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Abstract 

The behaviour of hot-rolled high strength steel (HSS) tubular sections under combined compression 

and uniaxial bending is investigated in the present paper both experimentally and numerically. The 

experimental programme encompassed a series of material coupon tests, initial geometric 

imperfection measurements, residual stress measurements and 12 tests on stub columns subjected to 

uniaxial eccentric compression. Numerical models were developed and validated against the 

experimental results. An extensive parametric study was then performed aiming to generate further 

structural performance data over a wider range of cross-section slendernesses, aspect ratios and 

applied eccentricities. The results have been utilised for the assessment of the applicability of relevant 

Eurocode provisions to HSS cross-sections under combined loading, and conclusions regarding the 

applicability of Eurocode interaction curves to S460 and S690 square and rectangular hollow sections 

have been presented.  

Keywords: Eccentric compression; Eurocode 3; Experiments; High strength steel; Hollow sections; 

Local buckling; Local imperfection; N-M interaction; Testing 

  

Gkantou, M., Theofanous, M., Wang, J., Baniotopoulos, C. and Gardner, L. (2017) Behaviour and design 

of high strength steel cross-sections under combined loading. Proceedings of the Institution of Civil 

Engineers–Structures and Buildings. 



Notation 

�   Cross-sectional area  �௖   Cross-sectional area of the coupon  �௘௙௙   Effective cross-sectional area  �   Section width 

CF  Compressive flat (coupon) 

COV  Coefficient of variation 

CP   Control point  

c/tε   Element slenderness �   Young’s modulus �0   Actual initial loading eccentricity  �0,௡   Nominal initial loading eccentricity �’   Eccentricity generated due to second order effect ��′   Eccentricity at ultimate load generated due to second order effect 

FE  Finite element 

�݂  Ultimate tensile strength 

௬݂  Yield strength  ℎ   Section depth 

HSS   High strength steel �  Second moment of area ܮ   Length  ܯ௘௟   Elastic moment ܯ�௟   Plastic moment  ܯ�   Failure moment ܯ�,௘௫�   Experimentally obtained failure moment  ܯ�,ிா   Numerically obtained failure moment  

�ܰ   Failure load 

�ܰ,௘௫�   Experimentally obtained failure load 

�ܰ,ிா   Numerically obtained failure load 



�௘௫�/���௘ௗ  Ratio of experimental to predicted capacity �ிா/���௘ௗ  Ratio of FE to predicted capacity 

RHS Rectangular hollow section ��   Internal corner radius  

SHS   Square hollow section �   Thickness  

TC  Tensile corner (coupon) 

TF  Tensile flat (coupon) �௘௙௙   Elastic modulus of effective section  �௘௟   Elastic section modulus  ��௟   Plastic section modulus  �   Coefficient for prediction of imperfection amplitude �௖௢௡௖�௩௘  Strain on concave side of cross-section �௖௢௡௩௘௫   Strain on convex side of cross-section �௘௡௚   Engineering strain �௙   Strain at fracture �௟௡�௟  Logarithmic plastic strain  ��   Strain at ultimate stress �௖�   Elastic local plate buckling stress  �௘௡௚   Engineering stress  �௧��௘   True stress  ��   Mean end-rotation at failure load �  Ratio of stresses or strains across section depth �0  Measured initial local geometric imperfection �஽�  Initial local geometric imperfection from Dawson and Walker model 

  



1. Introduction  

Over the last few decades, several studies have shown that there are potential benefits in using high 

strength steels (HSS) in building and bridge applications (Bjorhovde, 2004; Höglund et al., 2005). 

However, given that most international structural design standards (CAN/CSA-S16-01, 2001; GB 

50017-2003, 2006; ANSI/AISC 360-10, 2010; AISI S100, 2012; AS 4100-A1, 2012) either do not 

cover high strength steels or adopt design methods identical to those for normal strength steels, there 

is a clear need for the development of comprehensive design guidance for HSS structures.  

The European provisions for HSS structural design are set out in EN 1993-1-12 (2007), where 

additional rules for steels with yield strengths beyond 460 N/mm2 and up to 700 N/mm2 are specified. 

EN 1993-1-12 (2007) relaxes the requirements imposed on the strain hardening and ductility 

characteristics of HSS material, but, other than some specific restrictions (e.g. plastic design is not 

permitted), generally applies the same cross-section and member design rules as for conventional steel 

design by referring to EN 1993-1-1 (2014). There is however a clear need to fully verify and further 

develop these rules, and to extend the experimental database on HSS structural elements beyond that 

available when EN 1993-1-12 (2007) was published (McDermott, 1969; Usami and Fukumoto, 1984; 

Rasmussen and Hancock, 1992; Rasmussen and Hancock, 1995; Beg and Hladnik, 1996; Ricles et al., 

1998; Yang and Hancock, 2004; Yang et al., 2004). 

Recently, several researchers have investigated the member buckling behaviour of HSS long columns 

(Rasmussen and Hancock, 1995; Yang et al., 2004; Shi et al., 2012; Ban et al., 2013; Wang et al., 

2014), the cross-sectional behaviour of HSS beams (McDermott, 1969; Usami and Fukumoto, 1984; 

Beg and Hladnik, 1996; Ricles et al., 1998; Lee et al., 2012; Wang et al., 2016) and stub columns 

(Usami and Fukumoto, 1984; Rasmussen and Hancock, 1992; Beg and Hladnik, 1996; Yang and 

Hancock, 2004; Yang and Hancock, 2006; Gao et al., 2009; Yoo et al., 2013; Shi et al., 2014; 

Gkantou et al., accepted), and have made recommendations regarding the structural design of HSS 

members, including revised slenderness limits, effective width equations and column buckling design 

curves. However, studies on HSS cross-sections under combined axial load and bending moment 



(Kim et al., 2014) remain scarce. Similar studies on the structural response of eccentrically loaded 

stub columns have been recently reported for stainless steel sections (Zhao et al., 2015a; Zhao et al., 

2015b; Arrayago and Real, 2015) and composite sections (Fujimoto et al., 2004; Sheehan et al., 

2012).  

