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We describe a method for detection of specific RNA targets 

in cultured cells at the electron microscopic (EM) level using 

pre-embedding in situ hybridization (ÏSH). The specimens 

were monitored by reflection-contrast microscopy (RCM) be­

fore processing for EM. A good balance between preserva­

tion of ultrastructure and intensity of hybridization signals 

was obtained by using mild aldehyde fixation followed by 

saponin permeabili zat ion. Digoxigenin-labeled probes were 

used for detection of human elongation factor (HEF) mRNA 

in HeLa cells, immediate early (IE) mRNA in rat 9G cells, 

and 28S rRNA in both cell lines. The hybrids were detected 

immunocytochemically by the peroxidase/diaminobenztdine 

(DAB) method or by ultra-small gold with silver enhance­

ment. Comparison of these methods favored the peroxi­

Introduction
In situ hybridization (ISH) at the light microscopic (LM) level has 

become a widely used method for examining messenger RNA 

(mRNA) expression and distribution in tissues and single cells. This 

method, however, is of insufficient resolution to study the local­

ization of individual RNA sequences in relation to cellular ultra­

structure. For this purpose, ISH methodologies have been devel­

oped that allow visualization of RNAs at the electron microscopic 

(EM) level. The first EM ISH report by Jacob et al. (1) described 

a post-embedding method with radioactive labeled probes. The 

poor localization property of this method was fundamentally over­

come by Binder et al, (2) by applying a non-radioactive ISH method. 

Many EM ISH protocols have since been described. These methods
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Department of Medical Sciences (NWO-MW), Grant no. 900-534-079.

2 Correspondence to: Merryn V.E. Macville, Dept, of Cytochemistry &

Cytometry, Faculty of Medicine, U. of Leiden, Sylvius Laboratories, Was-

senaarseweg 72, 2333 AL Leiden, The Netherlands.

5 Present address: Dept, of Cell Biology and Histology, University of 
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dase/DAB system. The accessibility of RNA in the different 

cell compartments was dependent on the extent of cross- 

linking during primary fixation even after permeabilization 

with saponin. By using the most optimal ISH protocol and 

the peroxidase/DAB system, we detected 285 rRNA over all 

ribosomes in the cytoplasm but not in the nucleoli, and IE 

mRNA in a large spot with many smaller spots around it 

in the nucleoplasm as well as in speckles over the cytoplasm. 

The sensitivity of the method is such that HEF housekeep­

ing gene transcripts were detected in the cytoplasm. ( J  H i sto­
chern Cytochem 43:1005-1018, 1995)
KEYWORDS: In situ hybridization; RNA; Transmission electron m i­

croscopy; Pre-embedding; Saponin; Rat 9G; HeLa; Cytochemistry.

employ post- or pre-embedding approaches and a variety of alde­

hyde fixations and pre-treatments. In addition, they use different 

immunological detection systems and reporter molecules, includ­

ing colloidal gold of different sizes (3-8), enzyme cytochemical 

precipitates [e.g., peroxidase/diaminobenzidine (DAB)] (9-12), eo- 

sin-mediated DAB photo-oxidarion (13), and ultra-small gold with 

silver enhancement (14,15),

A survey of EM ISH studies thus far leads to the general conclu­

sion that an optimal balance between preservation of ultrastruc­

ture and hybridization efficiency is difficult to obtain. When a good 

ultrastructure is present only very abundant RNAs, expressed in 

specialized or virus-infected cells, are detectable with EM ISH. Less 

abundant RNAs are detectable only when ultrastructure is com­

promised by suboptimal fixation or harsh pre-treatments.

In situ hybridization efficiency is determined by the accessibil­

ity of RNA targets, casu quo penetration of probes and immuno­

chemicals, as well as by retention of RNAs. Extensive cross-linking 

during primary fixation will favor preservation of ultrastructural 

morphology, but is contraindicated for accessibility of RNA. The 

challenge for EM ISH is therefore how to achieve full penetration
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of probes and immunochemicals without compromising ultrastruc- 

turai morphology.

In post-embedding techniques, RNA sequences are directly ac­

cessible to hybridization reagents at the sectioned surface but are 

therefore also more susceptible to RNAses. Furthermore, the embed­

ding medium masks most of the internal RNA targets, leading 

to suboptimal detection efficiency (11,16-18). Even in ultra-thin 

cryosections, it is difficult to reveal internal targets (11,16,17,19). 

