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Abstract

Here we provide a full report on the construction, components, and capabilities of our

consortium’s “open-source” large-scale (~1 L/hr) 129Xe hyperpolarizer for clinical, pre-clinical,

and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The

‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is

designed to be cost-effective and installed in both research laboratories and clinical settings with
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materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr

Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the

hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization

values of ~30-90% have been measured for Xe loadings of ~300-1600 Torr. Typical 129Xe

polarization build-up and T1 relaxation time constants were ~8.5 min and ~1.9 hr respectively

under our SEOP conditions; such ratios, combined with near-unity Rb electron spin polarizations

enabled by the high resonant laser power (up to ~200 W), permits such high PXe values to be

achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained

during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to

nearly 6 hr) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR

spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND

approval for a clinical study of COPD subjects. The primary focus of this paper is on the

technical / engineering development of the polarizer, with the explicit goals of facilitating the

adaptation of design features and operative modes into other laboratories, and of spurring the

further advancement of HP-gas MR applications in biomedicine.
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1. Introduction

The high sensitivity and biological compatibility of hyperpolarized xenon-129 (HP 129Xe)

makes it attractive for a wide variety of potential biomedical applications (1-3)—particularly

those involving pulmonary medicine (4-15). Xenon’s solubility (16) may be exploited to

allow studies in bodily tissues (17) including blood (18,19), as well as those involving

various biologically compatible liquids (20-22), and its wide chemical shift range and

sensitive spin-relaxation response makes HP 129Xe a useful probe of the local molecular

environment (1,23-25), even allowing local blood oxygenation maps as well as

spectroscopic studies of flow (9,26-29). While much of the earlier efforts developing HP

gases for MR applications concentrated on 3He, the world-wide shortage of this isotope (30)

(a product of tritium decay) increases the urgency for the development of improved

HP 129Xe approaches, with notable progress over the years (e.g., Refs. (31-39)). Despite

these efforts, a major impediment towards wider-scale utilization of HP 129Xe in clinical

applications has been the difficulty of reliably and inexpensively producing large quantities

of hyperpolarized xenon with high 129Xe polarization (PXe).

In order to facilitate the implementation of HP 129Xe in biomedical and clinical applications,

our collaboration has developed a 129Xe ‘hyperpolarizer’ for clinical, pre-clinical, and

materials research (40). The device prepares HP 129Xe via the well-established technique of

spin-exchange optical pumping (SEOP (41)), where unpaired electronic spins of an alkali

metal vapor (typically Rb or Cs (42)) are polarized via depopulation optical pumping with

circularly polarized laser light, and the polarization is subsequently transferred to xenon

nuclear spins during gas-phase collisions via the hyperfine interaction. However, unlike

most 129Xe polarization devices (including those from commercial sources), the presently
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described hyperpolarizer runs in batch / stopped-flow mode in the high-Xe-density regime

(up to 1800 Torr in a 0.5 L cell). In many circumstances this mode of operation obviates, in

part, the usual requirement to cryo-collect the HP 129Xe (e.g., Ref. (43))—a process that

otherwise increases design complexity and can also lead to undesirable polarization losses

during accumulation, storage, phase transitions, and transfer of HP 129Xe (44). Cryo-

collection also helps ensure that residual Rb from the cell is not transferred to sample

containers; thus our device includes a Teflon filter in the transfer line to getter any Rb or

other particulate matter that might otherwise enter the sample space. Furthermore, the device

is automated, modular, portable, and relatively easy to use, employing an “open-source”

design comprised of mostly off-the-shelf components; as described below, many of the

initially ‘custom’ components can now be readily purchased from commercial suppliers.

Originating from our previous efforts studying batch-mode and stopped-flow (32) SEOP at

high Xe densities and resonant laser fluxes (39,45,46), this new scaled-up design can

achieve ~1 L/hr production rates, with 129Xe nuclear spin polarization values (PXe) of

~90%, ~57%, ~50%, and ~30% for Xe loadings of ~300, ~500, ~760, and ~1570 Torr,

respectively (40). Furthermore, little polarization loss is suffered during cell cool-down and

gas transfer from the device to sample containers. Long decay times for the HP 129Xe

contrast agent (up to nearly 6 hr) were observed in Tedlar bags following transport to a

clinical 3 T scanner. Importantly, XeNA is presently being used for a study involving COPD

subjects at Brigham & Women’s Hospital (FDA IND #116,662).

The focus of this paper is on the technical / engineering development and capabilities of the

polarizer (47,48). To briefly outline the subsequent sections: The Materials and Methods

section focuses on describing the major components of the polarizer in great detail,

comprising: (a) the framework design and chassis used to house and setup all the

components, (b) the electromagnetic coils, (c) the laser, supporting optics, and optical path,

(d) the optical pumping (OP) cell design and preparation including the filling procedure, (e)

OP oven design and temperature control components, (f) gas manifold design, major

components and vacuum system, (g) description of the (optional) cryo-collection setup and

design, (h) microcontroller design, automation control and interface; and (i) in situ detection

instrumentation. Commercial suppliers and part numbers for components are provided

throughout in order to facilitate the construction of this ‘open-source’ device in other labs.

