View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Nottingham ePrints

A Comment on “A Direct Approach for
Determining the Switch Points in the
Karnik-Mendel Algorithm”

Chao Chen, Member, IEEE, Dongrui Wu, Senior Member, IEEE, Jonathan M. Garibaldi, Member, IEEE,
Robert John, Senior Member, IEEE, Jamie Twycross, and Jerry Mendel, Life Fellow, IEEE

Abstract—This letter is a supplement to the previous paper
“A Direct Approach for Determining the Switch Points in the
Karnik-Mendel Algorithm”. In the previous paper, the enhanced
iterative algorithm with stop condition (EIASC) was shown to be
the most inefficient in R. Such outcome is apparently different
from the results in another paper in which EIASC was illustrated
to be the most efficient in Matlab. An investigation has been
made into this apparent inconsistency and it can be confirmed
that both the results in R and Matlab are valid for the EIASC
algorithm. The main reason for such phenomenon is the efficiency
difference of loop operations in R and Matlab. It should be
noted that the efficiency of an algorithm is closely related to
its implementation in practice. In this letter, we update the
comparisons of the three algorithms in the previous paper based
on optimised implementations under five programming languages
(Matlab, R, Python, C and Java). From this, we conclude that
results in one programming language cannot be simply extended
to all languages.

Index Terms—centroid, interval type-2 (IT2) fuzzy set, Karnik-
Mendel (KM) algorithm, enhanced KM (EKM) algorithm, en-
hanced iterative algorithm with stop condition (EIASC), direct
approach (DA).

I. INTRODUCTION

N a previous paper [1], a direct approach (DA) based on

derivatives was proposed for determining the switch points
in the Karnik-Mendel (KM) algorithm, for determining the
lower and upper bound of the centroid in type-2 inference. It
was shown by simulations in R that DA clearly outperformed
other algorithms regardless of the shapes of fuzzy sets. Based
on such results, it was suggested that DA should always be
used when NN, the number of discretisations of the universe of
discourse, is greater than or equal to 100.

C. Chen, J. M. Garibaldi, R. John and J. Twycross are with the Laboratory
for Uncertainty in Data and Decision Making (LUCID), the Intelligent
Modelling and Analysis (IMA) and the Automated Scheduling Optimisation
and Planning (ASAP) Research Groups, School of Computer Science, Uni-
versity of Nottingham, Nottingham, Jubilee Campus, NG8 1BB UK e-mail:
{chao.chen, jon.garibaldi, robert.john, jamie.twycross} @nottingham.ac.uk.

D. Wu is Professor in the Key Laboratory of the Ministry of Education for
Image Processing and Intelligent Control, School of Automation, Huazhong
University of Science and Technology, Wuhan, Hubei 430074 China. E-mail:
drwu@hust.edu.cn.

J. M. Mendel is Professor Emeritus at University of Southern California,
Los Angeles, CA 90089-2564, USA (e-mail: mendel @sipi.usc.edu), and Tian-
jin 1000-Talents Foreign Experts Plan Endowment Professor and Honorary
Dean of the College of Artificial Intelligence, Tianjin Normal University,
Tianjin, China.

Manuscript received *** ** 2017; revised *** ** 2017; accepted *#* *%*,
2017. Date of publication *** ** 2017; date of current version*** ** 2017.
Corresponding author: Dongrui Wu

In [1], differences were also found in the way EIASC
performed in comparison with other algorithms, with some
of these results apparently being different from the findings
previously published in [2]. Specifically, the results in [1], in
which all the algorithms were coded in R, showed not only that
DA was the most efficient, but also that ETASC was generally
much less efficient than the enhanced KM (EKM) algorithm.
This is a significantly different finding to the results in [2], in
which experiments were performed in Matlab.

In this letter, we explore the above issue in detail, and
update the results of comparisons in [1]] based on optimised
implementations under five programming languages (Matlab,
R, Python, C and Java). Section |H| provides a clarification of
the optimisation of DA in practice. Experimental comparisons
are made in Section [l and results are then discussed in
Section [[V] Section [V]concludes the key findings in this letter.

II. THE DA ALGORITHM

Whilst carrying out the implementation of the DA algorithm
in the five languages mentioned above, several detailed optimi-
sations were identified. This section clarifies the optimisation
of the DA implementation used in this letter.

It is well known that, in both R and Matlab, operations on
vectors with indices are much slower than operations on the
same vectors without indices. The original DA algorithm, as
shown as Algorithm 1 in [1]], includes many such operations
with indices. In practice, most of these operations can be
optimised by eliminating the use of indices. However, the
detailed manner in which this is done is dependent on the
programming language, with some operations being quicker
in Matlab and other operations being quicker in R.

For example, in Step 1 of the original DA, the implemen-
tation in R could use a for loop, as:

for(i in 2:N)

Xdiff[i-1] = X[i] - X[i-1]
or vectorised as:
Xdiff = X[2:N] - X[1:(N-1)]

where the vectorised form is perhaps twenty times faster than
the original for loop.

