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Abstract 

 

When a dot moves horizontally across a set of tilted lines of alternating orientations, the 

dot appears to be moving up and down along its trajectory. This perceptual phenomenon, 

known as the 'slalom illusion' (Cesaro & Agostini, 1998), reveals a mismatch between 

the veridical motion signals and the subjective percept of the motion trajectory which 

has not been comprehensively explained. In the context of the current thesis, the slalom 

illusion was used as a paradigm to investigate the integration of the brief and localised 

motion signals that are initially encoded by the visual cortex into the overall illusory 

percept that is subjectively perceived by human observers. It was observed that the 

slalom illusion also occurs when part of the dot trajectory is occluded by another object, 

with an increased magnitude, and that it occurs both when the eyes follow the dot and 

when the gaze remains fixated. The latter finding was replicated in foveal and in 

peripheral vision. An inverse stimulus display, whereby a dot trajectory that in reality 

was sinusoidal in shape moved across a set of vertical lines, did not result in the 

expected inverse effect of an underestimated trajectory amplitude. A theoretical view on 

the slalom illusion was developed, positing that the illusion is not rooted in the earliest 

phase of visual processing, and that the human visual system only interprets trajectories 

after the fact - that is, after the input motion signals have been registered for a period of 

time - rather than on-line as the motion signals arrive. Moreover, it was proposed that 

straight trajectories in particular are sensitive to perceptual biases and illusions, due to 

the propensity of neurons in thevisual cortex to encode the transients of motion 

direction over a constant motion direction. In conclusion, the slalom illusion reveals that 

human visual perception of the trajectory of a moving object is an active inferential 

process, in which it is more important to form a coherent interpretation consistent with 

prior knowledge of realistic object motion, than it is to perceive the input motion signals 

accurately. Through systematic manipulation of the elements of the slalom display, the 

properties of this process can be investigated. 
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1. Chapter 1 - General introduction 

 

1.1. Introduction 

1.1.1. Motion as a Gestalt 

In 1912, Max Wertheimer published an experiment which marked a new beginning for 

the study of human visual perception. Using a tachitoscopic wheel, two identical line 

stimuli were flashed in quick succession. As the inter-stimulus interval (ISI) decreased, 

the subjective percept changed from that of two alternating stimuli, to a perception of a 

stimulus apparently moving between both positions, to two simultaneous stimuli 

flashing (Wagemans et al., 2012). This is known as apparent motion. The phenomenon 

of interest, however, occurred when the ISI was decreased slightly below the apparent 

motion stage: the subjects perceived the motion, but without the moving object which 

would have produced it. Wertheimer named this phi motion, or pure motion. 

This finding is historically significant, in that it is generally considered to have created 

the field of Gestalt psychology. A 'Gestalt' is often described as a whole (in 

Wertheimer‟s case, pure motion) that is more than the sum of its constituent parts (the 

stimulus positions). But the phenomenon of phi motion to Gestalt psychologists 

revealed a more fundamental truth: that the wholes constitute the fundamental units of 

perception, rather than the parts, and that the brain is geared towards a direct holistic 

analysis of the stimulus input (Wertheimer, 1912). 

Wertheimer‟s finding is also of singular importance for the study of motion perception 

itself. Decades before the identification of cortical areas functionally specialised in 

visual motion perception (Dubner & Zeki, 1971; Allman & Kaas, 1971), Wertheimer‟s 

psychophysical and clinical work already suggested that motion as it is analysed by the 
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visual system cannot be reduced to a succession of object positions and is processed 

separately from other aspects of the stimulus. 

1.1.2. Motion as a local signal 

This conceptualisation of motion as a holistic Gestalt is, however, specific to the 

experimental paradigm of Wertheimer (1912). In other circumstances, the resulting brief 

motion signal could instead constitute a part from which a larger whole is constructed. 

When the dot is displaced to a nearby position, the apparent motion is indeed an added 

Gestalt quality of perceiving the whole stimulus sequence, as opposed to perceiving two 

separate dots. But if the dot then continues to be displaced to a third and a fourth 

position, the apparent motions between each two dot positions can instead be seen as the 

elementary local signals, which combine to form a more complex motion trajectory. 

Thus, what is called the parts and what is called the whole depends on the perspective 

taken. 

As an example, consider a ball thrown through the air and filmed at a rate of 24 frames 

per second. The physical stimulus to the observer consists of a sequence of static images, 

showing the ball at different positions. The relevant global interpretation of this video 

fragment, however, will be in terms of the trajectory described by the ball – to which 

each apparent motion between consecutive frames is only a momentary local signal. In 

this situation, the apparent motion is no longer the overall Gestalt in the stimulus. 

Perceived trajectories, too, can then have holistic properties that are more than the sum 

of the motion signals in the display. An early example was reported by Michotte (1946), 

who created experimental displays containing two distinct objects. One object followed 

a straight trajectory up to the second, stationary object. At this moment, the first object 

stopped moving and the second object started moving along a continued straight 

trajectory. The subjective percept of the first object transferring its motion and 
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launching the second object is then an example of a Gestalt at the level of the object 

trajectory. Importantly, this causality is not only added to the perception of the whole 

trajectory, but changes the perception of the local motion signals, too. For example, 

Parovel and Casco (2006) report that the speed of the second object is overestimated 

when causality is perceived. The general problem of how the local motion signals of a 

moving object are integrated into the perception of a global trajectory is the subject of 

the current thesis, and is investigated by means of the slalom illusion, as described in 

the next section. 

 

1.1.3. Overall goal of the thesis 

The experimental paradigm used to investigate the local-global integration of object 

trajectories in this thesis is the slalom illusion (Cesàro & Agostini, 1998), whereby a dot 

following a straight horizontal motion path appears to move smoothly up and down as it 

intersects with a sequence of alternatingly tilted lines (Figure 1.1). That is, the global 

trajectory interpretation is qualitatively different from the local motion signals from 

which it is constructed. 

 

Figure 1.1.Schematic representation of the slalom illusion. The moving dot follows a 

straight trajectory, but due to its intersection with the tilted lines, the perceived 

trajectory is sinusoidal. 
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In section 2 and 3 of this chapter, the neuroanatomy and neural dynamics of visual 

processing, and motion processing in particular, will be discussed to provide a general 

context to the experiments performed in this thesis. The perceptual completion of 

occluded objects (section 4) and current knowledge on the mechanisms of motion 

integration (section 5) will be introduced, and broadened with a discussion of the role of 

eye movements (section 6). The slalom illusion, its determinants and its relation to other 

visual illusions will be discussed in detail in section 7, and in section 8 the specificaims 

of the current research will be set out. 

 

1.2. Neurophysiology of the perception of form and motion 

1.2.1. Organisation of the visual system 

Figure 1.2 illustrates the visual processing stream as it proposed to exist in the human 

brain. As light falls on the retina of both eyes, the neurons of the optical nerve transmit 

electrical signals to the Lateral Geniculate Nucleus (LGN) of the thalamus, in the 

middle of the brain. Three anatomically distinct types of processing layers exist in 

LGN: parvocellular, sensitive to colour and visual detail, magnocellular, sensitive to 

contrast and low spatial frequencies, and koniocellular, which is heterogeneous in its 

functional properties. The output of LGN projects to the primary visual cortex (V1) at 

the back of the brain, responsible for analysing several important local characteristics of 

the input image, such as orientation (Hubel & Wiesel, 1959), spatial frequency 

(Campbell & Robson, 1968), and motion direction (Hubel & Wiesel, 1968). 
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Figure 1.2. Neuroanatomical regions principally associated with visual perception 

(adapted from Montemayor & Haladijan, 2015).  

 

The layout of V1 is retinotopic, with neighbouring locations on the retina being 

represented by neighbouring neurons in primary visual cortex, and organised in a 

columnar manner for local edge orientation. That is, each layer in a column represents a 

specific orientation, and each column represents a specific retinal location. V1 neurons 

represent local information because they have a small receptive field – the region on the 

retina that can be stimulated to change the activity in the neuron. They represent a 

stimulus characteristic, such as orientation, because they are tuned or selective to it. 

That is, their response strength, measured in the number of spikes per second, is high 

for a specific orientation, and much lower for other orientations.  
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The outputs of V1 are then projected to the next stages of visual processing, V2 and V3, 

where increasingly complex properties of the input are analysed, by neurons with 

increasingly larger receptive fields. After this stage, visual processing increasingly splits 

into the ventral and the dorsal stream, classically said to respectively represent the 

whatand the where of the visual stimulus (Ungerleider & Mischkin, 1982; Goodale & 

Milner, 1992). The ventral stream projects to area V4 and the lateral occipital 

complex(LOC), where object form is analysed and object recognition occurs. The dorsal 

stream projects to areas MT and MST, responsible for motion, and into parietal cortex 

where object localisation takes place in preparation of visually driven actions. Whereas 

the separation between the two streams is not absolute and the interaction between their 

brain regions is ubiquitous (Schenk & McIntosh, 2010), as a large-scale model of 

functional organisation it continues to shape scientific thought about the visual system. 

 

1.2.2. Motion perception 

Early single-unit recordingson primates,whereby a micro-electrode is used to measure 

the electrical activity of single neurons,revealed that the middle temporal visual area 

(MT, also known as V5) plays a prominent role in the perception of visual motion 

(Dubner & Zeki, 1971; Allman & Kaas, 1971). Indeed, MT was one of the first areas in 

which the functional specialisation of the primate brain was so clearly demonstrated. 

Lesion studies have further shown that in absence of area MT, motion perception is 

severely compromised, to the extent that the visual world is perceived as a sequence of 

snapshots rather than a smooth flow of movement (Zihl, Von Cramon, & Mai, 1983; 

Newsome & Paré, 1988; MacLeod et al., 1996; Marcar, Zihl, & Cowey, 1997). In 

humans, the equivalent area is situated around the ascending limb of the temporal sulcus 
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(ITS) and is part of a larger motion-sensitive complex called MT+, functionally 

comprising both monkey area MT and monkey area MST. 

The inputs of area MT originate mainly in the magnocellular layers of the LGN. These 

cells are sensitive to contrast and low spatial frequencies, but not colour and visual 

detail. The projection of LGN towards MT occurs chiefly through layer 4B of V1. 

Neurons in this lamina are specifically tuned to the motion of local oriented edges, as 

well as speed and binocular disparity (Orban, Kennedy, & Bullier, 1986; Movshon & 

Newsome 1996; Prince, Pointon, Cumming, & Parker, 2000). Separate from this main 

pathway directly from V1 into MT, there are also minor pathways going indirectly 

through V2 and V3 (Maunsell & Van Essen 1983; DeYoe & Van Essen, 1985), partially 

mediated by parvocellular LGN, and direct pathways from koniocellular cells of LGN 

and from the pulvinar nuclei in the thalamus. Indeed, despite being dominated by 

cortical inputs, MT remains partially functional even after the complete removal of V1 

and the absence of conscious vision that is associated with such a lesion (Rodman, 

Gross, & Albright, 1989). 

Area MT itself is, like V1, organised in a retinotopic fashion. There is a strong emphasis 

on the central part of the visual field, accounting for more than half of the total MT 

surface (Van Essen, Maunsell, & Bixby, 1981). Within this retinotopic map, Albright, 

Desimone, and Gross (1984) have demonstrated a strong columnar organization, with 

each column of neurons representing a preferred direction of motion. The strength of 

responses in area MT can also be related to the binocular disparity of the visual input 

(DeAngelis & Newsome, 1999), and to the speed of the motion (Liu & Newsome, 2003). 

The final determinant of neuronal responses is stimulus size: MT neurons are especially 

sensitive to smaller objects. This dependence on size is caused by centre-surround 

suppression, which is a common mechanism in visual cortex, whereby neurons are 
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especially active if other cells with a similar selectivity to a visual property (for instance, 

motion direction) at different locations in the retinotopic map are not active (Allman, 

Miezin, & McGuinness, 1985). In area MT, it allows the segmentation of a moving 

object from the background, based on their different motion vectors. 

The specialisation of MT into motion processing comes at the cost of insensitivity to 

visual detail and colour. The adequate processing of moving objects can therefore not 

rely solely on MT, and must involve the integration of its signals with those of 

differently specialised brain areas. A relevant example of such an interaction is with the 

lateral occipital complex (LOC) in the ventral stream, which represents object 

shapeinstead (Kourtzi & Kanwisher, 2001). 

The output signals of area MTproject into the medial superior temporal area (MST) of 

the brain, which in humans is considered part of the MT+ complex. Whereas MT is a 

retinotopic area, MST increasingly represents motion in the outside world as it relates to 

action. For instance, MST neurons display strong directional selectivity to a moving 

stimulus even when the gaze follows the stimulus, so that its projection is stabilised on 

the retina (Newsome et al., 1988). If an action into the outside world, such as manual 

interception of the object, is to be based on its motion representation in the visual cortex, 

this transformation from eye-centred (retinotopic) coding to world-centred (spatiotopic) 

coding of position information is necessary. In other studies, the role of MST in the 

representation of optic flow has been demonstrated. MST helps disambiguate self-

movement from real motion in the outside world, aiding navigation (Duffy, 1998). 
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1.3. Dynamics of visual processing 

The visual processing streams described, from early areas with small receptive fields 

encoding simple features to later areas with larger receptive fields encoding more 

complex features, are examples of  feed-forward processing. Visual input signals 

propagate fast through the hierarchy, reaching IT cortex for object recognition within 

100 ms in monkeys (Vogels, 1999; Keysers, Xiao, Földiák, & Perrett, 2001) and the 

corresponding areas in 150 – 200 ms in humans (Thorpe, Fize, & Marlot, 1996; Liu, 

Harris, & Kanwisher, 2002;Löw et al., 2003). However, substantial feedback 

connections exist as well in the visual cortex, sending signals back from higher-level 

visual areas to lower-level areas after the initial feedforward sweep (DeYoe & Van 

Essen, 1988; Bar, 2003). It is generally held that this feedback activity plays a key role 

in the emergence of awareness in visual perception (Enns & DiLollo, 2000; Lamme & 

Roelfsema, 2000; Tong, 2003). According to some accounts, feedback connections only 

apply attentional modulation to the visual input (MacKnik & Martinez-Conde, 2008), 

whereas others have maintained that feedforward processing acts quickly on the coarse 

low spatial frequency content of the scene, and the feedback activity serves to later fill 

in the fine details (Bullier, 2001; Hochstein & Ahissar, 2002; Bar, 2003). 

An alternative interpretation of feedback activity was offered by Murray, Kersten, 

Olshausen, Schrater, and Woods (2002) in the context of form-from-motion. In an fMRI 

study, they presented participants with a display of randomly positioned dots. In the 

crucial condition, these dots were in fact placed on the surface of an invisible 

transparent cube, of which the shape became apparent when it was rotated. As a control 

condition, dots moving at similar velocities were positioned randomly in space. As 

expected, the control condition evoked activity in primary visual cortex (V1) and 

motion areas (MT+). The crucial cube condition, on the other hand, was strongly 



11 
 

associated with increased responses in the LOC, responsible for representing object 

shape, and at the same time it was associated with decreased responses in the V1 and 

MT+ activity. The authors posit that the global stimulus at the level of LOC is 

„explaining away‟ its constituent parts – when the whole can explain the visual input 

array, there is no longer a need for a strong representation of the parts. This finding is 

reminiscent of the classical work of Navon (1977). In Experiment 3 of his landmark 

paper, „Forest Before Trees‟, the author constructed a large letter stimulus that was 

made up out of a set of smaller letters, either identical or different from the global shape. 

Whereas the identification of the global letter was not hindered by the identity of the 

smaller letters, the smaller letters were significantly harder to identify when different 

from the global one. This ties in both with the suppression of the neuronal activity of 

„parts‟ by the „whole‟, and with the Gestalt notion that the holistic analysis is dominant 

in visual processing (Wertheimer, 1912). 

This view has been formalised in the predictive coding framework (Rao & Ballard, 

1999; Friston, 2010; Clark, 2013). Feed-forward processing is said to quickly generate 

predictions about the visual stimulus in high-level visual areas, based on prior 

knowledge built up through experience with the visual world. These predictions are sent 

back to earlier visual areas, who continue to encode only those aspects of the stimulus 

not explained by the prediction. That is, they essentially encode error signals with 

regard to the predictions generated by higher-level areas. In an iterative process, the 

error signal is propagated along feed-forward connections again until the optimal 

prediction - with the smallest error signal - is reached and the low-level neuronal 

activity is minimal.  

Predictive coding is closely related to a view of visual processing as hierarchical 

Bayesian inference (Lee & Mumford, 2003). Applying Bayes‟ theorem, the probability 
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that a visual input stems from a certain object or a certain motion, can be computed by 

combining the probabilities of the visual input occurring, the object/motion occurring, 

and the probability that the object/motion would produce that visual input. The first is 

given by the initial feedforward processing, whereas the latter two require prior 

knowledge that is iteratively integrated into the neuronal code, fine-tuning the 

prediction of the object/motion until its probability given the visual input is maximal. 

Predictive coding is not mutually exclusive with the earlier accounts that feedback 

connections apply attentional modulation, or that a quick, coarse representation of the 

visual scene is typically reached before conscious awareness of the details arises. 

Instead, it provides a generalised framework for understanding the goal of the cortical 

dynamics of the visual system, and how it could concretely be achieved. 

 

1.4. Perceptual completion 

To understand why an iterative and probabilistic approach is required for the visual 

system to analyse a stimulus, it suffices to consider the inputs it is confronted with in 

the real world. Whereas experimental displays often contain a small number of isolated 

objects with simple properties, such as a dot moving along straight trajectories, realistic 

objects are subject to effects of distance, viewpoint and lighting, and are often part of a 

rich scene. This causes them to be viewed against a cluttered background, and to be 

occluded from view by other objects – partially or completely, temporarily or 

permanently. In such circumstances, it is perhaps reasonable to suggest that the visual 

system is required to make approximate inferences about what is being viewed and 

constantly checks them against the incoming visual inputs. Different fields within vision 

science investigate each of these challenges. In this section, the focus is on the problem 
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that will hold the greatest relevance to the current thesis – the perceptual completion of 

wholes for which not all the parts are visible. 

 

1.4.1. Modal and amodal completion 

Perceptual completion phenomena can be subdivided into two categories, modal and 

amodal completion, which partly rely on different mechanisms (Murray, Foxe, Javitt, & 

Foxe, 2004; Singh, 2004; Albert, 2007). Modal completion is the perception of a visual 

input that is, in reality, not present. It does not involve occlusion, but does require a 

context to be extrapolated for the completion to occur. A well-known example is the 

perceptual filling-in of the blind spot of the retina, which is permanently present yet 

only consciously detectable by the observer in specific experimental setups. The  

brightness, colour and texture of this filled-in visual blindspot are extrapolated from a 

narrow surrounding region contiguous to the border of the blind spot (Spillmann, Otte, 

Hamburger, & Magnussen, 2006). Amodal completion (Michotte, Thinès, & Crabbé, 

1964) is the inferred perception of (parts of) an object that is physically present, but 

occluded by another object. This is a very common situation in real-life visual 

perception, as objects in a scene are often not visible in their entirety. Inferring the 

shape of an object that is partially hidden is an integral part of vision.  

The exact mechanisms driving the percept of the ultimately completed figure are still 

largely unknown, or researched only in the context of a specific experimental stimulus. 

The underlying general principles, however, are often proposed to be simplicity or 

likelihood. Theoretical frameworks relying on the simplicity principle (for instance, 

Hochberg & McAlister, 1953; Leeuwenberg & Boselie, 1988) in essence can be reduced 

to the principle of Occam‟s razor: in absence of further information, the most 

parsimonious explanation is preferable. In terms of information theory (Shannon, 1948) 
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this is often conceptualised as Minimum Description Length – the representation of the 

stimulus which requires the least space to describe (Van der Helm, 2014). For example, 

the simplest completion of a circle partially occluded by another circle in Figure 1.3 is a 

continuation of the circular contour, rather than a straight line. 

 

Figure 1.3. The blue figure is perceptually completed as a circle even though any other 

contour could be present behind the occluding circle. 

 

Likelihood theories of perceptual completion (Helmholtz, 1924; MacKay, 2003; 

Feldman, 2009), on the other hand, draw on Bayes‟ theorem: the preferable 

interpretation of the distal stimulus is that, which given all prior and current knowledge, 

is the most likely to have given rise to the current visual input. Often, this coincides 

with those visual shapes that are most common in the real world. Continuing the 

example of the occluded circle, likelihood accounts of perceptual completion posit that 

a continuation of the circular contour is perceived because circles commonly occur in 

the real world, and because it is unlikely that the occlusion would coincidentally 
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coincide with the straight segment of the contour. This view relates closely to the 

predictive coding framework discussed in section 3. 

In the next section, a particular type of modal completion - illusory contours - is 

introduced. 

 

1.4.2. Illusory contours 

Contours or edges are an important part of the visual input, as they often delineate the 

visual projection of a physical object and thus allow its segmentation from the 

background. As Hubel and Wiesel (1959) demonstrated through their 

electrophysiological investigations of the primary visual cortex of the cat, the selective 

processing of oriented local edges lies at the very basis of the brain's visual analysis of 

its retinal input. In subsequent visual areas, much of the neuronal activity is likewise 

related to the integration and parsing of the full spatial extent of contours (Desimone, 

Schein, Moran, & Ungerleider, 1985). Contours are typically defined by changes in 

luminance and colour, with the area on one side of the contour being lighter or 

chromatically different than the area on the other side. Indeed, this is what many 

neurons in early visual cortex are tuned to (Pearson & Kingdom, 2002; Friedman, Zhou, 

& von der Heydt, 2003; Sumner, Anderson, Sylvester, Haynes, & Rees, 2008). The 

visual system is equally capable, however, of extracting object contours from 

experimental displays that are defined by more complex structures, such as changes in 

texture (Tapia, Breitmeyer, & Jacob, 2011). 

Of particular interest is the phenomenon of illusory or subjective contours, where no 

visual cue is present around the location of the perceived contour, but rather the contour 

is inferred from the context. Already in the beginning of the last century, Schumann 

(1900) presented this phenomenon in a set-up where a "white rectangle with sharply 
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defined contours appears, which objectively are not there"(Figure 1.4) (as cited in 

Lesher, 1995, p. 279). Schumann indicated two properties of the illusory contours, 

namely that they require sharp edges around regions of homogenous luminance, and 

that they result in a brightening of the inside of the figure. However, the phenomenon 

did not attract a great deal of interest within the scientific community at the time. 

 

Figure 1.4. The Schumann figure: A white square is perceived in the centre of the 

display despite it not being objectively there. 

 

Half a century later, Kanizsa (1955) produced clearer depictions of the same 

phenomenon (Figure 1.5) using three circular inducers with a triangular „cut-out‟. In his 

seminal paper from 1976, Kanizsa defines illusory contours as illusory edges or surface 

in the absence of any local variations in luminance in the display, and attributes to them 

the following additional properties: (1) that the illusory-contoured region appears 

brighter than the background, despite it having the same physical properties, and (2) that 
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the illusory-contoured region appears to be superimposed on the other figures in the set-

up. 

 

Figure 1.5. Kanizsa triangle: An illusory white triangle is perceived in the centre of the 

display. 

 

The Kanizsa triangle is an example of both modal and amodal completion. The 

perceived superimposed white triangle is modally completed so as to occlude the 

inducers. It does not exist in the physical local features of the display, but is inferred 

from the context. The inducers are amodally completed, and are inferred to be circles 

occluded by the modally completed superimposed triangle. Similarly, the second 

triangle with real contours is amodally completed to be occluded by the white triangle. 

A similar and perhaps even more potent example can be found in the Koffka cross 

(Figure 1.6). Here, a strong percept of a circular occluder on the centre of a cross is 
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induced, when in reality no circular shape is present, or even directly suggested by the 

terminated lines. 

 

Figure 1.6.Koffka cross: A white circle is perceived as occluding the intersection of the 

two intersecting lines of a cross. 

 

In terms of the mechanisms behind the formation of subjective contours, the theoretical 

framework is rather disjointed (Albert, 2007), but theories proposed thus-far can largely 

be grouped into three categories. In interpolation accounts (Grossberg & Mingolla, 

1985), the illusory contour is said to form in an attempt to close the gap between the 

visible edges of the inducers. Closely related but subtly different, extrapolation 

accounts (Williams & Jacobs, 1997) attribute the emergence of the contour to an 

illusory extension of the inducer edges, meeting each other across the gap. The figural 

feedback theory (Carman & Welch, 1992), finally, proposes that the visible illusory 

contours arise as the result of higher visual areas identifying a large triangularfigure in 

the middle of the Kanizsa display, and feeding back their signals to the earlier visual 

cortex responsible for local contour detection. However, these three explanations are not 

necessarily mutually exclusive (Halko, Mingolla, & Somers, 2008). 
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Neurophysiological studies on illusory contours have shown that both the primary 

visual cortex (V1) and the secondary visual cortex (V2) respond to subjective contours, 

even when no physical edge is present within the receptive field of the neuron(von der 

Heydt, Peterhans, Baumgartner, 1984 ; Grosof, Shapley, & Hawken, 1993; Murray & 

Herrmann, 2013). Furthermore, Lee and Nguyen (2001) were able to show that while 

both V1 and V2 neurons can respond to illusory contours, the V1 responses are 

significantly delayed compared to normal V1 responses with real contours and to V2 

responses with illusory contours. This suggests that V2 responses to illusory contours 

are fed back to V1, and lends further support to the figural feedback theory. Since 

illusory contours elicit V1 responses, they seem to be similar to real contours in 

phenomenology, function, and location of neuronal encoding.  

Whereas experimental demonstrations such as the Kanizsa triangle could appear to be 

entirely artificial, they are likely to rely on and thus expose the same mechanisms that 

are responsible for everyday contour, object and scene perception. When a clear, 

continuous luminance-defined boundary is not readily available, the contour must be 

integrated over weak or fragmented visual information. In humans, there is evidence 

that the perception of illusory contours is present from early infancy (Ghim, 1990; 

Johnson & Aslin, 1998; Otsuka & Yamaguchi, 2003), and even in newborn babies 

(Valenza & Bulf, 2007). There is also considerable evidence coming from studies on 

animals suggesting that the illusory contours are perceived by other mammals such as 

macaque monkeys (Peterhans & von der Heydt, 1989), cats (De Weerd, Vandenbussche, 

De Bruyn, & Orban, 1990) and mice (Okuyama-Uchimura & Komai, 2016). Moreover, 

the illusory contours are perceptible by other animal classes such as birds (Zanforlin, 

1981; Nieder & Wagner, 1999) and even fish (Sovrano & Bisazza, 2009), 

demonstrating that the ability to perceive illusory edges is widespread in the animal 

kingdom. 
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1.5. Mechanisms of motion integration 

The introduction in section 1 set out the general goal of the current thesis: to investigate 

how local motion signals are combined into a percept of a global trajectory. In section 2, 

the neurophysiological loci of motion perception were introduced, with special attention 

to the encoding of motion direction, and the specialised motion processing area MT+. In 

this section, the current knowledge on functional mechanisms in the visual system that 

could support the motion integration process will be discussed in more detail. 

 

1.5.1. The aperture problem 

The neurons representing motion direction at the level of V1 have small receptive fields 

(Fennema & Thompson, 1979), and therefore cannot represent the motion of the entire 

object, but only fragments of edges. This exposes V1 to the aperture problem, 

illustrated in Figure 1.7. When the movement of a straight line is seen through a circular 

aperture, such that its end-points are concealed, the true direction of motion cannot be 

determined (Stumpf, 1911; Wallach, 1935). Any direction of motion is a valid 

interpretation of the stimulus, except the direction parallel to the line (which would not 

produce any perceptible motion). In psychophysical experiments, the reported perceived 

direction of motion is found to be orthogonal to the orientation of the line (Wallach, 

1935; Wuerger, Shapley, & Rubin, 1996). This interpretation corresponds to the line 

motion with the lowest speed of the possible alternatives. 
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Figure 1.7. The aperture problem: When the movement of a line is viewed through an 

aperture occluding its endpoints, the true direction of motion cannot be determined. The 

perceived direction of motion (A) corresponds to the shortest motion vector, whereas all 

other motion directions (B) imply a higher speed (adapted from Aaen-Stockdale & 

Thompson, 2012). 

 

V1 neurons faced with the aperture problem are therefore unable to separately encode 

the direction and the speed of the edge visible within their receptive field (Adelson & 

Movshon, 1982). Two possible solutions exist to this challenge. First, some neurons 

will have the endpoints of long edges within their receptive field, and can therefore 

encode the true motion direction. Indeed, it has been found that specific subpopulation 

of end-stopped V1 neurons is sensitive to this information, that project directly to area 

MT (Sceniak, Hawken, & Shapley, 2001; Pack, Livingstone, Duffy, & Born, 2003). 

Second, the true motion direction of the object to which the edges belong can be 

determined by aggregating V1 motion signals. Movshon, Adelson, Gizzi, and Newsome 
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(1985) investigated this using a plaid motion stimulus (Figure 1.8), in which two sets of 

parallel lines move across each other in different directions. At the level of V1, neurons 

respond only to these two component motion directions. In area MT however, where 

receptive field sizes are up to ten times larger than in V1 (Maunsell & Van Essen, 1987), 

a large proportion of cells will represent the intermediate motion direction in which 

observers subjectively perceive the entire plaid pattern to be coherently moving. That is, 

the visual system is able to solve the aperture problem arising in V1 and infer object 

motion through integration of local motion signals, when the experimental display is 

unsuitable to be analysed by end-stopped neurons. 

 

Figure 1.8.Schematic illustration of the plaid stimulus. Two sets of parallel lines move 

across each other in different directions (blue). The perceived direction of the resulting 

plaid stimulus (red) is the average of the two individual component directions. 

 

Note that the integrated motion signals in area MT do not manifest themselves 

immediately. Neuronal response immediately after the stimulus onset tend to 

correspond to the motion directions of the component motions, whereas signals 60-100 
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ms after stimulus onset start to reflect the direction of the integrated motion (Recanzone 

& Wurtz, 1999; Pack & Born, 2001; Pack, Berezovskii, & Born, 2001). 

 

1.5.2. Theoretical approaches 

The simplest model for the spatial integration of local motion signals encoded by V1 

neurons with different receptive fields is vector averaging (Adelson & Movshon, 1982; 

Wilson, Ferrera, & Yo, 1992; Yo & Wilson, 1992). A „motion vector‟ corresponds to 

the combined properties of the speed and the direction of motion. By averaging the 

motion vectors of the individual components, a single motion estimate can be reached. 

In the case of the plaid stimuli, this will (because of the aperture problem) be the 

average of the motion directions orthogonal to the component line orientations, 

weighted by their speed. Alternatively, an intersection-of-constraints (IOC) solution can 

be computed (Fennema & Thompson, 1979; Stone, Watson, & Mulligan, 1990; 

Simoncelli & Heeger, 1998): since, given the aperture problem of Figure 1.7, each 

possible direction of a motion component is associated with a certain speed, a globally 

coherent motion direction can be found for which both sets of parallel lines in the plaid 

stimulus would have the same speed. Probabilistic Bayesian models inferring the most 

likely global motion direction from the component motions can be considered an 

extension of the IOC approach (Weiss, Simoncelli & Adelson, 2002), taking into 

account such parameters as the reliability of the visual information on each motion 

component and high-level expectations following from the perceptual context.   

These large-scale spatial motion integration processes are especially relevant at low 

visual contrast, or in general when the available information is weak and uncertain 

(Tadin & Lappin, 2005; Sceniak, Ringach, Hawken, & Shapley, 1999). This suggests 

that, while scientifically interesting, they do not necessarily reflect the main role of area 
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MT in everyday visual processing. Indeed, integrating all motion signals in the visual 

field into a single direction cannot be the only function of area MT: the observer must 

remain capable of distinguishing the different motion directions of different objects, or 

the movement of an object relative to the background.  The selective tuning of MT 

neurons for binocular disparity information (DeAngelis & Newsome, 1999) and its 

strong centre-surround suppression mechanisms (Allman et al., 1985) are likely to play 

an important role in this. 

Visual signals are not only integrated in the spatial domain, but also in the temporal 

domain. The period over which a neuron combines its inputs is called the temporal 

integration window. Geisler (1999), for instance, observed that even when presented 

with end-stopped motion, many V1 neurons still largely confound the orientation and 

the (orthogonal) motion direction of an edge. He notes, however, that the temporal 

integration window typically observed for V1 neurons suffices to encode the change in 

stimulus position as brief motion streaks. The motion direction of an object can then be 

inferred from the oriented spatial signals it leaves behind in the neural code of V1, 

without the need for component motions to be combined at a later stage. Later studies 

confirmed that motion direction discrimination shares characteristics with orientation 

discrimination of lines (Geisler, Albrecht, Crane, & Stern, 2001; Edwards & Crane, 

2007; Alais, Apthorp, Karmann, & Cass, 2011).  

In area MT, individual neurons have a temporal integration window of tens of 

milliseconds for component motion signals (Bair & Movshon, 2004; Hasson, Yang, 

Vallines, Heeger, & Rubin, 2008; Kumbhani, El-Shamayleh, & Movshon, 2015). In 

psychophysical studies, motion integration windows have been found to last from 100 

ms for simple dot stimuli (Burr, 1981) up to several seconds for weakly coherent large-

scale patterns (Watamaniuk & Sekuler, 1992; Burr & Santoro, 2001), which are more 
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likely to require the coordinated effort of motion-sensitive neurons across a large spatial 

scale. 

