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Abstract

Operator mental fatigue in workplace can result in serious mistakes which have

dangerous and life-threatening consequences. Fatigue assessment and prediction

are, therefore, considered critical safety requirements that cut across modes and

operations of numerous high-risk environments and industries such as nuclear and

transportation. However, robust, accurate and timely assessment of fatigue (or

alertness) is still a challenging task for many reasons. The majority of operator

fatigue studies are still being carried out in simulation environments, overlooking

operator’s naturalistic behaviour and fatigue growth. Moreover, most of the

available systems rely on using a single fatigue-related data source, which is clearly

a major drawback that affects operation, performance, accuracy and reliability of

the system in case this source fails. With multi-data sources in an integrated

system, the system might stop working in the event of losing one or more data

sources or at least becomes inaccurate or unreliable. Furthermore, paying no

attention to human individual differences working as an operator in mission-critical

jobs related to fatigue growth and in response to fatigue deleterious effect is another

serious issue with the current fatigue assessment and prediction systems.

The research work presented in this thesis proposes a novel fatigue assessment

approach, which addresses the aforementioned issues with fatigue detection and

prediction system. This is achieved by developing and realising algorithms based

on data collected from participants in naturalistic environments. Numerous

experiments have been conducted to cover a wide range of fatigue-related tasks

which are broadly grouped into two categories: biological and behavioural

(performance) experiments. The biological-based experiments employ various

data types such as heart rate, skin temperature, skin conductance and heart rate

variability. These fatigue-related data types are used to build the proposed fatigue

detection system, and the obtained results have demonstrated high accuracy and

reliability (94.5% accuracy in naturalistic environments). The behavioural-based

category includes two experiments: keyboard typing and driving task. The typing

experiments have been carried out using computer keyboard and smartphone

virtual keyboard, and have confirmed enhanced operator fatigue detection

accuracy (94%). The driving experiments were conducted in naturalistic driving

environments, and the used algorithms have demonstrated a new framework for
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driver fatigue detection using smartphone inertial sensors based on a novel vehicle

heading algorithm.

A prototype system was designed and built with a modular structure so as to

allow the addition of multiple fatigue-related biological and behavioural sources.

This modular structure was tested under different situations that involve losing

one or more sources. In addition, the circadian rhythm, which is a main input to

fatigue/alert regulators, was customised for each operator and modelled based on

biological data collected from wearable devices. The constructed model captures

individual differences of operators, which is a challenge in current systems. Such

multi-source, modular and non-intrusive approach for fatigue/alertness assessment

and prediction is expected to be of superior performance, low-cost and favourable

by users compared to existing systems. Furthermore, it addresses other challenges

of current fatigue systems by carrying out fatigue assessment in naturalistic

environments and considering operator individual differences in response to

fatigue. In addition, the modular structure of the proposed system helps improving

robustness and accuracy against losing one or more input sources (accuracy for

4 sources: 91%, 3 sources: 87%, 2 sources: 77%). Following the proposed approach

will definitely enhance the reliability of fatigue assessment systems, improve

operator safety, productivity and reduce financial fatigue impacts. Moreover,

the proposed system has proven to be non-intrusive in nature and of low

implementation cost. The results obtained after testing the proposed system have

been very promising to support the aforementioned benefits.
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Chapter 1

Introduction

1.1 Mental Fatigue

Mental fatigue is a feeling of tiredness or weakness which is usually accompanied

by slow reaction time and may lead to negative outcomes and “decrements in

performance on tasks requiring alertness and the manipulation and retrieval of

information stored in the memory” [1]. It is mainly driven by the body natured

circadian rhythm (daily cycle), sleep deprivation, time on task and type of task [2].

Research in mental fatigue is motivated by the fact that fatal errors made by

human operators and drivers have dangerous and life-threatening consequences [3].

Fatigue detection is therefore considered a critical safety issue that cuts

across numerous high-risk environment including; nuclear industry, healthcare,

transportation, and others. Workplace safety and productivity have also been

gaining increased attention in industry and insurance companies. In these, mental

fatigue is considered as a main cause of degradation in the work safety. It can

1
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lead to reduction in performance, productivity, and ultimately fatal errors and

accidents [4]. The deleterious effect of fatigue on operator behaviour raises the

need for fatigue management, which in turn requires a robust approach to detect,

quantify and predict fatigue.

1.2 Current Solutions

Numerous methods have been used to detect and quantify operator fatigue. These

methods are based on a number of operator fatigue symptoms such as yawing

and slowed reflexes [3], [5]. Generally, operator fatigue can be monitored using

[6], [7], [8]: (i) self-reporting, (ii) physiological data (i.e. heart rate, heart rate

variability, skin temperature and skin conductivity) and (iii) behavioural changes

of motor skill tasks that can be used to detect operator fatigue such as walking,

typing, computer interactions or riding a bike.

Many research studies, ideas and methods for fatigue quantification have been

investigated and implemented for academic and commercial goals. However,

some of important fatigue symptoms have not yet been implemented in real

systems. This mainly because existing measuring methods cannot stand the

noisy environment of real world or due to practical challenges of using sensitive

measurement devices in such environment.
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1.3 Problem Statement and Motivation

1.3.1 Problem Statement

Many studies have sought to build a fatigue detection and assessment system.

However, the existing systems are still facing several challenges. Of these, the real

environment validation, personalisation and robustness are the most outstanding.

These challenges are briefly outlined as follows.

a) The need for real life validation

From a practical perspective, validating a fatigue monitoring system in real

world environment presents a major challenge [9]. The challenge arises due

to health and safety concerns of conducting validation trials in the workplace

especially at later stages of fatigue to avoid the risk of vigilance failure. This

risk was reported in driving accidents when the driver sleeps behind steering

wheel [10], [11].

b) Failure of data sources

Reliability and robustness of fatigue assessment systems are among the existing

issues that need to be studied in more detail [12]. Statistics of road accidents

highlighted the impact of poor quality fatigue assessment regimes on safety,

public health and economics. This suggests an urgent need for reliable fatigue

detection and assessment systems [13]. When compared to single-source,

the multi-source and modular system designs also improves robustness and

reliability. Existing fatigue detection systems which mainly depend on single

fatigue-related metric (or multi-sensors included in an integrated system design)

are generally prone to failure in the event of system failure.
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c) Lack of personalisation

The reported fatigue assessment systems and research did not account for

the individual differences of operators in term of their circadian rhythm and

response to fatigue causes [14], [15], [16]. For example, the existing fatigue

management systems and bio-mathematical fatigue models average the fatigue

ratings across range of individuals while these individuals are clearly different

from one another [17], [18]. Furthermore, the model does not offer information

on group variance around the average performance [19]. Hence, “Until all

significant, individual fatigue-related factors are able to be modelled, absolute

and individual measures of fatigue are unable to be provided by bio-mathematical

models” [20].

1.3.2 Motivation

Most academic research has been implemented in laboratory environments only

without field testing while commercial solutions do not rely on solid theoretical

background or do not have accredited validation requirement. The work presented

in this thesis can be considered timely due to:

a) Emergence of low-cost and privacy preserving wearable devices which are

capable of measuring fatigue-related metrics in real life.

b) The growing need for fatigue assessment solutions due to increasing of

workplace fatigue-related accidents.
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c) Lack of fatigue-related studies that are based on naturalistic environment. Most

of existing academic researches were implemented in laboratory or simulator

environment.

1.4 Aim and Objectives

The work reported in this thesis aims addressing the standing challenges of real-life

validations, failure of data-source and lack of personalisation in the existing fatigue

detection systems. This is achieved through research, design and development of a

novel fatigue detection and prediction system. The main objectives of this research

are summarised as follows:

a) Collecting a new fatigue-related datasets based on measurements carried in

naturalistic environment.

b) Evaluating and validating the proposed system and algorithm in naturalistic

environment by conducting a wide range of experiments involving real-world

activities to check the ability of the proposed system to identify and quantify

early signs of operator fatigue.

c) Improving system reliability by combining multiple data sources in a modular

structure and test the system resilience against losing one or more data sources.

d) Personalising the circadian rhythm of operator by predicting fatigue-growth

trend with time and building customising a model for each individual to

build more accurate fatigue prediction system based on operator physiological

parameters.
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1.5 Novelty and Contributions

A novel fatigue detection system is proposed to detect and assess operator fatigue

status. Unlike exiting systems, the proposed one is based on new models developed

by the author. These models are based on physiological and behavioural data

collected from real subjects in a naturalistic environment rather than using

laboratory simulators. The developed system also addresses the individual

differences between operators depending on their physiological and behavioural

response to fatigue. In addition, robustness of the developed system is further

improved by adopting a modular design approach that makes it self-immune

system against the possibility of single-point failure. To the best of the author’s

knowledge, these novel attributes of the proposed fatigue detection system have

not thoroughly explored in literature.

The contributions of this work include the following tasks:

a) Experimental assessment of the developed system and algorithm in naturalistic

work environment validates the findings especially in fatigue area where human

behaviour is sensitive to the environment within which it occurs.

b) Increasing in the acceptance of fatigue detection solutions by improving the

robustness and reliability to identify and quantify the early signs of operator

fatigue based on multiple data sources combined in a modular system structure.

c) Solution customisation for individual operators to overcome the inaccuracies

which arise from generalisation and enhance prediction of the fatigue-growth

trend with time.
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1.7 Thesis Organization

The remaining part of this thesis is organised as follows:

Chapter 2 lists the related work and state of the art with the mathematical and

theoretical background and overviews the work outlined.

Chapter 3 describes biological-based fatigue symptoms and its effect on operator

and the methods to quantify it using wearable devices for measuring fatigue-related

metrics in real environments. This chapter also presents a new mathematical

model for operator alertness that is based on bio-data collected from real subjects

using low-cost wearable devices.
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Chapter 4 continues with quantifying and monitoring fatigue symptoms in

real environments but for behavioural symptoms of a typing task. This task is

monitored for fatigue symptoms via typing style by conducting three experiments

with three different datasets; smartphone typing, two-status computer-keyboard

typing and multi-level status computer-keyboard typing

Chapter 5 discusses the last experiment of behavioural symptoms of capturing

driver fatigue status based on their driving style. A new smartphone fatigue

detection approach including an application for data collection is outlined in this

chapter. In addition, new vehicle heading based on smartphone sensors is detailed.

Chapter 6 presents a scalable modular design approach to build a robust system

using Bayesian combiner and particle swarm optimiser. This chapter shows the

validation of system robustness against losing one or more of the input modules.

Chapter 7 concludes the work and presents some suggestions for areas of further

investigations.



Chapter 2

Mental Fatigue Assessment

2.1 Introduction

Workplace safety and productivity have been gaining a growing attention in many

industries and insurance companies. Mental fatigue is considered as a main factor

of degradation of work safety and can lead to fatal errors and accidents [21] with

reduction of performance and productivity impairment.

Many people are suffering from fatigue with different severity levels that are

considered high in ratio range of 18.3-27% [22]. Different ratios (between 7%

and 45%) of workers have been reported to be fatigued in industries depending on

cognitive skills [23]. More accurate statistical results have also been reported in

transportation industry in which fatigue is considered the second major cause of

fatal crashes after speed [24]. For example, about 65% of accidents are attributed

to driver fatigue [25]. On British roads, 25%-33% of all serious crashes are caused

mainly by fatigue [26]. A similar situation is reported on Australian roads where

11
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10%-17% of accidents are involving fatigue [8], [24]. Fatigue is the primary reason

behind at least 100,000 crashes and more than 1,500 deaths annually in New

Zealand. The estimated cost for these crashes is around $12.5 billion every year.

Furthermore, the disastrous consequences of operator exhaustion are not limited

to vehicle drivers; they also appeared to be one of major causes of fatal accidents

in commercial aviation (i.e. air, sea, road and rail) [27].

The deleterious effect of fatigue on operator behaviour generally emphasises the

need for fatigue risk assessment, which in turn requires a robust approach to

manage, detect, quantify and predict fatigue.

This chapter presents theoretical foundation and state -of-the art review for mental

fatigue symptoms and assessment techniques. It also presents an overview for the

scope of work reported in this thesis.

2.2 Mental fatigue

There is no simple definition of fatigue as the definitions overlap with how

to operationalise fatigue [28]. However, researchers agree on general aspects;

regarding the harmful consequences of fatigue, as well as the basic definition that

covers fatigue meaning in everyday use which is “extreme tiredness arising from

mental or physical effort” [28].

Fatigue is a mental state and usually combined with slower response times. The

circadian rhythm, sleep deprivation, time on task and type of task are considered

the main drivers of this natural state. For example, air transportation is one of the

fields that is thoroughly covered for risk assessment in which including fatigue and
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sleepiness are considered as the main risk factors [29]. Generally, mental fatigue is

a serious problem and results in operating errors, especially in transportation and

aviation area. Although some studies suggest that aviation transportation is the

safest form of transportation, human errors (including fatigue) remain the main

cause of accidents [18], [30].

Fatigue manifests itself with signs such as: headache, slowed reflexes and reaction

time (RT), reduced ability to pay attention to the situation at hand, impaired

decision-making and judgement, sensation of weakness, feeling of inhibition,

impaired activity and others. However, not all of these signs are measurable and

can be used for fatigue quantification.

A wide variety of sleep research reported various assessment metrics and signs

of fatigue. These metrics and signs are grouped under several categories such

as subjective, objective (physiological and behavioural) and visual. The visual

approach in which visual signs on driver face used to detect drowsiness uses several

metrics [31] including eye closure [32], blinking rate [33], head nodding [34],

yawning rate [35] and others. This approach has been considered accurate in

driver fatigue assessment, but only at late stages of fatigue (sometimes can be

too late). In addition, the way in which the visual sign is collected (via cameras

installed inside the vehicle) may becreate privacy inconvenience thus degrading

the acceptability level of this approach. The visual approach is out of the scope

of this work.

The subjective and objective fatigue assessment methods are adopted in this work.

Theoretical foundation and practical consideration of these methods are described

in the next sections.
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2.3 Subjective Fatigue Assessments

Subjective fatigue assessment has been carried out using different scales. In this

section, the most common scales are described briefly as follows: [36]:

a) Visual analogue scales

Typically, Visual analogue scales (VAS) is a line of 10 cm long with labelled

end points [37] as show in Figure 2.1. The subject needs to mark a sign on this

line at appropriate distance between the two ends of the line. Although VAS is

simple to use and sensitive to small changes, but this sensitivity has a negative

impact on the assessment credibility due to individuals’ differences.

Figure 2.1: Example of VAS

b) Fatigue assessment scale

Fatigue Assessment Scale (FAS) is a questionnaire of ten statements. These

statements are answered by the subject through selecting one category out of

five [38]. As listed in Table 2.1, the ten statements investigate mental and

physical status of a targeted subject and it can show, after been answered, the

response of this subject to fatigue effect. While this response is usually used in

self-assessment of health problems such as stroke [39], it can not be considered

as an instantaneous mental fatigue quantification. Moreover, it is hard to use

in many times in naturalistic environment due to practical issues.

c) Karolinska sleepiness scale
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Table 2.1: FAS [38]

No Question cat 1 cat 2 cat 3 cat 4 cat 5

1 I am bothered by fatigue 1 2 3 4 5

2 I get tired very quickly 1 2 3 4 5

3 I do not do much during the day 1 2 3 4 5

4 I have enough energy for everyday
life

1 2 3 4 5

5 Physically, I feel exhausted 1 2 3 4 5

6 I have problems to start things 1 2 3 4 5

7 I have problems to think clearly 1 2 3 4 5

8 I feel no desire to do anything 1 2 3 4 5

9 Mentally, I feel exhausted 1 2 3 4 5

10 When I am doing something, I
can concentrate quite well

1 2 3 4 5

1 = Never, 2 = Sometimes; 3 = Regularly; 4 = Often and 5 = Always
cat= category.

Karolinska sleepiness scale (KSS) [40] is the most commonly used scales in

fatigue studies although it is not the most precise scale. This is mainly due

to ease of use and it does not disturb the subject especially in naturalistic

environment. Table 2.2 lists the 9 levels of sleepiness status.

Table 2.2: Modified version of KSS [41]

Rate Verbal description

1 Extremely alert

2 Very alert

3 Alert

4 Fairy alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep alert

8 Sleepy, some effort to keep alert

9 Very sleepy, great effort to keep alert, fighting sleep
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Numerous specialised research centres have studied the awareness and signs of

drowsiness; some of these signs are found to be strongly correlated to fatigue

while others are not. Key symptoms of fatigue can be categorised into two major

categories: physiological and behavioural symptoms. The symptoms are described

in the next two sections.

2.4 Physiological Symptoms

A range of measures have been investigated in many research studies for an

association with mental fatigue [42]. These include body temperature, heart rate

and several indexes of heart rate variability, various variables calculated from

Electroencephalography and others. Brief description of these measures provided

as follows.

a) Electroencephalography

Electroencephalography (EEG) is a medical measuring technique that reads

electrical brain activity. It is a scalp surface electrical record and it can be

picked up using metal electrodes and conductive media [43]. It can be measured

without penetrating the skin and is therefore non-invasive, safe and can be

applied repeatedly without interfering with the activity carried out [44]. EEG

is considered one of the most direct, valid and effective physiological measures

for assessing the state of mental arousal. Its rhythms reflect the mental state

of the brain, and the measured signals show fluctuation in its components for

different mental states. Table 2.3 shows the different bands of the EEG signal.

Experimental research associates mental fatigue with increased power in theta
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(θ) and alpha (α) bands of EEG spectrum [45]. Despite that some studies are a

reporting slight difference of band frequency boundaries, it is well accepted that

EEG correlates with fluctuations in performance during sustained attention

tasks [45], [46]. The measured EEG signal is generally weak and noisy, and

thus it is not easy to extract this signal in naturalistic environment especially

with reducing spacial resolution (i.e. using fewer electrodes) of mobile versions

of EEG devices [47].