Whilst such vectorisations were used in the DA algorithm
implementation in [1], it was subsequently noticed that the
original form of the algorithm requires several reversals of
lengthy R vectors, which is also an inefficient operation in R.

1063-6706 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://core.ac.uk/display/161100777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2018.2865134, IEEE

Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. ** NO. **, ** 2017

denote elements of the respective vectors;
output: L, the switch point; c;, the lower bound of the centroid;

w

2 2a
5% <« {55

dN « SN 4N

~ 1t where Y is the it" element of vector T%;

® N & B

10 if k exists then L < k else L < N — 1;

1 if L # 1 then aicL —dp_1 —dN else 8?; +— —dN;

Compute ¢; by Equation (T);

input : X, U, U, vectors of the primary variable, the upper membership grades, and the lower membership grades, respectively; x;, @;, and wu;

1 X'+ {z; —x;—1,0|i=2,3,..., N}, a vector of consecutive differences of elements of X and an extra zero;
2 81+ {357 14 |j=1,2,...,N}, a vector of the cumulative sum of the elements of U’;

S2a {Zgzl ui | j=1,2,..., N}, a vector of the cumulative sum of the elements of U;

— sf”’ |i=1,2,..., N}, where sig“ is the 7" element of vector S2¢;

TP «+ {z} s} |i=1,2,..,N}, where z/ and s} are the i*" element of vectors X’ and S’ respectively;
TN « {z]-s? |i=1,2,..., N}, where z] and s? are the i*" element of vectors X’ and S? respectively;

D «+ {Zgzl (tf3 + tZN) |3=1,2,..., N}, where tiP is the it element of vector T'¥;
9 Find the smallest k € 1,2, ..., N — 1 such that dj, > d", where dj,, which represents (

3 Oc 4 dN), is the k" element of the vector D;
Uk41

Algorithm 1: Pseudo code in R of the optimised implementation denoted DA* for obtaining L, the switch point; and

¢, the lower bound of the centroid.

It was observed that these reversals could be removed through
some minor alterations to intermediate variables. It was also
noticed that DA can be further optimised by eliminating some
unnecessary computations in the calculation of ¢;, as follows.
The type-2 centroid c is defined as:

Zil\il Ll
N
D e Ui

By differentiating ¢ with respect to u;, we obtain:

CcC =

dc wj—c

du; - Zz]\; Ui

which can be rearranged to:

By applying this transformation to the calculation of ¢; using
switch-point L, we obtain:

9 (L N
a=xp——— (> Ui+ ¥ u (1
Quy i=1 i=L+1

As a result of these various optimisations, a revised version
of the original DA algorithm, termed the DA* algorithm, is
shown as Algorithm 1.

III. EXPERIMENTAL COMPARISON

Optimised implementations of DA*, EKM and EIASC
under five programming languages (Matlab, C, Java, R and
Python) were created, and comparisons were made based on
the two generalised examples given in Section VLB of [L1].

A. Generalised bell-shaped IT2 fuzzy sets

It was assumed that the vector X (the discrete universe
of discourse), containing x; (primary variable), is uniformly

distributed from 0 to 10. u; and w; (membership grades) are
defined by generalised bell-shaped function:

1

1+ ((=9)°)

1

()

where @ and b are randomly selected between 1 and 2; a is
the multiplication of g with a random number between 1 and
2; ¢ is a random number between 0 and 10.

U; =

B. Generalised randomly-shaped IT2 fuzzy sets

It was assumed that vectors X and U, containing x; and u;
respectively, are randomly generated values from O to 1 based
on the uniform distribution. u; is the multiplication of u; with
another random number between 0 and 1, so that u; is also
within the range of 0 to 1.

C. Comparisons

Comparisons were made for the above two types of IT2
fuzzy sets separately. In each comparison, N, which is the
length of X (i.e. the number of discretisations across the
universe of discourse), was set to be 10, 200, 400, ..., and
2000 (11 different values of N). For each value of N, 5000
Monte Carlo simulations were made and the time costs for
computing the centroids were aggregated to be compared for
each algorithm.

The platform was a Macbook Pro (13-inch, 2017) with
3.10GHz Intel Core i5 processor and 16GB 2133 MHz
LPDDR3 memory, running macOS High Sierra version
10.13.1. The programming languages and software environ-
ment are R x64 version 3.4.2, Matlab R2017b, Python 3.6.3,
Apple LLVM version 9.0.0 (clang-900.0.38) for C (compiled
with options -O3 and -std=c99), and Java™ SE Development
Kit 9.0.1.

