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Abstract

This thesis mainly studies stochastic neutral differential equations with delays,
which can be studied in the fields of existence, uniqueness, controllability and

stability of mild solutions.

In Chapter 1, we give a short introduction for the materials in each chapter. We
introduce the new models we developed. In Chapter 2, we begin by introducing
some definitions and results. To present the proofs of all the results here would
require preparatory background material, which would significantly increase both
the size and scope of this dissertation. Although this chapter introduces very
important theorems, required proofs are omitted here. However, these related
proofs can be found from book in Liu [41] and you can also find most of these
basic mathematical concepts and their proofs in many well-known text books
such as Pazy [32] and Da Prato and Zabczyk [22] or to be found in the literature

reviews.

In Chapter 3, we will generalise the previous theory to consider a stochastic
optimal control problem for a class of neutral type stochastic systems, which is
very important from both theoretic and practical point of view (see, e.g., [39]).
We formulate a stochastic optimal control problem with the aim of maximising
the objective functional at a given time horizon T' > 0. This chapter is organised
as follows. In Section 3.2, we formulate the optimal problem with the objective

functional as an optimal problem with neutral type for an SDDE both in state



and the control. In Section 3.3, we use a representation result that allows us to
“lift” this non-Markovian optimisation problem to a Markovian control problem
on a Hilbert space and deal with the general case of delays in the state and in
the control and the verification result is given. In Section 3.4, we construct an
example of a controlled SDDE, whose HJB equation admits an integral solution.
Therefore, there exists an optimal control form for the control problem. In Section
3.5, we establish a linear delay differential equation to obtain solutions. In Section

3.6, we have a summary to state the contribution and development of the chapter.

In Chapter 4, we will concentrate on the existence and uniqueness of the
square-mean almost periodic mild solutions. This chapter is organised as follows.
In Section 4.2, we review and introduce some concepts, basic properties of square-
mean almost periodicity and the proofs of two theorems. In Section 4.3, under
some suitable conditions, we prove the existence and uniqueness of square-mean
almost periodic mild solutions for some stochastic differential equations driven
by Poisson jumps. In Section 4.4, we have a summary to state the contribution

and development of the chapter.

In Chapter 5, we study the problem of determining the attracting sets of
neutral stochastic partial differential equations driven by a-stable noise with im-
pulses. Therefore, the techniques and methods for the global attracting set and
stability for neutral SPDEs driven by a-stable processes with impulses should be
developed. This chapter is organised as follows. In Section 5.2, we review and
introduce the concepts and basic properties of a-stable processes. In Section 5.3,
we study the global attracting set and stability of the stochastic neutral differ-
ential equations with impulses. In Section 5.4, we have a summary to state the

contribution and development of the chapter.

In Chapter 6, we have a conclusion to summarise the contribution and devel-

opment of this thesis.
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Chapter 1

Introduction

In modern society, the modelling of stochastic systems has gained significant at-
tention due to its many applications in physics, economics, finance, engineering,
etc. However, there also exist many phenomena, which are characteristics of past
dependence, that is, their present value depends not only on the present situa-
tion but also on past history. Qualitative properties such as existence, uniqueness,
controllability and stability for various stochastic differential systems have been
investigated by many authors and have already achieved fruitful results (see for
example [45], [46], [41], [14], [53]). On the other hand, it is known that a class of
stochastic differential equations with neutral type involve derivatives with delays
as well as the function itself. Many interesting results about neutral stochastic
delay differential equations have been obtained by many researchers, see, for ex-
ample, Liu [38] has considered standard optimal control problems for a class of
neutral functional differential equations in Banach spaces and it turns out that
based on a systematic theory of neutral models, the fundamental solution is con-
structed and a variation of constants formula of mild solutions is established.
Balasubramaniam and Ntouyas [4] have given sufficient conditions for the con-

trollability of a class of stochastic partial functional differential inclusions with



infinite delay in an abstract space.

Dynamic stochastic optimisation is the study of dynamical systems subject to
random perturbations, and which can be controlled in order to optimise some per-
formance criterion. It arises in decision-making problems under uncertainty. His-
torically, based on Bellman’s and pontryagin’s optimality principles, the research
on control theory has developed considerably over recent years. The dynamic
programming principle (DPP) to a stochastic control problem for Markov pro-
cesses in continuous-time leads to a nonlinear partial differential equation (PDE),
called the Hamilton-Jacobi Bellman (HJB) equation, satisfied by the value func-
tion. One typical example of this optimal control problem is introduced by the

following controlled SDDE in advertising models [29] of the form:

"

0 0

dy(t) = [aoy(t)nL / ar(0)y(t + 0) + bou(t) + / b1(0)u(t+0)d0]dt

-r -r

YodB(t), Vte[0,T]

y(0) = 20, y(0) = 1(0), u(0) = ~(0), V0 € [-r,0],

\

where ag € R, ay(-) € L?([-7,0];R), by € R, by() € L*([-7,0];R), z1(-) € L*([-r,0]; R)
and v(-) € L*([-r,0]; R).

In this work, the optimal advertising problem as an optimal control problem
for an SDDE with delays both in the state and the control is considered. The
problem is formulated by lifting this non-Markovian optimisation problem to
an infinite-dimensional Markovian control problem without involving delays in a

suitable product Hilbert space and solutions are derived in an example.

Motivated by the above works, we aim to consider the following neutral stochas-



tic differential equations with control delays in R:

0

'd[ya) - / Lot + 0)d8) = [aoy(t) + / ar(0)y(t + 6) + bou(t)

—r —r

- /0 bilB)ult + 9)‘”] dt +odB(t), vielo,7] (L1)

-

y(0) = 20, y(0) = 21(0), u(0) = ~(0), V0 € [-r,0],

\

where the Brownian motion B(t) is defined on a filtered probability space (2, F, {F; }+>0, P)
with (F;):>0 being the completion of the filtration generated by B(t),¢ > 0. It is
assumed that u(¢) is an admissible control that belongs to U := L?([0, T]; R), the
space of square integrable non-negative stochastic processes adapted to { F; }icpo,77-

In addition, we need to assume the following conditions:
i. a9 € R;

ii. ai(-) € L*([-r,0;R);

iii. a(-) € CY([—r,0];R);

iv. by € R;

v. bi(-) € L*([-r,0];R);

vi. z1(-) € L*([-r,0; R);

vil. y(-) € L*([~r,0]; R).

We adopt a method that allows us to “lift” this non-Markovian optimisation
problem to an infinite-dimensional Markovian control problem. Let us consider
the following abstract SDE on a Hilbert space H (see Chapter 3), which is equiv-
alent to the SDE (1.1):

dY (t) = (A*Y (t) + B*u(t))dt + G*dB(t)

Y(0) =z = (zg,21) € H,



where the operators A*, B*, G* are defined properly in Chapter 3.

In this chapter, we will generalise the previous theory to consider a stochastic
optimal control problem for a class of neutral type stochastic systems, which is
very important from both theoretic and practical point of view (see, e.g., [39]).
We formulate a stochastic optimal control problem with the aim of maximising

the objective functional at a given time horizon 7" > 0.

On the other hand, solutions with recurrence property (e.g. almost periodicity
and almost automorphy), which enable us to understand the impact of the noise
or stochastic perturbation on the corresponding recurrent motions, are of great
concern in the study of stochastic differential equations and random dynamical
systems. Periodicity often appears in implicit ways in various phenomena. For
example, this is the case when one studies the effects of fluctuating environments
on population dynamics. Although people can calculate the periodic fluctua-
tions of environmental parameters in controlled laboratory experiments, almost

periodicity is more likely to accurately describe natural fluctuations [23].

Recently, Bezandry and Diagana introduced the concept of square-mean al-
most periodic stochastic process and applied it to study stochastic differential
equations (see [9]). In [10], Bezandry and Diagana proved the existence of al-
most periodic solutions to some stochastic differential equations. Bezandry and
Diagana [11] studied the existence of square-mean almost periodic solutions to
some stochastic hyperbolic differential equations with infinite delay. Bezandry
and Diagana [12| were concerned with the square-mean almost periodic solutions
nonautonomous stochastic differential equations. However, many dynamical sys-
tems not only depend on the present states, but also on past states and involve
derivative with delays. Therefore, it is necessary to consider the stochastic evo-
lution system with infinite delays and the neutral type as well, see ([40], [44],

[?], [19]). One typical example is to deal with the existence and uniqueness of



square-mean almost periodic solutions to a class of neutral stochastic evolution

equations with infinite delay [34] of the form:
d(z(t) — G(z(t),x1)) = (Ax(t) + f(t,x(t), z¢))dt + g(t, x(t), x:)dW (), teR,

where x; = x(t +6) : —0o < 6§ < 0 can be regarded as a %B-valued stochastic
process. Assume that f :Rx Hx A — H,g: Rx Hx B — L (Kg,H) and
G : H x # — H, (see Chapter 4).

In addition, Lévy processes are essentially stochastic processes with stationary
and independent increments, and they are particular useful, as they can describe
discontinuous and dramatic fluctuations in practical situations. Also, Wiener pro-
cesses and Poisson processes are the important special cases of Lévy processes.
Stochastic differential equations with Poisson jumps have become popular in mod-
elling those phenomena arising in the field of economics, where jump processes
are widely used to describe the asset and commodity price dynamics (see [18]).
However, for stochastic partial differential equations with Poisson jumps and in-
finite delay, as far as we know, there exist only a few results about the existence
and stability of mild solutions. One is referred to ([51], [20], [52]). One typi-
cal example is to deal with the existence and uniqueness of square-mean almost
periodic solutions to a class of stochastic differential equations with Lévy noise

without delays [42] of the form:

dx(t) = f(t,x(t))dt + g(t, z(t))dW (t) + /| 1 F(t,z(t—), z)N(dt, dz)

+/ G(t,x(t—),z)N(dt,dz), teER,
|zlu>1

where F' and GG are H-valued.

Motivated by the above works, we shall study the existence and uniqueness of

square-mean almost periodic solutions to a class of neutral stochastic differential



equations with Poisson jumps and infinite delay

d(z(t) — G(z(t),xr)) = (Ax(t) + f(t, (), z¢))dt + g(t, x(t), x)dW (t)

+/ h(t,x(t=),z,—, 2)N(dt,dz), t€R,
H

where z; = x(t +6) : —oo < 6 < 0 can be regarded as a Z-valued stochastic
process. Assume that f - RXx H X% — H, g: Rx Hx % — L(Kg, H),G :
Hx%A — H,and h: R x H x % x H — H, are appropriate mappings for all
t € R,z € H, which will be specified in Chapter 4. We will prove the existence
and uniqueness of square-mean almost periodic mild solutions for some stochastic
differential equations driven by Poisson jumps under some suitable conditinos by

using methods of semi-group and Banach fixed-point theorem.

From the discussions above, we can see that the stochastic differential evolu-
tion equations driven by Brownian motions and Lévy processes have been stud-
ied by many researchers. However, since Wiener noise and Poisson-jump noise
have arbitrary finite moments, while a-stable noise only has finite p-th moment
for p € (0,a) with o < 2. Recently, stochastic differential equations driven by
a-stable processes have plenty of applications in physics due to the fact that
a-stable noise exhibits the heavy tailed phenomenon. For example, Priola and
Zabczyk [50] gave a proper starting point on the investigation of structural prop-
erties of stochastic partial differential equations (SPDEs) driven by an additive
cylindrical stable noise. Dong, Xu and Zhang [25] studied the invariant measures
of stochastic 2D Navier-Stokes equation driven by a-stable processes. Xu studied
[61] Ergodicity of the stochastic real Ginzburg-Landau equation driven by a-
stable noise and Zhang [67] proved a derivative formula of Bismut-Elworthy-Li’s
type as well as gradient estimate for stochastic differential equations driven by
a-stable noises. One the other hand, Wang [55| derived the gradient estimate for

Ornstein-Uhlenbeck jump processes and Wang [58| established so-called Harnack



inequalities for SDEs driven by cylindrical a-stable processes. However, there
are few papers on the asymptotic behaviour of mild solution of SPDEs driven by
a-stable processes, so we shall discuss the stability property of mild solutions of
a class of SPDEs driven by a-stable processes to complete the theory. The fact is
that a-stable noise only has finite p-th moment for p € (0, a) and the stochastic
evolution does not admit a stochastic differential, which leads to some powerful
tools such as the It6 formula being unavailable, then some new methods should
be used to overcome the difficulties. It is worthwhile to mention that, Wang and
Rao [56] discussed the stability of mild solutions for a class of SPDEs driven by
a-stable noises and generalised to deal with the SPDEs driven by subordinated
cylindrical Brownian motion and fractional Brownian motion, respectively by the

Minkovski inequality.

In addition, many researchers have studied attracting sets of dynamical sys-
tems extensively. Xu and Long [60] studied the attracting and quasi-invariant
sets of non-autonomous neutral networks with delays. Long, Teng and Xu [43]
investigated the global attracting set and stability of stochastic neutral partial
functional differential equations with impulses. They first established a new
impulsive-integral inequality, which improved the inequality established by Chen
[16]. On the other hand, impulsive phenomenon can be found in a wide variety of
evolutionary processes, for example, medicine and biology, economics, mechan-
ics, electronics and telecommunications, etc., in which many sudden and abrupt
changes occur instantaneously, in the form of impulses. Many interesting results
haven been found, e.g., (|66], [47]), etc. One typical example is to consider a class

of neutral stochastic partial differential equations driven by a-stable processes on



a separable Hilbert space [36] of the form:

dlz(t) — g(t,x(t — )] = (Az(t) + f(t,z(t —r)))dt + o(t)dZ(t),t > 0,

zo() = () € D([=r,0], H),

where r > 0 and A generates a strongly continuous semigroup S(t) or e!4,t > 0,
on H. Assume that f,¢g: R, x H — H are two given measurable mappings and

o(t) : Ry — R is a locally integrable function.

But, to the best of my knowledge, there is no result on the Global attracting
set and exponential decay of neutral SPDEs driven by a-stable processes with
impulses. Motivated by the above discussions, in Chapter 5, we shall consider
the following neutral stochastic partial differential equations driven by an additive

a-stable with impulses on a separable Hilbert space H,

.

dlz(t) — g(t,x(t —r)] = (Az(t) + f(t,z(t — r)))dt
+o(t)dZ(t),t > 0,t # ty,

Az(ty) = z(t]) —x(ty) = L(z(ty), t = te, k= 1,2, ...,

zo(+) = ¢(-) € D([—r,0], H),

\

where r > 0 and A generates a strongly continuous semigroup S(t) or e!4,t > 0,
on H. Assume that f,g : R, x H — H are two given measurable mappings
and o(t) : Ry — R is a locally integrable function; the fixed moments of time
ty satisfies 0 < t; < tg < ... < t), < ..., and limy o tp = oo;x(t)) and z(t;)
represent the right and left limits of z(t) at t = ¢,k = 1,2, ..., respectively;
Ax(ty) = () — x(t; ) represents the jump in the state = at time ¢, with I,
determining the size of the jump. We will consider the global attracting set
and stability of the neutral stochastic partial differential equations with impulses

driven by an additive a-stable with impulses on a separable Hilbert space H.



Chapter 2

Preliminaries

The knowledge of stochastic processes and stochastic analysis has played an im-
portant role in the real world. Stochastic differential equations are used to model
diverse phenomena such as fluctuating stock prices or physical systems subject
to thermal fluctuations, which draw great attentions from researchers to develop

the things which are getting more complicated.

In this chapter, we begin by recalling some definitions and results, especially
those from functional analysis and theories of stochastic process and stochastic
differential equations along with probability theories in infinite dimensions. We
introduce mild solutions for stochastic differential equations and investigate the
existence and uniqueness of solutions under appropriate assumptions. We intro-
duce and clarify definitions and develop our theory in Hilbert spaces. To present
the proofs of all the results here would require preparatory background material,
which would significantly increase both the size and scope of this dissertation.
Although this chapter introduces very important theorems, required proofs are
omitted here. However, these related proofs can be found from book written by
Liu [41] and you can also find most of these basic mathematical concepts and

their proofs in many well-known text books such as Pazy [32| and Da Prato and



Zabczyk [22] or to be found in the literature reviews.

2.1 Some Results from Functional Analysis

A Banach space (X, | - |[x) (real or complex) is a complete normed linear space
over (R or C). If the norm || - || x is induced by an inner product (-,-)x, then X
is called a Hilbert space. We say that X is separable if there exists a countable
set S C X such that the closure S = X. For a Hilbert space X, a collection
{e;} of elements in X is called an orthonormal set if (e;,e;)x = 1 for all 7, and
(ei,ej)x = 0if i # j. If S is an orthonormal set and no other orthonormal set
contains S as a proper subset, then S is called an orthonormal basis for X. A

Hilbert space X is separable if and only if it has a countable orthonormal basis

{61},@21,2,"'

Example 2.1.1 (Sobolev space) Let [a,b] be an interval in R and a differentiable

function f(z) of one derivative exists at each point in its domain. Now, we define

W'2([a,b); X) = {f :a,b) = X, f(x) is differentiable,

b b
/ 1 (@) &dz < oo and / 17/(@) fd < o).

If X is a Hilbert space, then WY%([a, b]; X) is a Hilbert space under the norm

e = ([ 1)+ ([ @), s ew (o)

and under the inner product

b b
(f: 9012 =/ (f(x),g($)>xd$+/ (f'(2).g'(x))xdz,  f.g € W"([a,b]; X).

10



Definition 2.1.1 Let X and Y be two Banach spaces and D(A) a subspace of
X. Amap A:D(A) C X — Y is called a linear operator if the following relation
holds:

Alax + py) = aAz + Ay forany x,y € D(A), a,8€R orC.

The subspace D(A) is called the domain of A. If A maps any bounded subsets
of D(A) into bounded subsets of Y, we say A is a bounded linear operator. We
denote by L£(X,Y) the set of all bounded linear operators A from X to Y with
D(A) = X. In particular, if X =Y, we write £(X) for £(X, X). In this case,

L(X,Y) is a Banach space equipped with the operator norm || - ||z(x,y) given by

Al = | Allzcxy) == sup Azlly <oo forany A€ L(X,Y).

ll=]lx <1
For any linear operator A : D(A) C X — Y, we define R(A) := {Az : z €
D(A)}. It is called the range of the operator A.

Definition 2.1.2 Let Y = K where K =R or C. Any f € L(X, K) is called a

bounded linear functional on X. In this case, we put X* = L(X, K), which is a

Banach space under the norm || - ||x+ and X* is called the dual space of X.

Theorem 2.1.1 [63] (Riesz’s Theorem) Let X be a Hilbert space, then X* = X.
That is, every bounded linear functional f on X can be represented in terms of

the inner product by

flz) =(x,z) forany x€X,

where z 1s uniquely determined by f and has norm

I2llx = [If]

X*-.

11



For any Banach space, we can further define X** = (X*)* and if X = X**, X is

called reflexive. We can conclude that a Hilbert space X is reflexive.

Definition 2.1.3 Let X and Y be two Banach spaces. A linear operator A :

D(A) C X =Y is said to be closed if whenever

r, € D(A),n>1, and lim x, =z, lim Az, =y,

n—00 n—oo

then x € D(A) and Az = y.

Definition 2.1.4 Let X and Y be two Banach spaces and a linear operator A :

D(A) C X — Y is called densely defined if the closure D(A) = X.

Definition 2.1.5 Let A be a densely defined linear operator on a Hilbert space
X. Then the Hilbert adjoint operator A* : X — X is defined by

<Ax7y>X = <1’,A*y>x

for any x € D(A),y € D(A*). In particular, if A is bounded, the adjoint operator

A* of A exists and is unique and bounded with ||A*|| = ||A]|.

Definition 2.1.6 Let X be a Hilbert space and a densely defined linear operator
A:D(A) C X — X is symmetric if for all x,y € D(A), (Az,y)x = (z, Ay)x. A

symmetric operator A is called self-adjoint if D(A*) = D(A).

A linear operator A on the Hilbert space X is called non-negative, denoted by
A >0, if (Az,z) > 0 for all x € D(A). It is called positive if (Az,z) > 0 for all
x € D(A) and coercive if (Az, x) > c||z||% for some ¢ > 0 and # € D(A). A linear

operator B is called the square root of A if B* = A.

