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Summary 

Efficient soil exploration by roots represents an important target for crop 

improvement and food security [1, 2]. Lateral root (LR) formation is a key trait 

for optimising soil foraging for crucial resources such as water and nutrients. 

Here, we report an adaptive response termed xerobranching, exhibited by 

cereal roots, that represses branching when root tips are not in contact with wet 

soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly 

repress LR formation as they enter an air space within a soil profile and are no 

longer in contact with water. Transcript profiling of cereal root tips revealed that 

transient water deficit triggers the abscisic acid (ABA) response pathway. In 

agreement with this, exogenous ABA treatment can mimic repression of LR 

formation under transient water deficit. Genetic analysis in Arabidopsis 

revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-

dependent signalling pathway. Our findings suggest that ABA acts as the key 

signal regulating xerobranching. We conclude that this new ABA-dependent 

adaptive mechanism allows roots to rapidly respond to changes in water 

availability in their local micro-environment and to use internal resources 

efficiently.  
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Results and Discussion 

Root branching is repressed in soil air spaces 

Plants depend on soil resources, like water and nutrients, that are often 

distributed in highly heterogeneous patterns. To optimise foraging, plants have 

evolved several root developmental responses to soil heterogeneity. Root 

system architecture is therefore highly plastic and shaped by many 

environmental signals [3-7]. In particular, root development responds to the soil 

physical structure, which consists of aggregates and pores of varying sizes. It 

has been demonstrated recently that roots growing down the side of a 

macropore will only induce LR formation along the arc of their circumference in 

contact with wet soil aggregates. This auxin-dependent response has been 

termed hydropatterning [7]. However, when roots grow across a large 

macropore and loose contact with soil aggregates, the root segments within the 

macropore are likely to be exposed to air and experience a local transient water 

deficit. Indeed, large macropores have a reduced water retention capacity and 

loose water rapidly after precipitation events. Surprisingly, it is currently unclear 

how roots respond to such transient events.  

X-ray microscale computed tomography (microCT) was employed to non-

invasively image maize (Zea mays) (n = 5) and barley (Hordeum vulgare) (n = 

3) roots growing across a large macropore. Seedling roots initially grew through 

4 cm of soil, then entered a 2 cm air space and later re-entered 4 cm of soil. 

MicroCT imaging revealed that LR branching was highly responsive to external 

environmental conditions (Figures 1A and B). We observed that LR formation 

occurs along the roots growing within the soil, is almost completely repressed 

in root segments growing through the air-filled macropore and is triggered again 

when roots re-enter the soil (Figures 1A and B; Video S1). In contrast, when 

the air space was filled with water, maize roots continued to form LRs (compare 

air versus water filled spaces in Figures S1A and B; n= 3 for each treatment). 

Hence, LR branching in maize and barley seedling roots appears to be highly 

dependent on external contact with the soil-water matrix.  

We next addressed whether LR branching was repressed at organ initiation 

and/or emergence stages when roots were growing through macropores. 
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Radial sections were generated through cereal root segments grown in our soil-

macropore-soil experimental system using a vibratome in combination with 

confocal microscopy (3 plants sectioned for both maize and barley creating 54 

and 57 images respectively) (Figures 1C to H). This radial sectioning approach 

suggested that LR branching was repressed at organ initiation, before stage IV 

as no primodria were visible , in root segments growing through the macropore 

(Figures 1D  and G) [5, 8]. We validated our vibratome-confocal imaging results 

by sectioning maize roots at a higher density of radial sections using a laser 

ablation tomography (LAT) based approach (4 plants sectioned creating 187 

images) (Figure S1C). LAT simultaneously sections and images the surface of 

samples every 1 mm along root segments. LAT sectioning confirmed that LR 

branching was arrested at the organ initiation stage, before stage IV primodia, 

as almost no new primordia were visible in root segments grown within the 

macropore, contrasting with samples grown in contact with soil (Figure S1C). 

Our soil-macropore-soil experiment yields the same type of LR repression 

observed in aeroponically grown roots exposed to transient water deficit (WD), 

which leads to the formation of a LR repression zone [9]. We suggest that the 

loss of soil contact and/or the drop of matric water potential is perceived by the 

growing root, causing repression of LR formation.  

Transient water deficit induces ABA and auxin responsive genes in barley 

roots  

We investigated the gene expression responses triggered in root tips by 

exposure to a transient WD. Since the macropore traversal system is not 

amenable to sampling for molecular studies, and given the phenotypic similarity 

between macropore traversal and transient WD in aeroponics, we used the 

latter system to analyse the molecular mechanisms and signal(s) associated 

with LR repression in barley and maize (Figure S2A). Barley roots exposed to 

2 to 6 hour long water deficit treatment in aeroponics were transcript profiled 

using the Barley1 GeneChip Genome Arrays (22,782 contigs) on segments of 

the primary seminal root containing the LR repression window delineated by 

Babe et al., 2012 [9]. 755 genes exhibited a significant treatment x time 

interaction over the WD treatment (ANOVA2, p-value ≤ 0.01, FC ≥ 1.5, FDR p-

value ≤ 0.01) (Figure 2A and Data S1). We found a significant enrichment of 
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genes involved in cytokinin, ABA, auxin, salicylic acid and jasmonic acid 

hormone pathways (respectively 2.1, 2.3, 2.5, 2.8 and 4.6, p-value ≤ 0.01) 

(Figure 2B). We have performed RT-qPCR validation for a bZIP transcription 

factor (termed Contig_10961; Figures S2B to D). Due to the well known roles 

of ABA in drought signalling we focused on its role in xerobranching [10]. 

Arabidopsis orthologs were available for 506 out of the 755 cereal sequences. 