Table 2.3: EEG rhythm bands and related mental activities [41]

Band Name Frequency Range (Hz) Mental Activity

alpha (α) 8 -13 Relaxation

beta (β) 14 -26 Thinking and attention

theta (θ) 4 -7.5 Unconscious or deep meditation

delta (δ) 0.5 -4 Deep sleep

gamma (γ) 30 -45 Finger, toes and tongue movements

b) Core and skin temperatures

Core and skin temperatures of the human body are affected by internal and

external factors. While the core temperature is regulated within a small

range of variation and following the circadian rhythm, the skin temperature

is considered another indication of the circadian rhythm, and it is almost a

mirror of the core body temperature [48], [49]. In spite of the good correlation

between body temperature and the circadian rhythm which in turn captures the

fatigue development due to sleep pattern, only few researchers have investigated

the effect of fatigue on the body temperature. The researchers agreed that

the temperature during and after performing cognitive tasks tends to be

higher [50], [51]. As cognitive tasks are also a cause of fatigue evolution, it

can conclude that changes in mental fatigue reflect a corresponding change in

the body temperature [52].
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c) Skin conductivity

Skin conductance and resistance levels ( also called galvanic skin repose

(GSR)), are metrics of electrodermal activity of the human body. They are

proved to have a correlation with fatigue, sleep deprivation and circadian

rhythm [53], [54]. An example of skin resistance level variation during

sleep deprivation experiment for 28 hours was previously reported in [53].

In this study, skin resistance level has increased with period of total sleep

deprivation (main reason of mental fatigue). This metric has been widely

gaining interest in recent years due to technology advances in developing

wearable skin conductance measuring devices [55], [56].

d) Heart rate and heart rate variability

The correlation between heart rate and fatigue has not yet confirmed, especially

when heart rate is used as the only metric [57]. Heart rate monitoring is

therefore insufficient by itself for reliable monitoring of fatigue [50]. This

conclusion is derived due to the sensitivity and complex nature of heart rate

metric. However, other studies reported that operator heart rate decreases

when experiencing a light workload during extended periods [58], [59]. Thus,

a more robust fatigue metrics, called heart-rate variability (HRV), has been

proposed instead.

HRV, the duration between two heartbeats, is typically obtained from the

distance between two adjacent peaks in electrocardiogram (ECG) signal [60].

These peaks are a part of the QRS complex which is a name for the combination

of three of a graphical deflections seen on a typical ECG. It corresponds to the

depolarisation of the right and left ventricles of the human heart. An example

of an ECG signal with some details about QRS complex and RR intervals is

depicted in Figure 2.2. HRV indexes are calculated from the RR periods that
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reflect the variation between heartbeats intervals.These can be categorised into

five domains: time, frequency, complexity, fractal and nonlinear [61].

Figure 2.2: Example of ECG signal with QRS complex

A measurement period of at least 5 minutes is considered sufficient to calculate

the HRV from ECG [62]. Table 2.4 summarises the indexes of common use in

time and frequency domains. The relationship between the frequency power

ranges of HRV investigated in [63]. It was reported that the ratio of low

frequency (LF) to high frequency (HF) components is inversely proportional

with fatigue evolution (i.e. high ratio reflects low-fatigue level and vice versa).

The LF/HF is therefore considered of a particular interest in present work.

2.5 Behavioural and Performance Symptoms

Continuous performance of human is affected by fatigue [64]. Thus the lack of

awareness of fatigue status may lead to serious workplace injuries and accidents.

One of many definitions of fatigue [1]., that is related to performance impairment,



Chapter 2: Mental Fatigue Assessment 20

Table 2.4: HRV Indexes

Domain Index Description

Time

SDNN Standard Deviation of NN (RR) intervals

RMSSD Root Mean Square of Successive Differences

NN50 Number of pairs of successive NNs (RR) that
differ by >50 ms

Frequency

VLF Very Low Frequency power from 0.0033 - 0.04
Hz

LF Low Frequency power from 0.04 - 0.15 Hz

HF High Frequency power from 0.15 - 0.4 Hz

LF/HF Ratio of low to high frequency power

states that “decrements in performance on tasks requiring alertness and the

manipulation and retrieval of information stored in the memory.”

Most commonly practised activities such as walking, typing, driving, computer

interaction, or riding a bike are typically known as motor skills. These skills

need to be repeatedly practised in order to be performed automatically [65].

The effect of fatigue on these skills is studied in different work areas including

medical surgeries [66], traffic safety and transportation area [67] and others.

Behavioural symptoms such as response latency and variability, speed and

accuracy, and decision-making and memory form a relation between fatigue

and performance degradation and thus have been used as metrics for fatigue

quantification [68]. These symptoms are typically measured in laboratory

environments using psychomotor vigilance test [69].

2.5.1 Psychomotor vigilance test

Psychomotor skills are the skills behind movement-oriented activities [70], such

as walking, climbing a stair, typing and steering a car. Proficiency of these skills
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is significantly deteriorated by fatigue and sleep deprivation [66]. Hence, several

metrics can be calculated from these skills for fatigue detection and quantification.

Reaction time and lapses (failure to respond or late response) have been used as

the main features for testing psychomotor performance degradation [69].

Psychomotor vigilance test (PVT) is an objective and instrument-based test. It

measures attention and alertness based on the reaction-time metric [69]. In this

test, subjects are asked to press a button in response to visual stimuli. Failure to

react or any reaction exceeds 500 ms or beyond 100 ms is considered as lapses. The

mean of reaction time and number of lapses with 2-10 minutes of the test duration

are used in PVT to quantify operator fatigue [71]. Negative impact of the fatigue

increases both features of the PVT: reaction time and number of lapses [72].

For a realistic environment,however, the text entry and vehicle driving tasks have

been the most common tasks used to capture behavioural pattern changes of the

operator. These tasks are considered of a particular interest in the present work

and thus further detailed in the next two sections.

2.5.2 Text-entry task

Dealing with computing devices such as PCs , tablets and smartphones has been

increasing dramatically. In these devices, the text entry is one of the main

interaction activities performed by the between human. Typing speed and error

rate are two major categories that are mainly used to assess typing accuracy and

efficiency [73]. Timing events that are extracted from user interaction with such

devices are called keystroke dynamics. These events contain many features which

are believed to be measures of cognitive qualities [74]. As a psychomotor skill,
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typing reflects performance degradation by increasing errors, key-down time and

time between clicks [75], [73].

Nowadays,assessment of typing performance has become more and more difficult

due to auto-correction utility and auto-prediction tools. New performance

metrics (speed and accuracy)have therefore been developed depending on large

experimental paired data of presented text (what participants are asked to enter)

and transcribed text (typing output) [76].

Different reasons have motivated research on keystroke dynamics including

quantifying typing performance [77], assessing continuous authentication [78] and

detecting some diseases [75]. However, to our knowledge, just one study has been

reported in the literature so far on fatigue detection using keyboard and mouse

experiment [79]. The results reported in this study has demonstrated an increase

in the key-down time and time between keys, and reduction in mouse speed upon

fatigue inducing. Despite these important-findings, the fatigue assessment method

of this study solely rely on time of the day. The individual differences between

participants has not taken into consideration, and thus the reported results do not

accurately reflects the actual fatigue level of participants .

2.5.3 Driving task

Mental fatigue increases the reaction time and may lead to falling asleep behind

the steering wheel. Many studies have been investigated road safety [80]; of these,

the driver-fatigue have been taking an important share of behavioural studies.

The behavioural approach depends on indirectly collecting symptoms of fatigued

drivers through their driving styles. Unlike the biological, this approach does
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not directly collect drivers data that may violate their privacy. Assessment

of drivers fatigue through detection of lane departure [81], [82], steering wheel

movements (SWM) [83], [84] and symptoms measured by inertial sensors [85]

can be considered common examples for the behavioural approach. However, the

lane departure that depends on camera detection of road-marks is still facing some

practical challenges including clarity of the road marks, weather circumstances and

others. In addition, the SWM approach reported in [83], [84] was implemented

and tested in a laboratory environment using a constructed car simulator with a

single participant. This approach also requires a third-party licence to insert a

new device in the car.

More recent works on fatigue detection systems have used multiple fatigue-related

metrics to improve detection accuracy [5]. These systems fuse and combine the

calculated metrics in three main levels. The first is a raw or filtered data level,

which was used when different sensors measure the same parameter [86]. The

second is a features level which detect fatigue status from the features even

when they are extracted from different types of sensors [87]. The last level

is the abstract (also called the decision level), which combines multi-module

outputs to calculate a more accurate output. Several driver fatigue integrated

systems were also developed through combining different classifiers decisions,

using multiple fatigue-related metrics [88]. Despite importance of findings that

were obtained from simulated environment, these decision-combining systems lack

robustness testing when loosing one or more of the sources, and validation in real

environments.

Some other experiments were also conducted to measure and quantify driver

behaviour in real environments. A small fraction of these experiments focused
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on driver fatigue in naturalistic environment [89], [90]. Main limitations of these

works are: (i) measurement of fatigue-related metrics are impractical and (ii) need

third-party devices to be installed on board.

2.6 Fatigue Modelling

Fatigue prediction has gained an increasing interest over the last few decades

due to the need of accurate assessment of early onset of fatigue and to

deliver better overview for fatigue management plans. Fatigue prediction needs

robust mathematical modelling has challenges to generate accurate and reliable

estimation based on objective measurements [91]. Fatigue modelling has been

investigated using a bio-mathematical approach. This approach essentially

depends on a two or three-process model of sleep regulation [92], or empirical

model.

A number of bio-mathematical models of fatigue have been developed within

the fatigue and sleep research communities. Table 2.5 lists number of existing

alertness models that are based on two-process model and validated in different

studies [16], [93], [94].

Table 2.5: Examples of existing BFM models

No. BFM name

1 Circadian Alertness Simulator (CAS)

2 Fatigue Assessment by InterDynamic (FAID)

3 Advisory System for Tired Drivers (ASTiD)

4 Sleep, Activity, Fatigue and Task Effectiveness Mode (SAFTE)

5 System for Aircrew Fatigue Evaluation (SAFE)
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Several other methods based on the two and three process models have also

been reported including System for Aircrew Fatigue Evaluation (SAFE) [94] and

Circadian Neurobehavioural Performance and Alertness (CNPA) [93]. However,

depending on the application, each of these models has its own shortcomings.

The major limitations are [16]: (i) lack of an estimate of group variance about

the average performance prediction and (ii) unavailability of individual-difference

parameters, such as age, morningness/eveningness, or sleep requirement for full

performance. The prediction accuracy of individuals in these models is therefore

inaccurate even when the fatigue trend is predicted correctly [91].

Bio-mathematical models are currently built on either two- or three-process

models. The two-process model was first introduced to cover the sleep-wake

regulation in 1982 by Alexander Borbely [95]. This model includes two processes:

process S and process C which are outlined briefly as follows:

(a) Process S: A homoeostatic process which is an exponential growth of the sleep

propensity with time awake and this will drop in same manner at the moment

of sleeping.

(b) Process C: It represents the circadian rhythm of the biological clock of

human. This part of the model is not related to sleep-wake activity. The

Circadian rhythm is a physical and mental process that displays an endogenous

oscillation of about 24 hours. A higher performance level can be achieved

through sufficient duration and good quality/depth of sleep [96]. The circadian

role in fatigue growth is clear in aviation industry since circadian rhythms of

the pilots is shifted frequently when they travel across different time zones.

It was shown that the circadian rhythm is one of the sources of individual

differences [29].
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A more recent but very similar model to two-process model called the mutual

inhibition model or three-process model [97] has been proposed. This model

is considered as an extension to the two-process model where the sleep inertia

part referred to as (Process W) [98]. The sleep inertia represents the drop in

performance that happens immediately after awaking. Two processes (S and

C) were used in this model to regulate the arousal system and sleep promotion

neurons. This model showed some improvements over the two-process model

in explaining the low-vigilance levels directly after wakefulness, even with good

quality of sleep.

Some of fatigue bio-mathematical models have also been developed based on

empirical approaches from the biomedical research community data [93]. Other

bio-mathematical models found that it is better to model the circadian part by

24-hour and 12-hour components [99]. The circadian rhythm depends mainly on

one of the well-approved alertness biometric, which is the core temperature change

around the day. It has two harmonics of sinusoidal components thus, it is called

the two-harmonic model. It has the fundamental 24 hour sinusoidal and the second

harmonic 12 hour period [99]..

2.7 Naturalistic vs Laboratory Environment

In studies where humans are the subject of experiments, including fatigue, the

ability to generalise experimental findings beyond laboratory environment remains

questionable [100]. Similarly, psychologists believe that [101] “many small effects

from the laboratory will turn out to be unreliable” and conclude that “a surprising
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number of laboratory findings may turn out to be affirmatively misleading about

the nature of relations among variables outside the laboratory.”

In a laboratory study, the participant’s behaviour is usually different from that

in naturalistic environments. This is mainly due to the participant’s sensitivity

to the environment in which the experiment is carried out. Thus, findings at

naturalistic environments can play a key role in validating and interpreting the

laboratory findings [102].

As humans are the main subjects of experiments and fatigue is an

environmental-sensitive feeling, the naturalistic environment has been of particular

interest in this work. Driving, keyboard typing and other naturalistic daily

activities are considered the main tasks to asses human fatigue.

2.8 Work Overview

Unlike previously reported studies, which were mainly based on laboratory or

simulator environment, a particular focus is given in this work on fatigue detection

and modelling based on realistic environment. The individuality differences among

different users has also been taken in consideration in the proposed models.

Robustness against the partial loss of data resources is another important aspect

of this work. These contribution pillars are shown in block diagram of Figure 2.3

and are outlined briefly as follows.

a) Fatigue Detection



Chapter 2: Mental Fatigue Assessment 28

Fatigue-related symptoms can be monitored using several metrics that are

collected from real environment. In real environment, hardware and software

carefully selected requirements need to be taken into consideration to collect

biological and behavioural data of interest. Ease of use, mobility, accuracy, user

privacy and acceptability are considered of a particular concern in assessing

these requirements.

Two categories of experiments are carried out: biological and behavioural.

The biological experiments are based on data collected directly from operator

body such as heart rate, skin temperature and heart rate variability. In

the behavioural experiments, the text-entry activity is identified as a new

metric especially with smartphone using its inertial sensors. Furthermore,

detecting fatigue symptoms through the smartphone inertial sensors is another

novel contribution of this work in the context of driving task in naturalistic

environment.

b) Modular design

A system architecture based on the modular design approach is proposed and

implemented. This contributed in improving system reliability, scalability and

robustness against single-point of failure that exist in equivalent systems.

c) Circadian customisation

New fatigue detection biological models are proposed and customised for each

subject. These models are derived from heart-rate data that is collected by

the author over several days. The collected dataset allowed personalising the

operator’s circadian rhythms, thus more realistic and accurate fatigue detection

are made possible.
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Chapter 3

Fatigue Detection and Circadian

Modelling Customisation

3.1 Introduction

Fatigue assessment and quantification in naturalistic environments are considered

essential requirements to reduce risks that occur as a consequence of a fatigued

operator. The new developed wearable devices enable accurate measurement of

multiple of fatigue-related physiological signals, thus making assessment of fatigue

levels in real-life environment feasible and cost-effective.

Numerous fatigue/alertness models, especially models related to sleep deprivation,

have been derived from a two-process model [103]. Most of these models focus

on general and consistent features that are reflected by certain bio-data like the

circadian rhythm. The circadian part of t the two-process model is represented

by a pure sinusoidal wave or multiple in-phase sinusoidal harmonics. More

30
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recently, a more detailed model has also been suggested [99]. The latter model

investigate some additional patterns such as the post-lunch dip (sleep needs after

midday hours), morningness and eveningness. A more flexible circadian model

(two-harmonics) is then developed in [104] which further investigated the effect of

these patterns on the circadian rhythm.

This chapter deals with two main objectives: (i) fatigue detection and (ii) circadian

modelling customisation using physiological wearable devices. In the fatigue

detection, a new approach based on physiological data is collection presented.

Various types of physiological sensors are considered including heart rate, skin

temperature, skin conductance and heart rate variability (HRV). In this work,

the data is collected in a naturalistic environment, thus no particular tasks are

required from the participantsto perform.

In the circadian modelling customisation, the Shape-Invariant Model (SIM) is

used to represent the circadian rhythmwhich is then customised for more accurate

representation of the individual users .

3.2 Wearable Physiological Sensors

Recent technology developments have led to the design and development of

low-cost wearable devices that are capable of accurately measuring and collecting

various physiological data including the heart rate and ECG, which are known

to be influenced by mental fatigue [50], [58] as explained earlier in Section 2.4.

Four physiological-data sensors for heart rate (HR), wrist temperature (WT), skin
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conductance (SC) and RR heart beat intervals are adopted in this work for data

collection and generation of fatigue-related metrics.

Two wearable devices are used in this study; a fitness tracker watch and heart-rate

sensor strap. The fitness-tracker watch shown in Figure 3.1(a), is adopted in this

study because of its: (i) capability of saving physiological-data in its internal

memory, (ii) good performance in measuring heart rate (correlation coefficient

of 0.83 in comparison with standard electrocardiographic device [105]), and (iii)

low-cost (around £140 as listed in Appendix B) when compared to the equivalent

devices. This fitness-tracker watch is used to collect several bio-data, including

heart rate, wrist temperature, and skin conductance. This watch collects data at

a rate of 1 reading per minute for each sensor.

(a) Fitness tracker watch (Basis peak) [106].

(b) Heart-rate sensor strap (Polar H7) [107].