Theorem 2.1.2 Let A be a linear operator on the Hilbert space X . If A s self-

adjoint and nonnegative, then it has a unique square root, denote it by AY?, which

12



is self-adjoint and nonnegative such that D(A) C D(AY?). Furthermore, if A is

positive, so is AY2.

Theorem 2.1.3 Let X be a Hilbert space. Suppose that A is self-adjoint and
nonnegative on X. Then A is coercive if and only if it has a bounded inverse

A7l e L(X). In this case, A™' is self-adjoint and nonnegative.

Definition 2.1.7 Let X and Y be two Banach spaces. An operator A € L(X,Y)
is compact if for any bounded sequence {x,}n>1 in X, the sequence { Axy,}n>1 has

a convergent subsequence in Y.

Let X be a separable Hilbert space. A linear bounded operator A € L(X,Y)

is a compact operator if and only if

ALE:ZAZ<$,€Z>X51 VLUGX,
i=1
where {e;};>1 and {é;};>1 are two orthonormal bases in X and Y, respectively
and \; > 0 for each ¢ > 1. The operator A is called trace class if Z;’il A < 00

and A is Hilbert-Schmidt if > ;7 A\? < oo.

Let £ (X) be the family of all trace class operators on X. It can be shown that
Z(X) is a Banach space under the trace norm ||All; := > ;2 A;. The space of
Hilbert-Schmidt operators denoted by %(X) has the norm || Ay := (3 5, A2)1/2.

All the Hilbert-Schmidt operators form a Hilbert space .

In this dissertation, we would use the Banach fixed point theorem or contrac-
tion theorem, which concerns mappings of a Banach space into itself. It states

sufficient conditions for the existence and uniqueness of a fixed point.

Definition 2.1.8 (Contraction) Let (X, ||| x) be a Banach space. A bounded

linear operator T : X — X s called a contraction on X if there is a positive

13



number a < 1 such that for all z,y € X
[Tz =Tyl x < allz —yllx.

Theorem 2.1.4 (Banach Fixed Point Theorem) Consider a Banach space
(X, |- llx) and let T : X — X be a contraction on X. Then T has a unique fized

point. That s, there exists a unique v € X such that

2.2 (Cpy-Semigroups

Definition 2.2.1 A strongly continuous or Cy-semigroup S(-) : [0,00) = L(X)

15 a family of bounded linear operators on a Banach space X satisfying:
(i) S(0) =1, where I is the identity operator on X ;
(i) S(t+s) = S(t)S(s) for allt,s > 0;

(111) S(t) is strongly continuous, i.e., for any x € X,S(t)x : [0,00) — X s

continuous.

It is known that for any Cy-semigroup S(t) on X, there exist constants M > 1

and p € R such that

IS < Me™,  t>0.

14



In association with the Cy-semigroup S(¢), we define a linear operator A :

D(A) C X = X by

B L Sty —2
D(A) = {x € X: lgﬁ)l exists },
Ar = tim 2WT=T L pay.

tl0 t

The operator A is called the infinitesimal generator, or simply generator, of the

semigroup {S(t)};>0. We frequently write it as e, ¢ > 0.

Suppose that A is linear, but not necessarily bounded, operator on a Banach
space X. The resolvent set p(A) of A is defined as the set of all complex numbers
A € C such that (A] — A)~! exists and (A — A)~! is a bounded linear operator
in X. The family R(\, A) = (A\[ — A)™', X € p(A) of bounded linear operators is

called the resolvent operator of A. The spectrum of A is defined to be o(A) =
C\p(4).

Theorem 2.2.1 (Hille-Yosida) A linear operator A on a Banach space X is the

infinitesimal generator of a Cy-semigroup S(t),t > 0 if and only if
1. A is densely defined and closed;

2. the resolvent set p(A) of A contains the ray (u,00) and

M

IR, A)" || < P

forA>p, n=12 ..

for some M > 0.

Proposition 2.2.1 Suppose that A generates a Cy-semigroup et > 0, on a

15



Banach space X . It is valid that if x € D(A), then Az € D(A) and in this case

d
%emx = e Ax = Ae'tx,  for allt > 0.

Let X be a Banach space and consider the following deterministic linear

Cauchy problem on X,

dil_it) — Ay(t), t>0, (2.1)
y(0) = yo € X,

where A is a linear operator which generates a Cy-semigroup e!4,¢ > 0, on X. If

Yo € D(A), then by Proposition 2.2.1, we have ey, € D(A) and

d

E(emyo) = Ac'y,, t > 0. (2.2)

Hence, y(t) = ey, t > 0, is a solution of the differential equation (2.1). If
Yo ¢ D(A), the equality (2.2) is not necessarily true. However, for any yo € X it
does make sense to define y(t) = e'4yy,t > 0, which is called a mild solution of

(2.1).

Definition 2.2.2 Let ¢4t > 0, be a Cy-semigroup on a Banach space X with
the generator A: D(A) C X — X.

(i) The semigroup e, t > 0, is called compact if for any t € (0,00), the oper-
ator 't € L(X) is compact.

(ii) The semigroup e t > 0, is called analytic if it admits an estension e** on

2z € Ng:={z€C:larg z| <0} for some § € (0,7, such that z — e** is

analytic on Ng and satisfies:

(a) e1t22)4 = en1dend for any 21, 2 € Ay;
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(b) lima,5. 0 ||e*2 — 2|[x =0 for allz € X and 0 < 0 < 6.

Let us define fractional powers of certain unbounded linear operators and study
some of their properties. Let A : D(A) C X — X be the infinitesimal generator
of an analytic semigroup {S(t)}+>0 in H. Suppose that 0 € p(A) is the resolvent
set of A, then, for a € (0,1], it is possible to define the fractional power (—A)“
as a closed linear operator on its domain D((—A)%). Furthermore, the subspace

D((—A)*) is dense in H, and the expression
[2llo = I(=A)*[m, @ eD{(=A)),

defines a norm in D((—A)%). We let H, = D((—A)*) endowed with the norm
- la-

We need the following assumption.

(A1) Let —A be a densely defined closed linear operator for which
p(A) DS ={N:0<w<|argA| <7}UV

and

RN A < for A e S
” ( ? )H—l_'_‘)\’ or e Y
where V' is a neighborhood of 0.
For 0 < a < 1, we can define
(—A) = Smm/ ol — AN, 0<a< 1.
T 0
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Definition 2.2.3 Let — A satisfy (A1) with w < w/2. For every a > 0, we define

Fora =0,(—A)* = I.

Lemma 2.2.1 Suppose 0 € p(A), then we know that there exist constants M >

1,A>0, for every 0 < g <1,

(1) we have for each x € D(—A)?,

(2) there exists Mz > 0 such that

(=AW < Mst™Pe™, ¢ >0;

(3) for any 5 € [0,1],

I(=A) 7 < C.

2.3 Probability Theory and Stochastic Processes

Let Q be a non-empty set and F a collection of subsets of 2. We call F a

o-algebra if the following hold:
(1) 0 € F, where () is the empty set;
(2) Ae F= A° € F, where A° = Q — A is the complement of A in ;

(3) {Aitiz>1 CF=UX A € F.
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The pair (€2, F) is called a measurable space and the elements of F are called
measurable. A probability measure P on (€2, F) is a mapping P : F — [0,1]

satisfying that
(1) P(Q) =1, and

(2) (countable additivity) for any disjoint sequence {A;};>1 C F (i.e. A;NA; =10
if ¢ # j), then

P(UZ,4) = iP(Ai)-

The triple (2, F,P) is called a probability space.

Suppose that C is a collection of subsets of {2, then there exists a smallest
o-algebra o(C) on €2 which contains C. Hence, this ¢(C) is called the o-algebra
generated by C. If Q = R? and C is the collection of all open sets in RY, then
o(C) is called the Borel o-algebra, denote it by B(R?) and the elements of B(R?)

are called Borel sets and any measure on (R¢, B(R?)) is called a Borel measure.

If (Q,F) and (S, B(S)) are two measurable spaces, then a mapping £ from €2
into S such that the set {w € Q: ¢ € A} = {{ € A} belongs to F for arbitrary
A € B(9) is called measurable from (2, F) into (S, B(S)). Hence, B(S) is a Borel
o-algebra on S, where S is a complete metric space. If £ is a measurable mapping
from (2, F) into (S, B(S)) or an S-valued random variable and P a probability

measure on (€2, F), then we will denote by D¢(-) the image of P under the mapping
&

De(A) =P{w e Q:{(w) € A}, VA e B(S).

It may be shown that D¢(-) is a probability measure which is called the distribu-

tion or the law of &.
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The triple (2, F,P) is called a probability space. If (€2, F,P) is a probability
space, we set F = {A C Q:3IB,C € F such that B C A C C,P(B) = P(C)}.
Then F is a o-algebra and is called the completion of F. If F = F, then
probability space (€2, F, P) is said to be complete. In general, if F is not complete,
we can extend P to F by defining P(4) = P(B) = P(C) for A € F, where
B,C € F with BC A C C and P(B) = P(C). In this way, (2, F,P) becomes a
complete probability space. A family {F;},t > 0, for which each {F;} is a sub-
o-field of F and forms an increasing family of o-fields, is called a filtration of
F. With this {F;},¢ > 0, one can associate another filtration by setting o-fields
Fiy = NsstFs for t > 0. We say that the filtration {F;}+>0 is normal or satisfies
the usual conditions if F;, = F; for each t > 0, that is, the filtration is a right

continuous increasing family and contains all P-null sets of F.

Now assume that S = H is a separable Hilbert space with norm || - ||g
and £ is an H-valued random variable on (£, F,P). We can define the integral
Jo, §(w)P(dw) of & with respect to the probability measure P. We often denote it
by E(), which is called the expectation. The integral defined in this way is called
a Bochner’s integral. We denote by LP(Q, F,P; H),p € [1,00), the set of all equiv-
alence classes of H-valued random variables with respect to equivalent relation
of almost sure equality. Then it can be verified that LP(Q, F,P; H),p € [1,00),

equipped with the norm

1€ll, = (EIEIE)Y?, pe[l,o0), &€ LP(QF,PH),

is a Banach space. If € is an interval [0,7], F = B([0,7]) and P is the usual
Lebesgue measure L/T on [0, 7] for L?([0,T],B([0,T]),L/T; H),0 <T < oo, we
also write L*([0,T]; H).

Next, we introduce some useful results.
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(1) Holder inequality (for p = 2 it is called Cauchy Schwarz’s inequality)

IEEO < (EEI)P (BN,

where p > 1,%—1—% =1 for any £ € LP(Q); H), ¢ € LY(Q); H).

(2) Minkowski’s inequality
(EllE + ¢IP) VP < (EllEIP)Y? + (ElCIIP) 7,

where p > 1 for any &, € LP(Q; H).

Theorem 2.3.1 (Monotonic convergence theorem): If {&,} is an increasing se-

quence of nonnegative random variables, then
lim E = E{ i .
i EAG ) = E{ lim &}

Theorem 2.3.2 (Dominated convergence theorem): Let p > 1,{,} C LP(Q; H)
and ¢ € LP(C;R). Assume that ||€,||n < ¢ almost surely and {&,} converges to &

in probability. Then & C LP(Q; H), {&,} converges to & in LP, and
lim E{¢.} = E{ lim &} = E{¢}.
n—o0o n—o0

Lemma 2.3.1 (Fatou’s Lemma): If the random wvariable’s &, satisfy &, > ¢

almost surely ( ¢ € LP(§;R)), Vn, we have
E{h}f_l}golf &nt < hrrlri}golf E{¢,.}.

If the random wvariable’s &, satisfy &, < ¢ almost surely ( ¢ € LP(Q;R)),Vn, we
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have

E{limsup&,} > limsup E{,}.

n—oc0 n—oco

An arbitrary family M = {M (t)},t > 0, of H-valued random variables defined
on a probability space (€, F,P) is called a stochastic process. Sometimes, we also
write M (t,w) or My in place of M (t) for all ¢ > 0. A stochastic process M is called
measurable if the mapping M(-,-) : Ry x Q — H is B(R,) x F-measurable. Let
{Fi},t > 0, be an increasing family of sub-o-fields of F. The process M is called
{Fi}i>0-adapted if M (t) is Fy-measurable for each ¢t > 0. Clearly, if o{M(t)}:>0
is the family of o-fields generated by M = {M(t) }1>0, M is o{ M (t) }+>o-adapted.
For any w € 2, the function M(-,w) is called a path or trajectory of M. Let P
denote the smallest o-algebra on R, x ) with respect to every left continuous

process is a measurable function of (f,w). A stochastic process is said to be

predictable if the process regarded as a function of (¢,w) is P-measurable.

Definition 2.3.1 Suppose M = {M(t)},t > 0, is an H-valued process and
{Fi}i>0 is a filtration of F. The process M is said to be progressively measurable

with respect to {Fi}i>o if for every t > 0, the mapping

[0,t] x Q@ — H, (s,w) = M(s,w),

is B([0,t]) x Fi-measurable.

Definition 2.3.2 Let {F;}i>0 be a filtration of F. A mapping 7 : Q — [0, 00] is

called a stopping time with respect to {Fi},t > 0, if

{w:T(w) <t} € F for each t > 0.
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The o-field of events before T, denoted by F, is defined as
FT:{AE]—":AH{Tgt}E]—"tforeverytZO}.

Theorem 2.3.3 Let M = {M(t)},t > 0, be an H-valued progressively measur-
able process with respect to {Fi}i>0, and let T be a finite stopping time. Then the

random variable X, is Fr-measurable.

Theorem 2.3.4 (Fubini Theorem): Let M(t) be an H-valued measurable stochas-

tic process.
(1) If E{M (t)} exists for all t, then it is measurable as a function of t;

(2) if [VE|M(#)||adt < oo for all a < b,

/a E{M (1)}t = / Mty

If E[|M(t)||g < oo for all ¢ > 0, then the process is called integrable.

Proposition 2.3.1 Assume that H is a separable Hilbert space. Let & be a
Bochner integral H-valued random variable defined on (2, F,IP) and let G be a
sub-o-field of F. There exists a unique, up to a set of P-probability zero, integrable

H-valued random variable (, which is G-measurable such that

/AdeP’:/ACdIP’, VAEG.

This random variable ¢ is denoted by E(¢ | G), which is called the conditional

expectation of ¢ given G.
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An integrable and adapted H-valued process M(t),t > 0, is said to be a

martingale with respect to {F; }i>o if
E(M(t) | Fs) = M(s), P—a.s.

for arbitrary t,s € T, t > s.

A real-valued integrable and adapted process M(t),t > 0 is said to be a sub-

martingale (resp. a supermartingale) if

E(M(t) | F)) = M(s) (resp. E(M() | F) < M(s)), P—as.

2.4 Wiener Processes and Stochastic Integral

Let K be a real separable Hilbert space with inner product (-, ). A probability
measure N on (K, B(K)) is called Gaussian if for arbitrary u € K, there exist

numbers p € R, o > 0, such that
N{z € K : (u,a)x € A} = N(u,0)(4), Ac BR),

where N (u,0) is the standard one dimensional normal distribution with mean pu
and variance o. If N is Gaussian, there exist an element m € K and a nonnegative
self-adjoint operator @ € % (K), the family of all trace class operators in K, such

that the characteristic function of N is given by
/ ei<’\’x>KN(dx) = ei<A’m>K_%<QA”\>K, A€ K.
K

Therefore, the measure N is uniquely determined by m and ) and denoted by

N(m, Q). In particular, in this case, we call m the mean and () the covariance
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operator of N(m, Q).
The proofs for this section can be founded in Chapter 4, [22] .

For a self-adjoint and nonnegative operator () € L(K'), we assume that there
exists an orthonormal basis {e;}r>; in K, and a bounded sequence of positive

number )\, such that
Qek:Akeku k:1727

A stochastic process W (t),t > 0 on K is called Q-Wiener process if
(i) W(0)=0;
(ii) W(t) has continuous trajectories;

(iii) the law Dy —ws) = N(0, (t — 5)Q) for all t > s > 0.

If the trace Tr @ is finite, then W is genuine Wiener process. It is possible that

Tr QQ = o0, e.g., Q = I, and in this case we call W a cylindrical Wiener process.

Assume that the probability space (2, F,F = (F;)i>0,P) is equipped with a
normal filtration {F; };>0. Let W(t),t > 0, be a )-Wiener process on K which is
assumed to be adapted to {F;}:>¢ and for every ¢ > s > 0 the increments W (t) —
W (s) are independent of {F,}. Then, W(t),t > 0, is a continuous martingale

relative to {F;}i>0 and W has the following representation:
W(t) =Y VAw'(te, t>0,
i=1

where (\; > 0,7 € N ) are the eigenvalues of ) with the corresponding eigen-
vectors (e;,7 € N ), and (w'(t),7 € N, ) is a sequence of independent real-valued

one-dimensional standard Brownian motions.

We introduce the subspace Ko = R(Q'?) C K, the range of Q'/2, which is a
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Hilbert space endowed with the inner product
(u,v)k, = (Q7YV2u,Q V%) for any u,v € Kg.

Let % (Kg, H) denote the space of all Hilbert-Schmidt operators from K¢ into

H, then % (Kq, H) becomes a separable Hilbert space under the inner product
(L, P) %k o,y = Tr[LQP*]  for any L, P € £5(Kq, H).

For arbitrarily given T' > 0, let ®(t,w),t € [0,7], be an £ (K¢, H)-valued pro-

cess. We define the following norm for arbitrary ¢ € [0, 7],

|||, == {E /Ot Tr [@(S)Q@(S)*}ds}g.

In particular, we denote all Z5(K ¢, H)-valued measurable processes, adapted to

the filtration {F; }iepo,r), satisfying || @7 < oo by U*([0,T]; L (Ko, H)).

The stochastic integral fo s)dW(s) € H,t > 0, may be defined for all €
U ([0, T]; ZL(Kq, H)) by

/Otcp() £ Jim Z/ VA®(s)e;dwi(s), tel0,T). (2.3)

n—oo

By the definition of stochastic integrals and using standard limiting procedure,

we can establish some useful properties of stochastic integrals.

Proposition 2.4.1 For arbitrary T > 0, assume that ®(-) € U*([0,T]; L2(Kq, H)).
t
Then the stochastic mtegml/ O (s)dW (s) is a continuous, square integrable H -
0

valued martingale on [0,T]. Moreover,
] [ o —olp. el
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Lévy Processes, Let Z = {Z(t) : t > 0} be an H-valued stochastic process
defined on a probability space (€2, F,P). We say that it has independent incre-
ments if for each n € N and each 0 < t; < t5 < ... < t,41 < o0, the random
variables (Z;, ., — Z;,,1 < j < n) are independent and that it has stationary

increments if each 7, — Z;, and Z, — Z(0) has the same distribution.

i+17t
We say that Z is a Lévy process if

1. Z(0) =0 as;

2. Z(t) has independent and stationary increments;

3. Z is stochastically continuous, i.e., for any 6 > 0 and for all s > 0

fim P(2() ~ Z(5) 15 > 5) =0,

Related to the Lévy process Z, we have the following Lévy-Khintchine formula

(see, e.g., [1]),

]E(e”h’z(t)m) = ¢mer >0 and h e H,
with the exponent

Maoh) = ilbhhu = (1, Qb

+ /H [ei<h””>H —1—i(h,2) g - Lz y<1(2) | v(d), (2.4)

where b € H, () is a positive, self-adjoint and trace class operator on H, and v is

called a Lévy measure on H satisfying

V{0 =0 and /Hmin(l,Hx]|12q)u(dx)<oo,
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We use the symbol Ig(z) to denote the characteristic function on set £ C
H,ie, Ig(z) =1ifx € F and Ig(z) = 0if x ¢ E. The triple (b,Q,v) is
called the characteristics of the process Z and the mapping n, ¢ . (h) is called the

characteristic exponent of Z.

It can be proved that Lévy process has a cadlag version. If Z is a Lévy process
on H, we write AZ(t) = Z(t) — Z(t—) for all t > 0 where Z(t—) := limyy Z(s).

