

variability. 

Make full use of new sequencing technologies 

RNA-Seq is rapidly superseding the previous most common high-throughput 

technology, the microarray. RNA-Seq has the advantages that it does not have a 

limited dynamic range and it allows for the identification of novel genes and 

transcripts. The limitations of sequencing technologies, such as costs and 

challenging data analysis, are also rapidly disappearing. 

By fully adopting the RNA-Seq, future works could be done at the transcript level 

instead of the gene level and at an increased sequencing depth. In relation to my 

thesis, this would allow the identification of novel transcripts that: 1) cause 

immune cell heterogeneity; 2) cause differences between mouse and human; 3) 

improve absolute deconvolution. 

Moreover, exome SNPs could be detected assuming a high enough sequencing 

depth. This would expand our knowledge on the general and tissue specific 

regulatory SNPs that contribute to variability within a population.  
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Single cells analysis 

The analysis of the heterogeneity among single cells is also another future research 

task to consider. A recent review discusses the importance of single cell analysis 

for the immune system to understand aspects like heterogeneity, classification and 

differentiation trajectories (Chattopadhyay et al., 2014; Proserpio and Mahata, 

2016).  

Flow cytometry has always been able to analyse single cells whereas single cell 

sample preparation protocols for RNA-Seq have only relatively recently been 

designed. Transcriptomic analyses at the single cell level allow the molecular 

classification of sub-population of cells from groups of cells that are 

morphologically similar. This will increase the “resolution” in all the aspects 

considered in this thesis, such as heterogeneity, evolution, and deconvolution.  

Integration with other “omics” data  

It is not possible to fully understand biological processes by analysing only one or 

two molecular aspects. Transcriptomic data should be integrated with other 

“omics” data, such as genomics, epigenomics, proteomics, and metabolomics. 

By integrating the different kinds of data together, we could improve our 

understanding for immune cell heterogeneity as we can classify cells by a set of 

different connected features. We could define the biological processes that are 

conserved between human and mouse in gene expression but diverged in post-

translational modification and other downstream changes. We could improve 

deconvolution by utilizing methylated spots, expressed proteins or metabolites to 

discern different cell types that have similar gene expression profiles. 

Optimization of automatic pipelines 

The automatization of data analysis is fundamental to reduce the time devoted to 

repetitive tasks. However, it is challenging to obtain pipelines of analysis that are 

robust to any sort of variability in the data. Tools developed for both RNA-Seq 

and flow cytometry analysis are more valuable when they can be integrated in 

robust pipelines (Finak et al., 2014). 
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A follow up work to the development of the flowAI tool would be its integration 

in automatic pipelines for the analysis of flow cytometry data. This would require 

a more extensive exploration of the issues encountered in a variety of different 

situations, such as using different flow cytometry instruments and sample 

preparation methods.  
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Chapter 6 Conclusion 

In this thesis, I presented a series of computational works with the aim of 

understanding the immune system using high-throughput gene expression and 

flow cytometry data. Moreover, with this purpose in mind, I carried out research 

with both biological and technical implications.  

In chapter 2, I reported a comprehensive list of conserved and diverged process 

related to tissue, pathways and diseases with a focus on the immune system using 

co-expression networks and gene homology annotations. Part of the results agreed 

with previous findings, while other results have not been described before. The 

main findings related to the immune system include the divergence of interferon 

alpha/beta, prolactin and growth hormone signalling because of duplicated genes 

and the divergence of defensins, butyrophilins, and ubitiquination and proteasome 

degradation for antigen presentation because of different factors. Moreover, from 

the consultation of the full results it is possible to verify in more details the level 

of divergence and conservation of each process of interest. Researchers will benefit 

from them when planning to translate mouse research to human, in order to predict, 

and potentially avoid, human-mouse inconsistencies. 

Chapter 3 is dedicated to the development of flowAI, a tool for the quality control 

of flow cytometry data. flowAI can remove unwanted events in either an automatic 

or interactive fashion. The cleaning procedure consists in the detection and 

removal of anomalies by checking three properties of flow cytometry: 1) flow rate, 