We could therefore compare the cereal gene list with different datasets related 

to LR formation in Arabidopsis [11-14] (Data S1). The highest gene enrichments 

were observed in datasets generated after treatment with auxin-related 

signalling molecules naxillin and indole-3-butyric acid (IBA) (respectively 2.6x 

and 2.7x, p-value ≤ 0.01), which modify priming of pericycle cells prior to LR 

initiation. We also noticed a significant but lower enrichment for the two 

datasets related to LR initiation itself (1.5x for both SLR dependant LR initiation 

and xylem pole pericycle specific LR initiation, p-value ≤ 0.01). The above 

microarray experiments were designed to target transcriptional events that 

occur during early stages of LR formation in Arabidopsis, therefore we 

hypothesize that the transient WD episode interferes with the LR initiation stage 

or earlier. 

ABA treatment mimics the root branching response to transient WD  

To assess the role of ABA as a regulator of LR repression, we first quantified 

ABA levels in barley roots during WD. WD triggered a ~4 fold increase in active 

pools of ABA in root tissue, compared to control plants, within 4 hours of 

treatment (Figure 2C). Interestingly, ABA levels in aeroponically grown 

sunflower roots following a WD treatment were also markedly higher compared 

to unstressed controls [15]. 

To test the functional importance of ABA accumulation in roots, we exposed 

barley and maize seedling roots to 6 hours of transient 50 μm ABA treatment 

in the aeroponics system. Clear LR repression zones appeared along the root 

of ABA-treated barley and maize seedlings (Figures 2D and E) and their 

localisation was in complete agreement with that of repression zones formed 

under transient WD [9]. The effect of transient ABA application was also 

assessed on agar plates with barley to clarify the same response seen in 
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hydroponics is also present on agar plates. (Figure S3). In agreement with 

cereal experiments, Arabidopsis seedlings grown on agar plates treated with 

ABA for 2 days lacked LRs in the root segment that had been formed in the 

presence of ABA (Figures 3A to E). The increase of ABA concentration in the 

root appears therefore to be able to mimic LR repression induced by transient 

WD (and presumably by soil macropores) in cereals and Arabidopsis. 

In Arabidopsis, ABA is perceived by members of a redundant family of 

receptors encoded by 13 PYR/PYL/RCAR genes [16]. We exposed Arabidopsis 

seedlings, 5 days post germination (dpg), of Col-0, higher-order ABA receptor 

mutants pyr1 pyl1 pyl2 pyl4 pyl5 pyl8 pyl9 (pyr/pyl 1124589), pyr/pyl 1124578 

and pyr/pyl 112458 to a transient 30 μM ABA treatment as described above. 

Repression zones were observed in the root segments that grew in the 

presence of ABA in Col-0, whereas all pyr/pyl mutants were resistant to ABA 

treatment and formed LR (Figures 3F to H). We therefore concluded that the 

LR repression event is mediated by an ABA signaling module downstream of 

ABA perception by PYR/PYL receptors in Arabidopsis. 

ABA represses LR development prior to organ initiation  

Based on the above results, the transient ABA treatment was used as an 

experimental assay to explore the mechanisms of LR repression in cereals and 

Arabidopsis. In the three species analyzed, the sharpness of the repression 

zone boundaries suggested that the repression targets a specific 

developmental window during LR formation. In barley and maize control plants, 

the root segment spanning the region where the repression zone appears in 

ABA-treated plants contains ca. 10 emerged LR (9.5 ± 1.7, n = 14) [9]. In the 

presence of ABA, no LR primordia were observed in the repression zone, with 

a few exceptions where the repression zone contained 1-3 primordia arrested 

at the first asymmetric cell division stage in barley, or at more advanced stages 

in maize (n = 20 for each species). In Arabidopsis control seedlings, the root 

segment corresponding to the region where the repression zone appears in 

treated plants contains ca. 4 emerged LRs (4.12 ± 0.9, n = 10). In the presence 

of 5 and 10 μM ABA, the repression zone  either contained no LR primordia 

(5/12 and 4/11, respectively) or 1 - 2 LRs blocked between stage V and soon 
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after emergence. At 30 and 50 μM ABA, the repression zone did not contain 

any visible LR primordia (n = 12 and n = 15, respectively), except for 2  30 μM-

treated seedlings for which the repression zone contained 1 LR primordium 

arrested at stage I (2/15). The transient exposure to ABA therefore appears to 

interfere with LR initiation stages, before the first formative divisions. 

In these transient treatments, the repression zone is slightly offset from the 

segment that was developed during the treatment. The proximal side of the 

repression zone comprises a short segment (d1) that was formed before the 

treatment onset, but in which LR formation was nevertheless inhibited by ABA. 

Interestingly the length of d1 increases with higher ABA concentrations (Figure 

3D). This suggests a higher dose of ABA is able to have a more severe effect 

on the root that has already developed. This increase in d1 is why the slow 

growth rates seen at 30 and 50 μm do not result in shorter repression zones 

(Figures 3B and C). The distal side of the repression zone is followed by a short 

segment (d2) which was formed during the ABA treatment, but in which LR 

formation was not inhibited by ABA. As a consequence LR number counted in 

Col-0 in the root portion grown on ABA is higher than 0 because one or multiple 

LRs emerge in d2 (Figure 3H).  

The distance from the root tip correlates well with the developmental stages of 

LR formation, therefore the length of d1 indicates which stages could have been 

present before the treatment and affected by the ABA treatment. Similarly, the 

developmental stage reached in d2 are still capable of forming LR after release 

of ABA. The developmental window targeted by the ABA treatment is therefore 

the root zone located between d1 and d2 from the root tip. The offsets d1 and 

d2 were measured in barley and Arabidopsis as described in [9] and (Figure 

3A). In barley, d1 and d2 offsets were, respectively, 14.4 ± 0.11 and 12 ± 0.32  

mm, and delimit a region where LR root primordia are at stage I or before. In 

Arabidopsis, d1 and d2 values at 5 and 10 μM ABA were both close to 1 mm (n 

= 12 for each concentration) (Figure 3D and E), which falls within the 0.2 - 1.2  

mm region near the root tip where LR priming occurs [17-20]. At both 30 and 

50 μM ABA, d1 and d2 were respectively close to 3.4 and 1.1 mm, which spans 

the transition from founder cell specification and primordium initiation that 

occurs 4.2 mm from the tip [17]. The evidence obtained in barley and 
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Arabidopsis indicate that the ABA repression occurs before the first asymmetric 

division and, according to our Arabidopsis results, at or before LR founder cell 

specification. 