 

1.5.3. Trajectory perception 

The current thesis is focused on the motion integration process as it pertains to a single 

dot object, moving along a trajectory through space and time. The aperture problem 

does not strictly speaking apply to a dot stimulus, since it is end-stopped even within the 

limited receptive field size of V1 neurons. However, many V1 neurons still confound 

motion direction with their preferred edge orientation, and the integration mechanisms 

discussed above might therefore still apply – be it motion streaks, vector averaging, or 

intersection of constraints. These mechanisms describe the perception of a single 

direction of motion, however. In the case of trajectory perception, the motion vector can 

change over time, and the shape of the path described through visual space is to be 

integrated from the local motion vectors.  

Whereas the detection of changes in motion direction is known to depend strongly on 

the initial direction of the motion,the detection of changes in speed of motion does not 

depend on the initial speed of motion (Sekuler, Sekuler, & Sekuler, 1990; Dzhafarov, 

Sekuler, & Allik, 1993; Hohnsbein & Matteef, 1998). The overall accuracy of trajectory 

perception is high when it is presented within a clear visual context (Verghese, 

Watamaniuk, McKee, & Grzywacz, 1999). However, when the same trajectory is 

viewed without a visual context, the performance of perceiving the shape of the 

trajectory accurately sharply decreases (Verghese & McKee, 2002). In particular, the 

total length of the trajectory is underestimated (Kerzel, 2003; Sinico, Parovel, Casco, & 

Anstis, 2009), and the ending location of a motion trajectory is often overestimated 

(Freyd & Finke, 1984; Hubbard, 1995). For instance, if a dot moves rightward from 
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position A to position B, and then disappears, participants will indicate the dot to have 

stopped moving at a position to the right of B.  This effect is known as representational 

momentum, and is indicative of the predictive nature of object trajectories, both with 

regard to the future motion direction and the future object position. Indeed, it has been 

found repeatedly that the motion of an object biases the position estimate of that object 

in the direction of the motion (Whitney, 2002; Maus, Fischer, & Whitney, 2013; 

Nishida & Johnston, 1999; McGraw, Whitaker, Skillen, & Chung, 2002), and that the 

visual system is biased to perceive the moving object as continuing on its current path 

(Watamaniuk, 2005; Davies, Chaplin, Rosa, & Yu, 2016).  

Trajectory perception, and motion perception in general, isrelated to action. The 

interception of a falling ball, for instance, requires an accurate estimate and prediction 

of its visual trajectory (Zago, McIntyre, Senot, & Lacquaniti, 2009). However, a more 

immediate form of motor action that very often accompanies trajectory perception is eye 

movements: when attending to a moving object, human observers tend to follow it with 

their gaze. An important consequence of this behaviour is that the motion of the object, 

as it is being kept in central vision, will be largely neutralised in its projection on the 

fovea. In the next section, the discussion is on the interplay between eye movements 

and visual perception in general, and trajectory perception in particular. 

 

1.6. Eye movements and retinal eccentricity 

1.6.1. The retina and human scene exploration behaviour 

The visual field is the total area visible to both eyes during any fixation (Gibson, 1950), 

and it covers approximately 200-220 degrees visual angle (Harrington, 1981). Visual 

acuity, the ability to observe fine details in a visual scene, depends on the position of the 
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stimuli in our visual field, with objects placed in central vision being perceived in much 

greater detail (Anstis, 1974). The anatomical structure of the human retina is such that 

there is a disproportionate concentration of cones, the photoreceptive cells specialised in 

colour perception, in the fovea centralis, which is a small region in the centre of the 

retina. Moreover, despite the fovea spanning only 5 degrees of the visual field, it is 

subserved by approximately 30% of the primary visual cortex (Schira, Tyler, 

Breakspear, & Spehar, 2009). It can then be understood why in central (or foveal) vision 

acuity is considerably higher than in peripheral vision. 

Because of the limited extent of the fovea, human observers must move their eyes in 

order to view specific parts of the visual scene in detail. The typical sequence observed 

during scene exploration is an alternation of fixations of 150 - 500 ms, when the gaze 

remains relatively stable, and saccades of 20 – 100 ms, during which the gaze position 

is rapidly changed (Bahill, Clark, & Stark, 1975; Wilming et al., 2017). As a 

consequence the projection of the visual scene will be displaced across the retina, but 

human observers do not consciously perceive these displacements. Yet, when a similar 

retinal motion is induced by a moving stimulus instead of an eye movement, the same 

displacement is easily detected (Bridgeman, Hendry, & Stark, 1975). It has been 

suggested that a copy of the motor signals which drive the eye movements is sent to 

visual areas, to compensate for the retinal motion signals induced by saccadic eye 

movements (Sperry, 1950; von Holst & Mittelstaedt, 1950; Gauthier, Nommay, & 

Vercher, 1990; Souman & Freeman, 2008). The terms efference copy, extra-retinal 

signals and re-afferent signals are commonly used to indicate such neuronal activity. 

The exact mechanisms that allow the saccade-induced displacement to be compensated 

are still the subject of scientific debate, however (Irwin, Yantis, & Jonides, 1983; 

Bridgeman, Heijden, & Velichkovsky, 1994; Melcher, 2005; Cavanagh, Hunt, Afraz, & 

Rolfs, 2010; Zirnsak & Moore, 2014). 
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1.6.2. Smooth pursuit eye movements 

Next to fixations and saccades, the third type of commonly observed eye movements is 

referred to as smooth pursuit (Rashbass, 1961; Robinson, 1965; Keller & Heinen, 1991; 

Krauzlis & Stone, 1999), and can only be initiated when a smoothly moving visual 

stimulus is available to follow with the gaze. Human observers are capable of following 

targets with speeds up to 30° per second (Lisberger, Morris, & Tychsen, 1987), and are 

more accurate at horizontal trajectories than vertical or diagonal trajectories (Rottach et 

al., 1996). 

To initiate and maintain tracking, the motor control of smooth pursuit eye movements 

must be closely related to visual motion signals. Two phases can be identified. During 

the initial 100 ms of motion, the stimulus moves across the retina, and a retinal signal 

drives the eye movement (Lisberger & Westbrook, 1985). In the next phase, the 

stimulus is accurately being tracked. The properties of tracking behaviour are not based 

on a low-level motion signal, but instead share their properties with those of high-level 

perceptual judgments of motion (Yasui & Young, 1975; Beutter & Stone, 1998; Stone 

& Krauzlis, 2003). Indeed, smooth pursuit eye movements continue when the stimulus 

traverses behind an occluder, although at a reduced speed when the occlusion period 

becomes longer (Becker & Fuchs, 1985; Pola & Wyatt, 1997). The locus of this link 

between perception and action is proposed to be area MST (Dürsteler & Wurtz, 1988; 

Komatsu & Wurtz, 1989; Pack, Conway, Born, & Livingstone, 2006). 

Since retinal motion is neutralised during the tracking phase of smooth pursuit, motion 

areas must integrate an efference copy of the eye movements themselves to encode the 

motion of the target that is being followed. Whereas area MT is retinotopic in 

organisation, area MST is largely spatiotopic and continues to respond when a stimulus 

is stabilised on the retina (Newsome, Wurtz, & Komatsu, 1988; Thier & Ilg, 2005; Ilg, 
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2008). It is thus proposed that MST integrates retinal and extraretinal signals to enable 

continued pursuit and allow the conscious perception of motion, despite the absence of 

a retinal motion signal. Indeed, the properties of trajectory perception are independent 

of the presence of eye movements (Dzhafarov et al., 1993; Krukowski, Pirog, Beutter, 

Brooks, & Stone, 2003). 

 

1.6.3. Motion perception in foveal and peripheral vision 

The position of the gaze also determines in which part of the visual field a stimulus will 

be processed. Visual acuity declines rapidly with retinal eccentricity (Anstis, 1974). 

Although human observers are not typically conscious of this during normal behaviour, 

it can be easily experienced by keeping the gaze fixed on a single point in space while 

directing visual attention away from foveal vision. Other differences between foveal and 

peripheral vision have been found in the processing of visual information; for example, 

it has been shown that the estimated size of objects in peripheral vision is smaller when 

compared to foveal vision (Baldwin, Burleigh, Pepperell, & Ruta, 2016), and that the 

mechanisms of contour integration are different beyond 10 degrees of retinal 

eccentricity (Hess & Dakin, 1997, Hess & Field, 1999). 

Visual information from outside foveal vision is important, however, since it is this 

information that will be used to decide where to direct the gaze next. Given that 

saccadic eye movements are made multiple times per second, a continuous analysis of 

the visual periphery is required to plan the next eye movement. Motion in particular is a 

strong cue to attract the gaze towards a peripheral location, to bring it into the fovea for 

detailed analysis (Dorr, Martinez, Gegenfurtner, & Barth, 2010; Mital, Smith, Hill, & 

Henderson, 2011). Indeed, the peripheral retina is encoded by large field motion 

neurons (Cleland & Levick, 1974; Walsh & Polley, 1985), which makes it relatively 
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more sensitive to moving stimuli than the fovea (Edwards & Nishida 2004). Fahle and 

Wehrhahn (1991) showed that motion sensitivity in the periphery is especially high for 

horizontal and centrifugal motion and less so for vertical and centripetal motion. The 

latter finding could potentially be related to the properties of the ubiquitous optic flow 

motion signals that are generated during self-movement, which is typically centrifugal.  

Finally, some motion phenomena are unique to peripheral vision. In the Peripheral Drift 

illusion (Faubert & Herbert, 1999), a static image is presented that in the fovea indeed 

appears to be static. However when eye movements occur, the layout of the figure will 

stimulate specifically the motion detectors in peripheral vision, and cause an illusory 

impression of motion. In reality, the only motion occurring is the movement of the eyes. 

These eye movements are then not fully compensated for by the efference copy of the 

eye movement motor signals, and the retinal motion signals are instead assigned to the 

static stimulus. In the Furrow illusion (Anstis, 2012; see Chapter 6), a dot is shown to 

traverse vertically across a diagonally striped pattern, alternatingly white and black in 

colour. In foveal vision the vertical trajectory is perceived accurately, whereas in 

peripheral vision the dot will appear to move diagonally instead. These examples 

indicate that motion and trajectory perception can operate differently at different 

locations of the visual field. 

 

1.7. The slalom illusion 

1.7.1. Original findings 

No perceptual registration is trusted more than visual perception, as evidenced in 

several expressions of the English language („I saw it with my own eyes!‟). However, 

this is a false impression. Perception does not directly reflect reality, but entails an 
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elaborate reconstruction of it, based on intricate mechanisms and strong assumptions. 

On almost all occasions, this will result in a convincing, veridical impression of the 

visual world, which serves the action goals of the observer. Only in a select few 

artificial displays, namely visual illusions, does the process of visual perception break 

down, potentially revealing the underlying mechanisms of visual perception. 

To investigate the mechanisms of the integration of local motion signals into a coherent 

trajectory, the current thesis will focus on the slalom illusion, a kinetic illusion of 

direction, whereby the straight trajectory of a dot crossing a pattern of tilted lines is 

perceived as being sinusoidal (see Figure 1.1 onpage 4). This illusion was first reported 

by Cesàro and Agostini (1998), who have conducted three experiments in order to test 

the effects of: the angle of intersection; the speed of the moving dot (as well as the 

interaction between the speed and the angle of intersection); and the distance between 

the tilted lines on the magnitude of the illusion. Ten experimentally naive participants 

were employed for each of the experiments, and the apparatus was the same throughout. 

In the first experiment, five different patterns were presented, corresponding to the 

following incidence angles: 30°, 37°, 45°, 53°, and 60°. The tilted lines were black solid 

lines with a thickness of .27 mm and displayed on a white background. Each pattern, 

presented in the centre of the screen, consisted of 13 tilted lines (six and a half modules), 

with a distance at the base of the line of 18.6 mm intra-module and 9.3 mm inter-

module. Figure 1.1 illustrates the general layout of the slalom display. A module was 

defined as two tilted lines positioned such that are closest at the top and farthest at the 

bottom. The translating dot had a diameter of .54 mm and moved horizontally from left 

to right along a straight trajectory of 230 mm at a constant velocity of 19 mm/sec 

(1.55°/sec). After completing its trajectory from left to right, the pattern disappeared and 

was replaced with a vertical line the length of which participants had to adjust in order 
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to report the perceived magnitude of the illusion. The experimental design was within-

subjects, with 20 randomised trials for each participant (four repetitions per condition). 

The results led the authors to conclude that the illusion is angle-dependent and that the 

magnitude of the illusion is inversely proportional to the size of the angle. 

In the second experiment, a 3x3 within participantsdesign was employed, combining the 

size of the angle (30°, 45°, 60°) and the speed of the moving dot (0.78°/sec, 1.55°/sec, 

and 3.11°/sec). The number of trials per participants was 36 (nine conditions repeated 

four times). Results showed that both the angle of intersection and the speed of the 

moving dot independently affect the magnitude of the illusion, but no effect was found 

for the interaction between the two factors. The illusion was shown to be inversely 

proportional with the speed of the moving dot in the given range of velocities. 

Finally, the third experiment presented participants with three different patterns where 

the distance between the middle of the tilted lines in each module was manipulated as to 

correspond to the following values: 13.3mm, 18.6mm, and 23.9mm. Throughout all 

three conditions, the angle of incidence was 30°, and the velocity was 1.55°/sec. There 

were 15 trials per participant (five repetitions for each condition). The magnitude of the 

illusion was shown to vary with the distance between the tilted lines, in an inversely-

proportional manner with the given range. Thus, the amplitude of the perceived 

sinusoidal trajectory was largest when the distance between the tilted lines was smallest. 

In the slalom illusion, the perceived trajectory of the dot bends to cross the lines 

perpendicularly. Cesàro and Agostini (1998) propose that there are local distortions of 

the direction of the dot motion, occurring around the time of the line crossings. The 

sinusoidal trajectory perceived is then proposed to be the result of an integration of 

these local distortions with the straight trajectory. That is, there is a perceptual tendency 

for the moving dot to continue along the deviant perpendicular path, but as its physical 
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trajectory is straight, the final result would be a compromise between the two. Having 

identified three factors which affect the magnitude of the illusion (the size of the angle 

of intersection, the velocity of the dot, and the distance between the tilted lines), the 

authors also showed that the magnitude of the illusion is inversely proportional with 

each of the tested factors in their given range for these experimental set-ups. However, 

there was not a sufficiently wide range of values to definitely conclude an inverse 

relationship with the three tested factors. Thus, it is possible that a specific speed of the 

dot, angle of intersection, and distance between modules could be reached that would 

result in an even greater magnitude of the illusion. 

Cesàro and Agostini's explanation for the slalom illusion is based on the similarities 

between this effect and a number of similar illusions present in the literature, both of 

orientation (static illusions) and of direction (kinetic illusions). Indeed, there are 

numerous illusions that are based on the angle of intersection, and so the authors argue 

that a common mechanism could be used to explain them. Furthermore, they propose, in 

line with Swanston (1984), that a possible interaction between the system responsive to 

movement direction and that responsive to orientation might be responsible for the 

effect. Although the authors speak of the local distortions occurring due to a perceptual 

normalisation towards a right angle, they do not attempt an explanation as to why this 

may be the case, pointing solely on the abundance of illusions that rely on the same 

phenomenon. Moreover, the local-global integration mechanism is invoked without a 

comprehensive account of how this happens. 

Despite the tentative nature of the explanation that Cesàro and Agostini provide for the 

effect, they presented a kinetic illusion of direction which makes for an appropriate 

experimental paradigm to investigate the integration of local motion signals into a 

global trajectory, as it occurs in high-acuity foveal vision, and can be induced with a 
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sparse display of which the visual elements can be precisely controlled. This 

combination of properties found in the slalom illusion has not been studied before in the 

context of motion integration. 

 

1.7.2. Related geometric illusions 

Geometric illusions are illusions caused by the geometrical properties of an object in the 

display (shape, length, orientation, etc.). Wundt (1898) made the first attempt to classify 

geometric illusions and divided them into two classes: illusions of extent and illusions 

of direction. Coren & Girgus (1978) used a factor analytic technique to generate a 

classification scheme, and proposed five classes: (1) shape and direction illusions, (2) 

size contrast illusions, (3) overestimation illusions, (4) underestimation illusions, and 

(5) frame of reference illusions.  

Four of the most famous geometric illusions of direction are the Wundt, Poggendorff, 

Hering, and Zollner illusions (Figure 1.9). In all of these illusions, static lines that 

should have been straight or parallel, appear as bent (Wundt, Hering) or at an angle with 

each other (Poggendorff, Zollner). The Poggendorff and Zollner illusion have both been 

shown to not only occur when the crossing lines causing the illusion are drawn as full 

lines, but also when they are induced as subjective contours (Tibber, Melmoth, & 

Morgan, 2008); for the Hering and Wundt illusion comparable data are not available. 
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Figure 1.9. Illustration of four classic geometric illusions of direction: (A) Poggendorff 

illusion, (B) Zollner illusion, (C) Hering illusion, and (D) Wundt illusion. 

 

The slalom illusion can be compared to these four classic geometric illusions. Whereas 

the Poggendorff is an illusion of angle on a discontinuous line, the slalom illusion 

pertains to the shape of the trajectory along a continuous path. The Zollner illusion also 

is not an illusion of the shape of the line, but of the relative orientations of multiple lines. 

The Wundt and the Hering illusions, on the other hand, do affect the shape of a straight 

line. All four illusions are static, however, whereas the slalom illusion requires a 

moving object. 

Kinetic versions of these illusions have been reported in the literature. Fineman and 

Melingonis (1977) created a kinetic Poggendorff illusion using a cardboard cut-out for 

the vertical occluder, and a moving light source behind a diagonal slit as the moving 

stimulus. The illusion was observed to be even stronger than under static conditions. 



36 
 

Wenderoth and Johnson (1983) replicated these findings using a computer-driven 

display screen. Watamaniuk (2005), however, could not replicate the misalignment 

illusion in a small experiment with four participants. A hybrid variant, with a static line 

segment on one end and a disappearing moving dot on the other end, did produce the 

effect. Khuu (2012; Khuu & Kim, 2013) replicated a variant of the Zollner illusion in a 

kinetic display, whereby a small group of dots moved vertically across a parallel set of 

tilted lines. The direction of motion appeared tilted away from the orientation of the 

lines. Smeets and Brenner (2004) instructed their participants to make a hand movement 

across the background lines of the Hering illusion, and found that this motor action was 

biased similarly to the perception of a static line in the classic illusion. In conclusion, 

the available evidence appears to suggest that geometric illusions of static line shape 

and orientation generalise to kinetic variants. As discussed in section 2 of this chapter, 

early visual cortex strongly confounds the encoding of orientation and of motion 

direction. For this reason, it is not entirely surprising that common mechanisms could 

underlie geometric illusions of both static lines and dot motion along a trajectory 

(Swanston, 1984). 

 Another phenomenon closely related to the slalom illusion is the Squirming Illusion 

(Ito & Yang, 2013). When a continuous zig-zag line is shown in the periphery of the 

visual field, a dot moving in a straight line across it appears to follow the zig-zag 

contour instead. This effect is opposite to that of the slalom illusion, where the dot is 

proposed to intersect with the tilted lines at a perpendicular angle. In Chapter 6, the 

relation between both of these illusions will be investigated in greater detail. 
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1.7.3. The angle of intersection 

Explanations of geometric illusions of direction often rely on the angle between two 

lines. In particular, they are often consistent with a bias towards perceiving 

perpendicular angles. In the Poggendorff illusion (Figure 1.9.A), the perceived 

misalignment between both parts of the diagonal line is then caused by each line 

appearing to be slightly more vertical than it veridically is. In the Zollner illusion 

(Figure 1.9.B), the tilt of each longer parallel line is biased towards an orientation 

perpendicular to its intersection with the smaller line segments. In the Herring (Figure 

1.9.C) and Wundt illusions (Figure 1.9.D), the shape of the line itself is bent to better 

conform to perpendicular intersection angles. Similarly, in the slalom illusion, Cesàro 

and Agostini (1998) suggest that the angles of intersection between the dot and the tilted 

lines are perceptually corrected towards perpendicularity (Figure 1.10). 

 

Figure 1.1.Illustration of the perceptual correction of the angle of intersection in the 

slalom illusion. The actual angle of intersection between the straight trajectory of the 

dot and the tilted lines is depicted in blue, and the perceptually corrected angle of 90°is 

depicted in red. 
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This bias towards perpendicularity is reminiscent of the aperture problem discussed in 

section 1.5.1, but since it also occurs in static displays it cannot be explained by the 

inherent ambiguity of local motion signals. Instead, Blakemore, Carpenter, and 

Georgeson (1970; Parker, 1974) propose that the bias is differently rooted in primary 

visual cortex. Because the tuning of V1 neurons to line orientations is gradual rather 

than very specific, a neuron optimally responsive to a given orientation will in fact also 

generate signals, but more weakly, when stimulated with lines that have similar 

orientations. To achieve a more orientation-specific overall response, V1 neurons 

exhibit lateral inhibition, whereby each neuron will generate an inhibitive response 

towards neurons that have a slightly different orientation tuning around the same retinal 

location. This will cause two lines that intersect at an acute angle to be repelled from 

each other, because these neighbouring orientation responses will be suppressed in 

favour of more dissimilar orientations. This could explain the bias away from acute 

angles, towards perpendicularity.  

However, other authors offer instead a Bayesian view on the perpendicularity bias 

(Nundy, Lotto, Coppola, Shimpi, & Purves, 2000; Changizi, 2001; Changizi & Widders, 

2002; Howe & Purves, 2005), relying on the statistics of the real world. In the Bayesian 

proposition, the visual system attempts to infer the veridical properties of the physical 

stimulus from its projection on the retina. Angles that are veridically perpendicular not 

only occur often in our everyday experience, but are also often seen under viewpoints 

that cause them to appear acute or obtuse. Therefore, angles that are projected as acute 

or obtuse are relatively speaking more likely to actually be perpendicular, and the 

inference of the veridical visual angle is biased towards perpendicularity. 

Therefore, whereas the lateral inhibition explanation reduces the angle bias to a by-

product of the finer mechanics of the early visual cortex, the Bayesian view posits it is a 
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direct reflection of real-world experiences, and a consequence of optimal inference. 

Both hypotheses are not mutually exclusive, however, and their effects could be 

additive to each other. In either case, it appears likely that, as proposed by Cesàro and 

Agostini (1998), the angle of intersection and the bias towards perpendicularity play a 

crucial role in the slalom illusion, too. 

 

1.8. Goals of the current thesis 

The programme of research presented in this thesis was designed to investigate the 

integration of local motion signals into a global trajectory, by means of the slalom 

illusion. In this illusion, there is a marked discrepancy between the veridical local inputs 

of a constant horizontal motion direction, and the final percept of a constantly changing 

direction. In particular, the original paper on the slalom illusion (Cesàro & Agostini, 

1998) placed great emphasis on the local distortions in motion direction around the 

points of intersection between the trajectory and the tilted lines. 

Since the original paper is the only one to date investigating the slalom effect, and no 

other illusions combine all the elements of the slalom illusion (a single object moving 

on a trajectory of illusory shape, in foveal vision), many empirical and theoretical 

uncertainties still exist about the nature and the mechanisms of the slalom illusion that 

could directly reflect on the nature and mechanism of trajectory perception in general.  

The following aspects were investigated in the current thesis: (a) If the origin of the 

slalom illusion is local, does the slalom illusion then indeed depend on the local 

properties of the points of intersection between the trajectory and the tilted lines? (b) Is 

the angle of intersection indeed the sole driving factor behind the slalom illusion? (c) 

Does the slalom illusion occur if the trajectory is not continuously available, but to be 

completed behind an occluder, similar to the kinetic Poggendorff illusion? (d) Does a 
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constant magnitude of the slalom illusion require the occlusion time to be consistent 

with the real length of the trajectory, or the illusory length of the trajectory? (e) Does 

the slalom illusion depend on the viewing strategy and the retinal position of the 

stimulus display? 

The investigation into these questions is presented over six additional chapters, as 

follows: 

In Chapter 2, two main manipulations are applied. First, instead of real contours for the 

tilted lines, illusory contours formed by Kanizsa-like inducers are employed. If the local 

distortions underlying the slalom illusion are low-level and immediate on the image 

level, it is predicted that illusory tilted lines do not serve as inducers of the slalom 

illusion. Second, the contrast of real contours is manipulated. If the slalom illusion is 

rooted in biases in early visual cortex, contrast-dependence is predicted. 

In Chapter 3, part of the trajectory is occluded to elicit amodal completion of the 

trajectory. The empirical question is asked whether this prevents the slalom occlusion 

from occurring, and if not then whether it affects the magnitude of the illusion. In a 

theoretical view where trajectory perception is a high-level phenomenon, it is expected 

that amodal completion will occur, and that the partial occlusion of the veridical, 

horizontal trajectory will give more weight to the biased signals, and increase the 

magnitude.  

In Chapter 4, the speed of the moving dot during occlusion is manipulated. It is 

hypothesised that, similar to findings in the apparent motion literature (Korte, 1915), 

shorter ISIs could lead to shorter inferred trajectory lengths, and therefore a reduced 

magnitude of the illusion. 

In Chapter 5, the reverse slalom illusion is presented to participants, where the 

magnitude of a veridically sinusoidal trajectory is to be estimated against a background 



41 
 

of tilted or vertical lines of interception to the trajectory. Following the suggestion of 

Cesàro and Agostini (1998) that the angle of intersection drives the slalom illusion, a 

decreased magnitude is expected. In a follow-up experiment, it is tested whether the 

magnitude of a sinusoidal trajectory can be accurately estimated in the absence of the 

illusion-inducing lines. 

In Chapter 6, the observers' eye movement patterns and positions on the slalom 

stimulus display are manipulated. If the slalom illusion arises at a level of visual 

processing where retinal signals and extra-retinal signals (the efference copy) have 

already been combined, it is expected that the viewing strategy does not affect the 

occurrence of the illusion. The magnitude of the illusion at different retinal 

eccentricities is measured, and the occurrence of the slalom illusion in the periphery is 

distinguished from that of the related squirming illusion.  

Finally, in Chapter 7 a general discussion is offered on the entirety of the empirical 

results in the context of local-global integration processes and motion perception. In 

addition, suggestions are made for future research. 
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2. Chapter 2 - Subjective contours 

 

2.1. Introduction 

The slalom illusion has robustly produced a potent visual effect in the case of strongly-

defined contours (Cesàro & Agostini, 1998). In section 1.7.1 of the general introduction, 

the broader context was provided for Cesàro and Agostini's proposed explanation of the 

slalom illusion, according to which the local distortions in motion direction signals at 

the points of intersection between the horizontal dot trajectory and the tilted lines 

integrate into a global percept of a sinusoidal trajectory. In particular, these local 

distortions could be rooted in the V1 mechanisms proposed by Blakemore et al. (1970), 

who reported that neurons encoding edge orientation and motion direction signals in 

primary visual cortex are biased towards perpendicular angles of intersection. 

However, not all contours that are subjectively perceived are also locally present in the 

image. As discussed in section 1.4.2 of the general introduction, illusory contours such 

as those induced by the Kanizsa triangle (Kanizsa, 1976) preserve many of the 

properties of real contours, both phenomenologically and functionally. In the neuronal 

responses of V1 and V2, illusory (or subjective) contours are eventually encoded 

similarly to real contours, following feedback signals from higher-level visual areas 

(von der Heydt et al., 1984; Lee & Nguyen, 2001). This brings forward an interesting 

question: does the slalom illusion still occur if the inducing tilted lines are only 

subjectively present, similar to the contours of the Kanizsa triangle? That is, when the 

physical intersections between the oriented lines and the dot trajectory – proposed by 

Cesàro and Agostini (1998) to give rise to the local distortions in motion direction 

underlying the slalom illusion – are therefore absent? 
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The general question of whether illusory contours can induce the perceptual phenomena 

apparent with real contours has previously been addressed in a number of papers on 

static geometric illusions. The Poggendorff illusion, in particular, has in a number of 

studies been adapted to a version where the real contours of the inducing rectangle are 

replaced with Kanizsa-like illusory ones (Figure 2.1). The misalignment effect typical 

of the illusion was robustly replicated in a number of studies (Gregory, 1972; Meyer & 

Garges, 1979; Westheimer & Wehrhahn, 1997; Tibber et al., 2008). 

 

Figure 2.1. Illustrations of the Poggendorff effect in the original first-order contours 

version (A), and in the illusory lines adaptation (B). 

 

One study (Day, Dickinson, & Jory, 1977) did not confirm the effectiveness of illusory 

contours as inducers to the Poggendorff illusion. Their data showed no difference 

between illusory contour conditions and a control condition consisting of only an 

oblique line (without the rectangle). However, the authors themselves point out that the 

oblique line of their display interfered with the Kanizsa elements inducing the illusory 

contours and might therefore have negated the expected effect. Given the robust effect 
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subsequently found in the more carefully controlled study of Meyer and Garges (1979), 

the importance of the negative finding of Day et al. (1977) should therefore not be 

overstated due to this confound. 

It can therefore be concluded that Kanizsa-like subjective contours are capable of 

driving the Poggendorff effect. However, despite the repeated replication of this 

phenomenon, it has also been found that the magnitude of the misalignment bias is 

smaller in subjective-contour Poggendorff displays, when compared to the bias that can 

be observed using a classical display with real contours.Tibber et al. (2008) suggest that 

the attenuation in the Poggendorff effect when driven by subjective contours could be 

explained by the lower salience of the subjective contours. That is, that subjective 

contours are detected by a smaller subset of cortical neurons in the early visual areas 

than real contours and that, consequently, lateral inhibition between orientations 

columns in V1 is weaker than when the entire stimulus is defined by real contours. In 

the study of Westheimer & Wehrhahn, 1997), the authors additionally included 

experimental conditions where the contrast of the display was reduced, both for the real-

contour and the subjective-contour variants of the Poggendorff illusion. Although the 

subjective contours elicited a weaker misalignment bias than the real contours, the full 

size of the effect was in both cases reached at a very low level of stimulus contrast. The 

response strength of V1 neurons is however strongly dependent on stimulus contrast 

(Carandini, 2007), as are psychophysical tasks relying on low-level orientation 

discrimination mechanisms (Wehrhahn & Westheimer, 1990). This then suggests that 

the magnitude of the misalignment bias does not simply depend on the response 

strength of V1 neurons. Therefore, the weakened misalignment bias in subjective 

contour conditions similarly cannot simply be reduced to a weaker V1 response to 

subjective contours, as compared to real contours.  
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The literature also registers that the kinetic version of the Poggendorff illusion, where 

the oblique line is replaced by an oblique dot trajectory, produces the misalignment bias 

typically found in the static Poggendorff display (Fineman & Melingonis, 1977; 

Wenderoth & Johnson, 1983). However, a recent search of published papers revealed 

that no combination of the two factors (kinetic instead of static and subjective/illusory 

instead of real contours) has been tested with the Poggendorff effect, or any other 

illusion of direction. It remains therefore an outstanding question whether subjective 

contours are capable of maintaining kinetic illusions of direction.  

In the current study, the kinetic nature of the slalom illusion will therefore be combined 

with the illusory type of contours. In addition, the contrast of the real-contour tilted 

lines will be manipulated. If the mechanisms of the slalom illusion are similar to those 

of the Poggendorff illusion, it can be expected that the slalom illusion can be replicated 

using subjective-contour displays, but possibly at a decreased magnitude of the illusion. 

In the real-contour conditions, the contrast of the tilted lines should then also not affect 

the magnitude of the illusion.  

This would suggest that the slalom illusion is not simply rooted in momentary local 

distortions of motion direction early in the visual processing stream, but that higher-

level contour representations interact with the signals of motion direction. If, on the 

other hand, subjective contours fail to elicit the slalom illusion and contrast 

manipulations strongly affect its magnitude when using real contours for the tilted lines, 

then it can be concluded that the slalom illusion is rooted in low-level interactions 

between the motion direction of the dot and the orientation of the tilted line edges – as 

originally suggested by Cesàro and Agostini (1998). 
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2.2. Experiment 1 

Since visual illusions are prone to large inter-individual differences (Genç, Bergmann, 

Singer, &Kohler, 2011; Schwarzkopf, Song & Rees, 2011), one requirement of this 

study was to sample a larger group of participants than Cesàro and Agostini (1998) used 

in their experiments (n=10). To gain access to a larger sample, the first experiment was 

performed on a computer tablet (see Methods section for details) that could easily be 

transported to locations outside of the psychophysics laboratory. 

The preliminary theory of Cesàro and Agostini was used as the working hypothesis for 

this study. In line with their interpretation of the slalom illusion as being rooted in 

momentary local interactions between the dot motion and the line orientations, it was 

predicted that black tilted lines will elicit the largest magnitude in the illusory 

modulation of the dot trajectory. Next, it was hypothesised that contrast-reduced version 

of the same tilted lines will result in a decreased magnitude of the slalom illusion. 

Finally, it was expected that the subjective-contour version of the stimulus display will 

result in a strongly reduced magnitude of the illusion, which within the limits of the 

statistical power provided by the current study (see Methods for details) is no longer 

distinguishable from a control condition with vertical instead of tilted lines. 

