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Abstract — The impact of uni-axial compressive and tensile strain and diameter on the electronic 

band structure of indium arsenide (InAs) nanowires (NWs) is investigated using first principles 

calculations. Effective masses and band gaps are extracted from the electronic structure for relaxed 

and strained nanowires. Material properties are extracted and applied to determine charge transport 

through the NWs described within the effective mass approximation and by applying the non-

equilibrium Green’s function method. The transport calculations self-consistently solve the 

Schrödinger equation with open boundary conditions and Poisson’s equation for the electrostatics.  

The device structure corresponds to a metal oxide semiconductor field effect transistor (MOSFET) 

with an InAs NW channel in a gate-all-around geometry. The channel cross sections are for highly 

scaled devices within a range of 3×3 nm2 to 1×1 nm2. Strain effects on the band structures and 

electrical performance are evaluated for different NW orientations and diameters by quantifying 

subthreshold swing and ON/OFF current ratio. Our results reveal for InAs NW transistors with 

critical dimensions of a few nanometer, the crystallographic orientation and quantum confinement 

effects dominate device behavior, nonetheless strain effects must be included to provide accurate 

predictions of transistor performance. 
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1. Introduction 

Field-effect transistors (FETs) are anticipated to be manufactured with sub-7 nm critical 

dimensions within the next few years1. Electronic properties of materials at these length scales 

vary significantly with respect to their bulk values due to the dramatic increase in the surface-to-

volume ratio and quantization effects arising at small critical dimensions2,3. Due to large quantum 
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confinement effects in NWs, there is substantial band gap widening relative to the bulk energy 

gap. In addition to band gap widening, the direct or indirect nature of a semiconducting material 

can be altered due to band folding4-6 leading to fundamentally different electrical and optical 

properties relative to the bulk. Improvement of the electrical performance and obtaining 

satisfactory electrical drive current in the highly-scaled MOSFETs requires technology boosters 

such as thin-body channels and strained nanowires,  and as well may require high transport channel 

materials such as germanium and/or III-V compound materials7,8. A feature of III-V 

semiconductors is the possibility to control device dimensions, doping concentrations, and material 

composition while achieving band gap engineering during fabrication9,10. However when scaling  

any MOSFET architecture, a set of deleterious performance issues such as degradation of 

subthreshold swing (SS) and ON/OFF current ratio (ION/IOFF) emerge which are collectively 

referred to as short-channel effects (SCEs)11. Nanowire structures with a gate electrode wrapped 

around the NW axis, known as the gate-all-around (GAA) configuration, enhances electrostatic 

control of the channel carriers and considerably mitigates against short-channel effects for highly 

scaled dimensions7. III-V materials maintain very high electron mobility together with good drive 

currents in NW field-effect-transistors (FETs)12 and substantial progress on the fabrication of III-

V NW devices on a Si substrate has been achieved in recent years13. However in devices scaled 

below 7 nm critical dimensions,  extrapolations based on bulk and classical device concepts need 

to be tested1.  The impact of strain in NWs can considerably affect device characteristics beyond 

what is observed at larger dimensions for physical properties such as the band gap and effective 

masses, and these effects are strongly dependent on the crystallographic orientation of the 

nanowire primary axis14. Moreover, strain engineering is well known to be capable of improving 

charge carrier mobility in semiconducting materials14. However, unlike the group IV 

semiconductors silicon and germanium as well as their alloys, there is less known about the effect 

of strain on the physical properties of III-V nanowires4,6,15-18, particularly in the context of 

nanoelectronic devices. Recently, nanowires with diameters as small as 1 nm have been fabricated  

relying on recent advances in bottom up as well as top down fabrication techniques. Ultra scaled 

SiNWs with approximately 1 nm diameters with their oxide sheaths removed and replaced with 

hydrogen termination have been prepared and the band gap widening due to quantum confinement 

was reported [1]. More recently, InAs NWs with approximately a 2 nm diameter have been 

fabricated using a metalorganic chemical vapor deposition (MOCVD) via the vapor-liquid-solid 
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(VLS) growth method with a gold nanoparticle catalysis [2]. To this end, the band structures of 

InAs nanowires are investigated with the goal of extracting accurate transport models for nanowire 

transistors19 with cross sections in the range of approximately 3 ×3 nm2 to 1×1 nm2.These cross 

sectional areas are chosen for extracting the quantum confinement and strain effects relevant for 

modern nanowire designs for nanoelectronics. These ultra scaled critical dimensions are exactly 

the scale at which nanoelectronics manufacturers are currently exploring for the beyond 7 nm 

technology nodes and it is thus timely to explore the electronic properties for nanowires with 

critical dimensions approaching atomic scale limits. Herein different wire orientations are 

considered and the effect of strain is also evaluated through the use of density functional theory 

(DFT) calculations. Quantum transport simulations are also performed to obtain the transfer 

characteristics of transistors with InAs nanowire channels and subthreshold swings (SS), and drive 

currents (ION) are extracted. 

