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Freeze-drying has been associated with high quality hydrocolloid-based products such as coffee. How-
ever, it is an expensive technique, and one way to reduce energy and water use is by drying concentrated
systems. Controlling the ice crystal formation is important to produce final dried materials with desired
microstructure and properties. This study presents the effect of freezing with and without temperature
oscillations on the final microstructure and reconstitution of aerated and non-aerated freeze-dried
concentrated (50 and 60% w/w) gum arabic and coffee systems. Samples were either frozen at �40 �C or
subjected to fluctuating temperatures between �40 and �20 �C prior to drying. Thermal analysis of the
systems showed lower nucleation and freezing temperatures for 50% compared to 60% solutions, as
expected, and melting temperatures> -20 �C. During drying, puffing of the material was observed, with
appearance of a glass-like, puffed bottom layer, in particular for the 60% coffee frozen at �40 �C. SEM
micrographs revealed pores of dendritic, hexagonal, and circular shape, indicating voids produced by
sublimation of ice crystals. Pore sizes were smaller (by 50%, of the order of 40ìm) for the 60%, than the
50% systems. Temperature fluctuations during freezing doubled the observed pore sizes and the apparent
total porosity which effectively accelerated the dissolution kinetics. Aeration resulted in the appearance
of air bubbles (diameter 200e1600 mm) that largely phase separated in gum arabic and resulted in faster
rehydrating solids. This work demonstrates the potential of process design to control microstructural
attributes and reconstitution properties of freeze-dried hydrocolloid-based products in systems with
high solute concentrations.

© 2018 Published by Elsevier Ltd.
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1. Introduction

The highly branched structure of polysaccharides known as
hydrocolloids are mainly associated with the ability to modify
viscosity of food products. Presence of the colloidal particles such as
galactomannans and arabinogalactans in food formulations like
sauces, ice-cream, salad dressings and coffee created end product
with characteristic texture and sensory properties (Li & Nie, 2016).
For example, the creamy sensation and foaming ability of coffee
solutions has been linked with these high molecular weight poly-
saccharides in the coffee extract (Nunes & Coimbra, 2002). Mean-
while, the arabinogalctoprotein fraction in gum arabic made it
widely used as emulsifier (Nishino, Katayama, Sakata, Al-Assaf, &
ngineering, University of Bir-
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Philip, 2011). Drying of hydrocolloid-based systems is important for
food applications to produce materials with the desired charac-
teristics, such as texture, shelf life, or rehydration capacity
(Cassanelli, Norton,&Mills, 2017). Dried hydrocolloid systems have
also applications in other sectors, including medicine
(Nussinovitch, Velez-Silvestre, & Peleg, 1993) and pharmaceuticals
(Gal & Nussinovitch 2007; Mukai-Correa et al., 2004). In foods,
quality of dried products is usually characterized by flavour, aroma
and nutrients retention as well as porosity and reconstitution
properties.

Freeze-drying is one of the most preferred drying techniques for
quality products such as instant coffee, partially because of its
ability to yield highly porous microstructures that contribute to
high rehydration capacity of the freeze-dried foods (Ishwarya &
Anandharamakrishnan, 2015; Asami et al., 2003). In freeze-
drying, food is initially frozen to induce water crystallisation and
it is subsequently dehydrated through sublimation of the ice and
desorption of the unfrozenwater. The freezing step is critical as the
117
118
119
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morphology of the ice crystals formed determine the final
morphology of the freeze-dried cake and hence the properties of
the dehydrated product.

Freezing involves ice nucleation and crystal growth. In
concentrated systems, freezing of water is limited by the reduced
water availability, due to the low water content, and lower mo-
lecular mobility, due to the high viscosity. The possibility to control
ice crystals’ size and shape through modification of the freezing
process has been previously discussed (Kiani & Sun, 2011). This
includes utilisation of emerging techniques, such as ultrasonic vi-
bration, which has been shown to promote growth of large and
directional dendrites due to nucleation induced at high tempera-
ture (Nakagawa et al., 2006). Other ways to control water crystal-
lisation include addition of nucleating agents such as Pseudomonas
Syringae and silver iodide (AgI) (Searles, Carpenter, & Randolph,
2001), freezing with nitrogen gas (Rambhatla et al., 2004), and
annealing (Hottot, Vessot,& Andrieu, 2007). These techniques were
introduced to have ice nucleated at the desired temperature and
eventually growth of the desired ice crystal morphology. Annealing
is carried out at the end of the freezing process by holding the
sample above the glass transition temperature, and below melting,
for a certain period of time. This holding step allows growth of large
crystals, assisted by the recrystallisation phenomenon known as
Ostwald ripening (Hottot et al., 2007).