If these predictions do not hold true, the original theory of Cesàro and Agostini (1998), 

whereby local distortions in the early visual system are the cause of the slalom illusion, 

must be revisited. 
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2.2.1. Methods 

2.2.1.1. Participants 

Opportunity sampling was carried out during a science open-day event at Sheffield 

Hallam University. A total of 67 participants with normal or corrected-to-normal vision 

were recruited. All participants were naïve as to the purpose of the experiment. Apart 

from having normal or corrected-to-normal vision and an age of at least 18 years old, no 

other exclusion criteria have been applied to recruiting participants. 

2.2.1.2. Design 

A repeated-measures design was employed, with one independent variable, 'background'. 

The independent variable had four levels: original slalom (black inducing lines), 

illusory lines (subjective contours), reduced contrast (grey inducing lines), and control 

(vertical black lines instead of tilted ones). The dependent variable, illusion magnitude, 

was operationalised as the difference between the highest and the lowest points in the 

reported perceived trajectory of the moving dot, measured in pixels. 

2.2.1.3. Apparatus and stimuli 

The experiment was programmed in Java and presented on a Samsung Galaxy Tab 3 

tablet with a 1.1" screen and a resolution of 1280 x 800 pixels. The experimental display 

(Figure 2.2) consisted of the background, meaning the static stimuli, and the moving dot, 

which moved across the background. Across all four conditions, the dot measured 2 mm 

and moved at the speed of 10 cm/sec. The background consisted of six lines (three 

modules) and seven ovals elongated on the horizontal axis. Throughout the four 

conditions, the ovals were placed in the same positions and had the same dimension of 

1.7 cm for the long axis and .7 cm for the short axis. The lines were 3.5 cm long and 2 

mm wide across all conditions. The angle of intersection for all the tilted lines was 15°. 
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The angle of intersection is smaller than the 30°-60° range used by Cesàro & Agostini 

(1998), but it was chosen as to suit the experimental setup on the new apparatus; 

moreover, it provides evidence on whether the slalom illusion is maintained at a 

considerably lower angle of intersection. Although the black ovals were an essential 

part of the stimuli solely in the illusory lines condition, they were maintained 

throughout all the conditions as a measure of control. The oval shape, which is a 

deviation from the classic Kanizsa inducing circles, was used in order to maintain a 

larger part of the trajectory visible; had the full circles had been used, the moving dot 

would have intersected the inducers, providing valid reference points for estimating the 

real trajectory of the dot, and thus affecting the illusion setup. The centre of the 

experimental display is centred with the centre of the screen in all four conditions. 

 

Figure 2.2. Schematic illustration of the four experimental conditions: original slalom 

(A), reduced contrast (B), illusory lines (C), and control (D). 

 



49 
 

In the original slalom condition (Figure 2.2.A), the tilted lines were black. In the 

'reduced contrast' condition (Figure 2.2.B), the luminance (L) was manipulated so that 

the tilted lines were a darker shade of grey (L  = 185), whereas the background was a 

lighter shade of grey (L = 131). The Michelson Contrast, measuring the relation 

between the spread and the sum of the two luminances, (Lmax - Lmin) / (Lmax + Lmin), is 

equal to .17. In the 'illusory lines' condition (Figure 2.2.C), the tilted lines were induced 

in a Kanizsa fashion, with the edges of the illusory line placed inside the black ovals. In 

the 'control' condition (Figure 2.2.D) the lines were placed vertically, creating a 90° 

angle of intersection. Participants' answers were collected as drawings of the perceived 

trajectories, participants made these drawings by using their finger, in a designated area 

on the screen of the computer tablet (Figure 2.3). 

 

Figure 2.3. Printscreen (in reduced dimension) including the answer input display. The 

blue rectangle represents the area where the drawing had to be made, and the blue dot 

line is an example of an inputted answer. 
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2.2.1.4. Procedure 

Ethical approval for the project, including all the experiments presented in the thesis, 

was obtained from the Faculty Research Ethics Committee (reference AM/KW/21C-

2014) prior to collecting any data (Appendix 1). All the research included in this project 

was conducted in accordance with the Declaration of Helsinki. 

During an open-day event at the university, a 'pop-up' research laboratory was organised. 

Participants were recruited through opportunity sampling from the people attending the 

open-day event. The purpose of the experiment was explained and participants were 

asked to read through an information sheet (Appendix 2). When they agreed to take part 

in the experiment, they were asked to read and to sign a consent form (Appendix 3). All 

participants were offered the chance to ask questions and were made aware of their 

rights as participants. Once the participants agreed to partake, they were invited in to the 

experimental room, where they were sat at a table and were handed a computer tablet. 

The experimenter demonstrated how to complete the task and assisted them through a 

trial run consisting of five repetitions. In these trial exercises, the background of the 

moving dot consisted of the black ovals alone, without any lines. Participants were also 

instructed to use their index finger and draw in the designated box on the screen their 

perceived trajectory of the dot, focusing on the amplitude of the trajectory. The stimuli 

were concurrently present on the screen so that participants would not rely on memory 

alone and were able check whether the drawing corresponds with their perception. 

Participants could delete their answer if not content with how representative the drawing 

was, and only confirm as the correct answer a drawing that was satisfyingly descriptive 

of the perceived trajectory.  Following the eventual clarifications when required, the 

participants were left alone to complete the task. There were five repetitions per 

condition, resulting in a total number of 20 trials which were randomised in terms of 
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order. The typical length of the experiment was ten minutes, and no breaks were 

introduced in the task. After completion, participants were fully debriefed as to the 

phenomenon investigated and were encouraged to make any comments relating to their 

experience, as well as to ask any further questions. All the data were anonymised prior 

to being statistically analysed. 

 

2.2.2. Results 

The dependent variable, illusion magnitude, was calculated as the difference in pixels 

between the highest and the lowest points on the trajectories as drawn by the 

participants. Per combination of participant and background condition, the mean 

magnitude response was computed in preparation for repeated-measures statistical tests.  

Boxplots (Appendix 4) indicate three possible outliers among the participants in at least 

one of the four background conditions and the computed Z-scores, using ±3.29 

(Tabachnick & Fidell, 2007) as the cut-off, confirm all three of them (z1 = 3.92, z2 = 

5.09, z3 = 4.12). After removing the outliers, the distribution was analysed: the 

skewness statistic (Appendix 5) shows that the data are not normally distributed for the 

illusory lines condition (skewness = 1.225, SE = .299) and the control condition 

(skewness = 1.278, SE = .299). These two conditions have the lowest means, but 

relative to these means, they have a larger proportion of participants giving high 

amplitude answers (see histograms in Appendix 6). Transforming the data into their 

natural logarithms would have introduced skewness into the initially normally 

distributed conditions, so no such transformation was applied. The decision was made 

to rely on the general robustness of the ANOVA to violations of the assumption of 

normality (Schmider, Ziegler, Danay, Beyer, & Bühner, 2010). 
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The mean amplitudes and standard deviations are presented in Table 1. As expected, the 

largest illusion magnitude was reported in the original slalom condition, whereas the 

lowest illusion magnitude was reported in the control condition. Out of the remaining 

64 participants, 52 reported the effect in the expected direction when comparing the 

control condition to the original slalom condition. 

Table 1 

Mean Magnitudes and Standard Deviations (in Pixels) for the Four Background 

Conditions 

 Means SDs 

Original slalom illusion 24.73 1.76 

Reduced contrast 23.77 1.53 

Illusory lines 17.45 7.47 

Control 17.14 9.18 

 

The effect of background on the perception of the trajectory was analysed using a 

repeated-measures ANOVA. The null hypothesis of sphericity was rejected (W = .75, p 

= .003), so a Greenhouse-Geisser correction was applied to the repeated-measures 

ANOVA. The results show that the background had a significant effect on the 

perception of the dot trajectory [F (2.49, 156.85) = 26.18, p <.001, p
2 

= .294]. 

G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) was used to determine the statistical 

power of the repeated measures ANOVA. Given the p
2 

= .294 for the effect size, an 

alpha-level .05 and a total of 64 participants, the statistical power was estimated to 

be .997. 
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Figure 2.4. Mean magnitudes and standard errors (in pixels) for the four background 

conditions. 

In order to investigate the differences between the four conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. No significant differences were 

recorded between the original slalom condition and the reduced contrast condition 

(mean difference (mdif) = .97, p>.999) and between the illusory lines condition and the 

control condition (mdif = .309, p>.999). However, the illusion magnitude was 

significantly larger in the original slalom condition compared with both the control 

condition (mdif = 7.59, p<.001) and the illusory lines condition (mdif = 7.29, p<.001). 

Also, the illusion magnitude was significantly larger in the reduced contrast condition 

when compared with the control condition (mdif = 6.63, p<.001) and the illusory lines 

condition (mdif = 6.32, p<.001). 

 

2.2.3. Discussion 

The original slalom illusion of Cesàro and Agostini (1998) was replicated using a large 

group of participants, in a slalom display configuration which was modified to allow the 

direct comparison between real and illusory tilted line inducers. Instead of disjointed 
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tilted lines, a zigzag pattern was used. The speed of the dot was increased to 100 mm/s 

compared to the maximum speed found in the original study (38 mm/s), although these 

values cannot be compared in terms of visual degrees per second, since the current 

experiment was done on a tablet and participants were free to position themselves at any 

distance from the display. The angle of intersection was decreased to 15°, whereas the 

minimal angle used in the original study was 30°. For the purpose of inducing 

subjective contours in other conditions, oval shapes occluded the endpoints of the tilted 

lines.  

The magnitude of the slalom illusion observed was 50% of the vertical extent of the 

tilted lines, whereas Cesàro and Agostini observed effects up to 25% of the vertical 

extent. However, Cesàro and Agostini report the amplitude of the sinusoidal path, 

whereas in the current study the maximal vertical difference in the trajectory is 

measured, which corresponds to twice the amplitude. Therefore, the effect sizes are 

similar to the original study, despite the tablet response method and the differences in 

dot speed (which would have reduced the effect) and intersection angle (which would 

have amplified the effect). The expected direction of the effect was found in most 

participants in the original slalom condition, with 81% of the participants perceiving a 

larger magnitude in the original slalom condition than in the control condition. 

Although inter-individual differences (Genç et al., 2011; Schwarzkopf et al., 2011) 

could account for some of the remaining 22%, there is also the possibility that the 

methodological limitations of this experiment may have been a factor. The lack of 

control on how the participants looked at the display, with no fixed distance to or 

position of the tablet, could have prevented some participants from observing the effect. 

Moreover, the response method was not constrained, but involved a free-form finger 

drawing on the tablet. This might have precluded an accurate measurement of the 

perceived trajectory. 
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The reduced contrast condition elicited the slalom effect to a magnitude comparable to 

that of the original slalom condition, and significantly above the control condition. The 

illusory line condition, on the other hand, showed no effect that was statistically 

distinguishable from the control condition. Regarding the predictions put forward prior 

to the experiment,one could not be not supported (namely, that contrast reduction did 

not reduce the effect), whereas the other two predictions are supported: the original 

slalom illusion was replicated and the illusory lines did eliminate the effect.  

It could be argued that the subjective contours induced in the current experiment were 

not salient enough to elicit the slalom illusion. Differently from the classic Kanizsa 

triangle, there was not segregation of a closed figure from the background, but only 

isolated line contours, since this is also what was used in the original slalom illusion. 

Replacing line contours with a closed figure in the current experiment would have 

introduced additional differences between this experimental setup and the original study 

on the slalom illusion, whereas the goal here was to keep the stimulus display as similar 

as possible to that used to generate the known results from the literature. An additional 

reason why the subjective contours proved impotent in this kinetic visual illusion could 

be that participants were instructed to follow the dot with their eyes. That is, the 

subjective contours were not in foveal vision until the dot crossed them. Taking together 

the implication that Kanizsa-like illusions are stronger when visually attended or in 

foveal vision (Li, Cave & Wolfe, 2008) and the fact that subjective contours require 

processing time in feedback loops to manifest themselves in visual cortex (Lee & 

Nguyen, 2001), they may not have manifested themselves quickly and saliently enough 

in the current kinetic setup given the speed of the dot. In the methodology of the next 

experiment, the properties of the stimulus display will be adapted so as to increase the 

perceptual strength of the illusory contours. 
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Finally, while the reported magnitude of the slalom illusion in the real-contour 

condition with tilted lines was large, it is also clear that even in the vertical line control 

condition, a large sinusoidal amplitude is reported. Cesàro and Agostini did not include 

a control condition in their study, so the comparison cannot be made whether this is a 

deviant finding. Potentially, the alternating placement of the ovals at the top and the 

bottom of the display suggested a sinusoidal trajectory to the participants even in the 

control condition, where the illusory contours were not present.  In the next experiment, 

this confounding factor will be addressed, and a distinction will be made between the 

effect of the placement of the Kanizsa inducers and the effect of the vertical control 

lines. 

 

2.3. Experiment 2 

2.3.1. Introduction 

Even though the findings of Experiment 1 were statistically valid, replication was 

sought under the controlled conditions of a classical psychophysics laboratory setup. A 

CRT screen at a fixed distance was used, and responses were measured using an 

adaptive probe line. The salience of the subjective contours was increased by using a 

larger stimulus display with a larger angle of intersection, which allowed the vertical 

size of the tilted lines modules to be larger and the Kanizsa inducers to be circular, 

rather than oval. Moreover, the control condition was split into two separate control 

conditions, one with circles that did not induce subjective contours, and one with real 

vertical lines. It can then be observed whether the large amplitude of the perceived 

trajectory in the control condition of Experiment 1 was due to the placement of the 

circles (if it is not replicated in the vertical line condition), the tablet response method 



57 
 

(if it is not replicated in either control condition), or neither (if it is replicated in both 

control conditions of Experiment 2). 

 

2.3.2. Methods 

2.3.2.1. Participants 

Thirty participants were recruited, mainly through the Sheffield Hallam University's 

Psychology credit scheme, as a course requirement for first year Psychology 

undergraduates. All participants were undergraduate or postgraduate students and were 

naïve as to the phenomenon investigated. The inclusion criteria for the sample were 

having normal or corrected-to-normal vision and being at least 18 years old. 

2.3.2.2. Design 

Similar to Experiment 1, a repeated-measures design was employed with a single 

independent variable, background. The independent variable had five conditions, three 

of which were also present in the first experiment:original slalom (black inducing lines), 

illusory lines (subjective contours), and reduced contrast (grey inducing lines). There 

were two control conditions: control lines (black vertical lines without any circles) and 

control circles (black circles without any lines). The dependent variable, illusion 

amplitude, was operationalised as the height of the response line, measured in pixels. 

2.3.2.3. Apparatus and stimuli 

The experiment was programmed in Psychtoolbox-3 for MATLAB (Brainard, 1997; 

Pelli, 1997; Kleiner, Brainard, & Pelli, 2007) and presented on a NEC MultiSync 

FP2141sb 22" CRT monitor. The viewable area of the monitor was 406 x 304.6 mm. 

The experiment was run with a spatial resolution of 1600 x 1200 pixels and a temporal 

resolution of 85 Hz. Similar to the first experiment, the display consisted of the 
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background, meaning the static stimuli, and the moving dot which moved across the 

background. Unlike the first experiment, the inducing elements for the illusory lines 

were full circles, not ovals. That is because the salience of the illusory lines in the first 

experiment may potentially not have worked so well due to the reduced height of the 

inducers. As in this second experiment a larger screen was used, the stimuli were larger 

in size, allowing thus for sufficient height between the inducers to accommodate the 

trajectory of the dot without intersecting the inducers. In all five conditions the dot was 

black, had a diameter of 2 mm, and moved at the speed of 5 cm/sec. The speed was 

reduced compared to the first experiment in order to produce an experimental setup 

closer to the original Cesàro & Agostini study, as well as to adapt the stimuli to the 

apparatus described above. For the same reasons, other properties of the stimuli were 

modified compared to the first experiment. Moreover, the control condition in the first 

experiment was replaced with two, more sophisticated, control conditions in the present 

experiment, as to account separately for the angle of intersection and the inducers. 

Excluding the control conditions, the background consisted of seven modules 

comprising 14 tilted lines placed on 15 inducing circles. Throughout the three 

experimental conditions, the circles were placed in the same positions and had the same 

diameter of 1cm. All lines were 3 cm long and 2 mm wide. The angle of intersection for 

all the tilted lines was 40°. The centre of the experimental display was centred with the 

centre of the screen. 

In the original slalom condition (Figure 2.5.A), the tilted lines were black. In the 

reduced contrast condition (Figure 2.5.B), the tilted lines were grey (L = 127.5), 

whereas the background was white (L = 255). The Michelson Contrast wasequal to .33. 

In the illusory lines condition (Figure 2.5.C), the tilted lines were induced in a Kanizsa 

fashion, with the edges of the illusory lines placed inside the black circles. In the control 

lines condition (Figure 2.5.D), the lines were placed vertically, creating a 90° angle of 
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intersection, and there were no circles. In the control circles condition (Figure 2.5.E), 

there were no lines, only the black circles. 

 

Figure 2.5. Illustration of the five experimental conditions: original slalom (A), reduced 

contrast (B), illusory lines (C), control lines (D), and control circles (E). These 

illustrations are representative of the displays, but not the actual displays. 

 

2.3.2.4. Procedure 



60 
 

Participants were recruited through the participation credit system in place for first year 

Psychology undergraduates. A description of the experiment was provided and 

following the signing up for the experiment, participants were able to choose one of the 

available proposed timeslots of 30 minutes. Upon arrival at the psychophysics 

laboratory at the date and time chosen, they were provided with information sheets 

(Appendix 2) and consent forms (Appendix 3) which they had to sign prior to 

commencing the experiment. All participants were informed about their rights as per the 

university ethics guideline and the Declaration of Helsinki. Before starting the 

experimental task, participants were assisted by the experimenter in a trial run 

consisting of ten repetitions. This made the participants familiar with the task, which 

consisted of following the moving dot, which moved back and forth continuously across 

the background. A chin rest was used, placed at 60 cm from the monitor. Participants 

were asked to report whether, and if so - how much, the trajectory of the moving dot 

deviated from a straight one (the slalom effect). In order to answer, participants had to 

alter the height of a vertical line placed at the centre-bottom of the display. The response 

line had a starting height randomly assigned from 1 to 20 pixels and, in order to be 

adjusted, the participants had to press the up arrow key (to increase the size) and the 

down arrow key (to decrease size). The line was present concomitantly with the stimuli 

and participants could take as long as they wished before pressing the space bar, which 

confirmed that they are satisfied that the height of the response line corresponded to the 

perceived vertical deviation. Once the answer was given, the following trial commenced 

immediately. There were ten repetitions per condition, meaning that there were 50 trials 

in total. The trials were randomised in terms of order. The participants completed the 

task at their own pace, having the choice of proceeding with the trials as they found 

comfortable, and the duration of the task was on average 30 minutes. Upon completion 

participants were fully debriefed as to the phenomenon investigated and were 
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encouraged to make any comments relating to their experience or to ask any further 

questions. 

 

2.3.3. Results 

From the length of the response line for each trial, the mean amplitude response was 

computed per combination of participant and background condition, in preparation for 

repeated-measures statistical tests.  

Boxplots (Appendix 7) indicated four possible outliers among the participants in at least 

one of the five background conditions, but the computed Z-scores confirm only two (z1 

= 3.94, z2 = 3.32). After removing the outliers, the skewness statistic (Appendix 8) and 

histograms (Appendix 9) show that the data are not normally distributed in any of the 

five conditions. The data were transformed into their natural logarithms and the 

distributions were thus normalised (Appendix 10). 

The means and standard deviations presented in Table 2 refer to the data after the 

removal of the two outliers and prior to the transformation into the natural logarithms. 

The largest illusion magnitude was reported in the reduced contrast condition, whereas 

the lowest illusion magnitude was reported in the control lines condition.  

Table 2 

Mean Amplitudes and Standard Deviations for the Five Background Conditions (in Pixels) 

 Means SDs 

Original slalom 8.40 6.68 

Reduced contrast 8.54 7.08 

Illusory lines 2.88 2.62 

Control lines 2.19 1.77 

Control circles 2.69 2.23 
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The effect of background on the perception of the trajectory was analysed using a 

repeated-measures ANOVA. All the inferential statistics were calculated based on the 

computed natural logarithms. 

The null hypothesis of sphericity was rejected (W = .19, p< .001), so a Greenhouse-

Geisser correction was applied to the repeated-measures ANOVA. The results show that 

the background had a significant effect on the perception of the dot trajectory [F (2.03, 

54.75) = 84.60, p <.001, p
2 

= .758]. G*Power (Faul et al., 2009) was used to determine 

the statistical power of the repeated-measures ANOVA. Given the p
2 

= .758 for the 

effect size, an alpha-level .05 and a total sample of 28, the statistical power was 

estimated to be >.999. 

 

Figure 2.6.Mean amplitudes and standard errors for the experimental conditions of 

Experiment 2. 
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In order to investigate the differences between the five conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. No significant difference was recorded 

between the original slalom condition and the reduced contrast condition (mdif = -.03, 

p>.999). Similarly, no significant difference was found between the two control 

conditions (mdif = .19, p = .076) or between the illusory lines condition and the control 

circles condition (mdif = -.06, p>.999). Contrary to the results of Experiment 1, the illusion 

magnitude was significantly larger in the illusory lines condition when compared to the 

control lines condition (mdif = -.25, p = .044). The illusion magnitude was significantly 

larger in the original slalom condition compared with both of the control conditions 

(circles mdif =1.13, p<.001; lines mdif = 1.32, p<.001) and the illusory lines condition 

(mdif = 1.07, p<.001). Also, the illusion magnitude was significantly larger in the 

reduced contrast condition when compared with the two control conditions (circles mdif 

= 1.16, p<.001; lines mdif = 1.35, p<.001) and the illusory lines condition (mdif = 1.11, 

p<.001). 

 

2.3.4. Discussion 

The results of the first experiment were replicated in a psychophysical laboratory, where 

the procedure could be controlled better. All participants in the second experiment 

perceived the magnitude of the trajectory deviation to be larger in the original slalom 

condition than in the control conditions. The angle of intersection tested in Experiment 

2 (40°) was also tested by Cesàro and Agostini, whereas the speed of 50 mm/s (at a 

viewing distance of 60 cm) was similar to their maximum speed of 38 mm/s (at a 

viewing distance of 70 cm). From Figure 6 in Cesàro and Agostini (1998), a reported 

relative illusory amplitude of around 12.5% (1 mm amplitude for a vertical extent of the 

inducing lines of 8 mm) could then be expected. Indeed, in the current experiment, a 
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reported amplitude of 8.4 pixels for a vertical extent of 76 pixels for the tilted lines 

resulted in a similar relative illusion magnitude for the classic slalom condition (11%). 

Contrary to Experiment 1, where the amplitude of the control condition accounted for 

70% of the amplitude of the classic slalom illusion, in Experiment 2 this ratio was only 

26% for the lines, and 32% for the circles. No significant difference was found between 

the line and the circle control conditions. This implies that the large illusory amplitude 

of the control condition of Experiment 1 is mainly to be ascribed to the methodology 

used in the tablet experiment. 

All the significant differences between the four conditions of Experiment 1 were 

replicated in Experiment 2. However, despite the absence of a significant difference 

between the control line condition and the control circle condition, the illusory line 

condition resulted in significantly higher reported amplitude when compared to the 

control line condition, but not when compared to the control circle condition. This could 

suggest that the salience of the subjective contours had indeed increased in Experiment 

2 as compared to the setup of Experiment 1, although the mean difference in amplitude 

remains small. However, it could also be argued that the control circle condition is more 

closely matched to the illusory line condition, and constitutes a better baseline for the 

effect of the general layout of the visual display.  

It can be concluded that both the original slalom effect and the significant findings of 

the current study are robust to replication. The controlled psychophysical setup allowed 

more reliable measurements, both with regard to the baseline amplitude response in the 

control conditions and with regard to the consistency of the direction of the effect 

between participants. An effect of the illusory lines condition is present as compared to 

the vertical line control condition, but this could be ascribed to the layout of the 

contour-inducing Kanizsa circles in the former condition. 
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2.4. General discussion 

The slalom effect of Cesàro and Agostini (1998) was replicated. In Experiment 1, it was 

demonstrated that a low-barrier portable experimental setup can be used to measure the 

slalom effect, requiring only a few minutes of each participant's time. In Experiment 2, 

a classical psychophysics laboratory setup was used to successfully support the validity 

of these results. Indeed, the measurements of Experiment 1 and Experiment 2 are 

consistent with each other, despite considerable differences in the presentation mode, 

experimental environment, response collection and number of repetitions in each 

condition. These findings thus appear to be robust, and generalise across experimental 

setups. 

No prior literature existed that explored the determinants of the slalom illusion, other 

than the dot speed, the interception angle and the distance between the tilted lines 

(Cesàro & Agostini, 1998).  Cesàro and Agostini, however, did conjecture that the 

illusion is based on local distortions of motion direction at the points of intersection 

with the tilted black lines, whereby the interception angle is biased towards 

perpendicularity. At the same time, a number of studies performed on the Poggendorff 

illusion (Gregory, 1972; Meyer & Garges, 1979; Westheimer & Wehrhahn, 1997; 

Tibber et al., 2008) were able to show that the misalignment bias associated with the 

Poggendorff illusion generalised to displays based on subjective contours instead of real 

contours. Since the Poggendorff illusion is also a geometric illusion of angle and its 

effect has been shown to generalise to a kinetic variant with a dot trajectory instead of a 

static oblique line (Fineman & Melingonis, 1977; Wenderoth & Johnson, 1983), the 

question arose whether the slalom illusion could also be elicited using subjective 

contours.  
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In Experiment 1, illusory contours could not be shown to elicit the slalom illusion to a 

greater magnitude than could be observed in the control condition. In Experiment 2, 

where measurements were more carefully collected, this was only the case relative to 

one of the two control conditions. Relative to the vertical line controls, there was a 

small but significant improvement. The alternate explanation that can be offered here is 

that the spatial layout of the circles for the illusory line condition was better matched by 

the control circle condition, and that, consequently, their placement explains the 

observed amplitude in the illusory line condition. However, this hypothesis is not 

supported by the data, due to the absence of a significant difference between the two 

conditions that were meant to allow statistical inference on this effect – the control line 

and control circle conditions. While the evidence is weak, it is still possible that the 

illusory lines were effective. Indeed, Westheimer and Wehrhahn (1997; Tibber et al., 

2008) did report that, while present, the Poggendorff effect was considerably decreased 

when elicited with a Kanizsa figure. A similar decrease might have taken place in the 

current experiments, to a level that is only just above that of the control line condition. 

In both of the current experiments, it was also found that a reduction of the contrast of 

the tilted lines did not result in a weakening of the slalom illusion. The reduction in 

contrast under which the slalom illusion was still maintained is not negligible: in the 

first experiment for instance, Michelson contrast was reduced to .17. This supports the 

findings of Westheimer and Wehrhahn (1997) using contrast manipulations on the 

Poggendorff illusion, who similarly observed that the misalignment bias associated with 

this illusion was already maximal at low contrast levels (Michelson contrast 0.1). 

The predictions derived from the theoretical notions of Cesàro and Agostini, formulated 

prior to the experiment, have therefore not been confirmed. While the evidence for 

eliciting the slalom illusion by means of subjective contours is relatively weak, the 
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illusion does remain invariant to contrast manipulations. Conversely, these findings also 

do not completely confirm the observations made on the Poggendorff illusion, where 

subjective contours were effective while the illusion similarly remained invariant to 

contrast manipulations.This then raises the question is the slalom illusion rooted in local 

distortions at the points of intersection between the dot trajectory and the tilted lines? 

On balance, there is more evidence for contrast invariance in the current results, than for 

the ineffectiveness of subjective contours in eliciting the slalom illusion. Not only was a 

small significant effect of illusory contours observed, but whereas contrast can be easily 

controlled in a stimulus display, the perception of subjective contours can be fragile and 

dependent on multiple stimulus parameters that are seldom comparable between studies. 

For instance, Day et al. (1977) did not find that subjective contours induce the 

Poggendorff illusion, whereas Meyer and Garges (1979) did. One of the differences 

between these studies was that Day et al. used four Kanizsa inducers, whereas Meyer 

and Garges used six, making thus the subjective contour more salient. 

The contrast invariance of the slalom illusion is at odds with the hypothesis that the 

slalom illusion is based on local distortions in motion direction at the points of 

intersection. The strength of response in V1 neurons, where such local distortions would 

be situated, has been demonstrated to be strongly dependent on the stimulus contrast 

(Albrecht, 1995; Carandini, Heeger & Movshon, 1997). It would then follow that the 

distorted directional signals would also be reduced in their salience and importance 

when the contrast of the tilted lines is reduced, but this was not the case in the current 

experiment, or in comparable experiments on the static Poggendorff illusion. This 

would put the locus of the slalom illusion later in the visual processing stream. The 

invariance of visual perception to contrast has been proposed to occur gradually from 

area V1 to area LOC (Avidan et al., 2002; Murray & He, 2006). If it is the case that 

higher-level visual form areas are responsible for the observed geometric angle biases in 
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both moving dots and static lines, however, theories that attribute a bias towards 

perpendicular angles to low-level lateral inhibition between V1 orientation columns 

(Blakemore et al., 1970) might have to be revisited. 

Having performed this study on the local origins of the slalom illusion, the next chapter 

will investigate whether the biased signals of motion direction can also integrate into a 

global trajectory percept behind an occluding closed figure. 

 

2.5. Summary 

Two experiments were conducted using a different experimental setup, and consistently 

replicated the robust effect found with the original slalom illusion. Subjective tilted 

lines could not conclusively be shown to elicit the slalom illusion. Under conditions of a 

strong reduction in contrast for the tilted lines, however, the full effect was maintained. 

It therefore appears unlikely that the slalom illusion is rooted in local distortions early in 

the visual processing stream. 
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3. Chapter 3 - Occluded trajectory 

 

3.1. Introduction 

In their original report on the slalom effect, Cesàro and Agostini (1998) proposed that 

local distortions at the intersections of the dot trajectory and the tilted lines give rise to 

an illusory sinusoidal modulation of the dot's straight and horizontal path of movement 

through the stimulus display. From the experiments of the previous Chapter, it was 

concluded that the distorted signals at the root of the slalom illusion are however not to 

be situated at the earliest stages of the visual processing stream. Regarding the 

determinants and mechanisms of the integration of local motion signals into the 

globally perceived trajectory, Cesàro and Agostini offer no detailed insights. This 

integration process will be the focus of the current chapter. As discussed in section 5 of 

Chapter 1, motion integration processes over space and time have been widely studied 

in the vision sciences, but less often so in the context of a single-object trajectory.  

In the current study, the properties of the integration process of the dot trajectory were 

investigated through the use of an occlusion manipulation, whereby parts of the global 

trajectory were hidden from the observer's view, to be completed amodally. The 

occlusion manipulation can naturally be applied to the slalom display by filling the 

space in between the pairs of tilted inducing lines, forming solid triangular shapes. 

Figure 3.1 on page 77 illustrates this: the tilted lines now also serve as the onset and 

offset locations of the occluded parts of the trajectory. Numerous studies have shown 

that an occlusion manipulation does not impact on the ability of the observers to 

perceive a continuous trajectory (Burke, 1952; Michotte et al., 1964; Watamaniuk & 

McKee, 1995), even when testing infants as young as four months old (Bremner et al., 

2005). A particularly strong indication that human observers naturally complete 
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occluded trajectories can be found in the literature on smooth pursuit eye movements. 

As discussed in section 6 of the general introduction chapter, normal exploration of a 

visual scene happens through an alternation of fast saccadic eye movements and steady 

fixational periods, but the oculomotor system is also capable of continuous eye 

movements when a smoothly moving stimulus is available to be followed (Keller & 

Heinen, 1991). Smooth pursuit eye movements continue when the stimulus traverses 

behind an occluder, although at a reduced speed when the occlusion period becomes 

longer (Becker & Fuchs, 1985; Pola & Wyatt, 1997). This indicates that accounting for 

the occluded parts of an object's trajectory is indeed a fundamental capability of the 

visual system. Area MST has been proposed to form the necessary spatiotopic link 

between motion analysis and eye movement control (Newsome et al., 1988; Thier & Ilg, 

2005; Ilg, 2008).  

It is unclear what the effect of a partial occlusion of the dot trajectory on the magnitude 

of the slalom illusion would be, because the mechanisms by which the trajectory is 

integrated from the local motion signals into a coherent whole are unknown.  

The kinetic variant of the Poggendorff illusion, introduced in section 7.2 of Chapter 1, 

bears similarities to the slalom illusion display however.  Both the Poggendorff illusion 

and the slalom illusion are geometric illusions in which the angle of intersection is 

implicated as the causal factor.  The kinetic variant of the Poggendorff display contains 

a dot trajectory, similar to the classic slalom illusion, and the occluded variant of the 

slalom illusion the trajectory is only partly visible, similar to the Poggendorff illusion. 

The main difference between both displays is that whereas the slalom illusion pertains 

to the shape of a trajectory, the Poggendorff illusion is focused on the misalignment of 

two straight segment of a trajectory, that are never perceived to form a coherent whole.  
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An initial study by Fineman and Melingonis (1977) created the kinetic Poggendorff 

illusion using a cardboard cut-out for the vertical occluder, and a moving light source 

behind a diagonal slit as the moving stimulus. It was observed that the misalignment of 

the two segments perceived in the static Poggendorff illusion was even greater under 

kinetic conditions. Wenderoth and Johnson (1983) included a similar condition in the 

third experiment of their paper, this time using a computer-driven display screen, and 

replicated these findings. When Watamaniuk (2005) revisited the kinetic Poggendorff 

illusion on a modern psychophysical setup, however, the misalignment illusion was 

absent in all four participants, whereas the static variant on the same display did 

produce the classic Poggendorff effect. The author suggests that the results of these 

earlier studies were affected by methodological shortcomings. Interestingly, a hybrid 

variant which combined a static line segment on the lower part of the diagonal with an 

upward moving dot on the upper part did produce the misalignment illusion, but a 

complementary display where the upward moving dot covered the lower part of the 

trajectory did not. The author concludes it is specifically the disappearance of the 

moving dot behind the occluding rectangle which generates a more accurate perception 

of its continued trajectory, instead of the misalignment illusion typical of the 

Poggendorff display. 

