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Abstract7

The width of fracture process zones in geomaterials is commonly assumed to depend on8

the type of heterogeneity of the material. Still, very few techniques exist, which link the9

type of heterogeneity to the width of the fracture process zone. Here, fracture processes10

in geomaterials are numerically investigated with structural network approaches, whereby11

the heterogeneity in the form of large aggregates and low volume fibres is modelled ge-12

ometrically as poly-dispersed ellipsoids and mono-dispersed line segments, respectively.13

The influence of aggregates, fibres and combinations of both on fracture processes in14

direct tensile tests of periodic cells is investigated. For all studied heterogeneities, the15

fracture process zone localises at the start of the softening regime into a rough fracture.16

For aggregates, the width of the fracture process zone is greater than for analyses without17

aggregates. Fibres also increase the initial width of the fracture process zone and, in18

addition, result in a widening of this zone due to fibre pull out.19

Keywords: fibres, fracture, geomaterial, heterogeneity, roughness20
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1 Introduction21

Many structures made of geomaterials exhibit failure processes which are influenced by22

the heterogeneity of the material at an intermediate (meso-) scale. For instance, the type23

of coarse aggregates in concrete influences stiffness, strength and fracture energy of the24

material. For fibre reinforced cementitious materials, fibre type and geometry strongly in-25

fluence the tail of the stress-crack opening curve (Naaman et al., 1991; Li and Wu, 2007).26

Therefore, modelling approaches which link the geometry, spatial distribution and me-27

chanical properties of individual constituents at the meso-scale to the structural response28

are attractive. Furthermore, detailed investigations based on experiments and computa-29

tional modelling of the mechanical interaction of individual constituents can contribute30

to further understanding of failure processes at larger scales.31

Numerical approaches based on nonlinear fracture mechanics (NLFM) (Dugdale, 1960;32

Barenblatt, 1962) are commonly used to predict the failure of structural components of33

practical size, since the length of the fracture process zone is too large (with respect34

to the size of the structural component) for linear elastic fracture mechanics (LEFM),35

but too small for plastic limit load analysis to be applicable. Here, fracture process36

zone is defined as the zone in which energy is dissipated at a certain stage during the37

fracture process. Within computational frameworks, such as the finite element method38

and discrete stiffness approaches, NLFM is applied in the form of cohesive-crack and39

crack-band models. In cohesive-crack models, the displacement field across the fracture40

process zone is replaced by a displacement jump representing the crack opening and41

stresses are determined from a stress-crack opening law (Hillerborg et al., 1976; Carol42

et al., 1997). In crack-band models, the displacement jumps are transformed into cracking43

strains, so that the stress is calculated using stress-strain laws taking into account the44

size of the regions in which strains localise (Bažant and Oh, 1983). This size is usually45

a function of the element size, so that the load-displacement curves obtained with this46

approach are mesh-independent (Jirásek and Bauer, 2012). Discrete approaches describe47

both elastic and inelastic responses by means of force-displacement laws between discrete48
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bodies (Schlangen and van Mier, 1992a,b; Bolander et al., 2000). Often, these force-49

displacement laws are chosen to be very similar to crack band approaches (Grassl and50

Bolander, 2016). These different computational NLFM approaches can model the length51

of the fracture process zone along the fracture, but not its width.52

Continuum mechanics is an alternative to nonlinear fracture mechanics, where the frac-53

ture process zone is represented by localised but regular fields of displacements. This54

is achieved by including a length parameter in continuum models (Pijaudier-Cabot and55

Bažant, 1987; Bažant and Jirásek, 2002). Maintaining a regularised displacement field56

during fracture simulations provides mesh-independent solutions upon mesh refinement.57

However, the length parameter influences the numerically predicted peak load and defor-58

mation capacity of structures (Xenos and Grassl, 2016). Therefore, this parameter should59

be chosen so that the localised field of displacements matches the width of the fracture60

process zone of the material (Xenos et al., 2015).61

The fracture process zone in heterogeneous materials such as concrete has been investi-62

gated experimentally and numerically. Experimental studies for fracture in plain concrete63

in Mihashi et al. (1991); Mihashi and Nomura (1996); Otsuka and Date (2000); Grégoire64

et al. (2015) showed that the fracture process zone consists of a narrow band of high dis-65

sipation surrounded by a wider region of low dissipation. Fracture surface measurements66

were also performed to provide further inside into the link between roughness and frac-67

ture behaviour (Lange et al., 1993; Mourot et al., 2006; Morel et al., 2008; Ponson et al.,68