We then obtain a counting Poisson random measure N on H\{0} by
Nt E)=#{0<s<t:AZ(s) e E} <o, t>0,

almost surely for any £ € B(H\{0}). Here # is the counting and B(H\{0}) is the
Borel o-field on H\{0}. Now we denote by N(t,dz) the associated compensating

Poisson random martingale measure by

N(t,dx) = N(t,dz) — tv(dz).

Let O € B(H\{0}) and V?([0,T] x O; H) denote the space of all predictable
processes L : [0,7] x O x Q — H with

T
/ / E|L(t, ) |4 v(dz)dt < .
o Jo
Then we can define the random finite sum

/0 ' /O L(t,z)N(dt,dx) = > L(t, AZ(t))Io(AZ(1)),

0<t<T

which enables us to define the stochastic integral

/OT/OL(t,x)N(dt,dx) = /OT/OL(t,x)N(dt,dx) —/OT/OL(t,:E)V(dx)dt.
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It is known that

// (t,z)N dtdw)tZO,

is an H-valued square-integrable martingale satisfying

o [ [ seonaa)|)<x [ [ sieapan @)

where kK > 0 for all T > 0 and Vx € H.

The Lévy-Ito decomposition theorem on a separable Hilbert space H was in-

troduced in [3] as follows:

Theorem 2.4.1 Suppose that Z(t),t > 0, is a cadlag H-valued Lévy process with

characteristic exponent given by (2.4), then for each t > 0,

Z(t) = bt + Wo(t) +/

[l <1

N (t,dx) + / eN(t,dr),
2l >1

where Wy (t) is a Q- Wiener process, independent of N.

Let Z(t),t > 0, be a cadlag H-valued Lévy process and assume that J is a
measurable function from R, to £(H) such that the mapping ¢t — ||.J| is locally

square integrable. Now we define the stochastic integral

/t J(s)dZ(s) Vt>0.

We use the Lévy-Ité6 decomposition theorem (2.6) to write

/OtJ(s)dZ(s) _ /tJ( Vbds + /t (s)dWo(s) / /lM<1 N(ds, dz)
/ /lm>1 §)eN (ds, dz).
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2.5 SDEs and Solutions

The theory of stochastic differential equations in Hilbert spaces is a nautral gener-
alisation of the classic finite dimensional stochastic differential equations (SDEs)
introduced by It6. Readers are referred to Da Prato and Zabczyk [22] for more
details. Here, we only analyse a formulation how one can regard a SPDE as some

SDE in some Hilbert spaces.

Let O be a bounded domain in R", n € N, with smooth boundary 0. Con-

sider the following initial-boundary value problem for the randomly heat equation

— >

y(0,2) = pola), TE€O; ylta)=0, t>0, €O,

where W(t, x) is a standard Wiener random field.

We consider the solution for this stochastic differential equation as a stochastic
process indexed by time ¢ with values in a space of functions of spatial variable
z, say L?(O;R). Here, we can use some knowledge from functional analysis to

develop a stochastic process theory on a Hilbert space.

Let H = L?(O;R). Assume that the initial condition yo € H = L?(O;R) and
let W(t),t > 0, be a Q-Wiener process on H, then we may reformulate (2.6) into

the form:

dy(t) = Ay(t)dt + dW (t), t >0,
y(0) = yo € L*(O;R),
where Ais > | 6‘9—;2 in (2.6).

Now we consider the following non-linear stochastic system on a Hilbert space
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dy(t) = (Ay(t) + F(t,y(t))dt + B(t,y(1))dW(t), ¢ =0, 2.7)

y<0) =Y € H,

where A is the infinitesimal generator of a Cy-semigroup e, ¢ > 0, of bounded
linear operators on the Hilbert space H. The coefficients F'(-,-) and B(-,-) are
two nonlinear measurable mappings from [0,7] x H into H and % (Kg, H),

respectively.

Definition 2.5.1 Let T' > 0 and an {F;}1>o-adapted stochastic process y(t),t €
[0,T], defined on some probability space (2, F,F = (Fi)i>0,P) is called a mild

solution of (2.7) if it satisfies

p{ / It < oo} =1 (2.8)

B{ [ (a0l + 1B )i < o} =1 (29)

and

y(t) = ey +/ e(t_S)AF(s,y(s))ds —|—/ e(t_S)AB(s,y(s))dW(s), t €[0,7T],

0 0
for any yo € H almost surely.

By the Banach fixed-point theorem, we can establish an existence and uniqueness

theorem of mild solutions for (2.7). Precisely, we suppose that for any y,z € H
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and ¢ € [0, 77,

1Bt y) = Ft,2)lla + 1B(ty) = B(t, 2)l aq.m) < (T)lly = zlu,

IF(t.y) — Btz < BT+ [lyllE), (2.10)

where a(T") > 0 and (7)) > 0.

Theorem 2.5.1 Let T' > 0 and assume that condition (2.10) holds. Then there
exists a unique mild solution y € C([0,T]; LP(QY; H)) to (2.7). Moreover if

Ellyoll% < oo, p > 2, then the solution y satisfies

E( sup [ly(t.w)lfy) < o0, p=2
0<t<T
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Chapter 3

Stochastic Optimal Control
Problem with Neutral Type and

Control Delays

3.1 Introduction

In the classical case, many random phenomena are described by stochastic differ-
ential equations, such as the evolution of stock prices. However, there also exist
many phenomena which are characteristics of past dependence, that is, their
present value depends not only on the present situation but also on the past
history. Such models may be identified as stochastic differential delay equations
arising in a wide range of applications in physics, biology, engineering, economics
and finance. For instance, let us mention the influence of the ocean in a cou-
pled atmospheric ocean model of the climate, see, e.g., [59], or population growth

where the non null finite information transmission times may lead to delay.

Recently, the optimal control problem of deterministic infinite dimensional
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systems has attracted a lot of attentions (see, e.g., [8], [21], [35], [48], and refer-
ences cited therein). For stochastic systems without memory, the same or similar
problems have been considered by many researchers, e.g., [27], [33|, in which it
is clearly enough to consider only the state control i.e., bi(-) = 0 in (3.1) of the
equations under investigation. Apart from this, we also need to deal with time
delays in the control: this is interesting from the practical point of view and new
mathematical difficulties arise in the problem. In [29] and [30], a class of stochas-
tic optimal control problems were considered. The state equation is a stochastic
delay differential equation. One typical example of this problem introduces the

optimal control of delay equations arising in advertising models.

On the other hand, it is known that the neutral type effects in which the class
of stochastic equations involve derivatives with delays as well as the function it-
self exist widely. Many interesting results about neutral type to stochastic delay
differential differential equations have been obtained by many authors, see, for
example, Liu [38] has considered standard optimal control problems for a class of
neutral functional differential equations in Banach spaces and it turns out that
based on a systematic theory of neutral models, the fundamental solution is con-
structed and a variation of constants formula of mild solutions is established.
Balasubramaniam and Ntouyas [4] have given sufficient conditions for the con-
trollability of a class of stochastic partial functional differential inclusions with
infinite delay in an abstract space with the help of the Leray-Schnauder nonlin-
ear alternative. The problem is formulated by lifting this non-Markovian opti-
mization problem to an infinite-dimensional Markovian control problem without
involving delays in a suitable product Hilbert space and the solutions are derived

in an explicit example.

In this chapter, we will generalise the previous theory to consider a stochastic

optimal control problem for a class of neutral type stochastic systems, which is
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very important from both theoretic and practical point of view (see, e.g., [39]).
We formulate a stochastic optimal control problem aiming at maximising the

objective functional at a given time horizon T" > 0.

This chapter is organised as follows. In Section 3.2, we formulate the optimal
problem with the objective functional as an optimal problem with neutral type
for an SDDE both in state and the control. In Section 3.3, we use a representa-
tion result that allows us to “lift” this non-Markovian optimisation problem to an
Hilbert space-valued Markovian control problem and deal with the general case
of delays in the state and in the control and the verification result is given. In
Section 3.4, we construct an example of a controlled SDDE in the state and in
the control, whose HJB equation admits an integral solution. Therefore, there
exists an optimal control form for the control problem. In Section 3.5, we calcu-
late solutions by a linear delay differential equation. In Section 3.6, we have a

summary to state the contribution and development of the chapter.

3.2 Model

Let r > 0 and L%*([—r,0];R) be the space of all R-valued equivalent classes of
measurable functions y(-) : [-r,0] — R such that fi |7(0)3d0 < oco. We also
denote by W12([—r,0];R) the Sobolev space of all R-valued functions z(-) on
[—r, 0] such that z(-) and its derivatives belong to L?*([—r,0];R). We consider the

following stochastic differential equations with neutral type and control delay on

R.

0

(d[y(t)— / i a(e)y(t+9)d9] - [aoy(t)+ / a1 (0)y(t + 0)d6 + bou(t)

—r —r

- /0 br(B)ult + e)de] dt +odB(t), Vtelo,7], (3.1)

-r

y(0) = 2o, y(0) = 21(0), u(0) = ~(0), V0 € [-r,0],

\
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where the Brownian motion B(t) is defined on a filtered probability space

(Q, F, {Fi}i>0,P) with (F;)i>0 being the completion of the filtration generated
by B(t),t > 0. It is assumed that wu(t) is an admissible control that belongs
to U = L*([0,T];R"), the space of square integrable nonnegative stochastic
processes adapted to {F;}icpo,r). In addition, we need to assume the following

conditions:

i ap€R;

ii. ai(-) € L*([-r,0;R);
iii. a(-) € CY([—r,0];R);
iv. by € R;

v. by(-) € L*([~r,0];R);
vi. 2,(-) € L¥([-r, 0]; R);
vil. () € L*([~r,0; R™).

Our aim is to study the optimal control problem for (3.1). Setting x := (xg, z1(-)) €
X and denoting by y(t, x,u(-)),t € [0,7T], a solution of (3.1). The objective func-

tional is given as follows:

J(z,u(-)) =E>* [o(Y (T, z,u(-))) —|—/0 h(u(t))dt], (3.2)

where ¢q is a concave utility function, which is twice continuously differentiable
and satisfies ¢ (x) < 0 for all x € R, and hg is a convex cost function, which is
twice continuously differentiable and satisfies hjj(x) > 0 for all z € R. Moreover,

hg is superlinear at infinity, i.e.

h
lim () = +00,
r——+00 T
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and the dynamics of y is determined by (3.1).

Let us also define the value function V' for this problem as follows:

V(t,xz) =sup J(t, z;u).
uelU

We say that u* € U is an optimal strategy if it is satisfies
V(t,z) = J(t, z;u").

The problem that we will deal with is the maximisation of the objective functional
J over all admissible strategies u € U and the characterisation of the value

function V' and of the optimal strategy u*.

3.3 Equivalent Infinite-Dimensional Markovian Rep-

resentation

In this section, we shall adapt the approach of Vinter and Kwong [54] to the
stochastic case to recast SDDE (3.1) as an abstract SDE on a product Hilbert

space H to reformulate the optimal control problem.

Let H be a product Hilbert space defined as
H=Rx LQ([_T7 0]7 R)?

with inner product

0

(T, y)n = oo +/ 21(0)y1(0)db,

—-T
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and norm

0 1/2
folle = (laol* + [ lzs(@)Pap) "

for all = (2o, 21),y = (yo,1) € H, that is, 2o and z1(-) denote the R-valued

and the L?([—r,0]; R)-valued components, respectively.

We start by considering the deterministic delay differential equation with neu-

tral type on R,

0

d[y(t) . / ra((‘))y(t—f—Q)dG] — aoy(t) + / a(@y(e+0)ds, V>0, s

y(0) = 20,y(0) = 21(0), x = (0, 11()) € H.

The mild solution y(t) of (3.3) requires us to introduce a Cy-semigroup on product

Hilbert space H. Now, we define a mapping S(t),t > 0, associated with y(t) by

S(t)(xo, 11(1) = (y(@),y(t +-)), V& =>0.

Moreover, Y (t) = (y(t), y:(+)), where y;(-) = y(t + -),t > 0, is the H-valued mild

solution of an abstract equation without delays

dY (t) = AY (t)dt

Y(0) =z € H.

Here the operator A is the infinitesimal generator of the strongly continuous
Co-semigroup S(t),t > 0 on the Hilbert space H (see the proof in Liu [37]) as

follows:

At (z0,21(-) = (a0x0+ / a()a (8)df + / al(e)xl(e)de,xgw)) (3.4)

T T
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and the domain of A is given by
D(A) = {(z0,21(-)) € R x WH([=1,0); R) : 2 = 2, (0)}

for any x = (29, 1) € D(A).

Moreover, we recall the adjoint operator A* which is proved in Liu [39], in

which, the operator A* : D(A*) C H — H generates a Cy-semigroup e'".

Theorem 3.3.1 The operator A* of the Cy-semigroup e'4” : D(A*) C H — H

is giwven by: for almost all § € [—r,0],

A* (w9, 21(0)) — (aoazo + 21(0) + a(0)x, a1 (0)xg — d% [361(9) - a(9)l‘o} );

and the domain of A* is given by

D(A*) = {(20, 21(-)) € H,x1(-)+a(-)zo € W2 ([—r,0];R), 21 (—r)+a(—r)xe = 0}.

Moreover, we need to define the bounded linear control operator B* : U — H as
B* :u — (bou, by (-)u),

where U := R* and the elements (by, b1(+)) € H.

Finally G* : R — H is defined as

G* 1 x9g — (0x0,0), VzoeR.

We adopt a method that allows us to “lift” this non-Markovian optimisation
problem to an infinite-dimensional Markovian control problem. Let us consider

the following abstract SDE on the Hilbert space that is equivalent to the SDE
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dY (t) = (A*Y (t) + B*u(t))dt + G*dB(t)
(3.5)

Y(0) =z = (x9,71) € H,

where A* is given as in Theorem 3.2.1.

In Da Prato and Zabczyk [22], it is known that the equation (3.5) has exactly

one mild solution, which is given by the variation of constants formula
Y(t) =Y x +/ =4 Bry(s)ds +/ IV G*dB(s).
0 0

We now relate the solution of the delayed differential equation (3.1) to the mild
solution of the abstract evolution equation (3.5) when the initial condition on the

abstract evolution equation is appropriately chosen.

Proposition 3.3.1 /[39] Let Y (t) = (Yy(t),Yi(t + 0)) € H,0 € [—r,0], be the
mild solution of the abstract evolution equation (3.5) with arbitrary initial data

Y (0) =2z € H and control u € U. Then, fort > 0, one has the relation

0 0
Yi(t)(0) = / [a1(s) +a'(s)]Yo(t + s — 0)ds + / bi(s)u(t + s —0)ds,0 € [—r,0].

T -Tr

Moreover, consider the equation (3.5) with initial
0

T = (Tg,T1) = <$0,/ [a1(3)+a’(s)]x1(s—0)d8+/ bi(s)u(s—0)ds, 0 € [—r, O]),

- -r

0

then there s the equality

Yo(t,2) = y(t, ),  te[0,T], (3.6)

where y(t, x),t > —r, is the unique mild solution of the equation (3.1) with initial
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xr = (z9,x1) € H.

Using this equivalence result, we can now give a Markovian reformulation on the
product Hilbert space H of the problem of maximising (3.2). Since we want to
use the dynamic programming approach, from now on we let the initial time vary,

denote it by s with 0 < s < T.

The state space is H = R x L?*([—r,0];R), the control space is U := R* and
the control strategy is u(-) € U. The state equation is (3.5) with initial condition

at s as follows

dY (1) = (A*Y (t) + B u(t))dt + G*dB(t)
(3.7)

Y(s) =z e€H,

and its unique mild solution with initial data (s, x) and the control strategy u(-),

will be denoted by Y (+;s,z,u(-)), so (3.2) is equivalent to

T
Hs,,u() = B[V (Tos, () + [ ute))ar],
where the function h : U — R and ¢ : H — R are defined as

h(u) = —ho(u),

e(z0, 71(+)) = po(z0)-

Our aim is to maximise the objective function J(s,x;u(-)) over all u(-) € Y. We

also define the value function V for this problem as

V(s,x) = sup J(s,x;u(-)).
u(-)eU
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Moreover, we shall say that u* € U is an optimal strategy if it is such that

Vs, x) = J(s,xz;u*(+)).

According to the dynamical programming approach, we need first to charac-

terise the value function V' as the unique solution of the following HJB equation

1
vy + —TT(Q*vxw) + <A*x7 UI> + HO(UI) - 0’
> (3.8)

o(T,2) = p(z), zeH, T3>0,

where Q* = G*G, and

Ho(p) = sup((B*u,p)y, + h(u)), peH.

uelU

In general, it is hard to solve the equation (3.8) with x defined in a Hilbert
space and obtain regular solutions of the HJB equation (3.8) by using the existing
theory. But in this case, we only consider the situation that the regular solutions

of the HJB equation exist. Here we define two solutions of a HJB equation.
Definition 3.3.1 A function v is said to be

i. A classical solution of the HIB equation (3.8) if v € CY2([0,T] x H) and v

satisfies (3.8) pointwise;
i. An integral solution if v € C%2([0,T] x H), and moreover, for t € [0,T] and
x € D(A*), we have
Tr1
o(x) —o(t, x)—l—/ [ETT(Q*vm(t, 9:))+<A*x,vx(s,$))+H0(vx(s,a:))] ds = 0.
¢
(3.9)

In addition, we use the verification theorem (see the proof in [29]) to find the
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value function V' and the optimal control u*.

Theorem 3.3.2 (Verification Theorem) Let v be an integral solution of the

HJB (3.8) and let V' be the value function of the optimal control problem. Then
(1) v >V on [0,T] x H;

(2) if a control u* € U is such that, at starting point (t,z),

Hy(v,(s,Y(s))) = sup (B u,v.(s,Y(s))) + h(u)

uel

= (B (5),va(s,Y (s))) + h(u"(s)),

for almost every s € [t,T],P-a.s., then this control is optimal and v(t,z) =

V(t,x);

(3) if we know a priori that V. = v, then (2) is a necessary (and sufficient)

condition of optimality.

3.4 An explicit case

In this section, we study the optimal control problem by an specific example with

a linear function ¢ and a quadratic function h.

In particular, we assume that

h(u) = —5U27 and  p(z) = po(z0) = Y0,

with 8,~v > 0.

We define the bounded linear control operator B* : U — H as
B*:u— (bou, bl()u),
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where U := R and the elements (bg, b1(+)) € H.

Let Hoy(p,u) be defined by

Hev(p,u) = (B*u,p) + h(u) = (B*,p)u — fu’, peH.

Then

B* 2

e R

Ho(p) = Sup Hev(p,u) = (3.10)
" 0, (B*,p) <0,
or equvalently,

((B*,p)")?
H ="

We guess a solution of the HJB equation (3.8) of the form

o(t,z) = (u(t),2) +c(t), te[0,T),xeM, (3.11)

where p(+) = (uo(+), pa(+)) : [0,7] — H and ¢(-) : [0,7] — R. Hence, for t € [0,T]

and z € H, we assume that all objects are well defined, and

vt z) = (), 2) + (), (3.12)
vt 2) = u(t), (3.13)
Vge = 0. (3.14)
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Then, by substituting (3.12), (3.13) and (3.14) into (3.8), we obtain

(W' (t),x) + () + (A*x, u(t)) + % =0, Vte|0,T),z € D(A"),
(u(T),z) + c(T) = yrg, VYreH.
(3.15)
Assume that u(t) € D(A) for all t € [0,77, so (3.15) is equivalent to
(W'(t), 2) + (z, Ap(t)) =0, ¢ €0,T),
(3.16)
w(T) = (7,0),
and
sipy o (B @) 0T
T - ebn (3.17)
c(T)=0
Then it implies
W)+ Ap(t) =0, t€]0,T)
(3.18)
w(T) = (7,0)
Recalling (3.4), we obtain that (3.18) is equivalent to
f1o(t) + aopio(t) + /0 a(@%d@ + /0 ar(0)p(t,0)do =0, t€[0,T),
po(T) =1,
(3.19)
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and

(O (t,0) | Om(t,0)

T + 20 =0, tel0,7),0¢€][-r0),
:ul(Ta 6) =0, 0 € [—7”, 0)7 (320>
Ml(tuo) = :u’O(t)7 te [O,T]

\

The solution of (3.20) is given by

(8,0 = po(t — )Tzt — 6). (3:21)

from which we can solve the equation (3.19) to obtain p(-). Hence,

vt x) = (p(t), x) +c(t)

is an integral solution of of HJB equation (3.8). Since v € C%?([0, T] x H), which
is twice differentiable in = and it satisfies the hypotheses of Verification Theorem.