The empirical evidence on the kinetic Poggendorff illusion is therefore inconclusive, 

with the earlier studies suggesting a slight increase, and the newer study a strong 

decrease. What does this imply for the predicted effect on the slalom illusion? Contrary 

to the Poggendorff display, the slalom display is always kinetic in nature, and what is to 

be compared here is occlusion versus non-occlusion, instead of kinetic versus static. 

The equivalent of the findings of Fineman and Melingonis (1977) and Wenderoth and 

Johnson (1983) in their kinetic occlusion condition would still result in a biased 

trajectory perception across an occluder in the slalom illusion, although the magnitude 
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of the slalom effect relative to the original slalom display cannot be predicted. The 

equivalent of the findings of Watamaniuk (2005) would imply a strong reduction in the 

magnitude of the trajectory modulation, since these results suggest that the angle of 

intersection does not bias the trajectory of a moving dot across an occluder. 

In terms of theoretical interpretation, Watamaniuk (2005) explains the findings in his 

experiment through a proposed cascade of sequentially activated motion detectors along 

the trajectory, generating an accurate predictive signal for the re-appearance of the dot 

(Grzywacz, Watamaniuk, & Mckee, 1995), which is not present when at least the lower 

part of the diagonal is static. If this mechanism of facilitatory propagation would be 

present in the occluded slalom illusion, it would then be expected for the straight dot 

trajectory to propagate in a linear fashion behind the occluder. It does prompt the 

question, however, why this cascade of detectors of linear motion would not be 

effective in the classic slalom display. On the basis of the slalom illusion itself being 

easily replicable, this theoretical view then seems unlikely. Should it nevertheless be 

found that the findings of Watamaniuk (2005) do generalise from the kinetic 

Poggendorff to the occluded slalom illusion, however, an interesting challenge to 

existing theoretical frameworks will have presented itself.  

A second, theoretically separatereason to expect a reduced or absent slalom illusion can 

also be put forward. Under conditions of occlusion, research on apparent motion has 

repeatedly shown that the visual system prefers a shortest-path interpretation for the 

stimulus (Sigman & Rock, 1974; Anstis & Ramachandran, 1985; Yantis, 1995). That is, 

a straight line between the onset and the offset position of the dot. If this finding 

generalises to the occluded parts of a continuously moving dots, the magnitude of the 

slalom illusion could similarly be predicted to decrease. 



73 
 

Alternatively, theories of motion integration often propose that the integration from 

local motion signals into a single motion direction occurs through an averaging or 

summing of the individual motion vectors (see section 1.5.2 of the general introduction), 

whereby the local motion signals are continuously pooled together into the consciously 

perceived coherent motion direction (Wilson et al., 1992; Yo & Wilson, 1992; Amano, 

Edwards, Badcock, & Nishida, 2009; Amano et al., 2012). Typically, motion stimuli 

with a larger spatial extent, such as plaid stimuli, have been employed in these studies, 

requiring participants to combine multiple motion components that are simultaneously 

present in the display. The spatio-temporal integration window for such motion displays 

has been found to measure around one degree in visual angle and 100 ms in time 

(Sceniak et al., 2001; Hawken, Shapley, & Grosof, 1996). In the slalom display, only a 

single moving dot is present, however. A vector averaging mechanism would therefore 

necessarily have to operate sequentially on the local motion signals, within the spatio-

temporal window of integration. To predict the slalom effect from a large number of 

horizontal motion signals and a small number of distorted motion signals, it would 

furthermore have to be assumed that the motion signal around the points of intersection 

is stronger or more salient because of the presence of the oriented edge. The slalom 

effect then arises naturally – as strong, distorted signals are summed with weak, linear 

signals across the integration window, a smoothly modulated motion direction arises, 

which gives rise to an illusory displacement of the dot on a sinusoidal trajectory. Under 

conditions of occlusion, a large part of the veridical horizontal motion signal is not 

present, and therefore no longer adds to the vector summation solution in the integration 

window. The distorted signals at the intersections are still present, however. As a 

consequence, it could be expected that in the partial absence of the corrective horizontal 

motion signals, the inferred trajectory of the dot in the occluded slalom display would 

be dominated more strongly by its most recent motion signal: the distorted signal at the 
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point of intersection. The magnitude of the illusion could then be expected to increase. 

This can be rephrased in the concepts of the predictive coding framework (see section 3 

of the general introduction): The amplitude of the global interpretation of the trajectory 

would be strengthened by partial occlusion, because the error between this illusory 

interpretation and the (veridical) horizontal local motion signals is reduced by their 

partial absence. 

A second group of motion integration theories proposes that global solutions can be 

reached through an intersection of constraints (IOC), rather than summation of signals 

(Adelson & Movshon, 1982; Simoncelli & Heeger, 1998). These theories look at what 

the possible global solutions are given the divergent motion information present within 

the integration window, and which interpretations fit the constraints. A variant of this 

view can be formulated for the current study. If it is supposed that the strongest 

constraints are posed by the distorted local signals of motion direction at the points of 

intersection with the tilted lines, the slalom illusion could then be produced by 

connecting these directional signals in a manner that is smooth enough to form a 

continuous trajectory. In this view, it can be argued that partially occluding the 

trajectory should not affect the extremes of the constraints, and therefore should not 

affect the magnitude of the slalom illusion. 

Through the inclusion of an occlusion condition, critical evidence is collected on the 

likelihood that each of these accounts of integration in motion perception are indeed 

driving the slalom illusion. 
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3.2. Experiment 1 

3.2.1. Introduction 

In the first experiment, an occlusion condition was introduced and compared to both the 

original slalom condition (tilted lines), and a control condition (vertical lines). As 

illustrated in Figure 3.1, the occlusion was created by filling the space between each 

pair of lines of which the top endpoints are tilted towards each other, forming black 

triangles. The specific comparison being made here, between a dot crossing a set of 

lines at an angle, and a dot crossing a similar set of lines but with intermittent occlusion, 

was not revealed to have an equivalent in the existing literature, even in other types of 

stimulus display. Therefore, no specific prediction was madefrom previous empirical 

research. 

To summarise the theoretical accounts put forward in the introduction, a strong 

reduction in the effect by partial occlusion could be interpreted as a shortest-path 

completion of the trajectory, or alternatively as predictive propagation of the 

predominantly horizontal motion signal. While the former explanation might share 

mechanisms with static stimulus displays, the latter is inherently based on the motion 

contents of the slalom illusion. An increased slalom effect can be interpreted as 

supporting a vector summation view, with continuous integration of the motion signals. 

When the corrective information of the straight trajectory is missing for 50% of the 

display duration time, the distorted signals at the line intersections gain a greater weight 

in the final integration. A constant manifestation of the illusion across occluded and 

non-occluded trials can be interpreted as an intersection-of-constraints mechanism, 

where the illusion is based on the motion direction information at the points of 

intersection only, rather than on a continuous integration of all motion inputs. 
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3.2.2. Methods 

3.2.2.1. Participants 

During a science open-day event at the university, a total of 67 participants were 

recruited through opportunity sampling. The same participants have been tested for this 

experiment as for Experiment 1, Chapter 2. All participants were over 18 years old at 

the time of testing and had normal or corrected-to-normal vision. No other exclusive 

criteria have been used. All participants were naïve as to the purpose of the experiment. 

3.2.2.2. Design 

A repeated-measures design was employed, with one independent variable, 'background'. 

The independent variable had three levels: original slalom (black inducing lines), 

occluders (black triangles),and control (vertical black lines instead of tilted ones). The 

dependent variable, illusion magnitude, was operationalised as the difference between 

the highest and the lowest points in the reported perceived trajectory of the moving dot, 

measured in pixels. 

3.2.2.3. Apparatus and stimuli 

The apparatus was the same as the one described in Experiment 1 of Chapter 2: the 

experimental task was programmed in Java and presented on a Samsung Galaxy Tab 3 

tablet with a 1.1" screen and a resolution of 1280 x 800 pixels. In order to allow for 

direct comparisons with Experiment 1 of Chapter 2, a similar display layout was used. 

The experimental display consisted of the background, meaning the static stimuli, and 

the moving dot, which moved across the background. The stimuli were also similar to 

those described in Experiment 1 of Chapter 2, with the exception of the newly-

introduced occluding triangles condition (Figure 3.1), where the triangles resulted from 

the tilted lines of the original slalom condition  were filled in with the same colour of 
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the black tilted lines. The moving dot, thus, disappeared behind these occluders and was 

only visible in between the black triangles. Across all three conditions, the same 

properties of the moving dot and angle of intersection were maintained as in Experiment 

1 Chapter 2, as follows: the dot measured 2 mm and moved at the speed of 10 cm/sec, 

and the angle of intersection for all the tilted lines, including the edges of the occluding 

triangles, was 15°. The centre of the experimental display is centred with the centre of 

the screen in all four conditions. 

 

Figure 3.1. Schematic representation of the three background conditions: original 

slalom (A), occluders (B), and control (C). 

3.2.2.4. Procedure 

The procedure was the same as the one described in Experiment 1 from Chapter 2 (page 

50). 
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3.2.3. Results 

The dependent variable, illusion magnitude, was calculated as the difference in pixels 

between the highest and the lowest points on the trajectories as drawn by the 

participants. Per combination of participant and background condition, the mean 

magnitude response was computed in preparation for repeated-measures statistical tests.  

Boxplots (Appendix 11) indicate five possible outliers among the participants in at least 

one of the three background conditions. However, the computed Z-scores confirm only 

two outliers (z1 = 5.10, z2 = 3.56). After removing the outliers, the skewness statistic 

(Appendix 12) shows that the data wereskewness levels were within normal 

parametersin the two experimental conditions (original slalom skewness = .617, SE 

= .297; occluding triangles skewness = .609, SE = .297), and skewed in the control 

condition (skewness = 1.922, SE = .297) (see histograms in Appendix13). Relying on 

the general robustness of the ANOVA to violations of the assumption of normality 

(Schmider et al., 2010), the data was analysed using parametric tests. 

The means and standard deviations are presented in Table 3.1. The largest illusion 

magnitude was reported in the occluding triangles condition, whereas the lowest illusion 

magnitude was reported in the control condition. Out of 65 participants, 47 reported a 

higher magnitude in the occluding triangles condition when compared to the original 

slalom condition. 

Table 3.1 

Mean Magnitudes and Standard Deviations (Measured in Pixels) for the Three 

Background Conditions 

 Means SDs 

Original slalom 25.40 11.95 

Occluding triangles 32.18 16.06 

Control 17.88 1.87 
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The effect of background on the perception of the trajectory was analysed through a 

one-way analysis of variance. The independent variable, background, was a within-

participants factor with three levels (original illusion vs occluded condition vs control). 

The dependent variable was the magnitude of the perceived motion of the dot and was 

measured in pixels.  

The null hypothesis of sphericity was rejected (W = .83, p = .002), so a Greenhouse-

Geisser correction was applied to the repeated-measures ANOVA. The results show that 

the background has a significant effect on the perception of the dot trajectory [F (1.70, 

108.99) = 42.99, p <.001, p
2 

= .402]. G*Power (Faul et al., 2009) was used to 

determine the statistical power of the repeated-measures ANOVA. Given the p
2 

= .402 

for the effect size, an alpha-level .05 and a total of 65 participants, the statistical power 

was estimated at >.999. 

In order to investigate the differences between the three conditions, Bonferroni-

corrected post-hoc pairwise comparisons were performed. In the occluding triangles 

condition the magnitude of the illusion was significantly higher than both in the original 

slalom condition (mdif = 6.79, p<.001) and in the control condition (mdif = 14.31, 

p<.001). In the slalom condition, the magnitude of the illusion was significantly larger 

than in the control condition (mdif = 7.52, p<.001). 
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Figure 3.2. Mean magnitudes and standard errors (in pixels) for the three background 

conditions. 

3.2.4. Discussion 

The slalom illusion was present as in the original findings of Cesàro and Agostini 

(1998), and its magnitude increased further when half of the trajectory was 

intermittently occluded with black triangles. According to the theoretical views put 

forward at the beginning of this chapter, this finding provides supporting evidence for a 

vector-summation account of local-global integration in the slalom illusion, whereby 

motion signals are continuously combined within the motion integration window, and 

the partial removal of the horizontal trajectory increased the relative weight of the 

distorted signals at the points of intersection. These theoretical implications are 

discussed in more detail in the general discussion. 
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The occlusion condition resulted in a larger perceived amplitude on top of the classical 

slalom effect in the large majority of the participants. Because these data were collected 

in an environment that did not allow for a great degree of experimental control, such 

variability is to be expected. Indeed, in Chapter 2 it was similarly observed that the 

direction of the classic slalomeffect could be replicated more reliably in a 

psychophysical laboratory than using the tablet display and response method. In 

Experiment 2 of the current chapter, the occlusion effect will therefore be assessed 

again, applying more stringent methodological control. 

 

3.3. Experiment 2 

3.3.1. Introduction 

In the second experiment, participants were tested under more controlled conditions in a 

laboratory, using a chin rest, a CRT monitor, and an adaptive probe line for collecting 

the responses. If the results of Experiment 1 of the current study are replicated, the 

classic slalom effect is predicted to be observed, as well as an increased magnitude of 

the illusion for the occlusion condition with black triangles. Because the oval elements 

at the endpoints of the tilted lines in Experiment 1 were only present to make the visual 

displays consistent with the methodology of Chapter 2, and the current Experiment 2 

was instead performed separately from these experiments, the ovals were removed.  

Possibly, the occlusion condition differed in more aspects from the original slalom 

condition, than only the intermittent occlusion of the trajectory. The occluding black 

triangles introduced a new visual element into the display: the horizontal line which 

forms the base of the triangles. It can be argued that the presence of this line could be 

sufficient to induce the larger illusory amplitude of the illusion under the occlusion 
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condition of Experiment 1.  To control for this confounding factor, two additional 

conditions were introduced in Experiment 2. In the transparent triangles condition, the 

base of the triangle is completed with a black line identical in width to the tilted lines. 

The dot remains visible as it traverse the triangle, and no occlusion occurs. If the mere 

presence of the triangle object is responsible for the increase in the slalom illusion, it 

should be replicated in this condition as well. It is, however, expected that this will not 

occur. To the contrary, since the base of the triangle provides a strong reference line for 

the horizontal trajectory, it could reduce the magnitude of the slalom illusion. 

In the grey triangles condition, the black triangles and their contour lines are reduced in 

contrast to a shape lighter in colour, in front of which the dot traverses without 

occlusion. Through this manipulation, it was investigated whether the effect observed in 

the occlusion condition of Experiment 1 could rely specifically on the presence of a 

filled triangle instead of a contour drawing of a triangle. In particular, it could be argued 

that the dot has two points of intersection with each contour of the transparent triangles: 

once on the left side, and once on the right side of the line. In the occluding condition 

employing black triangles, there is only a single point of intersection. It is however 

unclear in what manner this would by itself result in an increased slalom effect, and 

therefore it is not expected that the effect of the occluding black triangles would be 

replicated in the non-occluding grey triangles condition. Since it was found in 

Experiment 1 of Chapter 2 that the contrast of the inducing lines does not affect the 

magnitude of the slalom illusion, it can instead be predicted that the grey triangles 

condition will result in a magnitude of the illusion that is comparable to the similarly 

non-occluding transparent triangles condition. 
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3.3.2. Methods 

3.3.2.1. Participants 

Thirty participants were recruited through the Sheffield Hallam University's Psychology 

credit scheme. All participants were undergraduate students and were naïve as to the 

phenomenon investigated. The inclusion criteria for the sample were having normal or 

corrected-to-normal vision and being at least 18 years old. 

3.3.2.2. Design 

A repeated-measures design was employed, with a single independent variable, 

background. The independent variable had five conditions, three of which replicate 

those in the first experiment:original slalom (black inducing lines), occluding triangles 

(black triangles), and control (vertical lines). The additional two conditions were: grey 

triangles and transparent triangles. The dependent variable, illusion amplitude, was 

operationalised as the height of the response line, measured in pixels. 

3.3.2.3. Apparatus and stimuli 

The experiment was programmed in Psychtoolbox-3 for MATLAB (Brainard, 1997; 

Pelli, 1997; Kleiner et al., 2007) and presented on a NEC MultiSync FP2141sb 22" CRT 

monitor. The viewable area of the monitor was 406 x 304.6 mm. The experiment was 

run with a spatial resolution of 1600 x 1200 pixels and a temporal resolution of 85 Hz. 

The properties of the stimuli were in line with those presented in Experiment 2 of 

Chapter 2 with respect to the dot size, trajectory, and angle of intersection. However, the 

modules were modified from both the previous study (Chapter 2) and the first 

experiment of the present study, as to remove the circles placed at the intersections of 

the inducing lines. This way, the experimental setup was more similar to the original 

Cesàro & Agostini display. In all five conditions the moving dot was black, had a 
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diameter of 2 mm, and moved at the speed of 5 cm/sec. The angle of intersection for all 

the tilted lines was 40°. In the three triangle conditions (occluding, grey and transparent), 

the background consists of 7 isosceles triangles, with the base of 4.6 cm and the two 

equal edges (the tilted lines) of 3 cm. The triangles were placed at 1 cm distance from 

each other. The occluding triangles (Figure 3.3.B) were black and hid the trajectory of 

the dot when it intersected their surface. The grey triangles (Figure 3.3.C) had a mid-

grey luminance of 127 RGB and do not occlude the trajectory of the dot, as the black 

dot crosses in front of them. The transparent triangles (Figure 3.3.D) have a black 

contour of 1 mm, but are not filled, and the trajectory of the dot is visible when it 

translates them. The original slalom condition (Figure 3.3.A) consists of a series of 7 

modules of two tilted lines corresponding to the edges of the triangles from the triangles 

conditions; the distance between the modules is 1 cm and the tilted lines are 1 mm thick 

and 2.5 cm long. The vertical lines in the control condition (Figure 3.3.E) were black, 1 

mm thick and 2 cm long. The centre of the experimental display was centred with the 

centre of the screen in all conditions. 
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Figure 3.3. Illustration of the five experimental conditions: original slalom (A), 

occluding triangles (B), grey triangles (C), transparent triangles (D), and control (E). 

These illustrations are representative of the displays, but not the actual displays. 

3.3.2.4. Procedure 

The procedure was identical to the one described in the Experiment 2 of Chapter 2 

(page 60). 
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3.3.3. Results 

From the length of the response line for each trial, the mean amplitude response was 

computed per combination of participant and background condition, in preparation for 

repeated-measures statistical tests.  

Boxplots (Appendix 14) indicated three possible outliers among the participants in at 

least one of the five background conditions, and the computed Z-scores confirmed two 

of them (z1 = 3.71, z2 = 3.70). After the outliers were removed, the histograms 

(Appendix 15) and the skewness statistic (Appendix 16) show that the data are not 

normally distributed in any of the five conditions. All the data were transformed into 

their natural logarithms, which lead to the normalisation of the distributions in 

preparation for the parametric tests (Appendix 17). 

The means and standard deviations presented in Table 3.2 refer to the data after the 

removal of the two outliers and prior to the transformation into natural logarithms. The 

largest illusion magnitude was reported in the occluding triangles condition, whereas 

the lowest illusion magnitude was reported in the control condition. The direction of the 

effect was very consistent in this experiment, with all the remaining 28 participants 

reporting a larger magnitude in the original slalom condition than in the control 

condition. 

Table 3.2 

Means Magnitudes and Standard Deviations for the Five Background Conditions 

(Measured in Pixels) 

 Means SDs 

Original slalom 8.10 6.76 

Occluding triangles 11.88 7.75 

Grey triangles 5.37 5.09 

Transparent triangles 6.59 5.81 

Control 1.91 1.30 
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The effect of background on the perception of the trajectory was analysed using a 

repeated-measures ANOVA. The independent variable, background, was a within-

participants factor with five levels and the dependent variable was the amplitude of the 

illusion. All the inferential statistics were calculated based on the computed natural 

logarithms. 

The null hypothesis of sphericity was rejected (W = .21, p<.001), so a Greenhouse-

Geisser correction was applied to the repeated-measures ANOVA. The results show that 

the background had a significant effect on the perception of the dot trajectory [F (2.99, 

8.73) = 86.12, p <.001, p
2 
= .761]. G*Power (Faul et al., 2009) was used to determine 

the statistical power of the repeated-measures ANOVA. Given the p
2
= .761 for the 

effect size, an alpha-level .05 and a total of 28 participants, the statistical power was 

estimated at >.999. 

 

Figure 3.4.Mean amplitudes and standard errors for the five background conditions. 



88 
 

In order to investigate the differences between the five conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. The illusion amplitude was 

significantly larger in the occluding triangles condition compared with all other 

conditions: original slalom (mdif = .39, p = .006), grey triangles (mdif = .86, p<.001), 

transparent triangles (mdif = .63, p<.001), and control (mdif = 1.75, p<.001). In the 

control condition, the magnitude of the illusion was significantly smaller than in all the 

other conditions: original slalom (mdif = -1.36, p<.001), grey triangles (mdif = -.89, 

p<.001), and transparent triangles (mdif = -1.12, p<.001). In the original slalom 

condition, the amplitude of the illusion was significantly larger when compared to the 

grey triangles (mdif = .47, p = .001) and transparent triangles (mdif = .24, p<.001). 

There was no difference in the illusion magnitude between the grey triangles and 

transparent triangles conditions (mdif = -.23, p = .187). 

 

3.3.4. Discussion 

The classic slalom illusion was replicated, as was the increased magnitude of the slalom 

illusion under conditions of partial occlusion of the dot trajectory. In the more 

controlled laboratory set-up of this experiment, the large majority of the participants 

displayed the occlusion effect in this direction. As in the Experiment 1 of this study, this 

is interpreted as supporting evidence for a vector summation account of the local-global 

integration process in the slalom illusion. 

The grey triangles condition was statistically indistinguishable from the transparent 

triangles condition. This invariance to contrast, and indeed to the difference between a 

filled triangle and a contour outline of a triangle, is consistent with the findings of 

contrast invariance of Chapter 2. This again suggests that the motion signals of the dot 

do not interact with an early, low-level representation of the inducing lines, but that 
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higher-level processing has already taken place before the initial distorted signals of 

motion direction arise. While the interaction might still occur at a low anatomical level 

in the visual hierarchy, feedback signals from higher level areas must at least have 

added invariance to the contour representation (Lee & Nguyen, 2001). 

The non-occluding grey triangles and transparent triangles did not result in an increased 

slalom effect. To the contrary, the slalom effect was reduced, but still present, in both 

conditions. This convincingly demonstrates that the occlusion effect was not caused by 

the mere presence of closed triangular objects, as opposed to paired sets of tilted lines as 

in the classic slalom illusion. On the reason for the reduced slalom effect, it might be 

speculated that the presence of the base of the triangle perhaps provided a more useful 

frame of reference for the estimation of the veridical trajectory than the tilted lines of 

the original slalom display. However, it is worth pointing out that this did not prevent 

the slalom illusion from still occurring. 

 

3.4. General discussion 

The studies presented here demonstrate a novel effect: the slalom illusion is amplified 

by the partial occlusion of its dot trajectory. This effect could not be explained by the 

mere presence of either filled geometric shapes or contour outlines thereof – occlusion 

appears to have been a necessary condition. 

Compared to the results obtained using the kinetic Poggendorff display, the current data 

are congruent with the findings of Fineman and Melingonis (1977) and Wenderoth and 

Johnsson (1983). In both cases, it was observed that a strong Poggendorff illusion of 

displacement could still occur when the dot traversed behind an occluding rectangle. 

The results of Watamaniuk (2005), who noted an absence of the Poggendorff 
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misalignment in kinetic conditions, did not generalise to the occluded slalom display. 

Little support is found for the theoretical account of facilitatory propagation as a 

mechanism for the global integration of the dot trajectory, which would, as noted in the 

introduction of this chapter, also appear to be at odds with the existing empirical 

evidence on the slalom illusion. If the dot trajectory indeed results in a propagating 

facilitation of a cascade of motion detectors, its horizontal course must be easily 

deflected by the tilted inducing lines - in which case the proposed propagating effect of 

motion direction cannot be strong. This is not to discard predictive effects in motion 

perception entirely, however. For instance, in the flash-lag effect (Nijhawan, 2002), a 

static stimulus briefly flashed alongside a moving stimulus always appears to lag behind 

the moving stimulus, whereas in reality they are spatially aligned. This demonstrates 

convincingly that the visual system attempts to predict where a moving stimulus is 

going. However, the mechanisms behind such predictive effects do not result in an 

extrapolation towards a straight path in the context of the slalom illusion. 

Similarly, the hypothesis that the dot trajectory would be completed according to a 

shortest-path solution can be rejected, as this would similarly have resulted in a reduced 

magnitude of the slalom illusion. Shortest-path solutions appear to occur more readily in 

the literature on apparent motion, where a percept of motion is induced by flashing a dot 

at two successive locations (Anstis & Ramachandran, 1985; Ramachandran & Anstis, 

1986; Akselrod, Herzog, & Öğmen, 2014), than in a visual display containing 

continuous motion. The completion of the dot trajectory in the current study is then 

more similar to static demonstrations of amodal completion, where it is evident that the 

shortest-path solution is often not preferable. Consider the example of a circle of which 

one quadrant is occluded by a superimposed shape: it will be completed as a circle, not 

as a partial circle with one straight segment exactly coinciding with the occluding shape. 

This occurs because the visible part of the contour imposes a strong prior on what the 
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occluded part could look like (Singh & Fulvio, 2005; see also section 4.2 of the general 

introduction). Possibly, such shape priors also apply to the trajectories reported in the 

current experiments. 

Cesàro and Agostini (1998) suggest that the points of intersection between the dot 

trajectory and the tilted lines are the most plausible cause for the illusory trajectory 

modulation observed in the slalom illusion. Indeed, the tendency towards perceiving 

right angles is often proposed to lie at the basis of many geometric illusions, including 

the Poggendorff illusion (Morgan, 1999). The intersection-of-constraints account put 

forward for the slalom illusion posited that the observer's perception of the dot 

trajectory is governed by a solution which satisfies fully these extremes of the local 

signals of motion direction, as observed at the points of intersection. The proportion of 

the visible trajectory which is not distorted is then of little importance, as these 

horizontal motion signals do not define a boundary to the range of motion directions 

observed. The results of the current experiments contradict such a view, as indeed they 

clearly demonstrated an amplified illusion when the proportion of the visible horizontal 

trajectory decreases. 

This suggests a continuous integration of the local motion signals, in congruence with 

the vector summation account of local-global integration.  As the veridical information 

of the straight horizontal trajectory is partly absent, the distorted motion directions gain 

a greater weight, and the amplitude of the trajectory modulation increases. In other 

words, the entire trajectory contributes to the global interpretation, not only the strong 

signals with the most extreme motion direction at the points of intersection. As 

proposed in the introduction of this chapter, these findings can be framed within the 

predictive coding theory (Rao & Ballard, 1999) - also discussed in section 3 of the 

general introduction. Partial occlusion in this view supports the interpretation of a 
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higher-amplitude sinusoidal trajectory, because it decreases the error signals between 

this global interpretation and the incoming local horizontal motion signals – due to the 

reduced availability of such signals.  

If the slalom effect can be explained in such a general framework as predictive coding, 

the question arises as to whether the slalom illusion itself could also occur more 

generally, such as in a static version, without these specific summation mechanisms of 

motion. However, no illusion is visible in a static slalom display, where the dot 

trajectory is replaced by a horizontal line. Static geometric illusions of angle that do 

affect the apparent shape of a continuous line, like the Hering illusion, require a more 

dense visual display, with more intersecting angles, than the relatively sparse slalom 

illusion. It is therefore suggested that motion illusions are far more susceptible to biased 

global interpretations, since they explicitly require integration mechanisms over time of 

their transient local signals, such as vector summation, whereas static lines remain 

visible for the entire display duration. That is, their local signals continuously provide a 

mismatch with the illusory global interpretation, whereas the local signals of motion 

illusions are fleeting and cannot be revisited. 

Finally, a spontaneous observation made by a number of participants in the occluded 

condition of Experiment 2 can be reported on. Instead of perceiving the movement 

speed of the slalom illusion to be consistent and predictable, it was indicated that the dot 

appeared to 'jump out' from behind the black triangle upon re-appearance, faster than 

expected. While these observations are anecdotal in nature and were not formalised in 

the experimental design, one can confirm this impression by looking at a full stimulus 

sequence in the occluding triangles condition. It is proposed that this finding is 

congruent with the perceptual expectation of a greater modulation of the trajectory 

amplitude behind the occluder. Because the occluded trajectory is, as a result, expected 
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to be longer in length, a constant dot speed would also result in an overestimation of the 

total time of occlusion. The re-appearance of the dot would then occur sooner than 

expected.  

At this point, it is worth highlighting that the local-global integration of a trajectory 

does not consist of one single process or mechanism. Rather, it involves the integration 

of transient signals of motion directions within a motion integration window, for which 

the continuous summation or averaging of motion vectors is indeed a strong candidate. 

These mechanisms are specific for motion perception. On the other hand, the shape of 

the trajectory is to be inferred from the perceived positions of the moving object. This 

stage of the integration process might well share mechanisms and pathways with the 

perception of static contours and shapes, which also manifest themselves in phenomena 

of amodal completion. The spontaneous observation reported in the previous paragraph 

might well relate to this second stage of integration – the shape described by the 

trajectory. Expectations about this shape might then have been fed back into predictions 

about the local position and speed of the moving dot, causing surprise upon its re-

appearance. In the next chapter, this phenomenon will be investigated more closely. 

 

3.5. Summary 

Two experiments were conducted using a different experimental setup, and both 

consistently found that partial occlusion of the dot trajectory increases the slalom 

illusion. This effect was not caused by the mere presence of triangular objects, and it 

was evinced that the slalom illusion was invariant to the low-level characteristics of the 

inducing tilted lines. It was proposed that these results are best explained by a 

continuous summation of the local motion signals, whereby partial occlusion increases 
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the relative importance of the distorted signals at the points of intersection between the 

dot trajectory and the tilted lines. 
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4. Chapter 4 - Inter-stimulus interval 

 

4.1. Introduction 

In the occluded conditions of Experiments 1 and 2 in Chapter 3, the moving dot of the 

slalom illusion display disappeared at the left side of the black triangle, and then re-

appeared at the right side. The illusory trajectory of the slalom illusion was found to be 

completed across these occluders. The time interval between these offset and onset 

events was determined by the constant horizontal speed of the veridical dot trajectory, 

and remained consistent with the shortest-path solution of a straight trajectory, even 

though a longer, sinusoidal trajectory was subjectively perceived by the participants. 

This experimental sequence of a first stimulus followed by a second stimulus, 

interrupted by a short inter-stimulus interval (ISI), is reminiscent of the phenomenon of 

apparent motion. Instead of a veridically moving dot interrupted by occlusion, in the 

apparent motion paradigm two static dots are shown at different positions and different 

moments in time. The movement of the dot is then perceptually inferred from its rapid 

displacement from the first position to the second position (Figure 4.1). For this to occur, 

the inter-stimulus interval (ISI) should be of an intermediate duration: if it is too short, 

two stimuli will appear to be flashing simultaneously, and if it is too long the first and 

the second stimulus will appear to be separate and sequential. 

Korte (1915) investigated the effect of stimulus intensity, distance and ISI on the 

phenomenon of apparent motion, and summarised his results in three laws. First, larger 

distances require larger stimulus salience for the apparent motion illusion to occur. 

Second, larger ISIs require larger intensities. Third, larger distances require larger ISIs 

for apparent motion to be perceived. The latter result is especially noteworthy: the 

apparent motion illusion's lower ISI limit is not just bound by the visual system's 
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discrimination thresholds for the order of appearance in sequentially flashing stimuli, 

but also and more importantly by the maximum speed the visual system can assume for 

the object's motion, given the distance it had to travel. 

 

Figure 4.1.Illustration of apparent motion. When two objects (the red circles) are 

presented at different times (A), if the ISI is neither too short nor too long, the two 

objects are perceived as a single one moving between the two positions (B). 

 

The perceived path of apparent motion is typically found to be a straight line between 

the first and the second position (Anstis & Ramachandran, 1985; Akselrod et al., 2014). 

However, in specific experimental contexts there have been observations to the contrary. 

Shepard and Zare (1983) briefly flashed a curved grey path in the ISI of an apparent 

motion display, and observed that the object appeared to have moved along that path. In 

addition, Korte's third law generalised to this curved apparent trajectory of motion: not 

the linear distance between the sequential stimuli, but the length of the curved path 

determined the minimal ISI needed for the perception of apparent motion. This could be 

seen as an instance of the tunnel effect (Burke, 1952; Michotte et al., 1964). When a 
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continuously moving object moves behind an elongated occluder, its trajectory is 

amodally completed to follow the shape of the occluder.  