Ice crystals may also play a critical role in the dehydration step,
where it is important that sufficient heat and mass transfer occur
during drying for efficient process. For example, small crystals have
been correlated with high vapour flow resistance and low drying
rate (Ceballos, Giraldo, & Orrego, 2012; Harnkarnsujarit,
Charoenrein, & Roos, 2012; Searles, 2010). The high resistance at
the sublimation front can cause overheating to the product due to
prolonged exposure in the drying stage (Franks, 1998). A danger of
overheating means there is possibility for product temperature to
reach higher than its glass transition (Tg) or collapse temperature
(Tc) leading to increased molecular mobility and eventually struc-
tural collapse (Krokida, Karathanos, &Maroulis, 1998; Levi & Karel,
1995; Overcashier, Patapoff,&Hsu,1999; Tsourouflis, Flink,& Karel,
1976). Knowledge of glass transition, collapse temperature (Tc) and
melting temperature (Tm) of food materials is important for the
choice of the most appropriate processing parameters (Roos, 1997).
A collapsed freeze-dried cake is often associated with dense
structure (Krokida et al., 1998) and poor rehydration capacity
(Barresi et al., 2009).

Numerous work have shown how attributes of freeze-dried
foods are controlled by the freezing conditions applied (Ceballos
et al., 2012; Hottot, Vessot, & Andrieu, 2004a; Liliana, Diana, &
Alfredo, 2015; Nowak et al., 2016; Voda et al., 2012). However,
understanding the link between freezing conditions and properties
of the dried materials is still a matter of on-going research. For
example, during rapid freezing to temperatures< -80 �C, formation
of needle-like ice crystals and eventually narrow voids has been
reported, and it was linked with instantaneous rehydration of the
freeze-dried protein based food and carrot (Harnkarnsujarit et al.,
2016; Voda et al., 2012). On the contrary, Ceballos et al. (2012) re-
ported that solubility of freeze-dried fruit powders decreased with
increasing freezing rate due to high capillary resistance in small
pores. Large crystals formation due to slow freezing has been
further linked with good water uptake during rehydration in
freeze-dried starch-based foods (Koh, Rhim, & Kim, 2011). These
studies highlight the importance of controlling ice crystal forma-
tion to ensure desired quality characteristics of the final dried
product.

Freeze-drying demands significant energy consumption and
investigations to minimise time and energy usage during process-
ing have been carried out in the past decades (Huang et al., 2009;
Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodh
Patel, Doen, & Pikal, 2010). Operational models taking into account
different heat and mass transfer principles as well as materials
formulations have been proposed for a simple and convenient tool
to optimise processing and minimise the energy consumption and,
thereby, facilitate the process design of freeze-drying technology
(Liu, Zhao,& Feng, 2008; Luo& Zhou, 2008). Determining the point
inwhich sublimation ends has been suggested by Patel et al. (2010)
to be useful for optimisation of the primary drying step. The author
evaluated different methods to determine the end point of freeze
drying such as comparative pressure measurement, measuring
water concentration and product temperature. The contributions of
different investigations showed that drying pre-treatments
including microwave and osmotic dehydration, increased the en-
ergy saving during freeze-drying (Huang et al., 2009; Liapis &
Bruttini, 2008; Pardo & Leiva, 2010; Xu et al., 2006). Foaming or
aeration as pre-treatments has also been proposed to increase
drying rate and improve process economics for example, freeze-
drying of foamed apple juice and egg white showed positive
impact on reducing the total drying time (Muthukumaran, Ratti, &
Raghavan, 2008; Raharitsifa & Ratti, 2010). The porous nature and
larger surface area of foamed materials has been identified to
shorten the drying time, which lowers the energy expenditure
(Kudra & Ratti, 2006; Sangamithra et al., 2015).

In this study, processing of high solids system is considered as a
means to lower the energy impact during processing due to the
small fraction of water involved. However, ice crystal development
during the freezing stage constitutes a challenge for low moisture
food systems due to reduced water availability and molecular
mobility. To address the process-structure-quality relationship in
freeze-dried high solid systems, the effect of aeration as pre-
treatment as well as freezing with temperature oscillation on the
final microstructure and dissolution behavior of freeze-dried
concentrated solutions (50 and 60% by weight) were studied.
Gum arabic and coffee were used as a model and real food systems,
respectively. Both samples are rich in arabinogalactans responsible
for the distinctive texture and sensory properties of hydrocolloids
based food formulations (Capek et al., 2010; Gashua, Williams, &
Baldwin, 2016). Freeze-dried samples were observed using scan-
ning electron microscopy (SEM) and image analysis was applied to
characterise the microstructural attributes. Dissolution behavior of
the freeze-dried solids was determined to correlate microstructure
with its rehydration properties.