In principle, higher detection efficiency can be obtained by a pre­

embedding approach if, as discussed, fu ll penetration of detection 

chemicals can be achieved without affecting ultrastructural mor­

phology.

In fixed cells, the plasma membrane, cytoplasmic membranes, 

and the cross-linked proteinaceous cell matrix constitute the main 

barriers to ISH reagents. Treatments to increase the penetration 

of these reagents are often targeted to these barriers. Recently we 

evaluated several aldehyde fixatives and treatments for their effects 

on reagent penetration and morphology in a combined light (LM) 

and transmission electron microscopic (TEM) study (20). We showed 

that digestion of the proteinaceous cell matrix by, e.g., pepsin in­

deed improved reagent penetration but that the ultrastructural mor­

phology was disrupted to an unacceptable extent. Targeting the 

lipid component of cell membranes by treatments with organic sol­

vents, such as ethanol and xylene, also proved too harsh for preser­

vation of subcellular integrity.

Several pre-embedding EM studies for immu no localization of 

antigens have evaluated the use of detergents such as Iti ton X-100, 

Nonidet P40, saponin, digitonin, or bacterial toxins for their per- 

meabilizing effects (for reviews see 21,22). In most of these studies 

saponin was the permeabilizing agent of choice (23-25), In addi­

tion, for LM ISH the benefit of saponin as a permeabilizing agent 

has been reported (26). Saponin treatment does not affect or only 

minimally affects the ultrastructure of aldehyde-fixed cells and facili­

tates the penetration of detection reagents, which is explained by 

the fact that extraction of the cholesterol component leads to suffi­

ciently large “holes” to allow diffusion of antibodies through mem­

branous structures and that the retention of phospholipids and 

membrane proteins provides sufficient ultrastructural features on 

TEM examination (27-31).

Although removal of the membrane barriers by saponin per­

meabilization facilitates reagent penetration, this does not neces­

sarily mean that the accessibility of RNA targets is improved. 

Depending on the extent of aldehyde fixation, the cross-linked pro­

teinaceous matrix may still lim it the penetration of probe, anti­

body, or both. It was therefore of interest to study the influence 

of saponin permeabilization on ISH signals and ultrastructural mor­

phology in relation to formaldehyde and glutaraidehyde fixations 

of various cross-linking strengths. Before processing the specimens 

for TEM, we monitored the effects of saponin and fixations on mor­

phology and ISH signal by reflect ion-con trast microscopy (RCM). 

We have previously shown that the preservation of ultrastructural 

morphology can be predicted to a large extent from RCM interfer­

ence patterns (20). In addition, RCM provides a means to assess 

ISH signal intensity by the reflection properties of the DAB precipi­

tate (32). Therefore, RCM evaluation of ISH results allowed rapid 

establishment of optimal fixation and permeabilization conditions 

for EM ISH. Furthermore, we compared peroxidase/DAB detec­

tion with ultra-small go Id/silver enhancement for their use in the 

EM ISH technique.

Materials and Methods
Cell Culture. Rat 9G fibroblasts and HeLa cells were grown to subcon- 

fluency on polystyrene ó-well culture plates (Type 3506; Costar Europe, Bad- 

hoevedorp, The Netherlands) or sterilized glass slides in Dulbecco’s m ini­

mal essential medium supplemented with 5 % (v/v) fetal calf serum at 37 °C 

in a 5% CO2 atmosphere. Immediate early (IE) mRNA expression was in ­

duced in 20-30% of the rat 9G cell population by addition of 50 (ig/ml 

cycloheximide (Sigma; St Louis, MO) for 5 hr at 37 °C to exponentially grow­

ing cells (33).

Nucleic Acids and Labeling. For detection of rRNA, a pGEM plasmid 

containing a 2.1 KB insert specific for the 3’ site of human 2SS rRNA was 

used (34,35). Fot detection of human elongation factor (HEF) mRNA in 

HeLa cells, a plasmid probe containing HEF-1 cDNA has been used (36). 

For detection of IE mRNA in rat 9G cells, a genomic plasmid probe con­

taining the 5 KB Sphl-Sall fragment of the transfected human cytomegalo* 

virus (HCMV) IE region has been used (33). As negative control probes, 

plasmids were used containing either a satellite-III sequence of the lq l2 

region of human chromosome 1 (37) or 1 KB cDNA sequence of the 

caudodorsal cell hormone gene of the pond snail Lymnaea stagnalis (38). 