A comprehensive experimental programme was undertaken in the Structures Laboratory at Imperial 

College London, focusing on the structural behaviour of hot-rolled HSS square and rectangular 

hollow sections (SHS and RHS). The overall programme comprised material coupon tests, geometric 

imperfection and residual stress measurements, stub column tests (Wang et al., 2017), 3-point and 4-

point in-plane bending tests (Wang et al., 2016), and tests on cross-sections under combined loading, 

which are reported herein. In parallel with the experimental programme, a numerical study has also 

been conducted. The first step of the numerical study was to develop reliable finite element (FE) 

models capable of replicating the experimental findings; the second step was to use the validated 

models to generate further structural performance data over a wider range of local slendernesses and 

loading (i.e. combinations of axial load and bending moments). Finally, the combined experimental 

and numerical results were used to assess the accuracy of the design rules presented in EN 1993-1-12 

(2007), which refer to EN 1993-1-1 (2014), for predicting the cross-section capacity of hot-finished 

HSS SHS and RHS under combined loading. 

2. Experimental study 

2.1. General 

A total of 12 stub column specimens were tested under uniaxial eccentric compressive loads, to assess 

their structural behaviour under combined axial load and bending moments. The tested cross-sections 

were SHS 50×50×5 in grade S460 steel and SHS 50×50×5 and SHS 90×90×5.6 in grade S690 steel. 

Both the S460 and S690 specimens were hot-rolled seamless tubular sections, hollowed out by a 

piercing mill to the final shape, after which the S460 sections were normalised, whereas the S690 

were quenched and tempered. The chemical composition and the tensile material properties of the 

tested specimens, as provided by the mill certificates, are presented in Tables 1 and 2 respectively. In 



addition to the eccentric compression tests, corresponding material coupon tests, initial geometric 

imperfection measurements and residual stress measurements have also been conducted for each 

cross-section, as reported hereafter. 

2.2. Material testing 

A comprehensive coupon testing programme covering tensile flat, tensile corner and compressive flat 

coupons has been carried out on the studied cross-sections. The resulting material properties were 

used in the analysis of the combined loading test results and in the development of the numerical 

models of the tested specimens. For each cross-section, four flat coupons and one corner coupon were 

extracted from the locations indicated in Figure 1 and tested in tension. Additionally, one compressive 

flat coupon was also cut from a flat face of each cross-section. The tests were conducted in 

accordance with ISO 6892-1 (2009). Measured stress–strain curves from the coupon tests are 

displayed in Figures 2(a) and 2(b) for the S460 SHS 50×50×5 and S690 SHS 50×50×5 specimens 

respectively. It can be seen that both grades of material display a sharply defined yield point followed 

by a yield plateau; the S690 material generally exhibited less strain hardening and lower ductility than 

the S460 material. Key results from the coupon tests (tensile flat (TF), tensile corner (TC) and 

compressive flat (CF) coupons) are summarised in Table 3, where the material parameters reported 

are the Young’s modulus �, the upper yield strength ௬݂, the ultimate tensile strength �݂, the tensile-to-

yield stress ratio ݂�/ ௬݂, the strain at the ultimate tensile stress �� and the plastic strain at fracture �௙, 

based on elongation over the standard gauge length equal to 5.͸5 √�௖  , where �௖  is the cross-

sectional area of the coupon (ISO 6892-1, 2009). Further details of the experimental procedure and 

results are reported in Wang et al. (2017).  

It should be noted that the TF results are the average results of the four tensile flat coupons. Since the 

corner coupons are observed to behave very similarly to their flat counterparts in terms of the shape of 

the stress–strain curve and the key material parameters, the average results from the flat coupon tests 

(TF results in Table 3) were used in the subsequent data analysis and numerical modelling of the 

combined loading tests. 



2.3. Local imperfection and residual stress measurements 

For structural elements prone to buckling, the presence of imperfections can have a strong influence 

on their behaviour and load-carrying capacity. Typical structural imperfections for steel members 

include geometric (global and local) imperfections and residual stresses. Including imperfections in 

finite element simulations enables accurate modelling of the structural response of the tested 

specimens. Since global imperfections are very small compared to the applied eccentricity in the 

present study and are only important for member buckling, which is not relevant for stub columns, 

only local imperfections and residual stress measurements are reported herein. The maximum 

recorded local geometric imperfections for the tested cross-sections, denoted �0, are reported in Table 

4. The maximum measured longitudinal membrane residual stresses were 0.055௬݂  in tension and 

0.031݂௬ in compression and their low values attributed to the seamless fabrication procedure. Owing 

to their very low magnitudes compared to the material yield strength, the residual stresses were not 

explicitly introduced into the FE models. A detailed description of the initial geometric imperfection 

and residual stress measurements is provided in Wang et al. (2016) and Wang et al. (2017). Residual 

stress measurements on HSS box sections have also been executed by Rasmussen and Hancock 

(1995) and Wang et al. (2012). Even though the aforementioned studies have focused on welded 

sections, in both cases it was concluded that the ratio of the residual stress over the yield strength for 

HSS sections is lower than the corresponding one of their mild steel counterparts.  