The Results section describes the methods used for quality assurance (QA) of the PXe along

with examples of 129Xe MRI from a human subject; for more in-depth analyses and

theoretical considerations of the PXe results, please refer to Ref. (40). The Discussion section

provides the practical advantages and limitations of the hyperpolarizer, as well as some

possible design improvements to be investigated in the future. We briefly note here

other 129Xe polarizers in the literature (e.g., Refs. (31-39,43,49-51)—as well as those from

commercial sources (52-54)); those considering assembly or purchase of a polarizer are

encouraged to review the designs and capabilities of many devices in light of their own

applications, needs, and resources.

2. Materials and Methods

Our consortium’s “open-source” automated 129Xe polarizer (dubbed “XeNA” for XEnon

polarizatioN Automated), is principally comprised of a mobile chassis, an electromagnetic
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coil assembly, a laser system, a vacuum / gas-handling manifold, on-board spectrometers

(and other sensors) for QA and feedback, and a computer/automation system (Fig. 1A). The

details of the design, components, assembly, and operation of XeNA are provided here and

in the corresponding sections of the Supplemental Information documentation.

2a. Frame

The lower portion of the framework of this polarizer design consists of two 19 in. rack-

mountable cabinets used to house the required hardware (Figs. 1b & Fig. S1). The mobile

device is supported by six 4 in. heavy-duty casters (McMaster-Carr, P/N #27075T72). The

upper section of the polarizer is constructed from extruded aluminum slotted strut (45 mm ×

45 mm) from Minitec Framing, which results in a strong and configurable framework—see

Fig. S2 for additional details. The base support of the upper frame is bolted directly to the

lower console to support the magnet coils and laser enclosure. The entire optics train and

magnet assembly is contained in a light-tight enclosure with a top-mounted door built with

Minitec slots rails with attached Alumalite panels (corrugated plastic core with 0.013 in.

thick matte black painted aluminum skins on both sides).

2b. Magnets

A homogenous magnetic field is provided by a four-coil electromagnet assembly (P/N

A650011, Acutran, Fombell, PA—23.6″ ID; 12 turns per layer, 17 layers, 12AWG)

operating at either 5.26 mT (62.0 kHz 129Xe frequency) or 1.46 mT (62.0 kHz 1H

frequency). The magnets are supported by the upper Minitec frame and held in place by 90°

angle brackets (Minitec Framing). The four-coil geometry of the electromagnet is that of a

Helmoltz pair series inspired by the designs Barker (55) and was optimized using BiotSavart

software (Ripplon Software Inc, New Westminster, BC, Canada); a true Barker setup would

require varying the number of turns, the current and/or the diameters of the inner versus

outer coil pairs. The four-coil electromagnets are connected in series and are powered by a

single power supply (Kenwood, P/N PDS60/12).

2c. Laser and Optical Path

A single 5.5 foot long optical breadboard (Thor Labs) is bolted to the center of the upper

frame to mount the optics and serve as a platform for the laser and optical pumping oven. A

custom translational platform (Minitec) with aluminum T-slotted rails is used to hold the

laser in position (Fig. 2a). Each T-slotted rail’s position can be adjusted without

disassembling the frame; this feature allows for simpler adjustment of the optical breadboard

position so that the laser optical path and optical pumping cell may be better aligned with

the axial isocenter of the four-coil electromagnet set-up. To further aid with the alignment

procedures the laser is equipped with a <5 mW visible aiming beam (Fig. S3 Inset).

The optical path (Fig. 2b) begins with a 200 W laser diode array (LDA, QPC Lasers, P/N

6507-0001 Brightlock Ultra-500) that produces near-IR laser output that is frequency-

narrowed (nominal FWHM~0.27 nm) by ‘on-chip’ volume holographic gratings (VHGs)

(46). The nominal output is resonant with the Rb D1 line at ~794.8 nm, and is tunable over

>1 nm range by adjusting the LDA’s temperature, which is maintained by a 800 W water-

chiller (K-O Concepts model LCR-8), and the laser driving current (Fig. S1b). This
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tunability allows the laser output to be placed on resonance with the Rb absorption center at

different output powers (see Fig. S4b), as well as operate detuned for off-resonant SEOP

(45,46,56). The laser beam is incident on a short (~6 in.) optical fiber that preserves most

(>90%) of the linear polarization and then is expanded and collimated to 2 in. diameter by

two lenses. Prior to entering a 2 in. polarizing beam-splitter (PBS) cube, the s-polarized

beam component (<10% of incident power) is reflected 90° to the right and discarded into a

beam block; the main (p-polarized) beam is transmitted forward into a quarter-wave (λ/4)

plate, which renders the beam circularly-polarized.

The laser beam enters and exits the optical pumping oven through anti-reflection (AR)-

coated optical flats (see below). Upon exiting the rear of the oven the beam is retro-reflected

back through the cell via a 3 in. mirror (Thor Labs) and directed into the optics assembly,

where the PBS reflects the beam into a second beam block. To provide additional flexibility

for the polarizer, all optics were chosen to be sufficiently broad-band to also allow operation

with Cs SEOP at 894.3 nm (e.g., Ref. (42)). Except for the PBS and λ/4 plate, all

components of the optical path assembly attached to the laser were purchased through Thor

Labs (See Table S1 and Fig. S3). Due to the high output power of the LDA, cooling fans are

installed next to the beam blocks to direct air over their fins (Fig. S3).