Moreover, the optimal strategy is

o= BN g g

Hence, by the Theorem 3.3.2, u*() is optimal.

3.5 Example with solutions

Now we extend the analysis of this specific situation to a rather explicit solution
of the optimal control problem, which could be solved numerically by solving a

linear ODE with delay. In particular, let p = (o, pt1) be the solution of (3.11).

Let us consider the system (3.1) with a(-) =a and a;(-) = 0, precisely, the

46



following controlled stochastic differential equation with neutral type

0

d[y(t) — /0 ay(t+ H)dﬁ] = [aoy(t) +/ by (O)u(t + H)dé] dt

—r —r

+odB(t), Vtel0,T),

y(0) = o, y(0) = z1(0) € L*([-r, 0] R),u(f) =(0), 6 € [-r,0],

\

(3.22)
Now the equation (3.19) has become
O Oy (t,0
o)+ aaoft) +a [ 20Dag 0. vefom)
- (3.23)

po(T) = 1,

where a, ag are constants.
Step 1: For ¢t € [T — r, T], we need to consider the solutions in two cases.

) Ute[T—r,T)andt—0 ¢ [0,T], pi(t,6) =0, and (3.23) is equivalent to

h(t) + aopo(t) = 0, te [T —rT),

(3.24)
po(T) = 1.
Multiplying e®’ on both sides of the first equation in (3.24), we obtain
e® g (t) + ape® uo(t) = 0. (3.25)

Integrating the equation (3.25) on the interval [¢t,T],t € [T — r, T, we get

T
/ (po(u)e™)'du =0, tel[T—rT],
¢
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and further
po(T)e®T — pg(t)e™ = 0.
Hence, on the interval T — r < t < T, the function po(t) is given uniquely by

po(t) = ve®TD e [T —rT). (3.26)

(i) Ifte|[T—r,T]and t — 0 € [0,T], p1(t,0) = po(t — @), then

a/o Wd& = a/ift_ge[mwcm
= o /tOTmO(t—e);de
= apo(t) — po(t —t+ 1))
~ alo(t) — 1o(T))

= auo(t) — 7).

Then (3.23) reduces to

po(t) + aopo(t) + a(po(t) =7) =0, e[l —rT),

po(T) = 7.

This is an ordinary differential equation with respect to ¢, which has the form

po(t) + (a+ ao)po(t) =ay, te[T—rT)
(3.27)

po(T) = 7.

where a, ay are constants. Multiplying e(®*®* on both sides of the first equation
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of (3.27), we obtain

eI (E) + (ao + a)el ™t (L) = ael®0t iy,
Integrating on the interval [t, T,

T T
/ (po(w)el ™) dy = a/ el@o Tty dy,
t t
then
T
po(T)e ™ T — pg(t)e @™ = a / eleorydu.
t

Rearranging this equation, we obtain

T
po(t) = AelaotadT=8 _ g / elaota)(u=t)
t

ary r
_ elantaT-0) _ / 00+ (1) g0 4 a)u

a/(] + a t
= Aelwota @) _ IV (faota)(T—t) _ c(ao+a)(t-t))
ag + a
= qelwta @t UV (faota)T-t) _ 1)
ag + a
= 9T oo YTy ey T
ap+ a apg + a

On the interval t € [T — r, T, the function pu(t) is given uniquely by

_ AT (ao+a)(T—t) ay
t) = ———e\% + — .
,uo( ) ag + ae ap t+a

(3.28)

Hence, on the interval t € [T — r, T, the function (t) is given uniquely by

(1o(t), (1)) = (v @Y 0)  fort € [T —r,T] and t — 6 ¢ [0, T,
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and

07 (ao+a)(T—t) ay oY (ag+a)(T—(t—9)) ay )
t 7/1/ t — ( 0 ) ?
(1o(t), a (£)) a0+ae ap +a ao—i-ae ap +a

for any t € [T —r,T] and ¢t —6 € [0,T].

Let k(t) := po(t), t e [T —r,T]. Once (uo(t), u1(t)(+)) is known on interval
[T — r,T], the function x(t) on interval [T'— r, T] can be used to obtain pg(t) on
T —2r, T —r].

Step 2: For t € [T — 2r,T — r|, it is clearly that t — 6 € [0,7]. Then

pa(t, 0) = po(t — 0), and

O Oy (t,0 0 Oy (t, 0
“/T—ma(e Jag — a/rft_ge[m—’“a(e ) a9

— o [ (alt — O)ya

-Tr

= a(po(t) — po(t +1)).

Then (3.23) reduces to

1o(t) + aopio(t) + alpo(t) — po(t + 7)) =0, te [T —2r,T 1],

po(T) = 7.

This is a linear delay differential equation which has the form

po(t) + (a+ao)po(t) = apo(t +17), te [l —2r,T —r],
(3.29)

po(T) =,

where a, ay and r are constants with » > 0.

50



Multiplying e(®*®* on both sides of the first equation of (3.29), we obtain
OO (1) + (ag + a)el ™V puo () = ael O po(t + 7).
Integrating on the interval [t, T —r],t € [T —2r,T — r]|,
T—r T—r
/ (1o (u)el T dy = a/ L0t (4 + 1) du,
t t
then
T—r
pio(T — r)elaotaT=r) _ (¢)elaotalt — a/ el (u 4 1) du.
t
Rearranging this equation, we have
T—r
po(t) = k(T — r)elaotaT=t=r) _ a/ ela0taE=D (s 4 1) ds. (3.30)
t

SinceT—re[T—r,T)and s+r € [T —r,T] for s € [t,T —r|, we can derive the

values of k(T — r) and k(s + r) from equation (3.28) in Step 1.

Step 3: For ¢t € [T — 3r, T — 2r], multiplying e(®*%?* on both sides of the first

equation of (3.29), we obtain
e(ao—&-a)tug(t) + (ao + a)e(ao+a)t,u0(t> _ ae(ao—i-a)t'uo(t + 7,).
Integrating on the interval [t,T — 2r],t € [T'— 3r,T — 2r],
T—2r T—2r
[ e oryas —a [ e pgts 1rds,
t t
then

T—2r
pio(T — 2r)ela0t)T=2) _ )0 (1) elaota)t — a/ @030 (s 4 1)ds,
¢
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and
T—2r
fio(t) = po(T — 2r)elaota)(T=t=2r) _ a/ elaot )=t (s +r)ds.  (3.31)
t

Here po(T — 2r) and po(s +r),s € [t,T —2r],t € [T — 3r,T — 2r] are given in

Step 2.

Hence, on the interval T'— 3r < ¢ < T — 2r | the function pug(t) is given

uniquely by

T—2r
Mo(t) — MO(T _ 27,)€(a0+a)(T—t—2T) _ CL/ e(ao-‘ra)(s—t)luo(s + r)ds.
t

According the methods of steps, we can derive the unique solution () on

the interval T'— 4r < t < T — 3r, which is

T—3r
Mo(t) — NO(T . 37,)€(a0+a)(T—t—3'r) _ a/ €(a0+a)(s_t),u0(8 + T)ds.
t

We can conclude that, in general, the explicit solution f(t) on the interval T —

nr < t<T — (n—1)r, may be written in this form

T—(n—1)r
NO(t> _ PJO(T . (TL . 1)r)6(ao+a)(T—t—(n—1)r) o a/ €(a0+a)(s_t),u0(8 + T)dS.
t
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3.6 Summary

In this chapter, we made the first attempt to study solutions of stochastic delay
differential equations with neutral type. Our work extended the work of Gozzi and
Marinelli (2006) where the optimal control solutions cannot be solved explicitly.
In addition, we also discussed the system with neutral type which has not yet
been discussed in the context of stochastic delay differential equations in terms of

optimal control problem. Finally, we obtained solutions in an explicit example.
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Chapter 4

Almost Periodic Solutions for
Neutral Stochastic Evolution
Equations with Poisson Jumps and

Infinite Delay

4.1 Introduction

Stochastic evolution differential equations have attracted much attention because
of their applications in many areas such as physics, population dynamics, elec-
trical engineering, medicine biology, ecology and other areas of science and en-
gineering. Qualitative properties such as existence, uniqueness, controllability
and stability for various stochastic differential systems have been investigated by
many authors and have already achieved fruitful results (see for example [45],
[46], [41], [14], [53]). In particular, solutions with recurrence property (e.g. al-
most periodicity and almost automorphy), which enable us to understand the

impact of the noise or stochastic perturbation on the corresponding recurrent
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motions, are of great concern in the study of stochastic differential equations and
random dynamical systems. The existence of almost periodic solutions for de-
terministic differential equations has been considerably investigated in a lots of
publications. To be specific, Abbas and Bahuguna [2] studied the almost periodic
solutions of neutral functional differential equations in Banach spaces. Diagana,
Mahop, N’Guerekata, Toni [24] discussed the existence and uniqueness of pseudo
almost periodic solutions to some classes of semilinear differential equations and

applications.

Recently, Bezandry and Diagana introduced the concept of square-mean al-
most periodic stochastic process and applied it to the study of stochastic differ-
ential equations (see [9]). In [10], Bezandry and Diagana proved the existence
of almost periodic solutions to some stochastic differential equations. Bezandry
and Diagana [11] studied the existence of square-mean almost periodic solutions
to some stochastic hyperbolic differential equations with infinite delay. Bezandry
and Diagana [12| were concerned with the square-mean almost periodic solutions
nonautonomous stochastic differential equations. However, many dynamical sys-
tems not only depend on the present states, but also on past states and involve
derivative with delays. Therefore, it is necessary to talk about the stochastic

evolution system with infinite delays and neutral type as well, see ([40], [44], |?],
[19]).

In addition, Poisson processes are essentially stochastic processes with station-
ary and independent increments. Stochastic differential equations with Poisson
jumps have become popular in modelling the phenomena arising in such field, as
economics, where jump processes are widely used to describe the asset and com-
modity price dynamics (see [18]). However, as for stochastic partial differential
equations with Poisson jumps and infinite delay, as for as we know, there exist

only a few results about the existence and stability of mild solution. Readers are
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referred to ([51], [20], [52]).

Motivated by the above works by using the method of semigroups and Banach
fixed point theorems. The main purpose of this chapter is to study the existence
and uniqueness of square-mean almost periodic solutions to a class of neutral

stochastic differential equations with Poisson jumps and infinite delay

d(x(t) = G(x(t), 1)) = (Az(t) + (¢, 2(t), 20))dt + (L, 2(t), 2, )dW (1)

-|—/ h(t,x(t—), x_, 2)N(dt,dz), teR.
H

We assume some conditions to make sure the existence and uniqueness of square-

mean almost periodic solutions.

This chapter is organised as follows. In Section 4.2, we review and introduce
some concepts, basic properties of square-mean almost periodicity and the proofs
of two theorems. In Section 4.3, under some suitable conditions, we prove the
existence and uniqueness of square-mean almost periodic mild solutions for some
stochastic differential equations driven by Poisson jumps. In Section 4.4, we have

a summary to state the contribution and development of the chapter.

4.2 Almost Periodicity

Let (Q, F,{F:}i>0,P) be a complete probability space. An axiomatic definition

of the phase space 4 is introduced by Hale and Kato, see [32].

Definition 4.2.1 The axzioms of the phase space B((—o0,0], H) (simply denoted
by B) are defined for continuous functions mapping from (—oo, 0] into H endowed

with a norm || - || %, and B, satisfying the following conditions:

(1) For any T > 0, if x : (—o0,T] — H, is continuous on [0,T]| and xo € A,
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then, for every t € [0,T], the following properties hold:

(a) x;(-) == x(t+-) € B;

(0) |lx(t)||n < K||zt]|z, VYVt >0, where K >0 is a constant;

(c) |lze|lz < Mosupgeoey [|2(5)||m, where My > 0 is a constant.
(2) The space A is complete.

For a Hilbert space (H, | - ), we denote by L*(€2, H) the Hilbert space of all

H-valued random variable ¢ such that

Bl = [ 6()IPPde) < o
For ¢ € L*(Q, H), let

el = ([ le)iPp) .

Definition 4.2.2 A stochastic process x : Rx Q) — H is said to be L?-continuous

if for any s € R,
lim E||z(t) — x(s)||3 = 0.
t—s

Definition 4.2.3 An L2-continuous stochastic process x : R x Q — H satisfying
Elz(t)||3, < oo for any t € R is said to be square-mean almost periodic if for
every sequence of real numbers {s,}, there exists a subsequence {s,} and an L*-
continuous stochastic process T : R x € — H such that

lim sup E||z(t + s,) — Z(t)||3 = 0.
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The collection of all square-mean almost periodic stochastic processes x : R x

2 — H will be denoted by AP(R x ; H).

Definition 4.2.4 A function f : R x H x 98 — H, is said to be square-mean
almost periodic in t € R, uniformly for (z,y) € K, where K C H x A is compact

if for every sequence of real numbers {s! }, there exists a subsequence {s,} and a

function f: R x H x B — Hsuch that

lim sup || f(t + sn, 2, y) — f(t, 2, 9)|5 = 0.

n—o0 tcR

The collection of all square mean almost periodic functions f : Rx Hx % — H

will be denoted by AP(R x H x %B; H).

Definition 4.2.5 A function h : R x H x Z x H — H, is said to be Poisson
square-mean almost periodic int € R, uniformly for (z,y) € K, where K C Hx %

18 compact if h satisfies:
/ Ih(t, 2y, 2) — h(t 2y, 2)|v(ds) = 0 as £ —tteR,  (41)
H

and for every sequence of real numbers {s) }, there exists a subsequence {s,} and
a function h : Rx Hx Bx H — H,(t,x,y,2) — h(t,z,y, 2) satisfying (4.1) and

satisfies

i sup [t + 5.9, 2) =t 2,9, 2) F(dz) =0
H

The collection of all Poisson almost periodic functions h : Rx H X AZx H — H

will be denoted by PAP(R x H x # x H; H).
The proof for Proposition 4.2.1 is similar to [57].

Proposition 4.2.1 Ifh,hy,hy : RxHXAXxH — H are Poisson almost periodic
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functions in t € R, uniformly for (z,y) € K, then
1. hy + ho is Poisson almost periodic.
2. AMh is Poisson almost periodic for every scalar \.

3. For any compact subset K C H x A, there exists a constant M > 0 such

that

sup [ btz 9)fo(dz) < M.
H

teR

By the proposition above, the following proposition can be obtained .

Proposition 4.2.2 If f, fi,fo : R x H x  — H are all square-mean almost

periodic functions in t € R, uniformly for (z,y) € K,
1. fi+ f2 is square-mean almost periodic.
2. Af s square-mean almost periodic for every scalar \.

3. For any compact subset K C H x A, there exists a constant N > 0 such

that

sup |/ (¢, z,9) |5 < N.
teR

Proposition 4.2.3 AP (R x Q; H) is a Banach space which is equipped with the

norm

1
lloc =2 sup [lz(t)]]2 = sup(El|=(t) 7)?,
teR teR

forze AP (R x Q; H).

The proof of Proposition 4.2.3 is similar to [34] with minor modifications.
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Theorem 4.2.1 Let K C H X & be a compact set and the function (t,z,y) —
F(t,z,y) : R x H x  — H be square-mean almost periodic in t € R, uniformly

for (z,y) € K. Furthermore, there ezists a constant K > 0 such that
1F(t z,y) — F(t2,9) [ < K(lz =25 + ly — 3ll%),

fort € R, uniformly for (z,y), (Z,9) € H X A, then for any square-mean almost
periodic stochastic process ¢ : R x Q — H with ¢; € AB,t € R, the stochastic

process t — F(t,¢(t), ;) is square-mean almost periodic.

Proof: Let {s/,} be asequence of real numbers. Assume that D(t) = F(t, ¢(t), ¢),
where ¢y = {¢p(t +0) : —oo < 0 < 0} is regarded as HB-valued stochastic process.
Consider the function D(t) : R x H x B — H given by D(t) = F(t, ¢(t), ¢).
Since the process ¢(t) is square-mean almost periodic, there exists a subsequence

{s,} of {s.} and a continuous process ¢ : R x Q — H such that

lim sup E|¢(t + s,) — &(t)[|3 = 0,

n—o0 tceR

lim sup E| ¢y, — Qgtngﬂ =0,
€R

n—0o0 ¢

and

lim sup E||F(t + sn, z,y) — F(taxay)H%{ = 0.

Note that

F(t+ sp, ¢(t + 8n), Grys,) — F(t, &(t% Q;t) = F(t + 55, 0(t + 5n), Pr1s,)

—F(t+ S, @(t), d1) + F(t + 50, 0(t), ) — F(t, d(t), dy).
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Hence, we have

E[|D(t + s2) = D)l
= E|F(t + 0, Ot + $0), Pres,) — F(E,6(8), 60) I
2R F(t + 50, @(t + 50), brvs,) — F( + 50, 0(1), 01)|°

—+ 2E||F<t + Sn, Qg(t)a (Z;t) - F(t7 Qg(t% QEIS)H2

IN

(4.2)

Letting n — oo and using Definition 4.2.4 , we have from (4.2) that

lim supE||D(t + s,,) — D@)H%{

n—oo teR
< 2K li_>m StuHIgE(‘W(t + 8n) — é(ﬂ”?{ + | Prrsn — (/BtH%ﬁ)
n o0 c
+ 2 lim supE||F(t + Sm&(t)aﬁgt) - F(ta ~(t)7§gt)||2
n—oo teR
= 0.

Thus, the stochastic process F'(t, ¢(t), ¢;) is square-mean almost periodic. O

Theorem 4.2.2 Let K C H X % be a compact set and the function (t,z,y,z) —
h(t,z,y,2z) : R x H x B x H — H be Poisson square-mean almost periodic in
t € R, uniformly for (x,y) € K. Furthermore, there exists a constant K > 0 such

that

/H h(t, 2y, 2) = h(t, 2, §, 2)l[5v(dz) < K([lo = 25 + ly — l%)

for all (xz,y),(Z,9) € H x # and for each t € R. Then for any almost periodic
stochastic process ¢ : R x Q — H with ¢ € B,t € R, the stochastic process

t — h(t,o(t), ¢, 2) is square-mean Poisson almost periodic.
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Proof: Let {s/,} be a sequence of real numbers. let U(t) = h(t, ¢(t), ¢y, 2),
where ¢, = {¢(t +6) : —oo < 0 < 0} is regarded as HB-valued stochastic process.
Consider the function U(t) : Rx Hx #Bx H — H given by U(t) := h(t, ¢(t), ¢, 2).
Since the process ¢(t) is square-mean almost periodic and h is Poisson almost

periodic, there exists a subsequence {s,} of {s/,} and a continuous process ¢ :

R x © — H such that

lim sup E[|¢(t + 5,) — o(t)3 = 0,

and
lim sup E{|¢yys, — QEtHQ@ =0,
n—oo teR

and

lim sup / E||A(t + $n, 7,9, 2) — At 2,9, 2)|%0(dz) = 0,
H

uniformly in (z,y) € K,z € H.

Note that

h(t + Sn, (b(t + Sn)a ¢t+sn7 Z) - il(tv (Z;(t)a (glh Z) = h(t + Sn, ¢<t + Sn)7 ¢t+sn7 Z)

_h(t + Sn,; é(t% &ta Z) + h<t + Sn, é(t)a éta Z) - iL(t? é(t)a &ta Z)
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Hence, we have

/LEHU@4~%)—iﬂwH%wd@
_ /H]EHh(Hsn,¢(t+sn),¢t+5n,z)—h<t,¢§(t),q3t,z)||2y(dz)
S2/EM@+%Mﬂﬂﬁ@m&%wﬁ+%&m@wwww)
H

-+2LEM@+%&W@w%%w&W@wWMM)

Letting n — oo and using Definition 4.2.5, we have from (4.3) that

lim sup /H BTt + 5,) — T(#)|50(dz)

2K lim Sup/H]E(ngﬁ(t + 8,) — 95(25)”2 + | Pt4s, — QgtHQ)V(dZ)

IA

+ 2 lim Sup/HEHh(t+3n7§5(t)7¢;taz) — h(t,6(t), &1, 2)|*v(d2)

= 0.

