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Abstract  

The hydrothermal liquefaction (HTL) of algal biomass is a promising route to viable second 

generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the 

remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira 

platensis (Spirulina) with additional metal sulfates to simulate metal remediation. Optimised 

conditions were then used to process a natural algal community (predominantly Chlamydomonas 

sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal 

concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the 

heteroatom content or higher heating value of the bio-oil produced. The associated metals were 

found to partition almost exclusively into the solid residue, favourable for potential metal recovery. 

High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid 

phase, potentially compromising attempts to recycle process water as a growth supplement. HTL 

was therefore found to be a suitable method of processing algae used in AMD remediation, 

producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream 

suitable for supplementing the algal growth and the partitioning of most contaminant metals to the 

solid residue where they would be readily amenable for recovery and/or disposal.  

  



1. Introduction  

Declining water quality is an issue of increasing importance worldwide. In particular, water 

contamination by heavy metals from domestic or industrial sources can have a significant impact on 

the biodiversity of aquatic ecosystems and human health [1]. Mining operations have long been 

recognised as one of the major anthropogenic sources of metals to the aquatic ecosystem [2]; acid 

mine drainage (AMD) in particular causes persistent and severe pollution and affects most countries 

with historic or current mining industries [3]. Although chemical compositions and pH vary from site 

to site, AMD tends to contain elevated concentrations of dissolved metals such as Fe, Al, Zn, Sn and 

Pb [3, 4]. Because of the longevity of AMD (many mines in Europe continue to release metals 

centuries after closure) [5], treatment presents substantial long term liabilities for mine operators 

and for governments that inherit orphan sites. As a result, there has been a growing interest in more 

efficient and cost-effective remediation technologies. 

Microbial remediation of metal contaminated wastes has gained increasing popularity over 

the last few years [6]. Algae in particular have been demonstrated to sequester metals via 

biosorption and intracellular uptake [7];  the uptake of metals is strongly dependent on the provision 

of adequate light, temperature and nutrients for algal growth [7]. The use of both living and dead 

biomass has been explored, with living algal cells found to be particularly efficient at remediating 

water with low metal concentrations [8, 9]. Although these methods are highly effective in lowering 

metal concentrations in AMD sufficiently, large volumes of secondary waste are created in the form 

of metal-contaminated biomass and sediments [10]. Use of the biomass as a fuel and recovery of the 

associated metals from the AMD could relieve this threat, as well as presenting a revenue stream to 

offset operational costs of both the AMD treatment and the biofuel production itself. Additionally 

the elevated temperature of the AMD could potentially enhance algal growth. While recovery of the 

metals is possible through the complete drying and direct combustion of the algae for power 



generation, with the absorbed metals being recoverable from the ash [11], a potentially more 

efficient alternative is to process the biomass through hydrothermal liquefaction (HTL).  

HTL utilises water at sub-/near-critical conditions (200–380 °C, 50–280 bar) as both the 

reaction medium and solvent for a host of reactions, converting algal biomass into a bio-oil, 

alongside an aqueous phase, a solid residue and a number of gaseous products. HTL can be used to 

process biomass at a concentration of ca. 5–25 % with water, with one study estimating that  the 

energy consumption of biomass preparation was reduced by 88 % if the input slurry generated is 

used without drying steps [12]. The temperatures used in HTL are well within the range of those 

encountered in many conventional oil refinery operations [13], and as such, HTL processing of algal 

biomass is energy-efficient and potentially scalable. For example, the life cycle performance of 

laboratory, pilot- and full-scale scenarios, demonstrated significant improvements in GHG emissions 

with respect to gasoline and corn ethanol, and a potential Energy Return on Investment (EROI) of 

around 2.5 for the full-scale scenario [14], subject to the optimisation of a closed-loop system 

incorporating energy and nutrient recycling. 

HTL comprises hundreds of simultaneous reactions, including the decarboxylation of 

carbohydrates to sugars and fragmentation to aldehydes, hydrolysis of lipids to fatty acids and 

subsequently longer-chain hydrocarbons, and depolymerisation and deamination of proteins. In 

addition, repolymerisation of the reactive fragments into larger oil compounds is also favourable 

[15]. Most liquefactions under optimised conditions have resulted in bio-oil yields around 30–45 % 

[16, 17], regardless of algae strain, although, notably, Li et al. obtained yields of 55 % for 

Nannochloropsis sp. under HTL at 260 °C for 60 min and at 25 % total solid (TS) loading, and 82.9 % 

for Chlorella sp. (220 °C, 90 min, 25 % TS) [18]. The numerous reactions occurring under HTL 

conditions lead to a bio-oil containing a diverse range of chemical compounds, the main constituents 

of which have been found to be C5-C16 cyclic nitrogen compounds, C15–C33 branched and 

unbranched hydrocarbons, branched oxygenates, aromatic compounds, and heterocycles [18]. 

Elevated heteroatom (O and N) contents with respect to mineral crude oil are typical of algal bio-



oils, which give rise to undesirable fuel properties, such as high acidity and viscosity, and the diverse 

chemical compositions can negatively affect combustion performance, storage stability and 

economic value [19, 20].  