The study of Shepard and Zare (1983) did not necessarily constitute amodal completion, 

however. Whereas the tunnel effect relies on a persistently present occluder, Shepard 

and Zare only flashed the curved path briefly during the ISI of the apparent motion 

display. This could be seen as a priming of the curved trajectory, just prior to the 

appearance of the second stimulus. To address this discrepancy, Kim, Feldman, and 

Singh (2012) introduced a curved occluder constantly present on the screen into an 

apparent motion display. The authors observed that at short ISIs (less than 200 ms for a 

three to nine visual degree separation) participants predominantly perceived a straight 

path. As the ISIs increased, however, so did the proportion of curved responses. This 

can be seen as a generalisation of Korte's third law to the shape of the trajectory, as in 

this case the curved shape was associated with a longer distance; as mentioned 

previously, Korte (1915) described how the minimum ISI required to perceive any 

apparent motion is longer for greater stimulus distances. Kim et al. (2012) observed that 

a greater perceived trajectory length, independent of the stimulus distance, also requires 

longer ISIs (as well as experimental conditions conducive to a curved interpretation). In 

one of their experiments, Kim et al. (2012) confirm that their results can be ascribed to 

amodal completion rather than shape priming. 
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Figure 4.2. Adapted illustration of the stimuli from Kim et al. (2012), showing the 

stimuli used to demonstrate that when using a curved occluder, if the ISI was increased, 

the path of the object between the ends of the occluders was more likely to be perceived 

as curved. 

 

In a follow-up study, Kim, Feldman, & Singh (2013) extended their displays with 

context objects suggesting different types of causes for the (apparent) motion of the 

object, such as being bounced or launched by another moving object. Some of these 

causal events were consistent with a curved trajectory, whilst others were consistent 

with a straight trajectory. The authors observed that the causality of the apparent motion 

suggested by the context objects strongly affected the perception of the shape of the 

trajectory as being either curved or straight, even if the crucial context information was 

provided only after the appearance of the second apparent motion stimulus. These 
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findings are at odds with the intuitive experience human observers have of visual 

perception, namely that we perceive things on-line, as they are happening. Rather, these 

results lend support to the concept of postdiction in visual perception (as opposed to 

prediction). In this view, a perceptual interpretation imposes itself retroactively on past 

inputs, reinterpreting them before they have reached conscious perception (Eagleman & 

Sejnowski, 2000; 2003). Applied to apparent motion, the perceived trajectory is then 

strongly based on information received after the moving object has completed its 

illusory path, that is, after the second apparent motion stimulus. 

To summarise, trajectory perception is bound by constraints of plausibility as a function 

of speed (ISI), and can be affected by postdictive interpretations. In the previous chapter, 

it was observed that the slalom illusion was increased in magnitude by a partial 

occlusion of the dot trajectory, and attributed this effect to the partial absence of 

corrective horizontal motion inputs to the illusory perception of a sinusoidal path. In 

addition, however, several participants spontaneously reported that the dot appeared to 

'jump out' from behind each occluder, earlier than they had expected. Similar to the 

studies on apparent motion and amodal completion discussed above, participants were 

required to infer the trajectory of a moving object without being able to perceive it. To 

gain further insights in the mechanisms involved in the global integration process of the 

sinusoidal trajectory, the central ISI parameter of these apparent motion studies was 

manipulated in the current experiment. 

It was postulated in the discussion of Chapter 3 that the dot reappeared faster than 

expected, because the illusory curvature of the slalom trajectory caused it to be 

interpreted as longer than the veridical, horizontal trajectory. At constant dot speed, it 

follows that the actual occlusion time will therefore be shorter than the expected 

occlusion time. Three different views can be formulated on how this reported 
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phenomenon relates to the increased magnitude of the slalom illusion in the occluded 

conditions. First, the  'jumping out' of the dot could be only a by-product of the 

occluded slalom illusion, caused by the mismatch between the subjectively completed 

trajectory and the real trajectory, and the expected re-appearance times from behind the 

occluder that are associated with each. If this hypothesis is true, manipulating ISI should 

not affect the size of the occluded slalom illusion, even if it could affect the magnitude 

of the „jumping out‟ phenomenon. 

Second, the 'jumping out' phenomenon could itself have caused the increased reported 

magnitude of the slalom illusion in the occluded conditions of Experiments 1 and 2 in 

Chapter 3. The mere perceptual surprise associated with the early re-appearance of the 

dot could have led to a less accurate amplitude response. That is, participants might 

have expected the dot to travel behind the occluder for a longer time because they 

expected the trajectory to be sinusoidal and therefore longer than it veridically was. This 

will be called the discontinuity hypothesis. Prolonging the ISI should then weaken the 

occluded slalom illusion, since the mismatch between the real and the expected re-

appearance time is decreased, and shortening the ISI should strengthen it.  

Both of these hypothetical views are predictive: a certain re-appearance time was 

expected, and it mismatched the actual re-appearance time. Analogous to the literature 

discussed above, however, a postdictive view on trajectory perception in the occluded 

slalom illusion could also be taken. Under the postdictive hypothesis, the time of re-

appearance itself will be used as a source of information to interpret the trajectory of the 

dot as it would have occurred before its re-appearance from occlusion. That is, longer 

ISIs will lead to longer and therefore more curved sinusoidal trajectories, with a higher 

amplitude. Shorter ISIs, on the other hand, will lead to an interpretation of a shorter and 

less curved occluded trajectory, with a smaller amplitude. 
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In this experiment, a comparison of the classic slalom illusion to the occluded slalom 

illusion will again be made. In addition, the ISI of the dot stimulus during occlusion (the 

duration of the occlusion) will be manipulated, so that it is either shorter or longer than 

would have resulted from a constant horizontal dot speed. The results will allow us to 

distinguish between the three hypotheses proposed above: the by-product hypothesis 

would predict no effect of the ISI manipulation, the discontinuity hypothesis would 

predict the magnitude of the illusion to increase with lower ISIs, and the postdictive 

hypothesis would predict the magnitude of the illusion to increase with higher ISIs. 

 

4.2. Methods 

4.2.1. Participants 

A sample of 17 participants was recruited through the Sheffield Hallam University's 

Psychology credit scheme as well as through opportunity sampling from the general 

student population. All participants were undergraduate or postgraduate students and 

were naive as to the phenomenon investigated. The inclusion criteria for participants 

were having normal or corrected-to-normal vision and being at least 18 years old. 

4.2.2. Design 

A repeated-measures design was employed, with one independent variable, condition. 

The independent variable had four levels: original slalom (black tilted lines), original 

ISI (occluding triangles with constant speed of the dot), long ISI (occluding triangles 

with increased ISIs), and short ISI (occluding triangles with decreased ISIs). The 

dependent variable is the amplitude of the illusion, operationalised as the height of the 

response line, measured in pixels. 
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4.2.3. Apparatus and stimuli 

The experiment was programmed in Psychtoolbox-3 for MATLAB (Brainard, 1997; 

Pelli, 1997; Kleiner et al., 2007) and presented on a NEC MultiSync FP2141sb 22" CRT 

monitor. The viewable area of the monitor was 406 x 304.6 mm. The experiment was 

run with a spatial resolution of 1600 x 1200 pixels and a temporal resolution of 85 Hz. 

In all four conditions the moving dot is black, has a diameter of 2 mm, and the angle of 

intersection for all the tilted lines is 40°. The stimuli for the three occluded conditions 

are based on those used in the second experiment from study 2, consisting of 7 black 

isosceles triangles, with the base of 4.6 cm and the two equal edges (the tilted lines) of 3 

cm. The triangles are placed at 1 cm distance from each other. The black triangles hide 

the trajectory of the dot when it intersects their surface, but the dot has a different speed 

behind the occluder, depending on the experimental condition, relating to different ISIs 

(see Figure 4.3). In line with the experiments conducted in previous chapters, the speed 

of the moving dot in the visible parts of the trajectory was 5 cm/s. In the experimental 

conditions, the speed of the occluded parts of the trajectory was maintained, increased 

by 50%, or decreased by 50%, depending on the condition. This led to a decreased or an 

increased ISI, respectively. The following conditions were created: (1) in the original 

ISI condition, the dot travels all the time at a speed of 5 cm/s (ISI of 470 ms), (2) in the 

long ISI condition the dot moves at a speed of 5 cm/s whilst visible and 2.5 cm/s whilst 

behind the occluders (ISI of 235 ms), and (3) in the short ISI condition, the dot moves at 

a speed of 5 cm/s whilst visible and at a speed of 7.5 cm/s whilst behind the occluders 

(ISI of 705 ms). Similar to the second experiment from the second study, the original 

slalom condition consists of a series of 7 modules of two tilted lines; the distance 

between the modules is 1 cm and the tilted lines are 1 mm thick and 2.5 cm long. The 

speed of the moving dot in the original slalom condition is constantly 5 cm/s. The centre 

of the experimental display is centred with the centre of the screen in all conditions.  
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Figure 4.3. Illustration of the four experimental conditions: original slalom (A), 

original ISI (B), short ISI (C), and long ISI (D). In all conditions, the dot is moving at 

the same speed (5 cm/s) on the visible parts of the trajectory. 

 

4.2.4. Procedure 

The procedure was similar to that described in the previous laboratory experiments: 

participants were provided with information sheets (Appendix 2) and consent forms 

(Appendix 3) and had to give their informed consent prior to commencing the 

experiment. All participants were informed about their rights as per the university ethics 

guideline and the Declaration of Helsinki. Before starting the experimental task, 

participants were assisted by the experimenter in a trial run consisting of ten repetitions 

of the experimental trials randomised in terms of condition. This made the participants 

familiar with the task, which required, as in the previous experiments, to follow the 
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moving dot back and forth continuously across the background. A chin rest was used, 

placed at 60 cm from the monitor. Participants were asked to report whether, and if so - 

how much, the trajectory of the moving dot deviated from a straight one (the slalom 

effect). In order to answer, participants had to alter the height of a vertical line placed at 

the centre-bottom of the display. The response line had a starting height randomly 

assigned from 1 to 20 pixels and, in order to be adjusted, the participants had to press 

the up arrow key (to increase the size) and the down arrow key (to decrease size). The 

line was present concomitantly with the stimuli and participants could take as long as 

they wished before pressing the space bar, which confirmed that they were satisfied that 

the height of the response line corresponded to the perceived vertical deviation. Once 

the answer was given, the following trial commenced immediately. There were ten 

repetitions per condition, meaning that there were 40 trials in total. The trials were 

randomised in terms of order. Participants completed the experimental task at their own 

pace, and the duration was about 30 minutes on average, without any breaks. Upon 

completion, participants were fully debriefed as to the phenomenon investigated and 

were encouraged to make any comments relating to their experience or to ask any 

further questions. 

 

4.3. Results 

From the length of the response line for each trial, the mean amplitude response was 

computed per combination of participant and background condition, in preparation for 

repeated-measures statistical tests.  

Boxplots (Appendix 18) indicate one possible outlier in the original slalom and short ISI 

conditions, but the computed Z-scores show that no outlier existed when using 3.29 as 

the cut-off point. The histograms (Appendix 19) and the skewness statistic (Appendix 
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20) show that the data are normally distributed in all three occluded conditions, but 

skewed in the original slalom condition. Because of the different patterns of distribution 

across the conditions, the data was not transformed. Relying on the general robustness 

of the ANOVA to violations of the assumption of normality (Schmider et al., 2010), the 

data was analysed using parametric tests. 

The means and standard deviations are presented in Table 4.1. The largest amplitude 

was reported in the original ISI condition, whereas the lowest amplitude was reported in 

the short ISI condition. 

Table 4.1 

Mean Amplitudes and Standard Deviations for the Four Background Conditions 

(Measured in Pixels) 

 Means SDs 

Original slalom 4.33 1.73 

Original ISI 7.56 2.51 

Long ISI 6.84 2.31 

Short ISI 3.72 1.20 

 

The effect of the experimental manipulation on the perception of the trajectory was 

analysed using repeated-measures ANOVA. The independent variable was a within-

participants factor with four levels (original slalom vs original ISI vs long ISI vs short 

ISI), whereas the dependent variable was the reported amplitude of the trajectory, 

measured in pixels. 

The null hypothesis of sphericity was rejected (W = .43, p = .028), so a Greenhouse-

Geisser correction was applied to the repeated-measures ANOVA. The results show that 

the background had a significant effect on the perception of the dot trajectory [F (2.04, 

32.65) = 44.80, p <.001, p
2 

= .737]. G*Power (Faul et al., 2009) was used to determine 

the statistical power of the repeated measures ANOVA. Given the p
2 

= .737 for the 

effect size, an alpha-level .05 and a total of 17 participants, the statistical power was 

estimated at >.999. 
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Figure 4.4. Mean amplitudes and standard errors for the four experimental conditions. 
 

 

 

In order to investigate the differences between the four conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. The illusion magnitude was 

significantly larger in the original ISI condition compared with the original slalom 

condition (mdif = 3.22, p <.001) and short ISI condition (mdif = 3.84, p <.001). Also, 

the illusion magnitude was significantly larger in the long ISI condition compared with 

the original slalom condition (mdif = 2.51, p <.001) and short ISI condition (mdif = 

3.12, p <.001). There was no difference in the illusion magnitude between the original 

ISI and the long ISI conditions (mdif = .72, p = .336) or between the original slalom and 

the short ISI conditions (mdif = .61, p = .091). 
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4.4. Discussion 

In line with the main finding from the previous chapter, it was evinced that partially 

occluding the dot trajectory increases the slalom illusion. The effect of the ISI 

manipulations however was mixed: the long-ISI condition did not affect the occluded 

slalom illusion, whereas the short-ISI condition reduced it to the level of the classical, 

non-occluded slalom illusion. This clearly contradicts both predictions of the 

discontinuity hypothesis, according to which the short-ISI condition should increase the 

occluded slalom illusion, and the long-ISI condition should decrease it. The by-product 

hypothesis was refuted in the short-ISI condition, where the slalom effect was strongly 

decreased, but not in the long-ISI condition. The postdictive hypothesis was similarly 

partially refuted, since it had predicted the long-ISI condition to increase the slalom 

effect. 

These results therefore require a more nuanced interpretation. The reduction of the 

perceived trajectory magnitude under short-ISI conditions is a strong effect, which 

appears to point at a postdictive interpretation of a smaller trajectory modulation as a 

function of the observed re-appearance time. This would result in a more consistent 

interpretation of the global trajectory. Indeed, it has previously been found that human 

observers prefer interpretations of smooth trajectories at a continuous speed over 

trajectories that are strongly variable in their speed and direction (Scherzer & Ekroll, 

2009).  At the same time, this explanation cannot account for all the empirical findings. 

First, long-ISI conditions did not increase the occluded slalom effect, as would also 

have been expected from the postdictive hypothesis. Second, the original finding 

inspiring this study was anecdotal evidence of a 'jumping out' effect. If the visual 

system successfully postdictively interprets the occluded trajectory amplitude to match 
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the re-appearance time of the dot, then this effect should not have occurred to begin 

with. 

It therefore appears that multiple variables go into the neural equation for trajectory 

perception and that while each of these variables imposes a distribution of likelihoods 

for all of the trajectory amplitudes that could reasonably be perceived, none of the 

variables by itself determines the outcome. One such variable is the angle of intersection 

of the trajectory with the tilted line inducers which, as shown by Cesàro and Agostini 

(1998), strongly influences the slalom illusion. However, the angle of intersection also 

limits the amplitude the trajectory could maximally have, regardless of the duration of 

the ISI. Another relevant variable into the equation is the perceived motion direction 

during the visible part of the trajectory, which will bias the perception of the trajectory 

towards a more horizontal and straight perception (see Chapter 3). And, as mentioned, a 

general bias towards smoother trajectories could play a role (Scherzer & Ekroll, 2009). 

In the compromise of what is likely according to all of these input signals and biases of 

the visual system, it is then indeed not guaranteed that all constraints can be fully 

satisfied simultaneously. That is, even if postdictive effects bias the perceived amplitude 

in a certain direction to achieve consistency in the global interpretation, residual 

discontinuities, such as the „jumping out‟ effect, could still occur.  This view could 

formally be captured in a Bayesian framework, where the probabilities of all prior 

expectations and the strengths of all current observations combine into the perceived 

interpretation of the stimulus, within a given spatio-temporal integration window. Such 

frameworks have been applied to great effect in many areas of visual perception, 

including perception of ambiguous motion direction (Weiss et al., 2002). 

These findings are in alignment with the literature on apparent motion. In particular, 

Korte's third law and its generalization to apparent motion trajectories (Kim et al., 2012) 
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appear to hold true in the current experiment as well, as far as the original-ISI and the 

short-ISI conditions are concerned. That is, motion along a shorter path requires a 

shorter ISI. But whereas studies on apparent motion, due to the nature of the paradigm, 

investigated the ISIs necessary for qualitativelydifferent perception to be enabled, the 

current study has provided evidence of similar effects on the quantitative magnitude of 

a trajectory shape modulation. Indeed, a shared neuronal basis between apparent motion 

and continuous trajectory perception has previously been suggested (Larsen, Madsen, 

Lund, & Bundesen, 2006; Muckli, Kohler, Kriegeskorte, & Singer, 2005). 

 

4.5. Summary 

It was found that shortening the ISI in the occluded slalom illusion can decrease the 

slalom effect to the level of the non-occluded slalom illusion. According to the 

hypothesis proposed, the perceived amplitude of the trajectory can be affected in a 

postdictive manner by the observed re-appearance time of the dot after occlusion. 

However, other sources of information on the trajectory, such as the angle of 

intersection, impose limits on the degree to which ISI can affect the occluded slalom 

illusion. The final, postdictive, interpretation of the trajectory is likely to be a balanced 

compromise between all of these constraints, which may in future work be captured in a 

Bayesian framework. 
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5. Chapter 5 - Inverted slalom illusion 

 

5.1. Introduction 

The slalom illusion has been proposed to be rooted in local biases of motion direction, 

arising at the points of intersection between the horizontal dot trajectory and the tilted 

line inducers (Cesàro & Agostini, 1998). In particular, the angle of intersection between 

the trajectory and the tilted lines plays a crucial role, as discussed in detail in section 7.3 

of the General Introduction. In the experiments of the current thesis the angle of 

intersection has not been manipulated systematically, but it could nevertheless be 

repeatedly shown in the experimental results of Chapters 2 to 4 that tilted lines elicit a 

greater perceived trajectory amplitude than vertical lines. Cesàro and Agostini (1998) 

did systematically manipulated the angle of intersection in their Experiment 1, and 

found a near-linear decrease in the illusion magnitude in the range between 30 and 55 

degrees of angle. In addition, the authors demonstrated in their Experiment 2 a 

monotonic dependence on the speed of the dot motion, an effect that did not interact 

with the angle of intersection effect. Central to the angle of intersection hypothesis is 

the assumption that the visual system is strongly biased towards perceiving more 

perpendicular angles, necessitating in the interpretation of the dot trajectory a greater 

deviation from the veridical horizontal path as the tilt angle of the lines becomes more 

horizontal. 

The bias towards perpendicular angles has a long empirical and theoretical history 

within the vision sciences. It was first noted in the context of the aperture problem, 

which was previously discussed in section 5.2 of the General Introduction. When a 

moving line is seen through a circular aperture, such that its end-points are concealed, 

the veridical motion direction of the line cannot be determined (Stumpf, 1911; Wallach, 
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1935, Wuerger et al., 1996). Indeed, any direction of motion is a valid interpretation of 

the stimulus, except the direction parallel to the line, which would not produce any 

perceptible motion. Each potential motion direction of the line, however, is associated 

with a different speed (see Figure 1.7 in Chapter 1). When faced with such a line 

stimulus of which the end-points are not visible, observers consistently report to 

perceive a direction of motion that is perpendicular to the orientation of the line. This 

perception also coincides with the singular solution which has the slowest associated 

speed of motion for the line object. The aperture problem received renewed interest 

when it was shown to be relevant to the early visual cortex, where the receptive fields of 

individual direction-sensitive motion neurons are too small to perceive the movement of 

a full moving object, and instead encode only the orientation and motion direction of a 

limited segment of an oriented edge (Adelson & Movshon, 1982). Similar to the 

classical aperture problem, the activity of these neurons cannot be used to determine the 

true motion direction of the oriented edge. To determine the true motion direction of an 

object, either an integration of motion signals over a larger number of cells must take 

place, or the perception of motion must be driven by those cells that do perceive and 

code the end-points of edges, and therefore do not suffer from the aperture problem 

(Pack et al., 2003). 

The perpendicularity bias in angle perception also occurs, however, in static displays 

with line intersections. Here, the aperture problem does not apply, since there is no 

motion. Several classical geometric illusions are proposed to be based on this 

mechanism. In the Poggendorff illusion (Figure 5.1A), the perceived misalignment 

between both parts of the diagonal line are then rooted in a perception of these lines as 

being slightly more vertical than they veridically are. In support of this hypothesis, 

Morgan (1999) shows that the Poggendorff illusion disappears when the point of 

intersection is locally made perpendicular, while maintaining the same global 
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configuration. In the Zollner illusion (Figure 5.1 B), the tilt of each parallel line is 

biased towards an orientation perpendicular to its intersection with a series of smaller 

line segments. The alternation of the orientation of these segments between the lines 

then causes them to not appear parallel. In the Herring (Figure 5.1C) and Wundt (Figure 

5.1D) illusions, the geometry of a line is itself bent to better conform to a proposed 

expectation of perpendicular angles of intersection. Finally, in the Tilt Illusion (Figure 

5.2) (Gibson & Radner, 1937; Clifford, 2014), no direct intersection is present, but the 

orientation of the middle grating is still biased towards perpendicularity with the tilted 

surrounding grating. 

 

Figure 5.1. Illustration of geometric illusions dependent on the angle of intersection: 

(A) Poggendorff illusion, (B) Zollner illusion, (C) Herring illusion, and (D) Wundt 

illusion. 
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Figure 5.2.The Tilt illusion, whereby the orientation of the middle grating is 

perceptually biased towards perpendicularity in relation to the surrounding grating. 

 

Kinetic versions of these static geometric illusions, where the straight line is replaced by 

a straight dot trajectory, exist in the case of Poggendorff (Fineman & Melingonis, 1977; 

Wenderoth & Johnson, 1983) and the Zollner (Khuu, 2012; Khuu & Kim, 2013) 

illusions. Note that in trajectory motion displays, the aperture problem would also not 

be relevant, because a dot stimulus is necessarily end-stopped and does not suffer from 

motion direction ambiguity in the same manner as a line does. 

Blakemore et al. (1970) systematically tested the perception of the angle between two 

intersecting lines in isolation, and found that indeed observers tend to underestimate 

obtuse angles and overestimate acute angles. This is equivalent to a bias towards 

perpendicularity. The authors propose that this bias follows from lateral inhibition 

between orientation columns in V1 (see Section 2.1 of the General introduction). When 

activated, orientation columns suppress neighbouring columns that represent similar 

orientations, so that the orientation column with the greatest activation stands out even 
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more from other columns that are stimulated less by the orientation of the stimulus line. 

When two oriented lines are presented in close vicinity of each other, they will then 

suppress each other‟s responses, and orientation columns in between the orientations of 

the lines will be doubly suppressed. If the final line orientation perception of the 

observer is achieved by aggregating responses across all orientation column responses, 

the intersecting lines will then appear to be repelled from each other‟s orientation. 

Again, this is equivalent to a bias towards perpendicularity. The root cause of the 

perpendicularity bias would then lie in the desire of orientation-sensitive neurons to 

achieve a narrow, more specific response to the orientation of the edge in their receptive 

field, through suppression of weaker neighbouring orientation responses. Other 

explanations of the bias in angle perception, however, take a high-level probabilistic 

view on this problem. The visual system is then proposed to attempt an inference on the 

most likely veridical angle in the distal stimulus, based on its proximal projection on the 

retina (Nundy et al., 2000; Changizi, 2001; Changizi & Widders, 2002; Howe & Purves, 

2005). The general argument of these studies is that veridically perpendicular angles 

will in real-world three-dimensional perception often be projected on the retina as being 

either acute or obtuse. Assuming that perpendicular or near-perpendicular angles are 

more likely to occur in the physical world (for instance, the angle between trees and the 

horizon), the visual system then has grounds to interpret projected angles as being more 

perpendicular than they are. This can be understood as hierarchical Bayesian inference, 

a framework introduced in Chapter 3 of the general introduction. 

 

5.2. Experiment 1 

If the angle of intersection is the main determinant of the slalom illusion, it should be 

possible to invert the direction of the illusion, by letting a sinusoidal dot trajectory move 
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across a set of vertical line stimuli. The bias towards perpendicularity would then 

predictably result in a locally more horizontal angle of intersection (figure 5.3). 

Therefore, the trajectory amplitude can be expected to be underestimated when 

compared to a control condition with tilted lines, which do form an unbiased 

perpendicular angle with the sinusoidal dot trajectory.  

 

Figure 5.3. The original slalom display (in grey) can be manipulated such that the 

trajectory becomes sinusoidal and the inducing lines become vertical, whilst the angle 

of intersection is maintained, leading to an inverted slalom display (in red). 

In Chapter 3, it was concluded that partial occlusion of the dot trajectory amplified the 

illusory effect elicited, because less veridical motion information was available to 

counteract the perpendicularity bias. A similar condition will be introduced in the 

current study, for which it is then hypothesised that the illusory effect will also increase. 

That is, the sinusoidal amplitude will be underestimated to a greater degree. Finally, a 

control condition without intersecting lines will be included to test the baseline accuracy 

of participants for reporting the amplitude of sinusoidal paths. 
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5.2.1. Methods 

5.2.1.1. Participants 

The experiment was conducted with 40 participants recruited from the general student 

population of Sheffield Hallam University. All participants were undergraduate or 

postgraduate students and were naive as to the phenomenon investigated. The inclusion 

criteria were having normal or corrected-to-normal vision and being at least 18 years 

old. 

5.2.1.2. Design 

A repeated-measures design was employed, with one independent variable, background. 

The independent variable had four levels: inverted slalom (black vertical lines), inverted 

occluded (black squares), inverted control (tilted lines) and blank (white background). 

The dependent variable is the amplitude of the illusion, operationalised as the height of 

the response line, measured in pixels. 

5.2.1.3. Apparatus and stimuli 

The experiment was programmed in Psychtoolbox-3 for MATLAB (Brainard, 1997; 

Pelli, 1997; Kleiner et al., 2007) and presented on a NEC MultiSync FP2141sb 22" CRT 

monitor. The viewable area of the monitor was 406 x 304.6 mm. The experiment was 

run with a spatial resolution of 1600 x 1200 pixels and a temporal resolution of 85 Hz. 

In all four conditions the moving dot is black, has a diameter of 2 mm and traverses the 

trajectory one way in 5.9 seconds (this corresponds to a horizontal speed of 6.5 

cm/s).The trajectory of the dot is sinusoidal, with an amplitude of 10 pixels, its phase 

equals 0 (meaning that it starts in the middle of the vertical range of the trajectory), and 

a frequency of 7 (corresponding to 7 modules). 
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The background for the moving dot depends on the experimental condition, as follows: 

in the inverted slalom condition, there are 7 modules each of two vertical lines (Figure 

5.4.A), in the inverted occluded condition, there are 7 black squares (Figure 5.4.B) in 

the inverted control condition there are 7 modules of lines tilted at 45° (Figure 5.4.C), 

and in the blank condition the dot moves across a white, blank, background (Figure 

5.4.D). 

 

Figure 5.4.The four types of background corresponding to the four experimental 

conditions: inverted slalom (A), inverted occluded (B), inverted control (C), and blank 

(D). 

 

All lines, including the vertical edges of the squares, have been placed at the points 

where sin(x) = 0, leading to the following angles of intersection: in the inverted slalom 

and inverted occluded conditions, the angle of intersection is 45°, whereas in the 
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inverted control, the angle of intersection is 90°. The centre of the experimental display 

is centred with the centre of the screen in all conditions. 

5.2.1.4. Procedure 

The procedure was similar to that described in the previous laboratory experiments: 

participants were provided with an information sheet (Appendix 2) and a consent form 

(Appendix 3), and after giving their informed consent, they were given the instructions 

for completing the experimental task, as well as a practice run consisting of 5 trials in 

order to get familiar with the task. The task, as in the previous experiments, consisted of 

following the moving dot, which moved back and forth continuously across the 

background. A chin rest was used, placed at 60 cm from the monitor. Participants were 

asked to report whether, and if so - how much, the trajectory of the moving dot deviated 

from a straight horizontal one. In order to answer, participants had to alter the height of 

a vertical line placed at the centre-bottom of the display. The response line had a 

starting height randomly assigned from 1 to 20 pixels and, in order to be adjusted, the 

participants had to press the up arrow key (to increase the size) and the down arrow key 

(to decrease size). The line was present concomitantly with the stimuli and participants 

could take as long as they wished before pressing the space bar, which confirmed that 

they are satisfied that the height of the response line corresponded to the perceived 

vertical deviation. Once the answer was given, the following trial commenced 

immediately. There were ten repetitions per condition, meaning that there were 40 trials 

in total. The trials were randomised in terms of order. Participants completed the 

experimental task at their own pace, and the duration was 30 minutes on average. Upon 

completion, participants were fully debriefed as to the phenomenon investigated and 

were encouraged to make any comments relating to their experience or to ask any 

further questions. 
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5.2.2. Results 

From the length of the response line for each trial, the mean amplitude response was 

computed per combination of participant and background condition, in preparation for 

repeated-measures statistical tests.  

Boxplots (Appendix 21) revealed no potential outliers and the computed Z-scores 

confirmed this. Histograms (Appendix 22) suggest relatively normal distributions across 

the four conditions, and this was confirmed by the skewness statistic (Appendix 23). 

The means and standard deviation are presented in Table 5.1. Contrary to what was 

predicted, the largest amplitude was reported in the inverted occluded condition, 

whereas the lowest perceived amplitude was reported in the blank condition.  

Table 5.1. 

Mean Amplitudes and Standard Deviations for the Four Background Conditions 

(Measured in Pixels) 

 Means SDs 

Inverted slalom 11.90 4.28 

Inverted occluded 13.12 4.59 

Inverted control 11.65 4.66 

Blank 7.73 3.61 

 

The effect of background on the perception of the trajectory was analysed using a 

repeated measures ANOVA. The independent variable, background, had four levels 

(inverted slalom vs inverted occluded vs inverted control vs blank), whereas the 

dependent variable was the reported amplitude of the perceived trajectory. 

The null hypothesis of sphericity was rejected (W = .63, p = .003), so a Greenhouse-

Geisser correction was applied. The results show that the background has a significant 

effect on the perception of the dot trajectory [F (2.44, 95.20) = 5.99, p <.001, p
2 

= .567]. G*Power (Faul et al., 2009) was used to determine the statistical power of the 
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repeated measures ANOVA. Given the p
2 

= .567 for the effect size, an alpha-level .05 

and a total of 17 participants, the statistical power was estimated at >.999. 

In order to investigate the differences between the four conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. In the inverted occluded condition, the 

amplitude was significantly higher than in all three other conditions: inverted slalom 

(mdif = 1.22, p = .002), inverted control (mdif = 1.47, p = .043), and blank (mdif = 5.39, 

p<.001). The amplitude reported for the blank condition was significantly lower than for 

inverted slalom (mdif = -4.16, p<.001) and inverted control (mdif = -3.92, p<.001). No 

significant difference was found between the inverted slalom condition and the inverted 

control condition (mdif = .25, p>.999). 

 

Figure 5.5. The mean amplitudes and standard errors for the four background 

conditions. 
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In order to investigate whether the perceived amplitudes in each of the conditions were 

overestimated or underestimated relative to the real amplitude of the trajectory of 10 

pixels, four one-sample two-tailed t-tests were performed. Bonferroni corrections were 

applied, meaning that the alpha level of the hypothesis test was reduced to .0125 (.05/4). 

Results showed that in the inverted slalom [t(39) = 2.80, p = .008] and the  inverted 

occluded [t(39) = 4.30, p<.001] conditions, the amplitude of the trajectory was 

significantly overestimated by participants, whereas in the blank condition it was 

significantly underestimated [t(39) = 3.97, p<.001]. In the inverted control condition, no 

significant difference with regard to the real amplitude of the trajectory was observed 

[t(39) = 2.24, p = .031]. 

 

5.2.3. Discussion 

The results show that the inverted slalom display with vertical line inducers did not 

affect the perceived amplitude of the trajectory, when compared to a control condition 

with tilted line inducers. The hypothesis that the causal mechanism of the slalom 

illusion relies solely on a bias towards perpendicularity in the angle of intersection 

between the dot trajectory and the line inducers can therefore not be confirmed, as the 

slalom illusion does not generalise to the reverse situation, where a significant reduction 

in perceived amplitude would have been expected. At the same time, however, Cesàro 

and Agostini (1998) provided strong evidence supporting at least the dependence of the 

strength of the slalom illusion on the angle of intersection, and the bias towards 

perpendicular in angles is known to exist in the visual system (Blakemore et al., 1970). 

