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Abstract 

The main aim of this work is to design and test a permanent magnet fault current limiter 

(PMFCL) to limit the fault current in electrical power system network. The (fit and forget) 

device presented in this thesis is based on two important aspects; the best selection of the 

state of the art soft and hard magnetic materials and the design topology of PMFCL. Rare 

earth material is used as a permanent magnet, which is the main source of excitation to keep 

the non-oriented silicon steel iron core in magnetic saturation state. During the normal 

operation of the device the saturated core offers low impedance to the grid and during the 

fault state the core inherently rushed to high impedance state that limits the high short circuit 

current. A commercial Finite Element software (FEM) was used in the device modelling 

techniques from the commencement till the end of the final design. The work commenced 

with the verifications and investigations of a recently reported model in 2D (FEM).  

Then, a prototype of small scale, in two design configurations of the same PMFCL 

specifications, was built and tested at the electrical laboratory of Sheffield Hallam University 

to verify the simulation results and to access the design of the PMFCL device. After that, the 

11-kV PMFCL for substation distribution transformer was designed. Finally, the low voltage 

toroidal core PMFCL was proposed for the existing renewable energy and future wind-

photovoltaic (wind-PV) step-up transformer. The dry type PMFCL current-inductance profiles 

were obtained by 3D (FEM) magneto static solver to predict the behaviour of the devices in 

the abnormal condition. The calculated RMS current, using 3D (FEM) time saving inductance-

current approach, agreed with the peak transient currents obtained by the lengthy 

computation process time-step solver. The current limitation capability has been calculated 

in comparison with the air-cored of similar specifications as the PMFCL device and a useful 

reduction in the fault current has been achieved. The simulation results proved that the 

proposed PMFCL topologies (toroidal and square-shaped) can protect the renewable energy 

generator-transformer and real power grids from the fault current. Both the toroidal and full 

scale PMFCL devices initial and energy cost over an expected service of life have been 

evaluated. 

The merit of the PMFCL device is that it reduces downtime during power system’s outages by 

mitigating the severe fault current in the first half cycle. 
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Chapter 1: - Introduction 

1.1 General background 

Power systems have been changing and growing significantly over the last decades and will 

keep changing in the future.  Global demand for electrical energy is estimated to double by 

2050 [1.1]. This growth will be caused by an ever-increasing population [1.2], enhanced 

availability of electricity in developing countries [1.1], and the increasing electrification of 

loads such as domestic heating and electric vehicles [1.3]. The importance of using sustainable 

sources of energy will have a critical impact on future power systems [1.4] and is already 

leading to an increased presence of distributed generation (DG), microgrids, DC systems, and 

power electronic devices. These developments add further diversity to electrical sources and 

loads, and thereby complicate the system protection and control. The power system has to 

manage the future load growth; however, the fault current levels will increase. Fault currents 

are usually momentary and initiate from a variety of sources such as: equipment failures, 

lightning stroke, growing of tree branches, or in some cases animals, shorting out the power 

circuits. In all cases the resulting transient current surges can easily damage transmission 

power lines, power plant and substation components. Under certain conditions faults can 

affect a part of the power grid producing blackouts extending over several countries or states 

[1.5]. When a fault takes place, the short circuit current is over eight times that of the circuit 

breaker normal load current. The high short circuit current rapidly increases the mechanical 

and thermal stress on the equipment [1.6]. Power systems undergoing rapid extension may 

encounter that existing switchgear will no longer be adequate to meet the increased short 

circuit currents. In contrast, countries which do not have a rapid growing demand can 

nonetheless also suffer from increased short circuit currents level [1.7]. The reduction of the 

fault current is one of the oldest problems of power systems engineering. Fault current 

reduction permits the interconnection of large networks without replacing the infrastructure, 

improves transient system stability, and reduces the cost of apparatus [1.8]. In electrical 

power system, the increase in system fault current levels due to the increase in demand and 

consumption of electrical power requires to change the whole infrastructure with higher 

ratings, which is not possible. The cost of      a circuit breaker, a transformer and other devices 

such as generators and large-sized motors are very expensive and replacing them affects the 
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reliability of the power system, enlarges the value of the fault current and hence may 

permanently cause severe damage. Moreover, it is a time and labour consuming process 

[1.9]- [1.11]. Several means to limiting fault currents have been suggested in the past 

including upgrading fast circuit breakers, system reconfiguration, installing transformers with 

higher impedance, current limiting fuses, air-core reactors, etc. [1.9], [1.11]- [1.14]. However, 

those methods were not satisfactory due to high estimated costs, lack of system security and 

reliability.  

A fault current limiter (FCL) is a changeable impedance device connected in series with         a 

circuit breaker and has insignificant influence in a power system under normal conditions but 

can limit the current during a transient condition. Fault current limiters not only mitigate fault 

currents but also provide several other benefits to power system operation, such as serving 

for transient state stability, protection relays, circuit breakers operation and power quality, 

etc.  There are up to date approaches to limit the fault current such as the introduction of 

superconductors fault current limiters and solid-state fault current limiters, but they still fall 

behind in addressing some concerns such as the running cost, installation cost, maintenance 

cost and reliability. Thus, it is very necessary to develop a preferable current limiting device 

to reduce the rating of each element required, to lower the capital cost and as a result to 

improve protection coordination [1.15]. Therefore, there is essential to have the magnetic 

fault current limiter (MFCL) [1.5], [1.16]- [1.19]. With the development of magnetic materials 

as well as topology design research, Fault current limiter based on permanent magnet biased 

saturation has recently attracted a lot of interests of researchers and scientists [1.13], [1.14]. 

According to the results of previous research, a serious problem of applying the PMFCL into 

large capacity practice is its insufficient biasing capability of the permanent magnet [1.14].  

This new approach is based on two important aspects, the best selection of the state of the 

art soft and hard magnetic materials and the magnetic current limiter geometry design. With 

better selection of required materials and design geometry specifications, this project is relied 

on two main approaches; an analytical and a numerical approach. An analytical approach is 

used to show the analysis regarding the magnetic flux and magnetic motive force to deduce 

the equivalent static magnetic circuit model.  

A numerical approach is performed by MagNet Finite Element software to model the 

permanent magnets, the iron cores and the limiter coils under both normal and faulty 

conditions. In this work, MagNet (FEM) is used to study the transient of the MFCL responses, 
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taking into consideration the flux leakage to improve the accuracy of the field circuit 

modelling methodology [1.13]- [1.14].  

A numerical approach was used in the simulation and analysis of the PMFCL. This is performed 

by a commercial Finite Element Method, (FEM) package "MagNet" by Infolytica company. 

MagNet Finite Element is one of the most developed packages currently accessible for 

modelling electromagnetic devices on a personal computer [1.20]. The finite element method 

is a computational technique used to obtain approximate solutions of boundary value 

problems in engineering. Boundary value problems are also called field problems. The field is 

the domain of interest and most often represents a physical structure. 2D and 3D (FEM) 

simulation tools were used taking into considerations many of the parameters that would be 

otherwise overlooked by the analytical approach, like the flux leakage, core saturation, and 

the flux density distributions to improve the accuracy of the field circuit modelling [1.9], 

[1.21]. 

The work presented in this thesis is designed for power distribution transformers for the sake 

of economy, current capacity, efficiency, reliability and safety of the power systems. 

Distribution Transformers (DTs) are an essential part of the power network and their 

operation determines with a great deal the efficiency of the power system. 

1.2 Research motivation 

The short-circuit current of the power grids is reaching a critical level, which threatens the 

security, stability and reliability of the power grids. Hence, how to limit the short-circuit 

current has become an unavoidable issue in the development of modern power grids [1.22]- 

[1.24]. 

If the fault current can be limited, system reliability, safety and cost effectiveness will be 

improved. 

 The research motivation has the following attributes: 

1- To limit the prospective fault current (peak and RMS) in the first half cycle to              a 

desired and safe value. The safe value is typically higher than the nominal current 

value but less than the maximum operating value of protection devices such as circuit 

breakers (CB). 

2- To access the design of PMFCL, gain learning knowledge and prove that the PMFCL 

device is easy to construct and install. 
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3- To provide power grid with a (fit and forget) cost-effective device that has an 

automatic system recovery, safe operation and fail save. 

4- To solve the problem of equipment underrated, voltage drop, power losses, voltage 

dips and reduce power system outages. 

5- To increase safety, reliability, and power quality of the power system. 

6- To protect, extend the service life of transformers and associated utility equipment 

and reduce the maintenance cost. 

7- To expand substation capacity without significantly expanding the required real estate 

footprint, need for new lines, or creating additional critical assets with expanded 

security perimeter 

8- To reduce capital for redundancy and use cheap load circuit breakers (CBs) instead of 

expensive high current rating CBs in power distribution system.  

1.3 Thesis objectives 

Considering the above issues, this work was oriented to achieve the following objectives: 

1. To design a low voltage up to 1 kV PMFCL for the renewable energy and 11 kV PMFCL 

for substation voltage level based on the state of the art soft and hard magnetic materials 

using 2D and 3D (FEM). 

2. To verify the concept of PMFCL through experimental work and ensure the device is 

performed exactly as we expected it to. 

3. To develop (FEM) models for prediction of non-linear behaviour of the PMFCL cores 

in response to a fault current  

1.4 Thesis overview  

This thesis is divided into seven chapters. Chapter two highlights the soft and hard magnetic 

materials characteristics and applications. Chapter three overviews the previous related work 

and identifies the gap for the research. Chapter four outlines the verifications and validations 

of a recent published PMFCL model. Chapter five presents the design of a PMFCL prototype.  

Chapter six commenced with the modelling of the full-scale dry type 11 kV PMFCL. In addition, 

it covers the design of the low voltage PMFCL for renewable energy generator-step-up 

transformer. Finally, chapter seven gives the conclusion and future work. 
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1.5 Published papers 

"Design and modelling techniques of permanent magnet fault current limiter." Energy 
Procedia 134 (2017): 616-625. 

1.6 Submitted Papers 

“Design and modelling of permanent magnet fault current limiter for electrical power 
applications", accepted paper in 53rd international universities power engineering 
conference. 
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Chapter 2: - State of the art fault current limiting devices (FCLD)  

2.1 Introduction  

In accordance with the restriction of the flow of excessively large value of current in power 

system during sudden load switching, overload, fault and any other abnormal operating 

conditions, different techniques were used in the past [2.1]- [2.16]. One alternative solution 

to overcome the fault level problems is to upgrade or replace existing switchgear [2.2], [2.6]. 

However, this option is not acceptable due the following reasons: - 

1) High estimated costs as the breakers are very expensive, and swapping them, even if 

possible, is a labour-intensive process. 

2) Lack of system reliability during long period of modifications, shutdowns and 

construction. 

3) Breakers available today for replacement would soon become inadequate [2.14], 

[2.15].  

Another suggestion which was put forward is to go for increased use of distributed generation 

(DG) which involves placing smaller generation sources closer to the loads. However, even 

with DG-based system, the possibility of fault occurrence does exist [2.6]. 

Common measures to limit the fault current are inserting reactors between busbar sections 

or in series connection to feeders has been considered as another possible solution to limit 

short circuit currents. These, however, substantially influence the network under normal 

conditions as they are in the system all the time [2.3]- [2.6].  

Conventional fuses and triggered fuses are also used, but they must be replaced after every 

fault event [2.17]. High speed (less than 1/4 cycle) bus ground switches could be used to divert 

the fault current before it reaches its highest value. This means that any fault in the vicinity 

or near a station would cause the ground switch to close and put a solid fault on       a bus. 

This is undesirable because it results in more severe fault and longer fault duration [2.15]. 

Splitting the grid and/or introducing higher voltage connections, AC or perhaps DC was 

considered another solution to limit the fault current. Nevertheless, splitting the grid 

decreases flexibility and lower the system security. Simply this happens because certain parts 

of the network are duplicated and operated in parallel, if one component fails, it isolated, and 

the supply remains on. Splitting the network will cut these parallel elements, increase system 
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impedance and lower the fault infeed. Though, if the elements are no longer in parallel and 

one element fails, a large power disruption occurs [2.6]. 

The introduction of higher voltage connection would be expensive and, in any case, may not 

be possible due to problems obtaining consent for tower raising, wayleaves, etc. [2.6]. 

Consequently, there is a need for a fault current limiting device, which offers low impedance 

to the load and a high impedance to the fault current [2.2], [2.6], [2.15]. 

The need for Fault Current Limiting Devices (FCLD) has long been recognized and a recent 

study showed that the need for a new fast acting multi-operation fault current limiting device 

(FCLD) for distribution networks had been identified by most of the USA electric utilities 

[2.18]. 

2.2 Requirements of a fault current limiter (FCL) 

A typical representation of an electric network is shown in Figure 2-1. If any unforeseen 

accident happens which leads to a fault, a lot of current will flow [2.16].  

The location of FCL is carefully selected so that the fault current can be restricted within     an 

optimum value. 

 

 AC LoadC.B

C.B

AC,  generator 
CB  Circuit breaker

CT  current transformer
Power factor 

compensation

C.B

C.B

CTCT

CT

CT

 

 Figure 2- 1 A typical electric power network 

 

The FCL will limit the fault current which will allow the lower rating CBs to be used in the 

system. Now as the FCL is always there in the system, under normal condition the system 

should ideally not observe the presence of the FCL. At the same time the FCL should respond 

almost instantaneously to a fault [2.16]. 
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Figure 2- 2 The electric power network with FCL in use 

 

The amount of current is restricted by the internal impedance of the generator and the line 

between the generator and fault. Usually the internal impedance is very low, so the 

magnitude of the fault current is very large. The large fault current will initiate the operation 

of the circuit breaker (CB) and the CB will break the circuit. Usually the CB breaks the circuit 

at the zero crossing of the current wave [2.16].  

In general, any fault current limiter (FCL) should meet the following requirements: - 

1. Has low or negligible influence on the network under normal operating conditions. 

2. Easy to install, has repetitive operation without any replacement and has short recovery 

time. 

3. Fast response limits all types of fault current in the first cycle and provides self-regulation 

in the event of any fault. 

4. Provides high reliability and improves operational flexibility.  

5. Provides safe operation and fails safe. 

6. Compatible with existing protection system.   

7. Exhibits low impedance to the load current and a high impedance to the fault current with 

low energy losses.  

8. Permits the interconnection of large networks without replacing the circuit breaker, 

transformer, etc. with oversized equipment, thus increases equipment life and allows 

transformers parallel operation during normal and contingency periods.      

9. Has limited volume and weight [2.1], [2.5], [2.6], [2.23], [2.26]. 
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2.3 Fault current limiters design approaches: -  

To overcome the high fault current, many kinds of fault current limiting devices have been 

used in the last decades. Current-limiting fuses, series reactors, and high-impedance 

transformers were used. However, these alternatives may cause other problems, such as loss 

of power system stability, high cost, and increase in power losses, which may ultimately lead 

to decreased operational flexibility and lower reliability [2.12]. 

2.3.1 Re-healing fuse. 

Current limiting fuses have been used for the protection of electrical systems and equipment 

for many years. Their capability to control the energy let-through and the peak available fault 

current, coupled with their cost effectiveness, accounts for their popularity. They are used for 

the protection of motors, transformers, cables, capacitors and electrical distribution systems. 

Today, a Smart Fuse, which is based on the recent advanced technology in material science, 

provides a lower cost protection scheme [2.17]. The Smart Fuse is defined as the fuse which 

not only operates as per its time current characteristics, but also operates on demand from 

other protective devices outside the fuse body itself. At present 65 A to 175 A, 26 kV Smart 

Fuses have been developed. The Smart Fuses can be applied as a low-cost alternative to circuit 

breakers recognizing the fact that this new device does not duplicate all the operating 

functions of a circuit breaker [2.17]. 

The Smart Fuse has been designed to meet the following criteria: 

1. Interrupt all currents from its maximum rated interrupting current to its minimum 

interrupting current. This minimum interrupting current is less than rated current 

2. Successfully interrupt if the element opens at any single location. 

3. Any damage to the element due to lightning or current surge will not affect fuse 

operation. 

4. Any mechanical damage (such as the fuse being dropped during installation) to the 

element which lowers the rating of the fuse and causes it to melt while carrying its 

rated current will not affect fuse operation. 

5. Current limiting fuses operating on 1% are not damaged by di/dt. The smart fuse 

operates on a different principle and is sensitive to di/dt. This normal current rate 
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of rise in a distribution system is below 30𝐾𝐴 µ𝑠𝑒𝑐⁄ . The fuse has been successfully 

tested for current surge withstand of  20𝐾𝐴 µ𝑠𝑒𝑐⁄  

In the Smart Fuse, chemical charges placed at strategic points, along the element length 

produce the multiple breaks required for low current interruption. The components of the 

smart fuse are as shown in Figure 2-3. The fuse element has an over current sensor (O.C.) 

located in the centre which produces the time current characteristic. Several chemical 

charges are placed along the element length at various strategic points. Under normal 

conditions, the trigger circuit is isolated by a spark gap (A1). When the main element opens 

at any one point for any reason, the fuse arc voltage operates the spark gap and causes the 

current to flow through the trigger circuit. The current fires the chemical charges creating the 

required number of series arcs for the interruption of low currents. At high currents, the 

multiple notch design operates like any other current limiting fuse. The magnetic choke coil 

(Ml), the air core inductance L1 and L2 and the air gap A2 are provided for lightning surge 

immunity. During the current surge, the fuse’s inductance L produces a voltage L*di/dt across 

the fuse. This voltage if high enough, fires the air gap A1 which allows the current to flow 

through the trigger circuit [2.17]. The entire voltage drops across the magnetic coil M1 which 

fires the air gap A2. The air core inductances, L1 and L2, limit the current during the initial 

dv/dt and the coil M1 limits the current after A2 opens. The𝐼2𝑡in the trigger circuit is kept far 

below the firing 𝐼2𝑡 of the chemical charges/ignitron system. 

Application of the Smart Fuse represents a marked divergence from the standard functional 

performance as provided by conventional power fuses in the protection of transformers. The 

innovative communication technology employed in the Smart Fuse construction allows for 

interfacing between fuses in a multi-phase circuit and with external protective devices and 

other remote signals. This provides the protective functional capability requirement to   a 

transformer primary circuit breaker. Moreover, it eliminates the transformer secondary main 

breaker through the application of secondary overcurrent protective relays, Devices 51and 

51G (51N) (Generator/Transformer Neutral Ground protection), to signal and initiate a three-

phase primary circuit interruption. The Smart Fuse with the use of a resistance grounding 

system to reduce the fault current is compatible with the application of additional protective 

devices. 
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Figure 2- 3 Principle of smart fuse operation 

 

During any abnormal conditions such as high temperature (49 relay) or tank pressure (63 

relay), etc. [2.17], the decision comes from Protection Control Centre (PCC) through Control 

Module (CM), which is an interface between the fuse and the PCC.  The Control Module can 

be an isolation transformer or Opto-Electronics; it isolates the PCC from high voltage power 

system. In case of a fault, the lookout relay (86) or any other protection command is received 

by the PCC, which decides and sends an electrical pulse to CM to fire the fuse. A Processing 

Centre or the PCC is the main information. This protection scheme also alarms an operator and 

then fires the fuse if no action is taken to protect the transformer, but for severe faults, the fuses 

are fired immediately to isolate the unit. Elimination of transformer secondary main breaker as 

shown in Figure 2-4 could provide a significant savings. The Smart Fuse provides an 
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economical alternative and a solution to any miscoordination problems while meeting the other 

design criteria objective of keeping ground fault levels to the minimum [2.17]. 
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Figure 2- 4 Transformer secondary over current protection with smart fuse 

 

The Smart Fuse retains several of the advantages in transformer protection provided by 

conventional fuses. Such advantages as initial economy, current limiting action and fast 

clearing of high current faults are also inherent with the Smart Fuse.  Conversely, the Smart 
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Fuse, through its unique functional capability, overcomes the major disadvantages associated 

with conventional fuses such as single phasing, the problems of selecting the fuse time 

current characteristics, the difficulties of coordination with other protective devices, and the 

inability to provide sensitive secondary overcurrent protection. 

However, this kind of fault current limiter has limited number of operations; it produces losses 

and a voltage drop during fault current periods due to the grounding resistance and the 

inductances inside the fuse itself. The main disadvantage of Smart Fuse is the limited number 

of operations [2.17]. 

2.3.2 Superconducting fault current limiters (SFCLs) 

Superconducting fault current limiters (SFCLs) have emerged as an alternative to limit 

prospective short-circuit currents to lower levels and improve power system reliability and 

stability by reducing the fault current [2.12]. SFCLs have near zero impedance under the 

normal condition and large impedance under fault condition [2.1], [2.6], [2.12].  

2.3.2.1 Classes of superconductors: - 

There are two classes of superconductors; the low and high temperature superconductors. The class 

of metallic superconductors, which have been available for many years, having critical 

temperatures Tc ≤25K, are called low temperature superconductors (LTS) and operate 

typically in a liquid helium bath at 4.2K. These LTSs have been used to make current limiting 

demonstration devices for the protection of D.C. and A.C. systems for utility applications [2.1], 

[2.4]. 

In 1986 a new class of superconductors, referred to as high temperature superconductors 

(HTS), was discovered. These superconductors were made from compounds of ceramic 

oxides, which exhibit critical temperatures up to 12OK and raised the possibility of SCFCLs 

being operated at much higher temperatures. Specifically, Liquid nitrogen, with a boiling point 

about 77K results in a refrigeration operating cost lower by a factor of 25 to 100 and 

refrigeration capital cost lower by a factor of about 10 than liquid helium, would be useful for 

an HTS current limiter. Liquid nitrogen cooling systems are also less complex than liquid 

helium systems [2.1], [2.4]. These extra benefits, and the fact that at 77K these ceramic oxide 

superconductors are intrinsically much more stable against thermal perturbations than 

superconductors operating at 4.2K [2.1], [2.4]. 
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2.3.2.2 Types of superconducting fault current limiters (SFCLs) 

• Resistive limiter 

In this concept the superconductor (SC) is connected directly in the line, which must be 

protected. When, due to a fault, the critical current of the SC is surpassed, and its resistance 

increases as it returns to normal resistive state. This is called a superconducting to normal 

transition (S-N). The advent of low-loss alternating-current superconducting wires and the 

newly discovered materials which exhibit moderately sharp transition behaviour enable this 

technique to be employed. Resistive type SCFCLs operating at 4.2K are being considered for 

application by some utilities, despite being harnessed with the technology and operating 

costs associated with using liquid helium, the relatively low weight and volume makes it 

attractive in some applications [2.1]. 

However, there are some disadvantages associated with this type. Heat generated when a 

part of the superconductor begins to go normal must be dissipated before the material is 

damaged. This requires adequate thermal diffusion times, and in the new HTS materials these 

are relatively poor. It is therefore important that a substantial fraction of the superconductor 

should switch in a short time to limit the heat generated. Because of this, it may also be 

necessary to open the series circuit breaker quickly to prevent damage to the limiter. Another 

drawback is that it may require resistive and/or inductive shunts to be used to assist energy 

dissipation, although these could be expected to add to the complexity and cost of such 

devices and additional losses [2.4], [2.6]. 

• Air gap FCL 

The secondary winding is replaced by a strip of superconductor inserted into an air gap in the 

iron core. During normal operation, the superconductor expels the field from the gap causing 

a high reluctance and a low primary inductance; during a fault the superconductor can no 

longer support the currents necessary to expel the field and the magnetic reluctance drops 

causing the primary inductance to rise [2.6].  
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Figure 2- 5 Superconducting series resistance FCL 

 

The scheme presented is not clear whether is suitable for transmission applications because 

of the probably low normal/abnormal impedance ratio [2.6]. 