The higher heating value (HHV) of the oils usually fall between 25–35 MJ kg-1, with higher 

lipid levels in the biomass corresponding to higher bio-oil HHV. Although this constitutes a significant 

increase with respect to the starting biomass, it still falls short of the energy content of mineral oil 

(41–48 MJ kg-1). Although the bio-oil it is not suitable for use as a transport fuel without further 

modification, potentially it can be refined in a similar manner to crude oil to give a range of fuels, 

including gasoline, diesel and aviation kerosene [21].  

The HTL reaction can also be accelerated by metal catalysts and a number of investigations 

have examined their effect. As algae are complex mixtures of proteins, carbohydrates, lipids and 

alternative metabolites, additional metals rarely effect the algae uniformly across species [22]. For 

example Biller et. al. demonstrated that Na2CO3 promoted the decomposition of carbohydrates 

more effectively, although overall the catalyst had no significant positive effect on the bio-oil yields 

or overall efficiency of the process [23]. This is in direct contrast to other studies that used 

alternative algal strains [24, 25]. Similar variation has been observed for K and Li homogeneous salts 

[17, 23], where reaction temperature appears to be the major contributing factor involved in the 

yield and product distribution [22]. 

Heterogeneous catalysts potentially present a more attractive option for ease of separation, 

especially considering the temperatures necessary for HTL processing. For example, Duan and 

Savage examined a variety of common industrial catalysts (Pd/C, Pt/C, Ru/C, Ni/SiO2-Al2O3, sulfided 

CoMo/γ -Al2O3 and a zeolite) under hydrogen and inert conditions in batch reactions. Under these 

conditions they found that generally the bio-oil yield was increased substantially, in some cases from 

34% up to 57% of the total biomass [26].  

To create an economical biorefinery it is necessary to consider upstream factors, as well as 

final product quality. Despite the advantages conferred by HTL, cultivation of algal biomass is still a 



relatively energy-intensive process, and requires high inputs of water, nutrients and CO2 [27]. As well 

as optimising bio-oil yields; maximising carbon efficiency, efficient water / nutrient recycling and 

ensuring an inexpensive source of CO2 are crucial to the success of algal biofuel production [28].  

In this investigation the suitability of using HTL to process metal contaminated algal biomass 

was assessed. Firstly, Spirulina (Arthrospira platensis) with representative levels of metal sulfates 

were processed in a batch HTL system. Finally, two algal cultures cultivated on AMD were converted 

under the optimal conditions to assess the viability of encompassing a combination of AMD 

remediation and biofuel production (figure 1). Here, we aim to determine how metals affect the 

yield and composition of the HTL reaction products (the solid, aqueous, oil and gaseous phases) and 

assess the viability and usefulness of these products for exploitation as a biofuel, metal remediation 

and for the recycling of nutrients to promote further microalgal growth. 

 

 

Figure 1 Proposed HTL biorefinery concept encompassing algal remediation of AMD 
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2. Materials and Methods 

2.1 Materials  

Spirulina powder (Arthrospira platensis) was obtained from Bulk Powders (Colchester, UK). The dried 

biomass contained 63% protein, 20% carbohydrate, 6% fat and 11% miscellaneous biochemical 

content. Metal sulfates (99%+), (FeSO4 
. 7H2O, MgSO4 

. 7H2O, ZnSO4.
 . 7H2O, PbSO4 and SnSO4) were 

obtained from Sigma Aldrich and used without further purification. The HCl and HNO3 (both trace 

metal grade) were purchased from Fisher Chemicals.  

2.2 Methods 

2.2.1 Hydrothermal liquefaction (HTL) batch reactions 

Batch liquefaction was conducted in accordance with previous literature precedent [23]. The 

reactor, connected to a pressure gauge, needle valve, and spring-loaded relief valve, contained a 

total internal volume of ca. 50 ml. The reactor body was heated inside a vertical tubular furnace, 

with the temperature of the reaction mixture monitored using a thermocouple connected to data 

logging software. The reactor was loaded with approximately 4.000 g of dry biomass, 0–1500 mg 

metal sulfates, and 20 ml deionized water, and heated within the furnace, pre-heated to 550 °C, 

until the specified reaction temperatures were reached, 310 °C (15 min) – 350 °C (35 min), then 

removed from the furnace and allowed to cool to room temperature. Mixing was provided by 

convection in the reactor, temperature profiles of the reaction are given in the supporting 

information. In order to determine experimental error and test the repeatability of experimental 

results, three repeat runs of HTL of pure Spirulina at both 310 °C and 350 °C were used to assess the 

variation in the experimental set-up. The reaction pressure required for the hydrothermal 

liquefaction reaction was generated in situ through the expansion of the reactor fluids and partial 

vaporisation of the water. The reaction pressure varied from 120 bar at 310 °C to 180 bar at 350 °C 

2.2.2 Gas analysis 



After cooling, gaseous products were released via the needle valve into an inverted, water-filled 

measuring cylinder to measure gaseous fraction volume. Gas phase yields were calculated using the 

ideal gas law, assuming an approximate molecular weight of 44 g mol-1 (the molecular mass of CO2, 

which makes up approx. 96–98 % of the gaseous product). A sample from each gas phase was 

separated and analysed using a gas chromatograph (Agilent 7890A) containing an HP-Plot-Q capillary 

column (using helium as the carrier gas), and fitted with an Agilent 5975C MSD detector. The 

samples were loaded at 35 °C, hold time 7 min, ramped to 150 °C at 20 °C min-1, hold time 0 min, 

ramped to 250 °C at 15 °C min-1, hold time 16 min. 