Moreover, it is strongly implied in explanatory theories of several related static and 

kinetic illusions. 
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The first possibility to consider is that while the slalom illusion relates to the angle of 

intersection, it is not caused by it. Indeed, the orientation of the inducing lines, and 

therefore the angle of intersection, also correlates with either the vertical extent of the 

lines, or the length of the lines. That is, if the vertical extent of the line is controlled to 

be constant, the length of the line must necessarily depend on the tilt of the line. In the 

study of Cesàro and Agostini (1998), the vertical extent was indeed kept constant, and 

the horizontal extent and line length therefore co-varied with the angle. Sharper angles, 

which induced a stronger illusion, were necessarily created using longer lines. While 

this could reasonably be put forward as a confounding factor, there are arguments 

against it. In Chapter 2 of the current thesis, results showed that inducing subjective 

contours using Kanizsa markers around their end-points did not elicit a clear slalom 

illusion. The spatial layout of the display and the length of the lines remained constant, 

but the local intersections with the dot trajectory were removed. This suggests a role for 

the intersections with the lines, rather than only the dimensions of the lines. Moreover, 

the horizontal extent and the length of the lines were also manipulated in the current 

experiment (inverted slalom vs inverted control conditions), but this did not lead to a 

changed perception of the amplitude of the sinusoidal trajectory. While a potential 

confound of line length cannot be strictly ruled out, it appears unlikely that this would 

be the causal mechanism behind an effect as strong as the slalom illusion.  

The second possibility is that the angle of intersection does drive the slalom illusion, but 

only when the dot trajectory follows a straight path, rather than a veridically sinusoidal 

path. The explanatory mechanism behind this could be proposed to be adaptation. The 

visual system has evolved to represent transients in stimuli, rather than constant stimuli 

(Emerson & Gerstein, 1977). Constant stimulation leads to perceptual fading (Tulunay-

Keesey, 1982), negative afterimages (Kelly & Martinez-Uriegas, 1993), and, in the case 

of exposure to a field with constant motion direction, motion after-effects in the 
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opposite direction. The latter phenomenon is also known as the waterfall illusion, as it 

occurs when looking away after prolonged fixation on a waterfall. However, these 

phenomena are often attributed to neuronal fatigue and gradual desensitisation (Pirenne, 

Compbell, Robson, & Mackay, 1958; Anstis, Verstraten, & Mather, 1998). Even though 

adaptation after-effects to motion have been reported after short exposure durations 

(Glasser, Tsui, Pack, & Tadin, 2011), more commonly they require a continued 

stimulation of several seconds (Price & Prescott, 2012). In the context of the slalom 

illusion, it appears unlikely that neuronal fatigue would occur so quickly. However, a 

number of single-cell studies on direction-sensitive motion cells in macaque MT cortex 

have also demonstrated the existence of short-term adaptation, within tens of 

milliseconds (Priebe, Churchland, & Lisberger, 2002; Priebe & Lisberger, 2002; Perge, 

Borghuis, Bours, Lankheet, & van Wezel, 2005). Rather than suffering from neuronal 

fatigue, MT cells appear to exhibit an inherently biphasic response, whereby a strong 

initial response to their preferred direction is quickly followed by a lowered firing rate 

and a stronger response to non-preferred directions. To sustain a maximal firing pattern, 

transient motion direction signals are required.  In the case of the slalom illusion, it can 

be hypothesised that the constant motion direction of the dot then quickly leads to 

decreased neuronal responses for that direction in the MT cortex. In its rapidly adapted 

state, with neurons looking to respond more strongly to non-horizontal directions, the 

visual system becomes especially sensitive to directional signals that are biased away 

from the horizontal directions, as they occur at the tilted line intersections in the original 

slalom illusion. In the inverted slalom illusion of the current study, however, the motion 

signal is not constant in direction, and therefore short-term adaptation would not occur. 

The motion direction signal could still be biased around the points of intersection, but 

relative to the full trajectory of the dot, its weight in the total MT neuronal activity is 

then strongly reduced. According to this hypothesis, the original slalom illusion is then 
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fundamentally caused by a combination of the visual system‟s preference for 

perpendicular angles, and its preference for transient motion directions over constant 

motion directions. 

In addition to the main finding of interest, the results also showed that all displays 

containing lines elicit a consistent overestimation of the sinusoidal amplitude. In case of 

the occlusion condition, this effect was even significantly increased. Possibly, the 

vertical extent of the dot trajectory was biased towards the vertical extent of the other 

elements in the display, and this illusion was amplified by the partial absence of the 

veridical path information. This explanation is similar to the explanation previously put 

forward in Chapter 3, on why the occlusion conditions amplified the amplitude of the 

slalom illusion. Since the vertical extent of the stimulus was kept constant in all 

conditions, however, no further evidence for this hypothesis can be offered. Finally, in 

the Blank condition, the amplitude of the sinusoidal trajectory was systematically 

underestimated by the participants. This effect will be explored further in the next 

experiment. 

 

5.3. Experiment 2 

In Experiment 1 of this study, when the sinusoidal dot trajectory was shown in isolation, 

without any lines or occluding elements, the amplitude was underestimated by on 

average 25%. It is unclear whether this occurred because observers were not able to 

accurately perceive the sinusoidal dot trajectory at all, or whether such an 

underestimation bias exists systematically. Moreover, it is possible that the bias only 

occurs in the context of the experimental set-up of Experiment 1, where trials without 

visual reference were intermixed with trials where the amplitude of the sinusoidal path 

could be compared to the position of other static objects much more easily. In the 
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current experiment, it will be tested whether the underestimation of the amplitude of 

sinusoidal trajectories is a general phenomenon, by studying it in isolation and for 

different amplitudes. 

 

5.3.1. Methods 

5.3.1.1. Participants 

A sample of 24 participants was recruited from the general student population of 

Sheffield Hallam University. All participants were undergraduate or postgraduate 

students and were naive as to the phenomenon investigated. The inclusion criteria for 

participants were having normal or corrected-to-normal vision and being at least 18 

years old. 

5.3.1.2. Design 

A repeated-measures design was employed, with one independent variable, real 

amplitude. The independent variable has four levels: 5 pixels, 10 pixels, 15 pixels, and 

20 pixels. The dependent variable is the perceived amplitude of the illusion, 

operationalised as the height of the response line, measured in pixels. 

5.3.1.3. Apparatus and stimuli 

The experiment was programmed in Psychtoolbox-3 for MATLAB (Brainard, 1997; 

Pelli, 1997; Kleiner et al., 2007) and presented on a NEC MultiSync FP2141sb 22" CRT 

monitor. The viewable area of the monitor was 406 x 304.6 mm. The experiment was 

run with a spatial resolution of 1600 x 1200 pixels and a temporal resolution of 85 Hz. 

In all four conditions the moving dot was black, had a diameter of 2 mm and traversed 

the trajectory one way in 5.9 seconds. Like in the first experiment of this study, the 

trajectory of the dot was sinusoidal, with its phase equalling 0 (meaning that it started in 



126 
 

the middle of the vertical range of the trajectory), and a frequency of 7. The background 

for the moving dot was blank across all four conditions, but the amplitude of the dot, 

depending on the condition was: 5 pixels, 10 pixels, 15 pixels, or 20 pixels. The centre 

of the experimental display was centred with the centre of the screen in all conditions. 

5.3.1.4. Procedure 

The procedure was the same as the one described in the first experiment of this chapter. 

 

5.3.2. Results 

From the length of the response line for each trial, the mean amplitude response was 

computed per combination of participant and background condition, in preparation for 

repeated-measures statistical tests.  

Boxplots (Appendix 24) indicate two possible outliers among the participants in the 5 

pixels condition. However, the computed Z-scores confirm only one outliers (z1 = 3.91). 

After removing the outlier, the skewness statistic (Appendix 25) shows that the data are 

normally distributed in three out of the four experimental conditions, with a skewed 

distribution for the 5 pixels condition (see histograms in Appendix 26). 

The means and standard deviations are presented in Table 5.2. As expected, the largest 

perceived amplitude was reported in the 20 pixels condition, whereas the lowest 

perceived amplitude was reported in the 5 pixels condition.  

Table 5.2. 

Mean Response Amplitudes and Standard Deviations for the Four Amplitude 

Conditions(Measured in Pixels) 

 Means SDs 

5 pixels 3.03 1.15 

10 pixels 7.29 2.85 

15 pixels 11.78 3.59 

20 pixels 16.10 4.20 
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5.3.2.1. Differences between the four conditions 

The effect of the real amplitude on the perception of the trajectory was analysed. The 

independent variable, real amplitude, is a within-participants factor with four levels. 

The null hypothesis of sphericity was rejected (W = .13, p<.001), so a Greenhouse-

Geisser correction was applied to the repeated-measures ANOVA. The results show that 

the real amplitude has a significant effect on the perception of the dot trajectory [F (1.41, 

31.00) = 178.73, p <.001, p
2 

= .890]. G*Power (Faul et al., 2009) was used to 

determine the statistical power of the repeated measures ANOVA. Given the p
2 

= .890 

for the effect size, an alpha-level .05 and a total of 22 retained participants, the 

statistical power was estimated to be larger than .999. 

In order to investigate the differences between the four conditions, Bonferroni-corrected 

post-hoc pairwise comparisons were performed. As expected, there were significant 

differences between all the combinations of the four conditions, with each real 

amplitude level being correctly reported as significantly larger or smaller than the lower 

and higher levels respectively. Thus, the highest level of the real amplitude, 20 pixels, 

was perceived as significantly higher than the three other levels: 15 pixels (mdif = 4.32, 

p<.001), 10 pixels (mdif = 8.81, p<.001), and 5 pixels (mdif = 13.07, p<.001). 

Conversely, the lowest level of real amplitude, 5 pixels, was perceived as significantly 

lower than the three other levels: 10 pixels (mdif = -4.26, p<.001), 15 pixels (mdif = -

8.75, p<.001), and 20 pixels (mdif = -13.07, p<.001). Finally, the middle real amplitude 

values of 10 and 15 pixels were perceived as different, with the 10 pixels level 

significantly lower than the 15 pixels level (mdif = -4.49, p<.001). 
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Figure 5.6.The perceived amplitude reported for the four levels of real amplitude with 

standard errors, both measured in pixels. 

5.3.2.2. Differences between real and perceived amplitudes 

Four one-sample t-tests were performed in order to investigate the differences between 

the real amplitude and the perceived amplitude of the trajectory of the dot. In each case, 

the perceived magnitude was significantly lower than the real amplitude, as follows: 

In all four conditions, the perceived amplitude was significantly lower than the real 

amplitude (all ts > 4.30, all ps < .001).  

5.3.2.3. Differences in underestimation between conditions 

In order to quantify the proportional impact of the previously reported underestimations 

on each of the four experimental levels, four variables were computed as the ratio 

between the perceived and the real amplitudes. The means and standard deviations are 
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presented in Table 5.3 and show that the highest perceived/real amplitude ratio was in 

the 20 pixels condition, whereas the lowest amplitude ratio was in the 5 pixels condition. 

Table 5.3 

Means and Standard Deviations for the Amplitude Ratios in Each of the Four Conditions 

 Means SDs 

5 pixels .61 .23 

10 pixels .73 .29 

15 pixels .79 .24 

20 pixels .80 .21 

 

A repeated-measures ANOVA was performed to investigate the differences between the 

resulting variables. The null hypothesis of sphericity was rejected (W = .15, p<.001), so 

a Greenhouse-Geisser correction was applied. The results show that there is an effect of 

the real amplitude on the degree of underestimation [F (1.62, 35.60) = 7.44, p = .004, 

p
2 

= .253]. G*Power (Faul et al., 2009) was used to determine the statistical power of 

the repeated measures ANOVA. Given the p
2 

= .253 for the effect size, an alpha-

level .05 and a total of 17 participants, the statistical power was estimated at .66. 

Bonferroni corrected post-hoc pairwise comparisons reveal that in the 5 pixels condition, 

the underestimation ratio is significantly larger than in the 15 pixels condition (mdif = -

.18, p = .038) and in the 20 pixels condition (mdif = -.20, p = .025). No other significant 

differences were found between the remaining pairwise comparisons. 

 

5.3.3. Discussion 

The amplitudes of sinusoidal dot trajectories without visual reference objects along their 

path were systematically underestimated. The findings from the current experiment 

suggest, however, that observers retain the ability to discriminate between different 

amplitudes, as is shown by the dependence of responses on the physical characteristics 
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of the trajectory. Although the absolute magnitude of the underestimation increased 

with increasing amplitude, as a ratio to the real amplitude it decreased. That is, the 

relative underestimation is largest for trajectories with small amplitudes. 

Underestimation of motion paths has previous been observed using linear and circular 

trajectories (Sinico et al., 2009; Nakajima & Sakaguchi, 2016). The explanations 

offered by these authors are rooted in a vector summation of the motion speeds and 

directions within the motion integration window, whereby motion signals around the 

extremities of the motion path, where the motion direction reverses, cancel each other 

out. As a result, the motion path appears smaller than it physically is. Indeed, this could 

also be a plausible explanation for the current experiments. An additional role might be 

played by the instruction to the participants to follow the dot with their gaze. When 

observers engage in smooth pursuit eye movement to follow a moving stimulus, the 

extent of the eye movement when compared to the extent of the stimulus trajectory is 

comparable in the horizontal direction, but reduced in the vertical direction (Rottach et 

al., 1996). If the perception of the trajectory is biased by the eye movements following 

it, an underestimation would likely occur. Indeed, Sinico et al. (2009) report a reduced 

illusory shrinkage of the motion path under conditions of constant fixation, compared to 

conditions where participants were instructed to follow the trajectory with their gaze. 

However, the same effect was not observed in those conditions of Experiment 1 where 

the dot trajectory intersected with other visual stimuli (lines or squares). Under such 

conditions, the amplitude of the sinusoidal trajectory was overestimated, rather than 

underestimated. It is hypothesised that this discrepancy is explained by the presence of 

clear visual reference objects, against which the vertical extent of the dot trajectory can 

be judged. The judgement of stimulus position in absence of landmark reference objects 

is known to be poor, leading to the conclusion that human observers typically do not 
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encode object position in absolute, but in relative coordinates (Deubel, 2004; Deubel, 

Koch, & Bridgeman, 2010). The absence of such landmarks would then make trajectory 

perception especially vulnerable to the biases described in the previous paragraph 

(vector summation of motion vectors, and reduced gain in vertical smooth pursuit eye 

movements).  

With regard to the slalom illusion, it appears paramount to carefully control the vertical 

extent of all additional display elements close to the dot trajectory. If any differences in 

vertical extent would arise between conditions, this could presenta confound with the 

experimental manipulations performed. 

 

5.4. Summary 

The inverted slalom display, where the inducing lines are vertical but the dot trajectory 

is sinusoidal, did not lead to an illusory effect of reduced amplitude, as would be 

expected from a theoretical account based solely on the angle of intersection between 

the trajectory and the lines. It is proposed that short-term adaptation of biphasic neurons 

in area MT of the visual cortex causes the bias towards perpendicular angles to only be 

relevant in stimulus displays with a straight trajectory, as is the case in the original 

slalom display. In addition, the presentation of the sinusoidal trajectory in isolation 

leads to a systematic underreporting of its amplitude, underlining the importance of 

landmark reference objects in positional judgment tasks. 
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6. Chapter 6 - Retinal eccentricity 

 

6.1. Introduction 

The original study of Cesàro and Agostini (1998) does not report whether an explicit 

instruction was given to the participants as to the viewing method of the slalom display. 

Implicitly, however, it is indicated in the introduction to their experiments that 

participants should maintain their gaze on the moving dot: “During preliminary 

observations, we noticed that there was an optimal range of velocities. Outside this 

range, it was difficult to follow the dot, either because it was too slow or because it was 

too fast.” (Cesàro & Agostini, 1998; pp. 519). In the previous studies of the current 

thesis, a similar instruction to follow the dot was given. The results obtained were all 

congruent with the original report on the slalom illusion, and were interpreted in terms 

of the trajectory of the dot across the stimulus display and the motion signals which the 

moving dot would generate in the visual cortex. 

 

6.1.1. Smooth pursuit eye movements 

An alternate explanation could be proposed, however, whereby the instruction to follow 

the dot would in fact be the cause of the slalom effect. When following a constantly 

moving object with their gaze, it is known that human observers enter a dedicated mode 

of eye movement behaviour known as “smooth pursuit” (Keller & Heinen, 1991; 

Krauzlis & Stone, 1999), that is qualitatively different from the usual alternation of 

steady fixation periods and rapid saccadic jumps typically employed for scene 

exploration. The mechanisms underlying smooth pursuit are closely related to the 

mechanisms of motion perception itself, as they display similar biases (Beutter & Stone, 
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1998). Indeed, smooth pursuit eye movements cannot be initiated without a moving 

stimulus. As a consequence of smooth pursuit, however, the projection of the stimulus 

that is the object of the eye movements will be stabilised on the retina, defying 

explanations of motion and trajectory perception based only on retinotopic motion 

signals. To achieve a veridical subjective perception of the dot motion, the visual 

system then has to integrate its retinal signals with extra-retinal signals, most 

importantly those originating in the eye muscles and the cortical areas responsible for 

their motor control (Sperry, 1950; von Holst & Mittelstaedt, 1950; Gauthier et al., 1990; 

Souman & Freeman, 2008).  

In all previous studies on the slalom illusion, a smooth pursuit viewing strategy of the 

stimulus display was encouraged. It is then possible that the directional motion biases 

introduced at the points of intersection with the tilted lines, originate in the smooth 

pursuit path, the extra-retinal signals associated with it, or their integration with retinal 

signals. As a result, a viewing strategy that requires constant fixation on the stimulus 

display could eliminate the slalom illusion entirely, putting into serious doubt some of 

the theoretical interpretations hitherto put forward. Under conditions of fixation the 

retinal projection of the moving dot would no longer be stabilised in foveal vision, but 

describe an extended trajectory on the retina that might be more readily veridically 

interpreted as being straight, despite the presence of the tilted line inducers typical of 

the slalom illusion. 

 

6.1.2. Effects of stimulus eccentricity 

However, in the previous experiments reported here the eye movements of participants 

reporting on the slalom illusion were never measured. It is therefore unknown whether 

the participants indeed adhered to the instruction to follow the dot or not. Though it 
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appears unlikely that participants would choose to ignore the instruction, the lack of 

proper eye movement control means that the slalom display in principle could have 

been viewed in any part of the visual field. Related to this then, is the question of how 

retinal eccentricity (the distance from the projection of the stimulus on the retina to the 

fovea centralis) would affect the slalom illusion – if it occurs at all in conditions with a 

fixational viewing strategy. It is well-known that neurons representing the peripheral 

visual field have larger receptive fields, and as a consequence have a decreased ability 

to encode fine detail of object form, orientation or position (Anstis, 1974; Levi, Klein, 

& Aitsebaomo, 1984, Levi & Waugh, 1994; Mäkelä, Whitaker, & Rovamo, 1993). 

Although peripheral vision has a relatively preserved overall sensitivity to motion 

(Cleland & Levick, 1974; Walsh & Polley, 1985; Edwards & Nishida 2004), its 

impaired position and orientation coding does also impair its ability to finely 

discriminate between motion signals (Johnson & Scobey, 1980; Orban, 1985; van de 

Grind, Koenderink, & van Doorn, 1987).  

The Poggendorff illusion, as a widely studied static illusion of angle that shares some 

similarities with the slalom illusion, has been investigated under conditions of different 

retinal eccentricities. Novak (1966) compared free-viewing conditions to controlled 

central fixation, and observed a significant reduction in the size of the Poggendorff 

illusion in the central fixation condition. Greist and Grier (1977) report that the 

Poggendorff illusion was unaffected by horizontal displacements, but it disappeared 

when the stimulus was vertically displaced from the centre of fixation. Wenderoth, 

White, and Beh (1978) however, could not replicate the latter effect, nor the finding of 

Novak (1966). It can be therefore said that there is mixedevidence that horizontal 

displacements of the Poggendorff display affect its strength as an illusion – from which 

it could be concluded that there is no reason to suspect that the angle-of-intersection 

biases of the slalom illusion, if indeed they share a similar root cause, would be affected. 
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In peripheral vision, however, the slalom display could possibly be susceptible to 

additional and different visual illusory effects. Anstis (2012) reports a study where a dot 

was shown to move vertically up and down, across a background grating of high-

contrast stripes tilted at a 45° angle. In foveal vision, a veridical percept of this display 

was achieved. As the eccentricity of the display was increased, the perceived direction 

of motion was increasingly attracted towards the orientation of the background grating, 

until at an eccentricity of twenty visual degrees the dot appeared to move parallel to the 

45° tilted stripes. This effect was independent of stimulus contrast. Anstis named this 

the Furrow Illusion, whereby the reduced acuity of peripheral vision causes the motion 

direction of the dot to fall into the „rut‟ of the background orientation. He theorises that 

this effect occurs because peripheral vision is unable to segregate the dot from the 

background, and confounds the orientation signals of the background with the motion 

direction of the dot. Similar results were previously obtained by Cormack, Blake, and 

Hiris (1992). Ito and Yang (2013) report a similar illusion, that more closely resembles 

the slalom display. In their study, a straight line segment moves rigidly along a straight 

path across a zig-zag pattern of tilted lines (see Figure 6.1). When viewed in peripheral 

vision, the participants report a curved trajectory for the short line segment, following 

the zig-zag pattern of the tilted lines. 
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Figure 6.1. The squirm effect as presented by Ito and Yang (2013). 

 

The authors speculate that the squirming illusion is closely related to the furrow illusion 

of Anstis (2012). Interestingly, however, they also offer the following discussion on the 

slalom illusion: “Is the squirm effect a version of the slalom effect (Cesàro & Agostini, 

1998)?We observed that when the short line segment was tracked by eye movements, 

the slalom effect was predominant, i.e., the motion path had a phase opposite to that of 

the zigzag wave. However, in peripheral vision, the path of perceived motion was in 

phase. Thus, the slalom effect cannot explain the squirm effect" (Ito & Yang, 2013, pp 

142).  While the authors offer no data to support this claim, this suggests that the slalom 

illusion as it is investigated in this thesis could disappear when the display is presented 

in peripheral vision, as it is overtaken by the furrow/squirming illusion.  

While the perceived trajectory described in the squirming illusion of Ito and Yang 

(2013) is similar to that induced by the slalom illusion, its angle of intersection with 

regard to the tilted line inducers is different (perpendicular for the slalom illusion, and 

parallel for the squirming illusion). Indeed, this highlights the fact that Cesàro and 
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Agostini (1998) have not offered data to support the claim that the perceived sinusoidal 

slalom trajectory occurs as theorized. They do report that “At the beginning of training, 

the observers were asked to verbally describe the dot trajectory. This method was used 

in order to ensure that the observers spontaneously perceived a sinusoidal trajectory” 

(pp 520) - but this does not discriminate between a „slalom‟ and a „squirming‟ type of 

trajectory. 

 

6.1.3. Goals of the current study 

A number of limitations in the current literature on the slalom illusion have been 

identified and will be addressed in the current experiment. Firstly, the slalom illusion 

might be rooted in the perceptual consequences of smooth pursuit eye movements, 

rather than the motion of the dot stimulus itself. If this is the case, the illusion should 

disappear when constant gaze fixation at a single location in the display is enforced in 

the experiment. This will be achieved through explicit instruction and through the use of 

an eye tracker, to measure and store the position of each subject‟s gaze over the course 

of each experimental trial. 

Secondly, it is unknown whether the slalom illusion, if it occurs at all under conditions 

of fixation control, is then affected by the retinal eccentricity of the stimulus display. To 

this end, the slalom display will in the current study be presented at three different 

horizontal eccentricities: low, mid, and high. The slalom display will also be reduced in 

size, so as not to extend across different parts of the visual field.Since there is no 

indication that angle illusions such as the Poggendorff illusion are reduced away from 

central vision, it is hypothesised that the inducing angles of intersection will similarly 

not be affected by eccentricity, and the slalom effect will not be reduced. At the same 

time, however, the veridical straight motion signal could be less reliable in more 
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eccentric vision. As this signal is corrective to the slalom illusion (see Chapter 3 on 

partial occlusion of the motion trajectory), it could be expected that the slalom illusion, 

if it can still be observed, will increase in magnitude towards peripheral vision. 

Finally, it has not been established whether the percept of the slalom illusion follows the 

theorised slalom path, or a „squirming‟ path that is similarly sinusoidal but closely 

following the inducing tilted lines rather than intersecting them. Following the 

observations of Ito and Yang (2013), it is expected that the slalom path will be present 

in foveal vision, whereas the squirming path will become more prevalent towards 

peripheral vision. It remains to be seen whether the slalom illusion can occur at all away 

from the fovea. To gauge the type of dot trajectory, the participants will be familiarised 

with both types of trajectories prior to the experiment. In addition to the sinusoidal 

magnitude response, participants will be and required to indicate the type of display 

they have perceived (straight, slalom or squirm).  

In short, the current investigation will be informative on whether the slalom illusion can 

occur under conditions of constant fixation, and whether (a) its presence and (b) its 

magnitude are affected by the eccentricity of the stimulus display relative to the point of 

fixation. 

 

6.2. Methods 

6.2.1. Participants 

A sample of 20 participants was recruited from the general student population of 

Sheffield Hallam University. All participants were undergraduate or postgraduate 

students and were naïve as to the phenomenon investigated. The inclusion criteria for 
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the sample were having normal or corrected-to-normal vision and being over 18 years 

old. Participants were offered a £10 high-street voucher to compensate for their time. 

6.2.2. Design 

A repeated-measures design was employed, with two independent variables and two 

dependent variables. The first independent variable, stimulus type, has two levels: 

tiltedlines and vertical lines. The second independent variable, eccentricity has three 

levels: low eccentricity (within 5mid eccentricity (8.4°), and higheccentricity (16.8°). 

These values are in line with the eccentricities used in the experimental setups of both 

the furrow illusion (Anstis, 2012) and the squirm effect (Ito & Yang, 2013). The first 

dependent variable, amplitude, is continuous and operationalised as the height of the 

response line measured in pixels, whereas the second dependent variable, response type, 

is categorical and has three options: straight, slalom, and squirm. 

6.2.3. Apparatus and stimuli 

The experiment was programmed in MATLAB with Psychtoolbox-3 (Brainard, 1997; 

Pelli, 1997; Kleiner et al., 2007) and the Tobii SDK. The Tobii Pro T120XL eye tracker 

was used to record the eye movements. The stimuli were presented on the Tobii Pro 

T120XL incorporated monitor with a resolution of 1920 x 1200 pixels. The stimuli 

consisted of four inducing lines (tilted or vertical, depending on condition), forming two 

modules. The distance between the two lines which make up a module was 1.86 cm, 

whereas the distance between the two modules was .93 cm. At this size, the stimulus 

covered the maximum display area that would fit within central vision (5° of visual 

angle), meaning that the stimuli in their entirety could be placed within the central 

visual field. For consistency, the same size was maintained for the stimuli presented in 

the peripheral condition. As in previous experiments, the angle of intersection for all the 

tilted lines was 40°, whereas for the control vertical lines the angle of intersection was 
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90°. In all six conditions the moving dot was black, had a diameter of 5 pixels (1.25 

mm), and traversed the two modules twice, always from left to right.The position of the 

stimuli in the experimental display depended on the condition as described below. In the 

low eccentricity conditions, the modules were aligned vertically with the fixation point, 

and were placed either immediately above or immediately below the fixation point; this 

ensured both that the fixation point was not incorporated in the stimuli and that the 

modules were in their entirety within the 5° central vision field. In the mid eccentricity 

conditions, the modules were aligned horizontally with the fixation point, and were 

placed either to the left, or to the right of it, always at a 8.4° visual angle. In the high 

eccentricity conditions, the modules were aligned horizontally with the fixation point, 

and were placed either to the left or to the right of it, always at a 16.8° visual angle. (Fig. 

6.2). 

 

Figure6.2. All the possible positions of the stimuli on the display screen. Depicted in 

blue are the low eccentricity conditions, in green the mid eccentricity conditions, and in 

red the high eccentricity conditions. 
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6.2.4. Procedure 

The procedure was similar to that described for the previous laboratory experiments: 

participants were provided with information sheets (Appendix 2) and consent forms 

(Appendix 3) and gave their informed consent prior to commencing the experiment. All 

participants were informed about their rights as per the university ethics guideline and 

the Declaration of Helsinki. A chin rest was used, placed at 60 cm from the monitor, to 

ensure all participants maintained the same visual angle throughout all trials. Before 

starting the experimental task, participants were assisted by the experimenter in a trial 

run consisting of ten repetitions of randomised experimental trials. This made the 

participants familiar with the task and the terminology used (e.g. squirm, slalom), as 

well as helping with the calibration of the eye tracker. The experimental task consisted 

of 108 randomised trials (18 repetitions per condition). Any given trial ran in the order 

depicted in Figure 6.3. Participants were asked to look at the black dot situated in the 

centre of the screen and to press enter while they are fixating the black dot. If they were 

fixating, the dot changed its colour to green, indicating that they can proceed with 

pressing the enter key.  After pressing enter, the fixation point remained present on the 

screen and the stimuli appeared too, consisting of the dot crossing the module of lines 

twice, always in the same direction (left to right). Following that, the stimuli 

disappeared and were replaced by the adjustment line used to measure the magnitude of 

the illusion. The adjustment was made, like in the previous laboratory experiments, by 

using the up and down keys. After adjusting the line as to represent the perceived 

vertical displacement of the moving dot, participants had to press the space bar and this 

lead to the final part of the trial, consisting of choosing between three descriptions of 

the dot trajectory: „straight‟, „slalom‟ and „squirm'. Once this answer was given by using 

the corresponding key (1, 2, and 3, respectively), the following trial commenced 

immediately. Participants completed the experimental task at their own pace, and the 
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duration was about 30 minutes on average, excluding the initial instructions and practice 

trials. Upon completion, participants were fully debriefed as to the phenomenon 

investigated and were encouraged to make any comments relating to their experience or 

to ask any further questions. 

 

Figure 6.3. The description of an experimental trial, in chronological order: (1) fixation 

calibration, (2) stimulus presentation, (3) adjustment line for the first dependent variable, 

and (4) categorical options for the second dependent variable. 

 

6.3. Results 

6.3.1. Data preparation 

The eye tracking measurements were used to remove trials where participants did not 

conform to the instruction to fixate on the fixation point. One of the participants 

completed only 90 trials, whereas the remaining 19 participants each completed all 108 

trials. In total, data for 2142 trials were collected over 20 participants. One trial was 
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removed because no valid eye movement measurements were recorded. Because of 

theoccurrence of eye tracker measurement errors, some tolerance was given to the 

fixation accuracy of the participants: trials were removed only when fixation was 

measured to be maintained less than 80% of the time at the indicated fixation position. 

1831 trials across 20 participants remained in the data set after removing trials with 

inaccurate fixation. 

For trials where a straight response type was given, the amplitude was recordedas 0. 

That is, if they reported the trajectory as being straight, any non-zero amplitude 

response must have been an inaccuracy introduced by the probe line approximation.On 

48.38% of all straight trials, this was already the case. In the other straight trials, an 

amplitude response of 1.76 pixels on average was given prior to data cleaning. 

Averaged over all experimental conditions, none of the participants deviated more than 

three standard deviations from the mean response amplitude, so there were no outliers 

to be removed. All the analyses reported were performed on the trials remaining after 

data preparation. 

6.3.2. Illusion amplitude 

The mean amplitude response was computed per combination of participant and 

experimental condition, in preparation for repeated-measures statistical tests.  

Boxplots (Appendix 27) indicate one possible outlier and the computed Z-scores 

confirm it (z1 = 3.41). After removing the outlier, the skewness statistic (Appendix 28) 

and histograms (Appendix 29) showed that the data were normally distributed in three 

experimental conditions (tilted mid eccentricity, tilted high eccentricity, and control 

high eccentricity), but were skewed in the remaining three (tilted low eccentricity, 

control low eccentricity, control mid eccentricity). The data were transformed into their 
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natural logarithms, and the recalculated skewness statistics confirmed that the 

transformation corrected the distributions to normality (see Appendix 30). 

The means and standard deviations are presented in Table 6.1 and are based on the data 

prior to their transformation into natural logarithms. The largest amplitude was reported 

in the tilted mid eccentricity condition, whereas the lowest amplitude was observed in 

the control low eccentricity condition.  

Table 6.1 

Mean Amplitudes and Standard Deviations for the Six Experimental Conditions (in Pixels) 

Stimulus type Eccentricity Means SDs 

Tilted 

Low 3.79 3.71 

Mid 6.27 4.16 

High 5.54 3.53 

Control 

Low 1.94 1.96 

Mid 2.15 1.99 

High 3.25 1.97 
 

The effect of the experimental conditions on the perception of the trajectory was 

analysed using a two-way repeated-measures ANOVA. All the inferential statistics were 

calculated based on the computed natural logarithms. 

The null hypothesis of sphericity was rejected solely in the case of the eccentricity 

effect (W = .675, p = .035), so for that condition, a Greenhouse-Geisser correction was 

applied.  The results show that both main effects and their interaction were significant: 

stimulus type [F (1, 18) = 42.87, p <.001, p
2 

= .704], eccentricity [F (1.51, 27.17) = 

17.29, p <.001, p
2 

= .490], stimulus type x eccentricity [F (2, 36) = 5.21, p = .010, p
2 

= .224].  The marginal means for eccentricity were: low = 2.86, mid = 4.21, high = 4.39; 

the marginal means for stimulus type were tilted = 5.20 and control = 2.45. G*Power 

(Faul et al., 2009) was used to determine the statistical power of these F tests. Given 

their respective effect sizes, the power estimates were: >.999 for stimulus type, .985 for 

eccentricity, and .713 for the interaction effect. 
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Figure 6.4.Mean amplitudes and standard errors for the six background conditions. The 

tilted conditions are represented in blue, whereas the control conditions are represented in 

orange. 