ABA affects prebranch site formation 

To test whether ABA repression occurs at or before LR founder cell 

specification, we monitored the activity of the Arabidopsis DR5:Luciferase 

reporter which has been shown to oscillate close behind the root tip and 

demarks the pre-branch sites in which the LR founder cells are located [21]. 

When 5 dpg Arabidopsis seedlings were exposed for 2 days to increasing levels 

of ABA, a concentration-dependent decrease of the number of primed sites was 

observed (11.4 ± 2.8 mock treatment, 7.8 ± 2.9 1 μM ABA, 4.2 ± 2.8 3 μM ABA, 

4.3 ± 2.8 10 μM ABA and 1.0 ± 1.4 30 μM ABA, n = 13). This suggested that 

transient ABA treatment affects the formation of pre-branch sites in close 

proximity to the root tip. The DR5:Luciferase oscillations which were observed 

at 0.5 μM ABA [22] were blocked at 30 μM ABA (Figure 4A and Video S2). By 

monitoring DR5:rev:3xVenus-N7 fluorescence at 30 μM ABA, we also showed 

that the auxin response decreased in initiated sites and was lacking in putative 

primed sites (Figure S4A and Video S2). Increased levels of ABA therefore 

appears to attenuate the oscillatory auxin response network located in the basal 

meristem.  

To relate this observation in Arabidopsis to our model cereals we exposed 

maize seedlings expressing a DR5:RFP transgene to 4 hour long 50 μM ABA 

treatment in aeroponics. We observed that the fluorescence signal decreased 

in the root tip (Figure S4B). Taken together, these results in maize and 

Arabidopsis suggests that transient ABA treatment represses the formation of 

new primordia by disrupting auxin responses during early LR initiation. 

Transient ABA treatment decreases free IAA levels in roots 

Given the promotive role of auxin during LR formation [23-25], we investigated 

whether co-treatment with this hormone could reverse ABA-mediated LR 

repression (Figures 4B and C). To test this, 5 dpg barley seedlings were 

exposed for 1 hour to 75 μM 1-Naphthaleneacetic acid (NAA, n = 18), indole-3-
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acetic acid (IAA, n = 19) or 2,4-Dichlorophenoxyacetic acid (2,4-D, n = 15) prior 

to a 6 hour long 50 μM ABA treatment in aeroponics (n = 14 no treatment control, 

n = 17 ABA treatment control) (Figures 4B and C). A dosage series from 1 to 

100 μM was completed and the results from a 75 μM application is reported 

here as a representative result (Data S2). Pre-treatments with the synthetic and 

natural forms of auxin, NAA and IAA, prevented LR repression fully and partially, 

respectively. Interestingly, post-treatment of barley seedlings with the same 

auxins did not restore LR formation (Figure S4C). The inability of auxin post-

treatment to restore LR formation suggests that barley pericycle cells exposed 

to a transient ABA treatment irreversibly loose their competence to respond to 

auxin and to engage in LR formation. 

Finally, we investigated whether the transient ABA treatment decreases free 

IAA levels in maize. IAA profiling was performed on 0.5 cm long segments along 

the 2 cm long distal region of maize roots following a treatment with ABA during 

2 to 6 hours. The profiling focused on free IAA, several IAA precursors (Trp 

(Tryptophan), Tra (Tryptamine), IpyA (Indole-3-pyruvic acid)), products of IAA 

inactivation (oxidative intermediate oxIAA (2-oxindole-3-acid acid) and IAA 

conjugates with Asp (Aspartate) and Glu (Glutamate) [26, 27]. Despite a 

transient increase of free IAA between 2 and 4 hours of treatment in the distal 

segments, the ABA treatment progressively decreased free IAA levels down to 

80 % of the control in 0.5 - 2 cm segment after 6 hours of treatment (Figure 4D). 

The amount of IAA conjugates increased after 2 hours of treatment, in parallel 

to the free IAA decrease in the proximal region, with only a minor impact on 

auxin biosynthesis (Figures 4E and F). We can therefore conclude that ABA 

leads to a decrease of auxin levels above the root apical meristem in maize, 

consistent with the above observation in barley that auxin pre-treatment 

prevents the repressive effect of ABA on LR initiation.  

Conclusions 

Roots are known to exhibit a high level of developmental plasticity in response 

to their soil environment. However, how roots sense and react to transient 

variations in water availability has not been addressed in detail to date, most 

probably because soil water is generally considered as a resource subject to 

progressive depletion. Our study reveals that LR formation is repressed at an 
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early stage when roots grow through air-filled soil macropores (Figure 1). We 

demonstrate that, in the analogous transient WD assay [9], the ABA response 

pathway is involved in LR repression (Figure 4G). This LR adaptive response 

appears to be specific to transient treatments as it does not occur under 

prolonged WD treatments [28-30], nor under prolonged exposure to ABA [29].  

It is also different from the earlier described drought rhizogenesis that is the 

result of a progressive drought stress. In the latter case, LR primordia are 

formed at a normal density and remain blocked at the meristem activation 

phase. More specifically, a long term exposure to ABA inhibits LR meristem 

activation by promoting quiescence of QC cells in a reversible fashion and does 

not affect early stages of LR formation [29, 31, 32]. Hence, our observation of 

the repression of LR formation early after the onset of transient WD or ABA 

treatment appears to be distinct from the well described effects of ABA under 

prolonged WD [28, 33, 34].  