Probes were labeled with digoxigenin-ll-dUTP (Boehringer-Mannheim; 

Mannheim, Germany) by nick-translation and purified by Sephadex G50 

(Pharmacia Biotech; Woerden, The Netherlands) gel filtration. Fragment 

length of labeled probes was 100-400 BP as estimated by Southern blotting.

Fixations and Pce-treatments. After culturing, cells were washed briefly

with Ringer’s PBS (1.4 mM Na2HP0 4 /NaH2PÛ4, 150 mM NaCl, 4 mM 

KC1, 2.2 mM CaCh, pH 7.4) at room temperature (RT) and fixed for 30 

min at RT in 1% (w/v) formaldehyde (FA) or 1% FA in combination with 

0.05% or 0.5% (v/v) glutaraidehyde (GA, EM grade; Fluka Chemie; Buchsr 

Switzerland) in 0.15 M NaHCOj, pH 8.6 (39). Formaldehyde solutions were 

prepared from paraformaldehyde shortly before use. After fixation, cells 

were consecutively permeabili zed in 0.1% saponin (Fluka)/PBS (136 mM 

NaCÎ, 2.7 mM KC1, 8.4 mM Na2HP04, 0.9 mM KH2PO4, pH 7.4) for 30 

min at RT, post-fixed in 1% FA/PBS for 10 min, and incubated with 1% 

(w/v) hydroxyl ammonium chloride (Sigma)/PBS for 10 min to quench 

fixation-induced free aldehydes. The cells were rinsed in RNAse-free PBS 

between che incubation steps. Alternatively, saponin permeabilization and 

post-fixation were omitted from the protocol.

Pre-embedding In Situ Hybridization. The pre-embedding EM ISH 

procedure was performed on polystyrene 6-well culture plates. The hybrid­

ization conditions were based on the LM ISH protocol previously described 

for cultured cells (40,41). A hybridization mixture, consisting of 60% 

deionized formamide, 2 x SSC (0.3 M NaCl, 0.03 M sodium citrate), 25 

mM NaH2P0 4 , 10 mM EDTA, pH  7.4, 100 jig/ml herring sperm DNA, 

100 ¡ig/ml yeast tRNA, and 5 ng/(.il labeled probe, was denatured at 80°C 

for 3 min and a total volume of 10 |il was used under a 20 x 20-mm 

piece of Parafilm. The hybridization was allowed to proceed for 16 hr at 

37 °C in a moist chamber. Three post-hybridization washes of 10 min each 

were performed in 60% formamide/2 x SSC at 37°C. Negative controls 

consisted of hybridizations without probe or with a nonspecific probe (mock 

solution), pre-treatment of cells with RNAse-A (100 |Xg/ml 2 x SSC) be­

fore hybridization for 30 min at 37 °C, and hybridizations on cells that do 

not express the relevant RNA sequence.

Hybrid Detection by Immunoper oxidase/DAB. After stringent washes 

(40,41), digoxigenin-labeled RNA-DNA hybrids were detected with per­

oxidase-conjugated anti-digoxigenin F(ab)2 fragments (Boehringer-Mann­

heim) diluted 1:250 in a buffer containing 600 mM NaCl, 100 mM Tris-
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HCl* pH 7.4, 0.5% (w/v) blocking reagent (Boehringer-Mannheim), and

0.1% saponin. After incubation for 2 hr at 37°C in a moist chamber, cells 

were rinsed in 150 mM NaCl, 100 mM Tris-HCl, 0.1% saponin, pH 7.4, 

three times for 10 min. The immunodetection buffers contained saponin 

only if the cells were treated with saponin after primary fixation. For visu­

alization of the peroxidase label, cells were incubated at RT for 20 min 

ín the dark with 0.5 mg/ml 3,3'-diaminobenzidine tetrahydrochloride (DAB; 

Sigma) in 50 mM Tris-HCl, pH 7.4, containing 10 mM imidazole and 0.005 % 

(v/v) H2O2. Cells were post-fixed in 2% GA/NaHC03  for 10 min and sub­

sequently in 1% OsO^M illonig’s phosphate (0.16 M NaH2PO,|/0.63 M 

NaOH, pH 7.3) for 30 min at 4°C before RCM monitoring or TEM embed­

ding procedures.