2. Materials and methods

2.1. Sample preparation

Gum arabic powder (Sigma-Aldrich Co. Germany) and freeze-
dried coffee granules (purchased from local store) were used in
this work. These materials were selected as they are both rich in
arabinogalactan, arabinogalactan-protein complex and glycopro-
tein. For sample preparation, the required amount of solid material
was weighed and dissolved in distilled water under heating
(45e50 �C) with mixing at 250 rpm using hot plate to prepare so-
lutions of 50 and 60% w/w solute. Solutions were then degassed to
remove excess air bubbles incorporated during dissolution. Coffee
samples were degassed using ultrasonic cleaning bath with de-gas
function (USC 300 THD-45 Hz, Leicestershire, UK) while air bubbles
in the gum arabic systems were removed manually after overnight
gravimetric separation at room temperature (20 �C). Aerated sys-
tems were further prepared by incorporating 30e40% of air into the
degassed system using domestic food processor (Kenwood
300Watt-CH180A, Hampshire, UK). The required amount of air was
added to achieve density of 0.8gcm�3 and 1.2gcm�3 for the coffee
and gum arabic systems, respectively.
ostructure and reconstitution of freeze-dried high solid hydrocolloid-
yd.2018.05.008

Original text:
Inserted Text
z

Original text:
Inserted Text
z



N. Malik et al. / Food Hydrocolloids xxx (2018) 1e12 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

FOOHYD4426_proof ■ 16 May 2018 ■ 3/12
2.2. Freezing and freeze-drying

28mL of each prepared solutions were transferred into
aluminium trays (internal diameter of 85mm, height 20mm) and
were subsequently placed onto the shelf of the freeze-drier (VirTis
AdVantage Plus 2.0 Benchtop shelf based freeze-dryer, SP In-
dustries, Warminster, PA, USA). The investigated freezing and
freeze-drying conditions are schematically shown in Fig. 1. For
freezing, shelf temperature was set to decrease from 20 �C to
�40 �C at 1 �C/min and it was then either kept at 40 �C for 6 h or it
was set to fluctuate between �40 �C and �20 �C for 4 h holding at
each temperature for 30min, followed by 2 h tempering at �40 �C.
Sample temperature during freezing was monitored using K-type
temperature sensor probes, which were carefully positioned at the
middle of the tray. Triplicate samples were used and nucleation
temperature as well as freezing time was derived from the cooling
curves.

2.3. Differential scanning calorimetry (DSC)

State and phase transitions of the (degassed) systems were
analysed with a differential scanning calorimeter (DSC, Metler
Toledo 821e with liquid N2 cooling, Leicester, UK). Samples
(7e18mg) were placed on a pre-weighed 40 ml DSC aluminium
pans (Metler Toledo, Leicester, UK) and hermetically sealed. The
samples and a reference pan containing air were transferred to the
DSC device and cooled and scanned from 20 �C to �80 �C at 1 �C/
min, then held at �80 �C for 5min and finally heated to 20 �C using
the same rate. Meanwhile, thermal profile of 60% gum arabic was
obtained by scanning from 50 �C to�80 �C. The higher temperature
was applied because crystallisation peak for this system could be
observed when scanned from lower temperature. Duplicate sam-
ples were used and the average onset crystallisation and melting
temperatures were determined from the thermal profile recorded.

2.4. Structure analysis

Obtained freeze-dried cakes were fractured carefully lengthwise
by hand and cross-sections were photographed using a digital
single-lens reflex camera (Canon DSLR EOS 5D Mark II, Middlesex,
UK). A section from the middle of the cake representative of the
cake's morphology alongside its height was further analysed with
X-Ray Computer Tomography (Skyscan 1172, Bruker MicroCT,
Kontich, Belgium) under medium camera setting (2000� 1048
pixels) with X-ray source set to 50e70 kV (100 mA). Before scanning,
Fig. 1. Time and temperature pro

Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodhy
the cut samplewas carefullymounted on a sample holder equipped
with blue tac to prevent the sample from moving while rotating.
The distance between X-ray source, object and camera was
adjusted to produce 8 mm pixel images. Three frame averaging,
rotation step of 0.40� and exposure time between 200 and 300ms
were chosen to minimise the noise, covering a view of 180�. A
typical scan took around 25e30min. NRecon software package
(Bruker MicroCT) was then used for reconstruction of the 2D cross-
section images. Representative cross-section images were con-
verted to binary images by thresholding using CTAn software
package (Bruker MicroCT).