 

line

 

 

 

Figure 2- 6  Air gap FCL  
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• Transformer with shorted secondary winding/shielded iron core  

This device is essentially a transformer with the primary winding connected in the line and a 

superconducting secondary winding, which is shorted. Because of the inductive coupling 

between the line and the SC, this device is often referred to as "inductive" SCFCL. This SCFCL 

needs no current-leads. Since the number of turns of the secondary windings can be much 

smaller than the primary turns, only short SC are needed, and the voltage drop in the 

cryogenic part of the device is reduced. During normal steady state operation, the 

superconducting secondary winding balances the ampere- turns from the primary winding so 

that flux does not penetrate the iron. At fault onset the superconductor current necessary to 

achieve amp-turns balance exceeds the critical current and thus flux can penetrate the iron; 

this causes the inductance of the primary winding to increase rapidly, affecting the fault 

limiting action. The heat loss from the line into the superconducting is eliminated even though 

this device is not popular due to high amount of mass of iron and copper required for the core 

and the windings. Till today the shielded iron core FCL incurs high estimated cost, the cost of 

iron, copper and in addition to the cost of superconducting material [2.4], [2.6].  

The ABB pursued the concept of shielded iron core SCFCL based on HTS [2.4]. It mainly 

consists of a normal conducting coil, a superconducting tube, a cryostat, and an iron core, all 

of which are concentrically arranged. The device is essentially a transformer in which the 

secondary winding is the superconducting tube. The primary winding (coil) is connected in 

series to the line which must be protected. Only the superconducting tube is cooled with 

liquid nitrogen (77 K). This prototype based on HTS-tubes with a rated power in the 100-kVA 

range has been built and successfully tested. The device limits fault currents to about 5 times 

the nominal value without showing any over voltages or degradation of the HTS [2.4]. 

 

S/C winding

Iron core

line

 

Figure 2- 7 Shielded inductance FCL 
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• Saturated iron core reactor 

In this method the line current is passed through a series winding around an iron-cored 

reactor. The iron of this reactor is held in saturation by a second DC superconducting winding. 

During a fault the iron core departs from saturation and thus increases the impedance of the 

reactor. The superconducting winding detects only a DC-current and always stays in the 

superconducting state so that it needs no recovery time after a fault. The main disadvantage 

of the device is its mass, which is about two times that of a transformer with the same rated 

power [2.6]. 

The saturating inductive design has been demonstrated using low temperature 

superconducting material (LTc) materials and is a proven concept [2.6].  A successful 

prototype of saturated iron core reactor was tested taking into consideration the 

superconducting coil possible vital damage elimination [2.12]. 

The device consists of two iron-cored reactors in series per line, which are biased with DC to 

saturate the cores. The iron cores of the device are saturated by DC bias during normal 

operation and offer low impedance. The onset of a severe fault desaturates the core thereby 

increasing the impedance, thus limiting the fault current [2.12].  

However, it never reached the market place for several possible reasons; (i) high costs; (ii) 

requires a large volume of iron; and (iii) concern of reliability and maintenance requirements 

associated with liquid helium refrigeration [2.1], [2.4]. Extensive study of applying LTS was 

conducted and the conclusion was that it was too expensive and the heat loss (refrigeration 

cost) made it impractical [2.9].  
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Figure 2- 8 Saturated inductance FCL 

 

The Lockheed Martin team completed the testing of a 2.4 kV, 2.2 kArms fault current, 150 Arms 

continuous current [2.9]. The principle of operation is that the HTS coil is quickly inserted into 

the circuit by a patented solid-state switch. Under normal operation, ac load current passes 

through the network unimpeded. However, during a fault condition, the excessive fault 

current is diverted into the current limiting inductor, which is sized to provide a 

predetermined reduction in fault current. The reduced fault current would then be cleared 

by a conventional (lower-rated) circuit breaker [2.9]. 
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Figure 2- 9 High temperature superconducting fault current limiter 
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A group of researchers from Nigata and Nitsu universities, Japan, proposed a single DC reactor 

type fault current limiting interrupter (FCLI) for a three-phase power system [2.8]. The device 

uses a high temperature superconducting coil that operates in combination with a modified 

half control bridge composed of four thyristors and two diodes. The dc power supply is 

connected to the reactor coil in series. DC current flow throughout the bridge is maintained 

from the moment power is applied, enabling thyristors to transmit it without a gate pulse. 

The load current does not flow to the dc reactor and is therefore unaffected by the dc reactor, 

if it is smaller than the dc bias current. Line current flows continuously from Th1 to D1 and 

from Th2 to D2, as shown in Figure 2-10, bypassing the dc reactor altogether. The loss within 

the dc reactor coil is negligible, since only dc current flows within the coil. In the event of a 

fault, the flow of line current would be greater than that of the bias current. This excess 

current would naturally flow to the dc reactor, limiting any such increase rate. Thyristors 

automatically interrupt the flow of current at the zero-intersect of the fault current, after 

approximately one-half cycle. 

AC

Transformer

Lo
ad

D2

D1Th1

Th2

Single phase FCL

 

 
Figure 2- 10 One DC reactor type three phase FCL 

 

Following the same concept of saturated iron core reactor, Zenergy Power designed a 15 KV 

distribution class superconducting fault current limiter using FEM (Finite Element Methods). 
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In Zenergy Power’s FCL, each AC phase consists of two coils connected in series and wound 

around two core regions. An HTS coil provides the DC bias to saturate the two cores of every 

phase. The windings are oriented such that, in one core, positive AC current counteracts 

(bucks) the superconducting DC bias while, in the other core, negative AC current assists 

(boosts) the superconducting DC bias [2.2]. 

 

 

Figure 2- 11 Dual iron cores saturated by an HTS DC coil in a single-phase FCL [2.2] 

This prototype performed extremely well in early fault current testing and showed 

exceptionally low insertion impedance at maximum load current. The device was delivered to 

Southern California Edison (SCE) in January 2009 and on March 2009 SCE energized the first 

superconducting FCL in US electrical grid [2.2].  

Although the use of superconductor HTS instead of LTS would potentially result in both 

technical and economic benefits, the following comments are made: - 

• A large volume of iron and copper is still required. 

• Normal operating voltage across the limiter is about 4% of the normal rated line 

voltage.  

• The superconducting DC field winding will probably need to be protected against the 

electromagnetic fields of the AC windings - an electromagnetic screen will be required 

which will be a source of energy loss. 

• Due to the large m.m.f. required to saturate the iron cores, the DC bias field at the 

superconducting field winding will be relatively high [2.1]. 
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2.3.3 Single phase saturated core open core 

Recently, Jonathan C. Knott and Jeffrey W. Moscrop, [2.19] presented two designs for small-

scale saturated-core fault current limiters, one uses DC coils to saturate the cores; single 

phase open core saturated core, and the other uses a hybrid design with DC coils and 

permanent magnet blocks; Open-Core saturated-core with two DC Biasing Coils and 

Permanent Magnets. 

The open core saturated core consists of two coils wound and connected such that they set 

up flux in opposite directions are placed in series between an AC source and load. Laminated 

steel cores are inserted in to the coils and one or more additional DC coils are placed around 

the cores to drive the material in to saturation during normal operating conditions. The device 

is designed so that current in the AC coils is not sufficient to desaturate the core material 

during normal operation, which leads to a device impedance that is low and approximately 

equal to that of an equivalent sized air-core reactor. When     a fault event occurs, the 

increased current in the AC coils can drive the cores out of saturation, which results in an 

increase in the permeability of the material and subsequently an increase in the coil 

impedances [2.19]. 

 

 

 

 

Figure 2- 12 Basic configuration of a small scale single-phase saturated core FCL 
[2.19] 



24 
 

Open-core FCLs have several key advantages over closed core (i.e. where a high permeability 

magnetic return path is provided) designs. From a practical standpoint, using an open-core 

requires significantly less material than a closed-core of equivalent performance. 

Furthermore, while closed-core designs allow for a much smaller biasing current to achieve 

saturation of the core, the ability of these FCLs to limit current is similarly reduced. The biasing 

of open-core FCLs presents both a challenge and an opportunity as although an open-core 

FCL requires higher magneto-motive force (MMF) from the DC coils to fully saturate the cores, 

this also leads to a significant clipping potential for very high fault currents. In commercial-

scale devices the high DC MMF required can typically only be achieved using superconducting 

DC coils, which greatly increase the complexity and ancillary equipment required for the FCL 

[2.19]. In late 2010, after successfully validating the performance of a new “compact” 

saturated-core FCL, Zenergy Power received contracts to install a 11 kV, 1250 A FCL in the CE 

Electric UK Malleable substation, Stockton, UK, and        a 138 kV, 1300 A HTS FCL in the 

American Electric Power Tidd substation, Steubenville, OH, USA in late 2011 [2.20]. 

2.3.4 Solid state fault current limiter 

The solid-state distribution fault current limiter device (CLD) must meet the following 

functional requirements: - 

1. Limit the available system short circuit current so that it does not exceed the 

momentary or interrupting rating of any downstream protective device. 

2. Maintain the limited fault current without interruption until the fault is cleared by    a 

downstream device. 

3. Reset automatically after the fault is cleared by another device. 

4. Permit sufficient fault current to flow during the limiting mode so that the time to 

clear a fault is within the user's guideline limit for each circuit. 

5. Maintain performance throughout a normal sequence of operations of downstream 

protective devices (duty cycle). 

6. Permit an acceptable number of operations in the current limiting mode before 

maintenance is required. 

7. Operate in the current limiting mode while maintaining coordination among 

protective devices.  
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8. Limit current when first energized, and switch to non-limiting if control power is 

present and its current is less than the rated full current for 3 cycles. 

9. Trip an upstream switch if CLD internal temperature after operation is too high to 

operate again immediately. 

10. Have continuous and overload ratings which match the capabilities of the circuit to 

which the CLD is applied. 

11. Meet the frequency, maximum continuous voltage and dielectric strength ratings 

prescribed by ANSI/IEEE standards for the voltage class to which the CLD is applied. 

12. Limit transient voltages to the same level as permitted by other protective devices, 

such as circuit breakers or reclosers [2.20]. 

2.3.4.1 Thyristor based devices 

In the solid-state FCLDs, semiconductor AC switch (two GTO thyristors connected in inverse 

parallel) is placed in series with each phase of the power line. In parallel with each switch is 

current limiting impedance as shown in figure 2-13. When a fault is detected, the normally 

conducting switch is turned off and the current is diverted to the parallel impedance which 

limits the current. A voltage arrester (Varistor) and a snubber circuit are connected in parallel 

with a switch to limit the level and the initial rate of rise of the transient voltage across the 

thyristors [2.10]. GTO thyristors now available can block forward and reverse voltages of up 

to 4500 V, carry continuous currents of up to 1100 A (rms) and interrupt peak currents of up 

to 3000 A [2.10]. 
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Figure 2- 13 GTO based CLD for a 15 KV circuit  
 

Different circuit configurations based on the same principle were suggested. The parallel 

impedance was replaced by an inductor. Under normal load conditions, the GTO’s are gated 

continuously and maintained in full conduction. When a fault occurs, the fault current initiates 

a turn-off for the GTO’s. The GTOs of this type were connected in series to block the voltage, 

as the one used previously for 15 kV distribution system voltage class [2.20].  

Then the inductor was replaced by a resistance, and in both cases the FCL does not utilize the 

full switching capabilities of GTO thyristors employed. This is because the current limiting 

action is essentially carried out by the parallel high-power impedance when the GTOs turn off 

at the event of the fault current [2.10]. Another development of FCL of this kind was the fault 

current interrupting device (FCID) for use at power distribution voltage levels. They have the 

advantages of very fast operating speed, produce no arc and incur very little maintenance 

[2.10].  

Different types of FCIDs employing SCRs (silicon-controlled rectifier) or GTO thyristors have 

been investigated and employed in some applications [2.10] such as the main incoming 

transformer source leads, feeder applications, and bus tie position [2.20]. 
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Figure 2- 14 Fault current interruption devise (FCID) 

The current limiter interrupting device should have the following requirements: - 

1. Interrupt the current in less than 1/2 cycle. 

2. Reset only when both buses are healthy or by operator command. 

3. Include isolating switches to keep it open when it is needed to be isolated. 

4. Include bypass switches to carry current when no interruption by the CLID is desired. 

5. Have continuous and overload ratings which match the capabilities of the circuit to 

which the CLD is applied. 

6. Meet the frequency, maximum continuous voltage and dielectric strength ratings 

prescribed by ANSI/IEEE standards for the voltage class to which the CLD is applied. 

7. Limit transient voltages to the same level as permitted by other protective devices, 

such as circuit breakers or reclosers.  

Basically, the circuit layout of a FCID, shown in Figure 2-14, is like that of a FCLD except that 

the parallel current limiting impedance is not used. This enables the FCID to completely 

interrupt the current [2.10]. The FCID in existing power distribution network, although 

possible and advantageous as far as speed and maximum through current are concerned, 

suffers from the disadvantage of lacking coordination with downstream devices. On the 

contrary, the FCLD provides the possibility of limiting the fault current to safe limits and 

enable coordination with downstream devices. However, due to their inherent structure (the 

parallel low impedance), they do not have the capability to completely interrupt the fault 
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current. As a result, a hybrid solid-state breaker using a combination of GTO thyristors, SCR's 

and current limiting impedance was proposed. The fault current limiting and interrupting 

device (FCLID) is very similar to FCLD, instead of switching the GTO thyristors off for the 

complete period of overcurrent and leaving the parallel element to bear whole limiting duty, 

the GTOs thyristors is continuously switched on and off. Although the fault current can be 

shared by both GTOs thyristors and the parallel element, this device still does not utilize the 

full capability of GTO and incorporates more losses. Hence, for the sake of      a better 

performance, the parallel element was replaced by a nonlinear resistor (Varistor). During 

normal operation the Varistor is short circuited by the GTO thyristors, which are in the on 

state. On detection of fault current, the conducting GTO thyristor is switched off and the fault 

current is diverted to Varistor. When the transient overvoltage is suppressed and the Varistor 

current decreases, the GTO switch is turned on again. When the current reaches the pre-set 

value, the GTO thyristor is turned off again, and so on. The state of operation is maintained 

for a specific period. If the overcurrent continuous for a longer period, the GTOs thyristors 

are permanently switched off. The FCLID can limit the fault current as well as being able to 

interrupt it. It has a simple structure and fast response. Contrary, the FCLID suffers from the 

thyristors operating losses and the fault current takes several cycles prior to a complete 

interruption [2.10]. 

2.3.4.2 Thyristor controlled reactor. 

Contrary to the conventional reactor, which is in the system all the time, the thyristor-

controlled devices can be introduced into transmission systems to reduce the down-time of 

the system during installation and commissioning. Additionally, they reduce losses as they are 

only inserted if a short circuit is detected. The reactor is connected in series with thyristor 

branch 1 during normal system operation and bypassed by thyristor branch 2 in case of a 

fault.  

A surge arrester, which is designed for high energy absorption is placed in parallel with these 

two branches to protect the system from voltage surge during this transition. The fault 

current is therefore reduced by the limiting reactor.  
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Figure 2- 15 Thyristor controlled reactor as a fault current limiter  

This type of fault current limiter device encounters the problem of voltage drop and losses 

caused by the thyristors internal impedance. In addition, the control of the thyristors firing 

angle associated with harmonic distortion issue requires further study in the future [2.3].   

2.3.4.3 Advanced series compensation (ASC)  

The ASC thyristor protection scheme uses solid state devices which can react instantaneously 

to system conditions to turn on the thyristor-switched reactor and quickly insert an inductive 

element into the line to reduce fault currents (Figure 2-16). Protective features of electronic 

circuits using Break Over Diode (BOD) elements further enhance the self-protective feature 

of the scheme by automatic insertion of the thyristor-switched reactor.  The ASC fault current 

feature is used at the Kayenta Substation, USA. The merits of this protection method can give 

additional benefits to utilities when increasing short circuit levels approach limits of existing 

equipment within the system [2.15]. 
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Figure 2- 16 ASC schematic diagram.  

2.3.4.4 Thyristor controlled phase-shifting transformer 

Phase-shifting transformers (quad boosters) can be built which insert capacitive or inductive 

voltages into the transmission line. This feature can be used to increase or decrease currents 

in a transmission line. To achieve fault current limitation quick insertion of the inductive part 

is required which can’t be realised by slow mechanically switched phase-shifting transformers 

[2.15]. 

2.3.4.5 Thyristor controlled series tuned circuit. 

A series capacitor is inserted in the line and a thyristor-controlled reactor is placed in parallel 

with it. During normal operation, the thyristor backs-off' the capacitance, providing the 

required amount of line compensation. The effective impedance of the line can thus be 

dynamically controlled which helps to increase the maximum power transfer capacity of the 

line. The first scheme of this type has been commissioned by Siemens at Kayenta in the USA 

(230 kV, 330 Mvar). If designed correctly it is possible that when a fault occurs, the firing angle 

of the thyristors can be adjusted (e.g. to less than 140 in the figure below) so that the net 

impedance inserted into the line becomes inductive rather than capacitive, thus reducing the 

fault current. This feature is an attractive by-product of a controlled series capacitor 

installation [2.6]. 
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Figure 2- 17 Thyristor controlled series tuned circuit 

2.3.4.6 Thyristor controlled resonant lc circuit fault current limiter 

Two circuits are used for this type, the Thyristor-controlled resonant current limiter and the 

GTO (gate turn on) controlled resonant current limiter. In thyristor-controlled resonant 

current limiter the capacitance C is connected in series with the line and provides series 

compensation. When a short circuit occurs, the thyristors TH-I and TH-2 are fired, which 

connects inductance L in parallel with the capacitor. The resulting resonant circuit limits the 

fault current. 
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Figure 2- 18 Thyristor-controlled resonant current limiter 

 

The second circuit utilises GTO switches, which are on under normal operating conditions. 

When a fault occurs, the GTO switches are turned off, and the current is diverted into the 

resonant circuit, which limits the fault current. The thyristors in the above circuit are 

conducting only during the fault. Capacitance C, which is connected in series with the line in 

normal operation, compensates the line voltage drop. The GTOs in Figure 2-19 carry the load 

current continuously, which generates losses during normal operation and requires larger, 

more expensive switches [2.5]. 
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Figure 2- 19 GTO-controlled resonant current limiter 
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2.4 Motivation for novel magnetic fault current limiter 

The candidate FCLDs currently being investigated are the re-healing fuse, the 

superconducting limiter, and the solid-state (thyristors based) limiter. The first has the main 

disadvantage of a limited number of operations. The second is restricted by the technical and 

economic limitations of producing high temperature superconducting materials [2.10]. These 

limitations involve the need for a refrigeration system to remove the heat generated by eddy 

current losses and to compensate for heat leakage into the cryogenic container, the need for 

additional sensors and control circuits, and the need for a reset time after clearing the fault. 

The above limitations affect the reliability and the overall efficiency of the system [2.23]. The 

solid state FCLD, however, in addition to the losses incurs, it cannot be placed in a situation 

where it would be subjected to a fault current for more than a cycle which, results in the 

destruction of the semiconductor devices.  

For some semiconductor circuit topologies, specifically a voltage source inverter, the 

traditional methods of protection do not ensure the safety of the solid-state devices. 

However, if the rate of current rise could be reduced during a fault, then before current could 

rise to a destructive level, the solid-state devices could be turned off safely [2.23], [2.24]. In 

commercial-scale devices the high DC MMF required can typically only be achieved using 

superconducting DC coils, which greatly increase the complexity and ancillary equipment 

required for the FCL. Reducing the required DC-coil-generated MMF in FCLs has been the topic 

of considerable interest recently, and attention has been focused on using permanent 

magnets as a source of magnetic flux to “top up” or completely replace DC coil MMF [2.19]. 

Therefore, existing fault current limiting devices systems still fall short of addressing one or 

more of the following concerns; economic, current capacity, efficiency or reliability. Hence, 

there is currently a motivation to explore alternative approaches to fault current limiting, the 

magnetic fault current limiter Device (MFCLD) [2.24] - [2.38].  

2.5 Introduction to permanent magnetic fault current limiter (PMFCL). 

With the development of magnetic materials as well as topology design research, Fault 

Current Limiter based on permanent magnet biased saturation (PMFCL) has recently 

attracted a lot of interests of researchers and scientists. PMFCL shows low impedance during 

normal condition and renders high impedance during fault condition, which will change from 
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one state to the other automatically. With simple configuration and easy for manufacturing, 

this approach eliminates the need for an additional winding or a power supply, and thus 

addresses the issue of reliability, in addition, its response to a fault and the subsequent 

recovery process is automatic and instantaneous. With unique attributes including 

compactness, small size, reliable and fail-safe operation, and zero reset time, presently PMFCL 

has been one of the most promising current limiting technologies. In this new type of fault 

current limiters, the scheme has a permanent magnet as a source, which feeds a soft magnetic 

material iron core and keeps it in saturation during normal operating condition. The 

permanent magnet saturates the iron core so that the load current is not affected by the 

insertion of the device [2.13]- [2.14], [2.24]- [2.40]. This means the magnetic domains in the 

iron core are aligned in the direction of the magnetic field by means of the state of the art 

soft and hard magnetic materials [2.22]. In 1990s onwards, many researchers have reported 

on development of passive type magnetic current limiter using permanent magnet [2.27]. The 

PMFCL has a promising practicality and economy in applications with two pivotal features 

based on its operation principle. Firstly, the bias magnetic field is generated by the permanent 

magnet without employing any superconducting system or DC sources. Secondly, The PMFCL 

achieves fault current suppression through dynamic transition of the nonlinear permeability 

of iron-core within  

a very quick response time excluding additional expensive control devices. Consequently, 

with preferable competence in both technological and economic advantages [2.39]. Quite  

a few of research institutes, such as Toronto University in Canada, Kanazawa University in 

Japan, AREVA T&D technology Centre in Europe, Tsinghua University and Shandong University 

in China, have done both simulating and experimental studies with low voltage prototypes. 

These fundamental work and invaluable achievements establish a milestone for further 

research. However so far, the available research results on PMFCL are mainly based on the 

low voltage prototypes. Hence, how to design a PMFCL for high voltage and especially large 

capacity applications remains a great concern nowadays. For a large capacity design, the 

principal aspects that require further research of PMFCL lie in the static and dynamic 

operating characteristics, fault current limiting characteristics, equivalent magnetic circuit 

modelling, topology optimization and so on [2.14], [2.25]. 
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2.6 The Passive Fault Current Limiter 

The passive type fault current limiter composed of permanent magnets and a low saturation 

flux density material was proposed [2.29].  

AREVA T&D Technology Centre in the U.K designed a magnetic fault current limiter using soft 

and hard magnetic materials. The basic design is that a laminated 'C' core inductor has a piece 

of un-magnetised permanent magnet bridging its poles. Its coil is connected in series with the 

power circuit that it is protecting as shown in figure 2-20 [2.13].  

 

Figure 2- 20 A Magnetic fault current limiter [2.13] 

 

Later, in Kolghat, India, a group of researchers conducted a research into the analysis of 

parallel biased MFCL, Figure 2-21, using ferrite core and NdFeB magnet. They concluded that 

the MFCL is a way to provide affordable and quality power to the consumers [2.28].   
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Figure 2- 21 Parallel biased magnetic fault current limiter [2.28] 

 
 

Another development to the MFCL was the introduction of a new topology of PMFCL [2.26]. 

As for the new topology, the conventional PMFCL is generally divided into two types, the 

series connection and the parallel connection as shown in Figure 2-22. The series connection 

topology with two identical magnetic devices is connected with opposite magnetomotive 

forces to limit the positive and negative half-wave currents respectively. In the parallel 

connection topology, the permanent magnets are employed to generate a strong magnetic 

field as to bias the iron-cores into deep saturation. Under normal conditions, the AC magnetic 

field generated by coil is not enough to drive iron-core out of saturation, so the PMFCL 

behaves like an air-cored reactor with a low inductance. While a fault comes, either of the 

iron-cores comes out of saturation on alternate half-waves of the short current within a very 

sharp time duration, and the inductance of the PMFCL rises considerably to a big value, which 

is a summation of the inductances of a saturated core plus the other un-saturated core. 