Hybrid Detection by Ultra-small Gold and Silver Enhancement. After 

stringent washes, cells were washed in PBS and incubated for 30 min at 

37°C in high-salt PBS (586 mM NaCl, 2.7 mM KC1, 8.4 mM Na^HPO^,

0.9 mM KH4PO4, pH  8.0) supplemented with 0 .1% acetylated BSA 

(Aurion; Wageningen, The Netherlands), 0 .1% cold water fish skin gela­

tin* and 0.1% saponin. Anti-digoxigenin F(ab)2 fragments conjugated to 

ultra-small gold particles (~0.8 nm; Aurion) were diluted 1:100 in the same 

buffer. After overnight incubation at 37°C in a moist chamber, specimens 

were washed in incubation buffer six times for 15 min, in PBS three times 

for 5 min, and in double-distilJed water six times for 5 min. After post­

fixation in 2% GA/NaHC03  for 10 min and 1% OsO^/Millonig’s phos­

phate for 30 min at 4°C, silver enhancement according to Danscher (42) 

was performed for 45 min. Cells were then further processed for microscopy.

Embedding and Ultramicrotomy. Cells were embedded in epon resin 

for cross-sections as described previously (20). For ultra-thin sections paral­

lel to the culture dish, regular Beem capsules without a cap were filled with 

epon and placed inverted over resin-infiltrated cells. After polymerization 

for 48 hr at 60°C, the blocks were broken from the polystyrene wells, ex­

posing flat-embedded cells at their surfaces. Ultra-thin sections (60-90 nm) 

were cut with a diamond knife on a Reichert Ultracut E ultramicrotome 

and mounted on carbon-coated parlodion films on copper grids,

Microscopy. The effects of fixation and pre-treatments on ISH signals 

and cell morphology were monitored with a Leitz Orthoplan microscope 

(Ernst Leitz; Wetzlar, Germany) adapted for reflection-contrast microscopy 

(32,43). RCM micrographs were taken on 100 ASA daylight colorfilm. For 

TEM, we used a Philips EM 410LS operating at 60 or 80 kV.

Results

RCM Observations
On the basis of RCM interference patterns from cells devoid of ISH 

signal (i.e., rat 9G cells not expressing IE mRNA and HeLa cells 

hybridized in mock solution), we first examined the morphology 

of the cells exposed to different fixatives and pre-treatments (Table

1). Previously we have shown that ultrastructural morphology of 

rat 9G cells can be predicted from such interference patterns to 

a large extent (20). The criteria defined for rat 9G cells can also 

be applied to HeLa cells (unpublished results). When rat 9G cells 

were fixed with 1% FA without GA, they displayed concentrically 

arranged colors occupying about 20% of the cell surface, and a white- 

gray periphery. This pattern predicts a fairly well-preserved ultra- 

structural morphology. An identical color pattern was observed when 

such fixed cells were treated with saponin (Figure 1A). Cells fixed 

with 1% FA/0.05 % GAor 1% FA/0.5% GA showed concentrically 

arranged colors over 40-60% of the cell surface, both in the pres­

ence (Figures IB and 1C) and the absence of saponin treatment, 

predicting a well-preserved ultrastructural morphology.

Second, we examined the effect of saponin pre-treatment on 

ISH signal intensity in relation to the fixatives used. RCM has proven 

to be very sensitive for detection of very small amounts of DAB 

signal, which appears as white spots. Hereby, RCM extended the 

range for ISH signal detection. However, DAB loses its reflection 

properties, owing to absorption of incident light, when present in 

very large amounts (44). In that case, by examining the same im ­

age field by brightfield LM, DAB is clearly visible as a brown precipi­

tate. In the results presented here, brightfield LM was used in ad­

dition to RCM.

For all fixatives tested* the 28S rRNA ISH signal intensity in 

the cytoplasm of both rat 9G and HeLa cells increased considera­

bly as a result of saponin treatment (Table 2). The nucleoli, how­

ever, remained devoid of 28S rRNA ISH signal, even after 1% sapo­

nin treatment for 2 hr (data not shown).