2006). In Grassl and Jirásek (2010); Grassl et al. (2012); Grégoire et al. (2015); Xenos69

et al. (2015), information about the width of the fracture process zone is determined nu-70

merically using two-dimensional structural network approaches for the meso-scale of plain71

concrete consisting of coarse aggregates embedded in a mortar matrix. Numerical models72

for fibre reinforced concrete, in which fibres were modelled discretely, were proposed in73

Bolander and Saito (1997); Leite et al. (2004, 2007); Kabele (2007); Radtke et al. (2010);74

Kunieda et al. (2011); Schauffert and Cusatis (2011); Caggiano et al. (2012); Montero-75

Chacón et al. (2013); Kang et al. (2014); Zhan and Meschke (2016); Kang and Bolander76
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(2017); Montero-Chacón et al. (2017). Most of these studies on fibre reinforced composites77

aimed at predicting the influence of fibres on stiffness, strength and ductility. There is78

less information available on how fibres affect the spatial distribution of dissipated energy79

at the meso-scale.80

The aim of this work is to obtain more information about fracture processes in geoma-81

terials at the meso-scale by using a three-dimensional structural network model. The82

meso-structure of geomaterials is idealised to consist of a matrix with coarse aggregates,83

interfacial transition zones (ITZs) between matrix and aggregates, and fibres. Periodic84

direct tension analysis are performed and the effect of aggregates and fibres on the stress-85

displacement curves and spatial distribution of energy dissipation are investigated.86

2 Method87

The present numerical approach for obtaining information on fracture processes in fibre-88

reinforced quasi-brittle materials relies on periodic meso-structure generation, periodic89

network modelling of the material response, and roughness evaluation of the fracture90

patterns obtained from the network modelling. In the following sections, the individual91

modelling techniques are described in more detail.92

2.1 Periodic meso-structure generation93

The meso-structure of concrete is modelled as coarse aggregates and fibres embedded94

in a mortar matrix. Aggregates and fibres are idealised as poly-dispersed ellipsoids and95

mono-dispersed line segments, respectively. They are periodically arranged in a compu-96

tational cell representing the meso-structure of the material. For a given volume fraction97

of ellipsoids, Fuller’s grading curve is used to determine the size distribution of ellipsoids98

(Figure 1a). The total volume of ellipsoids is divided into intervals using sieve sizes. For99

each volume interval, the upper and lower sieve sizes are m and n = m/2, respectively.100
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Here, m is smaller than or equal to the maximum sieve size da,max and n is greater than or101

equal to the minimum sieve size da,min. Starting with the volume interval obtained with102

the largest pair of sieve sizes, ellipsoids are generated randomly with radii s3 > s2 > s1103

so that they fit through the square sieve size m, but not n (Figure 1b) as proposed in104

Slowik and Leite (1999); Leite et al. (2007) and further investigated in Mehrotra (2011).105

This results in the conditions106

1

2

√
2

r2 + 1
rn < s1 <

1

2
m (1)

107

s3 = s1/r (2)
108

max

(
s1,

√
n2

2
− s21

)
≤ s2 ≤ min

(
s3,

√
m2

2
− s21

)
(3)

Here, r is uniformly distributed between 0.5 and 1. Furthermore, s1 and s2 are uniformly109

distributed between the limits stated in (1) and (3), respectively. Line segments are110

assumed to be of uniform length lf . For a volume fraction ρf , the number of fibres are111

calculated as nf = 4ρfV/(πd
2
f lf), where V is the volume of the unit cell and df is the112

diameter of the fibres.113

The input parameters for the meso-structure generation are the volume fraction of el-114

lipsoids ρa, the maximum and minimum sieve sizes da,max and da,min, respectively, the115

volume fraction of line segments ρf , fibre length lf and the diameter of fibres df . Only116

ellipsoids greater than the sieve size da,min are generated, as indicated by the shaded region117

in Figure 1a.118

Next, ellipsoids and line segments are placed in the periodic cell by a random sequential119

addition approach (Feder, 1980) so that the centroids of ellipsoids and line segments are120

within the cell. Attention is paid so that the random orientation of ellipsoids and line121

segments are uniformly generated within the volume (Muller, 1959). For every randomly122

placed object, overlap with previously placed objects is checked. If overlap is avoided,123

the object is placed in the cell and 26 mirror objects in the adjacent cells are generated124

by shifting the object to the adjacent periodic cells. If overlap is detected, a new random125
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(a) (b)