Based on our results, we propose that xerobranching is the outcome of an ABA-

dependent regulatory mechanism operating in a narrow developmental window, 

which interfers with the constituative branching mechanism in plant roots. We 

hypothesise that ABA levels accumulate as the root tip experiences a transient 

WD, disrupting the auxin response and repressing LR priming. Our results 

suggest that ABA reduces auxin accumulation. Whether this is a direct 

consequence of altered auxin metabolism, or a secondary effect caused by 

altering the auxin signalling machinary, is not clear. When the root tip 

reconnects with soil aggregates providing water, ABA gets diluted and the 

repression of LR priming is lifted. Such a mechanism would indeed switch the 

repression on and off whenever the root segment is exposed to air or wet soil, 

respectively, thereby ensuring the perfect match of the repression zone with 

macropore boundaries.  

The apparent phenotypic similarily between the xerobranching and 

hydropatterning responses would suggest that the former is an extreme 

manifestation of the latter, which occurs when the whole root circumference 

looses contact with soil moisture. However, our experimental results indicate   

that ABA is a key signal invovled in xerobranching whilst Bao et al., 2014 

observed that ABA signalling does not play a regulatory role in hydropatterning. 
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[7]. Whilst the mechanistic link between these two responses is not clear, the 

striking effect of water availability on root branching is clear and shows that 

plants have evolved sophisticated signalling repsonses to navigate the complex 

soil system. 
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Main Text Figure Legends 

Figure 1. Xerobranching response is observed in maize and barley grown 

in soil. 

(A and B) X-ray CT images of 16 day old maize (B73) (n = 5) (A) and barley 

(B83) (n = 3) (B) plants growing through a 2 cm air gap. Root tissue is false-

colored in white and soil is false-colored in brown. (C-H) Representative 

confocal images of cross sections taken from maize (C-E) and barley (F-H) 

primary roots in the top section of the soil (C and F) , air gap (D and G) and 

bottom section of soil (E and H). Sample size of 54 images from 3 maize plants 

and 47  images from 3 barley plants. Scale bar = 0.1 mm. See Figure S1 for 

the response to submergence and laser ablation tomography images. See 

Video S1 for a movie of xerobranching in maize. 

Figure 2. Root transcriptome changes during xerobranching in barley 

involves hormonal response pathways, such as ABA which can mimic 

xerobranching when applied transiently.  

(A) Hierarchical clustering of the 755 differentially expressed genes in barley 

(cv Derkado) (p-value ≤0.01, fold-change ≥1.5) showing two independent 

biological replicates per condition. Low expression levels in blue, high 

expression levels in yellow. (B) Gene ontology term enrichment for plant 

hormones in the list of differentially expressed genes in barley. GO identifiers 

are enclosed in brackets. The number of differentially expressed genes 

experimentally associated with each term is enclosed within brackets. Bars 
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indicate the log2(Enrichment) for each term. Categories related with ABA 

highlighted in yellow and auxin in blue. (C) Quantification of ABA content in 

barley root tissue subjected to a 4 hour long transient WD. Bars are means ± 

SD for n = 5 root complete root systems. Asterisks indicate statistically 

significant differences between treated and control plants (Student’s t test; p < 

0.01). (D and E) Length of the repression zone (RZ) and branching pattern in 

barley (B83) and maize (B73) root tissue after a 6 hour long treatment with 50 

μM ABA in LR repression experiments in aeroponics. Bars = 0.5 cm. See  Data 

S1 for the list of transcripts differentially expressed upon water deficit. See 

Figure S2 for qRT-PCR validation of the water deficit microarray. See Figure 

S3 for confirmation of the formation of a repression zone in agar plates. 

Figure 3. PYR/PYL/RCAR dependent signalling is required for transient 

ABA stimulated LR repression in Arabidopsis. 

(A) Experimental design for Arabidopis root system exposed to DMSO (Control) 

or ABA (+ABA) for 2 days in LR repression experiments. (B) Length of the 

repression zone (RZ) in Arabidopsis seedlings grown as described in A for 2 

days with various ABA concentrations (n = 12). (C) Average Arabidopsis root 

growth rate during 2 days of treatment with given ABA concentrations (n = 12). 

(D) Average d1 offset between the position of the root tip at the beginning of 

ABA treatment and the last emerged LR (n = 12). (E) Average d2 offset between 

the position of the root tip at the end of ABA treatment and the first emerged LR 

(n = 12). Bars are means ± SD. Different letters indicate significant differences 

with p < 0.001 according to Tukey's HSD test after ANOVA. (F) Branching 

pattern of 12 dpg Arabidopis root systems of Col-0 and ABA-response mutants 

as indicated, exposed to DMSO (- ABA) or 30 μM ABA (+ ABA) for 2 days. 

White lines demark the root segments that grew during 2 days of transient 

DMSO or ABA treatment. (G and H) LR number in the root segments that grew 

in the presence of DMSO or ABA in 2 days. Note this is not equivalent to the 

RZ, due to d1 and d2, and therefore a few LRs are present in the ABA treatment 

as these are formed in d2. Data are represented as percentage (n = 31 and n 

= 36 respectively). 

Figure 4. Transient ABA treatment alters DR5 oscillations in the root 

oscillation zone in Arabidopsis and affects auxin accumulation in maize. 