2d. Optical Pumping Cell

The cell is a custom Pyrex (borosilicate glass) 2 in. diameter cylinder, with flat optical

windows at the front and the rear (Mid-Rivers Glassblowing, Inc., St. Charles, MO, P/N

MRG934-01A). Each OP-cell is 9.75 in. long with an internal volume of approximately 500

cc. The oven can accommodate variable cell lengths (6 in. – 12 in.). The OP-cells have one

opening, sealed by a Chemglass Teflon stopcock that is pneumatically actuated using a

Humphrey Rotary Actuator (P/N HRAPS5-360-S) and custom-designed Helical (P/N

9947-26mm-6mm, Item# 28571, Fig. 3d) closing off a ¼ in. O.D. vertical stem trapping the

gas content inside the cell.

Prior to installation in the polarizer, each OP-cell is pressure-tested and then prepared as

follows. First, each one is soaked in a KOH/methanol base bath for 24 hours to remove

impurities from the glass surface. The OP-Cell is then rinsed first with distilled water, and

then with methanol. The cell is then placed in a bath ultrasonic cleaner filled with a mixture

of methanol and distilled water and sonicated for about 1 hour at room temperature. The cell

is then removed and rinsed again with distilled water followed by methanol, and then placed

in an oven (110 °C) to dry. The dried OP-cell is coated with a siliconizing agent (SurfaSil,

P/N PI-42800, Fisher Scientific) to slow 129Xe T1 relaxation due to interactions of 129Xe

with paramagnetic centers in the glass (57-59); here, a 10 mL solution is prepared by

diluting 1 mL of SurfaSil with hexane. Some of the solution is then pipetted into the cell and

shaken to spread the solution over the entire inner surface. The cell is then emptied and

washed with ~10 mL of pure hexane. This process is repeated 3 times, ending with a final

hexane rinse. The cell is then placed in a warm oven (~60 °C) for at least 1 hour; afterwards,

the cell is allowed to cool and its contents evacuated down to <1×10−3 Torr prior to loading

the cell in the transfer chamber of a glove box. The cell is then loaded with ~250 mg of

molten Rb metal via pipette in the glove box’s inert atmosphere. The OP-cell is then
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removed from the glove box and evacuated, and the Rb droplet is heated to its melting point

to degas it prior to distribution as a thin film on the cell’s inner surface via local heating/

cooling. Once Rb is distributed, the OP-cell can be placed in the OP-oven to be filled with a

gas mixture of ultra-high purity 129Xe and N2. The N2 gas helps suppress unwanted re-

emission of unpolarized light from the electronically excited Rb (31) (known as radiation

trapping) as well as other undesirable energetic processes (60). Additionally, the N2

provides additional collision-broadening of the Rb absorption line, improving the absorption

efficiency of the laser (61).

The OP-cell is attached to the polarizer’s gas manifold (Fig. 1A) via a ¼ in. PFA Swagelok

union T fitting, and is loaded with a gas mixture of 129Xe and N2 automatically. This

automation procedure involves evacuating the manifold lines prior to opening the OP-cell to

the manifold to prevent oxidation of the Rb metal. The Edwards RV-5 rotary vane

mechanical pump is used for achieving initial rough vacuum level (>10−2 Torr) before

switching to an Edwards Turbo Pump Station (TS75W). Once a pressure of ~10−4-10−5 Torr

is achieved, the OP-Cell may be closed. The automation sequence continues by performing

three purge/vacuum cycles using ultra-high purity N2 gas in preparation to load the OP-cell.

Once complete, the desired 129Xe/N2 mixture is loaded into the evacuated OP-cell, see

Supporting Information for details. Once the OP-cell has been filled, then the optical

pumping process can take place.

2e. Optical Pumping Oven

The oven is manufactured from non-magnetic materials: Teflon, nylon, and glass that can

handle moderately high (>120 °C) operational temperatures (Figs. 3A & S4). The front and

the rear walls of the oven contain 3 in. borosilicate (BK7) optical windows with anti-

reflection coatings (CVI Melles-Griot P/N W2-PW1-3025-C-670-1064-0) appropriate for

the near-IR wavelengths (640-1064 nm). The OP-cell and its contents are heated using a

forced-air oven. The oven contains two inlets for heating or cooling air, and one exhaust port

(Fig. S4). Since it is necessary to have the polarizer work in areas where compressed-air

hook-ups may not be available, the gas supply of the temperature-control system is provided

by a self-pressurizing liquid nitrogen dewar. A full dewar can supply sufficient gas for 12+

hours of continuous operation. The oven gas supply is routed through two 400 W heat pipes

(Omega Engineering, Stamford, CT, P/N APH-5051) mounted inside an aluminum

enclosure (Fig. 3C) and connected to the oven inlets via temperature-resistant silicone tubing

(3/4 in. O.D. Silcon®, P/N 2802471, NewAge Industries). The heaters are controlled

through a temperature controller (Omega Engineering, Stamford, CT, i-series CNi3244-

C24) via feedback from thermocouple sensors inside the OP-Oven.