Microstructure was examined in more detail with a Hitachi
TM3030 Desktop SEM Microscope (Krefeld, Germany) operating
with energy dispersive X-ray (EDX). Samples (5mm� 10mm)were
fixed to an aluminium stub using double-sided carbon tape before
being transferred to the SEM chamber. Images were collected under
low vacuum (100 Pa) using energy dispersive X-ray (EDX) mode at
500� magnification.

Collected SEM images from triplicate experimental runs were
analysed using imageJ. An example of image analysis is shown in
Fig. 2. Grayscale images were converted to binary images by
thresholding and they were cleaned with despeckle filter function.
An average of at least 300 pores from SEM cross-sections were
selected for pore size determination. Similar images were then
used for quantification of total porosity defined as the ration of pore
area to the total area of image. In samples with large air bubbles,
these were manually excluded in the estimation of pore sizes and
included in the estimation of total porosity.
2.5. Reconstitution of freeze-dried sample

Reconstitution of dehydrated samples from temperature oscil-
lation experiment were recorded with the inverted light micro-
scope (Zeiss Axio vert.A1, Jena, Germany). Individual particles of
each sample (freeze-dried coffee and gum arabic) was prepared by
cutting into approximately 0.5mm2. Each particle was placed in a
294mm3 glass petri dish which contains 10ml distilled water at
room temperature. Image resolution was set as 1376� 1038 pixels
and images were recorded at 5 frames per second by the open
source software mManager. To enhance the contrast of the image a
black and a white hardboard was put underneath the glass petri
dish during the reconstitution of gum arabic and freeze dried coffee
respectively.
file of freeze-drying cycles.
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Fig. 2. Schematic representation of image processing.
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2.6. Statistical analysis

Analyses were carried out in triplicate and error bars represent
plus/minus a single standard deviation.

3. Results and discussion

Results are presented in three sections. Thermal properties are
presented first, followed by a discussion on the observed structures
of the freeze-dried solids and finally their reconstitution properties.

3.1. Thermal properties

Two methods were used to study thermal properties: DSC
(degassed systems only) and temperature recording (TR) during
freezing (all systems). The DSC curves were analysed to determine
the onset freezing (Tf-DSC) and onset melting (Tm) of the materials,
and results shown in Table 1. TR curves (Fig. 3) had shapes typical of
freezing curves, showing nucleation and freezing regimes, and
were analysed to determine nucleation (Tn) and freezing (Tf-TR)
temperatures (data shown in Table 2). Tn and Tf-TR were determined
as the lowest temperature reached during supercooling and the
peak temperature reached during crystallisation, respectively (as
also shown in the capture of Fig. 3a). The peak of supercooling was
difficult to detect for the 60% initial concentration systems, in
particular the degassed gum arabic solution. It is noted that Tn and
Tf-DSC signify the beginning of crystallisation, while Tf-TR and Tm are
indicative of the thermodynamic transition temperature.

Tables 1 and 2 indicate that freezing, melting, and nucleation
temperatures decreased (by 44% on average) on increase of con-
centration (from 50 to 60%). This trend has previously been
attributed to lower water availability as well as reduced mobility of
the water molecules, associated with increased viscosity, at higher
solid contents (Arvanitoyannis et al., 1993; Homer, Kelly, & Day,
2014). For 60% concentrations, comparable onset melting temper-
atures to those of Table 1 (which also correspond to Tf-TR of Table 2)
have been reported for sucrose (Roos & Karel, 1991), fructose
(Ablett et al., 1993), and starch (Homer et al., 2014). Unlike con-
centration, aeration appeared to have marginal effect on nucleation
and freezing temperatures (see Fig. 3 and Table 2).

Coffee showed overall lower transition temperatures than gum
Table 1
Thermal properties of gum arabic and coffee solutions at 50 and 60% w/w concen-
tration determined by DSC. (Tf: onset freezing temperature; Tm: onset melting
temperature).

System 50% coffee 60% coffee 50% gum arabic 60% gum arabic

Tf-DSC (�C) �24.7 �33.3 �21.4 �31.6
Tm (�C) �10.9 �17.8 �6.4 �15.0
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arabic. This is indicative of a less thermodynamically stable system
and may be attributed to the different molecular organisations and
interactions occurring in the two materials due to their non-
identical composition (Rahman, 2006). In this study, Tf-TR recor-
ded for coffee solutions were lower than values reported by
Burmester, Fehr, and Eggers (2011) but comparable with Moreno
et al. (2015). Burmester et al. (2011) reported Tf at �6 ± 6 �C and
�12± 6 �C for coffee solutions with 50% and 60% solid while the
latter study identified Tf at �9.8± 0.24 �C for the 50%
concentration.