Figure 3.1: Fitness wearable devices

The heart-rate sensor strap, shown in Figure 3.1(b), is used to measure the

heart-rate beat intervals (RR). This device which is equipped with a Bluetooth

communication facility, can therefore measure and transmit data wirelessly
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transmitted in real-time to a wide variety of handheld devices (e.g. smartphones

and tablets). A publicly available smartphone application is used to collect data

from sensor and upload it to a remote web-server called Fluxtream [108]. Because

of its high accuracy in measuring heart-rate (correlation coefficient of 0.99 in

comparison with standard electrocardiographic device [105]), this strap is selected

and used in this study.

3.3 The Two-Process Model

Alertness is usually measured by performance metrics like reaction time, motor

tasks and perception times or by bio-data like core body temperature [109]. Some

research papers showed that Heart Rate (HR) hourly changes are affected by

many external factors like physical activity, job-demand and environmental cues.

Despite of these changes, the circadian rhythm is still displayed in the trend of the

collected bio-data along with other bio-data metrics like oral temperature [110].

Some studies have attempted to correlate the skin conductance with driver fatigue

level [111]. Others studies have connected the skin resistance level with relaxation

and pre-somnolence state. It was reported that skin conductance level is negatively

correlated with circadian variation in core body temperature [112].

Based on the two-process model [92], [95] of the sleep regulation, bio-mathematical

models have been built [113] for alertness, fatigue and performance assessments.

The two-process model consists of two processes: (i) a sleep dependant S-process

and (ii) a Circadian C-process. These processes are described as follows.
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3.3.1 Sleep-process (Homeostatic)

The S-process (sometimes called homeostatic) depends on sleep evolution process.

It follows exponential trend that grows in wake time with time constant

τw = 18.2 hrs and fall down in the same trend in sleep time with time constant

τs = 4.2 hrs [97]. During wake, S-process is governed by:

Sw(t) = 1 + (1− Swo)e
two−t
τw (3.1)

where time t is in hours, Swo is the S value at the previous wake onset. and two

is the time of the previous wake onset. While during sleep, S-process is regulated

by:

Ss(t) = Ssoe
tso−t
τs (3.2)

where Sso is the S value at the previous sleep time. and tso is the time of the

previous sleep.

3.3.2 Circadian process

The C-process along with with high (H) and low (L) limits, which is almost

sinusoidal shape, is a free running process of a period of 24 hours [114]. The

process (C(t)) in its original form is given by:
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C(t) = sin(
π

12
(t− φ)) (3.3)

where φ is time-shift (in hours) from midnight.

Transition between wake and sleep occurs when the sleep pressure S(t) reaches its

upper threshold (S+),

S+(t) = Sso + C(t) (3.4)

In contrast, transition between sleep and wake occurs when the sleep pressure S(t)

reaches its lower threshold (S−),

S−(t) = Swo + C(t) (3.5)

Based on some typical parameter settings, given in [97], the two-process model is

generated as shown in Figure 3.2.

The circadian rhythm is a physical and mental process that displays an endogenous

oscillation of about 24 hours as well as 12 hours rhythms [104]. Based on these

types of rhythms, some researchers used physiological and behavioural data to

model the rhythm interaction as well as the alertness daily pattern based on a

shape invariant model (SIM) [115], [116]. A recent version of SIM has been

developed to nicely fit the circadian driven data [115], [117]. This version is based

on multiple harmonics rather than a pure sinusoidal shape.
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Figure 3.2: Two-process model

3.4 Shape-Invariant Model

Shape-Invariant Model (SIM) is a statistical approach developed to capture

common patterns between individuals from a specific observations of natural

phenomena over time [118]. It assumes that all participants have the same shape

function after applying appropriate shift and scale transformations. The shift and

scale parameters provides individuality differences among participants [119]. In

mathematical form, SIM (yij) is giving by

yij = µi +BiSH(tij − ϕi) + eij, i = 1, ....,m; j = 1, ...., ni, (3.6)
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where yij is the response of ith participant in the jth time, µi is the daily average

of each participant, m is the number of participants, n is the number of measures

for participant i, Bi is the amplitude of the ith participant, ϕi is the phase of the

ith participant and SH(tij−ϕi) is the shape function which represents the common

pattern across participants. This function is expressed as harmonic function and

is mathematically given by [117]:

SH(tij − ϕi) =
N∑
k=1

Ak cos(2πk(tij − ϕi)) (3.7)

where Ai is the amplitude of each harmonic, N is the number of harmonics.

In this work two harmonics are considered for several reasons, including [99], [117]:

(i) they are widely used in modelling physiological and behavioural data, (ii) they

can be used to interpret some phenomena such as morningness/eveningness and

post-lunch dip. In addition, the higher-order harmonics do not consistently exist

in the dataset used in this study.

The two harmonic shape function (SH(t − ϕi)) which represents the Circadian

rhythm of each participant, is given by:

SH(t− ϕi) = A1icos(2π(t− ϕi)) + A2i cos(4π(t− ϕi)) (3.8)

Unlike previously reported work [118], parameters of the individual participants

(amplitude, phase and frequency) are obtained through performing frequency

analysis rather than using statistical iterative methods such as non-linear
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regression. The frequency analysis method can be considered more efficient in

terms of computational power especially with the increase of the parameters.

3.5 The Proposed System and Methodology

The proposed operator fatigue detection system is based on physiological data.

This systems includes three distinct stages: (i) data collection and pre-processing,

(ii) feature extraction and labelling including HRV measurements and (iii) fatigue

detection and circadian customisation. It should be mentioned here that the last

two stages of the fatigue detection system, shown in Figure 3.3, are implemented

offline post completion of the practical data collection experiment.

Figure 3.3: Block diagram for the proposed wearable-based system

Development methodology of the model comprises several stages, including:

data collection, pre-processing, HRV estimation, feature extraction, and fatigue

detection and circadian customisation. These stages are shown in the block

diagram of Figure 3.3 and are described as follows.
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3.6 Data Collection and Pre-Processing

Using low-cost and portable bio-sensors allow the model to be tested in real

working conditions with minimal impact on the operators.

3.6.1 Data collection

In this work, two experiments were carried out, one is for fatigue detection and

the other is for circadian customisation.

a) Experiment 1

A total of 9 participants, aged 16-50 years with body mass indexes of 21-35

participated in this study. Each participant was provided with two wearable

devices: a fitness tracker watch and a heart-rate sensor strap. The data was

collected around 16 hours (awake period) daily. The participants were asked

to record their KSS sleepiness level every hour while they were practising their

daily routine in university such as attending lectures, working on computer

and other educational tasks in addition activities during day hours such as

walking, driving or watching TV. Numerous experiments have been carried out

over a period of 9 weeks; (each experiment takes about a week to complete).

The participants were instructed to collect and synchronize data with a remote

server. A user-friendly data collection and management application was used

on the handheld device for this purpose.

The watch collects the data from the participant and sends to his smartphone

by installed application. The smartphone uploads this data to the cloud

whenever internet connection is available. This procedure is almost the same
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for heart-rate sensor strap except the strap itself dose not record data so it need

to be close to the phone within 3 meters to ensure data constant collection.

b) Experiment 2

Six participants, aged 18-50 years old participated in this study for a period

of 14 days using smart watches around the day. Each participant is asked to

synchronize his data daily and upload it to the cloud using his mobile phone

with installed application of the watch. The data is a stream of samples with

a resolution of a sample per minute for each type of data (i.e. heart-rate, skin

conductance and wrist temperature).

3.6.2 Per-processing

Missing data is a common problem in data collection; it can be caused by a sensor

or a human failure. For example, a participant inability of wearing the watch or

the chest strap during battery charging or shower time. To mitigate the impact

of this problem, some practical arrangements were considered: (i) dealing with

slots of less than 30 samples through interpolating the missing data and (ii) using

unequally spaced frequency domain analysis when data-missing slot was greater

than 30 samples. The 30 sample window (30 min) is chosen based on typical

selection of self-reported fatigue scores which vary between 30-120 min [120].

The collected data from tracking watch was pre-processed and analysed to generate

statistical features like 30 min (30 samples) moving average mean (shown in

Figure 3.4) and standard deviation also a frequency domain analysis was conducted

to generate several features such as maximum frequency and area under power
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spectrum density curve. Finally, a set of several features were selected. The

selected set of features are discussed in Section 3.8.

(a) Heart-rate data

(b) Wrist-temperature data

(c) Skin-conductance data

Figure 3.4: Examples of the collected physiological signals
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3.7 HRV Estimation

An example of 10-minute RR intervals for one of the participant involved in this

study is shown in Fig. 3.5. The collected RR data from chest strap is analysed

and used to estimate HRV. An average record duration of 10 mins is considered

adequate to obtain reasonably accurate and reliable HRV indexes [121]. A moving

average window is used to calculate HRV indexes with an overlap of 9 minutes to

match the resolution of data collected from watch sensors (one measurement per

minute).

Figure 3.5: RR intervals extracted from heart-rate monitor

Based on estimation method, HRV indexes can be categorised mainly into two

domains time and frequency domains as listed previously in Table 2.4. The ratio

of low frequency power to high frequency power (LF/HF) of RR power spectral

density (PSD) is widely used in research as fatigue and stress indicator [122, 123,

124, 121]. While less frequent research papers use the whole set of HRV indexes

for fatigue detection [125]. The time domain HRV indexes are simpler to calculate

than frequency domain set and the ratio of standard deviation of NN (RR) intervals

(SDNN) index over root mean square differences of successive RR (RMSSD) index
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can be considered as a surrogate for LF/HF ratio [126]. Hence, in this work, two

HRV indexes are used: LF/HF ratio and SDNN/RMSSD ratio. The time domain

indexes (SDNN and RMSSD) are calculated as follow [126]:

RRn =
1

N − 1

N∑
n=1

RRn (3.9)

SDNN =

√√√√ 1

N − 1

N∑
n=1

[
RRn −RRn

]2
(3.10)

RMSSD =

√√√√ 1

N − 2

N∑
n=2

[RRn −RRn−1]
2 (3.11)

where RRn is the time series of RR values within duration of 10 minutes and N

is the number of samples in RRn.

The frequency domain HRV indexes is calculated by transform RR time series data

into frequency domain. Power Spectral Density (PSD) of time series is usually

calculated using many methods and analysis approaches such as Welch, Burg and

Lomb-Scargle [127, 128]. In this work, Welch approach is used to calculate PSD

of RR signal because it widely used in HRV indexes calculation [129, 130]. Welch

PSD approach is described mathematically as follows:

PSDWelch(f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

RRnwne
−i2πfn

∣∣∣∣∣
2

(3.12)

where U = 1
MU

∑M−1
n=0 w2

n, wn is weighted Hamming window and M is the window

size.
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Figure 3.6 shows two examples of PSD in which frequency band limits are

identified. LF band (0.04-0.15Hz) is represented by grey area while HF band

(0.15-0.4Hz) is represented by black area. Changes in bands power are clearly

shown between two example due to change in operator’s mental status. It is

worth mentioning that the range of PSD also changes between two examples which

reflects changes in total power of deviation in RR data.

An example of calculated LF/HF ratio around waking hours is illustrated in

Figure 3.7. In this example, LF/HF fluctuates widely over hours of day and does

not show consistent trend and this is may come from physical fatigue which changes

frequently around the day due to different activities. However, higher values of

this index is reported in early hours of the day while lowest values appear at early

hours of night.

3.8 Feature Extraction and Data Labelling

The collected data from the fitness watch (hear-rate, wrist temperature and skin

conductance) are passed to feature extraction stage after pre-processing stage. 14

features are extracted from the three physiological metrics including time domain

and frequency domain features. Another set of data has been offered by heart-rate

sensor strap to be used HRV indexes (LF/HF and SDNN/RMSSD) calculation.

Also, time of day is used as an extra feature because it is involved directly with

circadian rhythm of operator which is the main contributor of operator alertness

state.
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(a) PSD example at 23:15 (fatigued)

(b) PSD example at 14:15 (alert)

Figure 3.6: Example record of power spectral density for RR data

Practical implementation needs of real-time fatigue detection system and

classification accuracy are used as a guide for feature selection. Hence, a trade

off between computational power and classification accuracy is followed to choose
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Figure 3.7: Example of HRV index, LF/HF PSD

best set of features. The following 9 out of 14 features are chosen after feature

extraction including time of the day:

a) Heart rate 30 sample window average

b) Heart rate standard deviation

c) Wrist temperature 30 sample window average

d) Wrist temperature standard deviation

e) Skin conductance 30-sample window average

f) Skin conductance standard deviation

g) LF/HF ratio

h) SDNN/RMSSD ratio

i) Time of the day
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The self-reported KSS scores are used to label the selected features. Although

using two labels has shown better performance, three labels (classes) are adopted

in this experiment to capture fatigue onset and development. KSS , which consists

of nine level, are divided equally into three classes: Alert, Mild fatigue and Fatigue.

3.9 Fatigue Detection

This stage proceeds in two steps: classification and Bayesian combiner. The

labelled features are fed to detection stage which in turn generates decision on

the operator fatigue status (i.e. Alert, Mild fatigue or Fatigued). Figure 3.8 shows

a block diagram for the proposed two-steps detector, starting from four ternary

sub-classifiers and ending with Bayesian combiner stage.

Figure 3.8: Two-stage fatigue detector (classifier and combiner)

3.9.1 Classification

The classification is the process of mapping a new input to one of the output

category. Large number of statistical and heuristic classification methods have
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been used in wide range of research areas [131]. The classifiers have different

groups of categorisation based on learning method (supervised and unsupervised),

number of classes (e.g. binary, ternary or multi - classes) or algorithm type (e.g.

linear, kernel estimation or quadratic). The classifier can be functionally described

in several steps as follows. Starting with data collection from object using data

acquisition tools. The collected raw data is preprocessed and de-noised if needed.

then, the features is extracted and the best combination of features are selected.

Next, the chosen features with their labels is divided in to training and test sets to

train and evaluate the classifier. The classifier performance is assessed by different

metrics such as accuracy, sensitivity, precision, confusion matrix and area under

curve (AUC) of receiver operation characteristics (ROC) [132].

Numerous classifier types have been used in operator fatigue detection studies

such as k-nearest neighbour (kNN), decision tree (DT), random forests (RF),

artificial neural network (ANN), support vector machine (SVM) and others [133],

[90], [134]. However, the most commonly used classifiers in fatigue detection are

ANN and SVM . These classifiers normally used for pattern recognition which is

the case in fatigue detection as well as their ability to capture complex non-linear

relationships between different fatigue-related physiological metrics [135]. In this

work, both classifiers are used as required in various fatigue detection experiments.

The collected dataset is used to classify the operator status into Alert, Mild fatigue

and Fatigue states. The dataset is divided into four subsets; each subset is selected

based on data type (heart rate, wrist temperature, skin conductance, HRV) in

addition to time of day which is included in each subset. Four ANN ternary

classifiers are then trained by 65% and validated by 10% of individual feature

subset while the rest of 25% are used for test. The structure of the ANNs is based
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on the feed-forward with an input layer, two hidden layers and three output units

with a tangent-sigmoid transfer function.

Different configurations were also considered to identify the ANN structure with

the best performance. These configurations involved changing the number of

hidden layers and associated nodes as well as optimizing the training algorithm and

the decision transfer function. Levenberg-Marquardt back-propagation algorithm

was eventually selected for the ANNs’ training. Figure 3.9 shows an example of

the HRV sub-classifiers performance illustrated as confusion matrix.

Figure 3.9: Example of sub classifiers performance (HRV classifier)
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3.9.2 Bayesian combiner

Fusion and combination have been used interchangeably in classification problem.

However, fusion term has been used commonly with raw and feature level while

combination term has been used with decision or abstracted level [136]. Several

definitions for data fusion have been reported in literature. However, the mostly

agreed upon definition is [137],

“Information fusion is the synergistic integration of information from different

sources about the behaviour of a particular system, to support decisions and actions

relating to the system”.

Generally, data/ information fusion approaches can be divided into three levels

[137]: (i) a data-level that combines multisensor raw data, (ii) feature-level that

merges features extracted from raw data, and (iii) a decision-level.

For decision level, several combination algorithms have been proposed to combine

heterogeneous sets of modules (e.g. majority voting, weighted majority voting, or

Bayesian combiner) [138], [139]. The Bayesian combiner (BC) is ideally suited for

problems when the output of the modules is independent even when number of

modules are dropped to two [140], [141], [142]. Hence, this approach is adopted

in this work to improve accuracy and confidence of the data classification stage.

The BC works on abstract level of the output of L modules, each module Mi

predicts class label bi ∈ H , i = 1, ...., L. So, any input set x ∈ Rn, can

be combined, the L module outputs produce a vector b = [b1, ...., bL]T ∈ HL.

The core of the Bayesian combiner relies mainly on Bayes theorem [143]. This

theorem of probability computes the posterior probability of module Mi based on
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the prior probability P (hi) and the likelihood P (b | hj) of the evidence b. The

independence assumption is maintained and allows the conditional probability of

the module Mi labels the input x in class bi ∈H to be presented as follows:

P (b | hj) = P (b1, b2, ...., bL | hj) =
L∏
i=1

P (bi | hj) (3.13)

Bayes rule can be described mathematically as follows:

P (hj | b) =
P (b | hj)P (hj)

P (b)
(3.14)

At this stage, the final decision is generated based on the decisions received from

the ANNs. As shown in Figure 3.8, the output of each sub-classifier are combined

together by applying Bayesian algorithm.Bayesian combiner follows maximum a

posteriori probability (MAP) rule [144, 145] in which the classifiers performance

metrics are approximated as posterior probability. The detection results post

combiner stage are shown in Table 3.1 . As illustrated, the overall classification

accuracy and specificity are improved when compared to the results obtained from

the sub-classifiers while sensitivity metric is slightly dropped in comparison with

HRV sensitivity but still much higher than other sub-classifier sensitivities.
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3.10 Circadian Customisation

3.10.1 Data visualisation

This section presents samples of the collected bio-signals: heart rate, body

temperature, and skin conductivity, as illustrated in Figure 3.10. As the data

patterns of all participants are found to be almost similar, the results presented

in this section will focus on the participant with the largest set of data. Several

signal-processing techniques are then applied to the dataset of the participant

under study, and the obtained results are also presented and discussed in this

section. Unlike Chapter 3, where the purpose of the main objective was fatigue

detection, this section focuses on circadian customisation. The physiological

metrics in this section are therefore re-represented with a particular orientation to

the circadian customisation as follow.