An opening in the side wall of the oven allows access to the cell’s stopcock, which is

connected to the Helical-Rotary Actuator. The oven side walls include Pyrex window panels

to allow monitoring of the SEOP process with optical probe beams and optimizing the laser

beam alignment. The oven is mounted on lateral translational stages to permit fine

adjustments to both the front and back of the oven with respect to the laser beam.

Nikolaou et al. Page 6

Magn Reson Imaging. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2f. Gas Manifold

This gas handling system consists of two distinct sections (Figs. 1a & S1a): the ‘upstream’

section contains unpolarized gas used to fill the OP-Cell, and the ‘downstream’ section is

used to transfer hyperpolarized 129Xe to either a Tedlar bag or storage condensation coils.

The ‘upstream’ system utilizes solenoid valves (green in Fig. 1a, McMaster-Carr P/N

5077T123 and Parker P/N 099-0167-900) and pneumatically actuated Teflon valves (red in

Fig. 1a, Teqcom P/N M222CPFS-T). All valves are automated through the microcontroller

box as follows. The valves allow gas flow regulation throughout the entire manifold. The

loading ‘upstream’ section of the manifold is built using ¼ in. Swagelok pieces connecting

stainless steel tubing and solenoid valves. The Edwards RV5 mechanical roughing pump

and Turbo Pump Station are connected to a single vacuum line through a Swagelok T-

connector that leads to both ‘upstream’ and ‘downstream’ sections of the gas handling

system. It is extremely important to remove all O2 from the system as it not only reacts with

the alkali metal in the OP-cell, but if present in the transfer lines will quickly de-polarize the

hyperpolarized 129Xe gas.

The gas-handling system is equipped with three cylinders of ultra-high purity natural

abundance 129Xe, enriched 129Xe, and N2 gas (all fitted with CG-580 two-stage regulators),

thus allowing the option to use natural abundance or enriched 129Xe. After passing through

oxygen filters/getters (Oxiclear / Labclear, P/N DGP-250-R1), these gases are delivered to

the cell via a pulse-damping snubber (McMaster-Carr) that is used to restrict the flow rate of

gases. The gas pressures are monitored by two different pressure gauges (for monitoring

vacuum and high pressure respectively), which provide feedback to the microcontroller. The

‘fine’ gauge is a Teledyne Hastings HPM 2002, which is responsible for monitoring from

~800 Torr down to the 10−5 Torr vacuum range. The ‘coarse’ high-pressure gauge (rated to

~6000 Torr; Omega P/N PX309-100G5V) monitors pressure from 760 to 2000 Torr (total

operational in OP-cell pressure).

The ‘downstream’ transfer section of the gas handling system is less complex than the

‘upstream’ loading section and contains fewer valves. Because HP 129Xe gas can easily be

depolarized, all surfaces that may come into contact with the HP 129Xe must be non-

magnetic. As a result, only Teflon components and SurfaSil-coated glass surfaces are used

in the ‘downstream’ component of the gas-handling system. Furthermore, the HP 129Xe

contrast agent ejection line is situated within the ambient field of the SEOP electromagnet to

prevent any zero-field crossings, which could otherwise depolarize HP 129Xe. The transfer

line is equipped with a gas filter (Entegris Wafergard GT-Plus; WGFG 21K P3; various

suppliers, e.g. Venture Technologies Group, Farmington Hills, MI) to getter any residual Rb

metal and other micro- and nanoparticles. The HP 129Xe cryo-collection stage (see below) is

optional in the programmed GUI interface, and the condensation coil setup (Fig. 3b) may be

installed in the transfer line. As mentioned above, the ‘downstream’ transfer section is also

connected to the vacuum system, which evacuates the lines and the Tedlar bag while 129Xe

is being optically polarized in the cell.
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2g. Cryo-Collection Setup

This setup consists of a custom-made Pyrex tubular spiral storage vessel (Mid-Rivers

Glassblowing, Inc., P/N MRG927-01C) that allows the HP 129Xe to be collected and stored

prior to transfer to the Tedlar bag and administration to the subject or sample. The storage

coil has Chemglass Teflon stopcock valves on each side of the coil. The spiral coil serves

the functions of collecting, storing, and transferring the HP 129Xe, and its valves are each

controlled via a helical-rotary actuator assembly. The coil resides in a strong (>500 Gauss)

magnetic field produced by a pair of large permanent magnets (see above and Fig. 3b). The

strong field prevents HP 129Xe depolarization in the solid state through coupling with

neighboring (quadrupolar) 131Xe spins in the solid lattice (62). The magnets are held in

place with custom-made aluminum holders with a mounting bar that can be attached directly

to the main upper frame (Minitec Framing). The condenser may be cooled with liquid N2

(well below the freezing temperature of xenon, allowing N2 gas to pass through), and then,

prior to the transfer to the Tedlar bag, warmed either with lukewarm water or with heated

nitrogen gas. It is important that HP 129Xe is sublimated rapidly to suppress 129Xe

relaxation that peaks as the xenon motion in the lattice increases, just below the triple point

(44).

