

Basalt Fibres for concrete strengthening

Dr Andreea Serbescu

Sheffield Hallam University, UK

Work carried out at The University of Sheffield Prof. K. Pilakoutas Dr M. Guadagnini

Research Rationale

Experimental work

Findings and Conclusions

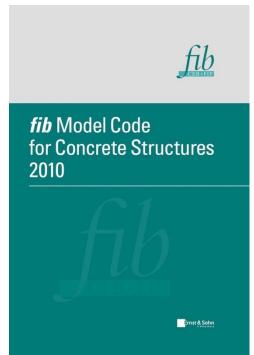
Strengthening

Traditional - Steel

G. Nichols

Modern - Fibre Reinforced Polymers (FRPs)

Carbon, Glass, Aramid


buildera.com

FRPs for Strengthening of Concrete

FRP as reinforcement for concrete has

already been validated!

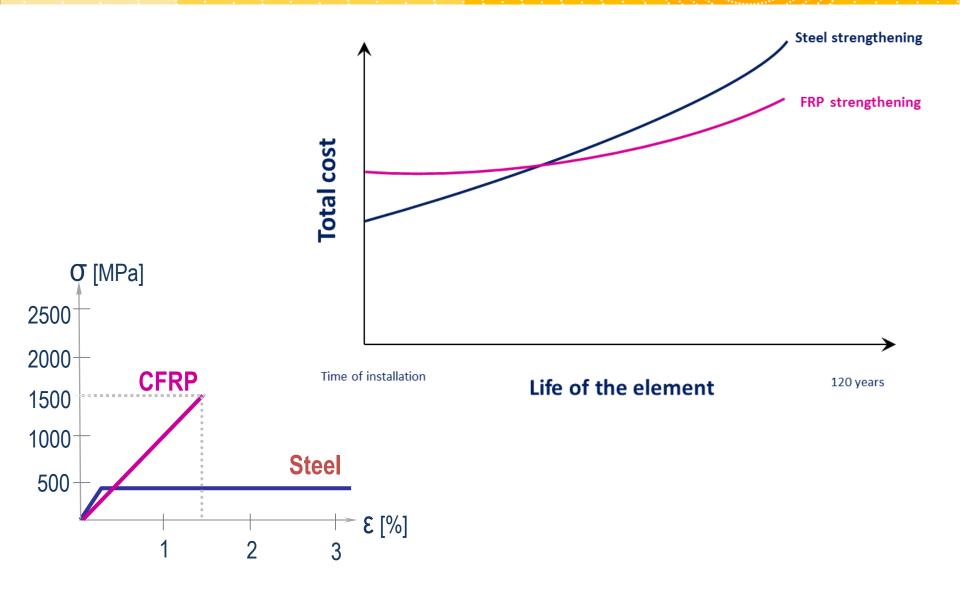
DESIGN MANUAL FOR ROADS AND BRIDGES

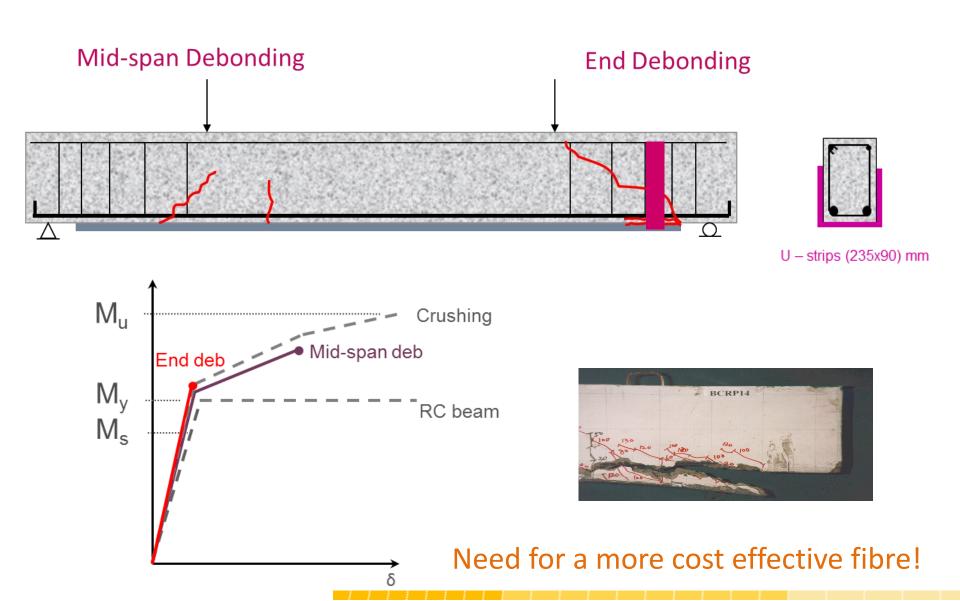
Volume 1, Section 3, Part 18

THE HIGHWAYS AGENCY

SCOTTISH GOVERNMENT

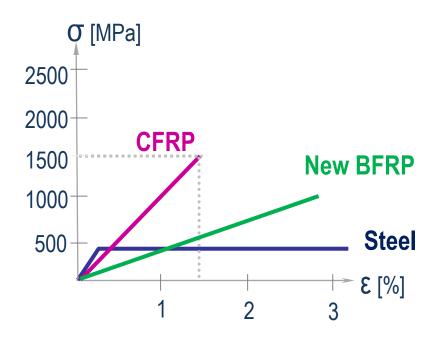
WELSH ASSEMBLY GOVERNMENT

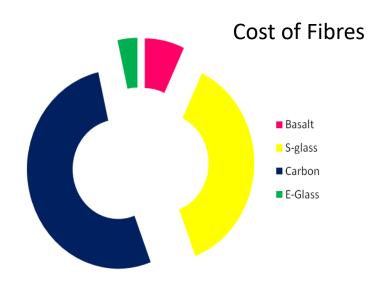

BEOUTH DEPARTMENT FOR REGIONAL DEVELOPMENT Agent Invigues NORTHERN IRELAND