IE mRNA is differentially expressed within a rat 9G population

(33), and therefore a favorable effect of saponin could not only lead 

to an increase in IE mRNA ISH signal intensity but also to an in­

crease of the percentage of detected IE mRNA-expressing cells. In ­

deed, saponin treatment resulted in a higher detection percentage 

of IE-mRNA-positive cells as well as stronger signals (Table 3). Figures 

lA-lC show representative hybridÌ2atton results for IE mRNA on 

rat 9G cells as shown by RCM for fixation with 1% FA, 1% FA/0.05% 

GA, and 1% FA/0.5% GA, respectively. IE mRNA was found in 

the cytoplasm and in one large spot in the nucleus, which proba­

bly represents the transcription site of the IE gene. Nuclear signals 

that could not be observed clearly by RCM were clearly visible when 

the same image field was examined by brightfield LM (data not 

shown).

The type of fixation proved to have a direct influence on the 

ISH signal intensity in saponin-treated cells. The strongest ISH sig­

nals were found in 1% FA-fixed cells for all RNA targets. The in-

Table 1. RCM and TEM observations o f the morphology o f cultured rat 9G and HeLa cells after ISH in the absence 
and presence o f saponin pre-treatment in correlation with primary fixation

Without-

saponin

W ith

saponin

RCM* TEM¿ RCM* TEM"

1 % formaldehyde + + + —

1% formaldehyde/0.05 % glutaraidehyde 4- + + + + + + +

1% formaldehyde/0 .5 % glutaraidehyde 4* + 4~ + + + + + + 4-

a Reflection-contrast microscopy. + + + , concentric colors over 60% of the cell; + + , 40% concentric colors; +, 20% concentric colors. 

b Transmission electron microscopy. + + , well-preserved ultrastructure; + , fairly well-preserved ultrasiruccurc; - , poor ultrastructure.
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heads) Is not visible In all IE mRNA-expressing cells (see text). From IE mRNA non-LoTessTno Ï Ï t e  t " 6 ° AB Sp. 0t ¡" th6nudeus <arrow-
rRNA ISH signais are present over the entire cytoplasm of all cells but not in nucleoli. Bars = 5 uni. patterns can be examined. (D-F) 28S
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Table 2 . RCM and TEM observations o f ISH signals for 28 S rRNA in rat 9 G and HeLa cells in 
o f saponin pre-treatment in correlation with primary fixation

the absence and presence

Without With
saponin saponin

RCM* TEM* RCM* TEM*

1% formaldehyde + — + + + + + +

1% formaldehyde/0.05% glutaraidehyde ± — + + + +

1% formaldehyde/0 .5% glutaraidehyde ± — +

a Reflection-contrast microscopy, + + + , very strong DAB; + + , strong DAB; +, clearly visible DAB spots; ± , weak DAB spots. 

b Transmission electron microscopy. + + + , very strong DAB; + +, strong DAB; ± , a few DAB spots; - , no DAB visible.

Table 3 . RCM and TEM observations o f ISH signals for IE mRNA in rat 9G cells in the absence and presence o f saponin 
pre-treatment in correlation with primary fixation

Without W ith

saponin saponin

RCM* TEM¿ RCM0 TEM¿

1% formaldehyde + 
1% formaldehyde/0.05% glutaraidehyde -  
1% formaJdehyde/0.5% glutaraidehyde

■+* *+■ + + + + 

+ + + +

+ ±

* Reflection-contrast microscopy. + + + , approximately 20% positive cells, many with very strong DAB; + + 

DAB; + , approximately 10% positive, none with very strong DAB; - , no signals,

b Transmission electron microscopy. + + + , in cytoplasm very strong DAB and in nucleus very strong main 

DAB spots and in nucleus very strong main spot with a few smaller spots; ± , in cytoplasm a few DAB spots and

, approximately 20% positive cells, a few with very strong

spot with many smaller spots; + + , in cytoplasm strong 

in nucleus main spot clearly visible; - , no DAB visible.

Table 4. RCM and TEM observations o f ISH signals for HEF mRNA in HeLa cells in 
saponin pre-treatment in correlation with primary fixation

the absence and presence o f

Without W ith

saponin saponin

RCM* TEM¿ RCM* TEM¿

1% formaldehyde ± -  
1% formaldehyde/0.05% glutaraidehyde -  -  
1% formaldehyde/0.5% glutaraidehyde

+ + + + 

+ + + "h

a Reflection-contrast microscopy. + + , strong DAB; ± , weak DAB speckles; - , no DAB visible. 