(A) Representative DR5:Luciferase luminescence in the LR repression 

experiments viewed by using time-lapse imaging. 4 or 5 dpg Arabidopsis 

seedlings grown on standard media were transferred to standard media with 

DMSO (- ABA) or 30 μM ABA (+ABA) and imaged every 10 minutes up to 18 

hours in a dark imaging chamber (n = 10). Black-filled arrowheads indicate the 

position of prebranch sites that appear during the time-lapse imaging and 

subsequent formation of DR5 maxima that indicates the position of future LR 

primordia. White line indicates the position of the oscilation zone (OZ). White 
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stars mark the position where DR5 oscillation pulses should be present by 

virtue of their position along root. (B) Branching pattern of barley roots in auxin 

complementation assays. Plants grown in aeroponics were exposed for 1 hour 

to nutrient solution (Control, n = 14) or to 75 μM of 2,4-D (n = 15), IAA (n = 19) 

or NAA (n = 18) in nutrient solution, then treated for 6 hours with 50 μM ABA 

and to 50 μM ABA alone without any pre-treatment (n = 17). Roots were imaged 

after 7 days of growth and the average number of LRs within the repression 

zone (RZ) was calculated (C), and compared to control conditions (Control) 

when no pre-treatment was applied.. Bars are means ± CI. Different letters 

indicate significant differences with p < 0.05 according to Tukey's HSD test after 

ANOVA. (D, E and F) Changes in levels of given auxin metabolites in maize in 

four successive 0.5 cm long root segments starting from the root tip when 

treated with ABA (n = 3). Presented as a percent of non treated roots. (D) Levels 

of free IAA upon 2 hour, 4 hour and 6 hour long 50 μM ABA treatments. (E) 

Levels of IAA precursors upon 2 hour long 50 μM ABA treatment: Tryptophan 

(Trp), Tryptamine (Tra), Indole-3-pyruvic acid (IpyA). (F) Levels of IAA 

conjugates upon 2 hour long 50 μM ABA treatment: oxindole-3-acetic acid 

(oxIAA), indole-3-acetyl-aspartate (IAA–Asp), and indole-3-acetyl-glutamate 

(IAA–Glu). Bars are means ± SD. Asterisks indicate statistically significant 

differences between treated and control plants (Student’s t test; * and ** 

correspond to P value of 0.05 > p > 0.01 and 0.01 > p > 0.001, respectively). 

(G) Schematic representation of the xerobranching response. When roots are 

not in contact with water as they enter a soil macropore, pre-branch site 

formation is repressed by ABA response pathways causing immediate 

repression of pre-branch site formation and hence, LR development. See Data 

S2 for the dose response of auxin pre-treatments in the transient ABA assay. 

See Figure S4 for decreased auxin response in Arabidopsis, decreases in DR5 

maxima in maize and auxin treatments post transient ABA application in barley. 

See Video S2 for movies of the images presented in Figures 4A and S4A. 

STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Xavier Draye 

xavier.draye@uclouvain.be. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

In this report we use Arabidopsis thaliana Col-0, Zea mays (B73 and 

Emmerson) and Hordeum vulgare (cv Derkado and B83). 

mailto:xavier.draye@uclouvain.be
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Arabidopsis thaliana 

In all experiments with Arabidopsis, seeds were sterilized with chlorine gas 

and stratified at 4°C for 2 days in water. After cold treatment, seeds were 

sown over solid half-strength MS growth medium (per litre: 2.15 g MS salts, 

0.1 g myo-inositol, 0.5 g MES, 10 g sucrose, 8 g plant tissue culture agar; pH 

= 5.7 with KOH) and grown vertically under continuous light (110 µE m–2 s–1 

photosynthetically active radiation, supplied by cool-white fluorescent 

tungsten tubes, Osram) for 4 - 5 days. 

Zea mays (B73 and Emmerson) and Hordeum vulgare (cv Derkado and 

B83) 

Barley and maize seeds were left to germinate on a vertical filter paper for 72 

hours in the dark at 18°C and 22°C, respectively (unless otherwise stated). 

The root system was reduced to a single embryonic root, preferably the most 

vertical one, unless grown for soil columns. Germinated seeds were 

transferred to 40 × 60 × 60 cm aeroponic systems containing 5 L of nutrient 

solution sprayed for 15 s every 5 min. Barley seedlings were grown in a half-

strength Hewitt solution (2 mM Ca(NO3)2 · 4H2O, 2 mM KNO3, 0.75 mM 

MgSO4 · 7H2O, 0.67 mM NaH2PO4 · 2H2O, 0.05 mM FeEDTANa, 0.03 µM 

(NH4)6Mo7O24 · 4H2O, 50 µM NaCl, 25 µM H3BO3, 5 µM MnCl2 · 4H2O, 

0.5 µM CuSO4 · 5H2O, 0.5 µM ZnSO4 · 7H2O, 0.6 mM Na2SiO3 · 5H2O; pH 

5.8). Maize seedlings were grown in a modified Hoagland solution (2 mM 

KNO3, 2 mM Ca(NO3)2 · 4H2O, 2 mM MgSO4 · 7H2O, 1 mM NH4NO3, 1 

mM KH2PO4, 10 µM MnCl2 · 4H2O, 50 µM CuSO4, 1 µM ZnSO4 · 7H2O, 0.2 

µM H3Mo4; pH 5.0). All experiments were conducted in a PGV36 growth 

chamber (Conviron, Winnipeg, Canada) with a day : night temperature regime 

of 18°C : 16°C for barley and 22°C : 20°C for maize, a relative humidity of 70 

per cent, a 16 h long photoperiod and a photosynthetically active radiation of 

350 µmol m−2 s−1.  

METHOD DETAILS 

CT scanning experiments 
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Barley (B83) and maize (B73 and Emmerson) plants were grown in columns 10 

cm tall and 3.5 cm wide filled with sandy loam. Seeds were soaked for 30 

minutes and then stratified at 4°C for 3 days on wet filter paper. Seeds were 

germinated for 1 day on filter paper at room temperature before being 

transferred to soil. A 2 cm air gap was created in the middle of the column using 

a mesh insert to hold the top layer of soil up while allowing the root to pass 

through. Plants were grown for 16 days at 20°C in 16 hour light conditions and 

watered from the top and the bottom every other day before imaging with X-ray 

µCT scanning. 3 barley, 5 B73 maize and 3 Emmerson maize plants have been 

imaged with this experimental set up and all show LR repression. 