Thus, the stochastic process h(t, ¢(t), ¢, z) is square-mean Poisson almost peri-

odic. O

4.3 Existence and Uniqueness of Almost Periodic

Solutions

In this section, we study the existence and uniqueness of square-mean almost peri-
odic solutions for neutral stochastic functional differential equations with infinite

delay and Poisson jumps. Consider the following stochastic differential equation
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in H:

d(z(t) — G(z(t),xr)) = (Ax(t) + f(t, (), z¢))dt + g(t, x(t), x)dW (t)

+/h(t,a:(t—),xt_,Z)N(dt,dz), teR, (4.4)

where z; = x(t +6) : —oo < 6 < 0 can be regarded as a Z-valued stochastic
process. Assume that f :Rx H x % — H,and g : R x H x B — £ (Kg, H)
and h : R x H x #8 x H — H, are appropriate mappings for all t € R,z € H,

which will be specified later.

Definition 4.3.1 An F;-measurable stochastic process x(t),t € R is called the
mild solution for (4.4) if

1. x(t) is adapted to F; and x; is a B-valued stochastic process;
2. f_TOO |z (w)||%du < oo almost surely for any T > 0;

3. for any a € R and t > a, x(t) satisfies the following integral equation:

z(t) = S(t—a)(z(a) — Gz(a),x,)) + G(x(t —a),xs_q)
—|—/ AS(t — s)G(x(s), xs)ds
—|—/ S(t—s)f(s,z(s),zs)ds + / S(t—s)g(s,x(s), zs)dW (s)

+/ S(t—s)/Hh(s,x(s—),:cs,z)N(ds,dz).
(4.5)

In what follows, we need the following assumptions:

(A) Assume that A is the infinitesimal generator of an analytic semigroup S(t)¢=o.

of bounded linear operator on H, satisfying

IS < Me™, t>0 (4.6)
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for some v > 0, M > 0.

(B) The function f € AP(R x H x %, H), and there exists a constant M; > 0

such that for any (z,v), (Z,9) € H x # and t € R,

1z y) = f(2,9) e < My(llz = 2la + lly = 9lle)- (4.7)

(C') The function g € AP(R x H x B, % (Kg, H)), and there exists a constant

M, > 0 such that for any (z,y), (Z,9) € H x # and t € R,

lg(t 2, y) = g(t, 2, 9) | 2ag.my < My(lle = 2|l +ly —9llz).  (4.8)

(D) There exists a constant o € (3,1) and a constant Mg > 0 such that the

mapping G € AP(H x A, H,) and for any (z,y),(Z,9) € H x 4,

1(=A)*G(z,y) — (-A)G(Z, 9)|lr < Ma(llz — 2| +ly — dllz).  (49)

(E) The function h € PAP(Rx H x %, H), and there exists a constant M, > 0

such that for any (z,v,2),(Z,7,2) € H x # x H and t € R,

/H 1A (t, @, y, 2)v(dz) = hit, &, §, 2)|Fv(dz) < My(lle — 23 + ly — 911%)-
(4.10)

(A") The function f € AP(R x H x %, H), and there exists a constant M; > 0

such that for any (z,y), (Z,7) € H x  and t € R,

1F(t 2,y) = (6,2, 9) ]l < My(le =&l + ly — 5ll2)-
(B') The function § € AP(R x H x B, % (Kg, H)), and there exists a constant
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M, > 0 such that for any (z,y),(Z,7) € H x # and t € R,

19tz y) = 9(t. 2, 9) | zareq, ) < My(l|2 = [ + [y = 9ll2)-

(C") There exists a constant o € (3,1) and a constant Mg > 0 such that the

mapping G € AP(H x B, H,) and for any (z,y), (Z,7) € H x A,

I(=4)*C(a,y) = (~A)*C(2,9)|ln < Ma(llw = Zl|u + lly — 7ll2)-

(D') The function h € PAP(Rx H x %x, H), and there exists a constant M, > 0

such that for any (x,y, 2), (Z,9,2) € H x # x H and t € R,

/H Vit 2, . 2) — h(t, 3,3, 2) B (=) < Ma(lle — 22 + ly — 31%).

Theorem 4.3.1 Suppose that (A) — (E) hold. Then (4.4) has a unique square-

mean almost periodic mild solution whenever

AMZM2(1 + M, I(2a — 1) 2M2M2(1 + M,
! <2 0>+4M127QM§;(1+M0)~ (O;a ) 2 ( o)
v v v
M, M?k(1 + M,

L MM+ M)y
fy
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Proof: Consider a mapping .Z on the Banach space AP(R x €; H) defined by

(Zzx)(t) = St —a)zx(a) —G(z(a),x.)] + G(x(t —a),xi—q)

+/ S(t—s)f(s,z(s),xs)ds

/ AS(t — s5)G(x(s),xs)ds +/ S(t—s)g(s,z(s),xs)dW (s)

a

/ S(t—s / ,x(s), zy, z)N(ds, dz)
= S(t—a)z(a) — G(z(a),za)] + G(z(t — a),xi—o) + Lix(t) + La(t)

+1x(t) + Liz(t), Vee AP(R xS H). (4.11)

We want to show that Zz(t) € AP(R x Q; H) for any x € AP(R x Q; H).
Step 1. The L*-continuity of ZLx(t) .

We first verify that G(z(t—a), z;_,) is L*-continuous in ¢ € R. From condition
(D), we have

El|G(z,y) = G(2,9)ln
= E[(=A4)"" - (=A4)%[G(z,y) = Gz, 9)]]|u
El[(=A) - [[(=A)*[G(2,y) = Gz, 9)l|u

CE[[(=A)*G(z,y) = (=A)*C(Z,9)lln

IN A

IN

CMGE([lz — Zl|la + [ly — 9ll2)- (4.12)

Since G € AP(H x #; H,) and x € AP(R x Q; H), we have by Theorem 4.2.1
that G(z(t — a),z—,) € AP(H x #; H,), and

E|G(z(t+7—a),2iira) — Gzt —a),z:0)||3y — 0, as 7 —0.

Hence, we just show that G(z(t — a),z;_,) is L*-continuous.
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Next we verify that I;x(t) is L?-continuous in ¢ € R. Letting r — s = —u, we

have that for any t € R,

Ry(t)

By the

that

Ry ()

= E|La(t+7r)— La)|3;

t+r 2

= E St+r—s)f(s,z(s),xs)ds — / S(t—s)f(s,z(s),xs)ds

a

_® /a; S(t—w) f(u+r,z(u+r), Tus)du — /at S(t —s)f(s,x(s), :vs)dsHiI

H

= E /a S(t—s)f(s+rx(s+71),xs,)ds

2

H

+/ S(t—s)f(s—i-r,:z:(s—l—r),strr)ds—/ S(t—s)f(s,z(s),xs)ds

relation that (a + b)? < 2a* + 2b%, for any a,b € R, we have for any ¢t € R

2

IN

/a S(t—s)f(s+rz(s+r), x5+r)ds

(t—s)f(s+rx(s+7r),Tsr)d /St—s (s,z(s),x )ds

H

/ S(t—s)f(s+rx(s —I—T),xstr)dsHH

St = ) (s + roals + 1), 2arr) = (s, 2(s), )|
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which, by Hoélder inequality, further implies that for any ¢ € R,

Ri(t) < QJEH/_ St — 8)F(5 4+ 1 2(s + 1), Torr)ds j{
$2B( [ 180 = 9155+ rals 4 1)) = s,2(5), ) )
< Q]E‘ /a S(t—S)f(S+T,CE(S—I—T),[l?s_,_r)dSqu

+2]E</at 1S(t — s)||%ds - /at £ (s + 7 2(s + 1), 2or) — F(5,2(5), x5)||§qu).

(4.13)
On the other hand, letting t — s = u, we have
t 0 t—a
[ s =siks == [ sPau= [ s P
a t—a
[e'e) o] M2
< / 1S () 2du < / M2e~rgy < M
0 0 2y
(4.14)

Substituting (4.14) into (4.13), we have for any ¢ € R,

2

Ri(t) 21@“/_ S(t = 5)f (s +r.a(s + 1), aer)ds|

IN

+2];4_7E(/a 1/ (s + 7 2(s + 1), 2spr) = f(5,2(5), xs)”%fds)

[ S ot st i,

([ BIG+ rals 1)) = Jss(5) ) )

Since f € AP(Rx H x %;H) and z € AP(R x Q; H), we have by Theorem 4.2.1
that f(t,z(t),z;) € AP(R x H x #; H) and

Elf(s+7z(s+7),2610) — f(s,2(5),25)|F = 0, as r—0.
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By dominated convergence theorem, letting » — 0, we have
t
/ E|lf(s+ 7 a(s+7),050,) — f(5,2(5), 2,)||5ds — 0. (4.15)

On the other hand, it is easy to see that for any ¢ > a,

2

/ S(t—s)f(s—i—r,x(s—l—r),strT)dsH—>O, as r—0.

g

Hence, we just show that I z(t) is L*-continuous.

Next we verify that lyxz(t) is L*-continuous in ¢ € R. To this end, for any

t € R, we have by letting r — s = —u that

Ro(t) = E|Lx(t+r)— Lx(t)|3
_ EH/ AS(t+r—s)G(x(s),:cs)ds—/ AS(t — $)G(2(s), 2)ds

a

2

H

= E| /:r AS(t — W) G + 1), Tusr)du
_ /: AS(t — 8)G(x(s), g;s)dSHjI

‘ /(:T AS(t — 8)G(z(s + 1), Tsyr)ds

!

_ E‘
+ [ (A T(=A)S(t — 5)G(x(s + 1), Tgpy)ds
_ / (=AY (— A St — 5)G(a(s), 2.)ds

2

H
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By the relation that (a + 0)? < 2a? + 2b%, for any a,b € R, we have for any t € R

Ry(t)

2

< aTAS(t—s)G(m(s+r),xs+r)ds .
+oR / AV (AP (E — )G (s + 1), 2ar, )ds
- [y - 6t
— QE’ /Q:AS(t—s)G(x(s+r),xs+r)ds2
[ ay=uste = 9)[(-A1Glats + 1), o)
(A Glals), )| ds |
< ’ AS(t—S)G(I(s+r),$5+r)dsHi

+28( / [(—A)2S(t — $)|[(= A Glas + 1), 7ys)
(AP Cla(s), ) s

By using Holder inequality and Lemma 2.2.1 (2), we have that for any ¢ € R,

Rs(t)

IN

IN

' AS(t— s)G(z(s+ 1), xsw)ds i

+28( / I(—A) =St - s)]%ds - / I(=A)*Glals + 1), es,)
"Gla(s), xs>qus)

STd
(a5 + 1), 2 )ds|

¢ ¢
+2M12_a/ e 21(t=s) (t— s)z(o‘_l)ds . / E|(—A)*G(z(s + ), T5ir)
—(—A)*G(x(s), z4)||7ds.

(4.16)
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On the other hand, letting t — s = u, we have

t 0
/ 6727(1‘/75) (t . S)Z(afl)ds - / efQ'yuuZ(afl)du
a t—a

t—a o)
— / 6727uu2(a71)du < / 6727uu2(a71)du
0 0

1 > —2 2(a—1
= — e~ D2 @ g (2yu).
27 Jo
1 > _ S 2( 71) ]- /OO — 2 —1
_ s 2 \2(«a ds — —— s 2(x )d
2y Jo ‘ (27) ’ (2y)1+20=D [ € ’
1
= —— .T(2a-1).
(27)%~! (2 =1)

(4.17)

Hence, from (4.16) and (4.17), we have for any ¢t € R,

2

Ry(t) < /a AS(t — s)G(x(s+ 1), Tstr)ds .

, T@a—1) '
M, [ EICAGla(s 4 1))
(A Gla(s), 2, )dsll.

Since x € AP(R x ; H), we have by using condition (D) that

Ell(—A)*G(x(s + 1), 254r) — (—A)*G(x(s), )|

< MgE(|z(s+ 1) — x(s)H%, + || Tspr — a:s||2%) —0, as r—D0.

Hence, by dominated convergence theorem when r — 0, we have

/ E[|(—A)*G(z(s + 1), 254r) — (—A)*G(x(s), 25)[[5rds — 0.
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On the other hand, it is easy to see that for any ¢ > a,
a 2
]E(/ |AS(t — s)G(x(s + ), x5+r)\|Hds> — 0, asr—0.

Hence, we just show that Iz (t) is L*-continuous.

Next we verify that I3z(t) is L?-continuous in ¢ € R. To this end, for any

t € R, we have

Ry(t) = EllLa(t+r) - La)|g
t+r 2
_ E‘/ S(t+ 1 — s)g(s, 2(s), 24)dW (s /St—s () 2 )d W (s)|
tr
= E‘/t S(t+r—s)g(s,x(s), xs)dW (s +/ S(t+r—s)g(s,x(s), xs)dW (s)

H

/St—s) (5, 2(s), 2)dW (s)||”

— E‘ /ttH S(t+r—s)g(s,x(s), xs)dW (s)

2

+/at[S(t+7“ — ) = 5(t = 5)lg(s, 2(s), 2. )dW (s)

H
2

IA

QE‘ /tHr S(t+r—-s)g(s,z(s),xs)dW(s)

H
2

+2EH /;[S(t +r—s) = S(t—s)|g(s, $(5>vxs)dW(S)HH

By using isometry property of stochastic integral, we have for any t € R,

2

Ry(t) < ZIEH/tt+TS(t+r—s)g(s,x(s),ms)dW(s)H

H

42 [(BIS(e+7 - 9) = S(t = 9lgls, o(5). 2 g s

a
2

S(t+r—s)g(s,z(s),xs)dW(s)

H

+2 / E|[S(t - $)S(r) — S(t — )]g(s. 2(5), )| 115

73



Then, by the property of Cy-semigroup, we have for any ¢ € R,

Ry(1) < 2E /t (17— 8)g(s.2(5), 2 )W (9|
+2/ E|[(S(t = s)(S(r) = 1)g(s, 2(s), 25) I (s .11 05
< QE’/t rS(t—l—T—s)g(s,x(s),xs)dW(s)j]

+2/ E[IS(t = s)I* - 1(S(r) = Dg(s, 2(5), %) 1 (5111 d5-

(4.18)
By using condition (A), we have

|S(t — s)||? < M2e21=%) < M?, for any t > s.
(4.19)

Substituting (4.19) into (4.18), we have for any t € R,

2

Ry(t) < QE’

H

t+r
| st = sgts.ate).c)aw )|

w2 ([ B0 ~ Dgto,#(6) ) )

a

By the property of strong continuity of Cy-semigroup of S(t),t > 0, we have for

seR,

E[|(S(r) — Dg(s,2(s), z:) I 0. = 0, as 17 —0.

By dominated convergence theorem when r — 0,

t
[ EIS0) = D, 05). 2 s 0.
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On the other hand, it is easy to see that for any ¢ > a,

2

—0, as r—0.

r—$)g(s,z(s),xs)dW(s) o

Hence, we just show that I3z(t) is L*-continuous.

Finally, we verify that I,z(¢) is L?-continuous in ¢t € R. To this end, for any

t € R, we have

Ri(t): = E|La(t+r) - La®)l
_ IEH/HT t+7"—3)/ h(s, o(s), s, 2) N (ds, d)

—/a S(t—s)/Hh(s,x(s),xs,z)N(ds,dz) Z
E /tHTS(t—l—r—5)/Hh(s,x(s),a:s,z)N(du,dz)

N / St s) /H h(s, 2(s), 2, 2) N (du, d=)
_/ats(t_3)/Hh(s,x(s),xs,z)N(d87dz)

2

H

/;ﬂ 5(t+r—s)/Hh(s,x( ), sy 2 )N(ds’dz)HQ

H

IN

ZE‘

+2EH/:S(t+7"—3)—S(t—S)/Hh(s,x(s),ms,z)N(dS,dz)

= 2]EH/ttHS(thr—s)/Hh(s,x(s),xs,z)](f(ds,dz) i

‘ H

2

+2EH/:S@—S)(S(7»)—1)/Hh(s,x(s>,xs,z)zv(ds,dz) .

By using the isometry property of the compensating Poisson random measure
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(2.5), we have that for t > a,

2

Ri(t) < QE‘

H

/t rS(t—i-?“—3)/Hh(s,x(s),xs,z)]v(ds,dz)
on / /H E||S(t — s)(S(r) — D)h(s, 2(s), 2, 2)| 2y (dz)ds

2

IN

ZE‘ /tt+7" Sit+r— S)/Hh(s,x(s),xs,z)]v(ds,dz)

H

+2/<;/ IEHS(t—s)HQH(S(r)—I)/Hh(s,x(s),xs,z)H%V(dz)ds.

By using condition (A), we have

1S(t — s)||> < M=) < M?| for any t > s.

Hence, we have for any t € R,

2

Ri(t) < 2K /tWS(Hr—s)/Hh@,x(s),xS,z) (ds, d=)

H

+2/§M2/ /HEH(S(T)—I)h(s,x(s),xs,Z)||§{V(dz)d8.

By the property of strong continuity of Cy-semigroup of S(¢),¢ > 0 and dom-

inated convergence theorem, we have for s € R,
/ E||(S(r) — Dh(s,x(s),zs)||5v(dz) = 0, as r—0,
H
and

//HIEH(S(T)—I)h(s,x(s),xs,z)quy(dz)ds—>0, as 0.
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On the other hand, it is easy to see that for any ¢ > a,

2

—0, asr—0.

g y

/tt+7” S(t+r—s) /H h(s,x(s), zs, z)N(ds, dz)

Hence, I,z(t) is L*-continuous in t.

Step 2. Zx(t) € AP(R x Q; H) for any © € AP(R x Q; H). Denote by
AP(Rx€); H) the Banach space of all L?-continuous square-mean almost periodic

mappings from R to H endowed with the norm

1
]loc = sup(El|(t)|3)?.
teR

Let us consider the mild solution of (4.4) given by

z(t): = St —a)z(a) — G(z(a),x,)] + G(z(t —a),zi—q)
+/ S(t—s)f(s,z(s),xs)ds
+/ AS(t — s)G(x(s), xs)ds + / S(t—s)g(s,x(s),zs)dW(s)

+/ S(t—3)/Hh(s,x(s),xs,z)]v(ds,dz), (4.20)

forall t > a,z € AP(R x Q; H).
Note that the process for any t € R,

t

x(t): = /_ S(t—s)f(s,z(s),xs)ds +/ AS(t — s)G(x(s), zs)ds

—00

_|_/_ S(t—s)g(s,z(s), zs)dW(s)

+/t S(t—s)/Hh(s,x(s),xs,Z)N(dSadz)

— 00

(4.21)

7



is a mild solution of (4.4). Indeed, as @ — —oo in (4.20), and by the property of
exponential stability, (4.21) satisfies (4.20). Therefore, we just need to prove the

desired result for the stochastic process (4.21).

We show that Zz(t) is square-mean almost periodic whenever x € AP(R X
Q; H). Since f,g,G are square-mean almost periodic and h is Poisson square-
mean almost periodic, then for an arbitrary sequence {s/ } of real numbers there

exists a subsequence {s,} of {s,} and certain functions f,§, G and h such that

lim sup | £ (s + s, 25 + 50), 2ors,) — Fs.8(s) 3 [F =0, (4.22)

n—oo scR

lim sup E[|(—=A)*G(z(s + sn), Tuts,) — (A C(3(s), T |F =0, (4.23)

n—0o0 scR

lim supEHg(s + 3n7$(3 + 8n)7$s+sn) - §(57a~7(5)7 j5)|l?¥’2(KQ,H) = 07 (424)

n—oo scR

and

lim sup | El||h(s+ sn, x(s+ 5,), Tsis,, 2 —h s, 7(5), &, 2)||5v(dz) = 0. (4.25
. n H

n—oo scR
Let Z(t) satisfy the integral equation for any t € R,

(t): = /_ S(t—s)f(s,2(s), is)ds —i—/_ AS(t — )G (2(s), &4)ds
—I—/_ S(t—s)g(s,z(s),Ts)dW (s)
+/ S(t—S)Lﬁ(s,f(s),£57z)ﬁ(ds,dz).