2.2.3 Aqueous phase analysis 

The aqueous phase was decanted from the reactor contents and filtered through a 0.22 µm filter. 

The dissolved product yield in the water phase was determined gravimetrically from a 2.5 ml aliquot, 

dried at 60 °C for 12 hours. The concentration of ammonium ions in the water phase was 

determined spectrophotometricaly using a Randox Urea analysis test kit (Merck, Milipore). The 

sample was diluted with deionised water to a concentration of 1 % prior to analysis. Subsequently 

10 μl of sample was reacted for 5 min with 1000 μl of a urease reactant, followed by the addition of 

200 μl of sodium hypochlorite solution to induce the colour change. After 10 min, sample 

absorbance was measured at 600 nm and urea concentration calculated relative to a standard 

solution. From this, ammonium ion concentration was calculated. Total nitrogen content analysis 

was carried out using a Merck-Millipore Spectroquant Total Nitrogen Cell Test kit and photometer, 

based on the Koroleff method of persulphate digestion to transform organic and inorganic N 

compounds into nitrate. Each sample was diluted to 0.1% prior to analysis. 10 ml of diluted sample 

was digested for 1 h at 120 °C, then allowed to cool to room temperature and reacted with a benzoic 

acid derivative form a nitro compound.  

Phosphate concentration in the aqueous phase was determined using the Merck-Millipore 

Spectroquant test kit and photometer system. Prior to analysis, each sample was diluted by a factor 



of 5–1000, depending on estimated phosphate content, and reacted with the reagents provided. 

Aqueous samples (6 ml),  diluted in 11.6 ml deionised water were acidified with 0.4 ml 67% v/v HNO3  

prior to analysis using Perkin Elmer Optima 2100 ICP-OES to determine the Fe, Zn and Mg content. 

2.2.4 Crude bio-oil analysis 

To separate the remaining bio-oil and solid residue phase, the reactor was washed repeatedly using 

chloroform until the solvent was clear, the solution was filtered, and any residual bio-oil washed off 

the filter paper. The solvent was evaporated using a rotary evaporator set to 40 °C. To determine the 

energy content, approximately 200 mg bio-oil was weighed into a steel crucible and analysed using 

an IKA C1 bomb calorimeter to determine energy content. The ash content was determined by the 

mass difference of the crucible prior to and after energy content analysis. Bio-oil samples were 

analysed on a Carlo Erba Flash 2000 Elemental Analyser to determine CHN content. Elemental 

analyses were carried out in duplicate for each sample, and average values are reported. 

2.2.5 Solid residue analysis 

The solid residue yield was calculated from the mass of the retentate collected on the filter paper 

after drying for 12 hours in an oven at 60 °C. The filter paper was weighed immediately on removing 

from the oven, both before and after use, to minimise errors associated with absorption of 

atmospheric moisture. Solid residue samples were digested in aqua regia. Briefly, 6 ml of HCl (37 %; 

Fisher Tracemetal grade) was added to approximately 100 mg residue. After any initial reaction had 

subsided, 2 ml concentrated HNO3 (Fisher Trace metal grade) was added and the digest covered and 

left at room temperature for 15 min. The digest was then heated to 95°C for 60 min, cooled and 

made up to 50 ml with ultra-pure water. Filtered digestates were analysed using an Agilent 7700 

Series ICP-MS to determine P, Pb, Sn, Mg, Zn and Fe content. SEM analysis of the solid residue was 

carried out using a JEOL JSM-6480LV system. Elemental composition analysis was carried out using 

INCA software. Samples were analysed on a Carlo Erba Flash 2000 Elemental Analyser to determine 

CHN content. 



2.2.6 Culturing of AMD-1 and AMD-2 cultures 

A mixed community of microalgae (predominantly Euglena- and Chlamydomonas-like morphologies) 

isolated from the mine drainage of a former tin mine in the UK were grown in AMD supplemented 

with nitrates and phosphates (see supporting information). Following scale up in conical flasks (3 l), 

the biomass for HTL was generated in a bubble column with artificial illumination. Bubble columns 

were constructed using PVC components; 110 mm clear polycarbonate tubing, with a working 

culture volume of 10 l. Light was supplied via 36 W Grolux fluorescent tube and 36W 865 daylight 

fluorescent tube providing 80 µmol photons m-2s-1. Cultures were aerated by constant bubbling at 3 l 

min-1. Cultures were grown at 20 °C in cycles of 16 h of light: 8 h dark photoperiods (16:8h).  