^ Transmission electron microscopy. + + , strong DAB spots; - , no DAB visible.

tensity of ISH signals gradually decreased when the G A  concentra­
tion in the fixative increased (Tables 2, 3, and 4). For ISH detection

• Y

efficiency of HEF mRNA in HeLa cells, the favorable effect of sapo­
nin was also evident (Table 4). HEF mRNA was exclusively local­
ized in the cytoplasm of 1% FA- and 1% FA/0,05% GA-fixed HeLa 
cells only when they were permeabilized with saponin. However, 
detection of HEF mRNA was not possible when cells were fixed 
with 1% FA/0.5 % GA, even when the cells were permeabilized 
with saponin. Clearly, the effect of saponin on RNA detection effi­
ciency is less beneficial as the extent of cross-linking increases.

TEM Observations
In accord with the predictions made on the basis of RCM interfer­
ence color patterns, the ultrastructural architecture of HeLa and
rat 9G cells fixed with 1% FA/0.05 % GA or 1% FA/0 .5% GA was
visibly unaltered after saponin treatment and subsequent hybrid­
ization and immunodetection (Table 1). Also in accord with the 
RCM predictions, ceils fixed with 1% FA but not treated with sapo­
nin showed poorer intracellular architecture compared to cells fixed 
with GA-containing fixatives (Table 1). However, RCM did not pre­

dict the deterioration of ultrastructural morphology of 1% FA-fixed 
cells as observed after saponin treatment (Figures 2 A, 3, and 5).

For all fixatives tested, 28S rRNA ISH signals that were observed 
in RCM but not in TEM when saponin pre-treatment was omitted 
were clearly visible in TEM when cells were pre-treated with sapo­
nin (Table 2). Cross-sections o f 1% FA-fixed cells demonstrated full 
penetration of 28S rRNA ISH signals into the cytoplasm (Figure 
2A), and parallel sections demonstrated a homogeneous cytoplas­
mic distribution (Figure 3). As expected from RCM (and bright­
field LM) results o f 28S rRNA ISH, nucleolar signals were not visi­
ble. In 1% FA-fixed cells, it was not possible to exactly localize 28S 
rRNA sequences to cell components because o f the poor morpho­
logical features of the cytoplasm.

A good balance between preservation of ultrastructural mor­
phology and 28S rRNA ISH signal was obtained when cells were 
primarily fixed in 1% FA/0.05 % GA and then treated with sapo­
nin. 28S rRNA ISH signals were clearly present over the rough en­
doplasmic reticulum and ribosomes throughout the entire cytoplasm 
o f rat 9G (Figure 2B) and HeLa cells (Figure 4A). In cells fixed 
in 1% FA/0.5 % GA, the ISH detection efficiency for 28S rRNA
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Figure 2. TEM images of cross-sections of rat 9G cells at low magnification (insets) and high magnification that were permeabilized with 0.1% saponin and hybrid­
ized with 28S rRNA. (A) Cells fixed with 1°/o FA show damaged ceil architecture but very strong DAB signal. (B) Cells fixed with 1% FA/0.05% GA show DAB 
fully penetrated Into and homogeneously distributed over the cytoplasm, revealing a clear association of 2ÔS rRNA with ribosomes. (C) Celts fixed with 1% FA/0.5% 
GA show a few DAB signals (arrow) and well-preserved ultrastructural morphology. N, nucleus; R, rough endoplasmic reticulum; M, mitochondrion. Bars = 0.5 
vim; insets = 5 ^m.
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Figure 3. TEM image of a 1% FA-fixed rat 
9G cell permeabilized with 0.1% saponin 
and hybridized for 28S rRNA. DAB signals 
are homogeneously distributed over the 
cytoplasm (C) but not in the nucleus (nu). 
N, nucleus. Bar = 1 |im; inset = 5 nm.
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was still low, and therefore only a few DAB spots were clearly dis­

cernible from cell constituents (Figure 2C).

The observed localization pattern of IE mRNA at the TEM level 

in the cytoplasm and nucleus of rat 9G cells was also strongly in ­

fluenced by the extent of cross-linking during primary fixation. 

In 1% FA-fixed and saponin-treated rat 9G cells, IE mRNA was 

found homogeneously over the cytoplasm and in one large nuclear 

spot, which was often located close to or in contact with the nu­

clear membrane. In addition, many smaller spots were observed 

dispersed over the nucleus but not over the nucleolus (Figure 5). 