— 00
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Note that for any t € R,

IN

lim supE||z(t + s,) — () |5

N0 teR
41115202161151[3“ /t:n S(t+ sn, — 8)f(s, (), x5)ds — /too S(t —s)f(s,%(s), s dSH

t+sn t -
+4MnamEW/ AS@+sn—QG@ﬂ%$Q%—:/ AS@—SXXﬂ@;@M#L
N—00 tcR —0 —00

t+sn
+4 lim supEH / S(t+ s, —s)g(s,z(s), xs)dW (s)
n—oo teR 00

2

- / S(t — )3 (s, £(s), £.)dW (s)

H

t+sn 5
+4 lim supIEH/ S(t+ sn — S)/ h(s,z(s),zs,z)N(ds,dz)

2

H

/ St—s/1( #(s), &5, 2) N (ds, dz)
4J1(t) + 4Jox(t) + 4J52(t) + 4J4x(t).

Firstly, we show that .J;(t) is square-mean almost periodic when x € AP(R x

O, H).

Ji(t)

t+sn ¢ -
= lim supEH/ S(t+ sn — s)f(s,2(s),x5)ds —/ S(t—s)f(s,z(s),Zs dsH
n—00 R —00 —00
t
= lim sup EH / St —u)f(u+ sp,x(u+ $p), Turs, )du
n—oo teR
t
—/ S(t—s)f(s,z(s),Ts dsH
t
= lim supEH / S(t—s)f(s+ Sn,x(s+ $p), Tsts, )ds
n—oo teR 00
t N 2
—/ S(t—s)f(s,T(s), Ts)ds .
o t ~ 2
< hm&mE(/ ISt = )7+ Sl + 81), ) — F5,E(5). 1) 1
n—00 R —00
¢ y(t—s) y(t—s)
glmamd/ Me "=z [le = [f(s + 8, (s + Sp), Tss,,)
nN—00 R —00

_-f(S’ j(s)a js)] HHdS)2
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By using Holder inequality, we have from (4.14) that for any ¢ € R,

Ji(t) <

n—oo teR

_f<37 f(S), jS)H?{d‘S

M2 t
= — lim sup/ e =0 d(—(t — ) /
Y N0 R J oo —00

—f(s,3(s),3,) || }ds

t
—0o0

t
lim sup/ M?e =95 . / e VIR f(5 4 8n, 2(5 + 5n), Tars,)

t
e B f(s + 8, 2(s + 80 et

M2 t 5
= — lim sup/ e’V(t’s)EHf(s + Sp, (S + ), Tsys,) — f(5, :Z(s),i‘s)H%Ids

IN

2

IN

Y MO0 seR

t
~<sup/ e’V(t’S)ds)
teR

—0o0

seR

M2 t 5
M i sup / ) SUp | F(5 + $m,2(5 + 51, Tosn.) — F(5,(5), 30 |Bds

M ~
— lim sup E[| f(s + 50, (s + 5n), Tors,) — f(5,2(5), 7)1

(4.26)

On the other hand, letting ¢t — s = u, we have

t

sup /
teR J —co

0
e 8 ds = —sup/ e du
teR J 400

+00
= —sup / e du
teR Jo

1

= ——sup
Y teR

+oo 1
e "Md(—yu) = —.
Joooaem=3

(4.27)

Hence, from (4.26), (4.27) and version of (4.22), we have for any t € R,

2

Ji(t)

IN

n—oo scR

= 0.

M ~
7 lim sup B[ f(s + s, (s + sn), Taps,) — (5, %(5), 7o) | %

This implies that J;(t) is square-mean almost periodic in ¢t € R.
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Next, we show that Jy(t) is square-mean almost periodic when x € AP(R X

O H).

Jo(t) = lim sup EH / AS(t+ s, — 8)G(2(s), xs)ds

—/ AS(t — 5)G(E(s), &5)ds ’

Since —A = (—A)!7*(—A)*, so we have for any ¢ € R,

Jo(t)

IN

lim sup EH / A)*S(t — s)G(x(s + Sn), Tsts, )ds

B / (—A) (- A)“S(t—s)é@(s%fs)dsul

lim supEH/ )AS(t — 8)(—A)*G(2(s + 8,), Tsys, )ds

lim supEH/ St )[(—A)QG@(S + 8n), Tsts,)

_(—A)ac;@(s),;f;s)}dsHH
lim SupE</t [(—A)' St — )| (=A)*G(x(s + sn), Tsrs,)

n—00 R —00

(=AY GE(s), ) lds)
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By using Lemma 2.2.1 (2), we have that for any ¢ € R,

t
Jo(t) < lim supE( / My oI (t = 5) @ V|[(=A) G a(s + 50), Tsts,)

n—oo teR

(A G (), 7))

¢
= lim supIE(/ Ml_ae_w 7 (t — 5)(a—1)H6——”(2 . [(—A)O‘G(x(s + Sn), Tsys,)

(A C(i(s), 2] HHds)Q.

Then by using Holder inequality, we have that for any ¢t € R,

t
Jo(t) < lim sup Mfa/ eﬂ(t*s)(t _ 8)2(“*1)ds-

n—oo tcR —o0

/_ e TUIE|(—A) G (@ (s + 5n), Toys,) — (A G(E(s), &) |[7,ds.

(4.28)
On the other hand, letting t — s = u, we have
t
/ =) (¢ — g)Ha=D) gg
~oo
= —/ e 2@ Dy
+oo
+oo 1 [e%¢)
_ / e—vuu2(o¢—1)du _ _/ e—yuu2(a—l)d(7u)
0 7 Jo
1/00— S \2(a-1) 1 /00—2(—1>
= - e (=) ds = ——— e *s*\ Y ds
v Jo (7) yr2e=h fo
1
= o T'(2a—1).
(4.29)
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Hence, from (4.28), (4.29) and version of (4.23), we have for any t € R,

I(2a—1 t
S(t) < Mim%- lim sup [ e 7IR|(—A)*G((s + $n), Tays,)
Y nN=0 teR J o
—(—A)*G(&(s), &) 3 ds
I'(2a —1 t
S M. % * Jim sup / e Sup B[ (—A)*Gla(s + s0), 202,
n o c — 00 sE
—(—A)*G(#(s), &) 3ds
r2a—-1) . N
< M, ozt B S E[(=A) TG (s + n), Torn)
t
—(—A)O‘C:'(:i(s),is)H%{ . sup/ e 7t=8) s
teR J —o
F2a—1) 1 .
< M, B Jim SslelﬂgEH(—m G(x(s + 5n), Tsts,)

—(=A)*G(@(s), &)
which by (4.23) is equivalent to

2O b sup BJ[(~A)°Glas + 5,). 10s,)

72a n—=00 scR

—(=A)*G(@(s), &)

JQ(t) = M12—oz'

= 0.

This implies that Jy(t) is square-mean almost periodic in ¢ € R.

Next, we show that J3(¢) is square-mean almost periodic for all ¢ € R. Let
W(u) = W(u+ up) — W(ug), for all ug € R. By Proposition and definition of

@-Wiener process, it is easy to know that W(u) is also a ()-Wiener process and
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has the same distribution as W (u + s,,) — W(s,,). Here, we have for any ¢t € R,

Jo(t) = lim supIEH /_anS(t—i-sn—s)g(s,x(s),xs)dW(s)

2

_ /_ S(t— 8)j(s, 3(s), 2,)dW (s)

H

t
= lim supIEH / St —u)g(u+ s, x(u+ 8p), Tyts, ) AW (u + s5,)

_ /; S(t— 5)g(s, 2(s), T5)dW (s) Z
— msup| [ S0 gttt s O a5 — )
-/ Oo S(t — )3(s, 7). 1)V (5)]|

t
= lim supIEH / S(t—5)g(s+ sp, (S + Sp), Tsys, ) AW (s)

—/ S(t — $)j(s,3(s), 5)dW (s)||

oo H

2

— lim supEH/_; St — 8)[g(5 4 S, (5 + 52, Tore,) — G(5, (), )| dW (5)

n—oo teR

H

By the isometry property of ()-Wiener process, we have for any ¢t € R,

t
I < lim sup / E|IS(t — $)[g(s + 50, 2(5 + 51), Tors,)

=0 tcR J_oo

_g(sﬁ j(8)7 js)] ||?$2(KQ,H)dS

t
lim Sup/ E[[S(t — 8)|2ll9(s + $ns 2(5 + 50, Tore,)

n—=00 tcR J_o

—9(s,3(5), Zo) 1, mds-

IA

By condition (A), we have

1S(t — s)||* < M2e =9 for any t > s.
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Hence, we have for any t € R,

Js(t)

IA

t
M? lim sup/ e IR g(s + 50, (5 + 8n), Ters,)  (4.30)

n—oo teR —o0

—9(5,3(3), 7)1 145

IN

t
M2 i sup [ e supBg(s + 50, 0(s 4 50), 500,

= tcR J o seER

_9(87 j‘(S), fS)H?fQ(KQ,H)dS

= M lim supE[lg(s + sn, 2(5 + $n), Tsrs,)

n—oo scR
t

=305 (3). ) % acqn (00 / e -0gs).

(4.31)
On the other hand, letting t — s = u, we have
t 0 +o00
sup/ et g — — sup/ e~y = sup/ e~y
teR J —oco teR J 400 teR Jo
1 e 1
= ——sup e~ d(=2yu) = —.
27 ter Jo 27y
(4.32)

Therefore, we further have by (4.30), (4.32) and version of (4.24) for any ¢ € R,

M2
J(t) < - lim supEllg(s + sn, 2(s + 5n), Tsts,)

’Y n—0o0 scR

—9(5,3(), 7o) I s,11)

= 0.

This implies that J3(t) is square-mean almost periodic in ¢ € R.

Finally, we show that Jy(t) is square-mean almost periodic for all t € R. Let

U =8— S, N(u,dz) = N(u+ ug,dz) — N(ug,dz), for any uy € R. Note that

N (u) is also a Lévy process and has the same distribution as N(u + s,) — N(s,).
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Hence, we have for all t € R,

Ju(t) =

lim supIEfH /t(:n S(t+ sp, —s) /H h(s,x(s), zs, z)N(ds, dz)
_/t S(t—s)/ 71(3,i(s),i:s,z)N(ds,dz)Hi

lim supIEH/ St—u/ (U+Sn,x<u+Sn)uxu—l-snuz)N(d(u_'—8”)7d2)

—/ S(t—s)/ P, #(s), &4, 2) N (ds, d2)|||

H

lim supEH/ S(t—u) /h(u—|—sn,:p(u—l—sn),xu+sn,z)N(d(u+sn)—dsn,dz)

_/ S(t_s)/ h(s, (), Ty, 2 )Jif(ds,dZ)H2

H

lim supIEH / S(t—s / h(s + 5, 2(5 + 8p), Ters,, 2)N(ds, dz)

_/ S(t—s)/ h(s, &(s), Ts, 2 )N(ds’dz)HQ

H

lim supIEH/ S(t—s) / [R(S 4 Sn, (S + Sn), Tsts,, 2)

n—oo teR

“h(s, #(s), Es, 2)| N (ds, dz)HH.

By using the isometry property of the compensating Poisson random measure

(2.5), we have that for t € R,

Ja(t)

t
< wlimsup [ [ IS (st sna(s 5. 0ne,02)
H

n—oo teR
(s, #(s), B, )| (d2)ds
t
< kK lim sup/ 1St — s)||2/ E||h(s + $p, (5 + 81), Tsrs,, 2)
n—oo teR —0o H

—h(s,&(s), Zs, 2) |5 v(dz)ds.

(4.33)
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By condition (A), we have

1S(t — s)||* < M2e =9 for any t > s.

(4.34)

Hence, we further have by (4.33), (4.34) and version of (4.25) for any t € R,

Ja(t)

IN

IN

t
M?k lim sup/ 6_27('5_8)/ E|h(s + Sp, (S + Sp)s Tsts,, 2)
H

N—=0 ¢cR J_so

—fNL(s, i(s), &g, 2)||5v(dz)ds

t
M?k lim sup/ e (=) sup/ E||h(s + Sn, (s + $p), Tsts,, 2)
H

n=00 tcR J o s€ER

—iz(s, 7(s), &y, 2)||Hv(dz)ds

M?k lim sup/ E||h(s + $n, (5 + 8n), Tsrs,s 2)
H

n—o0 SER
t
—h(s,3(s), &s, 2)|%v(d2) (Sup / o—2(t=5) ds)

teR
M2
" Jim sup / E[|A(s + $ny (5 + $n), Tsre,: 2)
2’7 n—=%0 scR JH

—iL(s, #(s), &g, 2)||3v(d2)

0.

This implies that J4(t) is square-mean almost periodic in t € R.

By above discussions, it is clear that .2 maps AP(RxQ; H) into AP(RxQ; H)

itself.

Step 3. .Z is a contraction mapping and has a unique fixed point.

Assume that (Zx)(t) and (ZLy)(t) are defined as in (4.11), respectively. By the

relation that (a + b+ ¢ + d)? < 4a® + 4b* + 4c? + 4d?, for any a,b,c,d € R, we
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have for any ¢ € R that

E|[(L2)(t) = (Ly) D)5

_ EH/_;S(t—s)f(s,x(s),ms)ds+/_;AS(t—s)G(x(s),xs)ds

—i—/_ S(t—s)g(s,x(s),xs)dW(s)+/ S(t—s)/Hh(s,ac(s),xs,z)]v(ds,dz)

t

([ st 91606 is + [ Ast—96006) s

/_O;t—s) 9(s,y(s),ys)dW (s / St—S/ y(s)y )N(d8,d2)>

- & / S(t — $)[f (5. 2(5), 7) — £(5,9(5),y5)lds

2

H

i / AS(t — )[Cla(s),2.) — Cly(s). yo)lds

_|-/ S(t—s)lg(s,x(s),zs) — g(s,y(s), ys) AW (s)

2

_|_/t S(t—s)/ [h(s,x(s), x4, 2) —h(S,9(3)7957z)]N<d3adZ)H

H

IN

4IEH/ S(t—s)[f(s, (s xs)—f(s,y(s%ys)]dSH;

2

4R /_ AS(t — 9)[G(z(s),zs) — G(y(s),ys)|ds H

2

H

+4E /_ S(t—s)g(s,z(s), xs) — g(s,y(s),ys)|dW (s)

HAE /_ S(t—s)/H[h(s,x(s),xs,z)—h(s,y(s),ys,z)]N(ds,dz) j{
= Ai(t) + Aa(t) + As(t) + As(?).

From the previous definition , we know AP(R x €2, H) is a Banach space

equipped with the norm

1
[loc = sup(El|z(s)[I7)?

seR

88



Then, for every x,y € AP(R x Q, H), we have

[z =yl = sup E[z(s) — y(s)|7-
seR

We first evaluate A;(t), by using (4.6), (4.7) and Hoélder inequality, we have

for any t € R,

Ay (t)

IN

IN

IN

IN

IN

IN

IN

B [ 50 = 91562 = Tss0(6). 0]

([ 15— 9lFs2(6) ) = FGo:9(5). ) )

([ 56— G697 55 965) s
([ M e o)) — S0 w0 )

t
—0o0

t
1 e s [ OB fs,als).) — flsi(s) s

4M? [t
: / IR f (s, 2(s), 25) — £, y(5), ) [3rds

2 t
M / e 1) sup B f(s, 2(s), 2.) — f(5,y(s), vs) |5

v —00 seR

2 t
4AM Sup]EHf(s,l‘(S),iEs)—f(s,y(5)7ys)||%{</ e—v(t_s)d8>

v seR

4M.%M2 2 2 ! — (tfs)
L sup(a(s) —y(s) + s~ el ([ e00s)
4]\4%]\42 2 2
= SE]EE(HZE(S) = y($)lzr + llzs — ysl1%)
AMZM?(1 + M)
— sup El[z(s) — y(s)[|%
Y seR
AMZM?(1 + M) 2
" |z — yll5%-
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Next, we evaluate Ay(t). By Lemma 2.2.1 (2), we have for any t € R,

A(t) = 4E /_ AS(t — $)[G(x(s), 22) — Gly(s), yo)]ds

= 4E /_ (—A) (= A)S(t = 5)[G(a(s), 75) — Gly(s), ys)lds

= 4E / (—A)S(t = 5)(—=A)[G(a(s), 75) — Gly(s), ys)lds

H

= & [ IS0 A6 ~ Gl v uds)’
< ([ Ml_at_sa—le—vt—s>||<—A>a[G<x<s>,xs>—G<y<s>,ys>J||Hds)2

— 4i( / t Miae 57 (= )@V ||e 57 (- 4)°Gla(s), @)

’Hds)Q.

—(=A)*Gly(s),us)]

By using Holder inequality and (4.29), we have that for any t € R,

t t
Ay(t) < 4M12_a/ eV(tS)(t—s)%‘l)ds-/ e VIR (—A)G (x(s), z)

—(=A)*G(y(s), ys)|7,ds

Mz, w IR G (), 1) — (A Glols). 0 s

IN

I'2a0 — 1 ¢
AMT, - % : / e ) sup E||(—A)*G (2(s), z,)

_(_A>QG(y(S)7 ys)”?qu
I'2a—1)

IN

< AMY, - EPT=a §2£E|’(—A)QG($(S),$S) — (=A)"Gy(s), ys) Il

( / t e—v(t—S)d$>
= a2, FEEE B (A Ga(s). ) — (A Glu(s) )
=z, P2 B (- A6 (s), 1) — (A Gly(s)u) I
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Then, by using (4.9), we have for any ¢t € R,

I'2a -1
aalt) < avart PSR suplats) - y(s) I + o — walB)

I'2a0 -1
= a1+ M) S s le(s) (o)l
s€

I'2a — 1
— AMEM (14 My)- %nx 2.