The AMD-1 culture was grown on a synthetic acid mine drainage medium (sAMD) supplemented 

with both phosphate and nitrate salts (a full description is given in the supporting information). The 

AMD-2 culture was grown on AMD supplemented with phosphate and nitrate salts (see supporting 

information). Cell counts were conducted via flow cytometry daily and stationary growth phase 

biomass was harvested by centrifugation. 

2.2.7 Culturing the AMD-1 algae with HTL aqueous phase  

The photobioreactors were held at room temperature, which fluctuated between 16 ⁰C to 22 ⁰C, 

under full aeration and were inoculated with 1 l of the AMD algae cultured in a sAMD medium (see 

supporting information), with no additional nitrates or phosphates but with the addition of the 

aqueous phase from the hydrothermal processing of Spirulina at 350 °C, (diluted 1:100 v/v with 

deionised water). The starting inoculum was ~ 105 cells ml-1.   

 

 

 

 

 



 

3. Results and discussion  

3.1 HTL of Spirulina and metal sulfates 

Initially, the effect of additional metals present with the algal biomass on the HTL process was 

examined using the commercially available cyanobacterium Spirulina (Arthrospira platensis) with the 

addition of a range of metal sulfates under batch HTL process conditions. The metal concentrations 

used (described in Table 1) were based on data collected from AMD from a former tin mine between 

January and March 2014. The main metal contaminants found in this mine water were Fe, Zn and 

Mg, with lower amounts of Sn and Pb also being present. To examine the effect of the metals on the 

HTL process, the five separate metal sulfates were added to the Spirulina biomass at concentrations 

found in the AMD. Two distinct scenarios were investigated, the first with the main metals Fe, Zn 

and Mg being present at a low concentration in order to assess the effect of a minimum uptake 

scenario, where the algae display minimal adsorption of the metals present in dilute AMD streams. 

In the second scenario the concentration of metals was higher, mimicking a situation where the 

algae had successfully been used to remediate concentrated AMD metal effluent streams (high 

uptake scenario).  

 

 

 

 

 

 

 



 

Table 1 The metal salts used in conjunction with Spirulina to mimic metal contaminated algae used in 

remediation of AMD. The low uptake scenario mimics a situation where there is poor metal uptake from the 

AMD, the high uptake scenario mimics the best case, where all the metal present in the AMD has been 

absorbed 

Metal / 

Scenario 

Representative salt(s) Metal concentration in the 

reactor / mg L-1 

Pb PbSO4 10 

Sn SnSO4 210 

Low 

uptake 

(Mg/Zn/Fe) 

 

MgSO4 17 

FeSO4 43 

ZnSO4 90 

Total 150 

High 

Uptake 

(Mg/Zn/Fe) 

MgSO4 2665 

FeSO4 5820 

ZnSO4 14,396 

Total 22,855 

Mg MgSO4 2665 

Zn ZnSO4 5820 

Fe FeSO4 14,396 

 

3.1.1 Effect of additional metal sulfates on the bio-oil yield and HHV of Spirulina  

The Spirulina/metal mixtures were processed in a batch reactions at either 310 °C or 350 °C. The 

resulting oil was extracted, weighed and the N content and energy density assessed (figure 2). In the 

majority of cases lower processing temperatures generated higher bio-oil yields than those obtained 

at ca. 350 °C. This corresponds directly with previous literature findings [29-31]. There was also a 

positive correlation between bio-oil yields and increasing total metal content (Figure 2a), and is 

potentially due to the catalytic effect of the metals present. FeSO4 is commonly employed as a 

catalyst in coal liquefaction for example [32], and significant improvements in oil yield when 



liquefying pine wood in supercritical ethanol using 5% w/w FeSO4 have also been reported [33]. 

Similarly, the addition of both MgSO4 and ZnSO4 also increased oil yields, though neither metal has 

previously been investigated as a potential HTL catalyst.  

N content of the bio-oil was reduced from 9.7% in the Spirulina feed to 7% in the bio-oil produced by 

HTL without additional metals. All samples displayed lower bio-oil N levels at higher processing 

temperatures. The metal concentration had little effect on the N content of the bio-oil though 

slightly elevated levels were observed in the process when Sn and Mg were present. Despite the N 

content of the bio-oil being lower than in unprocessed Spirulina, the presence of metals did not 

reduce the N content to a suitable level for combustion and a further hydrogenation upgrading stage 

would be necessary to produce hydrocarbon fuels from this process.  

Consistently higher energy density was observed at the higher processing temperatures, consistent 

with findings in the literature [17]. Interestingly, increased concentrations of Mg, Zn and Fe caused a 

decrease in bio-oil energy content (Fig 2(c)). This is likely the result of the higher yields of bio-oil 

observed under these conditions. For example, Nannochloropsis  sp. processed at 350 °C yielded 

34 % oil with a HHV of 38.1 MJ kg-1, while 46 % oil was obtained at a processing temperature of 

310 °C, though with a much lower HHV of 27.7 MJ kg-1 [15]. This is presumably due to the increased 

partitioning of oxygenated organic components into the oil phase.  