 

2. Methods 

The DFT calculations are performed using a linear combination of atomic orbitals (LCAO) 

consisting of a polarized double-zeta basis set. A meta-generalized gradient approximation (meta-

GGA) for the exchange-correlation functional in the DFT calculations is used20-22.  The energy 

band gap of bulk InAs is relatively narrow at room temperature (Eg=0.354 eV)19 and the well-

known band gap underestimation of standard approximations to the exchange-correlation 

functionals such as the local density approximation (LDA) or generalized gradient approximation 

(GGA) make their use unsuitable for narrow gap semiconductors.  The importance of an accurate 

treatment of the kinetic energy density for the calculation of band gaps in solids using density 

functional theory is also known23. Meta-GGA24 functionals relate the exchange-correlation energy 

at each point not only to the local electronic density, but also to the electronic density gradient and 

the Kohn-Sham kinetic energy density. As a result, meta-GGA functionals can provide a more 

accurate band gap prediction, however at the expense of an empirical calibration. By fitting the 

“c”-parameter of the Tran and Blaha exchange–correlation functional24, the energy band gap for 

bulk InAs is calibrated to the experimental value of 0.354eV 19. By doing so we obtain an effective 

mass of 0.023 in good agreement with effective mass of 0.026 from ref. [19]. For all nanowire 

calculations, a Monkhorst-Pack sampling25 with a 23×1×1 k-point grid and energy cut-off of 100 

Hartree is used to generate the real-space grid and for bulk calculations a 13×13×13 k-point grid 
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were used. The total electronic energy for each NW is minimized with respect to atomic positions.  

The atomic configurations are relaxed to a force of less than 0.01 eVÅ-1atom-1 and the resulting 

geometries are taken as the zero strain reference configurations.  

 

Electron effective masses at conduction band minima are calculated using a parabolic 

approximation with a second derivative 2E/k2 determined using a 5 point stencil method26. 

Approximately square zinc-blend (ZB) InAs nanowires are generated with wire orientations of 

[100], [110] and [111] with cross-sectional areas of approximately 3×3 nm2 to 1×1 nm2. It is 

important to note that cross sectional shape can also influence electronic properties of the NWs, 

although not considered in the present calculations and is left for future studies. The NW surfaces 

are passivated using pseudo-hydrogen atoms27 to ensure  saturation of all surface dangling bonds 

thus avoiding issues relating to specific surface chemistry and bonding on the electronic properties 

of the NWs – in this sense the calculations provide a reference for the ideal surface termination.  

Fig. 1 shows typical cross sectional views of the relaxed InAs NWs for different wire orientations 

used in our study.  

  

3. Electronic structure results 

To determine the effect of the wire cross section and orientation on characteristics of InAs 

nanowires at low critical dimensions, the band gaps and effective masses are extracted from the 

meta-GGA electronic structures and plotted in fig. 2a; these are the two critical parameters for 

determining transistor performance as the band gap widening due to quantum confinement governs 

thermal and tunneling properties thus influencing ON/OFF current ratios, and  electron effective 

masses can be considered as a first approximation to the changes in electron mobility, with smaller 

effective masses correlating to higher electron mobility. To examine the correction provided by 

the meta-GGA functional, the values extracted from the LDA band structures are also plotted in 

fig. 2a for comparison. 
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Fig. 1. Cross-section of InAs NWs for [100], [110], and [111] wire orientations composed of As (pink), In (brown) 

and pseudo-H (white) atoms. Note that pseudo-hydrogens of appropriate charge are chosen for each surface atom to 

provide a defect free surface.  