 

In order to investigate the interaction of both eccentricity and stimulus type variables,a 

simple effects analysis was conducted using 15 post hoc paired t-tests. All p values 

associated with the t-tests were interpreted relative to the Bonferroni-corrected alpha 

level of .003. Table 6.2 shows all the t test scores and their associated significance 

levels. Notably, within the tilted conditions, there was a significant difference between 

the low and the mid eccentricities, but not between the low and the high or the mid and 

the high eccentricities. Within the control conditions, only the difference between the 

low and the high eccentricity was significant. Within each eccentricity, there was a 

significant difference between the tilted and the control condition. 
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Table 6.2 

Post-hoc Paired-Samples T Tests and Their Associated Significance Levels 

 

 Tilted low 
Tilted 

mid 

Tilted 

high 

Control 

low 

Control 

mid 

Control 

high 

Mean 

(SD) 
.94 (.93) 1.62 (.72) 1.47 (.80) .15 (1.13) .26 (1.21) .99 (.68) 

Tilted low  

t(18) =  

-3.71 

p = .002 

t(18) =  

-2.53 

p = .021 

t(18) = 

3.38 

p = .003 

t(18) = 

3.52 

p = .002 

t(18) =  

-.24 

p = .820 

Tilted 

mid 
  

t(18) = 

1.51 

p = .150 

t(18) = 

7.53 

p<.001 

t(18) = 

5.43 

p<.001 

t(18) = 

4.70 

p<.001 

Tilted 

high 
   

t(18) = 

7.86 

p<.001 

t(18) = 

4.91 

p<.001 

t(18) = 

4.38 

p<.001 

Control 

low 
    

t(18) =  

-.58 

p = .566 

t(18) =  

-5.17 

p<.001 

Control 

mid 
     

t(18) =  

-3.32 

p = .004 

 

6.3.3. Response type 

Three response options were offered to participants to indicate the type of illusion they 

had perceived: straight (no illusion), slalom (trajectory intersecting the inducing lines), 

and squirm (trajectory along the inducing lines). Figure 6.5 displays the proportions of 

responses given in each condition, which necessarily add up to 1. Straight responses 

were predominant in the control conditions, whereas a larger proportion of Slalom 

responses were given in the tilted conditions. At mid and high eccentricities for the 

tilted lines, squirm responses were most common, whereas at low eccentricity nearly 

half of the responses for the tilted condition were given as straight. 
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Figure 6.5.Proportions of response type in each experimental condition. 

To analyse the response type data, a multinomial mixed-model logistic regression was 

performed using the lme4 package for R. The analysis is multinomial because the 

response variable (the type of illusion perceived) was categorical with three levels 

(squirm, slalom, and straight). The response variable was dummy-coded and a separate 

regression was performed for each level. That is, the responses were re-coded as being 

either a 1 (for instance, „straight‟) or a 0 (for instance, „not straight‟, so either „slalom‟ 

or „squirm‟). The logistic regression model was chosen because ANOVAs do not 

support categorical response variables. The mixed-model nature of the analysis refers to 

the simultaneous modelling of the random effects of subject variability and the fixed 

effects of the condition differences. In this it is similar to the repeated measures 

ANOVAs performed in previous analyses. In a regression analysis, a reference level is 

to be chosen for each independent variable, with respect to which the regression weights 
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for the other conditions will be estimated. mid eccentricity and tilted were chosen as the 

reference levels for their respective independent variables, since the condition 

differences with regard to these levels were theoretically deemed the most interesting: it 

will allow the direct comparison of eccentricities within the tilted conditions, where an 

illusion can be expected, and it will allow a direct comparison of both the low and the 

high eccentricity condition to the mid eccentricity condition based on the regression 

weights.  The fitted model parameters for each analysis can be found in Tables 6.2, 6.3, 

and 6.4.  

Table 6.2 
Fixed Effects for the Straight Responses 

 Regression weight estimate p value 

Intercept -2.45 <.001 

Eccentricity Low 2.35 <.001 

Eccentricity High .94 .031 

Control 6.32 <.001 

Low x Control  -1.58 .024 

High x Control -3.61 <.001 

 

 

 

 

Table 6.3 
Fixed Effects for the Slalom Responses 

 Regression weight estimate p value 

Intercept -.92 .002 

Eccentricity Low -.04 .913 

Eccentricity High -.25 .301 

Control - 2.58 <.001 

Low x Control  -.88 .063 

High x Control 1.55 <.001 
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Table 6.4 
Fixed Effects for the Squirm Responses 

 Regression weight estimate p value 

Intercept -.07 .817 

Eccentricity Low -2.46 <.001 

Eccentricity High -.09 .695 

Control -3.94 <.001 

Low x Control  .80 .253 

High x Control 1.87 <.001 

 

 

For the interpretation of these tables, it is important to note that the regression weights 

of the main effects are additive to the intercept (the reference level, i.e. the mid 

eccentricity tilted condition), and the regression weights of the interactions are additive 

to their respective main effect. A non-significant interaction weight, for instance, only 

indicates that the condition to which it refers could be fully explained by the sum of the 

main effects. Most importantly, these results show that in the tilted conditions, the 

proportion of Slalom responses did not change between the three eccentricity levels. 

Squirm responses for the tilted conditions increased significantly from low to mid 

eccentricity, but not from mid to high eccentricity. Straight responses for the tilted 

conditions increased significantly both from mid to low eccentricity and from mid to 

high eccentricity. The main effect of the display type was significant for all response 

types.  

In conclusion, no effect of eccentricity on the proportion of slalom responses can be 

shown for the tilted displays, where the illusion could be expected to occur. However, 

between the low and the mid eccentricity, straight responses are replaced by squirm 

responses - and this effect continues to be present at high eccentricity. 
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6.3.4. Slalom response 

In the analysis presented in section 3.2, it was showed that the perceived amplitude 

significantly increased from low to mid eccentricity in the tilted conditions. For the 

current analysis, the illusion magnitude responses were processed again, but only for 

those tilted condition trials on which a slalom response was given by the participants. 

The aim is to discriminate between a situation where the mean amplitude only increased 

because fewer straight and more squirm responses were given, and a situation where the 

amplitude of the slalom illusion itself was affected by retinal eccentricity. For trials at 

low eccentricity, a mean amplitude response of 1.59 ln(pixels) was observed (N = 14, 

SD = .50; 4.90 pixels). At mid eccentricity, this was 1.76 ln(pixels) (N = 16, SD = .60; 

5.82 pixels), and  at high eccentricity, it was 1.87 ln(pixels) (N = 19, SD = .54; 6.51 

pixels). This constitutes a monotonic increase of the amplitude with eccentricity. As a 

consequence of this data filtering, not all participants had data points in all conditions, 

and therefore not all participants could be taken into an inferential analysis. Six 

additional participants had to be excluded from this analysis because they did not have 

observations in all cells of the design, after filtering for slalom responses only. The 

power of the analysis was therefore reduced, and no significant effect of eccentricity on 

the magnitude of the slalom illusion was found in a repeated measures ANOVA [F(2, 

24) = 1.13, p = .340, η² = .090]. G*Power (Faul et al., 2009) was used to determine the 

statistical power of the repeated-measures ANOVA. Given the p
2 

= .090 for the effect 

size, an alpha-level .05 and a total sample of 13, the statistical power was estimated to 

be .094. 
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6.4. Discussion 

The effect of a fixated viewing strategy, which placed the stimulus display at three 

different eccentricities in the visual field, was investigated for the slalom illusion. When 

comparing control displays using vertical lines to displays using tilted lines, the reported 

perceived magnitude was increased across all eccentricity conditions, indicating that the 

illusory sinusoidal path remains present under conditions of constant fixation. However, 

in the mid and high eccentricity tilted line conditions, around half of the responses 

reported a squirm illusion percept, rather than a slalom illusion. The proportion of 

slalom responses remained constant across eccentricities, but the proportion of straight 

responses decreased away from central vision, to be compensated with squirm 

responses. Although the tilted line display was significantly less often perceived as 

being straight at mid and high eccentricities as compared to low eccentricity, there was 

insufficient evidence that the amplitude of the slalom illusion itself was also subject to 

effects of eccentricity. Finally, there was an increase in non-straight responses to 

vertical line control displays with vertical at greater eccentricities, which can be 

interpreted as a consequence of greater perceptual uncertainty at these locations. 

These results are a refutation of the alternate hypothesis that the slalom illusion would 

not occur under conditions of constant fixation, because they are intrinsically linked to 

smooth eye movements. Even in the absence of eye movements, more slalom responses 

and greater perceived amplitudes are reported for tilted line displays than for vertical 

line control displays. This implies that the slalom illusion can result both from a 

trajectory that is projected across the retina, such as in the current study, and a trajectory 

that is stabilised on the retina through a smooth pursuit viewing strategy, as in all 

previous studies. The slalom illusion is therefore likely to originate in areas of the visual 

cortex which have already integrated the extra-retinal signals that compensate eye 
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movements into the perceptual processing stream. A study by Lebranchu et al. (2010) 

localises this particular integration between dorsal areas V2 and V3, whereas other 

studies especially highlight the importance of areas MT and MST in integrating the 

extra-retinal signals following from smooth pursuit eye movements (e.g. Newsome et 

al., 1988; Thier & Ilg, 2005; Ilg, 2008). 

These data provide further evidence for the existence of the Squirming illusion (Ito & 

Yang, 2013), a variant of the Furrow illusion (Anstis, 2012; Cormack et al., 1992), 

outside of central vision. At larger eccentricities, the sinusoidal path of the dot appeared 

to follow along with the orientation of the tilted-line inducers on around half of the trials 

recorded, resulting in amplitude responses similar to those obtained with the slalom 

illusion. The hypothesis according to which the effects measured with the tilted lines are 

always squirming effects can thus be rejected, as well as the notion that the squirming 

illusion replaces the slalom illusion completely in peripheral locations of the visual field. 

Perhaps coincidentally, the proportion of slalom responses remained constant across 

eccentricities, and squirm responses increased only at the cost of straight responses. 

This conclusion should not be drawn too strongly, however, since the high eccentricity 

control conditions indicate a significant amount of uncertainty in the responses – which 

could potentially lead to a subset of random responses across all illusion type categories. 

It was hypothesised prior to the experiment that a combination of a peripherally 

preserved angle-of-intersection illusion and a reduced reliability of the corrective 

straight horizontal motion signal would result in an increased slalom illusion at greater 

eccentricities, similar to what it was observed under conditions of occlusion. Comparing 

mid and high eccentricities, no significant difference was found lending support to this 

hypothesis, as both the proportion of slalom responses and the magnitudes reported on 

slalom responses remained constant. Comparing low and mid eccentricities, the results 
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at first sight do appear to indicate such an effect, as the proportion of straight responses 

decreased and related to this, the overall reported amplitude increased. However, as far 

as could be demonstrated through inferential statistics, this effect could only be 

attributed to the replacement of straight by squirm responses, not to an increase in the 

amplitude of the slalom responses themselves. The strong occurrence of the squirming 

illusion outside of central vision interferes with the assessment of eccentricity effects on 

the slalom illusion, leaving us with the preliminary conclusion that neither the 

occurrence, nor the magnitude of the latter is affected by the eccentricity of the stimulus 

display. 

 

6.5. Summary 

The slalom illusion is present under experimental conditions of constant fixation, and 

could not be shown to depend on the eccentricity of presentation. The slalom illusion 

can be clearly distinguished from the squirming illusion, the latter strongly manifesting 

itself when participants are presented with classic slalom displays away from central 

vision. 
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7. Chapter 7 - General discussion 

 

7.1. Summary of the experimental chapters 

Over the course of five experimental chapters, empirical and theoretical aspects of the 

slalom illusion have been investigated. The goal was not only to define the boundary 

conditions of this illusion in particular, but also to explore the more general mechanisms 

of object trajectory perception as it integrates a sequence of local motion signals into a 

global path. The clear discrepancy in the slalom illusion between the veridical local 

motion signals, that are always horizontal, and the illusory sinusoidal trajectory that is 

typically observed by experimental participants made it a promising candidate for this 

investigation. 

In Chapter 2, the original slalom illusion was replicated in two experiments, both using 

a tablet computer setup where responses were collected directly as sinusoidal finger 

movements across the screen, and a psychophysical setup where the magnitude of the 

illusion was estimated using a probe line. To determine whether the illusion is crucially 

dependent on the local information at the points of intersection between the dot 

trajectory and the tilted lines, illusory contours were created using Kanizsa-like inducers. 

In addition, experimental conditions were included where real contours were used, but 

at different contrast levels. The illusory tilted lines did not elicit a strong slalom illusion, 

and the illusion‟s magnitude remained unaffected by even a strong reduction in contrast.  

In Chapter 3, it was investigated whether the illusory slalom trajectory can be 

perceptually completed behind an occluding shape, and whether the size of the illusion 

is affected by this manipulation. When presented with filled triangles instead of 

alternating tilted lines, the participants reported an increased rather than a decreased 
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illusion. This not only indicates that the perceptual completion of the dot trajectory is 

not that of the shortest, straight path behind the occluding shape, but also that the partial 

removal of the veridical straight trajectory significantly increases the weight of the bias 

induced by the tilted lines in the final percept of the display. Participants reported that 

the dot re-appeared faster than expected from behind the occluding shapes. 

In Chapter 4, the occluded slalom illusion was compared to a classic effect in apparent 

motion, known as Korte‟s third law (Korte, 1915), whereby longer inter-stimulus 

intervals elicit the perception of longer apparent motion trajectories. Whereas the dot 

speed across the visible part of the slalom display was kept constant, the time spent 

behind the triangular occluders was manipulated to be either shorter or longer than 

would result from a trajectory at continuous speed. The shorter ISIs decreased the 

slalom illusion, but the longer ISIs did not increase it. The main interpretation of these 

results was that while the maximal magnitude of the slalom illusion is bound by the 

angle of the tilted inducing lines, its trajectory can also be re-interpreted by the visual 

system after the fact, based on the time spent behind the occluder and an assumption of 

constant speed. Because shorter ISIs only allow for shorter trajectories, a shorter 

trajectory also becomes more likely when the ISI is short. 

In Chapter 5, the slalom illusion was inverted. A sinusoidal veridical dot trajectory was 

superimposed on a display of vertical lines. If a bias towards a perpendicular angle of 

intersection underlies the slalom illusion, a reduced amplitude would then be expected. 

Instead, the slalom illusion was not affected when comparing vertical inducing lines to 

tilted inducing lines, and the effect of the angle of intersection appears exclusive to 

veridically straight trajectories. This could be attributed to a rapid adaption in neurons 

tuned to the constant motion direction of the classic slalom illusion, increasing the 

relative salience of the biased motion signals around the points of intersection. In 
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addition, the presence of static reference objects was found to be of significant influence 

on the magnitude of the slalom illusion. 

In Chapter 6, the effect of eye movements and retinal eccentricity on the slalom illusion 

was investigated. The slalom effect was shown to still occur when participants were 

instructed to keep the gaze fixated at a constant position, instead of following the dot 

with their eyes. Given the markedly different retinal effects of these fixational strategies, 

the slalom illusion then appears likely to be rooted at a stage of visual processing where 

abstraction has already been made of retinal coordinates. Even though the size of the 

amplitude responses increased outside of foveal vision, no evidence was found that 

retinal eccentricity affected the magnitude of the slalom illusion. Instead, the veridical 

percepts of a straight trajectory were towards the periphery replaced by a different type 

of visual illusion, the squirming illusion, while the amplitude responses remained 

constant across eccentricities when the slalom illusion was perceived to be present. 

These results will now be discussed from three different perspectives: the empirical 

determinants of the slalom illusion, the theoretical consequences of the current findings, 

and suggestions for future research. 

 

7.2. Determinants of the slalom illusion 

In the original slalom display of Cesàro and Agostini (1998), participants were 

presented with 13 tilted black lines of alternating orientations, a width of .3 mm and a 

vertical height of 8 mm, on a white background. A black dot with a diameter of .5 mm 

moved horizontally for 230 mm across this set of lines at a default speed of 1.55°/s 

(12.1 seconds), and intersected them at their middle points. Participants were seated at a 

distance of 700 mm from a fixed CTR computer screen, and were instructed to follow 
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the dot with their gaze. They could indicate the perceived size of the illusion by 

adjusting the size of a vertical probe line. The effect size of the slalom illusion was 

shown to depend strongly on the incidence angle, ranging from 2 mm for 30° to .8 mm 

for 60°. A dependence on the speed of the dot was also observed, with a +-20% smaller 

amplitude being reported at a speed of 3.1°/s, and a +-20% greater amplitude at .8°/s. 

Speed and angle effects did not interact. Outside of the speed range tested, the 

participants of Cesàro and Agostini (1998) reportedly experienced problems following 

the dot. The horizontal distance between the middle points of the tilted lined similarly 

affected the magnitude of the illusion; an increase and a decrease of the distance by 

50% respectively decreased and increased the reported amplitude by 20%. 

7.2.1. Robustness 

Since all the reported manipulations performed by Cesàro and Agostini (1998) affected 

the magnitude of the illusion, they did not deliver any empirical data on the factors to 

which the slalom illusion is robust. In the current work, new empirical conditions have 

been explored to which the magnitude of the slalom illusion remained invariant. 

First, it was shown that the slalom illusion can also be measured using a portable tablet 

device, whereby the response is given by re-tracing the perceived trajectory of the dot 

on the tablet screen. Apart from the classic slalom effect; the additional effects of 

Chapter 2 and Chapter 3 were replicated on both a tablet device and on a 

psychophysical setup using a CRT screen. While of limited theoretical consequence, 

this does show that the slalom effect is robust, does not require the adjustable probe line 

to be measured, and data on the effect can also easily be collected outside of the 

laboratory. 

Second, the slalom illusion was observed to occur in a variety of experimental displays, 

for instance placing circles at the end of the tilted lines (Chapter 2), or at a greatly 
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reduced spatial extent of the total trajectory (Chapter 6). Although these changes might 

have affected the size of the slalom illusion between experiments, the illusion itself 

never failed to occur in those conditions that were designed to be the analogue of the 

classic slalom illusion, in any of the experimental chapters. The slalom effect is not only 

strong in its magnitude, but also robust to the exact type of display design. 

Third, the magnitude of the slalom illusion is invariant to the contrast of the inducing 

lines (Chapter 2), at least down to a Michelson contrast of .17. It can, however, not yet 

be excluded that the magnitude will decrease when the contrast is reduced further. 

Similarly, in Chapter 3, it was observed that there was no significant difference between 

the non-occluding triangle condition where the triangle was solid grey, and the 

condition where only a black outline of the triangle was presented. Given the central 

importance of the tilted lines in producing the effect and the systematic dependence of 

the effect on all display parameters investigated by Cesàro and Agostini (1998), the 

robustness to contrast manipulations is a notable finding.  

Fourth, the slalom illusion is robust to the eye movement strategy used (Chapter 6). 

Although no direct comparison between the classic follow-the-dot instruction and a 

fixed gaze position was made, the illusion occurred with both strategies.  

Fifth, the magnitude of the slalom illusion, when it is perceived as following a slalom 

trajectory, was statistically invariant to retinal eccentricity (Chapter 6). It should be 

noted however that the proportion of Straight responses decreased away from foveal 

vision, to be replaced with squirm responses that were associated with a greater 

amplitude. Moreover, the statistical power for detecting a dependence of the magnitude 

of the slalom illusion on retinal eccentricity was limited in Chapter 6. 
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7.2.2. Boundary conditions 

The study of Cesàro and Agostini (1998) did not have a control condition, whereby no 

illusory sinusoidal modulation of the path would be expected, and the response bias of 

the participants in the context of the experimental task could be assessed. As such, it 

cannot be concluded from their manipulations of angle, speed or distance that the 

slalom illusion was in the condition with the lowest reported amplitude (60° angle, 

3.11°/s, 24 mm distance – .46 pixel effect) merely reduced, rather than absent. In the 

current experiments, control conditions were employed, both with vertical lines and 

without line inducers (Chapter 2). It was regularly observed that even in the control 

conditions a non-zero amplitude was reported, and the magnitude of the slalom illusion 

was taken to be the difference between a non-control and the control condition. 

Given the equivalence of the control condition with vertical lines and the control 

condition without lines in Chapter 2, a plausible conclusion is that the slalom illusion 

does not occur for line displays with an incidence angle of 90°. For an incidence angle 

of 60°, an amplitude greater than the minimum observed was reported by Cesàro and 

Agostini (1998). For angles between 60° and 90°, since a recent search (March 

2018)
1
showed that Cesàro and Agostini are still the only authors to have provided 

empirical results on the slalom illusion, no data are available to establish the precise 

empirical boundary conditions for the effect to be observed. Similarly, no data are 

available for incidence angles below 30°, but it is possible to infer that a sequence of 

aligned horizontal lines (incidence angle of 0°) will not elicit the slalom illusion. 

Chapter 2 in addition demonstrated that a physical tilted line contour was required to be 

present for the slalom illusion to occur. Illusory or subjective contours elicit only a 

small effect compared to one control condition, but not compared to the second control 

condition. It is possible, however, that stronger emanations of illusory contours are 

                                            
1
The search was done by querying Google Scholar for papers citing the original slalom illusion paper by Cesàro and Agostini. 



160 
 

more effective. For instance, when using full illusory Kanizsa figures, rather than just 

illusory lines. 

A straight trajectory is required for the path to be modulated by its repeated intersection 

with lines that are tilted with regard to its motion direction. As shown in Chapter 5, the 

inverted slalom illusion did not produce the expected result, i.e. a reduction in the 

magnitude of the illusion. This clearly demonstrates that incidence angle, while a main 

determinant of the slalom illusion, is effective only conditionally. It should be noted 

however that no measurements were recorded for experimental conditions where the 

trajectory was straight but not horizontal. The possibility cannot strictly be excluded 

that it is the non-horizontal, rather than the non-straight, property of the inverse slalom 

trajectory that prevented the occurrence of the illusion. 

Finally, it was also observed that continuous visibility of the dot is not required for the 

slalom illusion to occur (Chapter 3). When an occluding triangular shape was positioned 

in between the tilted lines of the original slalom display, the illusory sinusoidal 

trajectory could be perceptually completed behind an occluder, at an increased 

magnitude. 

7.2.3. Modulatory influences 

The known modulatory influences of angle, speed, and distance and their interactions 

were not investigated further in the current experiments. Despite the lack of control 

conditions in the original study of Cesàro and Agostini (1998), they were considered to 

be established to a sufficient degree of certainty. Some further observations were 

however made on those factors that affected the slalom illusion, but did not prevent its 

occurrence altogether. 
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Partial occlusion of the dot trajectory increased the magnitude of the slalom illusion 

(Chapter 3). A similar increase did not occur when the dot moved in front of an object 

of a similar size. This finding could perhaps be compared to the effect of distance in the 

paper of Cesàro and Agostini (1998), whereby the illusion magnitude also increased 

when the straight trajectory between the tilted lines was simply made shorter. However 

when the time spent behind the occluder (ISI; Chapter 4) was in addition made shorter, 

the illusion magnitude decreased again. This effect therefore has the same direction as 

the speed modulation of Cesàro and Agostini (1998), whereby higher speeds decreased 

the reported amplitude.  

The presence of visual references modulates the estimation of sinusoidal trajectories. 

When non-occluding triangles were used as inducing elements (Chapter 3), the size of 

the illusion was decreased. It could be speculated that this is to be attributed to the 

presence of a horizontal line at the base of the triangle, which makes it easier for the 

observer to estimate the true vertical extent of sinusoidal modulation of the trajectory. In 

Chapter 5, participants were presented with a veridically sinusoidal trajectory, of which 

the amplitude was to be estimated. If vertical or tilted lines were present in the display, 

with a vertical extent greater than the amplitude of the trajectory, the amplitude was 

slightly overestimated. When they were removed, however, the amplitude was strongly 

underestimated. While such reference effects do not cause the slalom illusion, they 

should be closely controlled when designing conditions for future experiments, so that 

confounds can be avoided. 

Finally, retinal eccentricity did affect the size of the overall mean amplitude responses 

when participants were presented with the slalom display (Chapter 6). However, this 

could not be shown to be attributable to either an increase in the propensity of the 
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slalom illusion, nor the magnitude of the slalom illusion itself. Instead, the main 

variation was introduced by Straight and Squirm interpretations of the stimulus display. 

 

7.3. Theoretical implications 

Human visual perception is often characterised as a hierarchical analysis of the retinal 

input image, starting from local features limited in spatial and temporal extent, and 

integrating them across space and time into the global percept that is consciously 

perceived by the observer. While Gestalt psychologists have posited for over a century 

that the „whole‟ is more than, different from, and dominant over the sum of the „parts‟ 

(Wertheimer, 1912, 1938; Köhler, 1920; Koffka, 1935), more recent advances in vision 

science have also shown that the representation of the local, detailed features in the 

brain is itself in turn actively influenced by the global analysis of the stimulus (Navon, 

1977; Murray et al., 2002; Johnson & Olshausen, 2003). Motion in particular is a salient 

quality of visual perception, which is analysed from the earliest stages of visual 

perception up to the complex interpretation and anticipation of object trajectories – 

often in dedicated cortical areas, such as area MT and MST. The slalom illusion offers a 

privileged view into this process. 

The local features underlying the slalom illusion are the position and the motion 

direction of the dot, at any moment in time. It is proposed that the encoding of motion 

direction is biased towards perpendicularity around the points of intersection with the 

tilted lines (Cesàro & Agostini, 1998). The main argument for this is the dependence of 

the magnitude of the illusion on the angle of the lines, with no illusion occurring in the 

case of vertical lines, as well as the prevalence of a perpendicularity bias in other types 

of stimulus displays (Fineman & Melingonis, 1977; Wenderoth & Johnson, 1983; Khuu, 

2012; Khuu & Kim, 2013). The exact origin of this bias in the context of the slalom 
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illusion is unclear. Among the potential candidate explanations, the aperture problem 

(Stumpf, 1911; Wallach, 1935; Wuerger et al., 1996) in primary visual cortex applies to 

the motion direction of lines, not of dots. It could perhaps be speculated that the motion 

energy of the dot is confounded with that of the tilted line it intersects with, and that the 

perpendicular motion of the line is then in turn mis-assigned to the dot. However, there 

is no evidence for this. Another possible root cause for the perpendicularity bias in 

primary visual cortex could be surround suppression of neighbouring orientation 

columns (Blakemore et al., 1970; see section 2.3 of the general introduction). This 

mechanism was demonstrated by the authors using static line stimuli, however, and it is 

yet to be shown in empirical research whether it could generalise to the interception 

angle between a moving object and a static line. 

The subjective Kanizsa line contours of Chapter 2 were used to test whether the tilted 

lines need to be locally defined, as can be expected to be a prerequisite to localise the 

root cause of the slalom illusion early in the visual stream, or whether the 

perpendicularity bias arises at a higher and later level of contour representation. The 

slalom illusion could indeed only be clearly elicited by real line contours, but it was also 

noted that the induction of the subjective line contours was possibly too weak to allow a 

fair comparison. The invariance of the slalom illusion to the contrast of the tilted lines 

in Chapters 2 and 3, however, is not reminiscent of the signal processing properties of 

primary visual cortex, where the strength of neuronal responses is strongly contrast-

dependent (if not their selectivity – see Skottun, Bradley, Sclar, Ohzawa, & Freeman, 

1987). It can be concluded that there is reason to suggest a higher-level origin than V1 

for the local perpendicularity bias in the case of the slalom illusion.  

Interestingly, Chapter 5 demonstrated that the perpendicularity bias does not generalise 

to cause an inverted slalom illusion, where the veridical motion path is sinusoidal and 



164 
 

the intersecting lines are vertical. At the very least, this demonstrates that the 

perpendicularity bias does not by itself suffice to cause a motion illusion that is as 

strong as the slalom illusion. It is suggested that the manner in which middle temporal 

(MT) cortex encodes motion information could be the second fundamental piece of the 

puzzle, in addition to the perpendicularity bias. Priebe and Lisberger (2002) describe a 

neural circuitry in MT which leads to a short-term adaptation, and thus loss of response 

strength, within 20-80 ms after the motion onset. This adaptation is tuned to the 

direction, but also the speed of the motion. This circuitry would suppress the neuronal 

responses to the constant horizontal motion of the classic slalom illusion, but not that of 

the constantly changing veridically sinusoidal motion path of the inverted slalom 

illusion.  

Given the building blocks of on the one hand a rapidly suppressed horizontal motion 

signal, and on the other hand motion signals locally biased towards perpendicularity at 

the intersections with the tilted lines, how could the slalom illusion arise? An important 

finding in this regard is the occurrence of the slalom illusion using both a smooth 

pursuit eye movement strategy in Chapters 2 to 5, and a constant fixation strategy in 

Chapter 6. At the retinal level, following the dot and fixating the gaze result in a very 

different input – the first with little motion and positional signals on the retina, the latter 

with many. This suggests that the integration process of the trajectory must take place at 

a level in the visual processing stream where stimulus representations have become 

independent of their position on the retina. That is, they must have incorporated the 

motor signals of eye movement into the visual representation, so that the motion can 

still be seen even when the moving dot has been stabilised on the retina by the smooth 

pursuit eye movements. This has been found to be case for only some cells in area MT, 

but most cells in area MST (Ong & Bisley, 2011; Hartmann, Bremmer, Albright, & 

Krekelberg, 2011; Chukoskie & Movshon, 2009). Interestingly, the middle-superior 
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temporal area (MST) of the visual cortex  has also been implicated in the processing of 

object shape, in cooperation with the shape-sensitive lateral-occipital complex LOC 

(Kourtzi, Bülthoff, Erb, & Grodd, 2002). This makes MST a good candidate for the 

representation of the sinusoidally modulated trajectory shape, which participants 

reported on in the experimental tasks of the current research.  

A simple motion integration mechanism to explain the slalom illusion is vector 

summation or averaging within a sliding temporal integration window, where each 

vector represents the direction and neuronal strength of the dot motion at each moment 

in time. If the horizontal motion signal is indeed strongly suppressed by short-term 

adaptation, then the motion signals biased towards perpendicularity at the points of 

intersection gain a great weight in the integration window, affecting the averaged 

motion direction over an extended period of time. This by itself could result in a 

smoothly evolving average motion direction, following a sinusoidal pattern. If part of 

the unbiased horizontal trajectory is removed, then the biased direction signals gain 

even greater weight, and the magnitude of the illusion is increased. Indeed, in Chapter 3 

it was found that the partial occlusion of the slalom display resulted in larger reported 

amplitudes for the slalom illusion. 

This passive mechanism of vector summation cannot, however, account for all aspects 

of the amodal completion of the dot trajectory. First, participants reported that the dot 

appeared to „jump out‟ from behind the occluder, as if they had expected it to take 

longer to complete its trajectory. This is consistent with a greater amplitude, but also 

implies a more active process of prediction, whereby the visual system attempts to make 

sense of its inputs as they arrive, through assumptions based on past knowledge and 

recent inputs. The predictive coding (Rao & Ballard, 1999) framework formalises this 

view. The visual system is modelled as a continuous generator of predictions which are 
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fed back to and subtracted from the lower levels of representation. What is represented 

in neuronal activity is the error signal between the expected input and the actual input. 

The goal of visual processing is to constantly update predictions, and iteratively reduce 

error and therefore low-level neuronal activity (Murray et al., 2002). The salient 

„jumping out‟ of the dot from behind the occluder may then represent a momentary 

error signal. 

Second, in Chapter 4 shorter ISIs behind the occluder resulted in a reduced illusion 

magnitude. This is reminiscent of observations made in the apparent motion literature 

(Korte, 1915), whereby longer ISIs allow for the possibility of longer trajectories in the 

interpretation of the stimulus. Since the ISI is only known after the occluded trajectory 

has been travelled, this was interpreted as an example of post-diction, whereby the 

interpretation of the stimulus that reached conscious perception is not computed on-line, 

but after the fact (Eagleman & Sejnowski, 2000; 2003). At the same time, longer ISIs 

did not increase the magnitude of the illusion, as would have been predicted by this 

model. It was proposed that the amplitude of the slalom trajectory may have been 

limited by a ceiling effect in this condition. 

An inconsistency appears to be present in the attempt to offer a coherent explanation of 

the empirical effects observed with the slalom illusion. If the dot stimulus is temporarily 

occluded, could this not release the suppression of the horizontal motion signal by 

short-term adaptation in MT neurons, and reduce the magnitude of the illusion? 

However, given the very short time needed for this adaption to occur (20-80 ms), the 

effect of its temporary release would probably be limited. In Experiment 4 of Chapter 3, 

the trajectory took 7.5 seconds in total to complete, and 660 ms for each visible part 

between the triangles.  Therefore, only 3-12% of the visible dot trajectory would be free 

from adaptation to the constant motion direction. 
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A central aspect of the slalom illusion and other motion illusions is the necessary 

coupling between motion and position. Whereas the view put forward here argues its 

point mainly in terms of biased motion direction signals and their integration over time, 

the report given by the experimental participants of the current experiments is always in 

terms of changes in the vertical dot position. This implied dominance of motion 

information over position information is remarkable, because motion by itself is a rather 

elusive aspect of a visual perception, as demonstrated by Wertheimer‟s surprise upon 

discovering it as an independent quality, whereas few aspects of visual perception 

appear to be more real and more actionable than object position. From a 

neurophysiological perspective, however, it has been well established that motion 

direction signals in area MT do strongly bias the encoding of object position (Whitney, 

2002; Maus et al., 2013; Nishida & Johnston, 1999; McGraw et al., 2002). Interestingly, 

Watanabe (2015) demonstrated in a binocular rivalry experiment that this misperception 

of object position due to a motion direction bias only occurs when the stimulus is 

consciously perceived. In binocular rivalry, a different image is shown to each eye, but 

only the dominant image is perceived. The other image is still processed by the visual 

system, but not consciously perceived. The same could then hold true for the slalom 

illusion, in that the trajectory modulation might only occur exclusively when the 

participants are consciously observing the slalom display. 