2) signal acquisition, and 3) dynamic range. flowAI should be used as a first pre-

processing step on flow cytometry data analysis and it can be potentially included 

in automatic pipelines. The flowAI tool is available from Bioconductor as an R 

package and it has been implemented by the ImmPortGalaxy platform and the 

flowJo software for a more user-friendly usage. 
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The work in chapter 4 is based on a series of bioinformatics analyses on RNA-Seq 

data from 29 immune cell types constituting PBMCs and flow cytometry data. The 

transcriptomic relationship among the cell types was explored first using clustering 

and dimensionality reduction methods. The analysis on mRNA proportions 

revealed the number of genes contributing to the largest fraction of mRNA for each 

cell type. The analysis on mRNA yield, instead, revealed the differences between 

the cell types in mRNA output. Because of the large heterogeneity of mRNA 

properties between the 29 immune cell types, I developed an algorithm capable of 

optimizing the normalization for mRNA yield of RNA-Seq data. With the resulting 

normalized gene expression data and the flow cytometry data, I performed 

absolute deconvolution. In short, the work in chapter 4 is designed to improve our 

knowledge on the gene signature specific to different immune cell types that can 

potentially reveal novel cell markers or therapeutic targets. In addition, this work 

provides new technical insights on RNA-Seq normalization and absolute 

deconvolution that can add value to future bioinformatics works.  

In conclusion, in this thesis I showed a series of works that fall under the expanding 

umbrella of computational immunology. The novel findings and approaches 

presented here are of interest to any biologist, and more generally to any 

researcher, involved in disease and ageing studies with an inclination toward an 

immune system perspective. 
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Appendix A Supplementary figures and tables 

 

Figure A.1 Parameters used to define the evolutionary changes that occur in a gene set between 
humans and mice. A Mann Withney U test has been used to compare the i) commonly co-expressed 
genes and ii) differential connectivity values of the homologs of a gene set with the values of the 
remaining homologs. As a measurement to indicate the divergence of the distribution of the values 
of a gene set from the ones of the remaining homologs, in a bar plot I reported the median difference 
of the two distributions for each gene set with an asterisk indicating the significant results with 
FDR < 0.05. A Fisher’s exact test has been used to compare the proportion of iii) one-to-many 
orthologs and iv) homologs of a gene set with the proportion of the remaining homologs and non-
homologs respectively. The forest plots display the odd-ratio from the Fisher’s exact test, plus the 
95% confidence intervals. 
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Figure A.2 Conservation and divergence for Reactome pathways belonging to top hierarchy 
categories A-D. All the gene sets of the first and second hierarchical level were reported. The gene 
sets of the third and following levels were only reported if significant for multiple parameters (q-
value < 0.05 in four cases of six considering one-to-one and entire list of orthologous as separate 
cases) or extremely significant in at least one parameter (q-value < 5e-11). For other details refer 
to Methods, Figure A.1 and Figure 2.6. 
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Figure A.3 Conservation and divergence for Reactome pathways belonging to top hierarchy 
categories E-M. For analysis details refer to Methods, Figure A.1, and Figure A.2. 
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Figure A.4 Conservation and divergence for Reactome pathways belonging to top hierarchy 
categories N-Z. For analysis details refer to Methods, Figure A.1, and Figure A.2. 
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Figure A.5 Quality control results of an FCS file from the SLAS dataset (Panel 2). (a) The flow 
rate contains anomalies in the final region arguably due to clogged cells. (b) and (c) are respectively 
the ECDF and boxplots of the fluorescence intensity values of the low-quality events detected in 
the flow rate and sampling of the high-quality ones of the channel Qdot 655-A. (d) In the signal 
acquisition check a change in the signal is detected in the last part of the analysis that corresponds 
to the anomalies detected in the flow rate. (e-f) percentage of doublets in the file with high quality 
cells (e) and with low quality cells (f).  

 

Low Q
High Q 

 sampling 1
High Q 

 sampling 2
High Q 

 sampling 3Ln Qdot 655−A Channel

Low Q
High Q − sampling 1
High Q − sampling 2
High Q − sampling 3

c
12

10

8

6

4

2

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12

0

200

400

600

800

120Seconds 80400

0 2
0

d

e

N
um

be
r o

f e
ve

nt
s 

pe
r 1

/1
0 

of
 a

 s
ec

on
d

b

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

a

Ln
 Q

do
t 6

55
−A

 C
ha

nn
el

120000
125000
130000
135000

105000
110000
115000

200

300

250
300
350

120
140
160
180

70
80
90

2000
4000
6000

FSC−A

FSC−H

APC−A

AmCyan−A

Qdot 565−A

FITC−A

PerCP−Cy5−5−A

0 50 100 150 200 250 300 350 400 450 500

f

Bin ID

FSC-A

SS
C

-A

SS
C

-A

FSC-A

M
ed

ia
n 

In
te

ns
ity

 v
al

ue



 

 A-6 

 