 

 

 

Fig. 2 Bio-oil produced by hydrothermal liquefaction of Spirulina with additional metal sulfates, where a) total 

bio-oil yields calculated as % of the original starting biomass (excluding additional metals), b) total N content in 

the bio oil and c)  The energy content of the bio-oil. 
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3.1.2 Assessment of the aqueous phase from the HTL of Spirulina and metal sulfates 

On processing of the algal biomass the light organic compounds and some alternative inorganic 

elements are deposited in the aqueous phase. To assess this residue, the aqueous phase was dried 

in an oven at 60 °C for 12 hours and the residue weighed (figure 3a). The organic residue in the 

aqueous phase was consistently reduced at higher processing temperatures, this organic material 

was presumably partitioning into the bio-oil phase and correlates with the increasing bio-oil yields. 

Recycling of algal nutrients (such as N, P, K, Fe) would be required for an economically viable algal 

biorefinery. While the AMD provides most metallic species in abundance, AMD is generally 

phosphate and nitrogen limited. The total N, NH4
+ and phosphate content of the aqueous phase 

samples were therefore examined (figure 3b). Nutrient partitioning into the aqueous phase was 

influenced both by the reaction conditions and the levels of metal in the sample. The total nitrogen 

content in the aqueous phase was similar irrespective of temperature though higher processing 

temperatures increased the total amount of NH4
+ slightly. A high level of N was retained in the 

aqueous phase irrespective of metal loading and could be used as a useful source of NH4
+ for 

nitrogen limited AMD.  

Reasonable partitioning of phosphorus into the aqueous phase also occurred and was stable 

irrespective of the temperature employed. However, while up to 1920 mg l-1 of P was observed at 

the low metal loadings, on addition of high levels of metals to the system the phosphate levels 

detected in the aqueous phase dropped dramatically. At the highest metal loading, 22,855 mg l-1 of 

total metals, phosphate levels in the aqueous phase dropped to 13.9 mg l-1, from 1860 mg l-1 in the 

aqueous phase from processing of pure Spirulina. 

The limitation of aqueous P concentrations is potentially due to the formation of insoluble metal 

phosphates (particularly iron and zinc phosphates) and their partitioning into the solid residue. 

Despite additional metals being in excess, small levels of phosphate (up to 15 mg l-1) were still 

detected in the aqueous residue. Zinc, however, was a notable exception to this. The aqueous phase 



from a sample processed with 5820 mg l-1 Zn still contained 460 mg l-1 of phosphate when processed 

at 310 °C, and 720 mg l-1 when processed at 350 °C. 

Only trace levels of Sn and Pb were detected in the aqueous phase of the water from the HTL 

processing of pure Spirulina, and did not increase with the addition of extra Sn or Pb sulfate to the 

system. At the levels examined Sn and Pb partition almost entirely out of the aqueous phase, 

demonstrating that HTL is a suitable processing method that partitions these contaminants into the 

solid residue allowing the aqueous phase to be recycled.  

Only trace levels of Fe, Zn and Mg were observed in the aqueous phase at the low uptake scenario. 

In the high uptake scenario, some partitioning into the aqueous phase was observed (figure 3d). Fe, 

present in the reaction at a concentration of ca. 14,000 mg l-1, partitioned almost entirely out of the 

aqueous phase. Less than 5% of the Zn added to the system partitioned into the aqueous phase, 

though 37–39 % Mg partitioned into the aqueous phase in the presence of Fe and Zn. The high 

recovery of Mg in the aqueous phase could be beneficial, as a lack of micro/macronutrients such as 

Mg has been shown to be a major contributing factor in the reduction of algal growth on HTL 

process water [34].  

 

 

  



 

 

Fig. 3 Analysis of the aqueous phase produced by hydrothermal liquefaction of Spirulina with additional metal 

sulfates where a) is the yield of residue on removal of the water, b) is the total N content in the water phase, 

the grey shaded area represents the amount of nitrogen present as NH4
+
 c) is the total phosphate content in the 

aqueous phase and d) gives the level of metals present in the aqueous phase on HTL of the combined Mg, Zn, 

Fe (high uptake) sample (total metal content 22,855 mg l
-1

). 

3.1.3 Effect of metal sulfates on the gas phase produced from the HTL of Spirulina  

Gas yields of around 7.3-16.2 % were obtained for all samples (table 3), gas yields generally 

increased with increased temperature and were found to be higher in the presence of metal 

loadings and particularly Mg, Zn and Fe. GC-MS analysis demonstrated that the gas phase was 
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predominantly composed of CO2 (between 96% - 99%), and the remaining fraction composed of 

volatile organics, particularly propene, isobutylene, 1-butene and 1,2-dimethylcyclopropane (full 

analysis is given in the supporting information). 