In order to test root growth through water filled gaps the whole column was 

submerged under water. A water aerator was used to prevent hypoxia in the 

roots. The columns were removed from water 24 hours before CT scanning in 

order to dry the soil. 

 X-ray µCT scanning using a phoenix v|tome|x m industrial scanner (GE 

Sensing and Inspection Technologies, Wunstorf, Germany), at 160 kV and 160 

µA. The distance between the X-ray source and the sample and the X-ray 

source and the detector was 122.805 mm and 818.69 mm, respectively, 

resulting in a magnification of x 6.666 and a spatial resolution of 30 µm. Each 

scan acquired 2160 projection images over a 360° rotation of the sample using 

a detector exposure time of 250 ms in ‘fast mode’ resulting in a total scan time 

of 9 minutes. Data was reconstructed using datos|x software (GE Sensing) and 

visualised using VGStudio MAX V.2.2 (Volume Graphics, Heidelberg, 

Germany). Images show a 4.8 cm long section of the column. 

Imaging cereal cross sections 

 Plants were grown as described above and sectioned to view root cross 

sections. In the first experimental procedure roots were extracted from soil, 

solidified in agar and then sectioned using a vibratome. The slices were stained 

with Fluorescent Brightener 28 and then imaged with a confocal microscope. In 

the second experimental procedure roots were extracted from soil and 

preserved in 75% ethanol. They were then imaged using laser ablation 
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tomography (LAT) where the root was simultaneously cut and imaged at 1 mm 

intervals.  

Expression studies in barley 

The sampling strategy was designed to monitor gene expression at -4, -2, 0 

and 2 hours relative to the first asymetric division, in conditions that enable (A) 

or repress (B) LR formation. 5 mm long segments were sampled such that the 

first sampling (-4h position) targets a region distal to the first asymetric divisions, 

and the last sampling (+2h position) targets a region proximal to the first 

asymetric division.  

From previous work, we considered that the first asymmetric cell division occurs 

on average 12 mm proximal from the root tip, while the next divisions occur at 

20 mm from the tip. Based on this, a sample length of 5 mm was chosen, as a 

compromise between maximising the amount of RNA per sample and 

minimising the probablity to capture cells undergoing the second round of 

divisions. As a no-LR control, we relied on a described LR repression system 

[9].  In this system, the first asymetric divisions are repressed within 2 hours of 

a water deficit treatment. The treatment can be applied as long as 8 hours. In 

the conditions of these experiments, barley roots grow at ca. 1 mm.hr–1. During 

an 8 hour-long treatment, a 8 mm long root segment is formed where LR 

formation has been repressed.  

The following indicates the likely number of formative divisions in each sample, 

assuming a LR density of 1 LR.mm–1. At the -4h position (T0), the samples in 

A and B conditions do not contain any first asymetric divisions. At the -2h 

position (T2), A samples are likely to contain one LR initiation engaged in 

asymetric divisions, against zero in the B samples where these sites have been 

repressed. At the -0h position (T4), A samples are likely to contain two-three 

LR initiation engaged in asymetric divisions, against zero in the B samples 

where these sites have been repressed. At the +2h position (T6), A samples 

are likely to contain four LR initiations engaged in asymetric divisions, against 

zero in the B samples where these sites have been repressed. 
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Preliminary tests indicated that a 6 cm long fragment would give the required 

amount of RNA for one chip hybridization. We therefore collected 12 

independent biological samples for each chip. The whole procedure was 

repeated two times, amounting to a total of 24 independent biological samples 

(two chips) per condition and time point.  

RNA was isolated from frozen root segments according to the SV Total RNA 

Isolation Systems (Promega). After DNAse treatment (Promega), RNA samples 

were quantified by using Nanodrop spectrophotometer (Nanodrop 

Technologies) and then confirmed by RNA electrophorese. 5.3 μg of total RNA 

was used for cDNA synthesis, labelling and fragmentation according to One 

Cycle Target Labelling kit (Affymetrix), as for manufacture protocol. The 

samples were hybridized to the arrays for 16 hours at 45°C, washed on 

GeneChip Fluids Station (Affymetrix) and imaged on GeneChip Scanner 

(Afftmetrix). The resulting data were processed for quality check in MAS 5.0 

(Affymetrix). The expression values have been normalized using the robust 

multi-array average method [35]. Differential analysis was performed using 

linear models and empirical Bayes methods within affy and limma R packages 

[www.r-project.org, 36, 37, 38]. Raw p-values were adjusted using the 

Benjamini-Hochberg method to control the FDR [39]. Affymetrix probesets 

annotation was retrieved from Affymetrix website 

(Affymetrix_Barley1.na34.annot, http://www.affymetrix.com/) and genes that 

are controls of the microarray were discarded. Two-factor ANOVA p-values 

were computed using MeV 4.9 (mev.tm4.org). The data discussed in this 

publication have been deposited in NCBI's Gene Expression Omnibus and are 

accessible through GEO Series accession number GSE67367 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67367). Genes have 

been selected if they could satisfy the following criteria: significant regulation 

upon drought treatment in at least one of three pairwise comparisons (Drought 

T2 VS T0, Drought T4 VS Drought T2, Drought T6 VS Drought T4) and 

dependant on the treatment, the time and the interaction in comparison to 

control time points without drought treatment (FC≥1.5, FDR corrected pvalue 

≤0.01, two factor Anova pValue ≤0.01). The homologous equivalence between 

probesets contigs and Arabidopsis AGI gene models was realized using the 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67367
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genelist suite on PLEXdb (http://www.plexdb.org/modules/glSuite/) with default 

parameters.  

The heatmap of the hierarchical clustering was performed on the list of 755 

differentially expressed genes described previously using MeV 4.9 

(mev.tm4.org) with an average pearson correlation linkage. 