2h. Microcontroller Automation and Interface

The polarizer automation control box (Fig. 4) consists of numerous relays for turning

alternating-current (AC) or direct-current (DC) powered devices on or off in a time-

dependent sequence with sensor measurements allowing process control. An open-source

microcontroller (Arduino Mega 2560 rev3, P/N 1050-1018-ND, Digikey, Thief River Falls,

MN) orchestrates all operations. A dual-output power supply (CUI VF-D320-D1224A, P/N

102-2001-ND, Digikey) provides power for the automation control box, a gas valve

manifold (Bürkert, Germany, P/N MP11) enabling pneumatic valve operation through 3/2-

way solenoids valves (Bürkert, Germany, 6524 Type) of the manifold, and other devices

used either in the internal pneumatic manifold or the external gas manifold. The

microcontroller digital I/O lines provide activation of the AC or DC solid state relays (SSRs)

(Grayhill I/O Relay Module, P/N GH3040-ND or GH-3038-ND, Digikey), thereby

selectively powering other devices such as electronic solenoid valves, heaters,

instrumentation, etc. Various controller outputs also include activating external devices via

TTL level logic, such as shutting down the laser power supply unit (PSU) or triggering the

low-field NMR spectrometer (Kea2. Magritek) to run a pulse program. Microcontroller

inputs include status changes on digital input lines, and various sensors that can be

interacted with via serial communications (see below). Additionally, the micro-controller

interacts with a computer graphical user interface (GUI) through commands sent over the

built-in USB-serial interface (Fig. S5). All programmed gas manifold load/transfer

sequences are stored on the micro-controller board’s memory. The GUI itself was designed

and programmed in open-source software (processing.org).

Sensor inputs also initiate microcontroller responses. The automation control box features

two safety interlocks. The first ensures that the water chiller is on before permitting device

operation, whereas the second ensures that the upper frame door is closed during laser

operation. The water chiller status is sensed by the water ‘low flow’ switch (P/N 2371K41,

Nikolaou et al. Page 8

Magn Reson Imaging. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://processing.org


McMaster-Carr, Aurora, OH). The mechanical safety limit switch sensing the status of the

upper frame is P/N 6352K41, McMaster-Carr. Activation of any of these sensors (5V →
0V) results in the following: (i) the laser PSU being sent to standby (laser off), (ii) the OP-

cell being closed off to prevent contamination, and (iii) the microcontroller shutting down in

a way that requires a physical reset. The pressure sensors described above are monitored by

the microcontroller. Oven temperature monitoring and control are achieved by

communication between the microcontroller and the oven’s temperature controller.

In general operation, the microcontroller runs a loop that obtains temperature and pressure

measurements and transmits them to the computer GUI. Interrupt service routines (ISRs)

monitor the water flow and door safety switches. Upon receipt of a command from the

computer GUI during this general loop, the appropriate function is called after decoding.

Such functions can include: oven temperature or manifold pressure level monitoring;

timeouts on loops (as in the case of leaks preventing the gas-handling manifold from

reaching specified vacuum levels); obtaining user input from the GUI (such as the requested

xenon loading pressure); or reporting controller status information. GUI buttons launch

automated procedures such as those necessary for replacing gas cylinders or for production

of HP 129Xe.

2i. In-situ polarimetry

In situ detection is enabled by a low-field high-resolution NMR spectrometer (Kea2,

Magritek) and an Ocean Optics HR2000+ high-resolution near-IR spectrometer. The IR

probe detecting transmitted laser photons is fiber-optically connected behind the 3 in. retro-

reflection mirror, whereas the RF coil (tuned to 62 kHz and matched to 50 Ohms) is located

directly under the cell. The low-field NMR spectrometer is used for in situ QA of the SEOP

process (detecting nuclear spin-polarization of 129Xe). In-situ NMR detection utilizes a

small circular surface coil (~1.5 in. O.D.) with 342 turns using 34 AWG wire. This surface

coil was tuned utilizing an Agilent E5071c ENA Series network analyzer for 129Xe

detection at 5.26 mT and 1H at 1.46 mT respectively. The corresponding near-IR spectra

provide detailed information regarding the status and output quality of the laser, and how

well it is being absorbed by the Rb alkali metal in the cell. Additionally, the transmitted

laser spectra can be used to infer the average electron spin polarization (40,45), see

Supporting Information.

3. Results

Four independent methods have been used to determine nuclear and electron spin

polarization (40). These methods include (i) in-situ (in OP-cell) field-cycled near-IR

spectroscopy (45) to probe Rb electron spin polarization; (ii) in-situ (in OP-cell) 129Xe

NMR at 5.26 mT; (iii) ex-situ HP 129Xe gas transferred to a “intermediate field” (47.5 mT)

of a 122 mm bore magnet (Magritek); and (iv) ex-situ HP 129Xe gas transferred into a Tedlar

bag and subsequent 129Xe NMR/MRI using a clinical 3 T scanner. Excellent agreement was

observed among the different approaches used to quantify PXe (see Fig. 6 below). A detailed

analysis of these results has been reported previously (40), and thus only a brief discussion

is provided here.
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The resulting in-situ HP 129Xe NMR spectra (e.g., Fig. 5a) were compared to the spectra of

thermally polarized water at the same NMR frequency, allowing in-cell PXe values to be

determined; in this example, PXe=49.5%±2.8% was achieved for a cell containing 761 Torr

Xe. The thermal 1H reference signal (Fig. S9a,b) used to calculate PXe was obtained using

an identical OP-cell filled with 5 mM CuSO4 doped water (63,64). Furthermore, in-situ

NMR detection allows measurement of build-up and decay of HP 129Xe during and after

SEOP. Examples of different PXe accumulation and 129Xe T1 relaxation studies are shown in

Figs. 5b,c. The 129Xe polarization build-up and T1 decay time constants were 8.5±0.7 min

and 1.9±0.6 hr, respectively.