1) Heart rate: The heart rate pattern appears more clearly when a window

average of 60 samples is applied for the data. Selection of this reduces activity

fluctuations of the heart rate. Figure 3.10(a) shows an example the daily

rhythm of the heart rate changing around the day. The after lunch dip for

heart rate level is consistently appeared around 12-16 pm.

2) Skin temperature: It is another marker for the circadian rhythm, which is

almost as a mirror of the core body temperature. Example of the collected

wrist temperature signal is shown in Figure 3.10(b). It is noted that the night

temperature is always higher than day temperature, as illustrated.

3) Skin conductance: It is measured in Siemens unit and the data is collected

around four days. Example of the collected signal for skin conductivity is
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shown in Figure 3.10(c). Some values are clipped and limited to a certain

value since these values is impractical and does not reflect the expected data

for skin conductance.

The circadian rhythm is shown in Figure 3.10(a) where heart rate increases during

the day period (i.e. the operator is active )and drops at night. Biological rhythms

of human span a range of cycle lengths, including the daily circadian rhythm and

the 12-hour of afternoon dip rhythm. As the cyclic details which can not be shown

clearly in time domain, the frequency domain analysis is used here to capture these

rhythmicity details.

Figure 3.11 shows the frequency domain results for the heart rate signal using

wavelet transform analysis which it is applied to the heart rate signal for one of

the participants. The expected note in this figure is the rising of heart rate in day

period while it decreases at sleeping time. The best results of showing the daily

rhythm and post lunch dip were displayed by using wavelet approximation signal

based on DMeyer mother wavelet with level 7 and it reflects the daily rhythm with

afternoon dip (siesta).

3.10.2 Circadian customisation

The collected heart rate data is averaged around one 14 days slot to enhance the

common daily rhythm of each participant. The circadian rhythm and the midday

dip are clearly shown in Figure 3.12. As illustrated, heart rate daily pattern differs

among participants and the individual circadian rhythms are clearly appearing.

Also, the midday dip varies in terms of its time and period among the participants.

The important findings formed a core contribution for the proposed model.
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(a) Heart-rate data

(b) Wrist-temperature data

(c) Skin-conductance data

Figure 3.10: Examples of the collected bio-signals, with 30-sample window
averaged for 4-day period
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Figure 3.11: Wavelet approximation (DMeyer level 7)

Figure 3.12: 24-hour heart rate variation averaged over 14 days

The two-harmonic function, described in Equation 3.8, is adapted in this work by

adding the fact that the two harmonics are not 24 and 12 hour exactly but they

are vary around these number. Hence, two different frequencies and phase shift
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are added to the shape function. The obtained shape function CR for the two

sinusoidal functions with almost 24 and 12 hours harmonics is given by

CR = A1cos(ω1t− θ1) + A2cos(ω2t− θ2) (3.15)

where the values of A1 ,A2 (the amplitude of the 24 , 12 components respectively)

and ω1, ω2 (the frequency of the two components), θ1 and θ2 (the phase shift of the

two components) are unknown parameters and to be calculated using the Fourier

transform results (amplitude, frequency and phase).

Fourier transform of heart rate signals is illustrated in Figure 3.13 which gives

a good view for the two harmonics in interest. The first harmonic is around

7 cycles/week and its related to the daily rhythm circadian clock. The second

component that is with 14 cycles/week can be explained as the 12-hour component.

Its worth mentioning that the first harmonic has significant amplitude relative to

around harmonics for all participants while this is not the case for second harmonic.

The shape function parameters are estimated for each participant from Fourier

transform graphs (amplitude and angle) as overviewed in Figure 3.13.

3.11 Results and Discussion

Ten trials of randomly selected records from data sets were conducted to calculate

the performance metrics of classification for all classifiers. These performance are

calculated using multi-class performance macro-averaging method [132, 146] as

follows.
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Figure 3.13: An example of Fourier analysis for heart rate signal

Average Accuracy =

∑l
i=1

tpi+tni
tpi+tni+fpi+fni

l
(3.16)

Average Sensitivity =

∑l
i=1

tpi
tpi+fni

l
(3.17)

Average Specificity =

∑l
i=1

tni
tni+fpi

l
(3.18)

were l is the number of classes which is 3 in our case, tpi is true positive for ith

class, tni is true negative for ith class, fpi is false positive for ith class and fni is

false negative for ith class.

Table 3.1 clearly shows the superiority of the BC results over the individual
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sub-classifiers in terms of accuracy and specificity. The sub-classifiers

demonstrated variation in results in terms of accuracy. The HRV sub-classifier

demonstrated the highest accuracy (93.7%), while the HR sub-classifiers

demonstrated the least accuracy (78.2%). These results are based on the

normalised features that were extracted from the dataset of the nine participants.

Accuracy of the developed fatigue detection system is found to be close to

that obtained by existing EEG-based fatigue detection systems that have been

considered the most direct, valid and effective physiological measure for assessing

the state of mental fatigue. Various EEG-based fatigue detection methods have

been developed and their detection accuracies are in the range of(88%-99%) [147].

These methods, however, were tested in laboratory environment which is beyond

scope of the work presented in this thesis. Furthermore, the EEG-signal is

generally weak and noisy, thus it is not easy to detect accurately in a naturalistic

environment [47].

Table 3.1: Summary of system performance

Performance metrics
ANN classifiers

BC (%)
HR (%) WT (%) SC (%) HRV (%)

Accuracy 78.2 86.7 82.2 93.7 94.5

Sensitivity 72.1 81.0 73.8 94.0 93.1

Specificity 77.3 83.2 86.0 93.5 95.3

Figure 3.14 illustrates an example results obtained from the derived shape function

given in Equation 3.15. As illustrated there are two graphs one in grey colour which

represents the raw data of heart rate for one participant averaged long 14 days of

data. The other graph represents the customised circadian obtained by the shape

function where clear similarity are shown between the two graphs.
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Figure 3.14: An example of circadian customisation based on two-harmonic
shape function

Similarity between collected and model-based datasets are checked by performing

correlation test for both datasets and the results are listed in Table 3.2. Most of

participants circadian rhythms are found to have strong and very strong correlation

except for participant 4 which is considered as moderate correlation strength (using

the guide of correlation strength that reported in [148]) . Differences in correlation

coefficient between collected and model-generated datasets can be explained due

to variation of second harmonic significance among participant rhythms.

The heart-rate classifier (shown in Figure 3.8) is re-used in this experiment and

tested with customised circadian. Table 3.3 compares the classifier performance

with and without circadian customisation. It can be noticed that approximatley

4% accuracy improvement has been achieved.
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Table 3.2: Correlation strength between collected data and customised CR

Participant number Correlation

Coefficient (r)

Correlation

strength [148]

1 0.91 very strong

2 0.84 very strong

3 0.88 very strong

4 0.56 moderate

5 0.86 very strong

6 0.72 strong

Table 3.3: Comparison of system performance with and without circadian
customisation (based on heart-rate data)

Performance metrics Before customisation After customisation

Accuracy % 79.2 83.2

Sensitivity % 74.3 78.5

Specificity % 78.3 81.1

3.12 Conclusions

A new multi-sensor fatigue detection system has been proposed and implemented

successfully. The developed prototype was found to be promising in terms of

usage low-cost wearable devices (around £170 as listed in Appendix B) to detect

fatigue status of operators in real-life environments with high level of accuracy.

Unlike previous studies, this system is tested in naturalistic environments to detect

three levels of operator alertness (Alert, Mild fatigue and Fatigue) rather than in

laboratory environment with just two levels (Alert, Fatigue) [149].

In this experiments, the results were obtained for 9 participants over a period of 48
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hours. These results are close or outperform the state-of-the-art results reported

in [122] in which 12 drivers were involved with two hours of driving. A fatigue

detection accuracy of 94.5% has been achieved in the present work which is 4.5%

higher than that reported in [122]. In addition, unlike the work reported in [122]

the developed fatigue detection systems provides three detection levels (Alert, Mild

fatigue and Fatigue) rather than two levels (Alert and Fatigue).

A modified Shape-Invariant Model (SIM) has also been developed and used to

customise the circadian rhythm of individuals. The developed model is a modified

version of the SIM that is based on the two-harmonic function. A frequency

analysis technique is used to determine the circadian customisation parameters,

thus a new model which strongly correlates to the data collected from experiments

at a real-environments.

The circadian customisation method proposed in this study has improved the

fatigue assessments through identifying the individuality differences and including

them in the developed model. The obtained results have demonstrated that

the fatigue detection accuracy, based on the heart-rate data, has increased

approximately 4% when compared to that obtained before model customisation.

This confirms the importance of taking the individuality deferences into

consideration in fatigue assessment.

It should be noted here that the work presented in this chapter had faced some

challenges/limitations, including: (i) lack of a close collaboration with domain

knowledge experts and (ii) the need for wearing measuring devices for several days

which limited the number of participants in this study.



Chapter 4

Fatigue Detection - Naturalistic

Typing

4.1 Introduction

Fatigue can be reflected by behavioural changes of operators motor skills [1].

Of these, driving, walking, typing, computer interaction and riding a bike are

the most common. These skills need to be repeatedly practised to be done

automatically. Performance degrades on psychomotor-related tasks as fatigue

develops, and this degradation can have serious health, safety and economic

implications. Quantifying the degradation, which is addressed as an indicator

of fatigue onset [68], can help to prevent fatigue by scheduling breaks, changing

time shift or using any other fatigue countermeasure methods.

In this chapter, two systems with three different typing datasets are proposed

to capture the performance degradation of operators. In the first system, two

62
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keyboard typing-based datasets are used and a binary classifier is suggested for

fatigue detection. The first dataset is a new dataset generated by the author while

the second is an existing dataset that was generated to simulate some mental

disease effect [75]. The second system is proposed and tested using an existing

smartphone-based dataset.

The proposed systems rely on performance metrics that can be calculated from

keyboard usage. These metrics are called keystroke dynamics and are explained

in the next sections.

4.2 Keystroke-Dynamics and Error Rate

Measures

Keystroke-dynamic metrics are time-related metrics that can be calculated from

operator’s fingers interactions with a computer keyboard. The main reason behind

the interest in increasing research on keystroke dynamics is their use in security and

authentication algorithms. This can be simply integrated with existing computer

hardware for security systems [74]. Other important applications of the keystroke

dynamics include calculation of behavioural metrics [75], [150] and more recently

fatigue detection which is of a particular interest in this study [79], [151].

The methodology used in [79], [151] assumes that the fatigue level is only depended

on time of the day. Moreover, the practical implementation of these studies

challenges may need other device (i.e. mouse) and metrics (i.e. mouse speed,

location and others). This requires more computation resources to process the

suggested algorithm.
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Hold Time (HT) and digraph (time between two consecutive key presses) represent

the basic metrics of keystroke dynamics from which the features are extracted.

Figure 4.1 depicts the time features related to keystroke dynamics. Latency

is another term that is commonly used to describe timing of the keystroke.

It includes press-to-press (digraph), release-to-release (RR) and release-to-press

(RP) latencies [152]. The typing style is known to be individualistic [153] and

external factors, such as keyboard type, keys layout and language affect the

typing rhythm [154]. However, psychological factors, such as sleepiness, stress

and emotions can also affect typing style [155], [156].

Figure 4.1: Graphical description of Keystroke dynamics features

The text entry accuracy metrics and error rate measures have been widely

reported in literature, and there has been a consensus on the following set of

definitions [74], [157]:

a) Error Rate of Minimum String Distance: Minimum String Distance (MSD) is

the minimum number of keystrokes needed to transform transcribed text into

presented text [158]. The error rate of minimum string distance ERMSD is

given by:



Chapter 4: Fatigue Detection - Naturalistic Typing 65

ERMSD = (MSD(P, T ))/(MAX(|P |, |T |))× 100% (4.1)

where presented text (P ) is the experiment message, transcribed text (T ) is

the text that is written by a participant and the symbol |.| is the size of text.

b) Erroneous KeyStroke Rate: It represents the ratio of the total incorrect

keystrokes to the presented characters. The erroneous keystroke rate (EKSR)

is obtained from:

EKSR = (IF + INF )/P × 100% (4.2)

where incorrect fixed (IF ) is the number of the incorrect keystrokes which is

noticed by the participant and corrected while incorrect not fixed (INF ) is the

number of the incorrect characters that appear in the transcribed message.

c) Total Error Rate: The ratio of total incorrect characters (fixed and non-fixed)

to the total characters is called total error rate (TER) and it is calculated from:

TER = (IF + INF )/(C + F + INF )× 100% (4.3)

where correct (C) is the number of the correct characters in the transcribed

message and fixes (F ) is the number of the correction keystrokes (such as delete,

backspace, and cursor movement) and, modifier keys (shift, alt, control, etc.)

d) Keystrokes per Character: It represents another important error related metric;

its value can be related either to many easy-corrected errors, or to few

arduous-corrected errors. In mathematical form, the keystrokes per character
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(KSPC) is obtained from:

KSPC = |InputStream|/|T | (4.4)

e) BackSpace Rate: It is an error related metric. Its value is calculated by counting

number of backspace clicks in specified length of text. In mathematical form,

the backspace Rate (BKSR) is calculated from [159]:

BKSR = number of backspace clicks in certain text/|T | (4.5)

The last two metrics can be calculated based on counting specific keyboard

characters (i.e delete and backspace keys) without the need of addressing each

single character or error. This calculation method is considered as essential

requirement to protect user privacy. These two metrics are therefore used in

the proposed naturalistic study to quantify performance degradation based on the

typing error rate [160].

4.3 System 1 (Keyboard Typing)

A new method for operator fatigue detection based on computer-keyboard natural

typing style is proposed and implemented as shown in Figure 4.2. The changes

in typing behaviour that come from the fatigue evolution are detected using the

performance degradation-related metrics: HT and digraph. The proposed method

comprises of several stages that are defined briefly, as follows:
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Figure 4.2: Block diagram of the implemented system

a) Key-events recording: The timing of key events (key press and key release) are

recorded.

b) Keystroke calculation: Keystroke dynamics (i.e. HT and digraph) are

calculated based on key events.

c) Feature extraction: Several statistical features, based on keystroke dynamics,

are extracted (features are listed in Table 4.1).

d) Classification: The extracted features are used to detect the operator’s fatigue

status, using two classifiers (ANN and SVM). These classifiers are very common
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in typing behaviour studies [74].

e) Bayesian combination: , The outputs are fed to a Bayesian combiner to

improve overall classification performance. This combiner is one the most useful

algorithms for combining multiple decisions [161] .

4.3.1 Dataset 1: keyboard typing with Karolinska

sleepiness scale

This dataset is generated by the author with the aid of volunteer students at the

University of Liverpool. 15 participants (13 males and 2 females) aged between

36 and 50 years participated in the development of this dataset; all of them have

a good experience from spending at least two hour per day using a computer, but

none of them is a professional computer typist. This dataset that is based on

personal computer keyboard, is labelled with 9 fatigue levels.

Each participant is asked to install a software package which was originally

developed by Massachusetts Institute of Technology researchers [75] to collect

keystroke timing over two working days. No specific task are given to the

participants to keep them in naturalistic environments. Moreover, the participants

are asked to asses their fatigue level and record it on a separate MS Excel sheet

with its timestamp, using Karolinska sleepiness scale (KSS), every one hour while

they are typing. The experiment is carried out for two days with ate least of 3

hours of daily typing. The total typing time of all participants was around 55

hours.
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4.3.2 Feature extraction and labelling

The feature extraction method is equally applied to Datasets 1 and 2. Similar

feature sets are extracted from both datasets except for an extra feature (called

hour of day) which is extracted from Dataset 1. Generally, a small percentage of

the key-timing events records shows two typing abnormalities: (i) the long periods

of holding times and (ii) the long periods of digraph times. These abnormalities

are therefore discarded prior to keystroke calculations.

Three metrics of keystroke dynamics are calculated from both datasets: (i) hold

time, (ii) digraph and (iii) release to release latency. Statistical analysis and

visualisation is implemented on these metrics to select the best collection of

fatigue-related features.

Histograms peaks provided in Figure 4.3(a) depict the variation of digraph times

between alert and fatigue participant status. Resolution of the timer used in

this experiment is 1µs and the variation in the digraph times is 50 ms. This time

frame is considered adequate for the classifier to achieve a reasonable performance.

The dashed lines belong to the participant in alert status that has peaks with

fewer digraph times than the solid lines that belong to the fatigued participant.

Similarly, Figure 4.3(b) demonstrates a similar trend of variation in HT histograms

peaks between the alert and fatigue states of the participant.

Typing performance degradation due to fatigue effect can be captured by its

reflection on error rate. Figure 4.4 shows the relation between one error rate

measures (BKSR) and KSS score. The BKSR is normalised for each participant

to neutralise the differences between participants and between keyboard types. A
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(a) Digraph

(b) Hold Time

Figure 4.3: Example of keystroke metrics histogram for a participant

correlation coefficient (r=0.31, p < 0.05), which is statistically significant, shows

an increase in error rate with fatigue growth.

Statistical analysis of the above-mentioned metrics generates some features. A

total of 13 features are normalised with their labels (Alert or Fatigue). The

metrics of keystroke dynamics and their corresponding features are summarised in
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Figure 4.4: Relation between BKSR and KSS score

Table 4.1.