Figure A.6 Quality control results of the 0003.fcs file from the ZZZU dataset. (a) The flow rate 
check detects a small surge at the beginning and a large surge at the end of the experiment. (b) A 
changepoint was detected at the bin ID 709 for the PE-A channel and in surrounding regions for 
other channels. The anomalies in this region correspond to the surge in the last region of the flow 
rate. (c) Plot indicating the number of negative outliers detected over time. The peaks correspond 
to the surges in the flow rate. (d-e) The boxplots show the variation of the raw intensity for the low-
quality data and three samplings of the high-quality data values of the channels APC-A and APC-
Cy7-A. All the boxplots data have a sample size corresponding to the total low quality data. 
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Figure A.7 Quality control results of the 002.fcs file from the ZZ99 dataset. (a) The flow rate check 
detects several surges in the flow rate interspersed through the entire duration of the experiment. 
(b) A changepoint was detected at bin ID 95 for the parameter B515-A. Other changepoints were 
detected at bin ID 35 of the channels G780-A, G710-A, G660-A, G610-A. A technical anomaly is 
visible for the green laser and it warrants a monitoring and eventually a check of the laser 
functionality of the flow cytometry instrument. Note that only a sample of exemplary channels is 
reported. (c) Plot indicating the number of negative outliers detected over time. The peaks 
correspond to the surges in the flow rate. (d-e) The boxplots show the variation of the raw intensity 
values for the low-quality data and three samplings of the high-quality data for the parameters 
G660-A and G610-A. All the boxplots data have a sample size corresponding to the total low 
quality data. 
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Figure A.8 Quality control results of an FCS file from the SLAS dataset (Panel 1 staining). (a) As 
for Fig. S2, several surges interspersed in the flow rate are detected by the automatic method in 
flowAI. (b-c) Percentage of debris before (b) and after performing the quality control of the flow 
rate (c), indicating that surges in the flow rate might be elicited by clusters of debris. (d) ECDF 
curves and (e) boxplot show the variation of the logarithmic values of the low-quality events 
recorded in the FSC-A channel compared to three samplings of high quality events. (f) The signal 
acquisition check shows some outliers corresponding to surges in the flow rate. Moreover, there is 
a slow decrease in the signal acquired over time, a rare circumstance due to different possible 
causes, such as laser instability, laser alignment, efficacy of detection, poor sample preparation, 
quality of the sheath fluid and accumulation of dirt in the flow cell. 
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Figure A.9 Quality control results of an FCS file from the SLAS dataset (Panel 1). (a) In this case, 
at about 500 seconds, a consistent change of the flow rate occurred most likely due to the change 
of the speed setting by the FCM operator during the running of the analysis. The ECDF in (b) 
shows that the shift of the signal intensity distribution occurs uniformly across the entire range of 
values. The boxplots in (c) confirm this variation for the channel PE-A. All the boxplots and ECDF 
data have a sample size corresponding to the low-quality data detected in the flow rate check. In 
(d) we can observe that the shift in the flow rate causes a shift of the median intensity value during 
signal acquisition. 
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Figure A.10 Gating strategies for sorting the immune cell types and retrieving their percentages. 
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Figure A.11 Visualization of hierarchical clustering and PCA analysis on filtered TPM values. 
(a) PCA analysis showing the first two components and the variance explained by the first 20 
components. (b) Hierarchical clustering of the immune cell type. The colored dots at the end of 
each terminal node correspond to different individuals. 

PC 1

PC
 2

a b

●

●

●
●●

●
●

●●
●

●●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●
●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●
●●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●●
●

●
●●

●
●
●

●●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●●

●

●

−100

−50

0

50

100

−100 0 100

Cell types
●

●

●

●

●

●

●

●

●

PBMCs
Tfh
Tregs
Th1
Th1/Th17
Th17
Th2
T CD4 Naive
T CD4 EMRA

●

●

●
●●

●
●

●●
●

●●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●
●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●
●●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●

●
●

● ●

●
●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

−100

−50

0

50

100

−100 0 100

Cell types
●

●

●

●

●

●

●

●

PBMCs
T γδ Vδ2
T γδ non-Vγ2
MAIT
T CD8 Naive
T CD8 CM
T CD8 EM
T CD8 EMRA

●

●

●
●●

●
●

●●
●

●●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●
●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●
●●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

−100

−50

0

50

100

−100 0 100

Cell types
●

●

●

●

●

●

●

PBMCs
Progenitors
B Naïve
B NSM
B SM
B Ex
Plasmablasts

●

●

●
●●

●
●

●●
●

●●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●
●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●
●●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