However, the iron-core may go in to the reverse saturation and lose the fault current limiting 

capability if the fault current continues increasing to a very high value.  
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1,4- coil; 2,5- iron core; 3,6 - permanent magnet 
Figure 2- 22 Conventional topology principles of PMFCL models 

 
The new topology in [2.26] was simulated by 2D FEM [2.41] and verified by experiments to 

present effective basis and guide towards the design of high voltage and large capacity 

permanent magnet fault current limiter (PMFCL) [2.26]. The new topology was consisting of  

a permanent magnet and iron core, which has the same principle as the conventional series 

topology of Figure 2-22.  Compared with the conventional PMFCL topology, yoke section of 

iron-core is removed to optimize the magnetic circuit. Two methods are presented apparently 

accounting for improving the bias capability of the permanent magnet. The first one is 

changing magnetic materials of better magnetic performance, such as the iron core and the 

permanent magnet. The second method, which is adjusting the configuration of the magnetic 

circuit and adjusting the main geometrical parameters like structural parameters of the PMFCL. 

Specifically, the permanent magnet including decreasing length or increasing section area is 

strongly recommended with reference to the convenient practical adjustment based on the 

novel topology.  
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Figure 2- 23 Schematic diagram of a novel PMFCL topology  

 

Liang Zou, et al. (2009), [2.26] simulated a large capacity 10KV PMFCL model, based on 

saturation depth ratio concept [2.26], [2.35], with a high number of turns (800) in 2D (FEM). 

The effect of the PMFCL on the fault current according to 2D (FEM) transient results showed 

that the fault current was reduced from analytically calculated of 4000 A to numerically 

calculated of 1700 A [2.26].  

 

 

 

Figure 2- 24 Simulated transient current in 2D FEM 
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A further study was the design of hybrid FCL for the FREEDM system by means of substituting 

the iron core by a neodymium permanent magnet, which is the ferromagnetic core, as Figure 

2-25 illustrated. The ferromagnetic core is connected in parallel with a fast-mechanical switch, 

which is operated by a controller in abnormal conditions to provide rushed impedance, and a 

surge arrester for overvoltage protection [2.37] 

Reactor

CB

 R load

L load
AC

Controller Fault

 

Figure 2- 25 Schematic of the proposed hybrid FCL  

W S Siew with the same group of Chinese researchers, in addition to Li Zhang, Shandong 

University, China, [3.14] studied four types of PMFCL topology, which are named according 

to the mode how the permanent magnet biases the core, as indicated in Figure 2-26.  

A Parallel biased PMFCL is consisted of two sets C-shape cores, one permanent magnet and 

two AC current windings. The permanent magnet in the middle biases the two C-shape cores 

and forces them into saturation under normal conditions. Each C-shape core is used for one 

of the half power cycles. The two windings around the two core limbs arranged magnetically 

in opposite direction function as a bipolar current limiter to suppress the large current flow 

in the AC circuit [2.14]. 
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Figure 2- 26 A parallel, series I, series II and comprehensive design 

The series biased design I is much more economical than the parallel biased PMFCL in term 

of the topology design. The permanent magnet is divided into two pieces in series with the 

two cores. As the magnetic field direction in the two cores is opposite, the windings around 

the two cores are magnetically in the same direction. 

The magnetic structure of the series biased design II is like that of the series biased design I, 

however, there is only one winding around the two cores for the series biased design II, where 

the winding functions to limit the fault current at every alternative power cycle.                                

A comprehensive design PMFCL is the synthesis of a parallel biased design and a series biased 

design II, in which the permanent magnet is separated into three parts and its middle limb is 

twice bigger than the other two side limbs. 

The AC windings of the above four topologies are wounded around the cores and thus the 

magnets in these configurations are exposed only to the magnet’s own DC flux. Therefore, 

the impact incurred from demagnetization or eddy current losses does not play a significant 

role for the above modes. The researchers used NdFeBN35 as a magnetic material and cold-

rolled steel DW360-50 with higher permeability as the core material and found that the flux 

density through the magnet of the comprehensive design PMFCL is the biggest while through 

that of the parallel biased design is the smallest.  The comparison of the results demonstrates 

that the comprehensive design configuration always gets the deepest saturation extent of the 

four types. Apart from the core saturation and operating point of the magnetic flux density in 

the permanent magnet, the leakage flux should not be ignored. The leakage flux directly 

influences the static magnetic field distribution and indirectly influences the fault current 

limiting characteristics of the PMFCLs. The analytical results obtained by the researchers show 

that, the PMFCLs with one-winding topology, especially the comprehensive design PMFCL, is 
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much preferable for large capacity design compared with the two-winding topology, such as 

the parallel biased design and the series biased design I. Based on detailed study on both the 

static and dynamic magnetic characteristics of different modes of PMFCLs, the derived 

equivalent magnetic circuits present fundamental basis for further study of the operating 

mechanism of the PMFCLs as well as optimization of the fault current limiting topology design. 

The actual magnetic field distribution of the PMFCLs is quite complicated, and the flux leakage 

phenomenon in windings and the cores must be fully accounted, which needs further 

investigation in the future, combining both theoretical and experimental studies [2.14]. 

In [2.24] a new structure of parallel type permanent magnet fault current limiter (PPMFCL) 

was introduced.  

The previous related work on PMFCL are mainly based on the low voltage prototypes, hence, 

how to design a PMFCL for high voltage and especially large capacity applications [2.26] 

remains a great concern nowadays. 

2.7 Conclusion 

Different types of fault current means of limitation have been studied. There are the rehealing 

fuse, superconducting limiter, and the solid-state (thyristors based) limiter. The first has the 

main disadvantage of a limited number of operations. The second is currently restricted by 

the technical and economic limitations of producing high temperature superconducting 

materials. The limitations of superconductor fault current limiters affect the reliability and the 

overall efficiency of the system and were previously discussed in section 2.4. The solid state 

FCLD, however, in addition to the losses incurs, it cannot be placed in a situation where it 

would be subjected to a fault current for more than a cycle which, results in the destruction 

of the semiconductor devices.  

Therefore, existing fault current limiting devices systems still fall short of addressing one or 

more of the following concerns; economic, current capacity, efficiency or reliability. Hence, 

there is currently a motivation to explore alternative approaches to fault current limiting, the 

magnetic fault current limiter Device (MFCLD). The proposed PMFCL is designed to be used 

with the distribution transformers to improve the reliability, cost effectiveness and safety of 

power distribution system by limiting the short circuit current. The aim of this research is to 

limit or eliminate the short circuit current flowing through distribution transformers primary 
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circuit by means of the permanent magnet fault current limiter (PMFCL). This study is also 

focusing on reducing the momentary voltage drop and co-operating with the protective relays 

in a power system.  

The Finite Element Method MagNet will be used in the simulation to design and implement 

the new distribution transformers permanent magnet fault current limiter for the power grid. 

The new device is expected to offer almost the sufficient requirements of the fault current 

limiter.  
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Chapter 3: - Magnetism, magnetic materials and related issues 

3.1 Introduction 

Magnetic materials cover a wide variety of materials, which are used in a different range of 

applications. Magnetic materials are utilized in the generation and distribution of electricity, 

and in most cases in the appliance that use that electricity. The need for efficient generation 

and uses of electricity is dependent on improved magnetic materials and designs.  

Non-polluting electric vehicles will rely on efficient motors utilizing advanced magnetic 

materials. The state-of-the-art soft magnetic materials (SMM) are those which can be easily 

magnetized and demagnetized [3.1]- [3.2].  

The term hard magnetic material is used to describe materials that have sufficiently high 

resistance to demagnetizing fields. The hard-magnetic materials maintain a large amount of 

residual magnetism after exposure to a magnetic field.  

This chapter begins with the classification of magnetic materials. Then, it will look at the 

properties of magnetic materials such as permeability, coercivity, remanence, saturation 

magnetization, etc. It also will deal with magnetic materials types and applications [3.2]- [3.3] 

3.2 Classification of magnetic materials 

The materials can be classified according to their hysteresis loop and the magnetic field 

behaviour. 

3.2.1 Classification of materials based on hysteresis loop 

The hysteresis loop is a curve, a name given to the curve drawn between induced magnetic 

field (B) and the applied magnetic force (H), as shown in Figure 3-1. In the SI unit of 

measurement, the magnetic field (B) is measured in Tesla (T) and the magnetic force (H) is 

measured in Amber per meter (𝐴𝑚−1) [3.1]. 
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Figure 3- 1 Typical B-H loop of a ferromagnetic material [3.1] 

Starting with demagnetised core, both B and H will be at zero, point (a) on the magnetisation 

curve. If the magnetisation current I is increased in a positive direction to some value, the 

magnetic field strength H increases linearly with I and the flux density B will also increase as 

shown by the curve from point (a) to point (b) as it heads towards saturation. Now, if the 

magnetising current in the coil is reduced to zero, the magnetic field circulating around the 

core also reduces to zero. However, the coils magnetic flux will not reach zero due to the 

residual magnetism present within the core and this is shown on the curve from point (b) to 

point (c). To reduce the flux density at point (c) to zero we need to reverse the current flowing 

through the coil. The magnetising force which must be applied to null the residual flux density 

is called a “Coercive Force”. This coercive force reverses the magnetic field re-arranging the 

molecular magnets until the core becomes demagnetised at point (d). An increase in this 

reverse current causes the core to be magnetised in the opposite direction and increasing this 

magnetisation current further will cause the core to reach its saturation point but in the 

opposite direction, point (e) on the curve [3.1]. This point is identical to point (b). If the 

magnetising current is reduced again to zero the residual magnetism present in the core will 

be equal to the previous value but in reverse at point (f) Again reversing the magnetising 

current flowing through the coil this time into a positive direction will cause the magnetic flux 

to reach zero, point (g) on the curve and as before increasing the magnetisation current 

further in a positive direction will cause the core to reach saturation at point (b). Then the B-

H curve follows the path of b-c-d-e-f-g-b as the magnetising current flowing through the coil 
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alternates between a positive and negative value such as the cycle of an AC voltage. This path 

is called a Magnetic Hysteresis Loop. The effect of magnetic hysteresis shows that the 

magnetisation process of a ferromagnetic core and therefore the flux density depends on 

which part of the curve the ferromagnetic core is magnetised on as this depends upon the 

circuits past history giving the core a form of “memory”. Thus, ferromagnetic materials have 

memory because they remain magnetised after the external magnetic field has been 

removed. However, soft ferromagnetic materials such as iron or silicon steel have very narrow 

magnetic hysteresis loops resulting in very small amounts of residual magnetism making them 

ideal for use in relays, solenoids and transformers as they can be easily magnetised and 

demagnetised. Since a coercive force must be applied to overcome this residual magnetism, 

work must be done in closing the hysteresis loop with the energy being used and dissipated 

as power in the magnetic material. This power is known as hysteresis loss and the amount of 

loss depends on the material’s value of coercive force. By adding additive to the iron metal 

such as silicon, materials with a very small coercive force can be made to have a very narrow 

hysteresis loop. Materials with narrow hysteresis loops are easily magnetised and 

demagnetised and known as soft magnetic materials. Magnetic hysteresis results in the 

dissipation of wasted energy in the form of heat with the energy wasted being in proportion 

to the area of the magnetic hysteresis loop. Hysteresis losses will always be a problem in 

transformers where the current is constantly changing direction and thus the magnetic poles 

in the core will cause losses due to the constantly reverse direction. Rotating coils in DC 

machines will also incur hysteresis losses as they are alternately passing north the south 

magnetic poles. The shape of the hysteresis loop depends upon the nature of the iron or steel 

used and in the case of iron which is subjected to massive reversals of magnetism, for example 

transformer cores, it is important that the B-H hysteresis loop is as small as possible. In 

general, the soft magnetic materials are characterised by a steeply ascending magnetization 

curve; that is, large values of flux density are produced by small magnetizing forces. For 

certain applications where the flux density is low, the initial portion of the curve is important 

for intermediate flux density applications, the steeply ascending portion is of a dominant 

interest while for higher densities, the upper portion is of higher importance [3.1- [3.2].  
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3.2.2 Classification of magnetic materials on account of behaviour in a magnetic field 

The various types of magnetic materials are traditionally classified according to their 

susceptibility.  The susceptibility () indicates the degree of magnetization (M) of a material 

in response to an applied magnetic field (H).                                                                             

   =
𝑀

𝐻
                                                                                                                                (3.1)  

The first group are materials for which  is small and negative. These materials are called 

diamagnetic; their magnetic response opposes the applied magnetic field. The diamagnetic 

materials for which their susceptibility is approximately -10-5 are silver, gold, bismuth and 

beryllium. The atoms in this type have no magnetic moment. Superconductors from 

diamagnetic materials are for which () = −1. A second group of materials are paramagnetic 

for which ()  is small and positive and typically () approximately in the range 10-3 to 10-5. 

The magnetization of paramagnetic is week but aligned parallel with the direction of the 

magnetic field. Examples of paramagnetic materials are aluminium, platinum and oxygen. It 

also includes various salts of the transition metals such as chloride, sulphates and carbonates 

of manganese- chromium-iron and copper. Furthermore, it includes hydrated salts such as 

potassium-chromium. The atoms in paramagnetic materials have randomly oriented 

magnetic moments. In diamagnetic and paramagnetic materials, the magnetic susceptibilities 

at constant temperature and for relatively low value of magnetic field are constant. Under 

these conditions the materials are called linear, that magnetization is proportional directly to 

the applied field.  The diamagnetism and paramagnetism do not have linear relationship 

between magnetic induction (B) and magnetic field (H) at high field due to the exhibition of 

saturation magnetization. Another group which is the most widely recognised magnetic 

materials are the ferromagnetic solids for which () is much greater than 1 and typically can 

have values () ≈ 50 to 10,000. Examples of these materials are iron, cobalt and nickel and 

several rare earth materials and their alloys, magnets, helimagnets and supermagnets. In 

ferromagnetic materials both permeability and susceptibility are strongly affected by 

prevailing magnetic field (H). They do not have a constant value. The atoms have parallel 

aligned magnetic moments. Ferromagnetism acquires a large magnetization in relatively 

small magnetic fields. This magnetization corresponds to all magnetic moments being aligned. 

The ferromagnetic and ferromagnetic materials are used in many engineering applications 
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because of their high permeability which enable high magnetic induction to be obtained with 

only modest magnetic fields. They have ability to retain magnetization and they act as a 

source of field.  The ferromagnetic materials are also used in permanent magnets, magnetic 

recording, power generation and inductors, transformers and relays applications.  

The antiferromagnetic materials have antiparallel magnetic moment and hence the magnetic 

field cancels out and the materials behave in the same way as paramagnetic materials. 

Ferrimagnetic materials have atomic magnetic moments aligned parallel and antiparallel. The 

material breaks down into magnetic domains just like a ferromagnetic material [3.2]. 

Table 3-1 Susceptibility at room temperature for each type of magnetic material [3.1] 

Type of magnetism Susceptibility Example Susceptibility 
(T.m/A) 

Diamagnetism Small and negative Aluminium 
(Au) 

Cupper (Cu) 
 

−2.74 × 10−6 
−0.77 × 10−6 

 

Paramagnetism Small and positive Pentium (Pt) 
Manganese 

(Mn) 
 

21.04 × 10−6 
 

66.10 × 10−6 
 

Ferromagnetism Large and positive, 
function of applied 

field, microstructure 
dependant 

 

Iron (Fe) Up to ~100,000 

Antiferromagnetism Small and positive Chromium (Cr) 3.42×10-6  

Ferrimagnetism Large and positive, 
function of applied 

field, microstructure 
dependent 

Barium Ferrite 
(Ba Ferrite) 

Up to ~3 

Diamagnetic materials are typically those which are considered non-magnetic. Most organic 

compounds fall in this classification, as well as many metals such as copper, mercury, and 

gold. Metals which are typically diamagnetic are heavy metals with core electrons.  

In paramagnetic materials, each atom possesses a permanent dipole moment, resulting from 

incomplete cancellation of the electron spins or orbital magnetic moments. These atomic 

magnetic moments are randomly oriented. Paramagnetic material has no net macroscopic 

magnetization and exhibit magnetic behaviour only in the presence of               a magnetic field 

and retains no magnetism when the field is removed. The dipoles of paramagnetic materials 

do not affect the surrounding dipoles within the material [3.1].  
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3.3 Magnetic properties of magnetic materials 

3.3.1 Hysteresis loop 

The Magnetic Hysteresis loop previously shown in Figure 3-1 illustrates the behaviour of        a 

ferromagnetic core.  

3.3.2 Permeability 

The permeability is a property of the specific medium through which the (H) field passes and 

in which (B) is measured. The permeability of a material is a measure of the degree to which 

the material can be magnetized, or the ease with which a (B) field can be induced in the 

presence of an external (H) field. The magnetic flux density (B) is given by  

𝐵 =  µ0 𝐻                                                                                                                              (3.2) 

 In SI system of measurement, the permeability is measured in Weber per ampere-meter 

(Wb/A-m), (T m/A) or henry per meter (H/m) as (B) is measured in 𝑤𝑏
𝑚2⁄  or tesla (T). 

µ =  µ0 𝜇𝑟                                                                                                                               (3.3) 

where(µ) is the permeability, (µ0) is the permeability of a vacuum, it equals 4𝜋 ×

10−7(Wb/Am) or (H/m) and ( 𝜇𝑟) is the relative permeability, which is the ratio of the 

permeability in a material to the permeability in a vacuum and hence it has no unit. In a 

vacuum, (𝜇𝑟) = 1 . 

The linear relationship between (B) and (H) and is, 

𝐵 =  µ0 µ𝑟 𝐻                                                                                                                         (3.4) 

However, in other media particularly ferromagnetic and ferrimagnetic materials, B is no 

longer a linear function of H and hence (µr) varies rapidly with (H). This means the 

permeability (µ) is not constant as a function of magnetic field in the way that the 

permeability of paramagnetic is [3.2]. In order to characterize the properties of a given 

magnetic material it is necessary to measure the magnetic induction (B) as a function of (H) 

to obtain a hysteresis curve. The permeability ranges from the initial permeability, which is 

the initial slope of the magnetization curve to the maximum permeability, which is the 

maximum value at the saturation’s point. The initial relative permeability for ferromagnets 

usually lie in the range of   10 - 105. The highest values occur for special alloys such as 

permalloy and supermalloy, which are nickel-iron alloys. These materials are used as flux 
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concentrators. For soft magnetic materials the permeability is a large quantity at low 

magnetizing force. In the original state the bulk magnetization of ferromagnets is zero, but on 

an application of a magnetic field they become magnetically polarized; that is, they acquire a 

magnetization. However, the magnetization of ferromagnets is mostly orders of magnitude 

greater than the field strength which produce them [3.2].    

3.3.3 Differential permeability 

As any value of permeability µ can be obtained including (µ) = ∞ at the remanence (B)= (BR), 

(H)=0 and (µ) = 0 at the Coercivity (B)=0, (H) = (Hc). The permeability (µ) is not a particularly 

precise parameter for characterisation of ferromagnets. The differential permeability is 

known as the incremental permeability, (µ) = (dB/dH), is a more useful quantity although this 

value varies with the field. The initial or apparent permeability is the slope of the initial 

magnetization curve at the origin [3.2]. 

 
 
 

Figure 3- 2 Typical magnetic characteristics of different materials 
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3.3.4 Retentivity 

The retentivity or remanence is a material's ability to retain a certain amount of residual 

magnetic field when the magnetising force is removed after achieving saturation. The 

ferromagnetic materials retain their magnetization once they exposed to a magnetic field 

even when the field is removed. It is the most widely recognised property of ferromagnets. 

The retention of magnetization distinguishes ferromagnets from paramagnets which 

although they acquire a magnetic moment in an applied field (H), they can not maintain the 

magnetization after the field is removed [3.3]. When the field is reduced to zero after 

magnetizing a magnetic material, the remaining magnetic induction is called the remanent 

induction (BR), (BR) = (µ0 MR) [3.3]. The remanence is the value of remaining induction or 

magnetization when the field has been removed after the magnetic material has been 

magnetized to saturation. The remanence is the upper limit for all remanent induction or 

magnetization [3.2].  

3.3.5 Coercivity 

If sufficient magnetic field is applied to produce complete saturation inside the ferromagnet 

and then start reducing the field back to zero, it will be found that at zero applied field some 

residual magnetization “remnant induction “will remain and it will take a significant field 

“coercive field” to completely demagnetize the material. The magnetic induction can be 

reduced to zero by applying a reverse magnetic field of strength (Hc). This field strength is 

known as the coercivity and it is defined as the magnetic field needed to reduce the 

magnetisation to zero from saturation [3.2].  

3.3.6 Electrical losses 

Core losses occur in magnetic cores of ferromagnetic materials under alternating magnetic 

field excitations. It comprises of hysteresis loss and eddy current loss. The hysteresis energy 

loss per unit volume per cycle due to an AC excitation in an iron ring is equal to the area of 

the B-H loop. 

 𝑃ℎ𝑦𝑠𝑡 = ∮ 𝐻 . 𝑑𝐵   𝑊
𝑚3⁄                                                            (3.5)  

The hysteresis loss for magnetic materials commonly used in the construction of electric 

machines is given by the following equation: - 
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 𝑃ℎ𝑦𝑠𝑡 = 𝐶ℎ𝑓𝐵𝑝
𝑛(1.5 <  𝑛 <  2.5) (𝑊/𝑘𝑔)                                                                 (3.6) 

Where (Ch) is a constant determined by the nature of the ferromagnetic material, (𝑓) is the 

frequency of excitation, and (𝐵𝑝) is the peak value of the flux density [3.4] - [3.6].  

The eddy current loss is caused by the induced eddy currents in a magnetic core and is 

expressed by: - 

 𝑃𝑒𝑑𝑑𝑦 = 𝐶𝑒(𝑓𝐵𝑝)2(𝑊/𝑘𝑔)                                                                                              (3.7)       

Where (𝐶𝑒) is a constant determined by the nature of the ferromagnetic material and the 

dimensions of the core. Since this kind of loss is caused by the induced eddy currents in                

a magnetic core, it can be reduced by increasing the resistivity of the soft magnetic material. 

The hysteresis loss increases linearly with frequency while the eddy current loss increases 

with frequency squared. There is usually a discrepancy between the measured loss and the 

loss expected from the sum of the hysteresis and eddy current losses and this is usually 

referred to as the excess loss (𝑃𝑒𝑥 ).  

 𝑃𝑒𝑥 = 𝐶𝑒𝑥(𝑓𝐵𝑝)
3

2⁄                                                                                                             (3.8) 

The core loss or total electrical power loss is the summation of the foresaid losses [3.4], [3.6]. 

𝑃𝑐𝑜𝑟𝑒 = 𝑃ℎ𝑦𝑠𝑡 + 𝑃𝑒𝑑𝑑𝑦 + 𝑃𝑒𝑥                                                                                        (3.9)     

𝑃𝑐𝑜𝑟𝑒 = 𝐶ℎ𝑓𝐵𝑛
𝑝 + 𝐶𝑒(𝑓𝐵𝑝)2 + 𝐶𝑒𝑥(𝑓𝐵𝑝)

3
2⁄                                                                    (3.10)        

The core losses can be reduced if the conductivity of the material is reduced. This is exploited 

in transformer material such as silicon-iron, which silicon is added principally to reduce the 

conductivity, although it has adverse effect on the permeability but does reduce the 

coercivity. The losses in Ni-fe alloys are lower than for silicon-iron, and this is also used in AC 

applications such as induction coils and transformers, but silicon-iron has a higher saturation 

magnetization [3.2].  

3.3.7 Curie temperature 

The transition temperature from ferromagnetic to paramagnetic behaviour is called the Curie 

temperature or Curie point. All ferromagnets when heated to sufficiently high temperatures 

above the Curie temperature they become paramagnetic as the magnetic domains select 
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random alignment. At this temperature the permeability of the material drops suddenly and 

both coercivity and remanence become zero [3.2].   