Table 4.1: Keystroke metrics and their features

No. Metircs Features

1 Hold Time mean, mode, median and standard deviation

2 Digraph mean, mode, median and standard deviation

3 Release-to-Release

(RR) latency

mean, mode, median and standard deviation

4 Hour of the day (Only for Dataset 1)

The latency metric press-to-release (time between key press and consecutive key

release) is found to be ineffective in terms of classification performance and thus

excluded to reduce classifier complexity.

Two labels (Alert and Fatigue) are assigned to the calculated feature set. The

“Alert” label is assigned to the record when its subjective assessment (KSS) is
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within the first four fatigue levels (i.e. 1-4), and “Fatigue” label is assigned for

higher levels (i.e. 5-9).

4.3.3 Fatigue detection

Outputs of the classifiers ANN and SVM are fused by a combiner to improve

the classification performance. These fatigue detection techniques are described

briefly as follows.

a) Artificial Neural Network

ANN is built and trained with training set of 65% of the available dataset while

the rest 35% records are used for validation and testing phases. The proposed

ANN is implemented with feed-forward ANN based on one input layer and

one hidden layer and one single output unit with a tangent-sigmoid transfer

function. Moreover, many trials are adopted for ANN structure to improve

the network performance such as changing the number of hidden layer and the

nodes in each layer as well as changing in training algorithms and decision

transfer function.

b) Support Vector Machine

Support vector machine (SVM) is a supervised machine learning classifier using

hyper planes to discriminate output classes. SVM uses a training algorithm to

maximise the margins between the classes based on least square method [162].

Similarly to ANN, SVM has a wide range of applications and it is used in large

number of classification problems. SVM has gained very good reputation of

its superior performance over other classifiers but with slower time in training

phase [163].
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In this work, the SVM is used to classify the users depending on their collected

data into two classes (alert and fatigued). These classes are labelled to indicate

the alert/fatigued status. A 2-class SVM classifier is found adequate to detect

the fatigue status of the keyboard users. The radial basis function is used as

a kernel for the SVM classifier. The dataset is divided into two subsets: the

training subset of (75%) and the testing subset of (25%). The latter set is used

to evaluate the classifier performance.

c) Bayesian combiner

Bayesian combiner (BC) uses the base classifiers posterior probabilities and

their outputs which are provided by the SVM and ANN classifiers to improve

the overall classification performance. The posterior probabilities of both

classifiers are calculated using confusion matrices. The soft output (not the

labels) of the ANN classifier is weighted by the posterior probability of the same

classifier. The scores of SVM classifiers represent the distance of the classifier

output from the support vector. These scores are generated and weighted by

its posterior probability. Then, the summation of the two weighted outputs is

used to generate the combined decision of the whole classification stage.

4.3.4 Results of Dataset 1

The receiver operating characteristic (ROC) performance metric is illustrated in

Figure 4.5, which compares the ROC curves of both ANN and SVM classifiers.

The two curves show close area under curve (AUC) values in agreement with

Table 4.2 which reflects the close classification performance. In this experiment,

sensitivity of the ANN classifier (74.4%) outperforms that of the SVM classifier

(66.0%). This observation is probably due to classes overlapping and gradual
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change between classes in this dataset. In addition, the sensitivity values of both

classifiers are dropped below the specificity values. This is mainly due to the

unbalance of classes shares of the dataset.

Figure 4.5: ANN and SVM classifiers performance (ROC metric) on Dataset 1

Figure 4.6 shows a confusion matrix for the Bayesian combiner post provision of

25% of the dataset. The performance metrics have demonstrated an accuracy of

82.5%, a sensitivity of 75.1% and a specificity of 87.4%. The fatigue-class, which

can be calculated from the fusion matrix, is around 40% of the total test-set, and

this could justify the low values of sensitivity.
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Figure 4.6: Bayesian combiner confusion matrix of Dataset 1

Table 4.2: Summary of system performance metrics of Dataset 1

Performance metrics ANN(%) SVM(%) BC(%)

Accuracy 81.8 77.9 82.5

Sensitivity 74.7 66.0 75.1

Specificity 86.5 86.0 87.4

4.3.5 Dataset 2: keyboard typing (two states: Rested and

Sleepy)

Although sleepiness and fatigue are two distinct phenomena, they are used

interchangeably because they are interrelated and have similar effect on

psychomotor skill performance [164], [165].

Dataset 2, which is publicly available [75], was generated by Giancardo and his

colleagues to quantify the psychomotor impairment generated by sleep loss. Unlike

Dataset 1, this dataset is already pre-labelled with rested/sleepy status, thus it
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fits well with the need of System 1. In this dataset, 14 volunteers (seven males,

seven females) aged between 20 and 39 years (mean 30.8, standard deviation 4.4)

participated in the development of this dataset. All the participants had a good

experience in typing of at least one hour per day, but none of them is a professional

computer typist. Their typing style varies but consistent for each participant.

To ensure naturalistic environment scenario, each participant was asked to use

his/her own laptop to type a text from his/her own choice from Wikipedia website

for 15 minutes. The first session was conducted in the day time when participants

felt rested and were asked to stay awake until they felt sleepy, then were allowed

do the night (fatigue) session. This schedule was performed one more time after

one week. At the end of this experiment, around 14 hours of key timestamps had

been stored in the dataset. Each participant conducted four sessions of typing.

Each session was divided into eight subsets as a consequence of the total number

of data set records are 448 records. Each record includes a timestamp for key press

and key release events. Moreover, each record is labelled with one of two labels

(Rested and Sleepy). It is labelled as rested when the data is collected from day

sessions while it is labelled as sleepy when data is collected from night sessions

with sleep inertia inducing.

4.3.6 Feature extraction and labelling

Dataset 2 is generated based on two extreme cases of participants mental states:

rested and sleepy. Figure 4.7 demonstrates examples of statistical measures, which

belong to the same participants, covering four sessions. Histograms peaks appear

in Figure 4.7(a) depict the variation of digraph times between the rested and sleepy
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participant. The dashed lines that are of the rested participant have peaks with

lower digraph times than the solid lines which belong to the rested participant.

Similarly, Figure 4.7(b) demonstrates a similar trend of variation in HT histograms

peaks between the alert and fatigued participant.

(a) Digraph

(b) Hold Time

Figure 4.7: Example of keystroke metrics histogram for a participant, a
4-session experiment
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Same features of that listed in Table 4.1 are extracted for Dataset 2. Hence, a

total of 12 features (i.e. 4 features per metric) are normalised. The rested and

sleepy labels are assigned to each record in Dataset 2, depending on time period

(day or night) of the experiment.

4.3.7 Results of dataset 2

Figure 4.8 shows the ROC for both the ANN and SVM classifiers. As illustrated,

the AUC of the SMV classifier is better than that of the ANN classifier. Moreover,

the SVM performance exhibits higher values of accuracy (91.07%) than ANN, as

shown in Table 4.3.

Figure 4.8: ANN and SVM classifiers performance (ROC metric)
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Figure 4.9 shows the confusion matrix for the Bayesian combiner after feeding it

with the test subset data (25% out of the entire dataset). It clearly demonstrates

higher performance than that of the ANN and SVM individually. It also slightly

outperforms the state of the art findings (94% vs. 92%), reported in [75].

Figure 4.9: Bayesian combiner confusion matrix of Dataset 2

Table 4.3 provides classifiers performance metrics for both ANN and SVM

algorithms as well as for the BC. The SVM demonstrated a slightly higher

performance than the ANN. Also the BC results outperform the individual results

of each base classifier (Figure 4.9) of the performance metrics used in this study,

the sensitivity metric has been the most outstanding. Around 10% improvement

has been achieved in the sensitivity metric of the ANN classifier and around 5%

for the SVM classifier, as summarized in Table 4.3.
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Table 4.3: Summary of system performance metrics of Dataset 2

Performance metrics ANN(%) SVM(%) BC(%)

Accuracy 87.5 91.07 94.0

Sensitivity 84.9 89.83 94.6

Specificity 89.8 92.45 93.3

4.4 System 2 (Smartphone Typing)

The results and findings of System 1 have demonstrated a relation between the

fatigue status and the keystroke metrics. Another relation was also demonstrated

in Figure 4.4 between the fatigue status and the error rate. Based on these findings,

a performance-degradation detection system using smartphone typing is proposed

and implemented.

The proposed system, that comprises several stages, is shown in the block diagram

of Figure 4.10. The collected dataset is initially analysed and used to calculate

some fatigue-related metrics including keystroke dynamics and inertial sensors

measures as illustrated in the left-hand side branch of Figure 4.10. The dataset

is initially pre-processed through de-noising inertial sensors data. Next, the

fatigue-related metrics and features are extracted and selected features are then

fed to a 2-class classifier.

In the right-hand side branch of the diagram, the text-entry dataset is used to

calculate the error; keystroke per character (KSPC) that is in turn used as an

accuracy metric. Next, a median threshold is set, depending on the KSPC, and

used to label the entire dataset. The labelled dataset is then used as a ground

truth at the training stage of the classifier. That eventually classifies the user’s
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fatigue/alert status. In this study the ANN and SVM are used as in System 1.

Figure 4.10: A block diagram for the developed fatigue detection system using
smartphone

4.4.1 Dataset 3: smartphone typing

Publicly available dataset [166] is adopted in this system. The original purpose of

this dataset was to investigate behavioural features of typing style to continuously
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authenticate smartphone users [78]. The data collection method of this dataset

which was implemented using smartphone application named Hand Movement,

Orientation and Grasp (HMOG), is reported in [167]. It was collected from 100

smartphone users (47 females and 53 males). Each user was asked to interact with

smartphone with three types of tasks (reading session, writing session and using

map session).

In System 2 , the writing session of the HMOG is of a particular interest. Its

text data elements are used to extract the error rate as a performance metric (as

described in Section 4.2). While the corresponding keystroke dynamic metrics

and inertial sensor measures are processed to extract features. The timing metrics

(hold and digraph times) and the inertial sensors metrics (3D accelerometer and

3D gyroscope measures, with 100 Hz sampling rate) are chosen to capture the

performance pattern of the user throughout several writing sessions.

Each one of the 100 participants has eight writing sessions to be completed at

different periods. In each session, which has an average of 1193 taps and lasts

for 11.6 minutes, the participant is invited to type three pre-specified statements

using his/her smartphones keyboard. In order to increase the number of records,

each session is divided into 5 segments. The size of dataset used in this study is

therefore calculated from:

Dataset Size = 100 Participants× 8 Sessions× 5 Segments = 4000 records

(4.6)
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4.4.2 Feature extraction

Two groups of metrics is extracted from smartphone users when they interact

with virtual keyboards. First, time-event based metrics from which the individual

typing pattern can be obtained for each user. This group of metrics is also

called keystroke dynamics. Such a pattern can hold much information relevant

to the behaviour of a particular user. The hold time (HT) and digraph time (two

consecutive keys), which are shown in Figure 4.11, are the basic features that are

extracted from keystroke dynamics.

Figure 4.11: Graphical description of Keystroke dynamics features of
smartphone virtual keyboard

Second, micro-movements metrics can be detected through the touchscreen

interactions. Typing on smartphone touchscreen generates micro-movements that

can be captured by the built-in inertial sensors (i.e. accelerometer and gyroscope).

The recorded micro-movements are used in this work to extract statistical features

of users typing style to ward off privacy issue that may arise if typing data is

used instead. The accelerometer data, which is generated as an echo for typing

two letters on touch screen, is demonstrated in Figure 4.12(a). The grey graph,

which represents the z-axis accelerometer data, shows a noticeable fluctuation
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in accelerometer measures while typing a letter. These changes helps extracting

some statistical and frequency domain features (such as dominant frequencies and

sub-band energy ratios). Another example of touchscreen user interaction is the

scrolling action for reading multi-page document, Figure 4.12(b).

The timing data of text entry keystroke is recorded with a high precision timer

(with a resolution of 1µs) to ensure accurate and reliable data. Statistical

representations of keystroke dynamics (i.e. the hold-time and the digraph time)

are calculated to build a set of features. Some of these features such as HT

mode, and digraph mode were found less effective in terms of classification results

and thus eliminated. The raw data from 3D accelerometer and 3D gyroscope

are pre-processed with average window filter of 30 samples to reduce noise level.

Some features (such as median and mode) are eliminated because of redundancy

and has no effect on classifier performance. The standard deviation of the hold

time has changed between different sessions which is an example of typing feature,

as illustrated in Figure 4.13. The metrics and selected features are summarised in

Table 4.4.

Table 4.4: Keystroke metrics and their features

No. Metircs Features

1 Hold Time mean and standard deviation

2 Digraph mean and standard deviation

3 Accelerometer

measurements

mean, standard deviation, dominant

frequency and sub-band energy ratios

4 Gyroscope

measurements

mean, standard deviation, dominant

frequency and sub-band energy ratios



Chapter 4: Fatigue Detection - Naturalistic Typing 85

(a) Typing

(b) Scrolling

Figure 4.12: Examples of triaxial accelerometer data for action responses on
smartphone touchscreen (This graph is generated using dataset 3 [166])
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Figure 4.13: Hold-time standard deviation for different sessions

4.4.3 Data labelling

Dataset 3 (described in Section 4.4.1) does not have fatigue assessment

informations. Hence, performance degradation method is applied to label thee

extracted features with two labels: likely alert and likely fatigue. The relation

between fatigue levels and the BKSR (shown in Figure 4.4) has been demonstrated

previously in Section 4.3.2.

Two examples of performance metrics for a single participant are demonstrated

in Figures 4.14 and 4.15. First, the variation in the number of backspace clicks

is presented in Figure 4.14. The backspace clicks is used as an indicator for fixed

errors of the user typing. Second, the keystroke per character metric (KSPC) is

presented in Figure 4.15. A strong correlation (r=0.72 , p < 0.01) for the entire

dataset between these two metrics can be noticed in Figure 4.16 , thus, validate

the effectiveness of the selected features and performance labelling metrics.



Chapter 4: Fatigue Detection - Naturalistic Typing 87

Figure 4.14: Backspace-clicks for different sessions

Figure 4.15: KSPC for different sessions for a participant

BKSR, as an error fixer, is a part of KSPC and thus, KSPC is considered a more

representative error measure. Due to availability of input stream and transcribed

message sizes, KSPC is used with smartphone dataset as an accuracy metric.

KSPC range varies between participant because they have different accuracy levels,

therefore, a median normalisation [168] is performed. Next, a normalised median
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Figure 4.16: Relation between two typing accuracy metrics (KSPC and
backspace-clicks)

threshold is chosen to divide sessions into two classes: (i) a likely alert and (ii)

a likely fatigue. Those two classes are used to label obtained features’ dataset.

Figure 4.17 shows a histogram for these sessions as well as the threshold setting.

4.4.4 Results of Dataset 3

The developed ANN and SVM classifiers are trained and tested in a similar manner

to that previously reported for System 1. Performance of the developed SVM

classifier as compared to the ANN classifier performance is shown in the ROC

graph of Figure 4.18. The obtained numerical results for this test are summarised

in Table 4.5. It can be noticed that the SVM has a superior performance when

compared to that of the ANN since the area under the curve of the ROC for the

SVM is larger than that of the ANN.

The SVM classifier demonstrated a superior performance as compared that of the

ANN classifier in identifying fatigue/alertness conditions. When compared to the
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Figure 4.17: Threshold-setting for a 2-class labelling

ground truth dataset, SVM demonstrated accuracy of 62.3%, sensitivity of 60.1%

and specificity of 64.7%

Figure 4.19 shows a confusion matrix of the BC with a test subset of data (25%

out of the entire dataset). The performance metrics show an accuracy of 63.9%,

a sensitivity of 65.5% and a specificity of 62.2%. In this system, the BC shows

slight improvement over the SVM performance metrics in terms of accuracy and

sensitivity while there is slight degradation in specificity metric due to the low

performance metrics of ANN.
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Figure 4.18: ANN and SVM classifiers performance (ROC metric) of
smartphone dataset

Figure 4.19: Bayesian combiner confusion matrix of smartphone dataset
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Table 4.5: Summary of system performance metrics of smartphone dataset

Performance metrics ANN(%) SVM(%) BC(%)

Accuracy 57.6 62.3 63.9

Sensitivity 63.2 60.1 65.5

Specificity 51.7 64.7 62.2

4.5 Discussion

Both Systems 1 and 2 have demonstrated the ability to use keyboard typing for

operator fatigue detection. Although accuracies of classification performance vary

between these experiments, all classifiers agree in the general trend. Table 4.6

shows promising performance values especially when taking in consideration that

these experiments are conducted in realistic rather than laboratory environments.

Despite that performance of the results obtained from Dataset 1 is slightly lower

than that of Dataset 2, its findings can be considered of a significant value since

it depends on direct fatigue assessment scale. Dataset 2 demonstrated the best

classification performance over the other datasets used in this study, as shown

in Table 4.6. This is mainly due to the fact that the generation of Dataset 2 is

based on collecting data from two extreme cases (rested and sleepy). The results

generated from System 2 showed the least detection performance because the

ground-truth was calculated based on performance degradation metrics and not

assigned directly as in the case of other datasets.
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Table 4.6: Summary of the three datasets detection performance metrics

Performance Dataset 1(%) Dataset 2(%) Dataset 3(%)

metrics Keyboard with KSS Keyboard (rested and

sleepy)

Smartphone

Accuracy 82.5 94.0 63.9

Sensitivity 75.1 94.6 65.5

Specificity 87.4 93.3 62.2

4.6 Conclusion

Keyboard typing task, the daily activity, is considered as behavioural measure

based on operator typing style. The naturalistic environment of typing activity is

the reason behind the selection of this task for this work. The implemented system

is based on actual fatigue/alertness status collected from the users of Dataset 1.