Lower processing temperatures tended to increase yields of CO2 and decrease VOC content. Similar 

results have been noted previously where Nannochloropsis  sp. yielded a gas phase with elevated 

hydrocarbons on increasing temperatures, although the most abundant species were determined to 

be methane and C2 hydrocarbons, rather than C3–C5 species [35]. This suggests that the use of lower 

processing temperatures would be beneficial for gas phase recycling to supplement algal cultivation, 

as relatively high-purity CO2 is required to culture the algae.  

Table 3. Analysis of the gas fraction produced from the hydrothermal liquefaction of Spirulina with additional 

metal sulfates. Gas yield is given as a percentage of the original biomass, on the assumption that the volume is 

entirely composed of CO2.   

Metal  Gas Yield (%)  CO2 (%) Volatile organic 

carbon (%) 

 310 °C 350 °C 310 °C 350 °C 310 °C 350 °C 

None 9.8 13.4 98.7 97.4 1.32 2.64 

Pb 8.6 9.5 98.4 96.8 1.64 3.18 

Sn 9.1 14.6 98.5 98.4 1.49 1.62 

Mg Zn Fe 

(low uptake) 

9.8 7.3 99.0 95.9 1.05 4.13 

Mg Zn Fe 

(high uptake) 

15.4 15.6 99.4 97.6 0.6 2.44 

Mg 13.1 10.8 99.3 97.3 0.72 2.73 

Zn 10.7 11.8 97.8 97.5 2.21 2.50 

Fe 13.8 16.2 99.0 96.7 1.01 3.27 



3.1.4 Assessment of the solid residue produced from the HTL of Spirulina with metal sulfates 

There was only a minor decrease observed in the solid residue yields on increasing the temperature 

(figure 4a). Adding catalytic levels of metals also did not change the solid residue substantially. 

However, with increasing metal concentrations, more metals reported to the residue fraction 

thereby increasing apparent yields. This strongly suggests that the majority of the metals partitioned 

into the solid residue phase. Only around 2% of the carbon from the original biomass partitioned 

into the solid residue on HTL of the original Spirulina (Figure 4b). Whilst this value remained more or 

less constant following the addition of small amounts of additional metals (data not shown) up to 

10% of the carbon from the biomass partitioned into the solid residue when processing of the high 

uptake scenario at the lower reaction temperature. Mg, Zn and Fe all elevated the presence of 

carbon in the solid residue.  In general, the carbon concentration in the solid residue appeared to be 

at the highest, at high metal loadings and lower temperatures, suggesting that the production of 

large asphaltene type organics are catalysed by the metals present, though a large decrease in the 

carbon content was observed at higher temperatures in the presence of iron, suggesting that the 

iron is catalytically breaking these compounds down.  

The increase in the solid phase yield is also due to the partitioning of other elements, such as 

oxygen, in the solid residue (figure 5). In all cases, the solid residue phase was composed 

predominantly of inorganic matter, with carbon only making up 3.5–11.8 % of the solid residue by 

mass.  

  



 

 

 

Fig. 4 a) Total solid residue yield for Spirulina processed with additional metal sulfates b) the % of carbon from 

the original biomass that partitioned into the solid residue phase 
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Fig. 5 Elemental composition of the solid residue produced from the hydrothermal liquefaction of Spirulina, 

showing the high uptake scenario and the individual Mg, Zn and Fe sulfates. The full dataset is given in the 

supporting information 

 

This data, coupled with the low level of metals detected in the aqueous phase, demonstrates that 

the vast majority (up to 100 %) of the added Fe, Zn, Sn and Pb are present in the solid residue. 

The solid residue was also examined by SEM (see supporting information). On addition of metals, the 

physical appearance of the solid residue altered significantly, and the metals were detected in solid 

residue from metal-containing reactions at levels not observed in the solid residue from Spirulina 

liquefaction alone. The results are in good agreement with data obtained through ICP-MS,  

suggesting that the metals in the solid residue phase are predominantly oxides. The low magnesium 

content of the mixed-metal additive sample is in agreement with the high magnesium levels 

detected in the aqueous phase. 

3.2 HTL of algal cultures used in the remediation of acid mine drainage 

Following the positive assessment of the HTL for the model compounds, the HTL process was applied 

to a natural algal community selected for cultivation on AMD. Two scenarios were examined. In both 

cases, the same starting algal community was used. The first scenario, AMD-1, the algae were 
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cultured in a low pH, synthetic AMD broth. In AMD-2, the algal culture was grown in real AMD taken 

from a former tin mine. 310 °C was selected as the temperature for processing as this was shown to 

give optimised bio-oil yields. The initial elemental composition of the AMD-1 algae were similar to 

the Spirulina, though due to the increased metal uptake, the AMD-2 biomass was notably different 

(table 4). Overall, the mass fractions of the four main product components from liquefaction were 

similar for AMD-1 algae and Spirulina, though the AMD-2 algae produced a far higher amount of 

solid residue on liquefaction (figure 6).  

Table 4 Main elemental composition of the algae (w/w % dry mass) demonstrating low metal uptake (AMD1) 

and the algal community demonstrating high metal content (AMD2) compared to the Spirulina sample with no 

additional metal sulfates. 