Ex-situ detection at 47.5 mT allows for simultaneous evaluation of 129Xe polarization

quality and agent-transfer efficiency. The polarized gas was transferred via a 2 meter long ¼

in. O.D. PTFE tubing into a 52 mL polypropylene spherical phantom located within the field

of the 47.5 mT bore magnet system. HP 129Xe was detected at 559 kHz, whereas a 13C

reference sample was detected at 508 kHz using a broad-band dual-channel RF probe (63).

Comparison of the ex situ 47.5 mT results with the in-situ 5.26 mT 129Xe NMR polarimetry

taken during the same experiment generally showed little loss of 129Xe polarization during

transfer from the SEOP cell (40). Similar efficiencies were observed using ex-situ HP 129Xe

spectroscopy at 3 T (40).

HP 129Xe gas expanded into 800 mL Tedlar bags was used to quantify the relaxation (i.e.

life-time of the produced contrast agent) using a clinical 3 T MRI scanner. For most

acquisitions, two different storage fields (0.0015 T and 3 T) were used to cover the dynamic

range of FDA-approved magnetic fields for clinical MRI use. 129Xe T1 time constants were

38±12 min and 5.9±0.4 hr at 1.5 mT and 3 T respectively (40)—results that project

positively for a variety of clinical and pre-clinical applications requiring gas-phase storage

or accumulation of HP 129Xe. When polarizing 129Xe via batch/stopped-flow SEOP without

cryo-collection, it is also important that residual Rb does not end up in sample containers.

The combination of an efficient cell cool-down procedure (see Supplemental Information)

and the use of the Teflon filter in the transfer line (described above) help to ensure that Rb

(or other particulate matter) does not end up in the inhaled gas mixure. Following three

separate SEOP runs, Tedlar bags were prepared and sent for elemental analysis (Element

One, Wilmington, NC). In all cases, Rb content was found to be less than 5 ng / bag.

129Xe polarization values achieved with various in-cell Xe densities (i.e., with Xe partial

pressures between ~300-1600 Torr), over a range of conditions including different magnetic

field strengths, NMR acquisition methodologies, etc., are summarized in Fig. 6 (40). The

data include values for in-cell PXe values of 90.9±5.2%, 57.1±3.3%, 50.1±2.9%, and

33.4±1.9% measured for Xe loadings of 300, 495, 765, and 1570 Torr, respectively; PXe

values of 41±1.6% and 28±1.1% with ~760 and ~1545 Torr Xe loadings were obtained

following transfer to Tedlar bags and subsequent transport to the 3 T scanner.

The polarizer has recently received FDA Investigational New Drug and IRB regulatory

approval for use in a clinical study of COPD patients. Towards that end, the polarizer has

already been used in several preliminary 129Xe MR imaging and spectroscopic experiments

involving individual healthy human subjects; for example, images obtained in one
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experiment are shown in Fig. 7. For this experiment, a gas mixture comprised of 1300 Torr

of 86%-enriched 129Xe gas and 700 Torr N2 gas was loaded and hyperpolarized in the OP-

cell. Prior to use, PXe was measured to be 25% in the cell—somewhat lower than typical

values (see Fig. 6), owing to the utilization of a OP-cell that was thermally regenerated

following partial oxidation during installation. Some of the cell contents were then

transferred to a 0.8 L Tedlar bag via expansion (thus, xenon comprised two-thirds of the bag

contents). The bag was then transported to a Siemens 3 T clinical MRI scanner and the

HP 129Xe agent was administered to a healthy human volunteer using the following

inhalation protocol: the subject completed two full respiration cycles (total lung capacity

(TLC) to functional residual capacity, (FRC), ×2), before being asked to inhale contents

from the bag (followed by a small gulp of air to help push HP 129Xe out beyond the

trachea). The demonstrated signal strength and image quality achieved are sufficient for the

polarizer to support a number of potential pulmonary functional imaging/spectroscopic

studies—the subject of future efforts.

4. Discussion

The 129Xe polarization values summarized here (40) represent by a significant margin the

highest yet achieved at such high in-cell Xe densities—and establish the feasibility of

attaining near-unity polarization in single (or multiple) batches with HP 129Xe quantities

sufficient for most clinical uses (~1 L/hr). Furthermore, the hyperpolarizer is automated,

modular, portable, and easy to maintain. XeNA is built mostly of commercially available

components, and the complete material costs for construction were under $125,000.