It should be noted that although the above trends were evident
in both DSC and TR data, comparing the onset of freezing (from
Table 1) with the nucleation temperature (from Table 2), which
both signify the beginning of crystallisation, indicates that DSC
produced lower (by approximately 10 �C) values than the thermo-
couple recording method. The difference between the two tech-
niques may be linked to the different cooling rates exerted on the
sample: 1 �C/min for DSC and 2.5 �C/min for freezing in the freeze-
drier (determined from the TR freezing curves).

3.2. Morphology

Morphology of the dried materials was examined at macro-
scopic scale (cross-sections of the dried cakes) with high-resolution
camera (photos of Fig. 4) and X-Ray CT analysis (Fig. 5), as well as at
microscopic scale with SEM (Figs. 6e7).

3.3. Macroscopic structure

Fig. 4 indicates that formulation and freezing conditions both
affected the appearance of the dried cakes. For example, freeze-
drying of aerated systems resulted in cakes with overall uniform
appearance, whereas formation of two distinctive top and bottom
layers was observed in dried degassed systems, in particular at
higher initial solid content. In these cases, the top crusts had
macroscopic structures similar to those of the uniformly dried
aerated systems with no signs of melting or collapse. The bottom
layers were darker and glass-like, suggesting that the material
melted and re-solidified during drying. This indicates that in these
parts, the sample's local temperature exceeded the melting tem-
perature, despite the freeze-dryer shelf temperature (at �40 �C)
being lower than Tm (see Table 1). The most affected morphologies
were those of the degassed 60% initial concentration coffee and, to a
lesser extent, gum arabic frozen at �40 �C prior to drying (Fig. 4i
and k). Application of freezing cycles increased the thickness of the
top dried layer (Fig. 4m and �, respectively).

Structural changes during freeze-drying have been extensively
studied in the context of pharmaceutical formulations and are
typically associated with structure collapse and volume reduction
(Patel et al., 2017). In the present work, X-Ray CT images (Fig. 5)
ostructure and reconstitution of freeze-dried high solid hydrocolloid-
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Fig. 3. Cooling curves of (a) coffee and (b) gum arabic systems during freezing to �40 �C.

Table 2
Freezing properties of concentrated food systems determined using thermocouples to measure the temperature during freezing (Tn: nucleation temperature, Tf-TR: freezing
temperature).

System 50% coffee 60% coffee 50% gum arabic 60% gum arabic

No air Aerated No air Aerated No air Aerated No air Aerated

Tn (�C) �16 ± 2 �15± 1 �23± 1 �23± 1 �11± 1 �12 ± 1 e �25± 0
Tf-TR (�C) �11 ± 2 �13± 2 �22± 4 �23± 3 �8± 2 �10 ± 1 �23± 2 �25± 2
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indicate formation of large pores of circular-type cross-sections in
the bottom layers. These highly porous structures suggest that the
material in the present work puffed during drying rather than
collapsed. Puffing suggests that there is internal pressure build-up
in the drying material that exceeds the strength of its surrounding
causing the observed expansion. It is possible that as drying pro-
gresses from top to bottom, the rapidly frozen top crust may
obstruct the vapour pathway and therefore vapour from the sub-
limated water is entrapped in the bottom layer. As drying con-
tinues, additional vapour is accumulated to the bottom layer
increasing the inner pressure of the system and also the inner
temperature (through the produced latent heat). This may cause
melting of the ice, if sample temperature exceeds melting tem-
perature. The inner pressure build-up, combined with the melted,
mobile surroundings and the low pressure (vacuum) of the freeze-
Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodhy
dryer may further cause formation of the observed large pores.
Inner structure expansion may also be partially responsible for
cracking of the top crust, which is evident in Fig. 5. As the bottom
layer expanded, cracking of the top layer may have occurred,
allowing the release of entrapped vapour from the bottom layer out
of the sample. The cracked structure might further be the result of
pressure build-up during secondary drying. At this stage, unfrozen
water is evaporated from the dried solids at high temperature
(20 �C) that can impart stress. Thus, cracks begin to develop
allowing evaporated liquid being removed. Cracking in freeze-
drying have been identified in a recent evaluation as a response
to the increasing stress during evaporation of unfrozen liquid (Patel
et al., 2017; Ullrich, Seyferth, & Lee, 2015).

It is expected that systems with higher initial solid content (i.e.
60% compared to 50%) will experience higher degree of melting/
ostructure and reconstitution of freeze-dried high solid hydrocolloid-
d.2018.05.008
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Fig. 4. High-resolution images of freeze-dried cakes' cross-sections.