 C % H % N % P % Mg % Zn % Fe % Sn % Pb % other % 

Spirulina 43.47 5.76 9.74 2.06 0.39 0.00 0.13 0.0001 0.0003 38.46 

AMD-1 47.58 6.95 8.95 2.25 0.32 0.27 0.46 0.0014 0.0117 33.23 

AMD-2 17.56 3.37 2.89 2.42 0.10 0.04 23.44 0.0003 0.0015 50.18 

 

 

Fig. 6 Mass balance for the algae used in the remediation of acid mine drainage on being processed by HTL. 

The percentages given were calculated from the weight of the original starting material on drying (biomass and 

any metals remediated from the AMD).  
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Table 5. Yields of bio-oil from the hydrothermal processing of the algae used in the remediation of acid mine 

drainage compared with Spirulina 

 

Bio-oil yields (calculated as a percentage of the original dry algal biomass) were higher for the AMD-

1 algae than for Spirulina with no additives, comparable to yields obtained with additives at the 

highest metal loading. This increase is likely to be due partly to the comparatively higher C and H 

content of the biomass, and partly due to catalytic effects from absorbed metals in the biomass. The 

AMD-2 biomass, with a far lower carbon content, gave a correspondingly lower yield of 8.8 % bio-oil, 

with the solid residue making up 55.3 % of the product by weight. Interestingly, although the yield 

was extremely low, the composition and energy content of the bio-oil were similar to that of the 

AMD-1 biomass (table 5). This suggests that the volume of remediated metals will not have a large 

effect on the quality of the bio-oil, and the quality of the bio-oil should be relatively uniform 

irrespective of any seasonal or geographical changes in the metal content being remediated.    

AMD-1 has a significantly higher level of carbon partitioning into the oil (84 %) than either Spirulina 

or AMD-2 (73 % and 42 %, respectively) at the same processing conditions, demonstrating that initial 

biomass concentration cannot be the only factor affecting bio-oil yields. The AMD-1 algae contained 

0.46 wt. % Fe and 0.27 wt. % Zn, in addition to 0.32 % Mg, which is also present in Spirulina at similar 

levels. 

 

 Bio-oil yield / % of 

total dry mass 

% C % H % N % other HHV / MJ kg
-1

 

Spirulina 35.9 70.8 9.1 7.9 12.1 29.32 

AMD-1 45.7 68.8 7.9 7.1 16.2 29.70 

AMD-2 8.9 68.6 7.2 7.5 16.5 28.73 



Table 6 Elemental composition of the solid residue produced by the hydrothermal liquefaction of algae with a 

low metal uptake (AMD1), and a high metal uptake (AMD2), used in the remediation of acid mine drainage. 

The solid residue is given as a percentage of the orginal total dry algal biomass.   

Feedstock Solid 

residue 

yield / % 

C % H % N % P % Mg 

% 

Zn % Fe % Sn % Pb % other 

% 

Spirulina 10.31% 
9.34 1.12 1.78 17.65 6.28 0.03 1.59 

0.00

15 

0.00

47 
62.21 

AMD-1 10.85 28.54 2.86 4.47 13.79 3.75 3.02 7.33 0.01 0.12 36.10 

AMD-2 55.34 10.45 1.46 1.68 4.48 0.14 0.11 50.1 0.00 0.01 31.54 

 

For the AMD-2, the decrease in bio-oil yield was matched by a large increase in the solid residue 

yield, with solid residue comprising 55 % of the product by weight, compared with ca. 10 % for pure 

Spirulina and AMD1 (table 6). Elemental analysis of the solid residue reveals that the CHN ratios are 

similar to those detected in the solid residue from HTL of both Spirulina with and without metal 

additives, but distinct from those observed for AMD1 algal culture. Both metals and phosphorus are 

present at higher mass fractions in the solid residue phase than in the starting biomass. The AMD1 

solid residue contained moderate levels of Zn and Mg (3 % and 3.75 %, respectively), and somewhat 

less Fe (7 %) than expected from the model.Sn and Pb were also detected at low levels. The AMD2 

algal solid residue contained predominantly Fe (50 %) with little contribution from other metals 

(0.11 % Zn and 0.14 % Mg). 

 



 

Fig. 7 Nutrient content of the aqueous phase on the hydrothermal processing of algal cultures used in the 

remediation of acid mine drainage. 

In the aqueous phase, the total N is lower for AMD-1 algae than Spirulina, and lower again for the 

AMD-2 algae, likely to be caused by the comparatively lowered N content of the starting biomass. A 

similar pattern was also seen for NH4
+. Phosphate analysis of the aqueous phase revealed that the 

phosphate content of the process water from liquefaction of AMD-1 biomass was similar to that of 

pure Spirulina, whereas the process water from AMD-2 contained extremely low phosphate levels, 

presumably a combination of the comparatively lower starting concentration of biomass and the 

high levels of iron and magnesium in the original starting material leading to precipitation of Zn and 

Fe phosphates.  