1063-6706 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2018.2865134, IEEE

Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. *¥, NO. *¥, ## 2017 3
Matlab C Java R Python
0.15 0.15 51 8
. P _ — 'h** — n/c —~ 6 ,a‘d
Z 04 P R »Eo Z 01 Vb z & z o
| ot pee| 1.1 B 2o o7 S
E ¥ . E 50O 5 ¢ E © E ° —o—-EIA
=02 "a—@’a I = 0.05 y %555 £ 005 .{\.«“ﬂra*’ £, p,e(o g, ;a"’/ o DA*SC
[l -l Q4 AL E i T
0 0 0 0
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
N N N N N
Fig. 1: Practical computational cost comparisons based on generalised bell-shaped fuzzy sets.
C Java R Python
0.15 | 0.15 | 8 8
6 ﬂ'd 6
Z 0l Z 01 Vi 2 o) L4
2 ﬁg g o g4 7 24 BI/J —+—-EKM
g 8 = - R=| 8 - -
5005] (g ie g 005 5_/";;3/"9’@ £2 ED/O s £ E:/’ o gl:fc
oo e] P A

500 1000 1500 2000
N

500 1000 1500 2000

N N

500 1000 1500 2000

I
500 1000 1500 2000
N

500 1000 1500 2000
N

Fig. 2: Practical computational cost comparisons based on generalised random-shaped fuzzy sets.

Note that sorting of the vector X is not included in time
comparisons, since all the three algorithms require X to be
sorted prior to starting. Results of the comparisons can be
seen in Figs. [I] and P2} As can be observed in these figures,
EIASC performs best in Matlab, C and Java, but much worse
in R and Python. On the other hand, based on these optimised
implementations, the DA* and EKM algorithm perform simi-
larly, both being more efficient that EIASC in R and Python.

IV. DISCUSSION

As a result of the new optimised implementations for each
of the algorithms and detailed experiments performed on a
single computer, it is now clear that the statement made in
the original paper (“that DA should always be used when N,
the number of discretisations of the universe of discourse, is
greater than or equal to 100”) is not correct. Rather, we have
found a far more complex overall picture.

It is interesting that EIASC performs the best in Matlab,
C and Java, but it is the worst in R and Python. This
is mainly due to the efficiency difference of functions or
operations in different programming languages. For example,
loop operations (iterations), on which the EIASC algorithm
heavily relies, are much less efficient in R than they are in
Matlab. It should be noted that it is common for loops to be
inefficient in interpreted programming languages such as R
and Python. Thus, in such programming languages, the use of
EIASC should be carefully considered especially when time
efficiency is sensitive.

Regardless of the algorithm used, the computational time
differences between programming languages is very large.
Thus, for example, using an efficient compiled language such
as C over Matlab makes more of a difference than the choice
of algorithm.

Whilst the DA* algorithm is not clearly better than EKM,
nevertheless, the centroid is found without the need for mul-
tiple iterations, as mentioned in the Introduction of [1]. This
may make the algorithm more desirable for real-time control
problems when the calculation time of the algorithm needs to
be known in advance.

It should be noted that, though it was not mentioned in
[3l], extra operations are required for the enhanced Karnik-

Mendel (EKM) algorithm to avoid infinite loops caused by
numerical issues. In [1l], some inefficient operations were
applied within the EKM implementation to avoid the infinite-
loop issue, which made the EKM algorithm less efficient than
it should have been. For the comparisons in this letter, the
inefficient operations used in [1] have been replaced by more
efficient versions.

In summary, it is clear that the computational efficiency of
an algorithm is closely related to the platform, and how it is
implemented. Note that, in computer science, the dependence
on languages is usually avoided by focusing more on the
order of algorithms (using big O notation). In this letter, it
can be easily derived that the asymptotic time complexity of
all algorithms is O(N), which is linear.

V. CONCLUSION

In this letter, we updated the comparisons in [1] under
five commonly used programming languages. Results showed
that EIASC performed the best in Matlab, C and Java, but
worst in R and Python. Both DA* (the slightly revised version
of DA) and EKM showed the best performance in R and
Python, with broadly similar results. Since the performance
of algorithms is closely related to the implementations, we
have made our implementations accessible on-line (https:
//gitlab.com/chao.chen/DA_Letter_2017.git).

We suggest that future proposals of related algorithms
should focus more on the order of algorithms and take care
as to the conclusions drawn, which may be dependent on the
platform used (language and implementation environment).

REFERENCES

[1] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “A
direct approach for determining the switch points in the
Karnik-Mendel algorithm,” IEEE Transactions on Fuzzy
Systems, vol. PP, no. 99, p. 1, 2017.

D. Wu, “Approaches for Reducing the Computational
Cost of Interval Type-2 Fuzzy Logic Systems: Overview
and Comparisons,” IEEE Transactions on Fuzzy Systems,
vol. 21, no. 1, pp. 80-99, 2013.

D. Wu and J. M. Mendel, “Enhanced Karnik—Mendel
algorithms,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 4, pp. 923-934, 2009.

1063-6706 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://gitlab.com/chao.chen/DA_Letter_2017.git
https://gitlab.com/chao.chen/DA_Letter_2017.git