The obtained results demonstrated a promising performance taking into account

the challenges associated with conducting this study in naturalistic environments.

Two systems and three datasets were presented and discussed in this chapter to

demonstrate the ability of typing measures to capture operator fatigue status. A

2-stage fatigue detection method based on (i) ANN and SVM classifiers and (ii)

Bayesian combiner were designed, developed and tested successfully. Keystroke

dynamics metrics (i.e. hold time, digraph and release to release latency) with their

features and time of day are used to to discriminate alertness status.

Dataset 2 helped development of an enhanced method for operator fatigue

detection based on computer-keyboard typing style. This method has been

implemented successfully using an existing dataset for psychomotor impairment
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detection. As the operator fatigue status mainly depends on sleep needs, the

developed system (System 1) captures the typing style changes that reflect changes

in the fatigue level. Utilisation of the combiner in this study has proved to be

effective as compared to the utilisation of the ANN and SVM classifiers alone.

The obtained detection accuracy of Dataset 2 (94%) outperforms the accuracies

of other two datasets and the state of the art results for this dataset.

Dataset 3 is utilised in this work to implement a smartphone texting performance

degradation detection approach. Despite the relatively low detection accuracy

associated with Dataset 3, this approach still shows the ability of detecting

operator performance based on daily use of his/her smartphone.

The work in this chapter has fulfilled its main objectives, however, it also exhibited

some limitations, including: (i) the type of participants was limited to university

students due to time and funding restrictions and (ii) the size of data in the

fatigue and alert classes was unbalanced. This was mainly due the fact that the

participants were not willing to to carry out typing when they become tired or

fatigued.



Chapter 5

Fatigue Detection - Naturalistic

Driving

5.1 Introduction

The behavioural approach, which is of particular interest in this study, depends

on the collection of symptoms of fatigued drivers indirectly through their driving

style. Unlike the biological and visual approaches, this approach can be considered

non-intrusive since it does not directly collect drivers data that may violate their

privacy.

This chapter proposes a new method for the automatic fatigue detection algorithm

using smartphone inertial sensors. The proposed method captures driving

behaviour data in naturalistic environments through two inertial sensors (triaxial

accelerometer and triaxial gyroscope). It should be mentioned here that all the

experiments of this study are carried out on motorways since fatigue typically

94
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develops in monotonous driving environments [169]. The proposed method

(i) utilises inertial sensors rather than both inertial and magnetic sensors, (ii)

overcomes the error caused by horizontal plane misalignment between the vehicle

and the Earth in case of vehicle tilting, and (iii) implements data collected from

real participants rather than simulated data. This chapter presents the framework

and experiment design of the driver fatigue detection system including participant

description and data collection method. It also includes details of a proposed new

vehicle heading estimation based on smartphone sensors and details several sets

of results including attitude estimation, vehicle heading and classification results

with a discussion of the findings.

5.2 Smartphone Inertial Sensors and

Quaternion Mathematics

Smartphones are quickly becoming the most popular and widespread form of

personal communication worldwide. The increased usage of these devices over

the world along with continuous advances in mobile technology and application

development have led to handheld devices becoming a new way of data collection

and management for a wide range of applications including fatigue detection [150],

workflow management [170] and mobile health applications [171]. Some companies

are already using mobile applications to deliver increased customer satisfaction and

productivity as well as to help their employees to perform their work faster [172]

Newer smartphones are equipped with a range of sensors including inertial sensors.

A wide range of important mobile applications rely on these inertial sensors,
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which are embedded in smartphones or tablets to work properly. Figure 5.1

illustrates two inertial sensors, a triaxial accelerometer and a triaxial gyroscope.

The smartphones accelerometer that measures the acceleration forces is used to

calculate three key parameters: (i) the gravity vector, (ii) the heading and (iii)

the horizontal plane. The gyroscope sensor measures the horizontal plane as well

as the angular velocity from which the vehicles rotational angle is calculated. The

horizontal plane is typically calculated using the smartphones magnetometer [173]

that measures the Earth’s magnetic field. It also measures the relative orientation

of the smartphone to Earth’s magnetic field with the aid of other sensors that

are used to fix the uncertainty readings. In this study, however, only two inertial

sensors (i.e. triaxial accelerometer and triaxial gyroscope) are considered adequate

for estimation of the vehicle’s attitude, thus eliminating the need for the triaxial

magnetometer and its associated inaccuracy, as explained earlier.

Figure 5.1: Accelerometer and gyroscope coordinates of the smartphone
sensors

Utilisation of inertial/magnetic sensors existing in smartphones has been recently

reported in several applications including detection of driving behaviour [85],

drunk driving [174], aggressive driving [175] and others. Most of these applications
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rely on the inertial as well as magnetic sensors, which are prone to disturbances

caused by magnetic fields inside the vehicle [176]. In addition, these studies were

based on simulation tests in which it was assumed that the horizontal plane of the

vehicle is always aligned to the Earths horizontal plane and such an assumption

may reduce the accuracy in orientation calculation at the event of tilting dynamic

behaviour of the vehicle. To the best of our knowledge, utilisation of mobile inertial

sensors in fatigue detection has not yet been reported in the literature.

A driver swerve, which is a fatigue-related feature [85], is an important metric that

can be derived from smartphone inertial sensor data. Swerves can be quantified

based on lateral car movement in the horizon plane, and thus inertial sensors

can help with producing swerve related data. A driver usually keeps his/her

smartphone either in his/her pocket or in any place close to him/her in the

car and is unlikely to align the smartphone with the car axes. Estimation of

smartphone orientation is a basic process to calculate the horizontal components

of car swerves. Steering angle and steering angle rate measures are well-established

research approaches that are among driver fatigue metrics [83]. The mathematics

used in this work relies mainly on quaternion conversions to calculate the required

fatigue-related features.

Several ways can be implemented to calculate three-dimensional object orientation

such as rotation matrix and Euler angles methods [177]. To avoid the associated

drawbacks such as non-linearity, gimbal lock effect and high computational

cost [178], [179], the quaternion representation of rotation is used in this work. The

quaternion is a mathematical number system that uses three-dimensional complex

numbers. This system was developed initially by William Rowan Hamilton in

1843 and is mostly recruited in 3D space applications [180]. Mathematically, the
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quaternion vector is given by

q = q1 + iq2 + jq3 + kq4 =



q1

q2

q3

q4


=



cos(1
2
θ)

sin(1
2
θ)v̄x

sin(1
2
θ)v̄y

sin(1
2
θ)v̄z


(5.1)

where i2 = j2 = k2 = ijk = 1; q1 is the scalar part of the quaternion vector;

q2, q3, q4 are the three dimensions components of the quaternions; and θ is the

rotation angle around the rotation vector v. Although the smartphone sensors

have a fixed alignment with the smartphone body, they can take any orientation

globally. Three coordinate systems are used in this work, two of them are

alternately. The first system is the global system represented with the symbol

G, while the other, denoted by S, is related to the smartphone coordinates. The

relation between the two representations can be described mathematically as a

linear transformation as follows:

pG = TG/SpS (5.2)

where pS is a point located in smartphone coordinate S, pG is the same point

as it is described in global coordinate G and T (G/S) is the transformation matrix

of point from smartphone coordinate S to global coordinate G. The third is the

vehicle coordinate system which is the targeted coordinate for features extraction

and can be estimated related to the two other coordinates after it is identified

from the inertial sensors’ interaction. The quaternion derivative (q̇) with respect

to time represents the angular velocity [181]. The smartphone gyroscope sensor
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can therefore provide the angular velocity that can mathematically be given by

q̇ =
1

2
T (Gyro) · q =

1

2
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(5.3)

Rearranging 5.3 , the quaternion derivative can also be given by

q̇ =
1

2
T̄ (q) ·Gyro =

1

2
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 (5.4)

where q is the quaternion vector while T , T̄ are the transformation matrices

between quaternion and Euler rotation representations and Gyro is the matrix of

three-axis smartphone gyroscope readings. The angular velocity matrix in 5.3 can

be obtained from the collected gyroscope data.

5.3 System Overview

A new framework is proposed in this experiment to detect the fatigue status of

the driver based on integrated sensors inside the smartphone only without the

need for any extra installed devices or electronic sensors inside the vehicle. The

methodology of this work consists of several stages: data collection, pre-processing,
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attitude estimation, feature extraction and classification. These stages are shown

in the block diagram of Figure 5.2 and are described as follows.

Figure 5.2: Block diagram of the work methodology stages

5.4 Data Collection and Pre-Processing

5.4.1 Data collection

In this experiment, 11 volunteer drivers aged 24 - 47 years participated.Each

individual driver made two trips using a smartphone application inside the car

to collect inertial data. All the volunteer drivers reported their fatigue level in a

range of 1-6 out of 9. It is not very safe to ask the participants to drive beyond

level 6.

A smartphone application is developed to manage the data collection for the

proposed system. The architecture of the developed mobile application, shown

in Figure 5.3(a), comprises several components, including:

a) Graphical user interface (GUI) – it is used to enter the user’s login details,

specify the sleepiness scale and initiate data transfer from the smartphone



Chapter 5: Fatigue Detection - Naturalistic Driving 101

database to the processing device (i.e. PC, laptop, tablet, or a cloud server).

An example screenshot for the developed GUI is shown in Figure 5.3(b) .

b) Control unit – this component controls the setting and the format of the

collected data and configures the desired sampling rate of the data collection

from the inertial sensors.

c) Inertial sensors – this part of the application deals directly with hardware

smartphone sensors and manages to collect data in the setting of the control

unit component.

d) Database – the collected data is stored in this component. It is build using

the SQLite database and stores the raw data, which includes the timestamp

and the three axes’ data from the accelerometer and gyroscope. Moreover, it

handles the format of the exported data.

The application is developed for an Android platform using Java programming

language and SQLite as the database. Firstly, the recorded data is stored in the

smartphone, then it is uploaded to the cloud when the Internet connection is

available. There is an option with the application to store the dataset or delete

it after uploading. The uploaded data is processed in a web server and used

to detect the fatigue level of the driver. User interactivity with the developed

system is performed through a GUI through which the user can configure various

parameters such as sampling rate, sensor selection and storage time intervals.
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(a) Application architecture

(b) Main-menu of the GUI

Figure 5.3: Example screenshot for the data-collection application interface
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5.4.2 Pre-processing

Collected data from inertial sensors is usually contaminated with noise.

Moving-average-window filter was used in this work to de-noise the data. A

window of 20 samples was selected to remove random noise but still keep the

monitored detailed movements of the vehicle. Missing slots of data were replaced

either by averaging when these slots were less than 20 samples or by splitting the

time series at the missing slot when ever one of the sensors reading is missing.

5.5 Attitude Estimation

Vehicle behaviour has a strong relation to driver alertness/fatigue status. Inertial

sensors can capture the vehicle behaviour and monitor the change in driving style

with driver fatigue evolution. The sensors frame was usually fixed to the vehicle

frame and vector data is handled with previous knowledge of orientation. Since the

data from smartphone-integrated sensors is collected without any prior knowledge

of smartphone orientation relative to vehicle frame or heading, it is essential to

estimate smartphone orientation relative to vehicle heading to extract effective

measure of driver alertness/fatigue status.

5.5.1 Vehicle heading estimation

Fatigue-related features can be captured accurately from inertial/magnetic data

if vehicle heading is estimated with acceptable accuracy. The main challenge in

heading estimation approaches is the removal of gravity vector from the triaxial
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accelerometer data. Several methods are used to purify the accelerometer data

from gravitational components to obtain the proper acceleration [174, 182].

In this work, the acceleration and deceleration patterns of the vehicle are used

as metrics for driver fatigue detection. Since the extracted features are related

to the vehicle frame, all estimated coordinated are transferred to this frame. A

new proposed method for heading estimation is adopted in the current work. The

gravity is a stationary vector and it can be removed from the accelerometer data by

dealing with time-changing data over a specific period of time. On the other hand,

the standard deviation (SD) of acceleration data over a specific slot of time can

capture the time varying data and ignore the stationary data. The idea of ignoring

the stationary data, by calculating SD, is the key for the proposed method to find

the vehicle heading. The right choice of the moving-window time, that gates the

acceleration data, is an important factor in achieving reliable results because a

trade-off is needed between removing the stationary gravity component and the

targeted movement features.

The direction of SD of the triaxial acceleration data together with gyroscope

data are used to estimate the vehicle heading. The acceleration SD has to pass

two conditions to be valid as heading estimator. The first condition is to cross

the acceleration threshold (AccT ) to ensure that the vehicle is in motion. The

second condition is used to guarantee the linear path of the vehicle with minimum

curvature. The gyroscope data is used to fulfil the second condition when the

magnitude of data decreases below the proper threshold (GyroT ) as described in

the following equation:

−−−−−→
SD(Acc) |Gyro<GyroT, Acc>AccT,

−→
H = vehicle heading (5.5)
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where GyroT , a threshold for gyroscope data, is used to detect the non-rotational

status of the vehicle. After that, the SD vector of acceleration data can point to

the heading of the car since the rotational acceleration can be assumed to be zero.

The vehicle normalised vector is considered as a pure quaternion as described in

Equation 5.6 which is used as a reference to the smartphone quaternion.

qv = 0 + 0i+ 1j + 0k (5.6)

where qv is the vehicle normalised quaternion aligned with the vehicle heading

(vehicle y-axis).

The moving average window is applied over the accelerometer data to extract the

gravity vector [183]. The gravity component of acceleration is calculated since

it is the most stationary part of the acceleration data. The gravity vector g is

removed from the triaxial accelerometer data to generate the linear acceleration

vector LAcc . Equations 5.7 and 5.8 describe the mathematical representation of

this process.

g = WA(Acc) (5.7)

LAcc = Acc − g (5.8)

where WA is the moving average window function.
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5.5.2 Horizontal plane estimation

Vehicle attitude estimation methods typically estimate the Earth’s horizontal

plane but not the vehicle’s horizontal plane [182], [85]. The difference the

two horizontal planes comes from road topography and what is called super

elevation [184]. To the best of the author’s knowledge, obtaining the vehicle

horizontal plane through a smartphone’s inertial/magnetic sensors has not been

reported yet in the literature. A thorough search of vehicle attitude estimation

methods, based on smartphone inertial/magnetic sensors, has not found any

method that deals with the vehicle horizontal plane. These methods are presented

to estimate the Earth’s (not the vehicle’s) horizontal plane [182], [85].

Vehicle horizontal plane can be determined based on two perpendicular vectors,

the heading and the lateral vectors. The heading vector has been calculated

as mentioned earlier in subsection 4.4.1. The lateral vector is calculated using

the proposed method. Smartphone gyroscope data includes three perpendicular

rotational axes’ data, and these data can capture the turns and manoeuvring

of the vehicle. The gyroscope vector can be considered as the normal vector

of the vehicle’s horizontal plane in the event of the car turning. For the same

event, the SD vector of accelerometer data can be considered as the lateral vector.

Equations 5.9 and 5.10 show the conditions required to consider the accelerometer

and gyroscope data as vehicle lateral vector and normal vector of the vehicle’s

horizontal plane, respectively.

−−−−−→
SD(Acc) |Gyro>GyroT, Acc>AccT,

−→
L = vehicle lateral vector (5.9)
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−−−→
Gyro |Gyro>GyroT, Acc>AccT,

−→
NH = normal of vehicle horizontal plane (5.10)

The cross product of the heading and the lateral vectors produces the normal

vector which is perpendicular to both of them. This normal vector is the same as

the normal vector calculated from gyroscope data. From a practical consideration,

there is a deviation error (
−−−−→
ERRN) between the two vectors. The lateral and

horizontal plane values are then considered to be accurate when the deviation

error is below acceptable limits as shown in EQ 5.11.

−→
H ×

−→
L =

−→
NH +

−−−−→
ERRN (5.11)

5.6 Feature Extraction

Many research approaches have been developed to monitor driver

behaviour [3], [81] and [185]. The most common symptoms used to detect

fatigued drivers are shown as follows:

a) Longitudinal acceleration/deceleration patterns

A drowsy driver may face difficulty in maintaining road speed levels and

typically make sudden and sharp changes in acceleration and abrupt braking.

The longitudinal component of the accelerometer which is aligned with

the vehicle heading can provide the driver’s pattern of acceleration and

deceleration.
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b) Swerve, lane departure and weaving

Swerve, lane departure and weaving of a vehicle have been strongly correlated to

the driver alertness level [186]. The frequency and severity of these symptoms

increase remarkably with the level of fatigue. The lateral movement of the

vehicle is the best measure for the above symptoms and can be quantified

based on accelerometer data.

c) Steering wheel movement

Fatigued drivers driving patterns differ from those of alert drivers. For example,

micro corrections become less frequent as the driver’s alertness decreases ( i.e.

fatigue increases). In addition, the larger steering angles become clearer with

fatigue evolution [187]. Steering wheel movement (SWM) can be measured

based on data collected from gyroscope, accelerometer or both.

Two sensors are chosen in the first example to show the difference in motion data

between an alert anda fatigued driver. Accelerometer data, which is shown in

Figure 5.4(a), illustrates many small waves drawn in a sold line for the alert driver

with less frequent changes but of larger magnitude for the fatigued driver marked

with a dashed line. Figure 5.4(b) shows the same difference between an alert and

a fatigued driver’s data, which was produced by the system rotation.

Combinations of the generated features are visualised to pre-check the best

collection of features that can enhance the fatigue detection classification

performance. Figure 5.5 shows two examples of statistical features derived from

pre-processed data. The two graphs help the observer to distinguish between driver

fatigue levels depending on gyroscope standard deviation value. The fatigued

driver has lower gyroscope standard deviation value in general but has higher

rotation and acceleration standard deviation values. Data visualisation, shown in
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(a) Acceleration data

(b) Rotation data

Figure 5.4: Acceleration (a) and rotation (b) data for a driver during periods
of alert and slightly fatigued driving
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Figures 5.4 and 5.5, shows the differences between the alert and fatigued drivers.