The overall performance of the hyperpolarizer stems from a number of technical

improvements of stopped-flow high-xenon-pressure SEOP process described here and

fundamental improvements reported earlier (40). For instance, the VHG technology

combined with high laser power (~170 W) provides high resonant photon flux through the

cell. Next, to prevent any dark regions near the edges or longitudinal optical nodes of the

OP-cell that could affect the SEOP process, the optical path setup was designed with care as

to (i) reduce the loss of laser power through the optical train while expanding to a 2 in.

diameter beam and (ii) to illuminate the OP-cell volume with near-unity circular polarization

of the incident laser light. Furthermore, we have shown that retro-reflection of the beam

back into the cell can provide a ~30% increase in HP 129Xe (45). Careful control of the cell

temperature is key for SEOP optimization. Previously it was shown that there can be an

inverse relationship between Xe density and the optimal temperature for SEOP (e.g., where

lower cell temperatures are favored for higher Xe densities (39,46)—particularly when using

spectrally-narrowed pump lasers). The steady-state 129Xe nuclear spin polarization is given

by:

(1)

where γSE is the Rb/Xe spin exchange rate (∞[Rb]), ΛXe is the 129Xe nuclear spin

destruction rate (=1/T1), and 〈PRb〉 is the volume-averaged Rb electron spin polarization.

For example, if one assumes that the intrinsic cell 129Xe T1 values are similar from cell to
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cell (and only mildly sensitive to the small differences in Xe loading or total pressure (65)),

the time constants from the curves in Fig. 5 would correspond to ~12-fold larger γSE value

compared to ΛXe, contributing to the efficiency of the 129Xe polarization process. Thus

overall, the high in-cell 129Xe polarization values reported here are achieved primarily by:

(i) maintaining a high “photon-to-Rb” ratio throughout the cell, thereby ‘forcing’ near-unity

PRb despite the high Rb electron spin-destruction rates encountered at high Xe densities

(66); and (ii) obtaining very slow 129Xe intrinsic relaxation rates, ensuring high γSE:ΛXe

ratios despite the relatively modest Rb number densities expected at our mild operational

oven temperatures (67).

High 129Xe polarization/collection efficiency is also promoted by the following: (i) the high

quality and uniformity of the Rb coating within the cell; (ii) the presence of in situ real-time

monitoring and feedback of the SEOP process of the Rb spectral absorption and 129Xe NMR

signal; (iii) optimization of OP-cell cool-down procedure prior to transfer of the

hyperpolarized contrast agent (discussed in detail in section ‘i’ of the Supporting

Information); (iv) suppressing exposure to O2 and other paramagnetic materials throughout

the gas lines; (v) rapid transfer of HP 129Xe contrast agent into a Tedlar transportation/

delivery bag; and (vi) avoiding Xe phase transitions and other relaxation-susceptible

portions of the Xe phase diagram (44).

Although Xe cryo-collection and subsequent sublimation prior to transfer to the sample is

optional for XeNA, operation without cryo-collection does result in dilution of the HP 129Xe

with N2 gas and leaves behind a significant fraction of the SEOP mixture in the OP-cell

following the transfer process after contrast agent preparation. However, both of these issues

can be mitigated by (i) using Xe-rich mixtures demonstrated here; (ii) the addition of a large

automated gas piston or balloon (32,51), where the cell contents can be expanded into a

much larger volume prior to transfer to the sample or transport vessel; and (iii) selecting the

‘topping-off’ procedure implemented in XeNA, which also slightly increases the device duty

cycle. Indeed, when preparing multiple bags of HP 129Xe, this has become the standard

mode of operation. Under these typical conditions, the time to produce each bag is ~35-40

min; ~15-20 min is spent polarizing the 129Xe, with the remaining time being used to purge/

evacuate gas lines, transfer gases to and from the cell, and heat up / cool down the OP-cell

before and after SEOP.

Future improvements may include (i) the re-designing of the OP-oven, because the current

design makes installation and removal of the OP-cell somewhat difficult; (ii) the pressurized

liquid N2 dewar can be replaced by a more suitable solution for gas heating and cooling to

make the polarizer a true stand-alone device; (iii) The LDA and the optical train could be

integrated into a single device for easier alignment with the OP-cell (see Supplemental

Information); (iv) improving the thermal management of the cell to better mitigate any

deleterious effects of high internal gas temperatures (68,69); (v) increased level of

automation and components’ integration; (vi) utilization of pre-mixed Xe/N2 gas sources,

allowing the duty cycle to be increased; and (vii) increasing the simplicity of the

polarization procedures would be key for making a true “push-button” operated device. The

current device increases the prospects of more widespread implementation of HP 129Xe MR

technology, thus allowing feedback for future improvements.
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5. Conclusion

We have described here a clinical-scale (~1 L/hr) hyperpolarizer that produces batches of

spin-polarized 129Xe sufficient for clinical examination, with emphasis on specific design

features and practical aspects of operation. The polarizer’s ‘open-source’ design and

automation should facilitate implementation of HP 129Xe technology into clinical and pre-

clinical settings. Four independent methods for characterizing the spin polarization have

been utilized, and up to 90% 129Xe polarization is achieved. Efficient transfer of HP 129Xe

from OP-cells into other sample containers was demonstrated, including Tedlar bags filled

with up to 800 mL of polarized gas mixture for clinical imaging. The T1 of HP 129Xe was

nearly 6 hr in a Tedlar bag used for the contrast agent delivery/transportation from the

polarizer to a human volunteer. The ability to achieve high PXe values at high Xe densities,

combined with stopped-flow operation and efficient Rb condensation / gettering, negates the

usual requirement of Xe cryo-accumulation and storage, and also should provide improved

polarization efficiency for quadrupolar isotopes (e.g. 83Kr and 131Xe (3,70-72)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AR Anti-Reflection