−100

−50

0

50

100

−100 0 100

Cell types
●

●

●

●

●

●

●

●

●

PBMCs
Monocytes C
Monocytes I
Monocytes NC
NK
mDCs
pDCs
Neutrophils LD
Basophils LD

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
component

va
ria

nc
e 

(%
)

Variance per component

350 300 250 200 150 100 50 0
Height

● Neutrophils LD
● Neutrophils LD
● Neutrophils LD
● Neutrophils LD
● Basophils LD
● Basophils LD
● Basophils LD
● Basophils LD
● Monocytes C
● Monocytes C
● Monocytes C
● Monocytes C
● mDCs
● mDCs
● mDCs
● mDCs
● Monocytes I
● Monocytes NC
● Monocytes I
● Monocytes NC
● Monocytes I
● Monocytes NC
● Monocytes I
● Monocytes NC
● Tfh
● Th1
● T CD8 CM
● Tfh
● Tregs
● Th2
● Th17
● Th1/Th17
● Th17
● Th2
● Tfh
● Tregs
● Th1
● Th2
● Th1/Th17
● Th17
● T CD8 CM
● Tfh
● Tregs
● Tregs
● Th1
● Th1/Th17
● Th17
● Th2
● T CD8 CM
● Th1
● Th1/Th17
● T CD8 CM
● T CD4 Naive
● T CD4 Naive
● T CD4 Naive
● T CD4 Naive
● T CD8 Naive
● T CD8 Naive
● T CD8 Naive
● T CD8 Naive
● NK
● NK
● NK
● NK
● T gd Vd2
● T gd Vd2
● T gd non−Vd2
● T gd non−Vd2
● T gd non−Vd2
● T gd Vd2
● T gd non−Vd2
● T gd Vd2
● T CD8 EMRA
● T CD4 EMRA
● T CD4 EMRA
● T CD8 EM
● T CD8 EMRA
● T CD8 EM
● T CD8 EM
● T CD8 EMRA
● T CD8 EM
● T CD8 EMRA
● MAIT
● MAIT
● MAIT
● MAIT
● Progenitors
● Progenitors
● Progenitors
● Progenitors
● pDCs
● pDCs
● pDCs
● pDCs
● B Naive
● B Naive
● B Naive
● B NSM
● B SM
● B Ex
● B Naive
● B NSM
● B SM
● B Ex
● B NSM
● B SM
● B Ex
● B SM
● B NSM
● B Ex
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● PBMCs
● Plasmablasts
● Plasmablasts
● Plasmablasts
● Plasmablasts



 

 A-12 

 

Figure A.12 Module analysis of the DEGs heatmap of Figure 4.3. (a) Hierarchical clustering of 
the differentially expressed genes generated from Euclidean distance. The modules were 
retrieved by cutting the tree with the hybrid method from the Dynamic Tree Cut algorithm. (b) 
Eigengene adjacency heatmap of the modules reported in (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b

0
20

40
60

80
10

0
12

0

hclust (*, "complete")
dist(TPMs)

H
ei

gh
t

Module colours

 Eigengene adjacency heatmap

0

0.2

0.4

0.6

0.8

1



 

 A-13 

 

 

 

 

 

 