Strengthening Highway Structures **Using Externally Bonded Fibre Reinforced Polymer**

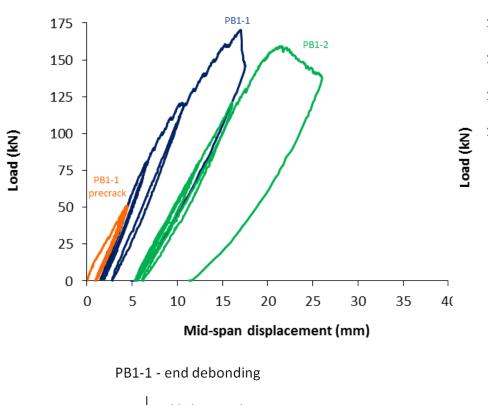
This Standard covers the strengthening of concrete and metallic highwa bridges, on trunk roads including motorways, using externally bonded fibre reinforced polymer (FRP). This Standard does not cover the use of prestressed plates or other systems in which the FRP is subjected to sustained long-term loading. This Standard does not cover the strengthening of prestressed concrete structures, although many of the issues and limit states described will also be relevant to the design of FRP strengthening schemes for such structures. Design guidelines are provided for flexural and shear strengthening of reinforced concrete bridge decks. Design guidelines for strengthening metallic bridge decks are limited to flexural strengthening. In addition, general guidance is provided on suitable strengthening techniques.