2.4. Eccentric stub column tests 

To investigate the structural behaviour of HSS hollow sections under combined compression and 

uniaxial bending, a total of 12 stub columns have been tested under compression with different 

loading eccentricities to generate different ratios of axial load to bending moment. The average 

measured geometric dimensions of the test specimens, including the length of the specimen ܮ, the 

section depth ℎ, the section width �, the thickness � and the average internal corner radius �� , are 

reported in Table 4, together with the maximum local geometric imperfection �0 and the nominal 

initial loading eccentricity �0,௡. In accordance with the technical memorandum B3 (Ziemian, 2010), 



the length of the tested specimens was set equal to three times the largest dimension of the cross-

section, thus enabling a representative pattern of residual stresses and geometric imperfections to be 

present in the tested member, while preventing global buckling. 

The combined loading tests were conducted in a SATEC 2000 kN hydraulic loading machine. A 

schematic diagram and a photograph of the test set-up are shown in Figures 3(a) and 3(b) respectively. 

The specimens were welded onto end-plates at an offset from the centre to include the nominal 

eccentricities, and then installed into the testing machine by bolting the end-plates to the loading 

plates. The top and bottom loading plates were in contact with the loading rig through knife edges 

which provided pin-ended boundary conditions about the axis of bending and fixed-ended boundary 

conditions about the other axis. In terms of the instrumentation, two LVDTs were placed horizontally 

at the mid-height of the specimens to measure lateral displacement, thus enabling the second order 

bending moments, i.e. the bending moments due to the deviation of the mid-section centroid from the 

line of loading, to be determined. Four strain gauges (two on the concave face and two on the convex 

face) were attached to each specimen at mid-height to measure the longitudinal strains, which would 

be used for the determination of the actual calculated initial loading eccentricity, as discussed later. 

Two inclinometers were attached to the end-plates (one at each end) to record the end-rotation of the 

specimens. The applied load was obtained from the loading machine. The stub columns were loaded 

under displacement control at a constant displacement rate of 0.2 mm/min and 0.4 mm/min for the 

SHS 50×50×5 and SHS 90×90×5.6 specimens respectively. During testing, the load, lateral deflection 

at mid-height, longitudinal strains and end-rotations were all recorded at one-second intervals using 

the data acquisition system DATASCAN. 

After testing, the strain gauge readings were used to calculate the actual initial loading eccentricities 

applied to the tested cross-sections, since this has a strong influence on the behaviour of the 

specimens under combined compression and bending, and is also required for the numerical 

replication of the tests. Under uniaxial bending and compression, the relationship between the 

moment ܯ and the axial force ܰ applied to a cross-section is ܯ = ܰ ሺ�0 + �’ሻ, where the sum of the 

initial eccentricity �0 and the eccentricity generated due to the second order effect �’ comprises the 



total eccentricity at the mid-height of the specimen. In the initial stages of loading, during which the 

specimens remain elastic, the theoretical relationships between the applied bending moment and 

compressive force and the strain gauge readings are given by Equations (1) and (2) respectively, 

where � is the Young’s modulus, � is the second moment of area, � is the area of the cross-section, ℎ 

is the depth of the cross-section and �௖௢௡௩௘௫  and  �௖௢௡௖�௩௘  are the strains on the convex side and 

concave side of the cross-section, respectively. 

ܯ =  ��ሺ�௖௢௡௩௘௫ –  �௖௢௡௖�௩௘ሻℎ  (1) 

ܰ =  ��ሺ�௖௢௡௩௘௫  +  �௖௢௡௖�௩௘ሻʹ   (2) 

By substituting the above expressions of ܯ and ܰ  into ܯ = ܰሺ�0+ �’ሻ, the relationship between the 

strain gauge readings and the initial loading eccentricity �0 can be established, according to Equation 

(3), where � is the ratio  �௖௢௡௖�௩௘/�௖௢௡௩௘௫ and �’ is the second order eccentricity recorded by the two 

lateral LVDTs at the mid-height of the specimen. 

�0 = ʹ� × ሺͳ − �ሻ�ℎ × ሺͳ + �ሻ  − �′ (3) 

All four SHS 90×90×5.6 specimens and the S690 SHS 50×50×5 specimen that was loaded under an 

eccentricity of 5 mm displayed clear signs of local buckling at failure, as shown in Figures 4(b) and 

4(c), while the remaining specimens failed with little visible local buckling, as can be seen in Figure 

4(a). The differences in the observed failure mode can be explained by considering the effect of the 

yield strength and the stress gradient due to the applied loading eccentricity on the cross-section 

slenderness. For the same cross-section geometry, the S690 sections have a higher yield load but a 

similar elastic buckling load to their S460 counterparts and are thus more slender and more prone to 

local buckling occurring prior to yielding. With regards to the stress distribution, the cross-sections 

with the higher loading eccentricities have a steeper stress gradient in the webs, making the webs less 

prone to local buckling, which in turn means that they can also provide greater restraint against local 

buckling to the flanges on the concave side of the cross-section. The load versus end-rotation 

relationships for all the tested specimens are depicted in Figures 5(a)–5(c), whilst the load versus 

longitudinal strain curves for typical cases are shown in Figure 6. The key test results are summarised 



in Table 5, where ܰ� is the failure load, �0 is the calculated initial loading eccentricity based on the 

strain gauge readings using Equation (3), ��′ is the recorded lateral deflection at the failure load, 

referred to as the second order eccentricity, ܯ� is the failure moment given by ܯ� = �ܰሺ�0 + ��′ሻ 

and �� is the mean end-rotation at the failure load. 