 

 

It can be seen that unlike bulk InAs which has isotropic effective mass at the Γ-point, for small 

diameter InAs nanowires the effective masses at Γ are not isotropic and wires with different 

orientations have different effective masses due to the large quantum confinement effects normal 

to the NW principal axis.  Fig. 2b shows the band structures of 1 nm and 3 nm nanowires with 

different wire orientation in which the effect of quantum confinement on the band gap and the 

effective masses can be seen. The band gap and effective masses are highly dependent on nanowire 

diameter and orientation which are the first indication of the impact these physical parameters for 

the electrical and optical properties of nanoscale NWs.  
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Fig. 2. Comparison of (a) band gaps and effective masses and (b) band structure of approximately 1×1 nm2 and 3×3 

nm2 InAs NWs with different cross-section diameters and wire orientations. Note that the Meta-GGA approximation 

as anticipated predicts a larger band gap than the LDA calculations, as well, the effective masses tend to be slightly 
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larger within the Meta-GGA calculations. TNW dentoes the length of a side of the approximately square InAs NWs. G 

and X indicates the Γ point and the zone edge π/a. Note that unlike what it may look like from the curvature of these 

band structures, due to the larger lattice constant of the (111)-oriented wire the calculated effective mass will be 

smaller than the (100)-oriented wire as π/a would be smaller. (Lattice constant of relaxed nanowires with no strain are 

given Table. 1) 

Table. 1. Lattice constants of relaxed 1 nm and 3 nm InAs nanowires with no strain 

1 nm [100] 3 nm [100] 1 nm [110] 3 nm [110] 1 nm [111] 3 nm [111] 

6.083 

  

6.10 4.303 4.319 10.517 10.464 
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Fig. 3. Comparison of band gaps and effective masses for InAs NWs with strain up to ±10%.   

 

The effect of strain on the band structure of InAs nanowires is investigated by applying tensile and 

compressive uni-axial stress along the NW principal axe. After the simulation cell parameter in the 

direction of the NW axis, the atomic positions are relaxedand lattice constants are varied to obtain 

strains of up to ±10%. Fig. 3 illustrates the effect of applying strain to the NWs on the band gap 
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energies and effective masses. Clearly the impact of tensile and compressive strains is significant 

and should not be neglected in calculation of effective mass electronic structure properties. It is 

noted that the [111]-orientated NWs are found to be more prone to strain than [100]- and [110]- 

oriented NWs which can be seen in fig. 4.  

 

Fig. 4 illustrates that compressive strain lowers the heavy hole subbands for all NWs orientations 

and lowers the heavier off-center valleys of the conduction band. Heavier off-center valleys may 

become the ground state valleys resulting in transition of direct into the indirect bandgap NWs. 

This transition can be seen for 3 nm [111]-oriented NWs with strain above 6% and for 1 nm [111]-

oriented NWs with strains above 8%. On the contrary, tensile strain raises heavy hole subbands 

while lowering the light valleys at Γ with respect to the heavier off-center valleys. If the heavy 

hole subbands cross the light hole subbands, a transition from direct to indirect bandgap 

semiconductor NWs occurs. This mechanism is seen for the cases of the 3 nm and 1 nm [110]-

oriented NWs with strains above 2 % and 4%, respectively. 

 

 

 

 

(a)
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

Fig. 4 Band structures of 1 nm and 3 nm strained InAs NWs (up to ±10%) for different wire orientations: (a) [XXX], 

(b) [XXX], (c) [XXX], (d) [XXX], (e) [XXX], (f) [XXX]. The numbers of each figure give the applied strain ∆𝑙/𝑙 ×

 100%. 

 

The combined results reveal how wire orientation, diameter and strain affect electrical properties 

of InAs nanowires with critical dimensions on the order of a few nanometer. To investigat the 

impact of these electronic structure changes affect InAs NW transistor characteristics, charge 

transport results are presented in the following section.  

 

4. Charge transport results 

The I-V characteristics of InAs gate-all-around nanowire transistors with tensile and compressive 

uni-axial strains up to ±6%, respectively, are calculated based on a self-consistent solution of the 

Schrodinger and Poisson equations via the non-equilibrium Green’s function approach in the 

effective mass approximation and within the ballistic transport regime. Details of the method and 

implementation of the quantum transport calculations are given elsewhere7. The schematic of the 

nanowire cross-section in the longitudinal direction is depicted in fig. 5. The NW effective masses 

and band energies of the first eight conduction subbands are extracted from the DFT-determined 

electronic structure calculations using the meta-GGA approximation presented in the previous 

section with the electronic structure results defining the effective mass Hamiltonian. The 
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subthreshold swing (SS) measures the rate of current increase with gate voltage below threshold, 

which is of particular importance to assess low power performance in ultra-scaled devices28. The 