The gene ontology enrichment was performed on Plaza 4.0 [40] using a set of 

461 Arabidopsis orthologs deriving from the list of 755 differentially expressed 

genes described previously. The results (all significant with a pvalue ≤0.01) 

were parsed to retain only categories related with the major plant hormones 

(abscisic acid, auxins, brassinosteroids, cytokinins, ethylene, gibberellins and 

jasmonic acid).  

The microarray validation was performed by qRT-PCR (see Figure S2). RNA 

was isolated using FastRNA Pro Green kit (MP Biomedicals). OD 260/280 

ratios were determined using a Nanodrop ND-1000 (Nanodrop Technologies 

Inc.). 1μg of the total RNA was reverse transcribed using the Superscript III 

reverse transcriptase (invitrogen) according to the protocol. cDNA samples 

were diluted 2 times with sterile milliQ water. For each qPCR, 1μl of 2x diluted 

cDNA sample, 20 μl of 200 nM of gene-specific primers and 10 μl of ABsolute 

Blue SYBR green Fluor (Thermo Scientific) mix was added. The RT–qPCRs 

were run on a IcyclerIQ (Biorad). The qPCR program run consisted of a first 

step at 95°C for 15 min and afterwards 40 cycles alternating between 15 s at 

95°C, 60 s at 60°C and 30 s 72°C. The expression of Contig_10961 relative to 

control gene expression EF1α (barley Elongation Factor 1-alpha, gi : z50789) 

was estimated  by using the ΔΔCT method (n = 2). This choice of Contig_10961 

was motivated by the fact that 1) expression of this gene is downregulated 

rapidly upon WD treatment, and 2) bZIP transcription factors are known to 

regulate developmental responses to stress. 

Arabidopsis datasets compendium analysis 

Previously published datasets [11-14] were retrieved from the following 

respective Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 

under the accession numbers GEO: GDS1515, GSE6349, GSE42896 and 

http://www.plexdb.org/modules/glSuite/
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GSE59426 and were independently analyzed using the same procedure as 

previously described for the barley microarray. For the enrichment (ratio 

between the expected and observed number of genes differentially expressed 

in the barley and a given Arabidopsis dataset), p-values were generated using 

the Fisherexact Excel addin 

(http://www.obertfamily.com/software/fisherexact.html). 

 Genes were considered to be significantly regulated in each independent 

experiment if they could satisfy the following respective conditions: (i) absolute 

fold change FC 1,5, adjusted p-value 0.01, between 0 and 6 hours upon 

lateral root inducible system in the control plants, and a TWO-WAY ANOVA p-

value 0.01 for the interaction of the treatment and the genotype (slr), (ii) 

absolute FC 2, adjusted p-value 0.01 between 0 and 6 hours upon lateral 

root inducible system in the sorted pericycle cells, (iii) absolute FC 2, adjusted 

p-value 0.01 between 0 and 2 hours upon treatment with both compound (NAA 

and naxillin) during the time course upon lateral root induction system, (iv) 

absolute fold change FC 1,5, adjusted p-value 0.01, between 0 and 6 hours 

upon IBA treatment in the control plants, and a TWO-WAY ANOVA p-value 

0.01 for the interaction of the treatment and the genotype (ibr1 ibr3 ibr10 ).  

Aeroponic growth system 

In aeroponics experiments, 40 seedlings (4 dpg (barley) or 3 dpg (maize)) were 

grown with 5 L of nutrient solution (pH = 5.8). For transient water deficit 

experiments the plants were grown for 12 days when half of the seeds were 

subjected to a transient WD treatment. The treatment was applied by 

interrupting the nutrient supply for 4 hours during the night phase. To apply a 

transient ABA treatment, after one or two days, the nutrient solution was 

replaced during up to 8 hours with a fresh nutrient solution with or without 50 

μM ABA (stock: 50 mM ABA (Alfa Aesar) diluted in dimethyl sulfoxide (DMSO, 

Sigma-Aldrich). Root growth rates and lengths of repression zones were 

estimated as as follows. Greyscale images of seedlings were captured using a 

modified 600 dots per inch flatbed transparency scanner (Medion, Germany). 

They were obtained at the onset, at the end of the ABA treatment and after 7 

days. Images were analysed using SmartRoot and SAS software for 

http://www.obertfamily.com/software/fisherexact.html
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computation of RZ length and for data manipulation preceding statistical 

analysis [41]. 

Quantification of ABA content 

Barley seedlings were grown in aeroponics as described above. Each sample 

type represents five complete root systems. The peak corresponding to ABA 

concentration was quantified by ELISA with an anti-ABA antibody MAC 252. 

Arabidopsis agar plate growth assays 

Scans of the plates were taken with V700 (Epson). Figures were arranged in 

Photoshop CS3 without modifications. For transient ABA treatments, 5 dpg 

seedlings were transferred on square Petri plates with or without increasing 

concentrations of ABA and the exact positions of root tips were marked. After 

2 d, plates were scanned and seedlings were transferred on new plates without 

ABA in the same order. After 7 d, positions of emerged LRs were marked under 

binocular (S6D, Leica) and plates were scanned again. For microscopic 

analysis of repression zone, root segments corresponding to repression zones 

were cleaned overnight in chloral hydrate solution and observed with BX53 

microscope (Olympus) equipped with DS-Fi1 (Nicon) camera. Each data point 

represents a mean from at least 10 seedlings. Images were analyzed with 

ImageJ software to estimate the length of repression zones and the longitudinal 

position of individual LR flanking repression zones preceding statistical analysis.  