3. Numerical modelling 

In parallel with the experimental study, a numerical investigation using the general purpose FE 

software ABAQUS (Hibbitt et al., 2014) was performed in order to investigate further the structural 

response of high strength steel hollow sections under combined loading. The finite element models 

were first validated against the test results and subsequently utilised for the execution of parametric 

studies, thus generating additional data over a wide range of cross-section slenderness and loading 

combinations, based upon which design recommendations could be made. 

3.1. Μodelling assumptions 

The four-noded doubly curved shell element S4R with reduced integration and finite membrane 

strains was adopted for the discretisation of the modelled geometries as it has been shown to perform 

well in similar studies (Zhao et al., 2015b; Wang et al., 2016). An initial mesh convergence study was 

performed, resulting in an average element size equal to the material thickness.  

The material stress–strain properties were incorporated into the FE models based on the results of the 

tensile coupon tests, in the form of an elastic-plastic multi linear curve with the von Mises yield 

criterion and isotropic hardening. Since no significant differences in the stress–strain behaviour 

between the flat and corner coupon tests or between the tensile and compressive properties were 

observed, the average values of the material properties obtained from the tensile flat coupon tests, as 

recorded in Table 3, were utilised for the material model. ABAQUS requires the material properties to 

be input in the form of a multilinear true stress–logarithmic plastic strain (�௧��௘ − �௟௡�௟) curve. Hence, 

the measured engineering stress–strain curves were converted into the true stress–logarithmic plastic 

strain curves by means of Equations (4) and (5), where �௘௡௚ and �௘௡௚ are the engineering stress and 



strain respectively, � is the Young’s modulus and �௧��௘ and �௟௡�௟ are the true stress and logarithmic 

plastic strain respectively. 

�௧��௘ = �௘௡௚(ͳ + �௘௡௚) (4) 

�௟௡�௟ = lnሺͳ + �௘௡௚ሻ − �௧��௘�  (5) 

For modelling convenience and computational efficiency, the effect of the supports and the loading 

plates was introduced through appropriate boundary conditions and constraints, while only half of the 

cross-section was modelled, thus exploiting the symmetry with respect to the geometry, boundary 

conditions, applied load and failure mode of the test specimens. At each end, the degrees of freedom 

of all nodes were constrained to the degrees of freedom of a control point (CP) node through rigid 

body constraints, replicating the experimental conditions in which the ends of the specimens were 

welded to plates, thus preventing any deformation of the end cross-sections. In the initial validation 

against the experimental data, the top and bottom control points (CPs) were located in a plane 

perpendicular to the specimen axis and at a distance of 103 mm (equal to the thickness of the knife 

edges) from the end sections, while in the subsequent parametric studies the CPs were located within 

the plane of the end sections of the stub columns. The load was applied incrementally as a prescribed 

displacement at the top control point. All other translational degrees of freedom were restrained at 

both CPs, whilst all rotational degrees of freedom, except for those allowing flexure due to the 

eccentrically applied load, were also restrained. The eccentricity of the loading was introduced by 

offsetting the rigid body control points from the centroid of the section along the symmetry axis. 

Appropriate symmetry boundary conditions were also applied. 

Local geometric imperfections were introduced into the models in the form of the lowest elastic 

buckling mode shape, in line with previous studies (Gao et al., 2009; Gardner et al., 2011; Zhao et al., 

2015b; Wang et al., 2016). In order to investigate the imperfection sensitivity of the models, five 

values of local imperfection amplitude were examined: ͳ%, ʹ%  and ͳͲ%  of the section wall 

thickness, the maximum measured imperfection �0 as given in Table 4 and an imperfection amplitude 

(�஽�) based on the predictive model developed by Dawson and Walker (Dawson and Walker, 1972; 



Gardner and Nethercot, 2004), as defined by Equation (6), where ௬݂ is the yield strength of the plate 

material and �௖� is the elastic buckling stress of the most slender plate in the cross-section, which is a 

function of its width-to-thickness ratio. 

�஽� = � ቆ ௬݂�௖�ቇ0.5 � (6) 

The coefficient � can be determined through regression analysis of measured imperfection data, but 

due to the limited available imperfection data for HSS sections, the value of � = 0.028, as proposed in 

Gardner et al. (2010) for normal strength carbon steel hot-finished SHS and RHS, was adopted. 

Owing to their very low magnitude (see Section 2.3), it was decided not to explicitly incorporate 

residual stresses into the numerical models. A nonlinear static analysis, accounting for both material 

and geometric nonlinearities, using the modified Riks procedure (Hibbitt et al., 2014) was performed 

in order to trace the full load–deformation response path of the modelled specimens.  

3.2. Validation of the FE model 

Utilising the modelling assumptions described above, the response of the tested specimens was 

simulated for the purposes of model validation. Typical comparisons between the test and FE load 

versus end-rotation curves for S460 and S690 specimens are shown in Figures 7(a) and 7(b), 

respectively. As can be observed, the initial stiffness and the overall structural response are accurately 

captured. As anticipated, for the more stocky S460 section shown in Figure 7(a), which failed without 

noticeable local deformation, variation in the initial local imperfection amplitude does not have 

significant influence on the observed response, whereas for the more slender S690 section shown in 

Figure 7(b), which displayed clear evidence of local buckling, the sensitivity to the local geometric 

imperfection amplitude is more pronounced. The failure modes were accurately captured in all cases, 

as indicated by the typical comparisons shown in Figures 8(a) and 8(b). 