For Aj(t), using isometry identity and (4.6), we obtain that for any ¢ € R,

2

Aot) = 4E| [ (e = 9lgls.als) ) - g(s.y(s) p )W (5)

< 4/ E[S(t — s)[g(s, 2(s),25) = 9(5,9(5), Ys) | %, (10,1125

— i / 15t = 5)lg(s, 2(5),22) = (5, 5(5), 1) 2 @)

—00

t
< 4 [ 1St~ 5)IPElg(ssn(s).m2) = g, (5). ) P )
t
< 4 [ ISt s)PsupBlg(s,a(s). ) = s, 05). ) P )
t
< 4M28upEHg(s,x(S),xs) _g(‘gay(s)?ys)H‘zfQ(KQ,H)(/ 6727(t75)d8>.

seR —c0

Then, by using (4.8), we have for any ¢t € R,

t

AP sup E(la(s) — y(s) I + o ) ([ )

AM2M? )
= (1 + My)supElla(s) — y(s)lI3
v seR
2MEMP(1+ My) )
= S (el

As(t)

IN

Finally, for A4(t), by using (4.6), (4.10) and the properties of Poisson random

91



measures, we have for any ¢t € R,

Ay(t)

IA

IA

IN

IN

2

H

35| [ 809 [ 16,2060 2) = W05 IV s, 02
([ [ B o005 002) — s 0(6) 1 a1
ol [ [ RISt A 0(5)202) — s, vl
M m/oo e~2t=5 /E||h(s 2(5), 70, 2)

—h(s, y(s), s, 2)l[zzv(dz)ds

t
4M2/£/ e~ (=) sup/ E||h(s, 2(s), zs, 2) — h(s,y(8), ys, 2) | v (d2)ds
H

—00 sER

1sup [ B, (5). 0 2) = s, (), e, 2 (d2)

seER J H

( / t e—m(t—s)dS)

—00

AM?k
sup / E[|h(s, 2(s), 2, 2) — h(5,y(s), yo: 2) | (d2)
i seR JH

2MhM2I{
ZEE supB(fas) — (o) + e — el
2MhM2/<a 1+ M,

0+ M) GopElle(s) — y(s)I

Y seR
2M, M2k(1 + M)

lz =yl

g

Thus, by combining Ay (t), As(t), A3(t) and A4(t), it follows that in Banach

space AP(R x Q, H), we have for t € R,

<

+2]\4,1M k(1 +M0)>

E[[(L2)(t) — (Ly)O)5
AMEMP(1 + M)

F2a-1) 2M2M2(1 + My)

+4M? ME(1 4+ M) -
2 1 G 7204 v

lz =yl
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which implies that

I(£2) - (Ly)lls = sup E||(Lz) - (Zy)ll

<4M§M2(1 + M)
72
+2MhM2/€(1 + Mo)
Y

D(20—1) | 2M3MP(1+ M)

2 2
+ 4M1—aMG(1 + MO) ) ,-)/204 0l

JEES

Let

AMFM?(1 4 My)
72
+2MhM2/f(1 + M)

Y

Ma—1) 2M2M?(1 + M)

2 2
+ 4M1—aMG(1 + MO) ’ 7204 v

<1,

as we know that .Z is a contraction mapping. Therefore, by the contraction
mapping principle, .Z has a unique fixed point z(¢), which obviously means that
it is the unique square-mean almost periodic mild solution to equation (4.4). The

proof is completed. O

4.4 Summary

In this chapter, we made the first attempt to study the square-mean almost
periodic solutions for a class of neutral stochastic evolution equations with Poisson
jumps and infinite delay. Our work extended that of Li, Liu and Luo (2014) where
the neutral stochastic evolution equation without Poisson jumps is investigated.
We also extended that of Wang and Liu (2012) where the infinite delay for a class
of stochastic differential equation with Lévy process is not studied. In addition,
we discussed the existence and uniqueness of the square-mean almost periodic

solutions for the stochastic evolution system with Poisson jumps.
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Chapter 5

Global Attracting Set and Stability
of Neutral SPDEs Driven by

a-Stable Processes with Impulses

5.1 Introduction

Th stability of stochastic partial differential equations (SPDEs) driven by Brow-
nian motions or Lévy processes have been well established. Especially, the study
of stochastic neutral functional differential equations have received a great deal
of attention in recent year. For example, Bao and Yuan [7] extended the stochas-
tic stabilization problems of PDEs that is perturbed by Lévy noise from finite
dimension to infinite dimension. Bao and Hou [5] extended the existence and
uniqueness of mild solutions to a class of general stochastic neutral partial func-
tional differential equations under non-Lipschitz conditions. Caraballo, Real and
Taniguchi [15] investigated the exponential stability and ultimate boundedness of
the solutions to a class of neutral stochastic semilinear partial delay differential

equations. Yuan and Bao [64] focused on the path wise stability of mild solu-
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tions for a class of stochastic partial differential equations which are driven by

switching-diffusion processes with jumps.

However, such restriction clearly rules out the interesting a-stable processes
since Wiener noise and Poisson-jump noise have arbitrary finite moments, while
a-stable noise only has finite p-th moment for p € (0, @) with « < 2. Recently,
stochastic equations driven by a-stable processes have plenty of applications in
physics due to the fact that a-stable noise exhibits the heavy tailed phenomenon,
e.g., Priola and Zabczyk [50] gave a proper starting point on the investigation of
structural properties of stochastic partial differential equations (SPDEs) driven
by an additive cylindrical stable noise. Dong, Xu and Zhang [25] studied the
invariant measures of stochastic 2D Navier-Stokes equation driven by a-stable
processes, Xu studied [61] Ergodicity of the stochastic real Ginzburg-Landau
equation driven by a-stable noise and Zhang [67] proved a derivative formula of
Bismut-Elworthy-Li’s type as well as gradient estimate for stochastic differen-
tial equations driven by a-stable noises. One the other hand, Wang [55] derived
the gradient estimate for Ornstein-Uhlenbeck jump processes and Wang [58] es-
tablished so-called Harnack inequalities for SDEs driven by cylindrical a-stable
processes. However, there are few papers on the asymptotic behaviour of mild
solution of SPDEs driven by a-stable processes, so we shall discuss the stability
property of mild solutions of a class of SPDEs driven by a-stable processes to
complete the theory. The fact is that a-stable noise only has finite p-th mo-
ment for p € (0,«) and the stochastic evolution does not admit a stochastic
differential , which leads to some powerful tools such as the It6 formula being
unavailable, then some new methods should be used to overcome the difficulties.
It is worthwhile to mention that, Wang and Rao [56] discussed the stability of
mild solutions for a class of SPDEs driven by a-stable noises and generalized to
deal with the SPDEs driven by subordinated cylindrical Brownian motion and

fractional Brownian motion, respectively by the Minkovski inequality and Zang

95



and Li [65] proved the existence and uniqueness of the mild solution to a class of

neutral SPDEs.

In addition, attracting sets of dynamical systems have been studied extensively
by many researchers. Xu and Long [60] studied the attracting and quasi-invariant
sets of non-autonomous neutral networks with delays. Xu and Xu [62] considered
the P-attracting and p-invariant sets for a class of impulsive stochastic functional
differential equations. Long, Teng and Xu [43] investigated the global attracting
set and stability of stochastic neutral partial functional differential equations
with impulses. They first established a new impulsive-integral inequality, which
improved the inequality established by Chen [16]. On the other hand, impulsive
phenomenon can be found in a wide variety of evolutionary processes, for example,
medicine and biology, economics, mechanics, electronics and telecommunications,
etc., in which many sudden and abrupt changes occur instantaneously, in the form
of impulses. Many interesting results haven been found, e.g., ([66], [47]). But to
the best of my knowledge, there are no results on the Global attracting set and
exponential stability of neutral SPDEs driven by a-stable processes with impulses.
On the basis of this, this chapter is devoted to the discussion of this problem. The
problem of determining the attracting sets of neutral stochastic partial differential
equations driven by a-stable noise with impulses is more complicated. Therefore,
the techniques and methods for the global attracting set and exponential stability

of neutral SPDEs driven by a-stable processes with impulses should be developed.

Motivated by the above discussions, we shall consider the following neutral
stochastic partial differential equations driven by an additive a-stable with im-

pulses on a separable Hilbert space H,
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p

dlz(t) — g(t,x(t —r)] = (Az(t) + f(t,z(t —r)))dt
o(t)dZ(t),t > 0,t # ty,

Az(ty) = x(t]) — x(ty) = L(z(ty), t = te, k= 1,2, ...,

LE()() = ¢() S D([_Tv O},H),

\

where r > 0 and A generates a strongly continuous semigroup S(t) or e/, ¢ > 0,
on H. Assume that f,g: R, x H — H are two given measurable mappings and
o(t) : Ry — R is a locally integrable function; Ix : H — H is a measurable
mapping for £ = 1,2, ...; the fixed moments of time ; satisfies 0 < t; <ty < ... <
ty < ..., and limy ot = oo;z(t}) and z(t; ) represent the right and left limits
of z(t) at t = ty, k = 1,2, ..., respectively; Az(ty) = z(t}) — z(t;,) represents the

jump in the state x at time ¢, with I determining the size of the jump.

This chapter is organised as follows. In Section 5.2, we review and introduce
the concept and basic property of a-processes. In Section 5.3, we consider the
global attracting set and stability of the neutral stochastic differential equations
with impulses. In Section 5.4, we have a summary to state the contribution and

development of the chapter.

5.2 «-stable processes

Recall that X is a random variable defined on (2, F,P) and takes values in R

with probability law px. Its characteristic function ¢x : R — C is defined by

oxl) = E(EN) = [ dXIp()
Q

_ / SV (dy),
R
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for each u € R. Particularly, a real-valued stochastic process {X(¢) : ¢ > 0} is

called an Lévy a-stable process if
1. X(0) =0 a.s;
2. X (t) has independent and stationary increments;
3. dx(y(u) ="t = emW for each u € R, ¢ > 0,

where 7(1,-) is the Lévy symbol of X (1) and X (1) is uniquely determined by its
characteristic function involved with four parameters: « € (0,2), the index of
stability; § € [—1,1], the skewness parameter; o € (0,00), the scale parameter
and p € (—o0,00), the shift. We call n strictly a-stable whenever u = 0, and in

addition, if § = 0, 7 is said to be symmetric a-stable.

Theorem 5.2.1 A real-valued random variable X is a-stable if and only if there

existo > 0,—1 < <1 and p € R such that for allu € R :

(1) when o = 2,

Ox(u) = exp(ipu — l02u2);

(2) when o # 1,2,

Ox(u) = ea:p(z'uu — o%ul® [1 — iﬁsgn(u)tan(%)} >;

(3) when o =1,

ox(u) = exp(i,uu — oul [1 - iﬁ%sgn(u)log(|u|)} )

It can be shown that E(X?) < oo if and only if & = 2 (i.e. X is Gaussian) and

that E(]X|) < oo if and only if 1 < a < 2. For more details on a-stable processes,
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we refer to [1].

Let Z(t) be a cylindrical a-stable process, a € (0,2), defined by

Z(t) = BuZm(t)em. (5.2)

Here {e;,}m>1 is an orthonormal basis of H,{Z,,(t)}n>1 is a group of i.i.d. real-
valued, symmetric a-stable Lévy processes with o > 1 defined on a complete
probability space (2, F, {F:}i>0,P), and {5, }m>1 is a sequence of positive num-
bers which denote the intensity of the noise so that the series (5.2) is well-defined

in a proper sense.

5.3 Global attracting set and stability

Throughout this chapter, we use the following notations. Let (H, || - ||) be a real
separable Hilbert space. Recall that a function f : [—r, 0] — H is called the cadlag
if it is right-continuous and has finite left-hand limits. Denote by D([—r,0], H)
the space of all H-valued cadlag functions defined on [—r, 0], equipped with the

uniform norm ||¢||p := sup_,<,<q |¢(s)|, ¢ € D([-r,0], H).

In this section, we shall consider the global attracting set of the neutral stochas-
tic differential equation with impulses (5.1). We first give the following definition

of mild solutions to equation (5.1).

Definition 5.3.1 An F;-adapted cadlag H-valued stochastic process z(t),t > 0,

is called the mild solution for (5.1) if it has the following properties:
1. wo() = 6() € D([—r,0]; H);
2. fOT |z (u)||3du < oo almost surely;
3. for each ty, x(t)) = lim, , x(t) exists and x(t, ) = lim,_, _ x(t) exists;
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4. for arbitrary t > 0, x(t) satisfied the following integral equation:

z(t) = S)[e(0) +9(0,¢(=r))] — g(t,(t — 7)) — / AS(t = s)g(s, x(s —))ds

0
t

+/ St —s)f(s,z(s—r))ds+ / S(t—s)o(s)dZ(s)

—|— S(t_tk)]k(x(t];»

O<tp<t

Here for the solution process {z(t)}+>_, with initial value ¢ € D([—r,0]; H), we
put z4(¢) == {x(t+ 0;¢) : —r <6 < 0} for all £ > 0. Quite frequently, stochastic

process {z:(¢)}+>—_, is called the segment process of {x(t, ) h>—;.
In what follows, we need the following assumptions:

(H1) The operator (A, D(A)) is a self-adjoint operator on the separable Hilbert

space H admitting a discrete spectrum

—00 4+ =N < —Api1 << =X < =)\ < 0 with corresponding eigen-
vector basis {e,, }m>1 of H and generating an analytic semigroup S(t),¢ > 0,

such that ||S(¢)|] < Me ™! M > 1 for all t > 0.

(H2) There exists a positive constant K; such that for all z,y € H and ¢ > 0,

1f(t2) = Fty)ll < Kalle —yll, (1 2) ) < Ka(1+ lf).

(H3) There exists a constant x € (0,1) and a positive constant Ks such that and

for all z,y € H and t > 0,

I(=A)"g(t,z) = (=A)"g(t, )|l < Kellz —yll,  g(t,0) =0,
where (—A)" is the fractional power of operator —A.
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(H4) There exists a sequence of positive numbers qx(k = 1,2, ...) such that for

any v,y € H and 3, qx < 00,

(@) = LIl < grllz =yl L(0) =0,k =1,2,...

Definition 5.3.2 Let p > land a set S C H is called the p-th global attract-
ing set of (5.1) if for all initial value ¢(-) € D([—r,0], H), the solution process

{z(t,9) hi>—r of (5.1) converges to S ast — oo, i.e.,

dist (z(t,9),S) =0 t— o0,

where dist x(t,S) = inf s E|lz — y||P,p > 1.

Lemma 5.3.1 [30] Let Z be a cylindrical a-stable process, a € (0,2). Assume

that the condition (H1) holds, then for any t > 0 and p > 0,

ks

ﬂk[ﬂ@—sm@ng)

P > t
< Cha ( Z 5;?/0 e*a’\’“(tfs)a”‘(s)d‘S) (5.4)
k=1

where {Bi}r>1 is the sequence given in (5.2) and the constant C,, > 0 depends

only on p and a.

Lemma 5.3.2 [/3] Suppose that g : R, — R is a Lipschitz continuous function.
Lety : [—r,00) — Ry be a Borel measurable function which is a solution of delay

integral inequality

g(lollp)e™ + bullyellp +ba Jy e lyllds + Xgey, < cre™ Wy ()

y(t) < +J, t>0,

(1), te[=r0],

where ¢ € D([—r,0],R.),y > 0,by,by and J are nonnegative constants. Then for
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any ¢ € D([—r,0],R,) satisfying ||¢||p < K for some constant K > 0 and
by |
bl‘+'_g‘+'§E:(% =p < 1.
7=

Then there are constants A € (0,7) and N > K such that

J
y()<Ne*Vt+—1 p vt > 0,

where A and N satisfy that

b2€

px = b + )\—|—ch<1 and N >

—1 1 — pa

or if by # 0, that

(v = MK — 53225

v(1-p)
bQGAT

b
px = b1’ + i
N

+ch<1 and N >
k=1

Theorem 5.3.1 Let ¢(-) € D([-r,0], H). Assume that the conditions (H1) -

(H}) are satisfied. Then the set

s={vet:lyl < ()] (56)

is a global attracting set of (5.1) provided that the following relations

Ptq

» _ptg
T 01— q(1—kK))]7 + 12MPKPX,

+Z6MP(Z ) o <1, (5.7)

p(1—k)

pi = 6||(— )~ ”||pr+6M1 JKDA

1,1 _ 100 _
where;#—a—l,o =1,
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and

[e.e]

sup <ZB,? /t e’a’\’“(t’S)ao‘(s)dS> < 00 (5.8)
0

t20 25

hold for k € (0,1),a € (1,2),p € (1,a) where I'() is the standard Gamma

function,

o s

T =6C,0 (36 / M=% ()ds )+ 12MPK;
k=1 0

and C, o > 0 is the constant given in (5.4).

Proof: From Remark 1.1 in [6] and Theorem 5.4 in [50], we know that under
the conditions (H1)-(H4), (5.7) and (5.8), the equation (5.1) has a unique mild
solution. Hence, from (5.3) and the relation that (a +b+c+d+e+ f)P <

6P (aP + b° + P 4+ dP + eP + fP), for any a, b, c,d, e, f € R, we have

Ellz(t)l” = E||S@®)6(0) + 900, 6(—r))] - glt, x(t — 1)) - / AS(t = 5)g(s2(s — 1))ds

/St—s s,x(s—r ds+/St—s dZ(s)

2 St =t ()|

O<trp<t

< GE[S@)[6(0) + 9(0, o(=r))IIP + 6"Ellg(t, (¢ — r)[]”
—i—GPE‘/ AS(t—s)g(s,x(s—r))ds)’p+6p]E’/ S(t—s)f(s,z(s—r))ds
GPIE‘/ (t — 8)o(t)dZ(s H + O S S(t - ) Lela(ty)|P

0<trp<t

= 6P (Ni(1) + Jo(t) + J5(t) + Ju(t) + J5(t) + J6(t)), V&> 0.
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It follows from (H3) for any ¢t > 0 that

Ji(t)

E[[S(#)[¢(0) + 9(0, o(=r)]|I”
El[¢(0) + g(0, o(=r))[IPIS@)]]”
E[|¢(0) + (—A) (= A4)"g(0, ¢(~r)) | MPe 7N

INIA

IN

B[I6(0)] + [(—A) ] - (= A)g(0, $(=r) [ MPe

IN

E[[|¢(0)]| + [|(—A)~* || Ka|¢(—r)[|]? MPe PN

IN

E[|6(0)[| + K2l (=A) "] - 6]l p]r MPer™!

IN

MPePPE(G(O)| + KB (—4) P - [9]15)

IN

MPePPE(|[ 6] + K3 (—A) [P - l]lh)

22MP(1+ K3 (= A) [Pl gllpe

C*|lglpe ",

(5.10)
where C* = 2P M?(1 + K%||(—=A)~"||P) > 0 is a positive constant.
It follows from (H3) for any ¢t > 0 that
Jo(t) = Ellg(t,z(t — )P

= E[(=A)"(=A)"g(t, x(t — )"

< E[[(=A)7"I(=A)"g(t, x(t = )P

< E[(=A)"[ Kzt — )"

< (AP ESE]x(t — r)l”

< [(=A)"PKF sup Efz(t+0)|".

—r<6<0

(5.11)
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For Js(t), by u

J3(t) =

IN

IN

IN

sing Lemma 2.2.1 (2) and (H3) for any ¢t > 0, we have

EH /t AS(t — s)g(s,z(s —r))ds !

B| [ (A wste = ) -AYg(o s - s
B [ 1A=t = )= AV glssos — )lds)”
E( / [(=A)'=S(t = ) [1(~A)"g(s, 2(s = r))lds)”

E(/ M- “emt i Mot o Kolla(s — r)ds)’

M €—>\1(t S % L p
IE(/ 1 NS (s — 1) s )

(t —s)t=*

Then, by using Holder inequality, we have for any ¢t > 0,

J3(t)

(VAN

=

e
=

IN

|—=

t
p
e IR u(s — 7)|ds| )

J
t 1
| e ats = nipas)”)’
0
t

[ e IR ats - nlras])’
0

t
| eI ats - rypas)
0

Q=
-

r
O\,.
o~

~| @

|
| >
e
» =

—= |

(=}
= &
[ | <=
G S

QL

»

| IR I S
Q=

| e Y E— |

3=

. Xf(l R)e—)\l(t—s P t s
([ e )
/0 D (t — s)Je—m * . pllx(s —r)l["ds

(5.12)
On the other hand, letting A;(t — s) = u, we have
t ya(1=K) X\ (t—s) 0 ya(1-K) —u
A ! A 1
/ e s :/ %(——)du
o [Mi(t—s)jad=r) ae wdd=r) At
At ya(1=K) —y
A 1
/ Ay
0 uq(lfﬁ) )\1
Y _
" /\'f(1 ~) e =g~ 1(1=R) gy (5.13)
1
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Then substituting (5.13) into (5.12), and by using the definition of Gamma func-

tion, we have for any t > 0,

JB(t) < MO / et )
0

t
E( /0 eI K (s — ) 7ds)

= M Ap(l K [/OO e_“u_q(l_“)du]a
0

t
]E(/ e M KL (s — r)||pds>
0
p  \PUL=K)— P L (t—s) [P
— X [r(1_q<1_ﬁ))]q.1@(/oe K (s — r)|Pds)

t
= a0 >[Hl_q@_K»wa/ermem@_rmws
0

IN

P » 1
M KEX R = g =) [ e sup Blals +6)|Pds,
0

—r<6<0

1,1 _
Whereg—i—a—l.

From (Hs) for any t > 0, we obtain

Tu(t) = EH/OtS(t—s)f(s,x(s—r))ds '

< ([ I8¢ M7 suats = )las)”
< / Me M (1 (s —r)])ds)’
_ / Me 15 M=% e (1 ||x(3_r)||)ds>p

- MpE(/ “Ai(t=s)-1 e_/\l(t_s)%Kl(l s — 7’)||)ds>p.
0
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Then, by using Hélder inequality, we have for any ¢ > 0,

Ju(t)

IN

IN

IN

1

E([/t e—Mt—s%quS}; : [/t e ME=ITPEP(] | (s — r>|\>pds} 5)”
0 0
"E(|

t 1 t 1 P
M / e_’\l(t_s)ds] i [/ e MU KP(1 4 |2 (s — r)||)pds} p)
0 0
¢ ¢ 1,
e / e-9gs] 'R (| / MR (s - r))Pds] )
0 0
t
MP / e M= S)ds </ e MU RP(] 4 Hx(s—r)“)pds)
0 0

M /\1_1-/ TG (& - 5)] } (/ IR+ fals = ))ds)
- 0
M| [ e Al(t—s>]qE</ IR+ Jals =) ds)
0 0

p t P t
M e 9] B[ e s - )
0

—0o0

bt
MPEPAL / e MR (1 4 [|a(s — )| Pds
0

p t
M”Kf)\lq/ e M=) qup E(1+ [|z(s + 0)]])Pds
0

—r<0<0

P t
QPMPK{’)\lq/ e”\l(t’s)<1+ sup EHx(s—l—@)Hp)ds
0

—r<6<0

(5.14)

1,01 _
Where5+a—1.