Figure 1: Generation of poly-dispersed ellipsoids (a) Sieve curve based on Fuller’s curve
and (b) geometrical restriction imposed by square sieve size.

position and orientation is generated. This process is repeated until all objects are placed126

in the cell. For the overlap check between ellipsoids, the algebraic system of equations in127

Wang et al. (2001) is used (Figure 2). Compared to the overlap check for spheres, solving128

this system of equations is slow. Therefore, outer and inner bounding spheres of the129

ellipsoids are used to exclude any unnecessary checks of ellipsoids. If the outer bounding130

spheres of two ellipsoids do not overlap, the two ellipsoids themselves do not overlap131

(Figure 2a). If the inner bounding spheres of two ellipsoids overlap, the two ellipsoids132

overlap (Figure 2c). Only if the outer bounding spheres overlap and the inner spheres133

do not overlap, the overlap check of two ellipsoids is performed (Figure 2b). This simple134

method based on bounding outer and inner spheres requires significantly less time than135

applying the method in Wang et al. (2001) to all ellipsoids. For combinations of ellipsoids136

and line segments, only overlaps between ellipsoids, and ellipsoids and line segments are137

checked.138

Examples of generations of ellipsoids with da,max = 16 mm, da,min = 8 mm and ρa = 0.8,139

line segments with lf = 30 mm, df = 0.75 mm and ρf = 0.01, and a combination of140

ellipsoids and line segments with da,max = 16 mm, da,min = 8 mm, ρa = 0.8, lf = 30 mm,141

df = 0.75 mm and ρf = 0.01 are shown in Figure 3 for a cell with an edge length of142
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(a) (b) (c)

Figure 2: Overlap check of ellipsoids using bounding spheres.

100 mm. The fibre diameter df is only required to calculate the number of line segments143

to be placed, but not for the placement itself. Here, ρa = 0.8 is the total volume fraction144

of ellipsoids, which is significantly greater than the generated volume fraction of 0.23145

between the sieve sizes 16 and 8 mm.146

(a) (b) (c)

Figure 3: Periodic meso-scale generation for (a) ellipsoids, (b) line segments and (c)
combination of ellipsoids and line segments.

2.2 Periodic network modelling147

The fracture processes at the meso-scale are modelled for a periodic cell subjected to148

direct tension with a three-dimensional irregular network of discrete structural elements.149

The random network generation follows the work in Yip et al. (2005), which was recently150

extended to dual structural transport problems in Grassl and Bolander (2016). For the151

network generation, random points are placed in the cell using a sequential addition152
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(a) (b)

Figure 4: 3D random network: (a) Example of dual Delaunay Voronoi tessellation and
(b) structural element with mid-crosssection.

approach enforcing a minimum distance dmin between the points (Feder, 1980). These153

points are used for dual Delaunay and Voronoi tessellations resulting in randomly arranged154

tetrahedra and polyhedra. In Figure 4a, one of these tetrahedra with a common facet of155

polyhedra belonging to two vertices of the tetrahedron is shown. The network elements156

are placed on the edges of the tetrahedra. The mid-crosssections of the network elements157

are set equal to the common facets of the Voronoi cells associated with the element158

nodes (Yip et al., 2005). The network elements have six degrees of freedom at each159

node which are linked by rigid body kinematics to displacement jumps at the centroid of160

the mid-crosssection. These displacement jumps are then related to corresponding stress161

components using constitutive models described in Section 2.3.162

The information of the spatial arrangement of ellipsoids are mapped onto the network.163

According to the position of network elements with respect to ellipsoids, network ele-164

ments are given the properties of matrix, interfacial transition zone (ITZ) and aggregate.165

Network elements with both nodes positioned within an ellipsoid are given stiff elastic166

properties representing aggregates. Elements with both nodes located in the matrix are167

given properties of mortar with corresponding elastic properties, and strength and frac-168

ture energy. Finally, for elements with one node in an ellipsoid and another one in the169

matrix or another ellipsoid, the properties of ITZ are used, which are characterised by170

lower strength and lower fracture energy than those of the matrix. The stiffness of ITZ171
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(a) (b)

Figure 5: Modelling fibres: a) 3D frame element for fibres and b) link element for the
interaction between fibres and matrix.

elements are determined by the harmonic mean of the stiffnesses of matrix and aggregate.172