Figure A.13 Modules analysis of the co-expression heatmap of Figure 4.4. (a) Hierarchical 
clustering generated from the “unsigned” adjacency matrix created in two steps as described in 
the WGCNA manual. In the first step, I calculated the absolute Spearman’s correlation each 
gene pair raised to the soft thresholding power of 6 to approximate to the scale-free topology. In 
the second step, I calculated the consensus Topological Overlap used for the clustering. The 
modules were retrieved by cutting the tree with the hybrid method from the Dynamic Tree Cut 
algorithm and then merging the closest modules. (b) Eigengene adjacency heatmap of the 
modules reported in (a). (c) Boxplot of the co-expression connectivity of the genes contained in 
each module. 
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Figure A.14 Venn diagrams showing the comparison of specific markers found in this work for 
four major cell types (T cells, B cells, NK cells and DCs) with other two publicly available 
collections based on microarray data. Genes symbols annotated for this work were used as 
reference list and the genes from the other two works that were not present in the reference list 
were excluded from the comparison. 
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Figure A.15 Violin plots of the log2 TPMTMM expression of selected gene sets from the Reactome 
database. 
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Figure A.16 Violin plots of the log2 TPMTMM expression of selected gene sets from the Reactome 
database. 
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Figure A.17 Circos plots of the percentage of TPM expression in genomic windows of 15 Mbp 
for all the RNA-Seq of 12 cell types (Part 1). Each circos plot shows a different immune cell 
type. The genes reported have an expression of at least 0.05 % of total expression in at least one 
sample. Asterisks indicates the genes whose expression is significantly higher for the cell type. 
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Figure A.18 Circos plots of the percentage of TPM expression in genomic windows of 15 Mbp 
for all the RNA-Seq of 12 cell types (Part 2). See Figure A.17 for further details. 
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Figure A.19 Circos plots of the percentage of TPM expression in genomic windows of 15 Mbp 
for all the RNA-Seq of 5 cell types and PBMCs (Part 3). See Figure A.17 for further details. 
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Figure A.20 The raw gene counts plotted against GC content for the PBMCs and the 29 immune 
cell types. PBMCs are reported in each plot and the color-code is equivalent to the one in Figure 
4.2a. 
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Figure A.21 Comparison between real flow cytometry proportions and proportions estimated 
with LLSR using microarray data as mixed samples and normalized RNA-Seq data as signature 
matrix. 
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Table A.1 Staining panels used for immunophenotyping and cell sorting. 

* Pre-incubation at 37° for 10 minutes 

 

 

 

 

1) PANEL FOR CD4 T CELLS 
Surface marker Antibody clone Fluorochrome Company 
CD3 UCHT1 FITC BioLegend 
CD4 RPAT4 APC-Cy7 BioLegend 
CD25 M-A251 PE-Cy7 BioLegend 
CD127 A019D5 APC BioLegend 
CXCR5 J25204 PE-TexasRed BioLegend 
CD45RA H100 BV605 BD 
CCR7 G043H7* PerCP-Cy5.5 BioLegend 
CCR6 11A9 PE BD 
CXCR3 G025H7 BV650 BioLegend 
CCR4 L2A1H4 BV421 BioLegend 

 

Cell type Gating strategy 
T follicular helper  

CD3+ 
CD4+ 

CXCR5+ 

T regulatory cells  CD25+ (high) 
 CD127+ (low) 

T helper 1  CXCR3+ CCR6- 
T helper 1/T helper 17  CXCR3+ CCR6+ 
T helper 17  CXCR3- CCR6+ 
T helper 2  CCR4+ 
T CD4 EMRA CCR7- D45RA+ 
T CD4 Naive CCR7+ CD45RA+ 

 

2) PANEL FOR CD8, ϒ/δ AND MAIT T CELLS 
Surface marker Antibody clone Fluorochrome Company 
CD3 UCHT1 FITC	 BioLegend	
CD8 SK1 APC-Cy7	 BioLegend	
CD45RA H100 BV605	 BD	
CD161 HP3G10 PE	 BioLegend	
Vα7.2 3C10 PE-Cy7	 BioLegend	
TCR ϒ/δ 11F2 APC	 Miltenyi	
Vd2 B6 BV711	 BioLegend	
CCR7  G043H7* PerCP-Cy5.5	 BioLegend	
CD45RA H100 BV605	 BD	

 

Cell type Gating strategy 
ϒ/δ Vd2+ 

CD3
+ 

TCR ϒ/δ+ Vd2+ 
ϒ/δ Vd2- Vd2- 

MAIT  Vα7.2+  
CD161+ (high) 

T CD8 Naive 

CD8+ 

CCR7+ CD45RA+ 
T CD8 Central Memory  CCR7+ CD45RA- 
T CD8 Effector Memory  CCR7- CD45RA- 
T CD8 EMRA CCR7- CD45RA+ 

 

3) PANEL FOR B CELLS AND PROGENITORS 
Surface marker Antibody clone Fluorochrome Company 
CD19 H1B19	 PeCy7	 BioLegend	
IgD 1A6-2	 PE-TexasRed	 BioLegend	
CD45 H130	 AF700	 BioLegend	
DUMP - CD3 UCHT1	 FITC	 BioLegend	
DUMP - CD56 HCD56	 FITC	 BioLegend	
DUMP - CD16 3G8	 FITC	 Miltenyi	
DUMP - CD14 HCD14	 FITC	 BioLegend	
CD27 0323	 BV421	 BioLegend	
CD38 HIT2	 APC	 BioLegend	
CD34 563	 PE	 BD	

 