3.3.8 Magnetic anisotropy 

Anisotropy is the property of being directionally dependent, as opposed to isotropy, which 

implies identical properties in all directions. It can be defined as a difference when measured 

along different axes.  In the absence of an applied magnetic field, a magnetically isotropic 

material has no preferential direction for its magnetic moment, while  

a magnetically anisotropic material will align its moment with one of the easy axes. In this 

case the demagnetizing field will not be equal for all directions, creating one or more easy 

axes. The easy axis is an energetically favourable direction of spontaneous magnetization that 

is determined by the sources of magnetic anisotropy. The ferromagnetic single crystals exhibit 

‘easy’ and ‘hard’ directions of the magnetization, as shown in figure 3- 3. The easy axis is the 

direction inside a crystal, along which a small applied magnetic field is sufficient to reach the 

saturation magnetization. Hard axis is the direction inside a crystal, along which large applied 

magnetic field is needed to reach the saturation magnetization. From the technological 

viewpoint magnetic anisotropy is one of the most important properties of magnetic materials. 

Depending on the type of application, material with high, medium or low magnetic anisotropy 

will be required, for respective application as, for example, permanent magnets, information 

storage media or magnetic cores in transformers and magnetic recording heads [3.4].  
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Figure 3- 3  Magnetization curves for iron along the three axes (100), (110), (111) 

 

3.3.9 Magnetostriction 

Magnetizing a core material usually changes its dimensions by a few parts per million. This 

dimensional change is called magnetostriction. Longitudinal magnetostriction is the 

dimensional change in the direction of magnetization and may be positive or negative. It is 

generally considered the most significant dimensional change of the core material. Its 

magnitude depends on the core material and the angle between the direction of 

magnetization and the rolling direction under the cyclic excitation; magnetostriction causes 

core vibration which creates noise. During cyclic excitation, this vibration has a fundamental 

frequency twice the excitation frequency. Since the magnetostriction does not vary linearly 

with induction level, higher frequency harmonics are also generated. Although there are 

other sources of noise in transformers, magnetostriction makes a significant contribution.  

The noise amplitude increases with core size as well as induction level and is a function of 

core design. Configuration, clamping, and other constructional features of the complete 

transformer can also have a large effect on noise levels [3.7].  
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3.4 Soft magnetic materials types 

3.4.1 Steel 

Two types of steel are used as cores in transformers, generators and motors. These are grain-

oriented and non-oriented electrical steel. Grain oriented silicon-iron is done be techniques 

called cold and hot rolling followed by annealing (heat treatment). Grain-oriented steel is 

used in large power and distribution transformers. The hot and cold rolled techniques make 

the steel magnetized in the easy axis (100), which is the direction of the applied magnetic 

field. This means the magnetic moments or magnetic domains of the iron align in the easy 

direction (1,0,0) instead of medium axis (1,1,0) or hard axis (1,1,1) as shown in Figure 3-3.  

The Cold Rolled Grain-Oriented Electrical Steel (CRGOS) is the one which made with special 

arrangement to control the crystal orientation. It is processed in such a way that the optimum 

properties are developed in the rolling direction, due to a tight control of the crystal 

orientation relative to the sheet. The magnetic flux density is increased by 30% in the coil 

rolling direction, although its magnetic saturation is decreased by 5%. It is used for the cores 

of power and distribution transformers. CRGO is usually supplied by the producing mills in coil 

form and it must be cut into "laminations" which are then used to form                a transformer 

core, which is an integral part of any transformer [3.2], [3.8]. Cold-rolled grain-oriented steel 

is a 3-4 per cent silicon iron, cold reduced to develop a high degree of grain orientation, which 

gives increased flux for a given magnetising force and decreased size for a given rating, hence 

reduced weight. The difference between cold and hot rolled is the temperature at which they 

are processed. Hot rolled is processed above the re-crystallization temperature while cold 

rolled is processed below its re-crystallization temperature. Re-crystallization is the process 

in which destroyed grains of a crystal structure are replaced by the new strain free grains. 

Non-oriented electrical steels are silicon steels in which magnetic properties are practically 

the same in any direction of magnetism in the plane of the material and have high loss 

characteristics (isotropic). Cold Rolled Non-Grain-oriented Electrical Silicon [CRNGO] is made 

without special processing to control crystal orientation. It usually has a silicon level of 2 to 

3.5% and has similar magnetic properties in all directions (isotropic). CRNGO is less expensive 

than CRGO and is used when cost is more important than efficiency and for applications 

where the direction of magnetic flux is not constant, as in electric motors and generators. It 
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can be used when there is insufficient space to orient components to take advantage of the 

directional properties of grain-oriented electrical steel [3.9].  

Non-orientated silicon steels are extensively used for machine laminations. Normally cores 

are produced in a number of material lamination thicknesses as follows: - 

• 0.3 mm for frequencies up to 200 Hz 

• 0.1mm for frequencies between 200 Hz to 2 kHz and 

• 0.05 mm for higher frequencies and pulse applications. 

Steel laminations for low frequency applications are available in different shapes. E and I 

laminations or strip C cores or toxoids are extensively used for mains transformers and ac line 

inductors [3.4].  

3.4.2 Iron powders 

Two general forms of iron powder cores are employed 

• Cores are made by highly compacting insulated high-quality spongy iron powder. 

• High resistivity is required to reduce eddy current losses and so the iron powder is 

subjected to an acid treatment to produce an insulating oxide layer on the surface of 

each individual particle. This fine carbonyl iron is mixed with a bonding material and 

highly compressed. The bonding material used limits the maximum core temperature. 

Minute gaps appear between the particles, severely reducing the permeability. It is 

difficult to saturate such materials [3.10]. 

3.4.3 Ferrimagnetic materials - soft ferrites 

Ferrites are black, hard, brittle, chemically inert ceramic materials, which have a magnetic 

cubic structure. The most general ferrites are polycrystalline magnetic ceramic oxides, which 

are compounds of iron oxide, Fe203 mixed with one or more oxides of bivalent transition 

metals such as Fe0, Ni0, Zn0, Mn0, Cu0, Ba0, Co0, and Mg0. At lower frequencies, below  

a few MHz, a Mn-Zn combination is added to iron oxide, while for higher frequencies, above 

a MHz, Ni-Zn is the additive. The raw oxide materials are mixed, pre-sintered at 1000°C if 

required, and ground. The powder material is shaped by means of pressing and sintering at 

between 1150°C and 1300°C. The sintering process involves raising the temperature to 

1300°C in about 3 hours, with 15 per cent oxygen present. The cores are cooled slowly without 

oxygen present to about 200°C in 20 h after entry. A 15 per cent linear and 40 per cent by 
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volume shrinkage occurs during sintering. A diverse range of ferrite core shapes is available, 

which include, E, I, U, toroid, drum, pot, rod, tube, and screw [3.10], [3.11].  

Table 3- 1 Typical comparative data of soft magnetic materials [3.12] 
 Silicon steel Iron powder Alloys Ferrite, Ni-Zn 

Frequency Hz 20-1k 400-10k 40-70k 200k-10M 

Temperature °C -55 to 300 -55 to 125 -55 to 200 -55 to 250 

Initial 
permeability, 
μ1 

 500 90 160 100 

Flux density @ 
25 c0 

T 1.75 0.86 0.63 0.24 

Remanence T 1.2 0.2 0.02 0.12 

Intrinsic 
coercivity 

A/m 440 2560 1448 350 

Resistivity Ωcm 0.1   105 - 106 

Curie 
temperature, 
Tc 

°C 300 200 500 450 

3.5 Applications of soft magnetic materials 

The types of applications for soft magnetic materials fall into two main categories: AC and DC 

[3.2]. In DC applications the material is magnetised to perform an operation and then 

demagnetised at the end of the operation, e.g. an electromagnet on a crane at a scrap yard 

will be switched on to attract the scrap steel and then switched off to drop the steel. In AC 

applications the material will be continuously cycled from being magnetised in one direction 

to the other, throughout the period of operation, e.g. a power supply transformer. A high 

permeability will be desirable for each type of application, but the significance of the other 

properties varies [3.2]. 

3.5.1 Electromagnets 

In consideration of materials for electromagnets, the core material should have high 

permeability to enable high magnetic induction to be achieved, while having a low coercivity 

so that the induction can be easily reversed. Soft iron is used almost exclusively in 

electromagnets. Its coercivity is typically 80𝐴𝑚−1  and when coupled with its high saturation 

magnetization of 1.71 × 106𝐴𝑚−1 makes the ideal material. Sometimes the pole tips of the 

electromagnet are made from cobalt-iron alloy which has a higher saturation magnetization 

in order to achieve slightly higher fields in the air gap  ( 𝑚0 = 1.95 × 106𝐴𝑚−1 for an alloy 
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of 35% co, 65%fe compared with 𝑚0 = 1.95 × 106 for iron). The materials most often used 

for electromagnet pole tips is an alloy containing 49% fe, 49% co, 2% V. Electromagnets are 

not very useful for magnetic induction above 3T because the iron can not contribute much 

additional field. Therefore, for higher field strengths either water-cooled iron –free magnets, 

known as Bitter magnets or superconducting magnets are used [3.2]. 

3.5.2 Transformers 

Although high permeability of the core material is desirable for transformers, it is necessary 

to reduce the eddy current losses by employing as low a conductivity material as possible. 

The material that is used exclusively for transformer cores is grain oriented silicon iron. This 

contains about 3-4% by weight silicon to reduce conductivity. The material is usually hot-

rolled then cold -worked twice followed by an anneal to improve the grain orientation, 

increasing permeability along the rolling direction. The total core loss in watts per kilogram at 

50 or 60 HZ is an important parameter for transformer steels. Losses decrease with increasing 

silicon content, but the material becomes more brittle. In recent years there has been an 

attempt to develop amorphous metal for use in electromagnetic devices [3.2]. These alloys 

such as Metglas, have found applications in some smaller devices but have not been 

successful in replacing silicon-iron except in some cases where distribution transformers have 

been required where fuel costs are high. Several thousands of metglas transformers have 

been built and sold, however this remains a very small fraction of the market for transformers. 

In view of the recent contributions such as non-oriented and grain oriented to improve the 

properties of silicon-iron, there does not seem to be any likelihood of large- scale adoption of 

metglas materials as transformers cores [3.2].   

3.5.3 Electromagnetic Relays 

The control circuit of the relay consists of a coil with a magnetisable core and a movable 

component called the armature, which is used to make or break the circuit. The yoke and core 

materials of relays have much the same requirements as electromagnets, that is low 

Coercivity, low remanence, and high magnetic induction. This leads in addition to low core 

loss and high permeability.  Relays materials are almost always iron or iron-based alloys. The 

addition of silicon to iron reduces the Coercivity from 100𝐴𝑚−1 to a few amperes per meter. 

The addition of Nickel to iron reduces the coercivity to as low as 1𝐴𝑚−1 [3.2]. 
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3.5.4 Induction Cores 

Soft magnetic materials are also needed as cores of induction coils. They enhance the flux 

density inside the coil and thereby improve inductance. When inductors are required to 

operate at high frequencies then due to the skin depth, only non-conducting or finely 

laminated magnetic materials can be used [3.13]. This usually means soft ferrite which is 

magnetic materials with high electrical resistivity and high permeability, which for many years 

were thought to be ferromagnets. This was because their bulk magnetic properties are very 

similar to ferromagnets.  Another application of soft ferrite is in antenna for radio receivers. 

These have an internal ferrite-cored antenna consisting of a short solenoidal coil which 

enhances the emf in the circuit for given amplitude of field. Typical values of (𝜇𝑟) for these 

applications are µr ~100 – 1000. Soft ferrites consist of a compound oxide consisting of iron 

oxide (𝐹𝑒2𝑂3) together with other oxides such as manganese, nickel or magnesium, which 

have a complicated chemical composition. For example, nickel ferrite has the composition of 

NiO and Fe2O3. It has Bs of 0.25 T with coercivity of the order of 8𝐴𝑚−1and maximum 

permeability 𝜇𝑟= 1500 [3.2].  

3.6 The characteristics of permanent magnet materials 

The hard-magnetic materials have wide hysteresis loop, high remanence flux density and high 

coercive field. Due to the great improvement of magnetic materials such as coercivity and 

maximum energy product, the materials that more considered hard magnetic in the past are 

in many instances are not recognised as hard material, today [3.1]. 

3.6.1 Maximum energy product of permanent magnet materials 

The maximum energy product is used to specify the performance characteristic of  

a permanent magnet. It is the maximum value of BH in the second quadrant.  This is closely 

related to the total hysteresis loss or area enclosed by the hysteresis loop. The maximum 

energy product is simply a measure of the maximum amount of useful work that  

a permanent magnet can do outside the magnet [3.1].  

3.6.2 Permanent magnet materials demagnetizing curve  

The maximum energy product only gives limited information about the properties of  

a permanent magnet. A more useful way of displaying the magnetic properties of  
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a permanent magnet is to plot the portion of the hysteresis loop in the second quadrant from 

the remanence point to the coercivity. This demagnetization curve indicates the 

magnetization under various demagnetizing fields. Such a curve contains information about 

the maximum energy product [3.1]. The strength of the demagnetizing field of a permanent 

magnet in open-circuit configuration depends on the shape of the permanent magnet. 

Therefore, the performance of permanent magnet material as a field source is dependent as 

much on the geometry as on the intrinsic material properties [3.1]. 

3.7 Hard magnetic materials 

3.7.1 Magnetite or lodestone 

The first permanent magnet material to be recognised was𝐹𝑒3𝑂4 , which a naturally occurring 

oxide of iron but it is no longer in use [3.1]. 

3.7.2 Permanent magnet steels 

The first commercially product permanent magnets were high-carbon steels containing about 

1% carbon. These were also mechanically hard while the low carbon steels and iron were 

mechanically soft. The classification “hard” and “soft” later came a measure of coercivity 

rather than of mechanical properties. Later the coercivity improved better by adding tungsten 

and chromium. Later still came the cobalt steels. These permanent magnet steels have 

coercivity of up to 20KA𝑚−1 and maximum product of up to 7 KJm−1 [3.1]. 

3.7.3 Alnico alloys 

The Alnico alloys consist mainly of iron, cobalt, nickel, and chromium with small amount of 

other materials such as copper. These composed of a strongly magnetic α1 phase (Fe-Co) and 

a very weakly magnetic α2 phase (Ni-Al). The magnetic properties of the alloy are improved 

by suitable heat treatment involving quenching followed by tempering at 700℃. They are also 

improved by annealing in a magnetic field. This rises the coercivity and maximum energy 

product. They have remanences in the range 50-130 KAm−1 with maximum energy product 

of 50-75K Jm−1. These alloys represent a mature technology and no significant improvements 

in their magnetic properties have occurred in recent time [3.1].  
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3.7.4 Hard ferrites  

The hard-hexagonal ferrites in widespread use are usually either barium or strontium ferrite 

(BaO. 6Fe2O3  or SrO. 6FeO3 ), these materials are relatively cheap to produce and 

commercially remain the most important magnetic materials. The coercivities are larger than 

Alnico, being typically 150-250 K Am−1 and romances are 200-300 K Am−1but their 

maximum energy product is low, being typically 20 75K Jm−3 [3.1]. 

3.7.5 Platinum –cobalt 

Due to the availability of other cheaper materials, the platinum-cobalt permanent magnet 

materials are no longer in use. However, it has coercivity of typically 400KAm−1 and  

a maximum energy product of typically 80KJm−3 [3.1]. 

3.7.6 Samarium-cobalt 

This kind of material was developed by the combination of high anisotropies of some earth 

materials with the high curie temperature of the 3𝑟𝑑transition metals iron, cobalt and nickel. 

It had high coercivity which could operate at ambient temperature and above. It was found 

that the cobalt-rare earth alloys had higher anisotropies than nickel or iron rare earth alloys. 

Furthermore, the alloys with the light rare earths generally had higher saturation 

magnetizations. The first of those alloys to be developed was𝑆𝑚𝐶𝑂5, which has a saturation 

magnetization of 800KAm−1, a coercivity of typically B𝐻𝑐 = 760𝐾𝐴𝑚−1, a maximum energy 

product of 150 − 200KJm−3, a remanence of (𝐵𝑟)=0.9T and a curie temperature of 720℃. 

This is was followed by 𝑆𝑚2𝐹𝑒17which has a saturation magnetization of 1𝑀𝐴𝑚−1,  

a coercivity of typically (B𝐻𝑐) = 500𝐾𝐴𝑚−1, a maximum energy product of240 −

260KJm−3, a remanence of (𝐵𝑟)=1T and a curie temperature of 𝑇𝑐= 820℃. The higher 

coercivity of 𝑆𝑚𝐶𝑂5 ensures that it maintains a position as a material of choice for high 

coercivity applications at temperatures beyond which 𝑁𝑑𝑓𝑒𝐵  is no longer viable [3.1]. 

3.7.7 Neodymium-iron-boron  

The 𝑁𝑑2𝑓𝑒14𝐵 alloys have become the materials of choice for a large number and wide 

diversity of applications requiring hard magnetic materials. Coercivities and energy products 

of these materials rival those of the samarium–cobalt alloys. The magnetization–

demagnetization behaviour of these materials is a function of domain wall mobility, which, in 
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turn, is controlled by the final microstructure- that is, the size, shape, and orientation of the 

crystallites or grains, as well as the nature and distribution of any second-phase particles that 

are present. Microstructure will depend on how the material is processed. Two different 

processing techniques are available for the fabrication of 𝑁𝑑2𝑓𝑒14𝐵 magnets: powder 

metallurgy (sintering) and rapid solidification (melt spinning). As for the powder metallurgical 

approach, the alloy, in molten form, is quenched very rapidly such that either an amorphous 

or very fine grained and thin solid ribbon is produced. This ribbon material is then pulverized, 

compacted into the desired shape, and subsequently heat treated. Rapid solidification is the 

more involved of the two fabrication processes; nevertheless, it is continuous, whereas 

powder metallurgy is a batch process, which has its inherent disadvantages. These high-

energy hard magnetic materials are employed in a host of different devices in a variety of 

technological fields. One common application is in motors. Permanent magnets are far 

superior to electromagnets in that their magnetic fields are continuously maintained and 

without the necessity of expending electrical power; furthermore, no heat is generated during 

operation. Motors using permanent magnets are much smaller than their electromagnet 

counterparts and are utilized extensively in fractional horsepower units. Familiar motor 

applications include the following: in cordless drills and screw drivers; in automobiles 

(starting, window winder, wiper, washer, and fan motors); in audio and video recorders; and 

in clocks. Other common devices that employ these magnetic materials are speakers in audio 

systems, lightweight earphones, hearing aids, and computer peripherals [3.13]. 

Table 3- 2 The properties of some important permanent magnet materials [3.14] 

Property Remanence Br (T) 
Intrinsic 

Coercivity (kA/m) 

Max. 
Energy 

Product (kJ/m3) 

Alnico 0.6 – 1.35 40 – 130 20 – 100 

Ferrite 
 

0.35 – 0.53 180 – 400 24 – 36 

SmCo 
 

0.7 – 1.05 800 – 1500 1600 – 4000 

NdFeB 
 

1.0 – 1.5 800 – 1900 2000 – 3000 

 

The working temperature has a great effect on the magnets’ ability to resist demagnetization.  

The maximum acceptable internal field for an amount of demagnetization depends on the 

temperature. Figure 3-4 shows the demagnetization curve for NdFeB [3.15]. 
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Figure 3- 4 Demagnetization curve for NdFeB at various temperatures 

3.8 Stability of permanent magnet materials 

It is important to know under what conditions a permanent magnet will perform to its design 

specifications. There are two problems which may affect the performance of the permanent 

magnet. One of the problems is the temporary effect due to operating at temperature beyond 

those for which the material was designed. The other problem is the deterioration of the 

magnetic properties caused by exposure to very high fields (demagnetization) or by alteration 

of microstructure caused by exposure to elevated temperature (ageing).  The temporary or 

reversible changes in the magnetic properties with temperature are caused by the reduction 

of the spontaneous magnetization within the domains as the temperature is raised. This 

becomes more significant the closer the temperature to the Curie point. Permanent changes 

which occur as a result of exposure to elevated temperature are caused by acceleration of 

the aging process. Many permanent magnet materials exist in metastable metrological state 

so that a phase transformation does occur, but at room temperature this proceeds very 

slowly. The transformation proceeds more rapidly at higher temperature. There are other 
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factors that can alter the properties of permanent magnet such as mechanical treatment, 

corrosion and radiation [3.1].   

3.9 Conclusion 

Some magnetic materials require a magnetic field to be applied to align the magnetic 

moments throughout the whole material (soft magnets) and others produce significant 

magnetic field without an applied field (hard magnets). The state-of-the-art soft magnetic 

materials (SMM) are those which can be easily magnetized and demagnetized. A good SMM 

should have large saturation magnetization, and the magnetization should be large even in 

relatively small applied field. Silicon steels and ferrites dominate soft magnetic materials. For 

high power applications silicon-iron is widely used for the sake of low coercivity, anisotropy, 

magnetostriction and increases resistivity and hence reduces losses and cost. 

Neodymium magnets have good physical properties and become the materials of choice for 

a large number and wide diversity of applications where strong permanent magnets are 

required. However, one of the difficulties for NdFeB in practice is the irreversible 

demagnetization due to high temperature and strong inverse magnetic field, which should be 

considered when designing a permanent magnet (PM) device. 
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Chapter 4: - Modelling, analysis and comparative work on existing FCL 

4.1 Introduction  

In the previous related work dealing with the simulation of 10 kV PMFCL model, only the 2D 

(FEM) fault current modelling results were reported in the published literature. The reported 

results were highlighted in chapter two in Figure 2-26.  

In this chapter, the10 kV permanent magnet fault current limiter model has been simulated 

according to the material and geometry provided in [4.1] by a commercial Finite Element 

software (FEM MagNet) in 2D and 3D. The (FEM) divides the magnetic field domain into       a 

group of smaller elements called finite elements. (FEM) MagNet solves time dependent 

Maxwell's equations to simulate the flux density and magnetic field distribution within the 

model. The advantage of breaking the domain down into a number of small elements is that 

the problem becomes transformed from a small but difficult to solve problem into a big but 

relatively easy to solve problem [4.2] - [4.6].  

The aim of this work is to verify and ensure the validity of the reported 2D (FEM) modelling 

results, evaluate the performance of the model and to develop the analysis techniques.   

An analytical approach was used in the PMFCL preliminary design to calculate the main 

governing parameters such as the core saturation state and the topology of the permanent 

magnet. The analytical approach is based on the relationship between the saturation depth 

ratio of the magnetic core and the model structural parameters and is presented in Section 

4.3. The mathematically calculated magneto static flux density in the core is then verified with 

2D and 3D (FEM) simulation.  

A new proposed method to design the PMFCL was used based on establishing the relationship 

between the operating current and the inductance of the (PMFCL). The steady state 

inductance/current profiles, which are given in Section 4.4.3.1 and Section 4.4.3.2, are 

obtained using 2D and 3D (FEM) magneto static solver to predict the PMFCL device fault 

current limitation in the abnormal condition. The 2D (FEM) transient behaviour of the PMFCL 

is verified in Section 4.5. The obtained 2D (FEM) transient results have been validated by 3D 

(FEM) time-step solver. Due to magnetic symmetry of the (PMFCL) under investigation, a 

quarter of the device was modelled to obtain a cost-effective solution from the computational 
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prospective. The model design verifications provided theoretical basis and guidelines towards 

the effective design of the PMFCL for the power grid.  

4.2 The PMFCL model specifications 

The PMFCL model consists of iron-core (silicon steel sheet), permanent magnet (NdFeB) and 

coil (copper) with turns of 800. The model design specifications are given in Table 4-1. 

At normal operation of the device the AC magnetic field generated by coil is not enough to 

drive iron-core out of saturation, so the PMFCL behaves like an air-cored reactor with a low 

inductance. While during the fault condition either of the cores comes out of saturation and 

thus inherently rushed to a high impedance state that limits the high short circuit current.  