Elevated levels of iron were present in the process water produced from the HTL of the AMD-2 

algae. Little Fe partitioning to the aqueous phase is observed in the Spirulina model even at 

relatively high loadings, but the AMD-2 algae material seemingly contained a sufficiently high initial 

Fe concentration for this to occur. Magnesium recovery in the aqueous phase was also high, 

although no zinc was recovered. This is in agreement with the Spirulina model: even at high loadings, 

little zinc recovery in the aqueous phase is observed, and Mg partitions to the aqueous phase 

relatively readily.  
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Figure 8. Cell count and phosphate use of AMD-1 cultured in a 10l bubble column bioreactor cultured on sAMD 

with the supplementary aqueous phase produced from the HTL of the Spirulina biomass.  The bioreactor was 

run in duplicate. 

As the acid mine drainage only contains trace levels of phosphate and ammonium, it must be 

supplemented by these elements to ensure algal growth. The effectiveness of the HTL output 

streams to supplement microalgal culture was established by combining the aqueous phase 

produced from the HTL of Spirulina with the sAMD media (Figure 8).  Previous work demonstrated 

that a dilution factor 1:100 for HTL water was a general good compromise for a reasonable biomass 

concentration, high grow rate and low toxicity. Chemical analysis showed that the diluted HTL 

aqueous phase had a total nitrogen and phosphate concentration of 200 mg l-1 and 18 mg l-1 

respectively, thus representing a suitable source of these elements. 

 The algal culture was then grown over 15 days in a 10 l bubble column bioreactor at an average 

temperature of 18 °C. The culture grew well, with 4 x 106 cells ml-1 obtained after 7 days from 

inoculation, demonstrating that the HTL phase was not unduly toxic or nitrogen limited, in addition 

the algae were able to utilise around 75% of the phosphate provided from the HTL process. The 

overall data demonstrate that the nutrients lacking in the remediation can be provided by the HTL 

process, rather than needing additional fertilizer input.  
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The gas yields from both algae were similar to those obtained from Spirulina (around 10 % by mass), 

with composition remaining unaffected giving 98.9 % and 99.3 % CO2 for the AMD-1 and AMD-2 

biomass, respectively, which should be amenable for use to further stimulate algal growth. The main 

VOCs components of the gaseous products from AMD-1 were similar to the gas products identified 

from Spirulina liquefied at 310 °C, though AMD-2 only produced propene and isobutylene in 

significant quantities (see supporting information). 

4. Conclusions  

The results presented demonstrate that HTL could be used to process algae used in the remediation 

of acid mine drainage. On liquefaction of Spirulina bio-oil oil yields were increased slightly on 

addition of the metals, and this did improve the carbon recovery in the oil phase, though the HHV 

was reduced. A corresponding decrease in the total organic content of the aqueous phase was 

identified. The oil produced from both low metal and high metal systems, were remarkably similar 

irrespective of the lack of biomass in the AMD-2 sample.  

One of the key parts of the proposed biorefinery is the ability to salvage metals captured from AMD 

from the solid residue phase for purification or disposal. In this work, metals were found to partition 

almost exclusively into the solid residue phase, clearly an advantage for potential metal recovery. 

This occurred with the notable exception of magnesium, which was recovered at roughly 30–50 % in 

the aqueous phase when also in the presence of Fe and Zn. However, elevated levels of magnesium 

in the aqueous phase should also be beneficial for process water recycling, although continual 

recycling could result in a gradual accumulation of magnesium beyond useful concentrations. In the 

AMD algal samples, high metal partitioning in the solid residue phase was also observed, allowing for 

either effective disposal or recovery.  

Another important factor influencing the success of the biorefinery is nutrient recycling from the 

process water for algal cultivation. Unfavourably, high metal loadings drove partitioning of 

phosphates from the aqueous phase into the solid phase, presenting a potential setback to the 



recycling of process water as a growth supplement for further algal cultivation. It seems likely that 

the phosphate would need to be recovered from the solid residue phase through further chemical 

processing. Nevertheless, the phosphate that did partition into the aqueous phase could be 

metabolised by the algae effectively.  

Processing at lower temperatures yielded a gas phase composed of higher purity CO2 with lower 

VOC levels, which is favourable both for partial gas phase recycling into algal cultivation and lowers 

the gas phase toxicity for environmental release. On liquefaction of the algal communities used to 

remediate AMD, the CO2 produced was around 99% pure, and while higher value volatile 

components, such as propylene, were observed, they were present at too low levels to justify 

extraction and purification. 

In general, processing temperatures were found to have a more substantial influence than metal 

loadings over product yields and properties. The use of lower temperatures also resulted in higher 

nitrogen levels in the aqueous phase, though lower NH4
+ content. However, at higher processing 

temperatures of around 350 °C bio-oil energy content was improved, and nitrogen levels were 

somewhat lowered.  

HTL processing was found to be a suitable method of processing algae used in the remediation of 

acid mine drainage. The oil is of a high enough quality for further hydrogenation into fuels, whereas 

the majority of the metals are almost exclusively recovered in the solid residue phase. There is also 

scope for the recovery of NH4
+ and limited P from the aqueous phase to supplement algal growth 

and aid in the further remediation of metal rich effluent.   
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