COPD Chronic Obstructive Pulmonary Disease

FOV Field Of View

FRC Functional Residual Capacity

FWHM Full Width Half Max

GRE Gradient Echo

GUI Graphical User Interface

HP 129Xe Hyperpolarized Xenon-129

I.D. Inner Diameter

IR Infra Red

ISRs Input Service Routines

KOH Potassium Hydroxide
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LDA Laser Diode Array

OP Optical Pumping

O.D. Outer Diameter

PBS Polarizing Beam Splitter

PFA Perfluoroalkoxy

PSU Power Supply Unit

PRb Rubidium Polarization

PXe Xenon Polarization

QA Quality Assurance

SAR Specific Absorption Rate

SEOP Spin-Exchange Optical Pumping

SNR Signal-to-Noise Ratio

SSR Solid-State Relay

TE echo time

TLC Total Lung Capacity

TR repetition time

VHG Volume Holographic Grating

XeNA XEnon polarizatioN Automated
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Figure 1.
The XeNA polarizer. (a) of the polarizer’s key components (the self-pressurized liquid N2 dewar that provides gas for heating

and cooling of the oven and N2 gas cylinder used to operate pneumatic valves are not shown) (40). The optical path is

represented by (“λ/4”) and is comprised of beam expanding optics, polarizing beam-splitter cube, quarter-wave plate, and heat

sinks (see Fig. 2). For the gas cylinders, “N” and “E” designate xenon with naturally-abundant 129Xe and isotopically-

enriched 129Xe, respectively (40). (b) Photograph of XeNA with open laser enclosure in its current location in a clinical MRI

suite at Brigham and Womens’ Hospital, Boston, MA, USA.
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Figure 2.
(a) Laser diode array with translational mounting frame, and optical path assembly. (b) Schematic showing the principal

elements of the optical path (40). The beam blocks are drawn separated from the polarizing beam splitter (PBS) housing for

clarity.
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Figure 3.
(a) OP-Oven with OP-Cell (Mid-Rivers Glassblowing, Inc., St. Charles, MO, P/N MRG934-01A) mounted inside, with gas

manifold components shown connected to the OP-Cell. (b) Glass (Pyrex) spiral storage condenser (Mid-Rivers Glassblowing,

Inc., St. Charles, MO, P/N MRG927-01C) controlled via helical-rotary actuator assembly, residing in a strong (>500 Gauss)

magnetic field produced by a pair of large 4 in. × 4 in. × 1 in. neodymium-iron-boride permanent magnets (Indigo Instruments).

The magnet yoke was custom-machined from aluminum. (c) Two 400 W T-Type heaters (Omega Engineering, Stamford, CT)

mounted inside aluminum enclosure. (d) Custom-made Helical connected and Humphrey Rotary Actuator assembly allowing

automation of the Chem-Glass Teflon stopcocks. A video of the glass-valve actuation procedure can be viewed at:http://

www.youtube.com/watch?v=w33xs9KHuB0.
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Figure 4.
(a) Schematic of all major components of the Microcontroller automation box. (b) Corresponding photograph.
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Figure 5.
(a) Example of low-field in-situ HP 129Xe NMR used for QA, here obtained from a SEOP cell containing 761 Torr Xe and 1239

Torr N2. (b) Typical in-cell PXe build-up curve measured via in situ 129Xe NMR, here for a cell containing ~725 Torr Xe /

~1275 Torr N2. (c) Spin-lattice T1 decay curve for HP 129Xe NMR signals from Xe gas measured at 5.26 mT of a cell

containing 495 Torr Xe / 1300 Torr N2 following SEOP and subsequent cell cool-down to 33 °C (by which point the Rb should

be condensed—providing a more accurate measure of the intrinsic cell relaxation rate). In normal operation, HP 129Xe gas is

typically transferred from the OP-cell to the sample at ~40 °C to help preserve more of the polarization.
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Figure 6.
129Xe nuclear spin polarization values measured at 5.26 mT, 47.5 mT, and/or 3 T, plotted versus xenon partial pressure

determined at loading (40). Labels ‘before transfer’ and ‘after transfer’ respectively refer to measurements obtained from Xe

gas remaining within the SEOP cell before and after some of the gas was transferred to another container. Error bars are

determined from the uncertainties in the spectral integral values obtained from the respective thermally-polarized reference

samples. The value at 725 Torr was obtained with 82%-enriched 129Xe loaded with a different gas manifold.
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Figure 7.
Selected (12 of 14) false-color 2D slices from a 3D 129Xe GRE chest image from a healthy subject following inhalation of

HP 129Xe prepared using the XeNA polarizer (anterior to posterior, reading left to right, top to bottom). TE/TR 1.12/11 ms

(SAR-limited), tipping angle α=6°, 80×80×14 matrix, acquisition time=4.5 s; FOV=320×320×196 mm3, data zero-filled to give

2×2×14 mm3 digital resolution (SNR~8-15).
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