 

3.37 m

Coil

1.14 m

Permanent magnet
Iron core

 

Figure 4- 1 Schematic diagram of 10KV PMFCL  
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 Table 4- 1 Model details 

Magnetic material Magnetic parameters Topology parameters 

Permanent magnet, Neodymium Iron 
Boron, 
(Nd Fe B, N35) 

Coercivity, Hc = 8.68 ×  105 A

m
 

Intrinsic coercivity, Hc
− = 9.55 ×

 105 A

m
 

Remanence, Br = 1.22T 

length =0.64m, 
Depth = 0.25m 
Area = 1.06*0.25= 
0.265m2 

Core, M4 Saturated permeability, 
µ2 = 1.2 ×  10−4 𝐻/𝑚 

Relative permeability, µr =95 

length = 3.37 m 
Area =0.25*0.25 
=0.0625  𝑚2 

4.3 The PMFCL model analytical approach 

The characteristics of a permanent magnet and the limiter core are obtained by considering 

a magnetic circuit model of a magnet in Figure 4-2. The permanent magnet has a uniform 

cross-sectional area of (Am) and a length (lm). The magnet has demagnetization curve of        a 

straight line with a coercive force of (Hc), a remanent flux density of (Br), where (𝐻𝑐) is the 

magnetic field intensity (A/m), which is the value of (H) at (B) equals zero [4.1], [4.7] – [4.8].    

The permanent magnet demagnetization curve can be expressed analytically as 

𝐵𝑚 =  µ𝑚 𝐻𝑚 +  𝐵𝑟 (4.1) 

𝐵𝑚 =  
𝐵𝑟

𝐻𝑐
(𝐻𝑚 +  𝐻𝑐) = µ𝑚 (𝐻𝑚 + 𝐻𝑐 )    (4.2) 

where (µ𝑚) is the permeability of the permanent magnet.  (µ𝑚 =  
𝐵𝑟

𝐻𝑐
) , (Bm) is the permanent 

magnet flux density, and (Hm) is the permanent magnet magnetic field intensity [4.1], [4.7]. 

The magnetomotive force across the magnet can be expressed as: - 

𝐻𝑚𝑙𝑚 = (
𝐵𝑚

µ𝑚
− 𝐻𝑐) 𝑙𝑚 =  

𝑙𝑚

µ𝑚𝐴𝑚

Ф𝑚 − 𝐻𝑐𝑙𝑚 =  𝑅𝑚Ф𝑚 − 𝐹𝑚                                     (4. 3)       

Where (𝑅𝑚 =
𝑙𝑚

µ𝑚𝐴𝑚
) and  (𝐹𝑚 =  𝐻 𝑐𝑙𝑚) [4-1], [4-10]. 
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Figure 4- 2 Magnetic circuit model of a magnet with demagnetization curve  

During fault conditions, the following equation should be considered so that the permanent 

magnet as a source does not lose its capability when the fault exists. 

𝐻𝑐 ∗  𝑙𝑚  ≥  𝐼𝐹𝑚𝑎𝑥 ∗ 𝑁                                                                                                      (4.4) 

Where (IFmax) is the maximum fault current and (N) is the number of turns. 

Studying the material properties is essential to choose the most appropriate material for the 

core of the PMFCL [4.8].  

 
 
 

Figure 4- 3 B-H curve for various electrical steel materials 
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Figure 4- 4 B/H curves of the iron-core and the permanent magnet  

 

The B-H curve for various electrical steel materials in Figure 4.3 and the magnetization curve 

I of the iron core in Figure 4.4, show that the flux density increases in proportion to the field 

strength until it reaches a certain value up to the saturation level. When the materials reach 

the saturation level, any increase in the magnetic field strength, the flux density does not 

increase significantly. This is because all the domains in the steel material are perfectly 

aligned. Any further increase will have little considerable effect on the value of the flux density 

(B).   

It can be noticed from Figure 4-3 that the both the (M4) and (M5) have almost the same B-H 

characteristics but with fewer points on the B-H curve in comparison with M36 and cold rolled 

steel (CR1010). The relative permeability of the electrical steel (M4, M5, M36 and CR1010) at 

2 T are 95, 105, 57 and 49 respectively [4.2]. This means each magnetic property of these 

materials has different effect on the PMFCL’ performance [4.9]. The cold rolled steel CR1010 

is not preferred to be used, though, it has relatively low strength.  

Figure 4-4 represents the B-H curve for the iron core and the permanent magnet. On the 

magnetization curve (I, P) represents the working point of the iron core with (Bu) and (Hu) 

denotes the corresponding magnetic flux density and magnetic field intensity. (Bs) and (Hs) 

denote the saturated magnetic flux density and saturated magnetic field intensity at point S. 
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On the magnetization curve (II, Q) represents the working point of the permanent magnet 

with (Bm) and (Hm) denoting the magnetic flux density and magnetic field intensity 

correspondingly. (Br) and (Hs) denote the remanent flux density and the coercivity 

respectively. (Hc
-), the intersection coordinates of the extended reversion trace line of the 

curve (II) with the -H axis, denotes the equivalent coercivity of the permanent magnet. (µm) 

represents the permeability of the permanent magnet which contains the following relation 

with (Hc-) [4.1]. 

𝐵𝑟 = µ𝑚 𝐻𝑐
− (4.5) 

Under normal condition, the iron core works at the deep saturation region of curve (I) in which 

(Hu) larger than (Hs). 

The magnetic flux density of the iron-core at point P (Bu) could be divided into two parts, the 

linear part and the saturated part. 

𝐵𝑢 =  𝐵𝑠 + ∆𝐵 =  𝐵𝑠 +  µ2 ∆ (4.6) 

Where (∆𝐵 =  𝐵𝑢 − 𝐵𝑠) and  (∆𝐻) is the saturation depth of the iron core. 

∆𝐻 =  𝐻𝑢 − 𝐻𝑠 (4.7) 

𝐵𝑢 =  Bs + µ2 (Hu −  Hs (4. 8) 

Hu =  
𝐵𝑢− Bs

µ2
  + Hs                                                                                                (4.9) 

The bias capability of the permanent magnet was based on the saturation depth ratio (Ks).  

𝐾𝑠 =  
∆𝐻

𝐻𝑠  
=

∆𝐻

∆𝐻 +𝐻𝑠  

× 100%                   (4.10) 

The saturation depth ratio (SDR) [4.1], [4.10] measures the bias capability of the permanent 

magnet PM at zero steady state current. It determines the percentage of how much additional 

saturation the PM can supply. The big value of (Ks) means that the permanent magnet can 

reduce higher fault current under the transient situation. In some situations, with a low value 

of (Ks) or SDR, the PM may lose the capability of fault current limiting. The value of (Ks) is 

always less than 100%. Saturation depth ratio as an important parameter is fit for quantifying 

the bias capability of the permanent magnet, and to improve the bias capability of the 

permanent magnet is in effect equivalent to increasing saturation depth ratio of the iron core. 

However, the (SDR) concept assumed that the actual 3-D field problem was idealised and 

transformed into a 2-D field problem. Moreover, the leakage flux, the eddy current loss of the 
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magnetic material and the angular frequency (ω) in the time-varying field are ignored [4.1]. 

At zero AC current, the summation of the magnetomotive force of the core and the magnet 

at the working points (P) and (Q), equals the amber- turns of the AC coil (Ni), which is zero.  

Hulu + Hmlm = Ni = 0                                                                                           (4.11)  

Hulu =  − Hm lm                                                                                                                   (4.12)      

From equation 4.3 and by substituting (Hc) with (Hc
-), equation 4.11 becomes as follows, 

Hu lu = 𝐻𝑐
−lm − ФmRm                                                                                                      (4.13)   

Фu Ru = 𝐻𝑐
−lm 

−  Фm Rm                                                                                                   (4.14)     

The magnetic flux of the core and the permanent magnet are considered the same, hence, 

Bu Su [
lu

µ2Su
+ 

lm

µmSm
] =  𝐻𝑐

−lm                                                                                            (4.15)       

The following equation is obtained by substituting equation 4.8 into equation 4.14, 

𝐵𝑠  +  µ2 ∆𝐻. (
1

µ2
.

𝑙𝑢

𝑙𝑚
+

1

µ𝑚
.

𝑆𝑢

𝑆𝑚
) =  𝐻𝑐

−                                                                              (4.16) 

The core saturated permeability (µ2) and the permanent magnet permeability (µm) are both 

constant holding the relationship connected by constant ratio (n), 

 µ2 =  𝑛µ𝑚 (4.17) 

∆𝐻 =  
𝐻𝑐

−

𝑙𝑢
𝑙𝑚

+   
𝑛𝑆𝑢
𝑆𝑚

 −
𝐵𝑠

µ2
                                                                                         (4.18) 

Equation 4.17 links the geometrical parameters of the core with the magnetic materials used. 

The equation revels that the bias capability of the permanent magnet can be improved by 

two methods. The first one is changing the magnetic materials, such as the permanent 

magnet and the iron core of better magnetic performance. The second method is adjusting 

the structural parameters of the PMFCL, especially the Permanent magnet including 

decreasing length and increasing section area [4.1], [4.10].  

Based on the mathematical equations previously stated, the core flux density was calculated 

using the model specifications in Table 4.1 and was found to be 2.17 T. 
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Though, the SDR assumed that the actual 3-D field problem was idealised and transformed 

into a 2-D field problem [4.1]. Hence, the SDR is not considered to provide a correct estimation 

to the calculated flux density due to the leakage flux.  

However, by considering the core is saturated and hence the value of core saturated 

permeability (µ2) is known, the preliminary design specifications such as the required PM 

magnet and core dimensions can be easily estimated. More accurate results taking the 

leakage flux components and the non-linearity of the core excitation could be obtained using 

the (FEM) approach [4.1]. 2D & 3D FEM magneto static solvers are enough to calculate the 

core saturation state. Thus, the calculated flux density needs to be compared with the 

numerical value obtained by 2-D and 3-D (FEM) to ensure adequate saturation extent of the 

limiter core. 

4.4 Magnetic circuit calculations by 2D and 3D (FEM) 

Due to limitations of analytical equations to model the non-linear core material properties, 

the (FEM) modelling techniques are being widely used by researchers and engineers. (FEM) 

MagNet is one of the most advanced packages currently available for modelling 

electromagnetic devices on a personal computer. It provides a virtual laboratory in which the 

user can create models from magnetic materials and coils, view displays in the form of field 

plots and graphs and get numerical values for quantities such as the flux linkage [4.2].   

The (FEM) is an approximate method for solving differential equations. It is based on the 

concept of dividing the original problem domain into a group of smaller elements called finite 

elements. (FEM) MagNet solves time-dependent Maxwell's equations over each element to 

find the magnetic field within the model. The Maxwell's equations use the magnetic vector 

potential to serve the magnetic field and for (B) to be calculated, the magnetic vector 

potential (A) must be found. The magnetic vector potential is a vector field. Its utilization 

allows simplification of the mathematical approach of many physical problems. The derivative 

of the magnetic vector potential gives the flux density (B) 

𝐵 =  ∇ A  (4.19) 

The differential form of a Gauss’s law for magnetic field is given by, 

 ∇ 𝐵 =  0 (4.20) 

This means the divergence of the magnetic field at any point is zero. 
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According to Ampere’s law, the derivative of the magnetic field intensity is the current 

density. 

∇ H =  𝐽 (4.21) 

The Maxwell field equations are extended to allow treatment of hysteresis by including the 

constitutive equation for magnetic material. The general equation for a ferromagnetic 

material can be expressed as [4.5]. 

𝐵 = µ0  (𝐻 + 𝑀) (4.22) 

 ∇
1

µ0
𝐵 = ∇ (𝐻 + 𝑀) (4.23) 

∇
1

µ0
 ∇A = 𝐽 + ∇ 𝑀 (4.24) 

In (FEM) modelling, it is important to choose the right mesh to calculate the magnetic field 

and flux density. A good mesh refinement especially for the core provides excellent results 

for evaluating the PMFCL performance. Generally, building and activating of the 2D and 3D 

(FEM) model goes through the following steps [2]: - 

1- Building the geometry according to the model specifications. 

2- Meshing (subdivision of the whole model for triangular elements).  

3-Assuming material properties (M4) or (M36) electrical steel, permanent magnet, copper 

wire). 

4- Applying field normal boundary conditions along the line of symmetry for a part of the 

model in 2D and 3D (FEM) modelling. 

5- Applying current density on the coil area. 

As the elements for the core are made smaller and smaller, as the mesh is refined, the 

computed solution will approach the true solution. 

The air box was made large enough so that to cater for the flux outside the core essentially 

and thus, Flux Tangential boundary conditions (specified by default) are applied. The 

surrounding air box had to be made to coincide with symmetry planes to specify the field 

normal boundary conditions when simulating a quarter of the model. The field normal 

boundary condition depends on the plain whether the magnetic flux cross perpendicularly.     

An appropriate maximum element size of the cores was selected to make the mesh fine. 

However, with increasing the elements and nodes, the calculation in 3D (FEM) will be more 

time-consuming and hence the elements and nodes should be compromised as far as possible 
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while ensuring the calculation accuracy. A larger number of elements were chosen for the 

permanent magnets region where the solution changes a little, smaller elements were 

selected for the cores where the solution is very important and changes dramatically. 

For the sake of increased accuracy, the following factors were taken into considerations in 

modelling the 3D (FEM) model: - 

1. More mesh refinement in the area of the coils where flux linkage calculations were 

performed. 

2. Solutions were sought at higher polynomial order. 

3. The B-H curve of the core materials was extended to the higher region of the flux 

density. 

The initial mesh in Figure 4-5 provides immediate feedback upon editing refinement controls. 

Figure 4-6 shows the solution mesh. In addition to manual mesh refinements, the solution 

mesh includes the nodes automatically added by Mesh Adaption [4-2]. 

The core material initially used was (M4) electrical steel, however, due to some incorrect 

inductance values obtained at low problems or low current, the M4 was replaced by (M36), 

which has more data points along the B-H curve. 

 

 

 

Figure 4- 5  Initial 3D (FEM) mesh 
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Figure 4- 6 The 3D (FEM) solution mesh 

4.5 Core flux density calculations by 2D FEM 

The permanent magnets were used to generate a strong magnetic field to saturate the core. 

With no current in the coils, a contour line was taken along the cores for 800 turns per coil to 

check the saturation extent. Figure 4-7 shows that the core is in saturation state. The flux 

density in the middle of the core is almost 2.1 Tesla. 

 
 

Figure 4- 7 Core magneto static flux |B| in 2D (FEM) 
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Figure 4-8 indicates the magneto static flux density lines distribution in the cores in 2-D 

modelling. It can be seen from the figure that the whole core is almost in saturation state. 

This means that the permanent magnets can generate a strong magnetic field to saturate the 

cores to an acceptable level. 

 
 

Figure 4- 8 Core magneto static flux density distribution in 2D 

 
Although the 2D (FEM) requires less computational time, the results are inadequate due to 

the limitation of 2D (FEM) modelling in addressing the end effects of both the PMFCL coils 

and core as the 2D neglects the field variations along the model’s depth.  

In 3D modelling, as the model was large, only a quarter of the model was modelled, and the 

result indicated that the core region within the coils was in saturation. 

The flux density in the middle of the core is 2.02 Tesla. This value is just above the saturation 

level of the core material (M36) (2.0 T). 
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Figure 4- 9  Core magneto static flux |B| in 3D(FEM) 

Figure 4.9 illustrates the magneto static flux density distribution along the cores in 3D 

modelling. The figure indicates that both cores are in saturation level.  

 

 
 

Figure 4- 10 The 3-D(FEM) core magneto static flux density distribution 
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Table 4-2 gives the analytical and numerical average flux density in the core. The average 

values obtained by 2D and 3D modelling are low, although the magnetic flux densities within 

the coils regions are above the flux density required for (M36) material. 

Table 4- 2 The analytical, 2-D and 3-D magneto static flux values 

Component Analytical 2-DMagNet 3-DMagNet 

Core  2.17 2.06 2.02 

4.6 Steady state inductance calculation by 2D & 3D FEM 

The inductance calculations using (FEM) approach could be evaluated using different 

techniques, among those are the stored energy and the flux linkage methods [4.11]. The 

inductance can be calculated using stored magnetic energy method [11], which is given by, 

𝑊 =
1

2
∫ 𝐴𝐽𝑑𝑉    (4.25)  

In 2D (FEM), the depth has no dependence on the model depth and hence 

𝑊 =
1

2
ℎ ∫ 𝐴𝐽𝑑𝑎 (4.26)  

𝐿 =
2𝑊

𝑖2                 (4.27)  

𝐿 = ℎ ∫
𝐴𝑗𝑑𝑎

𝑖2                                                                                                                          (4.28)  

The stored energy can also be given by: - 

𝑤 =
1

2
∫ 𝐵𝐻𝑑𝑉                                                                                                                     (4.29)  

𝐿 = ℎ ∫
𝐵𝐻𝑑𝑎

𝑖2
                                                                                                                        (4.30)  

A new proposed method to design the PMFCL was used based on establishing the relationship 

between the operating current and the inductance of the (PMFCL). In this approach, the 

magnetic status of the device at each current value would be obtained by (FEM) modelling. 

The ac current acting against the (PM) field excitation drive the core back from saturation to 

lower reluctance status and hence higher inductance. 

 Therefore, the total inductance would be evaluated from the magneto static (FEM) module 

at each current value, and the current inductance profile would be established. An accurate 

predication of the operating fault current values could be determined from the characteristics 

corresponding to high inductance value.  

In this model where it has multiple coils, the stored energy method is not suitable to be used. 
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The flux linkage method is the more appropriate one. In this context the flux linkage (λ) and 

the inductance (L) is defined as following: - 

oλ λ     L I= +    (4.31) 

Where L is the absolute inductance and (λ0) corresponds to a constant flux linkage through 

the coil, caused by the presence of permanent magnet.  

4.6.1 Inductance/current evaluation in 2D FEM 

The 2D solver was initially used to model the device, this due to the magnetic circuit 

symmetry, computing resources and to verify the reported results. The flux linkage for each 

coil in the model was evaluated from the (FEM) solution by calculating the average flux linkage 

over the coil cross sectional area Sc. as follows: -  

c
CS

λ     A .dl n dS= ∮    (4.32)  

Figure 4-11 shows the 2D results of the inductance-current profile for the PMFCL under 

consideration. The figure shows where such device could operate at normal low reactance 

region and where it will exhibits higher inductance. 

 

Figure 4- 11 Inductance vs current profile obtained from 2-D (FEM) 

Figure 4-11 also shows the region where the PMFCL go back to saturation at higher current 

values. This figure also shows a relatively higher values of inductance due to higher number 

of turns (800 turns/coil) chosen for this design.  
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During a fault condition, one of the cores come out of saturation to reduce the dangerous 

fault current as in Figure 4-12 displays the flux density distributions of the magnetic circuit at 

fault current. 

 
 

Figure 4- 12 Flux density distributions at fault current obtained from 2D (FEM) 

4.6.2 Inductance/current evaluation in 3D FEM 

The 3D solvers were used to explore the limitations of the 2D design tool. In 3D tool, () for a 

single coil is calculated as following: - 

 

Vc

λ o

1
A. J  dv  

I
=                                                                                                                 (4.33)  

The adapted model under investigation was modelled using 3D tools. The inductance 

calculation was performed, and the results are shown in the figure below. 

Figure 4-13 shows the calculated inductance-current profile in 3D (FEM). The inductance is 

much higher in comparison to hat obtained by 2D (FEM). 

Figure 4-14 shows the flux density distributions of the magnetic circuit at fault current, it 

shows one of the cores at saturation when the coil current field in the same direction as the 

PM field, and the other core driven out of saturation when the coil current field in opposite 

to the (PM) field.  
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Figure 4- 13  Inductance vs current profile obtained from 3-D (FEM) 

 

There is a clear discrepancy between the results obtained from 2D and 3D. This is not only 

related to the classical limitation of the 2D solvers in taking the coils end effects into 

consideration. However, it is mainly attributed, as shown in Figure 4-14, to the core no-

uniform flux density distributions along its axial length which cannot be considered in 2D 

approach. 

 

Figure 4- 14 Flux density distributions at fault current obtained from 3D (FEM) 
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4.7 Simulation of transient performance in 2D and 3D(FEM) 

The transient FEM solver was used to model the dynamic response of the PMFCL. In this 

approach the driving current is the unknown and the model is driven by a given voltage of 10 

KV, 50Hz. A time step solution was sought where the voltage across each coil is calculated by 

Faraday's law. 

The model of the PMFCL is coupled to electrical circuit model as shown in Figure 4-15. For 

such approach, the time steps were chosen according to the coils time constant.  

The value of the supply voltage, source internal resistance (R1) and the load resistance R2 were 

divided by 4, as only a quarter of the model was simulated. In modelling of the quarter of the 

model, it was found that the outer air box has a great effect on obtaining the transient results 

of the PMFCL. The outer air box height and depth should be made long and deep enough so 

that the feature of flux density boundary condition can easily force the magnetic flux lines at 

the outer surface and make them change their direction along the line of symmetry. 

The model was allowed to run for two ac excitation cycles and the switch set to close at time 

corresponding to 0.04s to short circuit the load resistance (RL) of 100 Ω.  

Prior to modelling the PMFCL in transient condition, the system fault current level was 

calculated for the case of air-cored model, in which the windings only are defined in the model 

and no presence of magnets and magnetic cores. This is to obtain a set of results for 

equivalent air-cored inductors. The air-cored for the same size of the PMFCL model was 

modelled to check the fault current level without the use of the current limiter device.  

The maximum ground fault current between the input voltage terminals and the ground is 

only limited by the internal resistance (R1). Hence, this value is 10000V/2.5Ω =4000A.    

Figure 4-14 shows the results obtained by the transient solvers, this figure also shows the 

simulated current obtained from a model where only air-cored a coil of exactly the same 

dimensions of the PMFCL coils. This is to the current limitation capability of the PMFCL. 
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Figure 4- 15 Single phase circuit diagram of the transient (FEM) model 

 

At the time of fault, the fault current is reduced by the rushed inductance of the PMFCL device 

Lpmfcl limits the fault current to an acceptable value as follows: - 

If =
v2

R1+R2+j 2ᴨf Lpmfcl
       (4.34)  

The value of Lpmfcl depends on the device number of turns and the reluctance of the magnetic 

core, 

𝐿𝑝𝑚𝑓𝑐𝑙 =  
𝑁2 µ 𝐴 

𝑙
 (4.35) 

The permeability (µ) is the degree of magnetization, which depends on the core material, (l) 

and (A) are the length and the cross-sectional area respectively [4.8].  

The PMFCL fault inductance stores energy without loss and returns it to the system at the end 

of each cycle.  Therefore, the PMFCL does not introduce excessive power losses should the 

normal operation of the system is restored without interrupting the load current. However, 

if the line is interrupted, only the energy that is stored in the last cycle is dissipated in the CB.   

Before the fault occurred, the load current as Figure 4-16 indicates, had been 86.6 A. 

At 40 milliseconds the air-cored model transient current was 320A, which shows a major 

reduction to the fault current. However, this value is far away from the maximum fault current 

(4000A). The significant reduction to the fault current was mainly attributed to the coils 

number of turns and there was no presence to the magnets and cores.  

However, the air-cored calculated fault current value is then compared with the PMFCL devise 

transient current to check the influence of the device on fault current profile. In either positive 

or negative half cycle of the fault current, the magnetic flux in the lower core was reduced, 

and thereby the lower core unsaturated inductance increased to a high value. The fault 

current was reduced by both the high unsaturated inductance of the lower core and the low 
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saturated inductance of the upper core. The result shows that the fault current was reduced 

to 186A with the presence of the PMFCL. These results proof the concept of the PMFCL in 

limiting fault current. However, the published results in [2.26] reported a fault current 1700A 

which is a way far from the results obtained in this chapter. 