In cells fixed with 1% FA/0.05 % GA, IE mRNA was localized in 

the cytoplasm in many foci associated with ribosomes. In the nu­

cleus, again one large spot was observed, but in contrast to the 1% 

FA-fixed cells, the hybridization spots around it were considerably 

smaller and fewer in number (Figure 6). W ith either fixative, 

20-30% of the rat 9G cell population displayed IE mRNA expres­

sion. This result is in agreement with ISH results observed with 

RCM (Table 3).

IE mRNA expression in rat 9G cells is high owing to a strong, 

inducible promoter-enhancer element in the transfected HCMV- 

IE transcription unit. To investigate whether less abundant mRNAs 

can be detected at the EM level, we performed ISH for detection 

of HEF housekeeping gene transcripts in HeLa cells (Table 4). In 

1% FA- and 1% FA/0.05 % GA-fixed HeLa cells that were subse­

quently treated with saponin, HEF mRNA was found in many foci 

dispersed over the cytoplasm. Ribosomes of the rough endoplas­

mic reticulum appeared to be devoid of label* which implies that 

HEF mRNA is associated with free or cytoskeleton-bound ribosomes. 

Nuclei were always devoid of label (Figure 7).

Hybrid Detection by Ultra-small Gold and 
Silver Enhancement

We investigated whether permeabilization with saponin allows de­

tection of intracellular targets by ultra-small gold conjugates and 

Danscher silver enhancement (42). In HeLa cells, detection of 28S 

rRNA-DNA hybrids resulted in much lower signal intensities with 

ultra-small gold/silver enhancement than with peroxidase/DAB in 

both LM, RCM, and TEM (compare Figures 4A and 4B). After sil­

ver enhancement, very small particles were observed next to very 

large particles (>200 nm). Moreover, as a result of ultra-thin sec­

tioning, large gold/silver particles caused local disruption of cell 

ultrastructure. In control experiments, cells that were hybridized 

with mock solution showed low background labeling over the nu­

cleus, and when the gold conjugate was omitted cells showed no 

labeling (data not shown), proving that silver enhancement was 

specific for gold particles.

Specificity o f ISH Signals
No ISH signals were obtained when hybridization was preceded 

by an RNAse-A treatment or when ISH experiments were performed 

using nonspecific probes. Moreover, nuclear ISH signals were ob­

tained without in situ dénaturation of nuclear DNA, implying that 

RNA was detected and not DNA.

In rat 9G cell populations, 20-30% of the cells expressed IE 

mRNA after cydoheximide induction. This is in agreement with
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Figure 5. TEM image of a 1% FA-fixed rat 9G cells permeabilized with 0.1% saponin and hybridized for IE mRNA. IE mRNA is present over the entire cytoplasm. 
In the nucleus, one large nuclear spot close to the nuclear membrane is surrounded by many small spots. IE mRNA non-expressing cells were devoid of DAB 
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Figure 7. Ultrastructural localization of HEF 
mRNA In HeLa cell fixed with 1% FA/0.05 
GA and permeabilized with 0.1% saponin 
demonstrates DAB spots in the cytoplasm. 
Ribosomes associated with the endoplas­
mic reticulum (arrows) are devoid of label. 
N, nucleus. Bar = 2 nm; Inset -  10 nm.
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IE protein expression studies by Boom et al. (33). Furthermore, 
the presence of IE mRNA non-expressing cells provides a strong 
internal specificity control.

Discussion
A reiterative problem in the development of pre-embedding EM 
ISH techniques is to design fixation and pre-treatment conditions 
such that all RNA molecules are accessible to probes and im­
munochemicals and ultrastructural morphology is preserved. Most 
strategies for improving reagent penetration resulted in insufficient 
preservation of ultrastructure or suboptimal detection efficiency. 
This study shows that saponin treatment of aldehyde-fixed cells 
can significantly contribute to reaching the aim of good penetra- 
tion of ISH rea gents in ultrastructurally well-preserved cells. Sapo­

nin exclusively removes cholesterol molecules from lipid-containing 

structures (31), leaving stable holes (28) large enough for penetra­

tion of nucleic acids (45) and peroxidase or gold-conjugated F(ab)2 
antibodies. As shown in this study, even in the presence of a sapo­

nin treatment the extent of aldehyde cross-linking of cellular pro­

teins has a strong influence on both ultrastructure and reagent 

penetration. Actually, no conditions were found in which reagent 

penetration and good ultrastructural morphology were obtained 

for all cell compartments.

In 1% FA-fixed and saponin-treated cells, the cytoplasmic ul­

trastructure is suboptimal, whereas the nuclear morphology is good. 