The fibres are idealised as linear elastic structural frame elements (McGuire et al., 2000),173

which are placed on the positions of the line segments (Figure 5a). Interactions between174

the frame elements representing fibres and the background network representing matrix175

and ITZ are modelled by means of link elements as described in Yip et al. (2005) (Fig-176

ure 5b). This type of link elements was originally used for the modelling of bond in177

reinforced concrete (Ngo and Scordelis, 1967), and was more recently applied to network178

models in Bolander and Saito (1997); Montero-Chacón et al. (2017). Rigid body kine-179

matics are used to determine, from the nodal degrees of freedom of the link and frame180

elements, the translation and rotation jumps at the node of the frame element (Figure 5b).181

The coordinate system for these jumps is orientated so that one of the axes is aligned182

with the axial direction of the frame element. For the translation jump in the direction of183

the frame element, an elasto-plastic model described in Section 2.3 is used to model the184

slip between the frame element and the background network. For the other components,185

a linear force-displacement law with a 1000 times higher stiffness than the elastic stiffness186

of the bond law is applied.187

Reduction of the embedded length due to pullout of the fibres as discussed in detail in188

Naaman et al. (1991) is not modelled here, since only small displacements with respect189

to the pull-out length are considered. Computationally more efficient semi-discrete ap-190
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proaches described in Kang et al. (2014); Kang and Bolander (2017) would be well suited191

to describe the full pull-out process, since these approaches incorporate important features192

of the fibre-matrix interaction without modelling individual degrees of freedom.193

Periodicity with respect to cell boundaries is introduced for both network geometry and194

boundary conditions. This is achieved by using a method that was originally proposed195

in Grassl and Jirásek (2010) for two-dimensional analyses and then extended to three196

dimensions in Athanasiadis et al. (2018) for hydro-mechanical problems. For every random197

point placed in the cell, 26 periodic image points in the adjacent cells are created. The198

two dual tessellations are then performed for the points in the cell and the periodic image199

points. In the resulting network, elements cross the boundaries of the cell. In Figure 6,200

the periodic cell with two out of 26 adjacent cells is shown.201

Figure 6: Periodic generation of background network.

As an example, elements I ′ − J and I − J ′ cross the boundary of the cell. These ele-202

ments are used for computing the response of the periodic cell. However, only degrees203

of freedom (DOF) of nodes located inside the periodic cell are determined. For nodes204

outside the periodic cell (I ′ and J ′), which belong to elements crossing the boundary,205

the DOF are determined from those of the periodic image nodes inside the cell (I and206

J , respectively) and six average strain components (εxx,εyy,εzz,εxy,εyz,εxz), which are ap-207

plied to the cell. With these average strain components and the work conjugated stress208

components (σxx,σyy,σzz,σxy,σyz,σxz), the loading of the periodic cell is controlled. This209

approach has the advantage that localised fracture process zones can occur anywhere in210
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the periodic cell along the direction of loading and are not strongly influenced by the211

boundaries of the cell. Analyses of boundary value problems without the use of periodic212

boundary conditions would normally require strengthening of the material close to the213

ends of the specimen to avoid fracture to occur at the boundaries. Furthermore, in alter-214

native formulations of periodic boundary conditions, in which the elements close to the215

boundary are aligned so that the nodes are located on the boundary, the periodicity of216

the spatial arrangement of the network is not maintained. A detailed description of the217

present periodic formulation can be found in Grassl and Jirásek (2010) and Athanasiadis218

et al. (2018). This approach is applied to both the background network and the frame219

and link elements. An example of the background network representing the three phases220

of matrix, aggregates and ITZ is shown in Figure 7a. Fibres with their corresponding link221

elements are shown in Figure 7b.222

(a) (b)

Figure 7: Network model: (a) Network of discrete elements representing matrix (yellow),
aggregates (blue) and ITZs (red). (b) Fibre frame elements (green) arranged indepen-
dently of background network and links (red) connecting fibres to network nodes. Colours
refer to online version.