 
 
 

Figure 4- 16 Simulated current with PMFCL and air-cored 

 

 

Figure 4- 17 Flux density distribution in transient 2-D (FEM)modelling 

 

The figure above shows that the lower core was out of saturation because of high fault 
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4.8 Discussions of results 

The PMFCL’s performance has been investigated. The preliminary design of the device was 

done by the analytical approach. The analytical approach could be used to estimate the 

saturation level in the core and to estimate the dimensions of the required permanent 

magnets. However, the investigations show that this approach will falls short of accurate 

estimations of the leakage flux. The leakage flux was not considered because of the saturation 

depth ratio (SDR), which neglects the need for 3-D field problem [4.1], [4.10]. 

In the published literatures dealing with the analysis of PMFCL, only the core saturations and 

the fault current profile were reported. However, the inductance and the inductance 

calculations of the PMFCL are important in the design considerations. In this work, it is 

believed that the inductance profile of the PMFCL is one of the important design parameters. 

It provides the required information of the PMFCL behaviour in steady state and at fault 

situation. It also could be used as comparison parameters between various PMFCL 

configurations also, this parameter is essential in the introduction of PMFCL to power system 

calculations software. 

In this work an approach of calculating the inductance of the PMFCL was introduced, and the 

results were reported. In such devices which operate at high saturation level, classical 

inductance calculations will not provide accurate results. Therefore, (FEM) modelling should 

be used in both 2D and 3D approaches. The results presented in Fig. 4.11 & 4.13 shows the 

inductance profile of the PMFCL, which were obtained using 2D and 3D magneto static 

solvers, hence where the input current to the model is not a time dependant. The inductance 

calculations also show an expected discrepancy between 2D and 3D approach. This is due to 

the 2D limitations in addressing the end effects of both coils and core. Hence, the 3D (FEM) 

approach is the accurate tool to obtain more accurate results. 

The transient behaviour of the PMFCL under consideration was obtained using 2D (FEM). The 

aim was to obtain comparable results to that reported one in literature. Therefore, 2D 

transient (FEM) model was carried out accordingly. The obtained results from this task were 

far away from the reported in [4.1] as shown in Figure 4.16. Hence, the model is unrealistic 

to operate at 10 KV and therefore the 3D (FEM) transient modelling is not possible to perform.  

There were some issues related to the model under discussion. In the first place, there were 

an issue in the inductance/current profile. The core material used initially was M4 electrical 
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steel, however due to unfeasible results in obtaining the inductance/current profiles in both 

2D and 3D (FEM), the material type M36 was used instead. 

Another issue was related to the 3D (FEM) transient solution, which was not possible to 

perform as the model was unrealistic. The model was checked for messing issues, the cores 

element size, the air box, materials type and sweep distances were considered. The model 

symmetry and the field normal boundary condition were checked to be applied accurately. 

The coils were ensured to be properly modelled in 3D (FEM). In transient analysis, the material 

type was checked to be set to nonlinear from the solve menu/set solver option. Furthermore, 

the time steps from the menu solve/ set transient option was ensured to be made short 

enough and set to 0.1 second.  

 An investigation to the parameters used in the model revealed that a figure of higher number 

of turns per coil was used (800 turns). It is believed that such figure is unrealistic design 

parameter as the coil number of turns has a great effect on the performance of the PMFCL in 

both steady state and transient conditions. The high number of turns as reported in [4.1] had 

a major influence on the normal operation of the PMFCL, which incorporated in high voltage 

drop from both resistive and reactive components. 

With respect to the previous published results, two important causes must have led to the 

inconsistent results. One important factor was related to the 2D (FEM) modelling technique, 

which was the sweep distance in z-direction (the depth of the components). The actual depth 

of the component should be always considered in 2-D voltage driven circuit modelling. 

Another essential issue is the polarity of the permanent magnet and the coils, which must 

have not been set properly.  

4.9 Conclusion  

The permanent magnet fault current limiter is a passive device as it does not require any 

external source to perform its function. The design and analysis of such devices is challenging 

due to the saturation of the magnetic circuit. The Neodymium Iron Boron NdFeB magnet can 

provide an adequate magnetic field to saturate the core of the PMFCL device in steady state 

condition.  The analytical approach to estimate the magnetic circuit parameters is fall short 

of a realistic estimation of the operating current range. The (FEM) magneto static solver 

inductance-current profile is a useful approach in estimating the PMFCL device characteristics 

in transient condition. Despite the model magnetic circuit symmetry, there is a discrepancy 
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in the accuracy obtained from 2D and 3D design tool. The leakage flux should be taken into 

consideration for a better evaluation of the magneto static flux density in the core. Moreover, 

the device should have a few numbers of turns to minimise the voltage drop and losses during 

normal operating condition. The high number of turns has a significant effect on the 

performance of the PMFCL device. In addition, the model sweep distance should be 

considered in the both 2D and 3D modelling as they can have a major inconsistency on the 

results. Besides, the permanent magnet and coils polarity should be ensured. With respect to 

the transient simulation, the fault current in an alternative half cycle forces one of the iron 

cores to come out of saturation and consequently the magnetic circuit inductance increases 

rapidly to limit the fault current. The air-cored transient modelling is very useful because it 

gives information about the fault current without the use of the PMFCL device. Therefore, 

device has a fast response to the transient current. Besides its advantages such as easy to 

install and safe operation, it restores energy and returns it to the system should there is no 

interruption to the flow of load current. 
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Chapter 5: - A prototype PMFCL 

5.1 Introduction 

In this chapter, experimental work is carried out on a prototype of a proposed design of 

permanent magnet fault current limiter. Prior to a large scale PMFCL implementation, the 

prototype is needed for developing the design, proof of concept of the proposed design 

techniques and improving ideas beforehand. The single phase 90V, 50HZ, square shape 

topology, benchtop prototype, is designed with 3D (FEM) [5.1], built and tested at the 

Electrical Laboratory of Sheffield Hallam University.  

The aim of this work is to compare the numerical and experimental results to ensure the 

validity of the 3D FEM and demonstrate the current limiting capability of the PMFCL device. 

Furthermore, this activity aims to access the design of PMFCL to develop the ideas and explore 

solutions to enhance the PMFCL performance for mitigating the fault current in electrical 

distribution system.  

An air-cored of the same size as the PMFCL device was constructed and tested to compare 

the outcome of having the device in service with the normal situation when there is no 

PMFCL. The air-cored and PMFCL prototype coils terminals (input/output) are identified at 

the assembly stage and left open so that the measuring devices can be connected, and 

different power circuit tests can be performed.   

Two designs are involved, which are based on the AC windings connections for the same 

PMFCL device specifications, the named configuration 1 and 2, according to the AC coils 

magnetic flux direction with respect to the permanent magnets.  

All the simulated and experimental results were compared with each other adequately to 

demonstrate the effect of the PMFCL AC coils configurations on the performance of the 

PMFCL device. 

The PMFCL model with the same design specifications was simulated at different AC coil 

length to demonstrate the effect of AC coil length on the performance of the PMFCL device 

with fixed number of turns.  
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5.2 The prototype Design specifications 

The 189 mm square shape prototype incorporated four PMs of a permanent magnet type 

neodymium iron boron grade 28/32, two M36 electrical steel cores of 4 mm thickness are 

placed between the magnets, and four AC copper coils wound around the 5 mm insulating 

bobbin and the cores. The length and height of each coil is equal to 99 and 49 mm 

respectively. Each coil consists of 210 turns, which is the maximum number of turns that can 

be wound around the core (satisfies the lab requirements) and they are arranged in 5 layers 

of 42 turns. The AC coils are connected in series and are inserted into the AC line in series 

with the load. The mmf-flux operating point of the cores is established by the permanent 

magnets. The magnets are positioned in the corner between the two cores and they are 

placed in alternate polarity such that each two opposite magnets are magnetized in the same 

direction, (magnets 1 and 3) and (magnets 2 and 4), as shown in Figure 5-1. The assembly of 

the PM poles that they must be placed in alternate polarities. Should one place the first pole 

with North Pole up, going clockwise, the next one will be South Pole up, then North up and 

last one will be South Pole up. The polarity of Magnet No 1 (the upper left) is (0, 0, 1) whereas 

magnet 2 polarity is (0, 0, -1). The polarity of magnet No 3 is as for magnet 1 and the polarity 

for magnet 4 is as for magnet 2. This means that the opposite magnets have the same polarity. 

The direction (0, 0, 1) indicates the direction in (X, Y, Z).  The configuration 1 is denoted by dot 

whereas configuration 2 indicates by cross. The details are given in Table 5-1 

 

Figure 5-1 PMFCL prototype schematic diagram 

Figure 5-2 and Figure 5-3 show the PMFCL type for AC coils winding configuration 1 and 2.  
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Figure 5-2 AC coil configuration 1 , 3D(FEM) design 

 

The configuration 1 design has the outside windings of the four AC coils with the same polarity 

as shown in Figure 5-2 whereas the configuration 2 design has its AC coils winding 

configuration in dots and crosses in alternate fashion as in Figure 5-3. The novel idea of such 

design is that in the case of " configuration 1 design” the PMFCL operates two opposite sides 

of the upper core and two sides of the lower core are back to magnetisation state. While in 

the " configuration design 2" the PMFCL operates either the whole upper core or the whole 

lower core is back to magnetisation state depending on the ac cycle. Hence each configuration 

offers different characteristics in terms of operating current and inductance values. The 

PMFCL is a variable-inductance iron-core reactor that has the impedance of      an air-core 

reactor under normal grid conditions and very high impedance during fault events [5.2], [5.3]. 

The change of the impedance from a low to high value depends on the required design 

parameters of the electrical network that is operated on. When the current increases beyond 

its permissible value during a fluty condition, the rapid increase in the impedance of the 

device produces the limiting effect [5.2]- [5.4]. During a fault event the rising current in the 

AC coil generates a magnetic field, which drives the core out of the saturation state, leading 

to increased permeability of the core section under the coil and hence increased impedance 

and limited fault current [5.5]. The magnetic field or the induction along the core is time and 

spatial dependent [5.6]. 
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Figure 5-3 AC coil configuration 2, 3D(FEM) design 

The design specifications of the prototype PMFCL is as detailed in Table 1. 

Table 5- 1 The design specifications of the 90V PMFCL prototype 
Parameter Type or value Parameter Type or value 

Iron core material MR36 Fault duration 25 cycles 

Iron core size 
(189 x 27 x 4) 
mm 

Recovery time Instantaneous 

Permanent Magnet type Nd-Fe-B (N52) Fault type 
Single line to 
ground 

Permanent Magnet size 
(30 x 30 x 30) 
mm 

Configuration 1 design 
PMFCL calculated/measured 
currents  

37A/39A 

A.C coils configuration 
With/ 
opposite 

Configuration 2 design 
PMFCL calculated/measured 
currents  

45A/49A 

Supply voltage  90V RMS, 50 Hz AC coil length along the core 99 mm 

Input resistance 0.1 Ω Stray resistance                                                                                                                                                                          40 Ω 

A.C coils No of turns 210 Maximum load current 2.24Arms 

 

5.3 Experimental set-up 

The prototype practical electrical circuit set-up was based on the PMFCL model design 

specifications given in Table 5-1.  
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Figure 5-4 PMFCL prototype experimental wiring diagram 

Figure 5-4 shows the PMFCL experimental wiring diagram where it is connected to the 

measuring instruments. 

 

 

Figure 5-5 Air-cored PMFCL prototype experimental set-up 

The air-cored PMFCL was connected in two design configurations to obtain the transient air-

cored current to evaluate the performance of the PMFCL. The total resistance and inductance 
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for configuration 1 design air-core PMFCL was 1.5 Ω and 3.97 mH whereas the values for the 

configuration 2 design air-core PMFCL were 1.324 Ω and 3.1 mH .  

The practical circuit diagram, as shown in Figure 5-6, consists of the Variac, 3.3KVA, which is 

powered by 240V, 50 Hz, connected to the PMFCL and a load resistance of 40 Ω in parallel 

with a switch.  The practical work was performed on the two types of AC coils configurations, 

the named as " configuration 1 design" and " configuration 2 design", to obtain the measured 

steady state current against inductance and in addition to the transient current values.  

 

Variac, 0-
240V (RMS)

RL(40 Ω)

Switch

240V 
mains 

PMFCL

 
Figure 5-6 Experimental circuit set up 

The PMFCL resistance and inductance per coil was measured individually by the RLC bridge 

instrument at 50 HZ and found to be 318 mΩ and 1. 65 mH. The total resistance and 

inductance for the low capacity configuration named "configuration 1" is 1.18 Ω and 7.33 mH, 

whereas the total resistance and inductance for the higher capacity (current rating) 

configuration, configuration 2 is 1.12 Ω and 6. 06 mH respectively. 

The sequence of prototyping work was carried out according to the following steps: 

• Ensure the limiter cores are in full saturation (2T+) at zero AC current and the 

permanent magnet is capable to withstand the maximum fault current.  
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• Carry out 3D (FEM) modelling to evaluate the performance of the device under test to 

calculate the minimum and maximum operating current, the minimum current was calculated 

to be 2.24A and the maximum current was found to be 37 A / 45 A for design configuration 1 

and 2 respectively. 

• Ensure that the equipment under test is housed in a protective box.   

• Choose the appropriate cables in terms of current rating for connecting the equipment 

with the supply voltage. 

• Ensure that the equipment is properly earthed. 

• Ensure that the heat generated does not affect the circuit components.  

• Choose a spot in the lab close to the emergency switch. 

• Carry out no load test of the variac to ensure the proper supply voltage.  

• Take an off- line measurement of the PMFCL device under test to establish the load 

values.  

• Ensure that the measuring instruments are calibrated for accurate results. 

The total resistance and inductance for the four coils of the PMFCL device were measured by 

the RLC bridge instrument at 50 HZ. The low capacity configuration named " configuration 1" 

total resistance and inductance were 1.18 Ω and 9.5 mH, whereas the total resistance and 

inductance for the higher capacity (current rating), " configuration 2", were 1.12 Ω and 7.33 

mH respectively. 

5.4 Measured and calculated inductance/current profile  

The inductance- current profile for the model and PMFCL prototype was obtained to validate 

the modelling method and to evaluate the device inductance in the limiting and non-limiting 

state and hence to determine the operating current values. This means to estimate the 

current limitation in short circuit situation. 

The circuit shown in Figure 5-6 was wired up with the required measuring instruments for the 

current, voltage, power and power factor and without using the switch and the load (RL). The 

voltage was gradually increased through the variac (0-240) VRMS. The current was monitored 

with the change in voltage and the inductance/current profile for the two design types of the 

prototype PMFCL was plotted.  
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5.4.1 "Configuration 1" PMFCL inductance-current profile  

In this type, the neighbouring terminals of the coils are connected with each other as 

indicated previously in Figure 5-2. The current dependant inductance L (I) values obtained by 

3D FEM magneto static solver using flux linkage method were thoroughly checked. The steady 

state modelling using the 3D (FEM) magneto static solver aimed to investigate the 

characteristics of the PMFCL and predict the fault current limitation at which the device 

activates in the abnormal condition i.e. fault condition. Figure 5-7 shows the activation of the 

PMFCL device at the predicted limited fault current using magneto static solver. The figure 

also shows the values of flux density distribution along the cores and it is almost 2.1 T.  

 

 

Figure 5-7 The 3D FEM PMFCL activation at the occurrence of the predicted fault current 
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Figure 5-8 Calculated and measured inductance/current profile for configuration 1 

Figure 5-8 shows inductance/current calculated and measured values for configuration 1(the 

flux of the magnets and AC current are in phase). The figure shows a fast increase in the 

inductance of the PMFCL device from the calculated and measured inclusion inductance of 

7.0 mH up to the maximum calculated and measured inductance of 18.3 mH and 18.37 mH 

respectively. The both the calculated inclusion and maximum inductance for the designed 

model is almost the same as the laboratory prototype measurement.  

The inductance value error percentage = [(18.37– 18.3)/18.3] * 100 = 0.38%  

 This means that the prototype is a replica of the designed model. Configuration 1 design has 

therefore fault to normal impedance ratio of 2.6. The figure also indicates that the maximum 

value of the inductance occurs at steady state current of 26 Arms. This implies that the device 

will limit the transient fault current to or near the value of 26 √2 A. 

5.4.2 "Configuration 2" PMFCL inductance-current profile  

Configuration 2 design PMFCL has its AC coils connected as previously shown in Figure 5-2. 

The same PMFCL model specifications given in Table 5-1 has its AC coils configuration 

changed so that the magnetic flux produced by the AC current is in opposite direction to the 

permanent magnet's. The model was simulated by 3D FEM tool and later its replica was 

connected in the laboratory to 90V, 50Hz. The prototype was connected to the mains 

through the variac and the laboratory measured inductance vs current was obtained and 

compared with the calculated values. Figure 5-9 shows the inclusion calculated and 
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measured inductance value of 6 mH while the maximum calculated and measured 

inductance is 11.3 mH. The nominal inductance at zero AC current is limited by the air 

inductance whereas the maximum inductance is dependent on the PMFCL design 

specifications.  

 
 

Figure 5-9  Calculated and measured inductance/current profile for configuration 2  

Figure 5-9 illustrates that the inclusion and maximum calculated inductances are 6 mH and 

11.3 mH respectively. The maximum measured inductance is nearly the same as the 

calculated inductance with a value of 11.36 mH. Each of the calculated and measured 

inductance arrives at its peak value at steady state current of 35 A.  

The inductance value error percentage = [(11.36 – 11.3)/11.3] * 100 = 0.53%  

configuration 2 design PMFCL device therefore has impedance ratio of 1.9 from normal to 

abnormal state according to calculated and measured results. The device should limit the 

actual fault current to or approximately equal to 35 √2 A.    

5.5 PMFCL calculated and measured transient currents 

The PMFCL transient modelling was investigated both using simulations and a laboratory scale 

prototype. The PMFCL prototype and an air-cored of similar specifications as the limiter 
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device were modelled at 90V, 50Hz to examine the performance of the device. The work 

involves three essential tasks. 

1. To validate the time effective 3D (FEM) magneto static inductance/current approach 

in predicting the device fault current limitation. 

2. To compare the two PMFCL designs calculated and measured limited transient fault 

currents. 

3. To evaluate the two designs fault current limiting capability. 

The device was simulated using 3D (FEM) time-step solver. The modelling circuit parameters 

for a quarter of the model are as shown in Figure 5-10. 

 
 

Figure 5-10 Transient circuit 3D (FEM) simulation for a quarter of the model 

The above circuit was used for the simulation of the two PMFCL and the air-cored designs. 

The value of V1 was (90 √2)/4 Vpeak and each coil has 55 turns. The input and load resistances 

were 0.025 Ω and 10 Ω respectively. The switch S1 was closed to initiate the fault at 40 mS 

and the simulation end time was 80 m.S.  

The transient measured fault currents for the two PMFCL designs were obtained using the 

practical circuit shown in Figure 5-11 and Figure 5-12 where the device was installed inside a 

protective steel box. The oscilloscope was connected to the ammeter probe and set to be 

current triggered. Then the circuit input voltage was increased via the variac till it reached 

90V where the RMS load current through the stray resistance (R2) was 2.24A. At 40m.s the 

switch was closed. The oscilloscope captured the transient current waveforms for 10 cycles. 
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Then the data was exported to the computer for evaluation and the measured transient 

results were compared with the calculated values. The calculated and measured transient 

currents were lastly compared with the air-cored PMFCL to evaluate the influence of the 

device on fault current reduction.  

The figure below shows the connection of the prototype PMFCL device inside the protective 

box. 

 
 

Figure 5-11 The connection of PMFCL inside the protective box 
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Figure 5-12 shows the PMFCL transient circuit wiring diagram where it is connected to the 

variac, oscilloscope, a switch and measuring instruments. 

 

Figure 5-12 The transient circuit wiring up 

5.5.1 "configuration 1" PMFCL calculated and measured transient currents 

Configuration 1 design PMFCL and its air-cored were simulated using 3D(FEM) time-step 

solver and connected in the Lab.  The simulation and measured results are as shown in Figure 

5-13 and 5-14 respectively. 
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Figure 5-13 Cconfiguration 1calculated transient current 

The above figure shows that the device 3D (FEM) calculated limited fault current was 37 A. 

 

 

Figure 5-14 Configuration 1 measured transient current 

 

Figure 5-14 shows that the Lab measured fault current was 39 A. The calculated and measured 

fault current without the PMFC is the same as the both the Figures 5-13 and 5-14 show that 
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the first peak air-cored current was 65A. This means the device fault current limiting capability 

according to the 3D FEM simulation and lab measurements are 43 % and 40 % respectively. 

5.5.2 "Configuration 2" PMFCL calculated and measured transient currents 

The opposite design PMFCL was simulated and the prototype was connected in the Lab to obtain the 

practical results.  

 

 
Figure 5-15 Configuration 2 calculated transient current 

Figure 5-15 shows that the PMFCL calculated 3D (FEM) transient current was 45 A.  In contrast, 

the PMFCL measured limited fault current was 49A as illustrated by Figure 5-16.  
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Figure 5-16 Configuration 2 measured transient current 

The air-cored transient current for the opposite design was 77 A as indicated by Figure 5-15 

and Figure 5-16. The figure shows a phase angle shift due to the different values of the air-

cored and PMFCL inductance values. In comparison between the numerical and measured 

results, the device has fault current limiting capability of 41.5 % and 36% according to the 

simulation and lab measurement respectively.  

The transient current values obtained for the both configuration 1 and 2 design validate the 

results obtained previously using the steady state inductance/current profiles.  

The influence of the fault current on the PMFCL operation during the fault has been predicted 

by the time-saving technique and lengthy computation process, as shown in Figure 5-17 

where the core was driven out of saturation. 

Figure 5-17 expresses the prediction of the device activation and flux density variation along 

the core at the expected fault current limitation using the quick solution of the (FEM) magneto 

static solver inductance/current approach. The figure also confirms the response of the device 

at the expected fault current limitation using the lengthy computation process of the (FEM) 

transient time-step solver.  
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Figure 5-17 Prediction of the device activation and flux density variation using time-
saving technique and lengthy process step-up solver 

The device has the same expected reaction to the fault current with almost the same flux 

density distributed along the cores with either using the short or long-time solution method.  

5.6 The effect of AC coils length on the performance of the PMFCL device. 

The influence of coil length mounted at the centre of the core for the prototype with fixed 

number of turns was utilized through 3D (FEM). Inductance current profiles at 39 mm and 69 

mm AC coil length were plotted for the two types of the model and compared with the 

calculated inductance dependant current L (I) at 99 mm. The lowest value of inductance is at 

zero AC current whereas the maximum value is at maximum permeability at which the core 

magnetization is the least value.   

Figure 5-18 depicts the inductance/current profiles for configuration 1 PMFCL. It 

demonstrates that the 39 mm AC coil length along the core offers the highest inductance 

compared with the 69 mm and 99 mm ones. This means that the shortest coil length has its 

core with the weakest saturation extent and core can easily get desaturated. The figure also 

illustrates that the 99 mm coil length along the core exhibits a lower inclusion and fault 

inductance of 7 mH and 18.3mH respectively, compared with 39 mm and 69 mm, and hence 
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it has an impedance ratio of 2.6.This implies that the core has the highest saturation extent 

at 99 mm coil length at which the flux linkage between the windings makes the mutual 

inductance low and as a result the total inductance is reduced. 

 
 
 

Figure 5-18 Configuration 1 inductance current profiles at 39 mm, 69 mm and 99 mm 
coil length 

The low nominal inductance for the longer coil is attributed to the higher saturation for the 

core under the coil regions and the maximum inductance limits the extreme fault current. 

Therefore, the effective coil length is the 99 mm, which has steep increase and a higher 

abnormal to nominal impedance ratio. The calculated inclusion and fault inductance for the 

with design models at different AC coil length along the core is illustrated in Table 5-2. 
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Table 5- 2 gives the values of configuration 1 inclusion and maximum inductance for different 

coil length 

Table 5- 2 configuration 1 inclusion and maximum inductance for different coil length 

Type of 
PMFCL 

Inclusion 
inductance 

(mH) 

Maximum 
inductance 

(mH) 

Normal/abnormal 
inductance ratio 

39 mm coil 
length 

17 24 1.41 

69 mm coil 
length 

13.98 20.3 1.45 

99 mm coil 
length 

(calculated) 
7 18.3 2.6 

Figure 5.19 refers to configuration 2 inductance current profiles for three different coil 

length mounted at the centre of the core. 