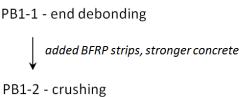
Cost Issue


Debonding Issue

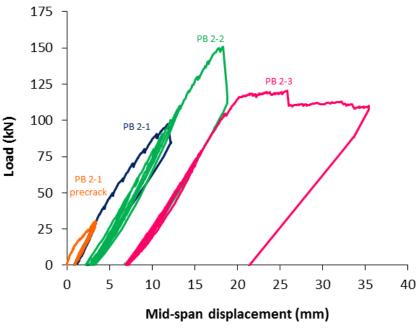


Characteristic of fibres	Basalt	E-Glass	S-Glass	Carbon
Tensile Strength (MPa)	3000~4840	3100~3800	4020~4650	3500~6000
Elongation at break (mm)	3.1	4.7	5.3	1.5~2.0
Elastic modulus (GPa)	79.3~93.1	72.5~75.5	83~86	230~600
Temperature of use (°C)	-260~+500	-50~+380	-50~+300	-50~+700


Can <u>Basalt FRP</u> represent an economic alternative to the traditional fibres?



1. Strengthening potential of Basalt FRPs

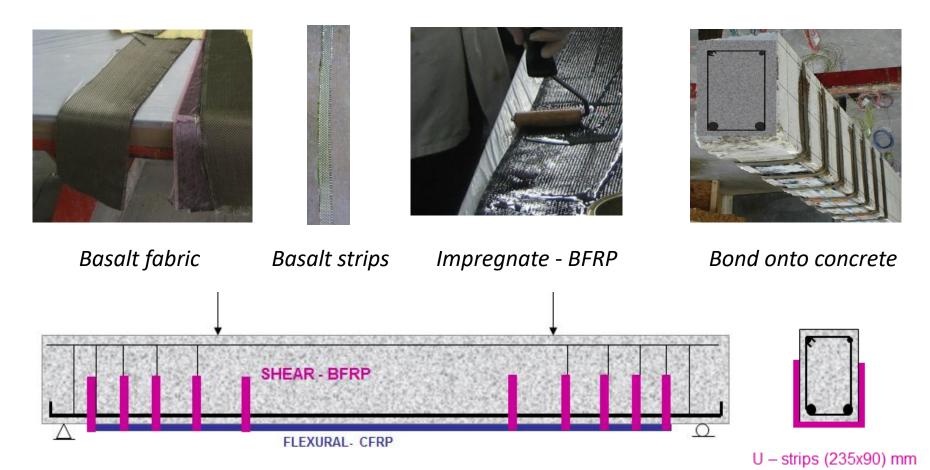


Experimental Program - Overview

SB5 – control _{By N. Pesic} CB0 - control

PB2-1 – end debonding

changed with wider CFRP plate, added BFRP strips, stronger concrete

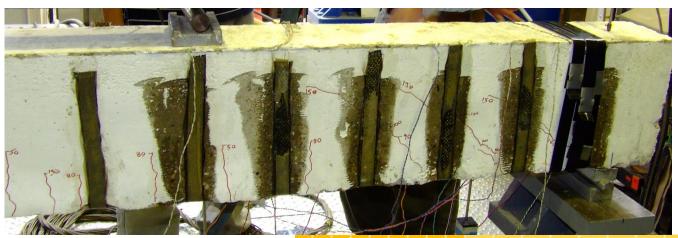

PB2-2 – end debonding

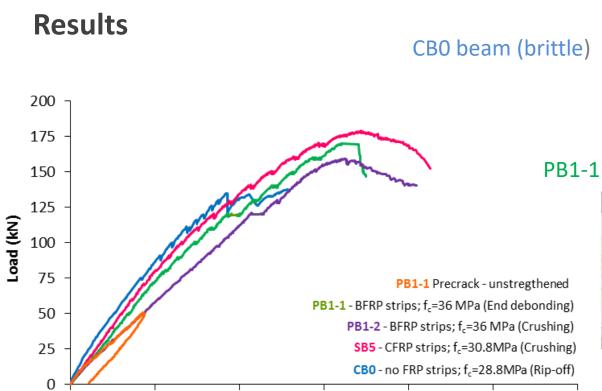
steel strapped failed side, longer anchorage length