For J5(t), from Lemma 5.3.1, we have

EH/ (t — s)o(s)dZ(s

o

<cpa(zﬁk/ Mg (s)ds) L (5.15)

where the constant C), , > 0 depends only on p and a.
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From (H,) and Holder inequality for any ¢ > 0 , we obtain

IN

IN

IN

IN

which is equivalent to

Jo(t)

1,1 _
Where5+a—1.

Ell Y S(t—t)l(a(t;)]”

0<trp<t

E( 3 1St Tl )]

0<tp<t

p

(3 M)

O<tp<t

ME( Y g MW a()]))

O<tp<t

1 1 p
WE( Y g afe W ()

0<tp<t

O<tp<t O<trp<t

w3 a) (X ale al)r),

<

O<tp<t O<tp<t

(X w) B X s let)l)

0<trp<t 0<tp<t

P

+00 )
(Y a) Y ae IR ()
k=1

0<tp<t

+00 P
(30)' Y ae BB ()|,
k=1

0<tp<t

(5.16)
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By substituting (5.10) to (5.16) into (5.9), we have for any ¢ > 0,

Elz@)" < 6°C*llolpe ™™ +6[(-A)~"|PKF sup Ellx(t+0)]”

—7"

_p D t
rorMr KON - g1 — m)))f / N sup Ella(s + 0)|Pds
0

—r<6<0

P t
+12PMpKfA1q/ e (14 sup Ellas + 0)|)")ds
0

—r<0<0

+6°C) o ( Z Br / e_a’\k(t_s)aa(s)ds> ;
k=1 0

+o0o P
s07( 3 0) " Y e B ()P

k=1 O<trp<t

< 6°CT|olpe ™ + 67| (—A)TTIPKY sup Ella(t + 0)|7
0<0

_pP ) t
+67 MY Kp/\p(1 i — g1 — k)]s [ e M) sup E|z(s + 60)|Pds
' 0

—r<0<0

P t
+12pMpKf/\1q/ e M=) sup Eljx(s + 0)|Pds
0

—r<6<0

0 t P P
+6°C, 4 ( Z B2 / 6—&)\k(t—5)o—a(8)d8> * 12P MPKP ), ¢ /
k=1 0

t

—0o0

+oo §2
1 (Y)Y e M IE ()|,

k=1 0<trp<t

which is equivalent to

Elz()" < 6°C*llolpe™™™ +6"[[(—A) ™| &Y sup Efo(t+0)[”
1-k)—2 P -2
oz XTI - g1 — w))]E 122 MR
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—r<60<0
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(5.17)
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Let y(t) = E||z(¢)||” and use Lemma 5.3.2, then we have

by = 6" (=A) "] KS,

by == 6" My KX, DL — g(1— k))]F + 127MPRIA

400 P

= 6pMp<ZQk>QQka

k=1

QI3

)

00 t »
J = 6pcp,a(z By / e_a’\k(t_s)aa(s)ds> +12e RPN,
k=1 0

From Lemma 5.3.2, we know that if ¢ € D([—r,0],R,) satisfying ||¢||p < K

for some constant X > 0 and

that is,

6" My KN T - g(1— k)5 4 122 MPKPA

po= O(-A) KL + .
1

+o00 P

+o00 P
e ()
k=1 k=1
1—k)—Ete ptg

— 6|~ A) PR+ 6" My KEAY “ID(1 = (1 — k)% + 12MPEPA,

+oo p

+00 P
+Z6pMp(qu>qqk < 1.
k=1

k=1

Therefore, by Lemma 5.3.2, there exist some constants K > 0, A € (0, \;) and
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N > K such that
—\it J
E|lx(t)||P < Ne ™" + 12 vVt > 0,

when t — oo, we have

J
lim E||z(¢)[|P < ——.
t—o0 1-— 1%

Hence, we obtain the global attracting set

Therefore, by Definition 5.3.2 we know S in (5.6) is a global attracting set of the
mild solution {z(t,¢)},t > —r,¢ € D([—r,0], H) to equation (5.1). The proof is

complete. N

5.4 Summary

In this chapter, we made the first attempt to study the global attracting set for a
class of neutral stochastic evolution equations with impulses. Our work extended
that of Li and Liu (2016) where the neutral stochastic functional evolution equa-
tion without impulses is investigated. We also extended that of Long, Teng and
Xu (2012) where the class of stochastic differential equation driven by Wiener

processes rather than a-stable processes.
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Chapter 6

Conclusions

This research program focused on the several stochastic delay evolution equa-
tions dealing with the optimal control problem and asymptotics for the stochas-
tic systems. Therefore, we have adopted the methods of stochastic analysis and
semi-group which help us to study and understand the existence, uniqueness,
controllability and stability for various stochastic differential systems. There, we
aim to generalise and develop the existing stochastic models based on the some
certain assumptions. Clearly, these stochastic delay differential equations defined
on Hilbert spaces can also be simplified to do many applications in financial

mathematics.

For the first model, we generalise the previous theory to consider a stochas-
tic optimal control problem for a class of neutral stochastic system. We adopt
a method that allows us to “lift” this non-Markovian optimisation problem to
an infinite-dimensional Markovian control problem. The aim of the stochastic
optimal control problem is to maximise the objective functional at a given time
horizon T > 0. In practice, the explicit solution to this model is not computable.
Thus, we establish a linear differential difference equation to obtain the solutions

to this model.
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On the other hand, solutions with recurrence property (e.g. almost periodicity
and almost automorphy) enable us to understand the impact of the noise or
stochastic perturbation on the corresponding recurrent motions. For the second
model, the neutral stochastic evolution equations with Poisson jumps and infinite
delays are considered. We study the existence and uniqueness of the stochastic
system, which satisfy the Lipschitz conditions. The constant coefficients with
parameters My, Mg, M, and M), for the model are constrained based on the
method of Banach fixed-point theory. Therefore, we have proved the existence

and uniqueness of mild solutions.

From the models above, we have seen the stochastic differential evolution equa-
tions driven by Brownian motions and Lévy processe. However, since Wiener
noise and Poisson-jump noise have arbitrary finite moments, while a-stable noise
only has finite p-th moment for p € (0,a) with o < 2. For the third model. we
consider the global attracting set and stability of the neutral stochastic partial
differential equations with impulses driven by an additive a-stable with impulses
on a separable Hilbert space H. Thus, new techniques have been established and
developed to a stochastic system driven by a-stable processes. Then, we have

proved the existence and uniqueness of mild solutions.

113



Bibliography

[1] Applebaum, D., Lévy Processes and Stochastic Calculus, 2nd Edition, Cam-

2l

13l

[5]

(6]

7]

bridge University Press, Cambridge. (2009).

Abbas, S., Bahuguna, D., Almost Periodic Solutions of Neutral Functional
Differential Equations, Comput. Math. Appl. 55, 2593-2601, (2008).

Albeverio, S., Rudiger, B., Stochastic Integrals and the Lévy-Ité Decomposi-
tion Theorem on Separable Banach Spaces, Stoch. Anal. Appl. 23, 217-253,

(2005).

Balasubramaniam, P., Ntouyas, S. K., Controllability for Neutral Stochastic
Functional Differential Inclusions with Infinite Delay in Abstract Space, J.

Math. Anal. Appl. 324, 161-176, (2006).

Bao, J., Hou, Z., Existence of Mild Solutions to Stochastic Neutral Partial
Differential Equations with Non-Lipschitz Coefficients, Comput. Math. Appl.
59, 207-214, (2010).

Bao, J., Yuan, C., Numerical Analysis for Neutral SPDEs Driven by a—
Stable Processes, Infinite Dimen. Anal. Quant. Probab. Relat. Topics. 17,
858-873, (2014).

Bao, J., Yuan, C., Stabilization of Partial Differential Equations by Lévy
Noise, Stoch. Anal. Appl. 30, 354-374, (2012).

114



8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S., Representation
and Control of Infinite Dimensional Systems, Second Edition, Birkh&user,

Boston, Basel, Berlin. (2007).

Bezandry, P., Diagana, T., Almost Periodic Stochastic Processes, Springer,

New York. (2011).

Bezandry, P., Diagana, T., Existence of Almost Periodic Solutions to Some

Stochastic Differential Equations, Appl. Anal. 86, No. 7, 819-827, (2007).

Bezandry, P., Diagana, T., Existence of Square-Mean Almost Periodic So-
lutions to Some Stochastic Hyperbolic Differential Equations with Infinite

Delay, Communications in Mathematical Analysis. 8, No. 2, 103-124, (2010).

Bezandry, P., Diagana, T., Square-Mean Almost Periodic Solutions Nonau-
tonomous Stochastic Differential Equations, Electronic Journal of Differen-

tial Equations, 2007, No. 117, 1-10, (2007).

Cao, J. F., Yang, Q., Hang, Z. T., On Almost Periodic Mild Solutions
for Stochastic Functional Differential Equations, Nonlinear Analysis: Real

World Applications. 13, 275-286, (2012).

Caraballo, T., Liu, K., Exponential Stability of Mild Solutions of Stochastic
Partial Differential Equations with Delays. Stoch. Anal. Appl. 17, Issue 5,

(1999).

Caraballo, T., Real, J., Taniguchi, T., The Exponential Stability of Neutral
Stochastic Delay Partial Differential Equations, Discrete Contin. Dyn. Syst.
18, 295-313, (2007) .

Chen, H. B., Impulsive-Integral Inequality and Exponential Stability for
Stochastic Partial Differential Equations with Delays, Statist. Probab. Lett.

80, 50-56 (2010).

115



[17]

18]

[19]

21

22]

23]

[24]

[25]

Chojnowska-Michalik, A., Representation Theorem for General Stochastic
Delay Equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
26(7): 635-642, (1978).

Cont, R., Tankov, P., Financial Modeling with Jump Processes, Financial

Mathematics Series. Chapman and Hall/CRC, Boca Raton. (2004).

Cui, J., Yan, L., Asymptotic Behaviour for Neutral Stochastic Partial Differ-
ential Equations with Infinite Delays, Electron. Commun. Probab. 18, No.
45, 1-12, (2013).

Cui, J., Yan, L., Sun, X., Exponential Stability for Neutral Stochastic Par-
tial Differential Equations with Delays and Poisson Pumps, Statistics and

Probability Letters. 81, 1970-1977, (2011).

Curtain, R. F., Zwart, H. J., An Introduction to Infinite Dimensional Linear
Systems Theory, Texts in Applied Math. 21, Springer-Verlag, New York.
(1995).

Da Prato, G., Zabczyk, J., Stochastic Equations in Infinite Dimensions,

Cambridge University Press, Cambridge. (1992).

Diagana, T., Elaydi, S., Yakubu, A. Z., Population Models in Almost Periosic
Environments, J. Difference Equ. Appl. 13, 239-260, (2007).

Diagana, T., Mahop, C. M., Guerekata, G.M. N’., Toni, B., Existence and
Uniqueness of Pseudo Almost Periodic Solutions to Some Classes of Semilin-
ear Differential Equations and Applications, Nonlinear Analysis. 64, 2442-
2453, (2006).

Dong, Z., Xu, L., Zhang, X. C., Invariant Measures of Stochastic 2D Navier-
Stokes Equation Driven by a-Stable Processes, Elec. Comm. Probab. 16,
678-688, (2011).

116



[26]

27]

28]

[29]

[30]

31

[32]

[33]

[34]

Fu, M., Liu, Z., Square-Mean Almost Automorphic Solutions for Some
Stochastic Differential Equations, Proc. Amer. Math. Soc. 138, 3689-3701,
(2010).

Fuhrman, M., Tessitore, G., Nonolinear Komogorov Equations in Infinite Di-
mensional Spaces: the Backward Stochastic Differential Equations Approach

and Applications to Optimal Control, Ann. Probab. 30(3), 1397-1465, (2002).

Goldys, B., Gozzi, F., Second Order Parabolic HIB Equations in Hilbert
Spaces and Stochastic Control, L? Approach, Stoch. Proc. Appl. 116, (12):
1932-1963, (2006).

Gozzi, F., Marinelli, C., Stochastic Optimal Control of Delay Equations
Arising in Advertising Models, in: Stochastic Partial Differential Equations-
VII, Lecture Notes Pure Appl. Math., 245, (2006), 133-148, Chapman and
Hall/ CRC, Boca Raton.

Gozzi, F., Marinelli, C., Savin, S., On Controlled Linear Diffusions with
Delay in A Model of Optimal Advertising under Uncertainty with Memory
Effects, J. Optim. Theory Appl. 142, 291-321, (2009).

Guerekata, G. M. N’., Existence and Uniqueness of Almost Automorphic
Mild Solutions to Some Semilinear Abstract Differential Equations, Semi-

groupp Forum. 69, 80-86, (2004).

Hale, J. K., Kato, J., Phase Space for Retarded Equations with Infinite

Delay, Funkcialaj Ekvacioj. 21, 11-41, (1978).

Ichikawa, A., Dynamic Programming Approach to Stochastic Evolution

Equations, SIAM J. Control Optim. 17, 152-174, (1979).

Li, A., Liu, K., Luo, J. W., On Almost Periodic Mild Solutions for Neutral

Stochastic Evolution Equations with Infinite Delay, Nonlinear Anal. Theory,

117



Methods and Appl. 110, 182-190, (2014).

[35] Li, X. J., Yong, J. M., Optimal Control Theory for Infinite Dimensional

Systems. Birkhauser, Boston, Basel, Berlin. (1995).

[36] Li, Z., Liu, K., Global Attracting Set, Exponential Decay and Stability in
Distribution of Neutral SPDEs Driven by a-stable Processes, Discrete and
Continuous Dynamical Systems: Series B 21(10), 3551-3573, (2016).

[37] Liu, K., Finite Pole Assignment of Linear Neutral Systems in Infinite Di-
mensions, Second International Conference on Modelling and Simulation

(ICMS2009), Eds. Y. Jiang and X.G. Chen, Manchester. 1-11, (2009).

[38] Liu, K., The Fundamental Solution and Its Role in the Optimal Control
of Infinite Dimensional Neutral Systems, Applied Math. Optim. 60, 1-38,

(2009).

[39] Liu, K., Quadratic Control Problem of Neutral Ornstein-Uhlenbeck Pro-
cesses with Control Delays, Discrete and Continuous Dynamical Systems -

Series B, 18(6), 1651-1661, (2013).

[40] Liu, K., Stability and Stabilization of Linear Neutral Systems in Banach
Spaces, F: Stability (Vol. 2), (2007).

[41] Liu, K., Stability of Infinite Dimensional Stochastic Differential Equations
with Applications, Vol. 135 of Monographs and Surveys in Pure and Applied
Mathematics, Chapman and Hall/CRC, London, UK. (2006).

[42] Liu, Z. X., Sun, K., Almost Automorphic Solutions for Stochastic Differential
Equations Driven by Lévy Noise, Journal of Functional Analysis. 266, 1115
- 1149, (2014).

[43] Long, S., Teng, L., Xu, D., Global Attracting Set and Stability of Stochas-

tic Neutral Partial Functional Differential Equations with Impulses, Statis.

118



Probab. Lett. 82, ,1699-1709, (2012).

[44] Luo, J., Exponential Stability for Stochastic Neutral Partial Functional Dif-

ferential Equations, J. Math. Anal. Appl. 355, 414-425, (2009).

[45] Luo, J., Fixed Points and Stability of Neutral Stochastic Delay Differential

Equations, J. Math. Anal. Appl. 334, 431-440, (2007) .

[46] Luo, J., Liu, K., Stability of Infinite Dimensional Stochastic Evolution Equa-
tions with Memory and Markovian Jumps, Stoch. Proc. Appl. 118, 864-895,
(2008).

[47] Matheswari, R., Karunanithi, S., Asymptotic stability of stochastic impul-
sive neutral partial functional differential equations, International Journal of

Computer Applications. 85, No. 18, (2014).

[48] Nakagiri, S., Optimal Control of Linear Retarded Systems in Banach Spaces,
J. Math. Anal. Appl. 120, 169-210, (1986).

[49] Pazy, A., Semigroup of Linear Operators and Applications to Partial Differ-

ential Equations, Spring Verlag, New York. (1992).

[50] Priola, E., Zabczyk, J., Structural Properties of Semilinear SPDEs Driven
by Cylindrical Stable Processes, Probab. Theory Relat. Fields. 149, 97-137,
(2011).

[51] Ren, L., Zhou, Q., Chen, L., Existence, Uniqueness and Stability of Mild
Solutions for Time-Dependent Stochastic Evolution Equations with Poisson

Jumps and Infinite Delay, J. Optim. Theory Appl. 149, 315-331, (2011).

[52] Ren, Y., Chen, L., A Note on the Neutral Stochastic Functional Differen-
tial Equation with Infinite Delay and Poisson Pumps in an Abstract Space,

Journal of Mathematical Physics. 50, 082704, (2009).

119



[53] Taniguchi, T., The Exponential Stability for Stochastic Delay Partial Differ-
ential Equations, J. Math. Anal. Appl. 331, 191-205, (2007).

[54] Vinter, R. B., Kwong, R. H., The Infinite Time Quadratic Control Problem
for Linear Systems with State and Control Delays : An Evolution Equation

Approach, STAM J. Control Optim. 19(1): 139-153, (1981).

[55] Wang, F. Y., Gradient Estimate for Ornstein Uhlenbeck Jump Processes,

Stoch. Proc. Appl. 121, 466-478, (2011).

[56] Wang, J. Y., Rao, Y. L., A Note on Stability of SPDEs Driven by a-Stable
Noises, Adv. Difference Equations. 98, (2014).

[57] Wang, Y., Liu, Z., Almost Periodic Solutions for Stochastic Differential

Equations with Lévy Noise, Nonlinearity. 25, 2803-2821, (2012).

[68] Wanf, L. L., Zhang, X. C., Harnack Inequalities for SDEs Driven by Cylin-
drical a-Stable Processes, Potential Anal. 24, | 657-669, (2015).

[59] White, W. B., A Delayed Action Oscillator Shared by the ENSO and QDO

in the Indian Ocean, Journal of Oceanography. (2007).

[60] Xu, D. Y., Long, S. J., Attracting and Quasi-Invariant Sets of Non-
Autonomous Neutral Networks with Delays, Neurocomputing. 77, 222-228,
(2012).

[61] Xu, L., Ergodicity of the Stochastic Real Ginzburg-Landau Equation Driven
by a-Stable Noise, Stoch. Proc. Appl. 123, 3710-3736, (2013).

[62] Xu, L. G., Xu, D. Y., P-Attracting and p-Invariant Sets for a Class of Im-
pulsive Stochastic Functional Differential Equations, Comput. Math. Appl.
57, 54-61, (2009).

[63] Yosida, K., Functional Analysis, Sixth Edition, Springer-Verlag, New York.

120



(1980).

[64] Yuan, C., Bao, J., On the Exponential Stability of Switching-Diffusion Pro-
cess with Jumps, Quart. Appl. Math. 71, 311-329, (2013).

[65] Zang, Y. C., Li, J., Stability in Distribution of Neutral Stochastic Partial
Differential Delay Equations Driven by a-Stable Process, Advances in Dif-

ference Equations, Springer. (2014).

[66] Zhang, L., Ding, Y. S., Wang,T., Hu, L. J., Hao, K., Moment Exponential
Stability of Neutral Impulsive Nonlinear Stochastic Delay Partial Differential

Equations, Springer-Verlag Berlin Heidelberg. (2012).

[67] Zhang, X. C., Derivative Formulas and Gradient Estimates for SDEs Driven

by a-Stable Processes, Stoch. Proc. Appl. 123, 1213-1228, (2013).

121