 

 
Figure 5-19 configuration 2 inductance current profiles at 39 mm, 69 mm, 99 mm coil 

length 

The 3D (FEM) simulation for opposite type PMFCL at different coil length mounted at the 

centre of the core can clearly indicate the inductance/current profiles at 39 mm, 69 mm and 
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99 mm coil length along the core. Although the highest inductance value is for the coil length 

of 39 mm, this value is less than the previous type least inductance. The graph for the opposite 

type shows that the 99 mm coil length has low nominal and fault inductance in comparison 

to the 39 mm and 69 mm. Thus, the device with 99 mm coil length has a lower voltage drop 

in the normal steady state operation.  In abnormal state, the 69 mm coil length has a 

maximum inductance of 14.06 mH. On the other hand, the 39 mm coil incorporates with the 

highest inductance value of 17.03 mH. Therefore, the most suitable coil length is the 99 mm 

coil length as it has a low inductance value in the normal and abnormal system operation. 

This makes the longer coil more convenient in the use with the grid for large capacity 

applications.  

Table 5-3 illustrates the inclusion and maximum inductance for configuration 2 at different 

AC coil length along the core. 

Table 5- 3 configuration 2 inclusion and maximum inductance for different coil 

Type of 
PMFCL 

Inclusion 
inductance 

(mH) 

Maximum 
inductance 

(mH) 

Normal/abnormal 
inductance ratio 

39 mm coil 
length 

13.88 17.03 1.23 

69 mm coil 
length 

11.13 14.17 1.27 

99 mm coil 
length 

(calculated) 
6 11.39 1.9 

The longer the coil along its core the larger the normal to fault impedance ratio. Figure 5-19 

and Table 5-3 correlated that the highest impedance ratio was achieved by the designed 

PMFCL with the longest AC coil length along the core, which means that the prototype PMFCL 

has less voltage drop in normal and abnormal power system operation. 
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Figure 5-20 Configuration 1 transient current simulations at 39, 69 and 99 coil length 

The limited fault current for the 39 mm, 69 mm and 99 mm AC coil length is as shown in 

Figure 5-20. Clearly, the limited fault current is dependent on the length of the coil as the 

longer coil along the core offers more contribution to the fault current limitation. This is due 

to the high magnetic field, which drives the core out of saturation during the fault event. The 

influence of the coil length along the core on the fault current for the with design is illustrated 

in Tables 5-4. 

Table 5- 4 Configuration 1 transient current for different coil length 

Type of PMFCL 
PMFCL first 

peak transient 
current (A) 

Air-cored 
transient 

current (A) 

percentage 
of PMFCL 
transient 
capability 

39 mm coil 
length 

22 30 26% 

69 mm coil 
length 

27 41 34% 

99 mm coil 
length 

(calculated) 
37 60 48% 
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The opposite type for the same designed model has been modelled at different AC coil length 

along the core using 3D (FEM) time-step solver. The calculated and measure prospective fault 

current for the 99 mm designed model and its similar prototype were taken as a reference 

point to compare the influence of the coil length along the core on the fault current limitation.  

 
 
Figure 5-21 Configuration 2 transient current simulations at 39 mm, 69 mm and 99 mm 

coil length 

The effective core length for the higher current rating design is the 99 mm as it has a flexible 

operation from the normal state where the load current is 2.2 Arms to the maximum limited 

fault current of 45 A according to 3D (FEM) and 49 A with respect to the laboratory 

measurement. 
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Table 5- 5 Configuration 2 transient current for different coil length 

Type of PMFCL 
PMFCL first peak 

transient current 
(A) 

Air-cored 
transient current 
(A) 

percentage of 
PMFCL transient 
capability 

39 mm coil 
length 

24 35 31% 

69 mm coil 
length 

39 58 33% 

99 mm coil 
length 
(calculated) 

45 76.8 41% 

5.7 Conclusion 

The small-scale model of PMFCL was designed using 3D (FEM), constructed and tested. The 

laboratory scale prototype has been tested at the both the steady and transient state 

conditions. The steady state inductance/current profile for both types of the device show that 

configuration 2 design has less inclusion and fault impedance compared with configuration1 

and hence can be used for large capacity (higher current rating) applications. 

The PMFCL model simulation results were compared with the experimental results to 

investigate the effect of coil winding configuration on the performance of the device. The 

outcome from the investigation deduced that the coil winding configuration plays an 

important role in relation to the normal and maximum current in the power circuit and should 

be considered in the design of the device.  However, there are no published studies have been 

reported regarding the effect of AC coils configuration on the performance of the fault current 

limiter device.  

The influence of coil length on the performance of the PMFCL was also verified. The calculated 

results for the candidate prototype with 99 mm coil length were taken as a reference and 

compared with the simulated results obtained using 3DFEM at 39 mm and 69mm, with fixed 

number of turns. The key findings from the steady and transient results show that the 99 mm 

coil is the more efficient device as it offers higher percentage of fault current limitation and a 

low inductance in the normal and faulted state operation.  Hence, the coil length along the 

core is an important parameter that should be considered in the design of the PMFCL device. 

The designed prototype modelling and experimental results confirm the device principle of 

operation.  
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Chapter 6: - Design of low and medium voltage PMFCL 

6.1- Introduction 

The previous chapter presented the design and testing of the small-scale prototype PMFCL. 

The experimental results verified that the PMFCL operated according to the proposed design 

methodology. The development of the PMFCL for better performance depends greatly on the 

design topology and the state of the art soft and hard magnetic materials [6.1]. This chapter 

covers two designs of PMFCL, design 1 is for 11 kV power grid and design 2 is for low voltage 

applications. The low and distribution voltage level models are designed and analysed using 

3D (FEM) [6.2]- [6.5]. 

The work in this chapter commenced with the design and modelling of the 11 kV PMFCL for 

the power grid. The distribution voltage level PMFCL model is chosen to match the 

commercial small scale square sided shape, which was covered in last chapter. The classical 

analytical approach based on reluctance calculations of the magnetic circuit reported in [6.1] 

did not produce an accurate estimation of the main geometry. Also, the 2D numerical (FEM) 

approach was insufficient, this is due to flux distribution in which the PMs flux direction is 

orthogonal to the AC flux in the core. The grid full scale 11 kV PMFCL model specifications are 

given in section 6.2. The model design method and steady state modelling are given in 

Section 6.3. Section 6.4 gives the dynamic modelling of the PMFCL and presents the time-step 

3D FEM transient results. The device cost evaluation is given in section 6.5. 

The low voltage 277 V PMFCL is a toroidal-shaped topology using samarium cobalt. The design 

lent itself towards the electrical power requirement for the promising renewable energy. The 

toroidal model PMFCL can be used for an individual renewable source of energy such as the 

solar or wind power farms or for the future wind-photovoltaic (wind-PV) power generation 

step up transformer [6.6], [6.7]. The low voltage PMFCL topology and operating principle are 

given in section 6.6. The PMFCL model steady and transient results are given in section 6.7.  

The capability of the samarium cobalt magnet to withstand excessive fault currents has been 

evaluated in section 6.8. Section 6.9 presents the cost evaluation of design 2. 

The power grid PMFCL can be positioned at different locations in the electrical power 

distribution system, it can be installed in series with a generator, busbar or feeder. However, 

a relationship between fault current limiters and protection schemes should be established. 
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It is essential that the PMFCL’s installation does not cause an adverse effect to the 

functionality of the power system protection, power quality and power system stability. The 

functional requirements imposed on an FCL can vary for the different FCL positions [6.8], [6.9]. 

This is presented in Section 6.10.  The utmost importance aspect of device’s installation is to 

check whether the device principle of operation affects the protective relays so that proper 

operation of the protection relays is insured. This is introduced in section 6.11. The PMFCL 

device reduces the fault current in the first half cycle to a permissible value that a circuit 

breaker can endure. The main or backup protective relay detects the fault and sends a trip 

signal to the circuit breaker to immediately isolate the fault from the power source [6.10]- 

[6.17]. The circuit breakers must be ensured that their operation during a fault is not affected 

by the supplement of the PMFCL device. Section 6.12 discussed the interaction between the 

device and the CBs [6.18]- [6.22].  

Besides the merit of the PMFC’s principle of operation, the economical factor must be 

considered. It is very important to check whether there is a compromise between the device’s 

operation in the power system and its total cost.  

6.2 Design 1, the medium voltage PMFCL model specifications 

The power grid PMFCL is chosen to match the 90 V prototype, which was designed and 

analysed in last chapter. The proposed design offers the followings merits: - 

(i) High efficiency due to PM excitations.  

(ii) Low magnetic core losses due to core static saturation.  

(iii) Instant response to short circuit current due to inherent permeability feature of the 

core.  

(iv) Flexibility in determining the operating current range by reconfiguration of AC coils 

number of turns.  

(v) Low maintenance cost. For 3-phase design a stackable of three devices with high 

degree of magnetic coupling could be achieved. 

Table 6-1 details the full-scale model dimensions and type of materials used. 
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Table 6- 1 The 11 kV PMFCL design specifications 

Parameter Type or value Parameter Type or value 

Iron core material MR36 
Coil winding 
resistance 

0.04 Ω 

Core material relative 
permeability at 
saturation level 

57 Magnet coercivity 

𝐻𝑐                   
= 8.68       

×  105
𝐴

𝑚
 

Iron core size (3 x 0.3 x 0.008) m3 Frequency 50Hz 

Permanent Magnet 
type 

Nd-Fe-B (N52) A.C coils No of turns 100 

Remanence, 𝐵𝑟 1.22 T (Tesla) 

PMFCL first cycle 
limited fault current 
for configuration1 

and 2  

1700/1900 A 

Permanent Magnet 
size 

(1.7 x 0.3 x 1) m3 Supply voltage 11kV/√3 RMS 

A.C coils cross 
sectional area 

(1.026 x 0.31) m2 AC coil length along 
the core 

0.5 m 

Maximum load current 525 Arms Input resistance 0.528 Ω 

Configuration 1 and 2 
air-cored fault current  

(3018/3410) A Stray resistance 12.1 Ω 

6.3 Design method and steady state modelling 

A great deal of emphasis was placed on ensuring enough magnetic saturation of the core. The 

geometrical dimensions of the PMs and the cores could be determined. As well as, the 

interaction of the PMs and the AC flux could be investigated to ensure core saturations, the 

AC current operating range and the PM demagnetization state could be evaluated. The 3D 

magneto static solver was utilized; Figure (6-1) shows the flux distribution in the core due to 

PMs flux only. 

The initial estimate of the PMFCL design parameters is obtained using an analytical approach. 

The flux density in the core was analytically calculated prior to performing the (FEM) 

numerical approach. The required mathematical equations were covered in Chapter four 

nevertheless they did not give a precise indication regarding the design of the PMFCL. The 

flux density calculated analytically is completely different from the one obtained from the 

numerically calculated. For example, the iron core flux density was calculated using the 

analytical approach and was found to be 3.77 T, which is unrealistic. It is also the use of 2D 
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(FEM) is not realistic due to the flux distribution of the proposed model. Hence, the 3D (FEM) 

is used to develop the proposed design. 

 
 

Figure 6-1 Flux distribution in complete model and the flux density values |B| at no 
excitation 

 

Figure 6-1 shows the magneto static flux density distribution along the cores in a complete 

model at zero AC current.  The model designs (configuration 1 and 2) characteristics are 

obtained using 3D (FEM) magneto static solver by means of the inductance / current 

approach. The steady state obtained RMS current is the predicted limited fault current during 

abnormal condition. 

The advantageous inductance/current profiles for 11 kV PMFCL, configuration 1 and 2, are 

illustrated by Figure 6-2.  
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Figure 6-2 Configuration 1 and 2, 11 kV PMFCL inductance-current profile 

As it can be seen from the figure that the inductance for the configuration 2 design model 

increases from its nominal value of 13.6 mH until it reaches its maximum value of 15.46 mH, 

which is corresponding to the maximum RMS current of 1350 A. The calculated limited 

transient current will be obtained by the 3D (FEM) time step solver, which is predicted to be 

almost equal to 1350 *√2 A.  

Configuration 1 design on the other hand has an inclusion inductance of 14.08 mH and a 

maximum inductance of 16.06 mH at a corresponding current value of 1200 Arms, as shown in 

Figure 6-2.  This means that the peak fault current is predicted to be 1200 * √2. A. 

Although there has been a small difference of inductance between the two designs, Configuration 2 

offers a higher current rating of 1.13 %. However, the discrepancy between the two design 

characteristics will be more oblivious with the increased number of turns as previously stated in 

chapter four. 
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Figure 6-3 FEM magneto static model at fault current limitation 

The magneto static solver shows at the expected fault current limitation that a part of the 

core becomes desaturated.  

6.4 Dynamic modelling of the PMFCL 

The transient FEM solver was used to model the dynamic response of the PMFCL. The PMFCL 

model and an air-cored of similar specifications were modelled to investigate the 

performance of the device. The system voltage was 11/4√3 kVRMS , 50 Hz, (R1) and (R2) were 

0.15 Ω and 3.026 Ω respectively. The normal load current in (R2) was 525 ARMS. The model of 

the PMFCL is coupled to electrical circuit model as shown in Figure 6-4 where the performance 

of the device was assessed. The fault was initiated by closing the switch (S1) across the load 

resistance (R2) at the time of 40 Milliseconds.  

  

 

Figure 6-4 Transient circuit for a quarter of 11 kV mode 
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Figure 6-5 indicates that the core lost its saturation in the half cycle of the fault current. When 

one of the cores completely desaturates due to the high fault current, its inductance 

increases, and the fault current is reduced by the rushed impedance of the device.  

 

Figure 6-5 PMFCL at fault condition 

 

The air-cored PMFCL of similar specifications as the PMFCL device was modelled to compare 

the value of the fault current due to the presence of the device with the normal case, with no 

device in the circuit.  

The actual peak fault current is 14.974 kA, which is calculated by dividing the transient circuit 

input voltage by the resistance (R1) (Figure 6-4). 
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Figure 6-6 Configuration 1 PMFCL and air-cored transient current simulation 

 

Prior to the fault inception the load current was 525*√2 A. On the fault occurrence, the air-

cored fault current rushed to 3018 A. However, the power grid PMFCL reduced the fault 

current to 1700 A.  Thus, the 11 kV PMFCL device has a fault current limitation capability of 

almost 44%.  
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Figure 6-7 Configuration 2 PMFCL and air-cored transient current simulation 

Figure 6-7 displays the fault current for configuration 2 air-cored and PMFCL. The air-cored 

fault current was 3410 A. However, the device reduced the current to 1900 A with fault 

current limiting capability of 44%. Thus, the two devices have got almost the same fault 

current reduction capability.  Hence, the reduction to the fault has been achieved without 

using any external source. 

The neodymium magnets have been checked for demagnetization at the occurrence of fault 

current. Figure 6-8 indicates that the demagnetization proximity is below zero, which means 

that the magnet has enough strength and capability to perform its function without losing its 

characteristics. 
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Figure 6-8 Design 1 PMFCL demagnetization proximity during the fault 

6.5 Cost of design 1, the power grid PMFCL  

The total cost of the PMFCL device incorporates the initial [6.23] - [6.25] and the operational 

cost. The PMFCL initial cost is evaluated by calculating the cost of the core, magnets and 

windings materials, as shown in Table 6-2.  

The energy cost includes the core (eddy current and hysteresis losses) and the copper losses 

cost for the device life expectancy. The life expectancy for the device is expected to be at least 

40 years in comparison to power transformer, which have properly maintained and reached 

in service for almost 60 years [6.26]. The eddy current loss is very small due to the core 

lamination, the hysteresis losses has no effect since the device operates in saturation region 

and hence the core losses are neglected. 
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Table 6- 2 Power grid PMFCL initial cost 

Material 
Volume 
(m3) 

Total 
volume (m3) 

Specific 
density 
(tone/m3) 

Total weight 
(Tone) 

Price 
per 
tones 
(GBP) 
 

Price (GBP) 

PM (NdFeB) 
1.7× 
0.3×1=0.51 

0.51×4 = 2.04 7.6 2.04×7.6=15.5 25000 387600 

Electrical 
steel (M36) 

(32-
2.42)×0.008
= 0.026 

0.026×2=0.05 7.85 
0.052×7.85= 
0.4068 

1200 488.2 

Copper 
coils 

0.95×0.31×
0.45=0.133 

0.133 × 
4=0.53 

8.94 
0.53×8.94=4.7
4 

8000 37912.8 

PMFCL device total initial cost 426001 

 

The operational cost was calculated over a period of 40 years. The load current is 525 ARMS, the coil 

winding resistance is 0.04 Ω and the cost of a kilowatt hour (kWh) at present is 14.37 pence [6.27]. 

The operational cost is calculated as, 

𝐼𝑙2∗ 4(𝑅𝐴𝐶 𝑐𝑜𝑖𝑙)

1000
∗ 40 ∗ 8760 ∗

14.37

100
=   

5252∗4(0.04 )

1000
∗ 75528.72 = £555136         

The device total cost is £426001.1 + £555136 = £981137 

6.6 Design 2, the low voltage PMFCL, topology and operating principle 

Figure 6-9 shows a 3D sketch of design 2, toroidal shape PMFCL topology. The model topology 

consists of two samarium cobalt magnets, mild steel inter-pole, a toroidal steel core (MR36) 

and 3 pair copper coils mounted around the core. The inter-pole (steel 1010) is positioned 

between two high energy rare earth rectangular shaped samarium cobalt magnets, type 

SmCo5, to provides excitation for the M36 grain oriented electrical steel core. A 3 pair, 6 

copper coils, 10 turns each, wound around the toroidal core.  
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Figure 6-9 Design 2 toroidal shape topology 

The toroidal shape electrical steel core has better magnetic properties and performance over 

other shapes as there is no corners and no air gaps exist. Due to its symmetry, little magnetic 

flux escapes outside the core. Furthermore, the coil winding resistance is low due to a shorter 

turn length around the core. The toroidal core topology with large inner diameter and small 

build up core incorporates low operating losses and cost. In addition, it is more compact, easy 

to install and lighter [6.28]. The PMFCL principle of operation is the same as previously 

discussed in chapter five. 

The analytical flux density in the core was derived using the following equation: - 

2𝐻𝑐𝑙𝑚 − 2ɸ𝑚𝑅𝑚 − ɸ𝑚𝑠𝑅𝑚𝑠 −  ɸ𝑒𝑅𝑒 + 6 𝑛𝑖 = 0 (6.1} 

Where the subscripts (m), (ms) and e stand for the magnet, mild steel inter-pole and the core.  

The magnets and the AC coils have the same polarity such that in every half cycle of the AC 

current 3 coils on one side of the core material ring act against the magnets’ field. Hence, the 

flux density in one half of the core can be calculated as  

2𝐻𝑐𝑙𝑚 − 2ɸ𝑚𝑅𝑚 − ɸ𝑠𝑅𝑠 −
ɸ𝑒    

2
𝑅𝑒 + 3 𝑛𝑖 = 0 (6.2) 

2𝐻𝑐𝑙𝑚 − 2ɸ𝑚𝑅𝑚 =  ɸ𝑠𝑅𝑠 +
ɸ𝑒    

2
𝑅𝑒 + 3 𝑛𝑖 (6.3) 

The magnetic flux supplied by the magnets in each half ring of the core is the same, (ɸe), (ɸm) 

and (ɸs) are the same. The core flux density therefore can be calculated from equation 6.4.  

ɸ𝑒 =
𝐻𝑐  𝑙𝑚+1.5 𝑛𝑖

𝑅𝑚 + 0.5  𝑅𝑠+0.25 𝑅𝑒 
         (6.4) 

The preliminary design stage was carried out using the analytical approach, which gives an 

initial prospect regarding the model parameters due to its limitation in solving non-linear 
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magnetic flux equations. It has been shown previously in chapter four that the analytical 

approach did not give a precise value of the flux density in the core and hence the model final 

design specifications are established using the 3D (FEM)  

The model main dimensions and specifications are given in Table 6-3. 

Table 6- 3 Design 2 specifications 

Magnetic material Magnetic parameters Topology parameters 

samarium cobalt (Sm2Co17) Intrinsic coercivity, 𝐻𝑐
− =

7.36 × 105 𝐴

𝑚
 

Remanence, 𝐵𝑟 = 1.12 T 
Permeability, 

µ𝑚 =  1.7 ×  10−6 𝐻/𝑚 

Length (Lm) =0.3 m, cross 
sectional area (Sm) = 0.3* 

0.22= 0.066m2 

Core 
Electrical steel M36 

 

Relative permeability (µr) 
=57 

 

Inner diameter = 0.9 m, 
outside diameter = 1 m. 

Cross sectional area (Sm) = 
0.15 m2 

Mild steel (1010) Inter-pole Relative permeability (µr) 
= 49 

 

Length (Lm) =0.3 m, cross 
sectional area (Sm) = 0.3* 

0.22= 0.066m2 

Magnetic material depth 0.36 m  

Number of coils 6 

Number of turns per coil 10 

Winding resistance per coil 1× 10-4 Ω 

Operating single phase Voltage 277 V  

Frequency 50 HZ 

Normal load current 1000ARMS 

Peak prospective fault current  11.520 kA 

Air-cored prospective fault 
current 

11 kA 

First cycle peak limited fault 
current 

4240 A 

6.7 The low voltage PMFCL (Design 2) modelling results. 

Once the model geometry has been created, the 3D (FEM) simulation is developed by 

assigning the materials for the magnet, core, inter-pole and the coils. A proper mesh 

refinement especially for the core and coils were made for the sake of accurate modelling 

results. The model was checked for the core full saturation extent at zero AC current to ensure 

the biasing capability of the samarium magnet so that the device can operate correctly and 
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efficiently in the both steady and transient state conditions. The default magneto static solver 

is used to show the magneto static flux density core saturation at zero AC current. A current 

density was distributed uniformly in the conductor region and the calculation of the steady 

state inductance was established by the non-linear magneto static solver.  

 

 
 

Figure 6-10 Design 2 magneto static flux density distribution at zero AC current 

The inductance/ current profile was obtained by the 3D (FEM) magneto static solver using the 

flux linkage method. The peak value of the inductance gives the expected maximum transient 

current that the PMFCL is designed for. The inductance/current profile is given in Figure 6-11. 

The figure indicates that an inductance of 310 µH at a coincide current of 3000Arms. This 

implies that the device limited fault current is expected to be close to or equal the maximum 

of the obtained RMS value, which is 4242 A.  
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Figure 6-11 Design 2 inductance/current profile 

Figure 6-12 shows that at the expected fault current limitation, a half of the core becomes 

desaturated and it offers an adequate fault impedance to limit the fault current whereas the 

other half of the core remains in saturation state.  

 
 

Figure 6-12 FEM magneto static model at fault current of 3000 Arms 

 

The 3D (FEM) transient solver was used to simulate the fault current operation. Based on the 

results obtained from the 3D magneto static models, the parameters of the 3D (FEM) time-
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step solver were obtained for example the maximum current values obtained by the 

inductance/current approach. The coupled electrical circuit to the transient (FEM) model is 

shown in Figure 6-13.  

 
 

Figure 6-13 Electrical circuit of a half of the design 

The circuit contain a single-phase voltage source, an input resistance of 0.017 Ω and a stray 

resistance of 0.14 Ω. The electrical circuit and the PMFCL (FEM) model are coupled by means 

of common nodes. The circuit normal load current was calculated to be 1000 Arms up to 2 

cycles, at 0.04 seconds the fault is initiated by closing the switch S1. The data for the PMFCL 

is compared with an air -cored of the same size as the PMFCL device. The transient current 

waveform in Figure 6-14 indicates that the low voltage PMFCL device limited peak fault 

current is 4242 A. The figure also illustrates the air-cored transient current of 11 kA; however, 

the peak fault current without any means of fault current limitation is 11.520 kA. This means 

the air-cored reactors have no considerable effect on the fault current limitation due to the 

low inductance value of the model toroidal geometry.   