Lastly, the effect of reference objects should not be ignored. Human observers are 

surprisingly poor at estimating the absolute position of visual stimuli in isolation, and 

accurately detecting displacements of such stimuli, especially when their motion 

transient is masked or not attended to (Bridgeman et al., 1994; Deubel, 2004; Deubel et 

al., 2010; Higgins, Irwin, Wang, & Thomas, 2009; Higgins & Wang, 2010). In Chapter 

5, it was indeed observed that the sinusoidal amplitude of a dot trajectory in isolation 

was underestimated, whereas the presence of accompanying stimuli leads to a slight 
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overestimation. This implies that the final amplitude responses given by experimental 

participants should not only be explained through the subjective motion vectors of the 

dot, but also through the general layout characteristics of the display as a whole, 

including the tilted lines. A future quantitative model of the slalom illusion which does 

not take the effects of spatial references into account, will necessarily be incomplete. 

 

7.4. Suggestions for future research 

The results of the experiments conducted for this thesis have given rise to new questions 

that can be operationalised into a number of follow-up studies. The proposed 

experiments will both shed more light on the invariances, boundary conditions and 

modulatory influence of the slalom illusion, and on its theoretical underpinnings. 

7.4.1. Smooth pursuit eye movements as a dependent variable 

Both in the study of Cesàro and Agostini (1998) and in Chapters 2-5 of the current 

thesis, an instruction was given to the participants in the experiments to follow the dot 

with their eyes. That is, to perform smooth pursuit eye movements. However, these eye 

movements were never measured during the task. 

A central question of interest is whether the smooth pursuit eye movements display a 

sinusoidal pattern, even though the veridical motion direction is straight, and whether 

this is the case already from the beginning of the trajectory or not. Unlike the reported 

perception of the amplitude of the trajectory, smooth pursuit eye movements are on-line, 

steered only by the visual information that is available either currently or in the past. In 

the case of a partially occluded trajectory (see Chapter 3) and manipulated ISIs during 

occlusion (see Chapter 4), the proposed effects on the trajectory amplitude during 

occlusion could similarly be measured indirectly through smooth pursuit eye 
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movements. If the increased amplitude that was observed during occlusion is a 

predictive effect, smooth pursuit eye movements could follow the pattern of results 

found in Chapter 3. If it is postdictive and takes effect only after the dot re-appears from 

behind the occluder, as was proposed for the ISI effect on occluded trajectories in 

Chapter 4, it should not affect the amplitude of the eye movements. 

Although smooth pursuit eye movements are not required for the slalom illusion to 

occur (see Chapter 6), it is possible they play a causal role in some of the effects 

observed in the current thesis, or in the magnitude of the illusion. That is, the perception 

of the trajectory can be biased in the direction into which the eye motor control is biased. 

To investigate this, replication attempts can be made for the main findings of Chapters 

2-5, but under fixated gaze conditions. If smooth pursuit eye movements do not play a 

causal role, these effects should still occur. 

7.4.2. Effect of the length and vertical extent of the inducing lines 

In the study of Cesàro and Agostini (1998), the incidence angle of the dot and the lines 

was manipulated between 30° and 60°, and the vertical extent of the lines was kept 

constant. However, this is only possible if the length of the lines covaries with the 

angle: for an identical vertical extent, a more tilted line must also be longer.  

The confounding factor of length needs to be experimentally disentangled from the 

effect of angle. This implies that the vertical extent will be manipulated, too. Given the 

suggested importance of visual reference on the estimation of trajectory amplitude 

(Chapter 3 and Chapter 5), this is a factor of interest in its own right. Additional 

elements could be added to the display to separate reference effects from line length and 

angle. For instance, the circular markers of Chapter 2 proved to be equally effective as a 

reference for vertical extent as full vertical lines. In addition, since Cesàro and Agostini 

only explored incidence angles between 30° and 60°, the full range of incidence angles 
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between 0° and 90° can be tested in the context of this proposed study (using 90° as the 

control condition). 

7.4.3. Separating offset from occlusion 

In Chapter 3 of the current thesis, the dot trajectory was partially invisible as it appeared 

to be occluded by a triangular shape. This manipulation increased the perceived 

amplitude of the trajectory, whereas the magnitude of the illusion did not increase when 

the dot passed in front of a similar shape. The interpretation made focused on the partial 

unavailability of the veridically straight dot trajectory, otherwise compensating the 

biased directional signals at the line intersections. 

However, the partial unavailability of the trajectory can be manipulated separately from 

amodal completion of the trajectory by a shape. In condition A, an occluding black 

triangle such as in Chapter 3 could be displayed. In condition B, the original layout of 

the tilted lines can be used, but the dot would disappear during those parts of the 

trajectory where it was occluded in condition A.  It can then be observed whether 

amodal completion is a necessary condition for the trajectory to be integrated across an 

interruption, or whether a temporary disappearance without occlusion suffices to elicit 

an identical increase in reported magnitude of the illusion.  

Stimulus onset and offset can also be manipulated independent of the tilted line 

positions. If indeed the temporary disappearance of the dot elicits the same effects as 

occlusion, a follow-up experiment could manipulate the onset and offset of the dot to 

occur at other positions in the display than at the intersection with the tilted lines, so as 

to investigate what the main driving factors of the original occlusion effect are (for 

instance, the total visible trajectory regardless of the number of onset and offset events). 

If temporary disappearance and occlusion did not result in similar effects, occlusion can 

also be introduced at positions that do not coincide with the tilted lines - for instance by 
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placing black rectangles on parts of the trajectory. The results from this experiment will 

show whether the occlusion and/or disappearance effects are only effective immediately 

following the biased local motion signals at the intersections, or not. 

7.4.4. A challenge to the hypothesis of locally biased motion signals 

The root cause of the slalom illusion is proposed to lie in the points of intersection 

between the dot trajectory and the tilted lines. To test this hypothesis, the local 

intersections could be removed without removing the general context of the tilted lines. 

This can be done in two different ways. 

First, temporally the tilted lines can be briefly blanked at the time of intersection, 

retaining the approach of the dot to the lines but removing the moment of intersection 

itself. Second, a gap could be introduced in the middle of the tilted lines, similarly 

retaining the lines but not the intersection signal. In both cases, it is expected that the 

slalom illusion will disappear compared to a control condition. If it does not, further 

investigations should be performed into the general context effects imposed by the tilted 

line modules. 

7.4.5. Occlusion behind strong Kanizsafigures 

In Chapter 2, the slalom illusion was not observed when inducing illusory contours 

using a line variant of the Kanizsa figure, as an analogue of the classic slalom illusion. 

It can be suspected that the induced percept of lines was not strong, however, compared 

to the perceptually filled-in shapes of traditional Kanizsa figures. In Chapter 3, it was 

observed that the slalom illusion manifested itself even stronger when the motion path 

was partially occluded by a shape.  

A new type of slalom display can then be created, where the triangular shapes of 

Chapter 3 are perceptually induced using classic Kanizsa inducers. The strong 
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perceptual presence of the figure can be determined independently, for instance by 

measuring the associated apparent brightening of the surface of the triangle. If the 

findings of Chapter 2 are again replicated using a strong Kanizsa figure, it can be 

asserted with greater certainty that an intersection with a locally defined contour is 

necessary to elicit the slalom illusion. 

7.4.6. Independent manipulation of the speed between and behind occluders 

In Chapter 4 it was found that shorter ISIs behind occluders caused a reduced 

magnitude of the slalom illusion. Cesàro and Agostini (1998) showed, however, that 

faster speed in general reduces the effect. There is a clear difference between these 

situations: in Chapter 4 the speed manipulation is not directly visible, in the work of 

Cesàro and Agostini it affects the entire visible trajectory. The speed effect of Cesàro 

and Agostini could then possibly be attributed to a reduced short-term adaptation at 

greater speeds for the horizontal motion signals, whereas this would not apply to speed 

increases for occluded trajectories. The speed between and behind occluders could be 

manipulated independently within the same display, to empirically chart their 

independent contribution and their interaction. 

7.4.7. Disentangling straight from horizontal paths in the inverted slalom 

illusion 

In Chapter 5, participants did not report smaller trajectory amplitudes when a veridically 

sinusoidal path intersected with vertical lines (inverted slalom illusion), even though 

this could have been expected from the hypothesis that motion direction is biased 

towards perpendicular angles at the points of intersection. It was concluded that the 

slalom illusion requires a veridically straight trajectory. 
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However, an alternate hypothesis could be that the path should in particular be 

horizontally straight. The general rotation of the slalom display was never manipulated. 

In this follow-up study, a horizontal condition could be compared to vertical and 

oblique rotations. It is interesting here to note that smooth pursuit eye movements have 

the greatest accuracy for horizontal motion (Rottach et al., 1996). If eye movements 

play a role in the strength of the slalom illusion – which is yet to be shown - it could 

potentially be demonstrated that rotation effects in the slalom illusion are also 

influenced by the degree of eye movement control in each direction. 

7.4.8. Exploration of the contrast space, and manipulating the reliability of the 

trajectory 

In Chapter 2, a reduced contrast of the inducing lines did not reduce the magnitude of 

the illusion. It would be interesting to explore this effect in a more systematic manner, 

and determine the contrast threshold at which it will start to affect the slalom illusion. 

According to the view put forward in the current thesis, this should only occur at a very 

low contrast. 

The contrast of the moving dot was not manipulated in the current thesis. In a Bayesian 

view of visual perception, low contrast is often suggested to reduce the reliability of the 

immediate veridical information, in favour of biases from other sources (e.g. Weiss et 

al., 2002). By gradually and dynamically manipulating the contrast of the dot over the 

course of the trajectory, the reliability of the proposed „veridical‟ and „biased‟ parts of 

the trajectory could be systematically manipulated, allowing for clear predictions. For 

instance, according to the view put forward in the current thesis, the slalom effect 

should be larger if the dot contrast is higher around the line intersections. More 

generally, it could then be inferred which parts of the dot trajectory contribute positively, 

and which parts contribute negatively to the magnitude of the slalom illusion. 



174 
 

7.5. Conclusions 

The motion path of an object is more than a contiguous sequence of position and motion 

direction signals. The slalom illusion demonstrates this, as a veridically horizontal dot 

trajectory is perceived as following a sinusoidal path, across a set of tilted lines 

alternatingly oriented in opposite directions. As a result of the findings presented in the 

current thesis, it was argued that the effect finds its origin in the intersection points of 

the trajectory and the tilted lines, but not at the earliest stages of the visual system. It is 

suggested that the motion path is integrated across occluders in a postdictive fashion, 

interpreting the motion direction signals as a coherent trajectory after the fact, in 

motion-sensitive areas of the visual cortex that have already transformed their visual 

inputs from a retinotopic coordinate system to spatiotopic coordinates. Indeed, the eye 

movement strategy used does not affect the occurrence of the illusion. The modulation 

of the motion path by the line pattern is dependent on the veridical trajectory being 

straight, leading to speculation that it relies on short-term adaptation in bi-phasic 

neurons to the constant motion direction. The postdictive motion path integration 

mechanism is proposed to reach a final trajectory interpretation by weighing the motion 

direction signals by their neuronal strength. Positional signals are easily overruled by 

the dot's positions implied by these motion direction signals. Finally, the slalom illusion 

is equally prevalent and equally large in magnitude across different retinal eccentricities. 

Seen in a broader context, the slalom illusion is also more than merely a mistaken 

perception. It is a demonstration of the object motion path as a Gestalt, a coherent 

holistic analysis that is not just adding to its constituent input signals of position and 

motion direction, localised in space and time, but superseding them. A continued 

research program has been outlined, that will not only further elucidate empirical 

aspects of the illusion itself, but also contribute to the general understanding of the 
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visual perception of motion, position, and shape: how eye movements are abstracted 

from retinal inputs, signals become a Gestalt, and prediction relates to postdiction. With 

its combination of single-object trajectory motion and geometrical determinants, in full 

foveal view, the slalom illusion is a pertinent showcase of visual perception as an active 

reconstruction of reality. 
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Appendix 4.Boxplots for the data from Experiment 1 Chapter 2. 
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Appendix 5.Descriptive statistics for the data from Experiment 1 Chapter 2, after the 

outliers were removed. 
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Descriptives 

 Statistic Std. Error 

Original slalom Mean 24.7344 1.34501 

95% Confidence Interval for 

Mean 

Lower Bound 22.0466  

Upper Bound 27.4222  

5% Trimmed Mean 24.6085  

Median 25.3750  

Variance 115.780  

Std. Deviation 1.76009  

Minimum 5.50  

Maximum 49.25  

Range 43.75  

Interquartile Range 17.25  

Skewness .033 .299 

Kurtosis -.886 .590 

Illusory lines Mean 17.4492 .93384 

95% Confidence Interval for 

Mean 

Lower Bound 15.5831  

Upper Bound 19.3154  

5% Trimmed Mean 16.9436  

Median 16.5000  

Variance 55.812  

Std. Deviation 7.47073  

Minimum 4.75  

Maximum 41.50  

Range 36.75  

Interquartile Range 7.56  

Skewness 1.225 .299 

Kurtosis 1.837 .590 

Reduced 

contrast 

Mean 23.7656 1.31597 

95% Confidence Interval for 

Mean 

Lower Bound 21.1359  

Upper Bound 26.3954  

5% Trimmed Mean 23.2465  

Median 21.6250  

Variance 11.833  

Std. Deviation 1.52773  

Minimum 7.00  

Maximum 51.50  

Range 44.50  

Interquartile Range 14.44  

Skewness .700 .299 

Kurtosis .175 .590 

Control Mean 17.1406 1.14789 
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95% Confidence Interval for 

Mean 

Lower Bound 14.8468  

Upper Bound 19.4345  

5% Trimmed Mean 16.3906  

Median 15.6250  

Variance 84.329  

Std. Deviation 9.18309  

Minimum 5.00  

Maximum 45.25  

Range 4.25  

Interquartile Range 1.81  

Skewness 1.278 .299 

Kurtosis 1.460 .590 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 6.Histograms showing the distribution of the data from Experiment 1 

Chapter 2, after the outliers were removed. 
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Appendix 7.Boxplots for the data from Experiment 2 Chapter 2.
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Appendix 8. Descriptive statistics for the data from Experiment 2 Chapter 2 after the 

outliers were removed. 

Descriptives 

 Statistic Std. Error 

Original slalom Mean 8.3964 1.26247 

95% Confidence Interval for 

Mean 

Lower Bound 5.8061  

Upper Bound 1.9868  

5% Trimmed Mean 7.7841  

Median 5.4000  

Variance 44.627  

Std. Deviation 6.68035  

Minimum .90  

Maximum 27.40  

Range 26.50  

Interquartile Range 6.63  

Skewness 1.557 .441 

Kurtosis 1.900 .858 

Control circles Mean 2.6929 .42232 

95% Confidence Interval for 

Mean 

Lower Bound 1.8263  

Upper Bound 3.5594  

5% Trimmed Mean 2.4556  

Median 2.0000  

Variance 4.994  

Std. Deviation 2.23473  

Minimum .60  

Maximum 9.60  

Range 9.00  

Interquartile Range 1.73  

Skewness 1.837 .441 

Kurtosis 2.976 .858 

Control lines Mean 2.1929 .33480 

95% Confidence Interval for 

Mean 

Lower Bound 1.5059  

Upper Bound 2.8798  

5% Trimmed Mean 1.9794  

Median 1.9000  

Variance 3.138  

Std. Deviation 1.77157  

Minimum .20  

Maximum 8.20  

Range 8.00  
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Interquartile Range 1.43  

Skewness 2.328 .441 

Kurtosis 5.939 .858 

Reduced contrast Mean 8.5429 1.33724 

95% Confidence Interval for 

Mean 

Lower Bound 5.7991  

Upper Bound 11.2866  

5% Trimmed Mean 7.7817  

Median 5.4000  

Variance 5.070  

Std. Deviation 7.07601  

Minimum 2.30  

Maximum 29.40  

Range 27.10  

Interquartile Range 6.20  

Skewness 1.830 .441 

Kurtosis 2.833 .858 

Illusory lines Mean 2.8821 .49527 

95% Confidence Interval for 

Mean 

Lower Bound 1.8659  

Upper Bound 3.8984  

5% Trimmed Mean 2.5667  

Median 2.1000  

Variance 6.868  

Std. Deviation 2.62072  

Minimum .60  

Maximum 11.50  

Range 1.90  

Interquartile Range 1.75  

Skewness 2.281 .441 

Kurtosis 4.844 .858 
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Appendix 9. Histograms showing the distribution of the data from Experiment 2 

Chapter 2 after the outliers were removed. 
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Appendix 1. Histograms showing the distribution of the data from Experiment 2 

Chapter 2 after the outliers were removed and the data were transformed into their 

natural logarithms. 
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Appendix 11.Boxplots showing the distribution of the data from Experiment 1 Chapter 

3. 
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Appendix 12.Descriptive statistics for the data from Experiment 1 Chapter 3. 

 Statistic Std. Error 

Original slalom Mean 25.4000 1.48204 

95% Confidence Interval for 

Mean 

Lower Bound 22.4393  

Upper Bound 28.3607  

5% Trimmed Mean 24.8942  

Median 25.7500  

Variance 142.769  

Std. Deviation 11.94860  

Minimum 5.50  

Maximum 68.00  

Range 62.50  

Interquartile Range 17.50  

Skewness .617 .297 

Kurtosis 1.100 .586 

Occluding triangles Mean 32.1846 1.99190 

95% Confidence Interval for 

Mean 

Lower Bound 28.2053  

Upper Bound 36.1639  

5% Trimmed Mean 31.5823  

Median 27.5000  

Variance 257.899  

Std. Deviation 16.05923  

Minimum 7.00  

Maximum 78.75  

Range 71.75  

Interquartile Range 25.25  

Skewness .609 .297 

Kurtosis -.240 .586 

Control Mean 17.8769 1.34879 

95% Confidence Interval for 

Mean 

Lower Bound 15.1824  

Upper Bound 2.5714  

5% Trimmed Mean 16.7703  

Median 16.0000  

Variance 118.250  

Std. Deviation 1.87429  

Minimum 5.00  

Maximum 65.00  

Range 6.00  

Interquartile Range 11.25  

Skewness 1.922 .297 

Kurtosis 5.012 .586 
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Appendix 13. Histograms showing the distribution of the data from Experiment 1 

Chapter 3 after the outliers were removed. 
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Appendix 14.Boxplots showing the distribution of the data from Experiment 2 Chapter 

3. 
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Appendix 15. Histograms showing the distribution of the data from Experiment 2 

Chapter 3 after the outliers were removed. 
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Appendix 16. Descriptive statistics for the data from Experiment 2 Chapter 3 after the 

outliers were removed. 

Descriptives 

 Statistic Std. Error 

Occluding triangles Mean 11.8843 1.46439 

95% Confidence Interval for 

Mean 

Lower Bound 8.8796  

Upper Bound 14.8890  

5% Trimmed Mean 11.4794  

Median 9.3500  

Variance 6.044  

Std. Deviation 7.74883  

Minimum .60  

Maximum 31.40  

Range 3.80  

Interquartile Range 1.78  

Skewness .881 .441 

Kurtosis .042 .858 

Control Mean 1.9054 .24651 

95% Confidence Interval for 

Mean 

Lower Bound 1.3996  

Upper Bound 2.4112  

5% Trimmed Mean 1.7440  

Median 1.4000  

Variance 1.702  

Std. Deviation 1.30443  

Minimum .60  

Maximum 6.40  

Range 5.80  

Interquartile Range 1.48  

Skewness 2.177 .441 

Kurtosis 5.252 .858 

Grey triangles Mean 5.3700 .96286 

95% Confidence Interval for 

Mean 

Lower Bound 3.3944  

Upper Bound 7.3456  

5% Trimmed Mean 4.7151  

Median 3.6000  

Variance 25.959  

Std. Deviation 5.09496  

Minimum .80  

Maximum 24.10  

Range 23.30  



235 
 

Interquartile Range 4.00  

Skewness 2.390 .441 

Kurtosis 6.336 .858 

Original slalom Mean 8.0989 1.27686 

95% Confidence Interval for 

Mean 

Lower Bound 5.4790  

Upper Bound 1.7188  

5% Trimmed Mean 7.3671  

Median 5.5850  

Variance 45.651  

Std. Deviation 6.75652  

Minimum 2.30  

Maximum 28.10  

Range 25.80  

Interquartile Range 5.10  

Skewness 1.780 .441 

Kurtosis 2.459 .858 

Transparent triangles Mean 6.5868 1.09799 

95% Confidence Interval for 

Mean 

Lower Bound 4.3339  

Upper Bound 8.8397  

5% Trimmed Mean 5.9083  

Median 4.3000  

Variance 33.756  

Std. Deviation 5.81000  

Minimum 1.30  

Maximum 26.80  

Range 25.50  

Interquartile Range 6.00  

Skewness 2.026 .441 

Kurtosis 4.514 .858 
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Appendix 17. Histograms showing the distributions of the data from Experiment 2 

Chapter 3 after the outliers were removed and the data was transformed into their 

natural logarithms. 
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Appendix 18.Boxplots showing the distribution of the data from the experiment in 

Chapter 4. 
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Appendix 19.Histograms showing the distribution of the data from the experiment in 

Chapter 4. 
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Appendix 20.Descriptive statistics for the data from the experiment in Chapter 4. 

Descriptives 

 Statistic Std. Error 

Original Slalom Mean 4.3324 .42045 

95% Confidence Interval for 

Mean 

Lower Bound 3.4410  

Upper Bound 5.2237  

5% Trimmed Mean 4.1582  

Median 4.2000  

Variance 3.005  

Std. Deviation 1.73358  

Minimum 2.30  

Maximum 9.50  

Range 7.20  

Interquartile Range 1.60  

Skewness 1.796 .550 

Kurtosis 4.176 1.063 

Original ISI Mean 7.5565 .61105 

95% Confidence Interval for 

Mean 

Lower Bound 6.2611  

Upper Bound 8.8518  

5% Trimmed Mean 7.5239  

Median 7.2000  

Variance 6.347  

Std. Deviation 2.51942  

Minimum 3.40  

Maximum 12.30  

Range 8.90  

Interquartile Range 3.63  

Skewness .157 .550 

Kurtosis -.442 1.063 

Long ISI Mean 6.8400 .56166 

95% Confidence Interval for 

Mean 

Lower Bound 5.6493  

Upper Bound 8.0307  

5% Trimmed Mean 6.8333  

Median 7.3000  

Variance 5.363  

Std. Deviation 2.31579  

Minimum 3.10  

Maximum 1.70  

Range 7.60  

Interquartile Range 3.80  

Skewness -.081 .550 
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Kurtosis -.899 1.063 

Short ISI Mean 3.7194 .29103 

95% Confidence Interval for 

Mean 

Lower Bound 3.1024  

Upper Bound 4.3364  

5% Trimmed Mean 3.6716  

Median 3.5000  

Variance 1.440  

Std. Deviation 1.19996  

Minimum 1.70  

Maximum 6.60  

Range 4.90  

Interquartile Range 1.30  

Skewness .682 .550 

Kurtosis 1.117 1.063 
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Appendix 21.Boxplots showing the distribution of the data from Experiment 1 Chapter 

5. 
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Appendix 22.Histograms showing the distribution of the data from Experiment 1 

Chapter 5. 
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Appendix 23.Descriptive statistics for the data from Experiment 1 Chapter 5. 

Descriptives 

 Statistic Std. Error 

Inverted slalom Mean 11.8960 .67663 

95% Confidence Interval for 

Mean 

Lower Bound 1.5274  

Upper Bound 13.2646  

5% Trimmed Mean 11.7925  

Median 11.3500  

Variance 18.313  

Std. Deviation 4.27937  

Minimum 3.70  

Maximum 21.70  

Range 18.00  

Interquartile Range 6.30  

Skewness .487 .374 

Kurtosis -.026 .733 

Inverted occluded Mean 13.1188 .72522 

95% Confidence Interval for 

Mean 

Lower Bound 11.6519  

Upper Bound 14.5856  

5% Trimmed Mean 13.0319  

Median 12.6000  

Variance 21.038  

Std. Deviation 4.58668  

Minimum 3.80  

Maximum 24.10  

Range 2.30  

Interquartile Range 6.75  

Skewness .368 .374 

Kurtosis -.205 .733 

Inverted control Mean 11.6490 .73746 

95% Confidence Interval for 

Mean 

Lower Bound 1.1573  

Upper Bound 13.1407  

5% Trimmed Mean 11.5847  

Median 1.8500  

Variance 21.754  

Std. Deviation 4.66412  

Minimum 2.70  

Maximum 21.70  

Range 19.00  

Interquartile Range 5.95  

Skewness .314 .374 
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Kurtosis -.277 .733 

Blank Mean 7.7343 .57071 

95% Confidence Interval for 

Mean 

Lower Bound 6.5799  

Upper Bound 8.8886  

5% Trimmed Mean 7.6631  

Median 7.8000  

Variance 13.028  

Std. Deviation 3.60947  

Minimum 1.40  

Maximum 16.10  

Range 14.70  

Interquartile Range 5.04  

Skewness .395 .374 

Kurtosis -.267 .733 
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Appendix 24.Boxplots showing the distribution of the data from Experiment 2 Chapter 

5. 
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Appendix 25. Descriptive statistics for the data from Experiment 2 Chapter 5 after the 

outlier was removed. 

Descriptives 

 Statistic Std. Error 

5 pixels Mean 3.0287 .24063 

95% Confidence Interval for 

Mean 

Lower Bound 2.5297  

Upper Bound 3.5277  

5% Trimmed Mean 2.9391  

Median 2.7300  

Variance 1.332  

Std. Deviation 1.15402  

Minimum 1.53  

Maximum 6.21  

Range 4.68  

Interquartile Range 1.47  

Skewness 1.286 .481 

Kurtosis 1.664 .935 

10 pixels Mean 7.2904 .59509 

95% Confidence Interval for 

Mean 

Lower Bound 6.0563  

Upper Bound 8.5246  

5% Trimmed Mean 7.2773  

Median 6.8700  

Variance 8.145  

Std. Deviation 2.85393  

Minimum 2.60  

Maximum 12.33  

Range 9.73  

Interquartile Range 5.00  

Skewness .166 .481 

Kurtosis -.934 .935 

15 pixels Mean 11.7826 .74895 

95% Confidence Interval for 

Mean 

Lower Bound 1.2294  

Upper Bound 13.3358  

5% Trimmed Mean 11.7903  

Median 11.4400  

Variance 12.901  

Std. Deviation 3.59184  

Minimum 5.53  

Maximum 17.67  

Range 12.14  
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Interquartile Range 5.07  

Skewness .270 .481 

Kurtosis -.897 .935 

20 pixels Mean 16.0983 .87613 

95% Confidence Interval for 

Mean 

Lower Bound 14.2813  

Upper Bound 17.9153  

5% Trimmed Mean 16.1164  

Median 16.2700  

Variance 17.655  

Std. Deviation 4.20179  

Minimum 8.93  

Maximum 22.93  

Range 14.00  

Interquartile Range 7.60  

Skewness -.049 .481 

Kurtosis -1.169 .935 
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Appendix 26.Histograms showing the distribution of the data from Experiment 2 

Chapter 5 after the outlier was removed. 
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Appendix 27.Boxplots showing the distribution of the amplitude data from the 

experiment in Chapter 6. 
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Appendix 28. Descriptive statistics for the amplitude data from the experiment in 

Chapter 6 after the outlier was removed. 

Descriptives 

 Statistic Std. Error 

Tilted low eccentricity Mean 3.7885 .85031 

95% Confidence Interval for 

Mean 

Lower Bound 2.0020  

Upper Bound 5.5749  

5% Trimmed Mean 3.3973  

Median 2.3529  

Variance 13.738  

Std. Deviation 3.70642  

Minimum .50  

Maximum 14.12  

Range 13.62  

Interquartile Range 3.00  

Skewness 1.816 .524 

Kurtosis 2.892 1.014 

Tilted mid eccentricity Mean 6.2688 .95371 

95% Confidence Interval for 

Mean 

Lower Bound 4.2651  

Upper Bound 8.2724  

5% Trimmed Mean 6.0525  

Median 5.4118  

Variance 17.282  

Std. Deviation 4.15714  

Minimum .88  

Maximum 15.56  

Range 14.68  

Interquartile Range 5.31  

Skewness 1.001 .524 

Kurtosis .136 1.014 

Tilted high eccentricity Mean 5.5437 .80929 

95% Confidence Interval for 

Mean 

Lower Bound 3.8435  

Upper Bound 7.2440  

5% Trimmed Mean 5.3964  

Median 4.5333  

Variance 12.444  

Std. Deviation 3.52762  

Minimum .44  

Maximum 13.29  

Range 12.85  
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Interquartile Range 4.81  

Skewness .858 .524 

Kurtosis .224 1.014 

Control low eccentricity Mean 1.9426 .45017 

95% Confidence Interval for 

Mean 

Lower Bound .9968  

Upper Bound 2.8883  

5% Trimmed Mean 1.7325  

Median 1.2000  

Variance 3.850  

Std. Deviation 1.96226  

Minimum .00  

Maximum 7.67  

Range 7.67  

Interquartile Range 3.18  

Skewness 1.603 .524 

Kurtosis 2.686 1.014 

Control mid eccentricity Mean 2.1453 .45602 

95% Confidence Interval for 

Mean 

Lower Bound 1.1872  

Upper Bound 3.1033  

5% Trimmed Mean 1.9784  

Median 1.7778  

Variance 3.951  

Std. Deviation 1.98773  

Minimum .00  

Maximum 7.29  

Range 7.29  

Interquartile Range 2.08  

Skewness 1.387 .524 

Kurtosis 1.698 1.014 

Control high eccentricity Mean 3.2533 .45092 

95% Confidence Interval for 

Mean 

Lower Bound 2.3060  

Upper Bound 4.2006  

5% Trimmed Mean 3.1268  

Median 3.0000  

Variance 3.863  

Std. Deviation 1.96551  

Minimum .67  

Maximum 8.12  

Range 7.45  

Interquartile Range 2.59  

Skewness .993 .524 

Kurtosis 1.139 1.014 
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Appendix 29.Histograms showing the amplitude data from the experiment in Chapter 6 

after the outlier was removed. 
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Appendix 30. Descriptive statistics for the amplitude data from the experiment in 

Chapter 6 after the data were transformed into their natural logarithms. 

 Statistic Std. Error 

Tilted low eccentricity Mean 1.0544 .21406 

95% Confidence Interval for 

Mean 

Lower Bound .6006  

Upper Bound 1.5082  

5% Trimmed Mean 1.0506  

Median 1.0217  

Variance .779  

Std. Deviation .88261  

Minimum -.47  

Maximum 2.65  

Range 3.12  

Interquartile Range 1.06  

Skewness .019 .550 

Kurtosis -.195 1.063 

Tilted mid eccentricity Mean 1.5917 .18349 

95% Confidence Interval for 

Mean 

Lower Bound 1.2027  

Upper Bound 1.9807  

5% Trimmed Mean 1.6235  

Median 1.6487  

Variance .572  

Std. Deviation .75655  

Minimum -.13  

Maximum 2.74  

Range 2.88  

Interquartile Range 1.21  

Skewness -.349 .550 

Kurtosis .134 1.063 

Tilted high eccentricity Mean 1.5070 .20467 

95% Confidence Interval for 

Mean 

Lower Bound 1.0731  

Upper Bound 1.9409  

5% Trimmed Mean 1.5758  

Median 1.6740  

Variance .712  

Std. Deviation .84388  

Minimum -.81  

Maximum 2.59  

Range 3.40  

Interquartile Range 1.11  
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Skewness -1.306 .550 

Kurtosis 2.402 1.063 

Control low eccentricity Mean .3262 .24523 

95% Confidence Interval for 

Mean 

Lower Bound -.1936  

Upper Bound .8461  

5% Trimmed Mean .3297  

Median .2877  

Variance 1.022  

Std. Deviation 1.01113  

Minimum -1.45  

Maximum 2.04  

Range 3.48  

Interquartile Range 1.68  

Skewness -.201 .550 

Kurtosis -.655 1.063 

Control mid eccentricity Mean .5597 .20768 

95% Confidence Interval for 

Mean 

Lower Bound .1194  

Upper Bound .9999  

5% Trimmed Mean .5659  

Median .6286  

Variance .733  

Std. Deviation .85629  

Minimum -.98  

Maximum 1.99  

Range 2.97  

Interquartile Range 1.13  

Skewness -.236 .550 

Kurtosis -.526 1.063 

Control high eccentricity Mean 1.0615 .15205 

95% Confidence Interval for 

Mean 

Lower Bound .7391  

Upper Bound 1.3838  

5% Trimmed Mean 1.0696  

Median 1.1921  

Variance .393  

Std. Deviation .62690  

Minimum -.12  

Maximum 2.09  

Range 2.21  

Interquartile Range .83  

Skewness -.448 .550 

Kurtosis -.204 1.063 

 