Fig. 5. X-Ray CT images of the freeze-dried cakes' cross sections in height (a, c, e, g) and radially (b, d, f, h).
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puffing through (i) reduced porosity in the top crust as there is less
ice to sublimate (evident also in the SEM images, see Fig. 6); and (ii)
reduced Tm (see Table 1) that is easier to overcome. Application of
freezing cycles, similarly to annealing, resulted in the formation of
larger ice crystals that during drying provide a dried top crust with
larger pores that may allow escape of the produced vapour as
freeze-drying progresses. This results in the observed structures
with thicker top dried layers and less evident melting appearance
Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodh
(Fig. 4). Aeration prior to freezing and freeze-drying produced
structures with high uniformity, indicating that mass and heat
transfer through the dried layer was enough to avoid vapour
entrapment in the structure.

3.4. Microscopic structure

The top layers were further analysed with SEM to examine their
ostructure and reconstitution of freeze-dried high solid hydrocolloid-
yd.2018.05.008



Fig. 6. SEM images of investigated (a) coffee and (b) gum arabic systems (bar is 200 mm).

Fig. 7. Different ice crystals and pores morphology observed in SEM micrographs at 1000x of freeze-dried matrices.
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internal structures, and representative images at two magnifica-
tions are shown in Fig. 6 (lower magnification) and 7 (higher
magnification). Overall porous structures were observed with two
sets of pores: those with sizes of the order of 100 mm, and those
with circular cross-sections and sizes of the order of 0.5e1mm or
higher. These large pores were evident principally in aerated sys-
tems and are attributed to air bubbles created during aeration of
the systems. In the case of the degassed 60% coffee frozen at�40 �C,
sampling from the thin top crust was difficult and large pores have
Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodhy
been associated with air bubbles created during expansion of the
bottom layers, as discussed previously (see Figs. 4 and 5). Small
pores are attributed to voids created after sublimation of ice. They
have dendritic (see Figs. 6 and 7) and hexagonal (see Fig. 7) shapes,
typical of ice crystals found in frozen foods (Petzold & Aguilera,
2009). Small circular and rectangular pores were also observed
(see Figs. 6 and 7), and these are thought to be part of the dendritic
network and the hexagonal ice, respectively, seen from different
angles. Ignoring the large air bubbles, average diameters of circles
ostructure and reconstitution of freeze-dried high solid hydrocolloid-
d.2018.05.008
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Fig. 8. Mean size of pores from ice crystals in freeze-dried samples frozen under various conditions.

N. Malik et al. / Food Hydrocolloids xxx (2018) 1e128

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

FOOHYD4426_proof ■ 16 May 2018 ■ 8/12
having equal area as the obtained small pores are shown in Fig. 8.
Increasing concentration resulted in pore size reduction, indi-

cating smaller ice crystal formation during freezing, which has
previously been reported (see for example Pardo, Suess,&Niranjan,
2002). Dendritic voids with distinct directionality and sizes of
60e135 mm were observed for the 50% systems, and they were
accompanied with small circular pores. Directionality may be
attributed to the cooling direction, as samples were cooled from the
bottom of the cake that was in contact with the frozen shelf, to the
top that was exposed to the freeze-drying chamber. Meanwhile,
freeze-drying the 60% solutions gave solids with much narrower
dendrites, within the range of 20e30 mm area-equivalent circular
diameter and absence of evident circular pores, indicating small
dendritic networks.

Larger pores were displayed by samples freeze-dried with
temperature oscillations, indicating larger ice crystal formation.
This observation could be the result of sample being held at tem-
perature above Tg and below Tm during the freezing step as this
temperature range has been associated with higher crystallisation
(Roos, 1997). Temperature fluctuations during freezing have similar
effects as annealing, which promotes large ice crystals formation
(Gormley et al., 2002; Kasper& Friess, 2011, pp. 248e263). Large ice
crystals have also been linked with reduced freeze-drying times
(Hottot, Vessot, & Andrieu, 2004b; Searles, 2010) attributed to the
decrease in vapour flow resistance during drying due to the high
porosity of the dried layer.

Inclusion of air generally showed marginal effect on the crystal
formation. It appears that at 50% solids, aeration resulted in
somehow smaller ice crystal formation, while the opposite effect
was seen at 60% concentration (see Fig. 8). In addition, the surfaces
Table 3
Porosity (%) of the freeze-dried solids determined through image analysis.

System Degassed

Freezing �40 �C Freezing

50% Coffee 49± 2.81 58± 3.55
60% Coffee 28± 5.93 28± 1.67
50% Gum arabic 67± 2.89 78± 2.01
60% Gum arabic 35± 2.67 39± 1.23

Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodh
of air bubbles often appeared free of pores, particularly in 60% gum
arabic system frozen without temperature oscillations. This may
indicate that on those occasions air bubbles’ surfaces acted as a
barrier to crystal growth.