As evidenced by 28S rRNA ISH, cytoplasmic reagent penetration 

is good but nucleolar regions are still not accessible. Furthermore, 

the presence of intense IE mRNA signals in the nuclei proved that 

reagent penetration into the nucleoplasm is good also.
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A  comparison between the results obtained with 1% FA and 
the stronger cross-linking fixative 1%  FA/0.05 % G A  demonstrates 
that balancing reagent penetration on the one hand and preserva­
tion of ultrastructure on the other is indeed subtle, even in the 
presence of saponin treatment. For the cytoplasm, the stronger fix­
ative provides a better ultrastructure, but a weaker ISH signal in­
tensity (compare Figures 2A and 2B). Because 28S rRNA signal 
is present throughout the cytoplasm and because reagents even reach 
the nucleoplasm (as evidenced by the main IE mRNA signal in 
the nuclei of rat 9G cells) under 1% FA/0.0 5 % fixation conditions, 
we infer that local accessibility limitations account for the reduced 
cytoplasmic 28S rRNA signals.

The ultrastructure of cells fixed with the strongest cross-linking 
fixative (1% FA/0.5% GA) and treated with saponin is good, but 
the absence of HEF mRNA signals and the weak ISH cytoplasmic 
28S rRNA and IE mRNA signals indicate that with this fixative 
hybridization efficiencies are too low to be of use for EM ISH; the 
balance has shifted too much toward preservation of ultrastructure.

The choice of fixation for pre-embedding EM ISH should be 
based on the demands of the RNA distribution study at hand. Those 
aiming at visualizing cytoplasmic RNA distribution patterns should 
preferably use 1% FA/0.05% GA, whereas those aiming at nucleo- 
plasmic patterns should use 1%  FA.

Ultrastructural localization studies for nucleolar RNA and DNA 
thus far have employed post-embedding EM ISH techniques, be­
cause nucleotide sequences at the sectioned surface are readily de­
tected. The detection efficiency, however, is low and this may un­
derlie the fierce dispute about the precise localization of active 
ribosomal genes (46- 49). In pre-embedding EM ISH, nucleolar tar­
gets have been detected only after severely damaging ultrastruc­
tural morphology by 4% FA/acetic acid fixation and pepsin diges­
tion (20), or after nuclear matrix preparation and DNAse-I digestion 
(50). Apparently, access to nucleolar R N A  targets o f intact cells is 
hampered by compact entwinement of RNA, D N A, and (cross- 
linked) protein.

A  number of observations were made in this study that relate 
to functional (ultrastructural) localization of the mRNA ISH sig­
nals. In 1% FA/0.05 % GA-fixed, saponin-treated HeLa cells, a corre­
lation with a subpopulation of ribosomes was seen for HEF mRNA. 
This mRNA codes for a protein that functionally localizes in the 
cytoplasm. In accord with the consensus theory that such proteins 
are synthesized at free or cytoskeleton-bound ribosomes, we ob­
served HEF mRNA signals only in association with ribosomes 
throughout the cytoplasm, and not with those of the endoplasmic 
reticulum. Although the same correlation was expected in rat 9G 
cells for IE mRNA, which codes for a nuclear protein, it was actu­
ally not found: both free and endoplasmic reticulum-bound ribo­
somes showed IE mRNA signals. The biological implications of the 
IE mRNA ISH signals observed in the nucleus will be discussed 
elsewhere (51; and Macville et al., manuscript submitted for publi­
cation).

In our hands, the ISH results obtained with the ultra-small gold 
detection system were inferior to the immunoperoxidase/DAB sys­
tem. The weaker ISH signals are due to suboptimal silver enhance­
ment rather than to limited penetration of ultra-small gold parti­
cles into the cell interior. Therefore, silver enhancement protocols 
(52,53) that claim better control over the efficiency and unifor­

mity should be tested for the application of ultra-small gold re­
agents in pre-embedding EM ISH.

In conclusion, we established a reliable, efficient, and sensitive 
protocol for ISH detection of RNA at the EM level in cultured cells 
with ultrastrueturally well-preserved morphology, by using mild 
fixation and saponin permeabilization. With this technique, 
topographical information can be obtained which will contribute 
to knowledge about nuclear processes, such as mRNA transcrip­
tion, maturation, and transport, as well as about cytoplasmic 
processes involving RNA.
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