2.3 Constitutive models223

The constitutive response of the background network representing aggregates, matrix and224

ITZs are modelled by linear elasticity and damage mechanics. For matrix and ITZ, a225
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scalar damage model is used of the form226

σ = (1− ω) Deε (4)

where σ and ε are the stress vector and strain vector, respectively, De is the elastic227

stiffness matrix and ω is the damage parameter ranging from 0 (undamaged) to 1 (fully228

damaged). For a detailed description of this constitutive model, see Grassl and Bolander229

(2016).230

By using the special network generation in Section 2.2 and choosing the stiffness matrix De231

so that the axial stiffness component is equal to the shear stiffness components, the stress232

and strain fields are elastically homogeneous and produce zero Poisson’s ratio (Yip et al.,233

2005). A global non-zero Poisson’s ratio can be obtained by choosing lower shear than234

axial stiffness components. However, the elastic response is then no longer homogeneous235

as discussed in (Yip et al., 2005). This is a shortcoming of the present lattice approach,236

which can be overcome by techniques described in (Asahina et al., 2017). The influence237

of the elastic Poisson’s ratio on the results of the present analyses is very small, since238

the response is dominated by nonlinear processes. The onset of damage is determined by239

an equivalent strain expression which gives an ellipsoidal strength envelope in the stress240

space with the shear and compressive strength being greater than the tensile strength as241

described in Grassl and Bolander (2016). The three input parameters for this strength242

envelope are the tensile strength ft, shear strength fq = 2ft and compressive strength243

fc = 10ft. The damage variable is determined from an exponential softening stress-244

crack opening curve (σ-wc) with tensile strength ft and parameter wf , which controls the245

slope of the softening curve (Figure 8). The area under the stress-crack opening curve246

is the fracture energy GF = ftwf . With this approach, the resulting load-displacement247

curves of tensile fracture simulations are independent of the element length, if the inelastic248

displacements localise in element length dependent zones. The dissipated energy rate ḋ249
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(a) (b)

Figure 8: Constitutive models for a) softening in the matrix and b) bond-slip.

per unit cross-sectional area in the network element is computed as250

ḋ = hω̇
1

2
ε : De : ε (5)

This dissipated energy is used in Section 4 to present the fracture process zone. Aggregates251

are assumed to be elastic. However, fracture in aggregates could be simulated in future252

studies with this approach, since aggregates are discretised by multiple network elements.253

Fibres are modelled to be elastic with a Young’s modulus Es. For the links between the254

fibres and the network model, an elasto-plastic model in the tangential direction of the255

fibre is used which is illustrated in Figure 8b. Here, τ0 is the limit stress at which plastic256

slip s occurs. The stiffness Kb controls the elastic response of the link. In the analyses, Kb257

is set to a large enough value (stated in Section 4) so that the results are not influenced258

significantly by it, but small enough so that no numerical problems are created. The259

dissipated energy rate ḋ per unit area of embedment for the constitutive model of the link260

element is261

ḋ = (s− sp)Kbṡp (6)

Here, ṡp is the rate of plastic slip.262
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2.4 Roughness evaluation263

The fracture processes are analysed by evaluating the evolution of spatial distribution264

of dissipated energy. For the present evaluation, both dissipation due to damage in the265

structural network elements, as well as dissipation due to plastic slip in the link elements266

are considered. To each element in which energy is dissipated, a crosssectional area with267

a centroid as shown in Figure 9 is associated. For the elements used for the background268

network, these are the mid-crosssections with the centroid C shown in Figure 4b. For the269

link elements, the crosssectional area is Ab shown in Figure 5b and the centroid is the270

node of the frame element to which the link element is connected (node H in Figure 5b).271

Figure 9: Evaluation of roughness from dissipated energy density of mid crosssections of
network elements.

272

Firstly, the mean of all heights of centroids of crosssections is calculated as273

z̄ =
N∑
i=1

wizi (7)

Here, z is measured in the direction of the applied tensile strain with the bottom of the274

cell used as the origin. Furthermore, wi are the weights of the individual crosssections,275

which are calculated as276

wi =
Ai∆di

N∑
k=1

Ak∆dk

(8)

where Ai and ∆di are the area and increment of dissipation per unit area, respectively,277
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of the facet i. Then, the standard deviation ∆h is calculated as278

∆h =

√√√√ N∑
i=1

wi(zi − z̄)2 (9)

This standard deviation is a measure related to the width of the fracture process zone,279

which takes into account the spatial arrangement and intensity of the dissipation events.280

It is smaller than the total width of the fracture process zone, which is simply defined281

as the zone in which energy is dissipated, but does not provide information about the282

intensity of these events. For a localised crack surface with equal energy dissipation in all283

elements whose crosssections form this surface, the measure used is equal to the standard284

deviation of the roughness distribution of the crack surface, which can be determined285

experimentally as described in Xenos et al. (2015). Because of this geometrical link to286

the fracture surface, the method is called here roughness evaluation. Nevertheless, for287

energy dissipation in overlapping zones and fibres, it would not be possible to determine288

the value of ∆h experimentally by means of evaluation of the roughness of the surface289

alone.290

3 Analyses291

The network modelling approach described in Section 2 is applied to analyse fracture in292

cubic periodic cells of an edge length of 100 mm subjected to direct tension as shown in293