PB2-3 - end debonding

1. Strengthening potential of Basalt FRPs

BFRP strips - preparation




Beam tests

Beam	Pult	Mult	Py	My	V _f	V	Pdeb	Failure mode	Pexp
	(kN)	(kNm)	(kN)	(kNm)	(kN)	(kN)	(kN)		(kN)
PB1-1	224	86	208	80	20	196	119	End debonding	171
PB1-2	209	80	-	-	20	196	119	Crushing	160
CB0	198	76	196	75	-	150	110	Rip-off	134
SB5	207	79	204	78	34	219	112	Crushing	179

Beam	P _{ult} (kN)	Mult (kNm)	Py (kN)	My (kNm)	V _f (kN)	V (kN)	P _{deb} (kN)	Failure mode	Pexp (kN)
PB2-1	164	63	120	46	-	398	59	Peel-off	98
PB2-2	216	83	153	59	20	482	97	End debonding	151
PB2-3	206	80	158	60	20	482	62	End debonding	121

15

Mid-span displacement (mm)

20

25

30

Increase in debonding load (~27%)

10

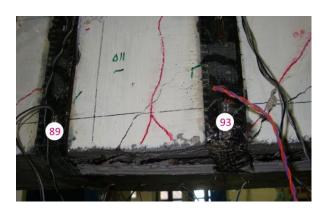
Pseudo-ductility

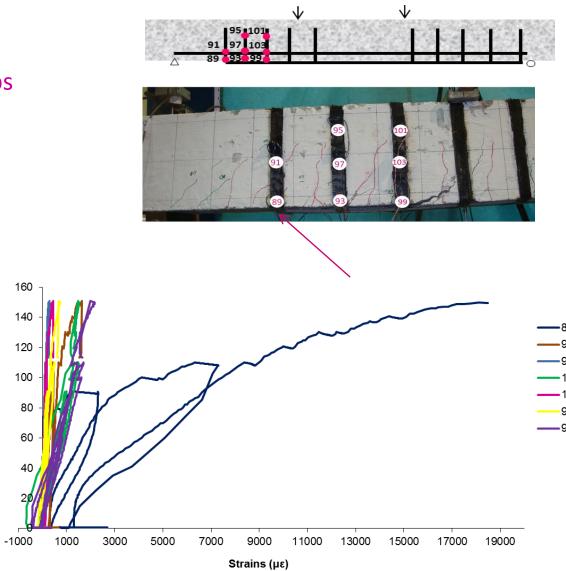
5

Plate end – crack patters

PB1-1 beam (distributed cracking)

PB1-1 beam (distributed cracking)




Load (kN)

Results

- High strain in Basalt FRP strips
- No debonding of BFRP strips

Experimental Program - Overview

Set ^{bar}	Tests		No. of bars	Nominal	Actual	Total no.
type			per diameter	diameter (mm)	area	of bars
			5	3	9.6	
11	Tensile test (ΓT1)	5	5	23.8	20
			5	8	57.1	
			5	10	86.8	
	Tensile test (5	3	9.4	5
		Water/20°C/1000h		3	9.5	
21	Durability test	Water/60°C/1000h	5			20
	(DT2)	pH13/20°C/1000h]			
	(,	pH 13/60°C/1000h	1			
		Water/60°C/200h	3	3	9.1	3
			9	6	33.3	
	Tensile tests	(TT3)	5	4	15.5	24
			5	5	23.6	
			5	7	44.4	
	Durability test (DT3)	pH 9/20°C/100h	5	6	33.2	5
		pH 9/20°C/1000h	5	6	32.9	5
32		pH 9/40°C/100h	5	6	33.2	5
		pH 9/40°C/1000h	5	6	30.1	5
		pH 9/60°C/100h	5	4	15.8	
			5	5	22.9	20
			5	6	32.6	
			5	7	44.4	
		pH 9/60°C/1000h	5	6	32.7	5
		pH 9/20°C/5000h	5	6	32.6	5
		pH 9/40°C/5000h	5	6	33.2	5
		pH 9/60°C/5000h	5	6	32.5	5