For all specimens, the ratios of the numerical-to-experimental ultimate loads (�ܰ,ிா / �ܰ,௘௫�) and 

moments (ܯ�,ிா /ܯ�,௘௫�) for the different considered imperfection amplitudes are summarised in 

Table 6. It can be concluded that, overall, very good agreement between the experimental and 



numerical results has been achieved, with the FE predictions being slightly on the conservative side in 

most cases. The best agreement was obtained when the measured imperfection amplitudes �0 were 

employed in the FE models, with a mean value of �ܰ,ிா / �ܰ,௘௫�  equal to 0.92 and a mean value of ܯ�,ிா /ܯ�,௘௫� equal to 0.98. However, very similar results were also achieved when an initial 

geometric imperfection amplitude of �/5Ͳ was employed; this imperfection amplitude was therefore 

adopted in the subsequent parametric study, described in Section 3.3. 

3.3. Parametric study 

Upon successful validation of the FE models against the test results, an extensive parametric study 

was performed in order to generate data over a wide range of cross-section slendernesses and initial 

loading eccentricities corresponding to different ratios of axial load to bending moments. The average 

material properties of the tensile flat coupon tests were incorporated in the models, whereas an initial 

local geometric imperfection amplitude of  �/5Ͳ, which gave the closest agreement with the test 

results, was used in all numerical models. Similar to the experiments, the length of the modelled stub 

columns was set to be three times the largest cross-sectional dimension, while the internal radius was 

set equal to half the cross-sectional thickness. 

The loading eccentricities applied to the modelled stub columns were varied to generate a range of 

initial stress ratios � over the cross-section depth from -0.75 to 1.00; the stress ratio � was defined, as 

in EN 1993-1-5 (2006), as the ratio of the stress on the most heavily compressed side of the cross-

section to that on the least heavily compressed (or most tensioned) side, assuming elastic material 

behaviour, with � = 1.00 corresponding to pure compression and � = -1.00 corresponding to pure 

bending. 

Three cross-section aspect ratios (h/b) of 1.00, 2.00 and 2.44, with varying thickness, were 

considered. The cross-section slenderness was taken as the c/tε ratio of the most slender plate element 

in accordance with the current cross-section classification practice adopted in EN 1993-1-1 (2014). 

The cross-section aspect ratio of 2.44 represents the case where the web and the flange of an RHS 

subjected to pure bending about the major axis, allowing for their respective stress distributions, are of 



the same non-dimensional plate slenderness �̅� , as defined in EN 1993-1-5 (2006) (Wang et al., 

2016).  

The cases of both compression plus major axis bending and compression plus minor axis bending 

were considered in the parametric study. In total, 720 analyses of eccentrically loaded stub columns 

were performed using the validated finite element models. Typical elastic buckling mode shapes and 

failure modes of the eccentrically loaded stub column FE models are depicted in Figures 9(a) and 

9(b) respectively. The ultimate load bearing capacity �ܰ and the corresponding moment at mid-height 

accounting for second order effects ܯ� were determined for each analysis, while the full moment 

versus end-rotation responses for some typical cases are shown in Figures 10(a) and 10(b). The 

results of the experiments and the FE parametric study are analysed and used to assess the European 

design provisions in the following section. 

4. Analysis of the results and design recommendations  

4.1. Introduction 

Based on the obtained test and FE results, the Eurocode N-M interaction curves for HSS SHS and 

RHS (EN 1993-1-1, 2014) are assessed in this section. The test and FE results are compared with the 

corresponding codified N-M interaction curves in Figures 11–13 for Class 1 and 2, Class 3 and Class 

4 cross-sections, respectively. In the figures, the axial compressive force at failure and the second 

order bending moment at failure have been normalised by their respective resistances according to the 

cross-section class. Depending on the cross-section properties and the applied loading conditions, 

each specimen was classified in accordance with Table 5.2 of EN 1993-1-1 (2014).  

The comparisons between the test/FE results and the Eurocode design predictions are presented 

numerically in Table 7 for all cross-sections. The assessment is based on the utilisation ratio of the 

test or FE to the predicted capacity (�௘௫�/���௘ௗ  or �ிா/���௘ௗ ), which is graphically defined in 

Figure 14. 

 



4.2. Assessment of the Eurocode interaction curve for Class 1 and 2 cross-sections 

The interaction curves for determining the resistance of Class 1 and Class 2 cross-sections under 

combined axial load and bending are provided in Clause 6.2.9.1(5) in EN 1993-1-1 (2014), and are 

presented in Equations (7) and (8) for major axis and minor axis bending respectively.  