Figure 10. For this setup, the average strain in the axial y-direction (εyy) is monotonically294

increased, which results in a reactive stress component in the y-direction (σyy), which in295

the presentation of the results is called σ. All other average stress components (σxx, σzz,296

σxy, σyz and σxz) are kept equal to zero. The analyses are performed quasi-statically with297

an incremental-iterative approach (see e.g. de Borst et al. (2012)). The iterative part is298

based on a modified Newton method using the secant stiffness for the damage model for299

matrix and ITZ, and the elastic stiffness for the elasto-plastic model for the links between300
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fibres and background network.301

Figure 10: Setup for direct tension analysis with the periodic cell.

Four groups of analyses are carried out. For each group, ten random generations of back-302

ground networks and meso-structures are performed. The network is generated with a303

minimum distance dmin = 3 mm between the randomly placed points. The first group304

of analyses consists of a network representing matrix without any meso-scale features305

explicitly incorporated. In the second group of analyses, the network of elements repre-306

sented matrix, aggregates and ITZs. For these analyses, the volume fraction of aggregates307

generated with the techniques described in Section 2.1 is ρa = 0.8 with a maximum and308

minimum sieve size da,max = 16 mm and da,min = 8 mm, respectively. In the third group309

of analyses, fibres with a length lf = 3 cm, a diameter df = 0.75 mm and a fibre vol-310

ume fraction of ρf = 0.01 are used. Finally, the fourth group consists of combinations311

of aggregates and fibres with the same input as for the analyses with only one phase.312

The input parameters for the different phases of the background network are shown in313

Table 1. These input values are in the typical range of values used for meso-scale analyses314

of concrete in the literature (Grassl et al., 2012), where it was shown that they provide315

good agreement with experimental results. For fibres, a modulus of Ef = 200 GPa is316

used. The elastic stiffness and limit stress of the link elements is set to Kb = 3000 GPa317

and τ0 = 4 MPa, respectively.318
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Table 1: Input values for the background network. The modulus E of ITZ is determined
as harmonic mean of moduli of matrix and particle.

Phase E [GPa] ft [MPa] GF [J/m2]
Matrix 30 3 100
Particle 90 - -

ITZ 45 1.5 50

4 Results319

The results of the direct tension analyses of the four groups of material setups are320

shown in the form of stress-displacement curves, spatial patterns of dissipated energy and321

roughness-displacement curves. The displacement is determined as the average strain322

multiplied by the cell length a (Figure 10). For the stress-displacement and roughness-323

displacement curves, the mean of the quantities of random analyses are shown.324

The mean stress-displacement curves for four groups of material setup are shown in Fig-325

ure 11. For the plain configuration with matrix material only, the stress-displacement326

curve showed the typical response of quasi-brittle materials subjected to direct tension.327

In the pre-peak, the response is linear elastic in the first part and then exhibits small328

non-linearities just before the peak. The post-peak regime shows steep softening, which329

then flattens with the average stress approaching zero. The peak stress is greater than the330

input tensile strength, because the stress in the network elements consists of combinations331

of axial and shear components. With the ellipsoidal strength envelope used, the combined332

normal and shear stress components result in a greater strength than a pure tensile stress333

component. The addition of aggregates strongly reduces the peak stress because of the334

weak ITZs between aggregates and matrix. Furthermore, the initial stiffness is slightly335

increased due to the greater stiffness of the aggregates. If instead of aggregates only fibres336

are added to the matrix, the peak stress is only slightly increased compared to the plain337

peak stress. However, the tail of the stress-displacement curve is strongly influenced by338

the presence of the fibres with a significant bridging stress present after the initial soft-339
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ening. For combinations of aggregates and fibres, the fibres cause again a small increase340

of the peak stress compared to the aggregate only case and result in a similar bridging341

stress at the ultimate displacement applied in the analyses.342
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Figure 11: Meso-scale analysis: Mean stress versus displacement for four groups of mate-
rial setups (plain, aggregates, fibres and aggregates+fibres). The symbols refer to stages
for which the crack patterns are shown in Figures 12 and 13. Furthermore, the lines refer
to empirical estimates in (10) and (11).