SS along with the  ON/OFF current ratio ION/IOFF are calculated as the relative performance 

indicators for the different InAs transistors evaluated in the charge transport calculations. The 

supply voltage  is fixed at Vdd=0.65 V and the gate work function is chosen for each nanowire 

transistor such that the off-current is 10 pA/µm at Vgs= 0 V, which is suitable target for low standby 

power technologies7. The length of the gate and source/drain regions are 10 and 15 nm, 

respectively, and the source/drain junctions are assumed to be abrupt. A gate-all-around 

configuration is assumed. The gate oxide thicknesses are 1 nm and the dielectric constants is 

chosen as 3.9 corresponding to silicon dioxide. Explicit gate tunneling currents are not included in 

the simulations, however the gate coupling can be maintained by scaling to a thicker oxide layer 

with a corresponding increase in the gate dielectric constant to suppress tunneling for a physical 

device. Uniform doping concentrations in the source/drain regions of 1020 cm-3 for approximately 

3×3 nm2 wires and 6x1020 cm-3 for the approximate 1.2×1.2 nm2 cross sections are chosen to obtain 

a similar number of dopant atoms in source/drain regions for both structures. This results in scaling 

of the dopant concentration with nanowire cross section. 

 

 

 

Fig. 5 Schematic of the nanowire cross-section in the longitudinal direction. 
 

 

Fig. 6 shows the subthreshold swing and Ion/Ioff for different InAs nanowire transistors. From fig. 

6, it is found that at a fixed gate length of 10 nm, as the cross-section decreases the subthreshold 



14 

 

swing approaches the theoretical limit for room temperature operation of 59.6 mV/decade. This is 

a direct consequence of  the better electrostatic control of the gate over charge carriers in devices 

with smaller cross-sections as can be explained by the natural length for multi-gate architectures11 

which is defined by the following expression  

𝜆 = √
𝜀𝑠

4𝜀𝑜𝑥
 𝑡𝑠𝑡𝑜𝑥                            (1) 

where  𝜀𝑜𝑥, 𝜀𝑠, 𝑡𝑜𝑥 and 𝑡𝑠 are the permittivity of the gate oxide, permittivity of the wire material, 

gate oxide thickness and nanowire thickness, respectively. The natural length is a parameter which 

represents the extension of the electric field into the channel region. []?????? the ratio of effective 

gate length to the natural length should be large enough for transistors to minimize SCEs. From 

the expression it is clear that decreasing the nanowire thickness can minimize the SCEs thereby 

improving the SS. In addition, the results can be explained by the findings for the effective masses 

in the transport direction (fig. 2a) with a larger effective mass in the transport direction reducing 

source-to-drain tunneling and thereby improving the SS. It is also found that 3 nm [111]-oriented 

wires are more prone to strain. For example tensile strain of 6% increases the SS to almost 90 

mV/decade while compressive strain of 6% decreases SS to almost 65 mV/decade.  
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Fig. 6. Subthreshold swing and Ion/Ioff for different InAs nanowire transistors (SS is calculated at 10-9 A/µm). 

 

Fig. 6 reveals that strain has a significant effect on the electrical properties of the InAs nanowire 

transistors at ultra-scaled dimensions, and the effect of strain is strongly coupled to NW orientation 

and critical dimensions and in general increasing the SS results in decreasing of Ion/Ioff . Note that 

the simulated smaller transistors provide more Ion/Ioff which is due to their smaller SS due to 

improved electrostatic gate control. 
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5. Conclusions 

We have investigated the effect of wire orientation and cross-section on the electrical properties 

of ultra scaled InAs nanowires with uniaxial tensile and compressive strain. Unlike bulk InAs 

which has an isotropic effective mass at the Γ-point, the effective masses at Γ for small diameter 

InAs nanowires are not isotropic due to the large quantum confinement effects. However with 

increasing wire diameters effective mass values of different orientations become more isotropic 

and return to the bulk value. Meta-GGA functionals are used for an accurate treatment of band gap 

energies. It is shown that the band gap and effective masses are highly dependent on nanowire 

diameter and orientation and this dependence has been quantified. Our results illustrate applying 

tensile and compressive uniaxial stress to the [111]-oriented NWs has a significant effect on the 

electrical properties of the InAs nanowire transistors at ultra scaled dimensions, and the effect of 

strain is strongly coupled to NW orientation and nanowire diameter (critical dimensions). 

Particularly, it was observed that the 3 nm [111]-oriented NW transistors are more prone to the 

effects of strain. 

The results show that strain engineering can be used to improve device characteristics just as is 

commonly performed for silicon technologies. On the other hand, the large effect of strain on 

physical properties of these InAs NWs also suggests that controlling process induced strain will 

be critical to maintaining uniform device characteristics.   
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