The PMFCL transient results validate the results obtained by the inductance/current profiles 

since the RMS value of the peak fault current gives the current values obtained by the 

Magneto static solver inductance/current profiles approach. In comparison between the 

device fault current limitation and the air-cored, the low voltage (Design 2) has a fault current 

limiting capability of almost 61 %.  
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Figure 6-14 Design 2 transient results 

6.8 Proximity to demagnetisation of samarium cobalt magnets 

A post-processing solver was used to investigate the likelihood of demagnetisation of the 

samarium cobalt magnets. In this approach the knee of the samarium cobalt was defined to 

be 0T. (In fact, the knee for the real material lies just below this value in the third quadrant of 

the BH curve.) Figure 6.15 shows the demagnetisation state of the samarium cobalt magnet 

for a peak coil current of 4242A. A value below zero indicates no risk of demagnetisation in 

the magnet. The magnitude of the negative values in the figure indicates the degree of 

proximity away from the specified zero point of the knee of the BH curve. 
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Figure 6-15 Design 2 demagnetization proximity at the peak fault current of 2545 A 

6.9 Design 2, total cost evaluation 

As previously discussed in section 6.5, the device total cost incorporates the total initial and 

operational cost. The initial cost [6.23]- [6.25] is the cost of the materials, as shown in 

Table 6.4. 

The load current is 1000 A, the coil winding resistance is 1 × 10-4 Ω, the number of coils =6, 

and the cost of a kilowatt hour (kwh) at present is 14.37 pence [6.27].  

The operational cost is calculated as, 

[(1000)2 × 1 × 10-4 × 6× 40 × 8760 × 14.37]/105 = £30211 
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Table 6- 4 Design 2, PMFCL initial cost 

Material Volume (m3) 
Total 

volume (m3) 

Specific 
density 

(tone/m3) 

Total weight 
(Tone) 

Price per 
tones 
(GBP) 

 

Price 
(GBP) 

Sm2Co5 
0.066 × 0.36= 

0.02376 
0.0238 × 

2=0.04752 
8.2 0.39032 15000 5854.8 

Mild steel 
(1010) 

0.066 × 
0.36=0.02376 

0.0238 7.85 0.18683 544 101.64 

Electrical 
steel 

(M36) 

0.15 × 0.36 
=0.054 

0.054 7.85 0.4239 1200 508.68 

Copper 
coils 

0.22 × 0.09 × 
0.38 =0.007524 

0.00524 × 6 
=0.045 

8.94 0.4 8000 3228.7 

Design 2, PMFCL device total initial cost 9693.82 

The total cost of design 2= £9693.82 +£30211 = £39904 

6.10 Positioning of PMFCL in the power grid. 

An important aspect that has a great effect on the capability of the PMFCL is the positioning 

of the device in the power grid. The fault current limiter device (FCL) in Figure 6-16 shows that 

the device can be installed at different locations of the power system network depending on 

its specifications. Thus, it has different effects on a faulted system. 
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Figure 6-16 Positioning of FCLs 

 

The FCL can be positioned at the power generation side (location 1) to reduce the maximum 

short-circuit current of the network. In location 2, it can protect the high voltage station 

transformer from the high short circuit current. The FCL is also, protects the equipment at the 

substation building, its main function is to prevent the short-circuit contribution of the 

substation auxiliary components. In location 3, the device is needed for connection with other 

power system via high voltage transmission lines. The FCL can be placed between power 

distribution networks to reduce the fault current from one electrical power distribution to the 

other, as indicated in location 4. The device can be used for the high or medium voltage bus 

bar coupling to enhance the reliability of the power system, as in location 5. In addition, the 

FCL is required for distribution generators, as in location 6, where the wind or gas turbine-
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generator is protected by the device from the excessive fault current. The FCL is connected as 

a bypass switch across the series current limiting reactor, as in location 7, to minimise losses 

and voltage drop during normal steady state operation. Furthermore, the FCL can be installed 

in the transformer incoming feeder (location8) or outgoing feeder (location 9).  It can also be 

used for low voltage bulbar coupling (location 10) [6.8], 6.9]. However, the design 1, PMFCL 

device is designed to be used with the indoor or outdoor 11 kV power grid whereas design 2 

is proposed for renewable energy transformer protection.  

6.11 Operation of power system with PMFCL device. 

The PMFCLs must be integrated into the protection system design to ensure correct 

protection of the switchgear and to avoid any undesirable tripping. In existing power system, 

the PMFCL replaces the series reactor, though, it can be installed as a bypass switch to provide 

shunt path across the conventional existing reactor. The new system installation takes the 

presence of the device from the initial design stage to be a part of the protection system 

infrastructure. Protective relays in power systems are essential even if the PMFCL is present 

in operation. A power system will be generally not energized without a proper protection 

design and proper relays settings matched to the system configuration. The requirements of 

the protection system are reliability, stability, sensitivity, selectivity and timely. However, the 

PMFCL should not affect the protective relays operation. [6.8]- [6.17]. The both designs of the 

11 kV PMFCL for the power grid, which specified in Table 6.1 can be installed in the power 

system network to mitigate the ground fault current provided that the system maximum short 

circuit current at the location does not exceed the device rating according to 3D FEM magneto 

static inductance-current profiles (6.5 kARMS and 7.5 kARMS) and time-step solvers (9.06 kA and 

10.5 kA peak). The device can be installed at the low voltage side of the step-up transformer 

such as 11/66 kV, 11/220 kV…etc. However, it can be installed at the high voltage side to 

protect the step-down transformers, for example, 

11 / 0.4 kV. Conversely, the low voltage device is proposed to be occupied with the existing 

wind turbine-generator transformer. The installation of the PMFCL device in the power 

system should reduce the power outages, work in harmony with the existing protective relays 

and improve the power system reliability. However, there are some issues that need to be 

addressed in advance. 
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The transformer magnetising inrush current might trigger the PMFCL in normal steady state 

operation. The device should not affect the system normal operation and should only operate 

to mitigate the actual fault current. 

The device should not affect the protective relays discrimination and co-ordination. 

 A proper operation of the protective relays should be insured. The operation of the PMFCL 

device might affect the overcurrent relay; the relays might fail to detect the fault current due 

to the fault current reduction once the PMFCL device has operated. 
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Figure 6-17 Overcurrent (O/C) and earth fault (E/F) relays protection 

The distance relay is the main protection for the transmission lines, however, its operation 

should not be affected by the PMFCL device. The distance relay should properly trip the 

breaker for faults within 80% of the length of the transmission line.  



139 
 

Generator CB

A

Distance 
Relay

PT

B

Rabx
Fault

R +jXCT

 

Figure 6-18 Distance relay protection 

The distance relay in Figure 6-18 protects the line between the substation A and B. The relay 

receives information regarding the line via the current transformer (CT) and the voltage 

transformer (VT). The relay operates if the line impedance falls below the relay impedance 

value. However, the PMFCL will add additional impedance to the transmission line, which 

affects the distance relay operation in comparing between its impedance with the line’s.   

The operation of generator or transformer differential relay should not operate on external 

fault. The differential relay should operate for a fault inside the transformer, generator or on 

the bus bar. Besides that, the differential relay operates to provide backup protection if other 

protective relays fail to operate. 
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Figure 6-19 Power transformer differential Protection 
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Figure 6-20 Generator differential 

 

Hence, the protective relays settings are required to be re-settled prior to installing the PMFCL 

device. 

 Another issue that need to be studied is the saturation of the existing current transformer 

(CT) due to the PMFCL asymmetrical fault current. The size of the core is directly proportional 

to the maximum expected peak of the fault current. At the instant of fault, the unbalanced 

fault current lowers the range of the flux density in the core due to the presence of the PMFCL 

device. This is beneficial for the new system to account for CTs with small-sized cores. Though, 

it is a problem to the existing system as the existing current transformers will saturate during 

fault current limitation. When the core of the CT gets saturated, its inductance drops 

dramatically. Consequently, the secondary circuit coupled by the saturated core is highly 

distorted. The harmonic content in the CT secondary current affects the protective relays 

operation. The distorted information supplied by the CT affects the relays operation in 

distinguishing between the normal and abnormal condition and can cause trip delay to the 

overcurrent relay. If the signal supplied by the CT during a fault is distorted by saturation, the 

RMS values calculated by the protection device will be lower than the RMS values of the actual 

fault current This can cause protection device trip delay. When designing a CT for the PMFCL’s 

installation. It is essential to ensure that it will not get saturated by the large asymmetrical 

faults [6.15], [6.16]. The replacement of the existing current transformers with new designed 

CTs may involve lack of system reliability during long period of shutdowns.  

Another concern with the PMFCL device installation in the power grid is the effect of lightning 

overvoltage on the device performance, which must be taken into consideration. The device 



141 
 

should be subjected to high impulse voltage test in the laboratory to ensure its capability to 

withstand high voltage insulation breakdown before being installed in the power grid. 

6.12 PMFCL with circuit breakers 

When the circuit breaker operates to clear the fault, the voltage that appears between the 

fixed and moving contacts of the circuit breaker after arc extinction during opening process 

is the transient recovery voltage (TRV). The peak of the TRV divided by the total time of the 

voltage oscillation is the rate of rise of recovery voltage (RRRV). The both the level of TRV and 

RRRV are key factors in determining whether the fault can be cleared successfully. For 

successful fault interruption, the breakdown voltage of the interrupting medium between the 

circuit breaker contacts must always exceed the recovery voltage. If the maximum value is 

above the breaker rating, the increasing TRV to the gap between breaker contacts will restrike 

the arc and breakdown the interrupting medium. In other circumstances, even when the TRV 

peak is within the breaker rating, current rising could occur because the interrupting medium 

is not yet a good insulator and it may still have a relatively high conductance. If TRV has a high 

rate of rise (RRRV) in those first few microseconds, it may re-establish a current flow enough 

to heat the arc column and restore conduction. However, the installing of PMFCL mitigates 

the fault current to a permissible value by instantaneously inserting an additional inductance. 

The best position of the PMFCL device is between the circuit breaker and the load 

(downstream). This can make the source-side voltage of PMFCL be low and can also ensure 

security of PMFCL device. The stored energy in the fault inductance increases the RRRV and 

hence increases the stresses on the circuit breaker. Therefore, the device should be provided 

with a parallel surge arrester between the line and ground to discharge the stored energy 

during fault interruption and consequently reduce the effect of RRRV on the circuit breaker. 

In normal operation the surge capacitor acts as an insulator and has no effect on the system 

operation. However, on the fault inception the RRRV closes the arrester for very short time 

expressed in a few microseconds to discharge the stored energy to ground [6.18]- [6.22]. 

Regarding the system voltage drop during a fault, the fault current greatly increases the 

voltage drop. The slump in system voltage during fault is a major concern to the power system 

operation. Voltage dip or voltage sag due to a fault on 11 kV power distribution transformer 

can affect the power system equipment such as the generator unit out of step and is the most 

crucial power quality concern. The voltage dip can operate the generator under voltage relay 
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(relay device number 27), which sends a signal to the related generator breaker to trip. 

However, the voltage sag can operate the reverse power relay (relay device number 32) which 

shuts down the turbine unit completely [6.29]. The installation of PMFCLs however, limits the 

short duration severe fault current to a value comparable to the normal steady state current 

and as a result reduces the voltage sags and improves the power quality and stability. 

6.13 Conclusion 

The PMFCL for the power grid distribution voltage level has been designed with M36 electrical 

steel core and neodymium permanent magnets. The squared-shape topology PMFCL model 

has been simulated into two designs with the same model specifications detailed in Table 6-1, 

configuration 1 and 2 (previously discussed in last chapter), to protect a 10 MVA, 11 kV 

substation transformer. 

In addition, the low total cost and efficient PMFCL device proposed for the renewable energy 

generator-step up transformer has been designed using samarium cobalt magnets and M36 

electrical steel. The device can be used with the existing wind, solar power transformer or   

for the future wind-photovoltaic (wind-PV) generator-step up transformer 480 V / 11 kV.  

The current-inductance profiles for both design PMFCL model were obtained to predict the 

behaviour of the device in the faulted condition. The calculated RMS current using the time 

effective (FEM) magneto static inductance-current profile method agreed with the peak 

transient currents obtained by the time step solver. The PMFCL showed exceptionally low 

insertion impedance in normal steady state operation and a high fault impedance to 

significantly improve the fault current limiting capability in abnormal condition. The passive, 

dry type PMFCL limits the fault current in its first peak cycle and requires minimum 

maintenance. The current limitation capability for design 1 and 2 have been calculated in 

comparison with the air-cored current limiting reactor of similar specifications as the PMFCL 

devices and a useful reduction in the fault current has been achieved. Design 1 (configuration 

1 and 2) has a fault current limiting capability of 44% whereas design 2 shows a significant 

reduction to the fault current with a limiting capability of 61%. 

Both the power grid PMFCL (design 1) and the low voltage (design 2) show no risk of 

demagnetization and can withstand the dangerous fault current. The low voltage PMFCL 

(design 2) has better performance as the amount of magnetic flux escaping outside the core 

is very low.  
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The location of PMFCL is very important for effective fault current reduction and for successful 

operation of the PMFCL device. Design 1 can be installed at different positions in the power 

system network depending on its power rating whereas Design 2 PMFCL device should be 

located close to the renewable energy generator- step up transformer because of the voltage 

level. The PMFCLs for design 1 and 2 must be integrated into the protection system design to 

ensure correct protection of the switchgear and to avoid any undesirable tripping of the 

circuit breakers. The installation of the PMFCL reduces the voltage sag, increases the service 

life of the equipment and improves the power quality and system stability. 

The two-design initial and energy cost have been evaluated. The full scale PMFCL for the 

power grid (design 1) is much more expensive whereas design 2 is cost-effective.  
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Chapter 7: -Conclusion and future work 

7.1 Conclusion 

The thesis started with background information on the soft and hard magnetic materials. 

Electrical steel M36 has been selected as an appropriate magnetic core material for the design 

approach. Neodymium Iron Boron (NdFeB) and samarium cobalt (SmCo5) are used as a 

permanent magnet; however, samarium cobalt magnet maintains a position as a material of 

choice for high coercivity applications at temperatures beyond which 𝑁𝑑𝑓𝑒𝐵  is no longer 

feasible. The PM is the main source of excitation to keep the non-oriented silicon steel iron 

core in magnetic saturation state. During the normal operation of the device the saturated 

core offers low impedance to the grid and during the fault state the core inherently rushed to 

high impedance state that limits the high short circuit current.  

A commercial Finite Element software (FEM) MagNet was used in the device modelling 

techniques from the commencement till the end of the final design.  

An overview of the previous related work was researched and the gap in the field of study 

was identified. The main concern was on how to implement the PMFCL device for the power 

system. A recently reported PMFCL model in 2D (FEM) was verified and investigated. The 

preliminary design of the device was obtained by the analytical approach to estimate the 

length of the magnets and the core dimensions. A new design method, the inductance-

current profile approach using the 3D (FEM) magneto static solver has been used to evaluate 

the device fault current limitation in abnormal condition. The proposed time-saving 

inductance-current profile method is a useful approach in determining the device operating 

range. The outcome from the (FEM) analysis proved that the published results were 

inconsistent. A critical analysis of the published results was carried out to establish the 

reasons for inconsistency. The existing 2-D and 3-D transient performance analysis prove that 

the model was unrealistic. One essential factor which had led to incorrect published results 

was the sweep distance, which should be considered not only in 3-D but also in 2-D voltage 

driven circuit modelling. Another important issue that must have led to the error in the 

previous published results is the permanent magnet and the limiter coils magnetic flux 

direction, which must be set properly. In verification of the 2D (FEM) with 3D (FEM), the 

3D(FEM) magneto static solver indicates that this model can only work below the rated 
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capacity that it was initially designed for. The PMFCL 3D (FEM) transient solver is impossible 

to be performed as the model did not match the 10-kV system voltage operation. However, 

the investigated results provided knowledge and guidelines towards the enhancement of 

PMFCL design.  

A 90 V prototype PMFCL has been constructed, built and tested at the Electrical laboratory of 

Sheffield Hallam University. The experimental work was combined with the simulation results 

to verify the analysis. The operational principle of the PMFCL has been verified. The 

experimental results validate the 3D (FEM) simulation results and hence the validity of the 

(FEM) approach in designing and analysing the performance of the PMFCL is demonstrated. 

Two designs configurations 3D(FEM) squared-shape topology for the same PMFCL porotype 

were simulated and tested. The measured and calculated results for the two configurations 

PMFCL design (configuration 1 and 2), show good steady state performance and as well as 

good current limiting capabilities.  

The influence of coil length on the performance of the PMFCL was verified. The calculated 

results for the candidate prototype with 99 mm coil length were taken as a reference and 

compared with the simulated results obtained using 3D (FEM) at 39 mm and 69 mm, with 

fixed number of turns. The key findings from the steady and transient results indicate that the 

99 mm coil is the more efficient device as it offers a low inductance in the normal and faulted 

state operation. Hence, the coil length along the core is an important parameter that should 

be considered in the design of the PMFCL device. The Prototype PMFCL provided a “learning 

experience” and built confidence in new technology design. Following the prototype 

experimental and modelling results were the design of medium and low voltage PMFCL.  

The 11 kV PMFCL model (design 1), aimed to protect the power distribution transformer, was 

designed to match the square-shaped topology of the 90 V prototype.   

The low voltage toroidal PMFCL (design 2) was proposed for the existing renewable energy 

step up transformer 480 V/11 kV.  

The dry type PMFCL current-inductance profiles were obtained by 3D (FEM) magneto static 

solver to predict the behaviour of the devices in the abnormal condition. The calculated RMS 

current using the time saving inductance-current approach agreed with the peak transient 

currents obtained by the 3D (FEM) time-step solver. The current limitation capability has been 

calculated in comparison with the air-cored of similar specifications as the PMFCL device and 

a useful reduction in the fault current has been achieved. The simulation results proved that 
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the proposed PMFCL topologies (toroidal and square-shaped) can protect the renewable 

energy generator-transformer and real power grids from the fault current.  

The toroidal PMFCL design topology fault current limitation was compared with the squared 

shape model. Although the both the devices limit the fault current in its first peak cycle, the 

toroidal device showed a significant fault current limitation due to negligible leakage flux 

outside its core. The fault current reduction by 61% using the toroidal core of design 2 is a 

magnificent achievement in the technology of the PMFCL in comparison to the devices 

reported in the literature. 

Even though the SmCo5 and NdFeB magnets for the both the designs provide adequate 

magneto static core saturation and are extremely resistant to demagnetization by the 

magnetic field due to the fault current, the toroidal design is more efficient, compact and cost 

effective. Hence, design 2 is much preferable than design 1, it proposed to protect the 

renewable energy step-up transformer nevertheless it can protect the existing power 

distribution transformer when it is installed at its primary side.   

The installation of the PMFCL in power systems is also addressed at the end of this thesis, 

where the following issues are considered: the positioning of PMFCL in power systems, the 

interaction between PMFCL and existing protective schemes, the interaction between PMFCL 

and circuit breakers (CBs) and the influence of the device on power quality and system 

stability. Since the PMFCL changes the system short-circuit impedance, the influence of the 

device on the protective relays is taken into consideration in this thesis.  

The advantageous (fit and forget) device requires minimum maintenance, has benefits of      a 

completely passive and autonomous system. The device requires no external power, back-up 

or control, and recovers automatically and instantaneously when the fault is cleared. The 

merit of the device is that it will reduce downtime during power system outages by mitigating 

the severe fault current in the first half cycle. 

The installation of the PMFCL device will avoid a major revamp of the power system network. 

It will protect and extend the service life of the under rated grid equipment such as the circuit 

breakers and power transformers. During fault current limitation, The PMFCL is expected to 

reduce the stress imposed on CBs during opening action. However, the installation of device 

could increase the rate of rise of recovery voltage (RRRV) across CBs and cause their failure. 

Hence a surge capacitor is used in parallel connection with the PMFCL device to reduce the 

effect of RRRV.  
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7.2 Future Work 

1- Permanent magnet materials performance and demagnetization due to high fault current 

and at a wide range of temperature should be investigated to build a magnetic properties 

database that could be of great benefit to the researchers of PMFCL.  

2- A design improvement to FEM model to reduce the initial and operational cost for power 

grid square shaped topology PMFCL device is valuable. This could be achieved by using the 

cost-effective toroidal topology design in three- phase system.   

3 - To install the PMFCL in housing enclosure for 11 kV substations indoor or outdoor use. 

5- To wire up the PMFCL with circuit breaker power and control circuit and other protective 

devices. 

6- To commission the device with distribution transformer, protective relays and CBs and 

check its correct operation. 
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Appendix  

 

Appendix A 

Some pictures of the experimental work 

 
 

The device off power load measurements 

 

The measurements as discussed in the thesis were taken prior to energizing the device. 
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The value of air-cored inductance and resistance 

The data regarding the transient current test was captured by the oscilloscope. 

 
The current waveform before and after the fault 
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Appendix B 

ANSI/IEEE Standard Device Numbers 

Device Numbers (the more commonly used ones are in bold) 

1 - Master Element 

2 - Time Delay Starting or Closing Relay 

3 - Checking or Interlocking Relay 

4 - Master Contactor 

5 - Stopping Device 

6 - Starting Circuit Breaker 

7 – Rate of Change Relay 

8 - Control Power Disconnecting Device 

9 - Reversing Device 

10 - Unit Sequence Switch 

11 – Multifunction Device 

12 - Overspeed Device 

13 - Synchronous-speed Device 

14 - Underspeed Device 

15 - Speed or Frequency-Matching Device 

16 – Data Communications Device 

20 - Elect. operated valve (solenoid valve) 

21 - Distance Relay 

23 - Temperature Control Device 

24 – Volts per Hertz Relay 

25 - Synchronizing or Synchronism-Check 

Device 

26 - Apparatus Thermal Device 

27 - Undervoltage Relay 

30 - Annunciator Relay 

32 - Directional Power Relay 

36 - Polarity or Polarizing Voltage Devices 

37 - Undercurrent or Underpower Relay 

38 - Bearing Protective Device 

39 - Mechanical Conduction Monitor 
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40 –Field (over/under excitation) Relay 

41 - Field Circuit Breaker 

42 - Running Circuit Breaker 

43 - Manual Transfer or Selector Device 

46 – Rev. phase or Phase-Bal. Current Relay 

47 - Phase-Seq. or Phase-Bal. Voltage Relay 

48 - Incomplete-Sequence Relay 

49 - Machine or Transformer Thermal Relay 

50 - Instantaneous Overcurrent 

51 - AC Time Overcurrent Relay 

52 - AC Circuit Breaker 

53 – Field Excitation Relay 

55 - Power Factor Relay 

56 - Field Application Relay 

59 - Overvoltage Relay 

60 - Voltage or Current Balance Relay 

62 - Time-Delay Stopping or Opening Relay 

63 - Pressure Switch 

64 - Ground Detector Relay 

65 - Governor 

66 – Notching or jogging device 

67 - AC Directional Overcurrent Relay 

68 - Blocking or “out of step” Relay 

69 - Permissive Control Device 

74 - Alarm Relay 

75 - Position Changing Mechanism 

76 - DC Overcurrent Relay 

78 - Phase-Angle Measuring Relay 

79 - AC-Reclosing Relay 

81 - Frequency Relay 

83 - Automatic Selective Control or Transfer 

Relay 

84 - Operating Mechanism 

85 – Pliot Communications, Carrier or Pilot- 
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Wire Relay 

86 - Lockout Relay 

87 - Differential Protective Relay 

89 - Line Switch 

90 - Regulating Device 

91 - Voltage Directional Relay 

92 - Voltage and Power Directional Relay 

94 - Tripping or Trip-Free Relay 

 

 