The earlier mentioned fatigue related symptoms (SWM, swerve etc.) are used as a

core of the feature selection. For longitudinal acceleration/deceleration patterns,

as an example, two features are selected to represent this symptom, and they are

the longitudinal acceleration and its standard deviation.

(a) Accelerometer-Gyroscope data

(b) Rotation-Gyroscope data

Figure 5.5: Relation between standard deviation of (a) acceleration and
gyroscope (b) rotation and gyroscope data for a driver during periods (100

seconds) of alert and slightly fatigued driving
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A total of six features are used to detect the fatigue status of the driver as shown in

Table 5.1. For comparison purposes (results shown in Section 5.8.2), the equivalent

features that are extracted from data without applying the proposed attitude

estimation approach, are listed in Table 5.1.

Table 5.1: Selected feature set with and without taking the proposed method

Behaviour Features before using the
proposed method

Features after using the proposed
method

Longitudinal
acceleration/
deceleration
patterns

a) Y-axis acceleration.

b)Y-axis acceleration SD.

a) Longitudinal acceleration.

b) Longitudinal acceleration SD.

Swerve, lane
departure
and weaving

c) X-axis acceleration.

d)X-axis acceleration SD.

c) Lateral acceleration.

d) Lateral acceleration SD.

Steering
wheel
movement
(SWM) rate

e) Rotational velocity.

f) Rotational velocity SD.

e) Rotational velocity (aligned
with vehicle horizontal plane ).

f) Rotational velocity SD (aligned
with vehicle horizontal plane ).

5.7 Classification

The collected dataset is labelled depending on fatigue level score (KSS). The

records with scores of 1-3 are labelled as alert while the other records with scores of

4-6 are labelled as fatigued. A two-class neural network classifier was implemented

to detect driver fatigue status. The developed ANN classifier consists of an input

layer with six inputs, two hidden layers with 12 neurons each and one output

layer. Eleven-fold cross-validation method is implemented to calculate the average

performance of the classifier.
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5.8 Results and Discussion

5.8.1 Attitude estimation

An experiment is conducted to evaluate the accuracy of the heading estimation

algorithm with the aid of three drivers. Each driver is asked to conduct three trips,

each lasts for 10-20 minutes. In each of these trips, the smartphone is aligned with

one of the vehicle’s axes (x y z ), as shown Figure 5.6.

(a) Y-axis (b) X-axis

(c) Z-axis

Figure 5.6: Smartphone heading alignment
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Three sets of data are used to check the performance of the proposed heading

estimation. Each set relates to one of the three Cartesian coordinates. The

performance of this algorithm is calculated based on the deviation of the estimated

coordinate from the positioned one. The projection of the misaligned coordinate

over the positioned one, which is the effective component of the feature Proj, is

demonstrated as an example for x direction as follows.

Projx = Accx√
Acc2x+Acc

2
y+Acc

2
z

= cosφ (5.12)

where φ is the angle between the two heading vectors, the measured and correctly

positioned heading, and the percentage error is calculated as follows.

Error% = (1− Projx)× 100% (5.13)

An example of attitude estimation of the proposed method is illustrated with data

shown in Figure 5.7. The first event is the heading estimation, which is calculated

once two conditions have occurred. These conditions are the accelerometer

data passing over the Acct threshold and the gyroscope data going below the

GyroT threshold. The two conditions ensure that the vehicle is accelerating or

decelerating in a straight line with minimum curvature action. This event, which

is bounded with two vertical dotted lines, is shown in Figure 5.7 with a slot of

time before and around the 50 seconds time tick.

The second event is about the horizontal plane and lateral vector estimations. A

time slot, which is bounded with the dotted verticals lines, borders the horizontal

estimation event. Again, two conditions should be satisfied before the calculation
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starts. Both the accelerometer and the gyroscope data have to cross over the Acct

and GyroT limits. These conditions are applied to check the vehicle turning status

with proper angular acceleration

Figure 5.7: Attitude estimation illustration

The errors, shown in Table 2, are expected and generated by imperfect smartphone

position inside the vehicle sensor accuracy, noise and vibration, and algorithm

inaccuracy. For the fatigue detection system, the accuracy of this algorithm is

acceptable because the fatigue scoring level is limited to a resolution of 1/9 (KSS

scale includes 9 scales).

Table 5.2: Percentage errors of the proposed method

Error Type X axis Y axis Z axis

Heading Error % 2.36 5.46 2.80

Lateral Error % 7.34 4.56 8.23
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5.8.2 Classification performance

The results listed in Table 3 show that the success of the system in detecting

the fatigue status of the driver depends only on the inertial sensors’ data

(accelerometer and gyroscope) without using magnetometer data. The proposed

orientation correction algorithm enhanced the detection accuracy from 81.2% to

87.3%. This accuracy comes from picking the right fatigue-related features even

when the smartphone is not aligned with the vehicle frame and not oriented

with the driving heading. This algorithm overcomes the disadvantages of using a

magnetometer and gravity sensor in calculating the heading and horizontal plane,

like the disturbances come from magnetic fields inside the vehicle and the tilting

and sloping of the vehicle on the road.

Table 5.3: Classification accuracy improvement with proposed method

Output status Before alignment After alignment

Accuracy% 81.2 87.3

Sensitivity% 79.3 84.4

Specificity% 82.8 90.1

5.9 Conclusions

A new approach for automatic detection of driver fatigue using smartphone inertial

sensors has been presented and discussed in this chapter. To the best of the

author’s knowledge this approach has not yet been thoroughly investigated in

a realistic environment. Unlike existing approaches that are mainly based on

physiological data, driver behaviour and others, the proposed approach utilises
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non-intrusive data collected from the built-in inertial sensors of a smartphone.

Moreover, this approach can estimate the smartphone orientation relative to

the vehicle frame orientation no matter how it is oriented inside the vehicle.

In addition, the proposed method distinguishes between the vehicle and the

Earths horizontal planes, which improves the algorithm’s accuracy. This algorithm

uses only inertial sensors data without the need for magnetic sensor data which

causes a large part of the orientation estimation errors especially with magnetic

disturbances inside vehicles. No further instruments are therefore needed to detect

the fatigue/alertness status other than the existing smartphones. In addition, the

proposed approach is based on collecting data from inertial sensors, which are

not relevant to the drivers personal data, Thus this approach preserves the user’s

privacy.

The results show a good improvement of classifier performance after using the

proposed algorithm. Real-life driving data and the non-intrusive collection method

help to obtain reliable and realistic results. Usinga smartphone, the ubiquitous

tool, in this approach, improves road safety by increasing the availability of a

fatigue assessment solution for drivers.

Limitations of the experiments carried out in this chapter can be outlined as

follows; (i) the top three levels (7 - 9) of the self-reported fatigue assessment scale

are deemed too dangerous to carry out in naturalistic driving, thus no data were

reported on these levels and (ii) the rules of the work regulations and labour union

limited the number of available participants.



Chapter 6

Modular Structure: Design,

Implementation and Test

6.1 Introduction

The need for a robust, reliable and flexible operator fatigue detection system is

an essential requirement for work safety which can be achieved using a modular

structure. Another reason for using a modular structure is the independence

of each individual module from other modules. This also allows heterogeneous

modules to be gathered in a single system without the need to agree on the design

details of individual modules. Different types of fatigue-related modules can be

combined together such as physiological-based module (explained in Chapter 3)

or behavioural-based modules (explained in Chapter 4 and Chapter 5).

In this chapter, a new scalable modular design approach is proposed, implemented

and tested successfully using a Bayesian combiner and particle swarm optimiser

117
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(PSO). A new modification is proposed to the Bayesian combiner to enable the

particle swarm optimiser algorithm to work with the combiner. This enables

utilisation of input-modules depending on their availability and thus improves

flexibility and robustness against losing one or more data sources. This chapter

describes the modular structure of the proposed fatigue detection system which

comprises three main stages: fatigue detection modules, a combiner and an

optimiser. The obtained test results are also presented and discussed in this

chapter along with concluding remarks.

6.2 System Overview

System structure is based on the modular design approach. As shown in the

block diagram of Figure 6.1, it comprises mainly three stages. The first is the

classification and labelling stage which consists of four classifications modules with

their labelling component. The second stage uses the output of the classifiers to

combine them based on a Bayesian combiner. Finally, the last stage is the particle

swarm optimiser which is used to enhance the accuracy of the fatigue detection

system by assigning an optimal set of weight combinations for the modules.

A block diagram of the proposed system is shown in Figure 6.1. As illustrated,

the system incorporates three stages. The first stage includes four modules.

These modules are designed and implemented using an existing dataset offered by

SHRP2NDS [188]. The second stage uses the Bayesian combiner to fuse outputs

of the first stage modules. The last stage is added to enhance system performance

by assigning different weights for modules using the PSO. The modular design of



Chapter 6: Modular Structure: Design, Implementation and Test 119

the proposed system is adopted to gain the robustness, flexibility and practical

implementation advantages.

Figure 6.1: Modular architecture of the proposed system

6.3 Theoretical Background

This section presents a theoretical background for two key aspects of the proposed

work, importance of modularity and particle swarm optimiser (PSO).

6.3.1 Importance of modularity

The need for a system that can combine heterogeneous subsystems (modules)

efficiently is behind the idea of “interdependence within and independence across

modules” [189], which is one of the definitions of modularity. The modular design

is preferred over the integral design due to its benefits including [190, 191]:
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a) Reliability and robustness : The modular structure enhances the robustness

and improves the reliability of certain systems if they are designed properly to

maintain their functional mission even if they lose one or more of their modules.

b) Flexibility : The need for a flexible system is an essential practical

requirement [192]. For a fatigue detection system where a variety of detection

methods are available, it is very important to design the system to be flexible

from practically and applicability views.

c) Comprehensibility : In complex systems such as fatigue detection systems, a

modular structure makes them more understandable and easier to handle on a

module level.

d) Independence: The main motivation of using a modular structure is the

independence of each individual module from other modules. This feature

is very helpful for modular systems to gather heterogeneous modules together

with no need for them to agree in any interior details and in the abstract output

protocol.

e) Abstraction level : This level is responsible for the interfacing between modules.

The abstraction and independence of the modules help to make the system

more practical and flexible.

The modular structure system needs a frame to be plugged in to produce the

combined final output. Several combination algorithms have been proposed to

combine heterogeneous sets of modules (e.g. majority voting, weighted majority

voting or Bayesian combiner) [138], [139]. The Bayesian combiner is ideally suited

for problems when the output of the modules is independent even when the number

of modules is dropped to two [140].
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Only a few research papers have identified the use of optimisation techniques to

enhance the performance level of the modular organisation [193].

6.3.2 Particle swarm optimisation

Several optimisation algorithms have been used in the operator fatigue detection

area to improve classification performance, such as genetic algorithm [194], swarm

optimisation [195] and others. Different swarm optimisation (e.g. ant colony

optimisation, bacterial foraging optimisation and particle swarm optimisation

(PSO) have been proposed in the transportation sector to find the optimal traffic

network situation [196]. However, few studies have used optimisation algorithms

for operator fatigue and mostly they have adopted PSO as an optimiser [197].

PSO is used in this work to improve the performance of the Bayesian combiner.

Particle swarm optimisation is a meta-heuristic algorithm devised by Kennedy

and Eberhart in 1995. PSO is inspired by the social behaviour of birds. Several

versions of PSO were derived later to cover new applications or to address some

limits and challenges discovered with the original version [198].

PSO can find the optimal solution for an optimisation problem in a D-dimensional

hyperspace. A swarm of N particles is recruited to find the best position according

to individual perspective (Pbest) and the overall perspective (Gbest) [199]. Each

particle tries to update its position (solution) to achieve best fitness value

(minimise cost function). The update stochastic function is based on three

parts; inertia part, self-knowledge part and team-work part. The update rule

is determined as follows:
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vk+1
i = wvki + c1R1 ×

(
Pbestki − xki

)
+ c2R2 ×

(
Gbestki − xki

)
(6.1)

xk+1
i = xki + vk+1

i (6.2)

where w is the inertia (habitual behaviour) weight, c1 is an acceleration constant

of the self-knowledge (memory) component , c2 is an acceleration constant of the

team-work component, and R1 and R2 are random numbers.

In this work, the PSO is used for its appropriate characteristics including: speed of

implementation, low computational cost and no need for derivative function [200].

These characteristics meet the requirements for developing an online system based

on handheld devices especially the computational efficiency, which improves the

devices’ battery consumption.

6.4 Module Design

In the proposed modular structure, the modules could be any fatigue-related

decision maker such as classifier and/or operator assessment. In this chapter, an

existing dataset [188] is adopted to build the modules. Similarly, fatigue detection

methods which were previously discussed in chapters 3, 4 and 5 can form separate

modules in this structure.

The adopted data is collected for several trips, each of which last for 90 minutes.

This period can be considered adequate for fatigue development over time. The

most common four metrics relevant to fatigue detection are considered in this

study: 3-axes accelerometer, gyroscope, head position and head rotation. The
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first two metrics are collected with a sampling rate of 10 Hz, while the other

two are dynamically calculated relative to a baseline with a sampling rate of 2-15

Hz. These metrics are pre-processed from missing slots and noises by averaging

using a moving average with a 15 sample window. The methodology of this study

compromises three main stages: classification and labelling, Bayesian combiner

and particle swarm optimiser. These stages are described as follows.

Four fatigue-related modules are built for this work to demonstrate the modularity

structure as shown in Figure 6.1. The modules are: (i) accelerometer data module,

(ii) gyroscope data module, (iii) head position data module and (iv) head rotation

data module. The driver and the driven vehicle data are fed into four ternary

neural networks (ANN) classifiers, each of which generates an alert, mild fatigue

or fatigued status as shown in Figure 6.2. Ground truth of these classifiers is built

upon the fact that the blink rate increases with fatigue growth [33], [201] and [202].

In this work, the blink-rate is counted manually for randomly selected times in

minutes over a certain trip period and is used for classification labelling.

Figure 6.2: An example of the module
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Three classes are used to label the three driver statuses. Six features are

extracted and fed to each classifier: mean and standard deviation of each axis

of the three-dimensional values of the fatigue-related metrics (i.e., acceleration,

gyroscope, head-position and head-rotation). Different numbers of hidden layers

and numbers of neurons in these layers are used to construct the four ANN

classifiers. This variation in ANN architecture is purposely adopted in addition to

the different seeds of random generation of ANN weight initialisation in order to

maintain the independence of the module’s decision.

6.5 Bayesian Combiner

Outputs of the ANN classifiers are fed to the Bayesian combiner to improve system

performance irrespective of the number of input modules. Bayes’ rule can be

further refined using Eqs. 3.13 and 3.14, which produces the following.

=
P (hj)

∏L
i=1 P (bi | hj)
P (b)

, j = 1, ..., 3 (6.3)

In this work, three classes’ modules (classifiers) are implemented (i.e., c = 3)

and different combination sizes are experimented with (i.e., L = 4, L = 3 and

L = 2). The confusion matrix of each classifier is assumed to be an approximation

of posterior probability. The Bayesian combiner can predict the combined output

based on Eq. 6.3 with extra modification. Since the combined output depends on

the outputs of all the modules, the probabilities of the modules’ outputs can be

ignored and the probability of prediction β(x) for a certain input to be classified

as a specific class will be proportion to:
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βj(x) ∝ P (hj)
L∏
i=1

P (bi | hj) (6.4)

The confusion matrix CM i of each classifier is calculated using the training set and

a matrix of 3× 3 (based on number of classes) is produced. The prior probability

of the class hj can be considered as an estimate of Nj/N where Nj is the number

of outputs classified as the class hj and N is the total number of outputs, while

cmi
j,bi

is an estimation of the probability P (bi | hj). This will result in the following

equation:

βj(x) ∝ Nj

N

4∏
i=1

cmi
j,bi

Nj

(6.5)

Finally,the class that gains maximum probability, will be chosen as the predicted

label. Moreover, to satisfy the required condition for Bayes’ theory [139],

the generated outputs of the classifiers are considered independent. Such an

assumption is maintained through utilisation of different sets of features and

different seeds for the ANN’s initial weights. Since the Bayesian combiner that

deals with abstracted output labels does not depend on the classification process,

the number of input modules can vary depending on the available sources of

driver and vehicle data, thus improving flexibility and modularity attributes of

the system.
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6.6 Particle Swarm Optimiser

The fatigue-related metrics differ in their responses to fatigue, thus each module

has a different weight in fatigue identification. Although the combiner usually

enhances the performance of the ensemble classifiers, a further step is needed to

weight each classifier with its share of contribution in the combiner’s performance.

A particle swarm optimiser (PSO) is adopted in this work to find the sets of optimal

weights ω of each metrics/module. The PSO is used in this work to improve the

performance of the Bayesian combiner. The cost function of the optimiser is a

function of the combiner accuracy, while the best solution will be represented in

the best set of weights related to each module (it is not related to the inertia

weight of the optimiser update rule in Eq. 6.1).

A new modification is proposed in this work to weight the classifiers’ output

by adding some changes to the combiner method. This rule is implemented by

strengthening the true output class and weakening the false one for the module

which is expected to have the best response to fatigue, as follows.

ĉmi
j,bi

=

ωi × cm
i
j,bi

j = bi

1
ωi
× cmi

j,bi
j 6= bi

(6.6)

where ĉmi
j,bi

is the weighted confusion matrix element.

The optimiser keeps updating the weights until the cost function ε is minimised

below a certain value or the iteration of the PSO algorithm exceeds a set value.

The cost function is related to the accuracy metric of the combiner, as follows.
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ε(ω) = 1− accuracy(ω) (6.7)

6.7 Results and Discussion

The findings demonstrated the ability to detect fatigue status from the dataset

used in this study along with the trend of fatigue growth over time. The findings

are detailed in the following subsection.