Note: the nominal diameters were verified and used for stress calculations for bars without strain

132 Basalt FRP bars

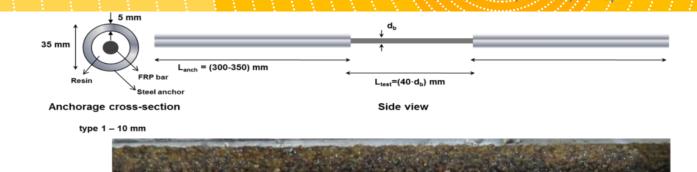
- Time:

100h, 200h, 1000h and 5000h

- Alkalinity:

pH7, pH9 and pH13

- Temperature:

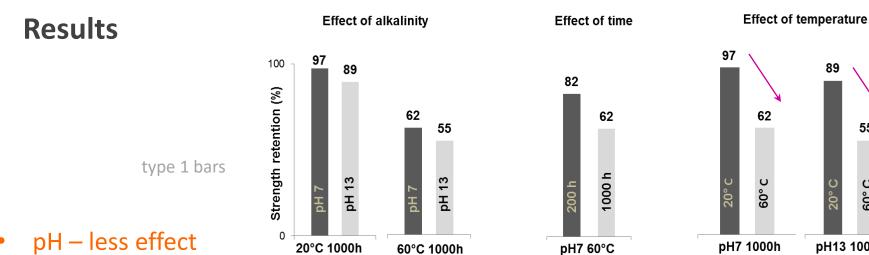

20°C, 40°C and 60°C

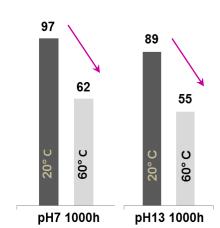
2. Durability of Basalt FRPs

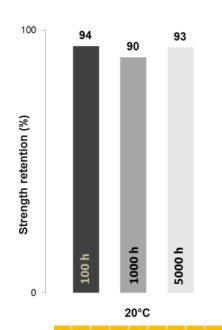
Conditioning

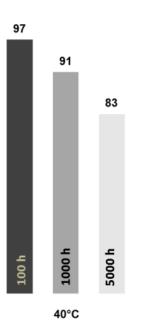
Basalt FRP bars

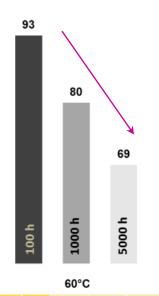

Conditioning

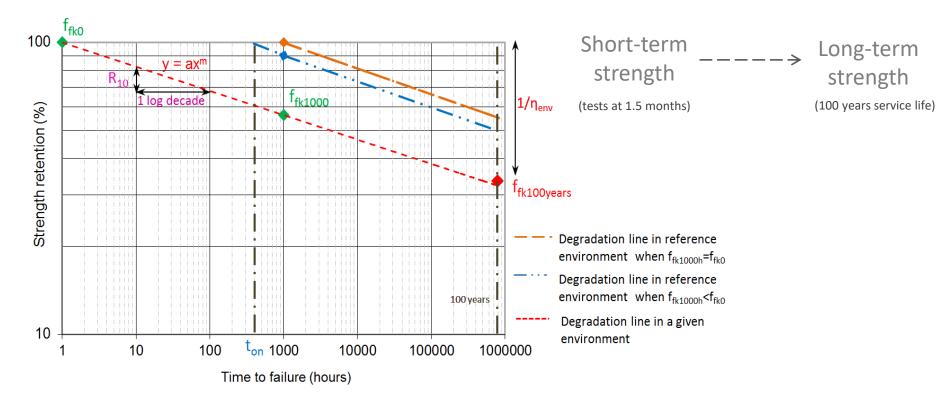



Tensile testing









Long-term strength prediction in any environment

fib 40 (2007)
$$n = n_{mo} + n_T + n_t + n_d + n_{pH} + n_{on}$$

 R_{10} - cst.