For the analyses involving fibres, the peak and bridging stresses are compared to empirical343

estimates reported in Naaman (1987). For the peak values of the stress of the analyses344

with fibres, the peak stress is345

σcc = σmu (1− ρf) + α1α2τ0ρf
lf
df

(10)

Here, α1 and α2 are factors taking into account the fibre orientation and fraction of bond346

strength mobilised, respectively. Furthermore, σmu is the peak stress of the material347

without fibres. The stress after cracking is estimated as348

σpc = 4λ1λ2τ0ρf
lf
df

(11)
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where λ1 and λ2 are factors for average pullout length and postcracking orientation effi-349

ciency, respectively. These expressions are compared to the numerical results in Figure 11350

using α1 = 0.5, α2 = 0.2, λ1 = 0.25 and λ2 = 0.5, which are typical values for the type351

of fibres used. It should be noted that (10) only predicts the increase of strength due to352

the presence of fibres, which is very small. The values for σmu in (10) are obtained for the353

corresponding analyses without fibres.354

All the gobal stress-displacement curves in Figure 11 exhibit softening which is usually355

accompanied by localisation of displacements. Detailed information about the localisation356

process is studied in the form of spatial distribution of mid-crosssections at which energy357

dissipation occurs. The dissipation patterns for the four groups of analyses are shown in358

Figures 12 and 13 for stages at peak and in the post-peak, respectively, for one random359

analysis.360

plain agg fibre agg+fibre

Figure 12: Meso-scale analyses: Crack patterns of direct tension analysis at stage 1 marked
in Figure 11. Orange (online version) polygons refer to mid crosssections in which damage
increases at this stage of the analysis.

The corresponding stages are marked in Figure 11. At stage 1 at peak, the dissipation rate361

is distributed in the entire specimen (Figure 12). For plain and fibre analyses, the dissi-362

pated energy is distributed uniformly. For analyses involving aggregates, the distribution363

is more heterogeneous, because at the position of the elastic aggregates no dissipation364

occurs. At stage 2 in the softening regime, the rate of dissipation is strongly localised365

(Figure 13). The y-position of the localised region of rate of dissipation differs from the366

analysis to analysis because of the periodic cell used. For all groups, the localised zone is367
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plain agg fibre agg+fibre

Figure 13: Meso-scale analyses: Crack patterns of direct tension analyses at stage 2
marked in Figure 11. Orange (online version) polygons refer to mid crosssections in
which damage increases at this stage of the analysis.

rough. For the plain analyses, this is due to the irregular background network used. For368

the other groups, the roughness of the zone of dissipated energy is also influenced by the369

heterogeneity in the form of aggregates and fibres. For instance, the spatial distribution370

of energy for the aggregate analyses in Figure 13 appears to be wider than for the plain371

case. These plots of dissipation rate are from only one random analysis of each group.372

Also, all mid-crosssections at which energy is dissipated at this stage of the analysis are373

shown without discriminating between the amount of energy that is dissipated at the374

crosssections.375

For a quantitative representation of the evolution of the zone of rate of dissipated energy,376

the roughness measure described in Section 2.4 is used. The mean of the measure of the377

width of the fracture process zone ∆h in (9) versus displacement is shown in Figure 14.378

The symbols in the figure refer to the two stages at which the crack patterns are shown379

in Figures 12 and 13. The overall roughness evolutions for the four groups of analyses380

are overall very similar. At the start of the analysis, no energy is dissipated, so that381

∆h is not defined. For the uniformly distributed cracking in pre-peak regime, ∆h is382

approximately equal to 30 mm. This value agrees well with the theoretical value for383

the standard deviation of a uniform distribution over the cell size, i.e. the interval from384

0 to 100 mm, which is 100/
√

12 = 28.9 mm. At the start of the post-peak regime, the385

width of the fracture process zone drops down to values less than 5 mm for all groups386
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of analyses. This drop occurred in the initial part of the softening regime at a stage at387

which little energy had been dissipated.388
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Figure 14: Meso-scale analysis: Measure of width of fracture process zone ∆h versus
displacement δ for random analyses with aggregates, and with aggregates and fibres. The
symbols refer to stages for which the crack patterns are shown in Figures 12 and 13.