Air bubble distribution was different in the two aerated mate-
rials studied. Aerated coffee showed higher structural stability
during freeze-drying and appearance of air bubbles was evident.
Aerated gum arabic appeared to hold substantially less air within
the cake structure after freeze-drying (see Fig. 6). Visual inspection
of the cakes indicated that the air in the gum arabic systems was
partially separated to the top of the cake (also seen with a careful
look in Fig. 4). It is possible that this phase separation happened
during freezing, as the air travelled upwards primarily due to
density difference between the air and the solidifying liquid
(assuming that the viscosity was low enough to allow the move-
ment) and/or further aided by the changes that occurred in the
system due to water crystallisation.

Diameter of air bubbles for each sample was estimated from 50
air bubbles due to limited number developed in gum arabic. On the
contrary to mean pore sizes, size of air bubbles was not affected by
concentration. Coffee had air bubbles with diameters of about
600 mm, whereas gum arabic displayed smaller diameters, around
400 mm. Temperature oscillation during freezing resulted in larger
air bubbles (600e1600 mm diameter) in the freeze-dried material,
more evenly distributed to the cake's body (see Fig. 6).

3.5. Porosity

Porosities of the freeze-dried solids were determined using two
techniques. Firstly, binary SEM micrographs (see example of Fig. 2)
Aerated

cycles Freezing �40 �C Freezing cycles

71± 1.56 75± 4.25
65± 0.51 72± 0.57
45± 0.72 73± 2.01
34± 2.02 53± 3.67

121
122
123
124
125
126
127
128
129
130

ostructure and reconstitution of freeze-dried high solid hydrocolloid-
yd.2018.05.008

Original text:
Inserted Text
z

Original text:
Inserted Text
-

Original text:
Inserted Text
-



Table 4
Porosity (%) of the freeze-dried solids determined through pycnometer.

System Degassed Aerated

Freezing �40 �C Freezing cycles Freezing �40 �C Freezing cycles

50% Coffee 34± 0.05 34± 0.02 33± 0.09 35± 0.33
60% Coffee 30± 0.36 35± 0.17 32± 0.07 30± 0.06
50% Gum arabic 35± 0.06 35± 0.08 24± 0.2 31± 0.04
60% Gum arabic 34± 0.07 26± 0.04 36± 0.05 25± 0.03
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of the top layers of the solids were analysed and porosity was
defined as the ratio between pore area and total area of the image
(Silva et al., 2015). This method takes into account both open and
closed pores, and results are shown in Table 3. Secondly, open
porosity for each system was determined using a helium pyc-
nometer (Chang, 1988). For these measurements, samples were
taken by cutting throughout the cakes’ heights, and results are
shown in Table 4.

Although the two techniques are not directly comparable, as
they refer to different sections of the cakes (i.e. the top layer was
image-analysed, whereas both top and bottom layers were
considered in pycnometer), overall the total porosities (Table 3)
were higher than the open porosities (Table 4), indicating the
presence of closed pores. In particular, similar open porosities (of
the order of 25e35%) were observed for all systems, albeit with a
trend for lower porosities at 60% initial solid concentration sam-
ples, compared to 50%.

Temperature oscillations during freezing resulted in higher total
porosities by average 18% in both coffee and gum arabic, while the
most affected morphologies were those of the aerated gum arabic
systems. This observation agrees qualitatively with Fig. 6. Concen-
tration also had an effect on total porosity, with dried 50% con-
centration systems showing higher porosities (by an average of
20%) than the dried 60% concentration systems, as also indicated
qualitatively in Figs. 6 and 7. This excludes the 60% coffee frozen at
�40 �C, which showed high degree of puffing during freeze-drying
making it difficult to sample from the top layer. Increased porosity
Fig. 9. Area reduction during dissolution of freeze-dried coffee and gum

Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodhy
at 50% results from higher degree of water availability and crys-
tallisation levels, compared to 60%, systems, which has also been
linked with larger pore sizes in section 3.2.

Total porosities of aerated systems, compared to degassed, were
higher for coffee (by 30% on average) and lower for gum arabic (by
7% on average). This may be linked with the phase separation
observed in the freeze-dried aerated gum arabic systems, as air
bubbles travelled to the top of the cake during freezing (see also
section 3.2). The air bubble movement may have disrupted water
crystallisation and hence led to lower total porosities of aerated
gum arabic systems. For non-aerated systems, gum arabic showed
higher total porosities than coffee. For these systems, Tables 1 and 2
indicate that it is easier for water to crystallise in gum arabic than
coffee (higher freezing temperatures), and this may be linked with
the higher porosities observed.