௬,�ௗ,�ܯ = ௟,௬,�ௗሺͳ�ܯ − �ሻ/ሺͳ − Ͳ.5ܽ௪ሻ but ܯ�,௬,�ௗ ≤  ௟,௬,�ௗ  (7)�ܯ

௭,�ௗ,�ܯ = ௟,௭,�ௗሺͳ�ܯ − �ሻ/ሺͳ − Ͳ.5 ௙ܽሻ but ܯ�,௭,�ௗ ≤  ௟,௭,�ௗ,  (8)�ܯ

where � = ாܰௗ/ �ܰ௟,�ௗ , ாܰௗ  is the design axial compressive load, �ܰ௟,�ௗ  is the cross-section yield 

load (� ௬݂), ܯ�,�ௗ is the reduced cross-section moment resistance to allow for the presence of axial 

load, ܯ�௟,�ௗ is the cross-section plastic moment capacity (��௟ ௬݂), ܽ ௪ = ሺ� − ʹ��௪ሻ/� but ܽ ௪ ≤ Ͳ.5 

and ܽ ௙ = ሺ� − ʹ��௙ሻ/� but ܽ ௙ ≤ Ͳ.5. The subscripts ݕ and ݖ in Equations (7) and (8) denote the 

major and minor axis, respectively.  

The codified N-M curves are compared with the test and FE results obtained for the Class 1 and 2 (i.e. 

those that can develop their full plastic moment capacity) SHS and RHS in compression plus major 

axis bending (Figure 11(a)), and RHS in compression plus minor axis bending (Figure 11 (b)). The 

test and FE results may be seen to generally follow the trend of the Eurocode 3 interaction equation, 

though predictions are very conservative in the case of the stocky cross-sections (low c/tε ratios), 

particularly for the S460 steel. This conservatism stems principally from the neglect of strain 

hardening in the Eurocode interaction equations, and is therefore most pronounced for those cross-

sections that are most resistant to local buckling (i.e. low local slenderness) and hence have high 

deformation capacity and for material that exhibits a high degree of strain hardening, which is more 

prominent in lower strength steel grades. It should be noted that at the high bending moment end of 

the interaction curves, some of the S690 tests and FE results fall marginally below ܯ�௟. This was also 

observed by Wang et al. (2016), and again, attributed principally to the lower degree of strain 

hardening that the higher grades of steel exhibit. For the S460 RHS specimens under compression and 

minor axis bending, there is an apparent change in the response of the stockier (i.e. lower c/tε) 



specimens at the higher axial load levels (see Figure 11(b)). In fact, the response of the specimens 

does not change significantly, but the value of the second order moment at failure ܯ� is sensitive to 

where the peak load arises on the rather flat load–lateral deflection curves. Overall, the graphical 

comparisons indicate that the existing interaction curves are generally applicable to high strength steel 

material, and similar conclusions are reached from the numerical comparisons presented in Table 7. 

4.3. Assessment of the Eurocode interaction curve for Class 3 cross-sections 

The linear N-M interaction expression for Class 3 cross-sections specified in EN 1993-1-1 (2014) is 

given by Equation (9).   

ாܰௗ�ܰௗ + ௘௟,௬,�ௗܯ௬,ாௗܯ + ௘௟,௭,�ௗܯ௭,ாௗܯ ≤ ͳ 

 

 (9) 

where ܯ௘௟,�ௗ  is the elastic moment capacity (�௘௟ ௬݂) of the cross-section and all other symbols are as 

previously defined. 

The FE results for Class 3 cross-sections are compared against the Eurocode 3 linear interaction N-M 

equation in Figure 12. The interaction equation may be seen to yield generally safe side predictions 

and without excessive conservatism (�ிா/���௘ௗ=1.15), but improved predictions and reduced scatter 

are achieved using the linear transition (see Figure 15) between the ܯ௘௟ and ܯ�௟ for Class 3 cross-

sections (�ிா/���௘ௗ=1.09) proposed by Taras et al. (2013); the application of this proposal to HSS is 

therefore supported in the present paper. 

4.4. Assessment of the effective width equations for Class 4 cross-sections 

For Class 4 cross-sections under combined axial load and bending, the linear N-M interaction 

expression given by Equation (10) is provided in EN 1993-1-1 (2014). 

ாܰௗ�௘௙௙ ௬݂ + ௬,ாௗܯ + ாܰௗ��௬�௘௙௙,௬,௠�௡ ௬݂ + ௭,ாௗܯ + ாܰௗ��௭�௘௙௙,௭,௠�௡ ௬݂ ≤ ͳ  (10) 

where �௘௙௙  is the effective area of the cross-section when subjected to uniform compression, �௘௙௙,௠�௡ is the effective section modulus (corresponding to the fibre with the maximum elastic stress) 



of the cross-section when subjected only to bending about the relevant axis, and ��  is the shift in the 

relevant neutral axis of the effective cross-section under pure compression (which is zero for doubly 

symmetric sections as examined herein); all other parameters are as previously defined. 

The FE results for Class 4 cross-sections are compared against the Eurocode 3 linear interaction N-M 

equation in Figure 13, where the data points have been normalised based on their respective effective 

section properties calculated according to EN 1993-1-5 (2006). The results shown in Figure 13 closely 

follow the design predictions, indicating that both the effective section properties and interaction 

curve are appropriate for HSS.  