n_{on} - changes

2. Durability of Basalt FRPs

Long-term strength prediction in any environment

Step 1. Condition specimens

1000h, 20°C, 40°C, 60°C, water, pH13

Step 2. Measure short term-strength

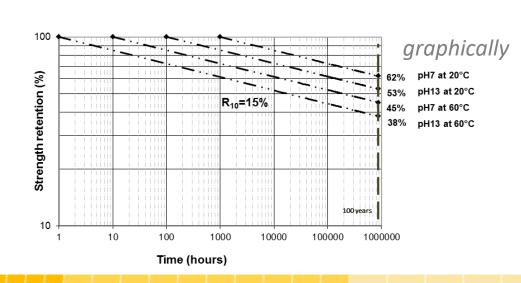
Tensile testing

Step 3. Establish degradation parameters

Use Table

Step 4. Determine the reference degradation curve

Find n_{on} and R₁₀


Step 5. Estimate the long-term strength

analytically

- environmental strength reduction factor

$$\eta_{env,t} = 1/((100 - R_{10})/100)^n$$

- percentage of the long-term strength retained $f_{\rm ftr\%} = (1/\eta_{\rm env,f}) \cdot 100$

Strengthening Potential

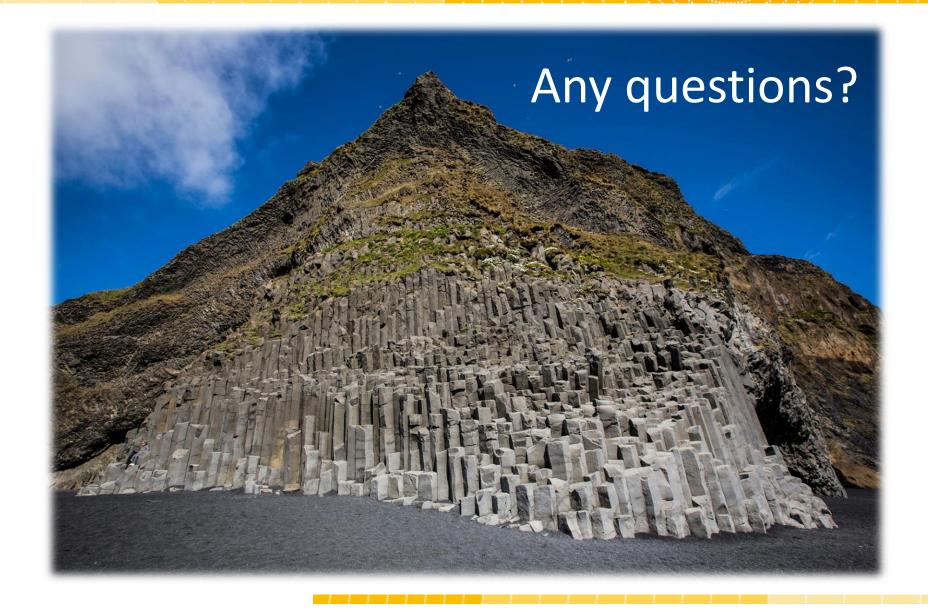
- 27 % strength enhancement
- Enabled pseudo-ductile behaviour

Durability

- BFRP ~ GFRP tensile properties
- Temp high effect; pH less effect
- 53% strength retention after 100 yrs in concrete

Q: Can <u>Basalt FRP</u> represent an economic alternative to the traditional fibres?

A: BFRP – economic solution for concrete when strengthening demand is moderate



Thank you!

Acknowledgments

- Magmatech Ltd