A detail of the evolution of ∆h after the drop is shown in Figure 15. The roughness ∆h389

is the smallest for the analyses with only the matrix material. After the abrupt drop,390

∆h remains almost constant. Adding aggregates results in an increase of the roughness391

compared to the plain case. Again, the value remains constant after the drop. If, instead392

of aggregates, fibres are added to the background lattice, the roughness is again greater393

than for the plain case. However, roughness is not constant with increasing displace-394

ment. Instead, it increases with increasing displacement. The same trend is observed if395

aggregates and fibres are combined. This increase is due to the energy dissipated by the396

slip between fibre and matrix defined in (6). Before the abrupt drop, there is no energy397

dissipation due to fibre slip. Only once the crack has formed, the slip between fibres398

and matrix starts. In the present approach, fibre pull out is not modelled, which means399

that the embedded length of fibres does not change. Consequently, it is expected that400

for the analyses involving fibres, ∆h would reach a constant value once all fibres crossing401
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Figure 15: Meso-scale analysis: Stress versus displacement analyses with aggregates and
aggregates with fibres. The symbols refer to stages for which the crack patterns are shown
in Figures 12 and 13.

the localised zone of displacements are significantly stressed so that they dissipate energy402

along their short embedded length, and the damage in the matrix so high that the energy403

dissipation in the matrix is insignificant. If fibre pullout would be taken into account404

as well, the dissipated energy should eventually reduce to zero once all fibres are pulled405

out. For a fibre length of 3 cm as used in this study, this point would be reached when406

a displacement of 1.5 cm is applied to the specimen, which is 100 times higher than the407

maximum displacement considered here.408

The evolution of dissipated energy for the four groups of analyses is shown in Figure 16.409

The symbols refer to the two stages at which the dissipation patterns are shown in Fig-410

ures 12 and 13. Here, stage 1 marks the peak of the stress-displacement curves shown411

in Figure 11. For all analyses, the dissipation in the pre-peak regime is very small. For412

plain and aggregates only cases, the majority of dissipation occurs in the first part of the413

post-peak regime and then approaches a constant value. For the analyses with fibres, the414

initial dissipation in the very first part of the post-peak regime is slightly less than for415
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the analysis without fibres. However, this difference is very small. In the later stage of416

the post-peak regime, the fibres contribute significantly to the dissipation, so that the417

overall dissipation of the analyses with fibres is much greater than for aggregates only.418

Only fibres, which cross the localised zone shown in Figure 13, are stretched sufficiently419

to contribute to the dissipated energy.420
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Figure 16: Meso-scale analysis: Dissipated energy D versus displacement δ for the four
groups of analyses (plain, aggregates, fibres and aggregates+fibres). The symbols refer to
stages for which the crack patterns are shown in Figures 12 and 13.

The interplay of energy dissipation in the different phases (matrix, ITZ and slip between421

fibres and matrix) is illustrated for the four groups of analyses in Figure 17. From this422

figure, it can be seen that fibres only contribute to the dissipation in the post-peak regime423

of the stress-displacement curve in Figure 11. Furthermore, the matrix material dissipates424

more energy if fibres are present, which is most likely due to the generation of multiaxial425

stress states in the material. The dissipation within the ITZs is not affected by the426

presence of the fibres, since the majority of energy dissipation in the ITZs occurs early427

in the fracture process before the fibres are activated. Furthermore, fibres are placed so428

that no overlap with aggregates occurs. Consequently, the ITZs which are located at the429

interface between aggregates and matrix would not be expected to be strongly influenced430
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Figure 17: Meso-scale analysis: Dissipated energy D versus displacement δ for the four
groups of analyses (plain, aggregates, fibres and aggregates+fibres) in the three phases of
material in which energy is dissipated (matrix, ITZ, link be. The symbols refer to stages
for which the crack patterns are shown in Figures 12 and 13.

by fibres.431

5 Conclusions432

Network meso-scale analyses of fracture processes of periodic cells subjected to direct433

tension were performed with the aim to investigate the link between material heterogeneity434

and width of the fracture process zone. The meso-structures studied here consist of a435

quasi-brittle matrix with aggregates, fibres and combinations of aggregates and fibres.436

For all material configurations, the width of the fracture process zone reduces abruptly437

after the peak load to the width of a rough crack. This strong localisation happens very438

early in the post-peak regime at a stage at which very little energy has been dissipated439

during the fracture process. For material configurations which include only matrix and440

aggregates, the width of the fracture process zone remains constant after the abrupt441
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drop. For material configurations with fibres, the width of the fracture process zone442

increases after the drop since the slip between fibres and matrix contributes to the energy443

dissipation.444
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