5. Conclusions 

A comprehensive study into the structural behaviour of hot-rolled high strength steel (S460 and S690) 

hollow sections under compression and uniaxial bending has been reported. Upon the execution of 

twelve tests on eccentrically loaded stub columns, together with complementary measurements of 

geometric and material properties, an extensive numerical programme was conducted in order to 

generate additional data over a wide range of cross-section slendernesses and loading eccentricities, 

generating different proportions of axial compression and bending moment at failure. The results have 

been utilised for the assessment of the design provisions specified in EN 1993-1-1 (2014) for cross-

sections under combined compression and uniaxial bending moment. The Eurocode interaction curve 

for Class 1 and 2 sections generally provides safe side predictions, but was found to be rather 

conservative for the stockier cross-sections and lower steel grade. The linear interaction curve for 

Class 3 sections gives accurate, though again slightly conservative design predictions, while the use of 

a linear transition between ܯ௘௟  and ܯ�௟ , as proposed by Taras et al. (2013), reduced this 

conservatism. The effective width equations were shown to be generally applicable to S460 and S690 

square and rectangular hollow sections subjected to compression and uniaxial bending. Overall the 

design provisions of EN 1993-1-1 (2014) are deemed suitable for high strength steel sections. 
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Table 1: Chemical composition of tested specimens 

Cross-section 
C   Si  Mn P  S Cu Cr Ni Mo V Ti Nb B  Al  

(%) (%) (%)  (‰)  (‰) (%)  (%)  (%)  (%)  (%)  (‰) (‰) (‰) (‰) 
S460 SHS 50×50×5        0.15 0.37 1.53 0.17 0.01 0.02 0.07 0.06 0.03 0.10 0.03 0.01 - - 
S690 SHS 50×50×5          0.15 0.28 1.50 0.10 0.02 0.02 0.67 0.12 0.21 0.07 0.04 0.31 0.003 0.30 
S690 SHS 90×90×5.6       0.15 0.29 1.53 0.10 0.01 0.04 0.69 0.10 0.21 0.06 0.04 0.27 0.003 0.21 

 

Table 2: Mechanical properties as stated in mill certificates 

Cross-section ௬݂,௠�௟௟ �݂,௠�௟௟ �௙ 

(N/mm2) (N/mm2) (%) 
S460 SHS 50×50×5 473 615 26.5 
S690 SHS 50×50×5 797 838 22.4 
S690 SHS 90×90×5.6 789 825 16.6 

 

Table 3: Average measured material properties from coupon tests 

Cross-section Label 
� ௬݂ �݂ �� �௙ �݂/ ௬݂ 

(N/mm2) (N/mm2) (N/mm2) (%) (%)  

S460 SHS 50×50×5 
TF 211100 505 620 14.9 31.0 1.23 
TC 208000 481 631 12.7 26.0 1.31 
CF 219000 505 - - - - 

S690 SHS 50×50×5 

TF 204200 759 790 7.5 21.7 1.04 

TC 209000 782 813 6.9 18.0 1.04 

CF 220000 813 - - - - 

S690 SHS 90×90×5.6 

TF 205700 774 790 7.4 20.1 1.02 

TC 224000 754 784 9.0 18.0 1.04 

CF 215000 798 - - - - 

 

Table 4: Mean measured dimensions of eccentric stub column specimens 

Cross-section 
�0,௡ ܮ ℎ � � �� �0 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) 

S460 SHS 50×50×5 

5 149.98 50.03 49.86 4.94 3.00 0.054 
10 150.01 49.86 50.16 4.98 3.00 0.054 
20 149.95 50.32 50.11 4.90 3.00 0.054 
30 149.97 50.07 50.36 4.95 3.00 0.054 

S690 SHS 50×50×5 

5 149.91 50.24 50.60 5.03 3.00 0.076 
10 149.96 50.27 50.39 4.94 3.00 0.076 
15 149.84 50.45 50.52 4.96 3.00 0.076 
20 149.98 50.16 50.36 4.97 3.00 0.076 

S690 SHS 90×90×5.6 

5 269.07 89.56 89.81 5.68 4.50 0.089 
10 269.00 89.84 90.10 5.65 4.63 0.089 
25 268.96 90.21 90.65 5.72 4.88 0.089 
30 269.02 90.57 90.08 5.59 4.63 0.089 

 

 

 



Table 5: Key results for eccentric stub column tests 

Cross-section 
 �� �ܯ ′�� ܰ� 0�

(mm) (kN) (mm) (kNm) (º) 

S460 SHS 50×50×5 

4.83 333.8 8.70 4.5 6.98 

9.70 297.3 9.28 5.7 7.62 

20.22 226.6 8.72 6.6 7.19 

33.02 181.4 10.32 7.9 8.39 

S690 SHS 50×50×5 

5.58 530.8 1.12 3.6 1.02 

10.26 459.5 0.98 5.3 1.80 

13.65 398.7 1.67 6.0 2.25 

19.32 338.2 6.34 8.7 5.20 

S690 SHS 90×90×5.6 

5.37 1289.5 0.61 7.6 0.46 

10.25 1195.3 0.55 12.9 0.62 

25.49 864.0 3.12 24.9 2.04 

29.80 819.6 2.12 26.2 4.85 

 

Table 6: Comparison of numerical and experimental results for the different considered imperfection 

amplitudes  

  

Cross-section 
�0,௡ 

(mm) 