6.7.1 Module results

Each module predicts one of the three driver fatigue using a trained classifier

that is labelled based on blink rate level. Blink rate is calculated manually from

the available sample videos by dividing the video into time slots of 15 minutes,

randomly selecting five minutes from each 15-minute slot, and then they are

averaged to come up with one number to represent the blink rate of the 15-minute

slot.

Three levels of blink rate are created to label three classes for the classifiers as

shown in Figure 6.3. The trend of three trips is very clear to be growing with

time of trip and in turn with fatigue. It is worth pointing out that the three

drivers have different trip durations and they and their blink rate growth respond

differently according to their fatigue level. The selection of the three levels with

the choosing of boundaries needs more investigation and this will be achievable

when more datasets and videos are available.
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Figure 6.3: Blink rate changes with driving time

The four feed-forward ANN classifiers (modules) are build with different

architecture (number of hidden layers and number of neurons in each hidden

layer) to sustain the independent decision which is a requirement for the Bayesian

combiner. Each module has six inputs to fit with the six features (i.e., mean

and standard deviation of the 3-axes’ sensor data) and one ternary output for the

three classes. A back-propagation algorithm is used to train the modules with

70% of the dataset while the rest (30%) is used to test the system and calculate

the performance of the classifiers.

Performance of the ANN classifiers was assessed in terms of accuracy, sensitivity

and specificity. These metrics that are calculated for each class of the ternary

classifiers are shown in Table 6.1. The overall metrics are then computed by

averaging the individual metric over the three classes. It can be noticed that the

performance of the visual data (i.e., head position and rotation) is superior to that

of the inertia data (i.e., accelerometer and gyroscope)
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Table 6.1: Performance of individual classification modules

Performance ANN classifiers

Metrics Acceleration Gyroscope Head-Position Head-Rotation

Accuracy (%) 74.8 70.6 81.9 79.6

Sensitivity (%) 72.5 77.1 82.9 79.1

Specificity (%) 74.7 79.0 82.1 79.6

6.7.2 Combiner results

The Bayesian combiner utilises the output labels from the classifiers stage to

generate the final ternary decision. Possible modules (classifiers) combinations

were experimented with to validate the modularity. Three combination sets were

tested, starting with the presence of all four modules as one combination, followed

by three and two modules per set, as shown in Table 6.2, in which performance

metrics of the Bayesian combiner for these combinations are summarised. It should

be noted here that the values given in this table for the performance metrics are

averaged to obtain one value per metric.

Table 6.1 demonstrated validity and effectiveness of the proposed modular

approach in capturing changes of fatigue-related features taking into account

the growth of fatigue due to time spent driving. The visual metrics used in

this study show a better performance than the inertial sensors’ metrics. It is

also demonstrated in Table 6.2 that utilisation of the Bayesian combiner has a

significant positive impact on the fatigue detection performance as compared to

that of the individual classifiers. As expected, the best performance (accuracy:

90.4%, sensitivity: 92.6% and specificity: 90.7%) was obtained with utilisation of

the four input modules and the poorest performance (accuracy: 71.1%, sensitivity:
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82.9% and specificity: 77.5%) was obtained with two modules. It is also observed

that the highest performance (accuracy: 80.5%, sensitivity: 85.1% and specificity:

80.9 %) achieved with two-module combinations was with the existence of visual

sensors (i.e., modules 3 and 4).

Table 6.2: Performance of combined classification modules

No. of Combinations of Bayesian Combiner performance

Modules Classifier Modules Accuracy (%) Sensitivity (%) Specificity (%)

4 1, 2, 3, 4 90.4 92.6 90.7

3

1, 2, 3 88.5 91.5 88.9

1, 2, 4 85.7 88.8 86.2

1, 3, 4 85.9 88.9 86.9

2, 3, 4 86.3 90.0 88.0

2

1, 2 77.4 83.6 77.9

1, 3 76.3 83.1 76.7

1, 4 76.3 82.7 76.7

2, 3 77.4 83.4 77.8

2, 4 77.1 82.9 77.5

3, 4 80.5 85.1 80.9

6.7.3 PSO results

Figure 6.4 shows a comparative view for accuracy metric changes of the Bayesian

combiner before and after weight optimisation. The accuracy is improved slightly

after selection of the optimal weights. The first cluster of bars represents the

four-module group, which consists of one combination of modules, and this is

the reason that it has no standard deviation bar. The second cluster shows
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the three-module group which consists of four combinations with their standard

deviation bars. Finally, the last cluster shows the two-module group, which

includes six combinations. Figure 6.4 also illustrates the slight improvement in

accuracy after selection of the optimal weights. It is worth mentioning that the

highest improvement from optimisation is gained by the two-module group.

Figure 6.4: Bayesian combiner accuracy changes before and after optimisation

6.8 Conclusions

A prototype of the proposed fatigue detection system has been designed,

implemented and tested successfully using combinations of four different fatigue

detection modules. The obtained results are found to be in agreement with the

previously reported findings but with significant system design flexibility and

robustness against losing one or more data sources. Performance assessment of

the developed prototype showed that accuracy, sensitivity and specificity of the

fatigue detection are only slightly affected by the partial loss of input data.
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To the best of the author’s knowledge, a modular structure of the multi-source

fatigue detection approach has not been thoroughly explored in the literature yet.

This design approach allows for integrating different heterogeneous modules in

a single system, thus obtaining a more efficient ad robust fatigue detection and

assessment system.

The findings reported in this chapter were limited by: (i) unavailability of adequate

funding to obtain a larger-size dataset which can improve the overall system

performance and (ii) the use of an indirect fatigue-assessment method (blink rate)

due to unavailability of a direct method in the dataset used in this study. The

obtained findings can therefore be improved by using a more informative dataset.



Chapter 7

Conclusions and Future Work

7.1 Introduction

The need for a robust fatigue detection and assessment system has been addressed

in this thesis. In particular three main objectives have been met: (i) working

in naturalistic environments, (ii) building in a modular structure and (iii)

capturing individual differences between operators. This is achieved through

conducting numerous experiments in a real-life environment and a customised

bio-mathematical model has been developed.

A functional pilot system prototype for fatigue detection and prediction that

is based on a multi-sensors modular design approach was then developed,

implemented and tested successfully. The main concluding remarks derived from

this work as well as some challenges/limitations and suggestions for future work

are given in the next sections.

133
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7.2 Conclusions

1) A new multi-sensor fatigue detection system has been proposed and

implemented successfully. The developed prototype demonstrated the

feasibility of utilising low-cost wearable devices to detect operators’ fatigue in

real-life environments. The obtained test results showed a relatively high level

of accuracy which outperforms state-of-the-art results in terms of classification

performance and number of detection classes.

2) Based on Bayesian algorithm, a combiner is suggested to improve overall

classification accuracy of the developed system and create the modularity

structure. The obtained results demonstrated a 0-10% improvement when

compared to those obtained from individual modules.

3) Fatigue-sensitivity of the keystroke-dynamic metrics and the naturalistic

environments of typing activity were the reasons behind selection of keyboard

typing to assess the performance of the developed fatigue detection system.

The developed prototype is also based on an actual fatigue/alertness scale

that is subjectively assessed by the participants. Despite challenges associated

with conducting this study in a naturalistic environment, the obtained results

demonstrated a promising performance when compared to the state-of-the-art

findings. Furthermore, two other existing datasets are used to test the system

with different real-life environments including a smartphone-based typing

dataset.

4) A new approach for automatic detection of driver fatigue using smartphone’s

inertial sensors has also been presented and discussed. This approach utilises

non-intrusive data collected from the built-in inertial sensors of a smartphone.
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It can also estimate the smartphone’s orientation relative to the vehicle frame

orientation, no matter how it is oriented inside the vehicle. The proposed

algorithm is also capable of distinguishing between the vehicle’s and Earth’s

horizontal planes, thus improving accuracy of the orientation algorithm.

5) This developed orientation algorithm excludes the need for magnetic sensor

data, which represents a main source of error for orientation estimation. No

other instruments than the existing inertial sensors in the mobile phone are

required. The real-life driving data and utilising of the non-intrusive data

collection method used in this study have therefore led to the attaining of

reliable and realistic results.

6) The proposed modular structure has been implemented and tested successfully.

Different module combinations are experimented with and the obtained

results supported the anticipated improvement of maintaining robustness and

flexibility. This was clearly reflected in the obtained results and experimental

observations of the modular design in the implemented system. A new

modification is applied to the Bayesian combiner to enable the particle

swarm optimiser algorithm to work together with the combiner for further

classification improvements.

7) A customised circadian model has been built and tested using the heart-rate

data. Developed of this model is based on theory relating to the shape invariant

model. The developed model has not only demonstrated the circadian rhythm

of participants successfully but also captured the individual differences in their

circadian rhythms depending upon their bio-data.

8) The success with modelling the fatigue effect on the daily typing tasks

of operators forms a solid base for building a non-intrusive prediction and
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monitoring fatigue system. An adaptive control of thoughts-rational (ACT-R)

architecture has been explored with the aim of adapting this architecture for

fatigue impact. This is achieved through instantiating the fatigue effect in

keyboard typing. Some preliminary results have been obtained and presented.

These results demonstrate a strong correlation between the experimental and

model-based data.

7.3 Challenges and Limitations

Although this work has met the planned objectives, some challenges and

limitations were faced and their impact on the conducted research was mitigated

through practical intervals. Of these, the following are the most important:

1) Fatigue is a complex feeling and thus needs close collaboration with

domain-knowledge experts, which is not the case in this study. This challenge

was faced through establishing private contact with experts in sleep research

and psychologists from the Research Laboratory of Electronics, Massachusetts

Institute of Technology, Cambridge, Massachusetts, and Carnegie Mellon

University, Pittsburgh, Pennsylvania. . Their inputs and comments on various

aspects relevant to this study were valuable.

2) Data collection in real-life environments requires special devices and approaches

to keep the naturalistic behaviour of the operator. Also, restrictions of

funding, work regulation and labour union rules limited the number of available

participants. Hence, mobile, non-intrusive, noise-protected and accurate
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devices were carefully selected and used. Also, a wide range of experiments

was conducted to compensate for the relatively small number of participants.

7.4 Future Work

The work presented in this thesis can be further developed through conducting

further studies which build on the developed fatigue detection system and the

obtained research findings. Potential areas of extensions can be summarised as

follows:

1) The proliferation of smartphones and other mobile devices along with

continuous advances in mobile technology and application development have

opened new ways of data collection and management for a wide range of

applications including fatigue detection in real environments. For example,

the smartphone can be used as a user terminal to collect and exchange data

with other remote fatigue detection and assessment hubs which host a central

database and business logic of distributed fatigue-management scenarios.

2) In the present study, the circadian customisation and the modular structure of

the developed system have been dealt with separately. Further improvement

can be made through combining both in an integrated framework. This is

expected to combine the benefits of both frameworks.

3) The success with fatigue instantiation in modelling the daily typing tasks

of operators, which are briefly demonstrated in the next section, will offer

a good opportunity for building a non-intrusive prediction and monitoring

fatigue system. The adaptive control of though-rational (ACT-R) cognitive
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architecture was adopted in this study because it relies on well-established

psychological background theories. The next section describes briefly the use

of an ACT-R model to simulate the fatigue effect of operator performance while

typing and preliminary results are shown.

7.5 Future Work: Cognitive Modelling and

Fatigue Prediction

Fatigue prediction that needs robust mathematical modelling has not been

validated in the literature. This is mainly due to unavailability of adequate real

data that can be used for modelling and validation purposes. Fatigue effect on

the operator performance has been mainly investigated using a bio-mathematical

modelling which essentially depends on a two-process model of sleep regulation.

Recently, one group of researchers adopted new approach in fatigue prediction

cognitive modelling. It depends on a hypothesis model called adaptive control

of though-rational (ACT-R) architecture. This approach is followed based on a

fatigue-sensitive task.

7.5.1 Fatigue instantiation in ACT-R Architecture

Although ACT-R is a programming architecture, it is opposite to most

programming languages in several major concepts. The first difference is that

ACT-R is the low-level script used to manage a brain (processor) with high-level

abstracted capabilities, while the other programming languages are a high-level

set of instructions written to run a low-level processor for execution. The second
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difference is the order of execution the commands (productions) with ACT-R

architecture does not follow the order these commands like most programming

languages. These commands (productions) are executed (fired) based on their

matches with the current state of the buffers and modules. Finally, and maybe

the most important difference between ACT-R architecture and programming

languages is that ACT-R is trying to simulate human behaviour which is not

always is optimal if it is viewed from programmer perspective [203].

Fatigue effect on operators, using the ACT-R frame, was previously reported

in [204], [205], [206]. In these studies, a model was developed to simulate the

behaviour changing of participants due to sleep deprivation or type of task [207].

Most of the experiments that were conducted to generate data were based on

psychomotor vigilance test (PVT) due to (i) a strong correlation between PVT

metrics and operator performance and (ii) easiness of conducting this test in the

ACT-R frame [206]. In this work, for the fist time, fatigue effect is simulated is

after naturalistic typing task account is instantiated in ACT-R environments.

7.5.2 ACT-R Based Fatigue Modelling and

Implementation

In this study, several fatiguerelated parameters (i.e. which include production

utility function, noise and cycle time) [205] are adjusted to instantiate fatigue

impact on the operator behaviour. These parameters and their relation to fatigue

will be described briefly as follows.
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1) Utility function: It calculates the likelihood of the production to be fired (U)

from [205]

U = PG− C + ε (7.1)

where P is the likelihood of achieving the chosen goal by the production, G is

the goal value, C is the cost value to achieve the mentioned goal, and ε is a

random noise related to variation between cycles.

2) Production time: It is the time needs by the central procedural unit to fire the

current production after it matches the current state. The suggested default

number with ACT-R model is 50 ms [208]. Changing of this parameter value is

control the model processing speed. The shorter production time is the faster

task completion and vice versa.

An experiment was conducted to show the harm effect of sleep deprivation on

psychomotor vigilance [75]. The experiment recruited 14 participants (seven males

and seven females) to conduct four typing sessions for each participant. Two

of these typing sessions were done under rest status and the others were done

under sleep inertia status. The existing dataset that collected from the explained

experience is used in this study to develop an ACT-R model for typing task.

The model is tested by typing a paragraph with the same number of clicks

of each participant’s transcription. Then, deference between digraph mean of

the experimental and model-based data is used to optimise the fatigue-sensitive

parameters. Figure 7.1 illustrate the procedure of adjusting fatigue-related

parameters in ACT-R typing model to have best fit with experimental digraph

data of the 14th participants.
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Figure 7.1: Model-based performance parameter tuning

7.5.3 Preliminary results

The statistical analysis of the experimental data shows a clear effect of fatigue on

typing performance. Digraph (time between two consecutive key-presses) is one

of the basic keystroke metrics. The digraph-time variation between two states of

alertness in same participant is shown in Figure 7.2(a). This figure demonstrates

the effect of fatigue on digraph-time. All participant showed an increase in

the average digraph-time when participants experience fatigue. Moreover, the

standard deviation of the digraph-times follows the same trends of the average that

reflects more variation when the participant experiences more fatigue. However, for

model-based generated data, almost same trend illustrated in Figure 7.2(b) except

few participants (such as 2nd, 5th) show unexpected results where digraph-time

of rested is higher than sleepy participant. This unexpected observation may rise

from randomness effect of utility function as well as differences between typed

texts.
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(a) Experimental (b) Model-base

Figure 7.2: Digraph-time variations between rested and sleepy states for
experimental and model based data
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Appendix B:

Wearable Devices Specifications

Basis Peak Watch

The Basis Peak fitness watch [106] as shown in Figure 3 is adopted in this study

to collect the following bio-data from the participated subjects; heart rate, body

temperature, and skin conductance. This watch comprises the following set of

sensors:

(a) Optical blood flow sensor

(b) 3D accelerometer

(c) Body temperature reading

(d) Ambient temperature reading

(e) Conductivity sensor for galvanic skin response

177
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This fitness watch stores bio-data in its internal memory. The stored data is

exported to a mobile phone application which is in turn upload it to a remote

server. The specification and price of this watch is listed in Table 1

Figure 3: Fitness tracker watch [106]

Table 1: Technical Specifications of Basis Peak Watch

Feature Details

Battery Technology Lithium

Battery life 4 days

Body placement wrist

Waterproofing Yes, 50 m

User Interface Type Yes

Screen size 4.52 cm

Screen Type LCD

Display resolution 144 x 168 pixels

Data Transfer type Bluetooth 4.0

Weigh 51 g

Z-Height 3.49 cm

Width 4.13 cm

Depth 1.27 cm

Price £140 (at time of purchase:
October, 2015)
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Polar H7 Chest Strap

Polar H7 is a chest strap hear monitor which uses an ECG (electrocardiogram)

heart-rate sensor. It measures the electrical activity of the heart to deliver

continuous and resting heart rate data. The H7 (shown in Figure 4) uses Bluetooth

Smart to continuously transfer data to smartphone. The specification and price

of this strap is listed in Table 2

Figure 4: Fitness heart-rate sensor Polar (H7) [107]
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Table 2: Technical Specifications of Polar H7 Chest Strap

Feature Details

Battery Type CR 2025

Operation time 200 h

Body placement Chest

HR measurement method ECG, chest strap

Waterproofing Yes, 30 m

Operating temperature -10 C to +50 C / 14 F to 122 F

Strap material 38% Polyamide, 29% Polyurethane,
20% Elastane, 13% Polyester, Silicone
prints

Data Transfer type Bluetooth low energy (5khz)

Weigh (sensor/strap) 118 g/ 100 g

Height 1 cm

Width 2 cm

Length 3 cm

Price £32 (at time of purchase: October,
2015)
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