Cell type Gating strategy 
Progenitor cells 

DUMP- 
CD45+ 

 CD34+ CD45+ (low) 
Naïve	B	cells	

CD19+ 

CD27- IgD+ 
Non-switched	memory	
B	cells	

CD27+ IgD+ 

Exausted	B	cells	 CD27- IgD- 
Switched	memory	B	
cells	

CD27- IgD+ CD38+ 
(low) 

Plasmablasts	
CD27- IgD+ CD38+ 
(high) 

 

4) PANEL FOR MONOCYTES, DENDRITIC CELLS, NK CELLS AND LOW-DENSITY GRANULOCYTES 
Surface marker Antibody clone Fluorochrome Company 
DUMP	-	CD3	 UCHT1	 FITC	 BioLegend	
DUMP	-	CD19	 H1B19	 FITC	 BioLegend	
CD45 H130	 AF700	 BioLegend	
CD11c	 B-LY6	 APC	 BD	
CD14	 HCD14	 PE-TexasRed	 BioLegend	
CD16	 3G8	 APC-Cy7	 BioLegend	
CD56	 HCD56	 PerCP-Cy5.5	 BioLegend	
CD33	 WM53	 BV421	 BD	
CD11b	 ICRF44	 PE	 BioLegend	
CD123	 6H6	 BV605	 BioLegend	
HLA-DR	 L243	 Pe-Cy7	 BioLegend	

 

Cell type Gating strategy 
Low-density 
neutrophils 

DUMP- 
CD45+ 

SSC-A+ (high) CD16+ (high) 

NK	cells	 CD16+ CD56+ 
Classical monocytes 

CD11c+  

CD14+ CD16- 
Intermediate 
monocytes CD14+ CD16+ 

Non-classical 
monocytes CD14+ (low) CD16+ 

Myeloid	Dendritic	
Cells		

HLA-DR+ CD11c+ 

Plasmacytoid	Dendritic	
Cells		

HLA-DR+ CD123+ 

Low-density	basophils	 HLA-DR- CD123+ 
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Table A.2 Grouping of the immune cell types for RNA-Seq and microarray deconvolution. 

 

 

 

The	29	immune	cell	types	(full	
name)	

The	29	immune	cell	types	
(abbreviated	name)	

Grouping	for	RNA-
Seq	deconvolution	

Grouping	for	microarray	
deconvolution	

Progenitor	cells	 Progenitors	 Progenitors	 Progenitors	
Naive	B	cells	 B	Naive	 B	Naive	 B	Naive	
Non-switched	memory	B	cells	 B	NSM	

B	Memory	 B	Memory	Exhausted	B	cells	 B	Ex	
Switched	memory	B	cells	 B	SM	
Plasmablasts	 Plasmablasts	 Plasmablasts	 Plasmablasts	
Naive	T	helper	cells	 T	CD4	Naive	 T	CD4	Naive	 T	CD4	Naive	
Follicular	helper	T	cells	 Tfh	

T	CD4	Memory	 T	CD4	Memory	

T	regulatory	cells	 Tregs	
Th1	cells	 Th1	
Th1/Th17	cells	 Th1/Th17	
Th17	cells	 Th17	
Th2	cells	 Th2	
Effector	memory	RA	CD4	T	cells	 T	CD4	EMRA	
Naive	CD8	T	cells	 T	CD8	Naive	 T	CD8	Naive	 T	CD8	Naive	
Central	memory	CD8	T	cell	 T	CD8	CM	

T	CD8	Memory	 T	CD8	Memory	Effector	memory	CD8	T	cells	 T	CD8	EM	
Effector	memory	RA	CD8	T	cells	 T	CD8	EMRA	
Vd2	γδ	T	cells		 T	γδ	Vd2	 T	γδ	Vd2	

T	γδ	
Non-Vd2	γδ	T	cells		 T	γδ	non-Vd2	 T	γδ	non-Vd2	
MAIT	cells	 MAIT	 MAIT	 MAIT	
Natural	killer	cells	 NK	 NK	 NK	
Plasmacytoid	dendritic	cells	 pDCs	 pDCs	 pDCs	
Myeloid	dendritic	cells	 mDCs	 mDCs	 mDCs	
Classical	monocytes	 Monocytes	C	 Monocytes	C	

Monocytes	Intermediate	monocytes	 Monocytes	I	
Monocytes	NC+I	

Non-classical	monocytes	 Monocytes	NC	
Low	density	neutrophils	 Neutrophils	LD	 Neutrophils	LD	 Neutrophils	LD	
Low	density	basophils	 Basophils	LD	 Basophils	LD	 Basophils	LD	