In vivo imaging for DR5:Luciferase 

For DR5:Luciferase imaging, 4 or 5 dpg Arabidopsis seedlings were transferred 

on plates with DMSO or 30 μM ABA. Before transfer, the plates were sprayed 

with 400 μl of 1 mM D-luciferine (Duchefa Biochemie) using a pump spray and 

left in darkness to dry. The DR5:Luciferase signal was recorded by a Lumazone 

machine carrying a charge-coupled device (CCD) camera (Princeton 

Instruments, Trenton, NJ, USA) [42]. The CCD camera that is controlled by a 

WinView/32 software took movies of the DR5:Luciferase [21] expression 

automatically every 10 minutes (exposure time, 10 minutes) for up to 24 hours. 

The picture series were saved as TIFF format for further analysis.  



 26 

In vivo imaging for DR5rev:3xVENUS-N7 

For DR5rev:3xVENUS-N7 imaging experiments, 4 or 5 dpg seedlings were 

transferred directly on plates containing DMSO or 30 μM ABA. Photographs 

were taken every 2 minutes (exposure time 1 second) up to 24 hours for 

DR5rev:3xVENUS-N7 line by using a 90 degree tilted stereo microscope 

(Olympus MVX10), which enables visualizing fluorescence signal in a vertical 

growing root [43]. The picture series were saved as TIFF format for further 

analysis. 

Repression zone formation in cereals on agar plates 

In ABA experiments on agar square plates, 3 dpg barley seedlings were 

transferred from filter paper (Waterman) to the square Petri plates with 50 ml of 

nutrient solution (pH = 5.8) supplemented with 1.5% of agarose alone or with 

ABA to the final concentration of 50 μM (repression zone experiment) with 10 

seedlings per each plate. The same amount of DMSO was added to the control 

solution. Positions of root tips were marked. In repression zone formation assay, 

seedlings were grown vertically for 6h, scanned and then transferred to the 

aeroponics with nutrient solution. After 7 days in aeroponics, seedlings were 

scanned again and images were processed with ImageJ software. Mean values 

were determined from two biological replicates. 

Microscopy analysis in cereals 

For DR5rev:RFP experiments in maize, apical root segments were fixed in 4 

per cent para-formaldehyde in phosphate buffer for 1 hour at 4°C, mounted with 

distilled water and photographed with a Leica epi-fluorescence binocular with a 

filter set for rhodamine. Images were taken with an AxioCam (Zeiss). 

Auxin pretreatment assays 

In auxin pretreatment assays, seedlings were exposed to auxin for 1 hour 

before the start of the ABA treatment using a nutrient solution (pH = 5.8) 

supplemented with increasing concentrations (0, 1, 10, 50, 75 and 100 μM) of 

different auxins: α-Naphthalene acetic acid (NAA, Sigma-Aldrich), indole-3-

acetic acid (IAA, Sigma-Aldrich) and 2,4-Dichlorophenoxyacetic acid (2.4D, 
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Sigma-Aldrich) and washed briefly before the ABA treatment. See Data S2 for 

initial evaluation. Only results for 75 μM are shown on Figure 4. 

Quantification of IAA metabolites 

3 dpg maize seedlings were transferred to aeroponic box containing nutrient 

solution. After one day, half of the seeds were subjected to ABA treatment, 

where 50 μM ABA was added to nutrient solution for varying lengths of time. 

Small fragments of roots, 0.5 cm each up to 2 cm from the root tip from at least 

three roots per sample were harvested and immediately frozen in liquid nitrogen. 

IAA metabolites were quantified from 20 mg of frozen roots using LC-MRM-MS 

(liquid chromatography/multiple reaction monitoring/mass spectrometry) [27]. 

Three biological replicates were performed per sample type. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All data analyses were performed with R software package, v. 2.15, with 

different letters indicating significant differences according to Tukey's HSD test 

after ANOVA, unless stated otherwise. Statistical details can be found in figure 

legends. 

DATA AND SOFTWARE AVAILABILITY 

Microarray data 

The microarray data discussed in this publication have been deposited in 

NCBI's Gene Expression Omnibus and are accessible through GEO Series 

accession number GSE67367 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67367).  

Accession Numbers 

Sequence data from the genes investigated can be found in the 

GenBank/European Molecular Biology Laboratory (EMBL) data libraries under 

accession numbers: At4g17870 (PYR1), At5g46790 (PYL1), At2g26040 

(PYL2), At1g73000 (PYL3), At2g38310 (PYL4), At5g05440 (PYL5), At2g40330 

(PYL6), At4g01026 (PYL7), At5g53160 (PYL8), At1g01360 (PYL9). The 

Arabidopsis sextuple mutant of pyr1 pyl1 pyl2 pyl4 pyl5 pyl8 (pyr/pyl 112458) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67367
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was previously described [16] and crossed with pyl9 (SALK_08361) in order to 

obtain the heptuple pyr/pyl 1124589 mutant. 

KEY RESOURCES TABLE 

Separate file uploaded. 

Supplemental Items Figure Legends 

Data S1. The list of transcripts differentially expressed upon water deficit, 

related to Figure 2. 

Data S2. Initial evaluation of the dose response to auxin pre-treatments in 

transient ABA assay, related to Figure 4. 

Video S1. Video of maize xerobranching, related to Figure 1. 

A video showing the CT reconstruction of a maize root growing through a soil 

macropore and displaying xerobranching. The video runs through scans from 

the top of the column to the bottom therefore showing the progression of root 

growth. 

Video S2. DR5:luciferase luminescence and DR5rev:3xVENUS-N7 

fluorescence in the LR repression experiments viewed using time-lapse 

imaging, related to Figure 4. 

(First video) 4 or 5 dpg Arabidopsis DR5:luciferase seedlings grown on 

standard media were transferred to standard media with DMSO (left panel) or 

30 μM ABA (right panel) and imaged every 10 minutes up to 18 hours in a dark 

imaging chamber. (Second video) 4 or 5 dpg Arabidopsis DR5rev:3xVENUS-

N7 seedlings grown on standard media were transferred directly on growth 

medium with DMSO (left panel) or 30 μM ABA (right panel) and imaged every 

2 minutes up to 24 hours. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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