�0 �஽� �/ͳͲͲ �/5Ͳ �/ͳͲ 

�ܰ,ிா�ܰ,௘௫� 
 �௘௫,�ܯிா,�ܯ

�ܰ,ிா�ܰ,௘௫� 
 �௘௫,�ܯிா,�ܯ

�ܰ,ிா�ܰ,௘௫� 
 �௘௫,�ܯிா,�ܯ

�ܰ,ிா�ܰ,௘௫� 
 �௘௫,�ܯிா,�ܯ

�ܰ,ிா�ܰ,௘௫� 
 �௘௫,�ܯிா,�ܯ

S460 SHS 50×50×5 

5 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.94 0.94 0.96 

10 0.91 0.93 0.91 0.92 0.91 0.93 0.91 0.93 0.90 0.53 

20 0.92 0.95 0.92 0.95 0.92 0.95 0.91 0.95 0.91 0.92 

30 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.86 0.86 0.85 

S690 SHS 50×50×5 

5 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.95 0.95 

10 0.89 0.97 0.89 0.97 0.89 0.97 0.89 0.97 0.89 0.96 

15 0.93 1.01 0.93 1.01 0.93 1.01 0.93 1.01 0.93 1.01 

20 0.94 0.84 0.94 0.84 0.94 0.84 0.94 0.84 0.94 0.84 

S690 SHS 90×90×5.6 

5 0.93 1.01 0.93 1.01 0.93 1.01 0.93 1.01 0.92 0.97 

10 0.89 1.00 0.89 1.00 0.89 1.00 0.89 1.00 0.89 0.97 

25 0.96 1.09 0.96 1.12 0.96 1.12 0.96 1.09 0.95 0.94 

30 0.94 1.21 0.94 1.23 0.94 1.23 0.94 1.21 0.93 1.06 

Mean  0.92 0.98 0.92 0.98 0.92 0.98 0.92 0.98 0.92 0.91 

COV  0.03 0.10 0.03 0.11 0.03 0.11 0.03 0.10 0.03 0.15 



Table 7: Assessment of Eurocode design predictions based on utilisation ratios of the test or FE to the 

predicted capacities 

    Rexp/Rpred or RFE/Rpred 

Cross-section Aspect ratio Bending axis No. of test or 
FE results 

Classes 1 and 2 Class 3 Class 3  
(linear transition) 

Class 4 

S460 SHS-test 1.00 N/A 4 1.29 N/A N/A N/A 

S690 SHS-test 1.00 N/A 8 1.07 N/A N/A N/A 

S460 SHS-FE 1.00 N/A 72 1.11 1.11 1.07 1.11 

S690 SHS-FE 1.00 N/A 72 1.05 1.11 1.07 1.10 

S460 RHS-FE 2.00 major 72 1.16 1.19 1.13 1.10 

S690 RHS-FE 2.00 major 72 1.07 1.19 1.12 1.08 

S460 RHS-FE 2.00 minor 72 1.05 1.08 1.05 1.12 

S690 RHS-FE 2.00 minor 72 1.02 1.08 1.05 1.11 

S460 RHS-FE 2.44 major 72 1.10 1.23 1.13 1.10 

S690 RHS-FE 2.44 major 72 1.03 1.23 1.13 1.09 

S460 RHS-FE 2.44 minor 72 1.03 1.09 1.05 1.16 

S690 RHS-FE 2.44 minor 72 1.02 1.09 1.05 1.13 

Mean    1.05 1.15 1.09 1.10 
COV    0.09 0.07 0.05 0.04 

 



  
 
Figure 1: Locations of tensile flat and tensile corner coupons and definition of cross-section symbols 

 
a) S460 SHS 50×50×5  

 
b) S690 SHS 50×50×5 

Figure 2: Measured stress–strain curves for tensile flat, tensile corner and compressive flat coupons  

b
h

F4

F3F2

Flat coupon

Corner coupon

ri

C1

t

F1

0

100

200

300

400

500

600

700

0.00 0.05 0.10 0.15 0.20 0.25

S
tr

es
s 

(N
/m

m2
)

Strain

Tensile flats

Tensile corner

Compressive flat

0

100

200

300

400

500

600

700

800

900

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

S
tr

es
s 

(N
/m

m2
)

Strain

Tensile flats

Tensile corner

Compressive flat



  
a) Schematic diagram of test set-up b) Photograph of test set-up 

Figure 3: Experimental set-up including instrumentation 

 

 
a) S460 SHS 50×50×5 (�0=20.22 mm) 

  
b)  S690 SHS 50×50×5 (�0=5.58 mm) 

  
c) S690 SHS 90×90×5.6 (�0=5.37 mm) 

Figure 4: Failure modes of eccentrically loaded stub columns 
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c) S690 SHS 90×90×5.6  

 

Figure 5: Load versus end-rotation curves from eccentrically loaded stub column tests  

 

Figure 6: Typical load versus longitudinal strain curves from eccentrically loaded stub column tests 
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a) S460 SHS 50×50×5 (�0=20.22 mm) 

 

 
b) S690 SHS 90×90×5.6 (�0=25.49 mm) 

Figure 7: Comparison between typical experimental and numerical load versus end-rotation curves  
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a) S460 SHS 50×50×5 (�0=20.22 mm)  

  

 

 

b) S690 SHS 90×90×5.6 (�0=5.37 mm)  
 
Figure 8: Comparison between typical experimental and numerical failure modes 

 

  



      
a) Elastic buckling modes b) Failure modes 

Figure 9: Typical numerical elastic buckling and failure modes for eccentrically loaded stub column 

models 

  



 
a) S460 SHS, �/��=50 

 
b) S460 SHS, �=-0.50 

Figure 10: Typical numerical moment versus end-rotation curves  
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a) SHS and RHS bending about the major axis 

 
b) RHS bending about the minor axis 

Figure 11: Assessment of N-M interaction curves for Class 1 and 2 cross-sections  
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Figure 12: Assessment of N-M interaction curve for Class 3 cross-sections 

 
Figure 13: Assessment of effective section properties and interaction curves for Class 4 cross-
sections  
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Figure 14: Definition of utilisation ratio of the test or FE to predicted capacities  

 

 

 

 

 

 

 

 

 

 

Figure 15: Bending resistances for different cross-section classes, including illustration of linear 

transition for Class 3 cross-sections (after Taras et al., 2013) 
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