3.6. Reconstitution behavior of freeze-dried solids

Reconstitution kinetics of the freeze-dried solids are shown in
Fig. 9 as area reduction of the solid particles over time. Overall,
coffee samples dissolved approx. 8 times faster than gum arabic
systems. Closer look of the dissolution images (see example snap-
shots of Fig. 10) indicated different reconstitution mechanisms for
the twomaterials. Shortly after immersion inwater, coffee particles
disintegrated into small fragments that significantly increased the
surface area of the material and resulted in fast reconstitution rates.
By contrast, gum arabic particles dissolved from the outer surface to
arabic affected by different formulation and freezing conditions.
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Fig. 10. Snapshots from dissolution tests performed on aerated and oscillated 60% systems: a) coffee; b) gum arabic.
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the centre, after an apparent initial step of water absorption. This
first step may have led to the formation of a gel-like layer that
surrounds the particle and slows down dissolution (Kravtchenko
et al., 1999; Miller-Chou & Koenig, 2003). In the images of Fig. 10,
visible changes in the particle area of the gum arabic system are
evident 10min after immersion into water.

Reconstitution kinetics appeared to correlate well with the
microstructural data of section 3. Overall, systems with wider
dendrite network and higher total estimated porosities showed
faster reconstitution rates. As such, reconstitutionwas faster for the
Fig. 12. Snapshots from dissolution of 50% coffe

Fig. 11. Snapshots from dissolution of 50% coffee

Please cite this article in press as: Malik, N., et al., Effect of freezing onmicr
based systems, Food Hydrocolloids (2018), https://doi.org/10.1016/j.foodh
50% systems, compared to the 60% systems, with complete recon-
stitution happening 2e3min earlier (or approx. 40% faster) for
coffee and 10min earlier (or approx. 25% faster) for gum arabic.
Further, freezing cycles, again associated with wider dendrite
network and increased porosities, resulted in higher reconstitution
rates. Zea et al. (2013) and Saifullah et al. (2016) reported similar
findings on the effect of porosity with fruit tablets prepared from
freeze-dried powder. Previous works on the effect of pore size on
rehydration kinetics have indicated that small pores result in
slower rehydration in freeze-dried rice (Koh et al., 2011) but faster
e (oscillated) in hot distilled water (90 �C).

subjected to different freezing conditions.
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rehydration in freeze-dried soy bean curd (Harnkarnsujarit et al.,
2016). It appears that the mechanism of hydration, such as the
relative importance of capillary imbibition and diffusion, largely
determines the link between porosity and reconstitution kinetics
(Harnkarnsujarit et al., 2016; Meda & Ratti, 2005; Saguy, Marabi, &
Wallach, 2005).

An interesting case is that of the puffed 60% coffee frozen at
�40 �C, which rehydrated faster than the aerated system. In this
sample, initial reconstitution rate was fast, which is linked with the
highly porous structure of the puffed lower layer of the material. It
appears that after dissolution of the puffed part of the solid,
reconstitution of the top layer was significantly slower, and com-
parable to the 60% aerated system frozen at �40 �C.

Notably, reconstitution of degassed 50% coffee systems is not
shown in Fig. 9. For the system frozen at �40 �C, determination of
the reduction in the particle area was difficult due to rapid cloud
formation on immersion in water (see Fig. 11a). For the system
frozen with freezing cycles, the particle remained undissolved (see
Fig. 11b), which was surprising. However, when dissolution for this
particular sample was carried out at higher water temperature
(90 �C) it dissolved in under 5min, forming a cloud similar to that
formed during reconstitution of the 50% coffee frozen at �40 �C
(see Fig. 12).

4. Conclusion

This work demonstrates the potential to manipulate the prop-
erties (microstructure and reconstitution capacity) of freeze-dried
highly concentrated (50 & 60% w/w) hydrocolloid-based systems
by controlling the formulation and freezing conditions. This is
important for applications targeted to produce freeze-dried mate-
rials with desired characteristics at lower energy and water use.

Concentration, aeration, and temperature fluctuations (at tem-
peratures< Tm) during freezing all had an effect on determining the
material's characteristics. Overall, lower concentration, aeration,
and freezing temperature cycles were associated with larger pores,
higher total porosities, and faster reconstitution rates. However,
puffing of the material during drying resulted in microstructural
changes and associated rehydration properties. For example, at.

60% coffee frozen at �40 �C, the degassed system rehydrated
faster than the aerated, contrary to general observations. It was
further observed that the two investigated materials (coffee & gum
arabic) showed different reconstitution mechanisms, resulting in
different reconstitution rates, with the coffee samples rehydrating
faster than the gum arabic systems.

These findings support a strong link between formulation,
freezing conditions, and properties of the dried material, further
opening up opportunities for the design of energy efficient freeze-
drying cycles without compromising product quality.
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