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Abstract

The detection and monitoring of emotions are important in various applica-
tions, e.g. to enable naturalistic and personalised human-robot interaction.
Emotion detection often require modelling of various data inputs from multiple
modalities, including physiological signals (e.g.EEG and GSR), environmental
data (e.g. audio and weather), videos (e.g. for capturing facial expressions
and gestures) and more recently motion and location data. Many traditional
machine learning algorithms have been utilised to capture the diversity of mul-
timodal data at the sensors and features levels for human emotion classification.
While the feature engineering processes often embedded in these algorithms are
beneficial for emotion modelling, they inherit some critical limitations which
may hinder the development of reliable and accurate models. In this work, we
adopt a deep learning approach for emotion classification through an iterative
process by adding and removing large number of sensor signals from different
modalities. Our dataset was collected in a real-world study from smart-phones
and wearable devices. It merges local interaction of three sensor modalities:
on-body, environmental and location into global model that represents signal
dynamics along with the temporal relationships of each modality. Our ap-

proach employs a series of learning algorithms including a hybrid approach
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using Convolutional Neural Network and Long Short-term Memory Recurrent
Neural Network (CNN-LSTM) on the raw sensor data, eliminating the needs
for manual feature extraction and engineering. The results show that the adop-
tion of deep-learning approaches is effective in human emotion classification
when large number of sensors input is utilised (average accuracy 95% and F-
Measure=%95) and the hybrid models outperform traditional fully connected
deep neural network (average accuracy 73% and F-Measure=73%). Further-
more, the hybrid models outperform previously developed Ensemble algorithms
that utilise feature engineering to train the model average accuracy 83% and
F-Measure=82%)

Keywords: deep learning, emotion recognition, convoltutional

neural network, long short-term memory mobile sensing

1. Introduction

The growing popularity of sensors and low power integrated circuits, to-
gether with the increasing use of wireless networks have led to the development
of affordable, robust and efficient wearable devices which can capture and trans-
mit data in real time for a long period of time. These data sources provide a
unique opportunity for innovative ways in recognising human activities through
human physiological sensing while also taking into account other natural en-
vironmental factors, such as weather, noise levels, etc. This could potentially
contribute to better management of chronic diseases such as diabetes, asthma
and cardiovascular diseases [1]. For example, extensive research has focused
on automatic detection of physical exercises which are linked to a range of
health related issues[2]. Due to these potential impacts, research work is on
the rise with many algorithms being developed for a range of application areas
in healthcare (e.g. symptoms monitoring, home-based rehabilitation) and be-
yond (e.g. security, logistics supports) [2, 3]. Some of these machine learning
algorithms include multivariate regression, K-nearest Neighbour (KNN) clas-

sification combined with Dynamic Time Warping (DTW), etc. In addition,



given the importance of mental health and its increasing impact on societies,
researchers are now finding ways to accurately detect human emotion with the
hope to develop intervention strategies for mental health and to provides rich
contextual information which can be used to better understand mental health
issues [4]. Furthermore, there have also been significant interests in emotion de-
tection in human-computer interactions [5] due to its potential use, allowing us
to design intelligent computer systems which are adaptable according to users
emotional states, ensuring convergence and optimisation of human-computer
interaction. Therefore, there have been numerous attempts to exploit machine
learning techniques utilising sensor datasets for automatic emotion detection
[6, 7, 8, 9]. To date, a significant amount of research in automatic emotion de-
tection has been carried out primarily using visual, audio and movement data
(e.g. facial expression, body postures, speeches) [6, 3, 8, 9, 10]. With the in-
creased availability of low-cost wearable sensors (e.g. Fitbit, Microsoft writs
bands), there is an emergence in research interest in using human physiological
data (e.g. galvanic skin response (GSR), heart rate (HR), electroencephalogra-
phy( EEG), etc.) for emotion detection. Apart from these, given the intimate
links between emotion and environmental factors [6], studies are starting to
look into using environmental sensors data and location patterns to infer hu-
man emotion [6]. Despite the possibility of sensing a wide range of information
(from human physiology to environment), automatic human emotion classifica-
tion remains very challenging due to the idiosyncrasy and variability of human
emotional expressions [11]. The range of modalities of emotion expression could
be very broad, with many of these modalities still being inaccessible to current
sensor technology (e.g. blood chemistry). Many accessible physiological signals
may be non-differentiable in emotion detection [11]. Furthermore, studies in
automatic emotion detection rely on controlled samples in lab settings, where
specific emotions are artificially triggered using audio-visual stimuli (e.g. pre-
senting photos or videos to participants) or by asking participants to carry out
carefully designed tasks to induce emotional states [12]. Although this type of

controlled studies is valuable for certain applications (e.g. clinical diagnosis in



healthcare), its use is rather limited to strictly controlled environments. For
emotion detection technology to be useful in the everyday management of men-
tal health and mobile human-computer interaction in the wild, we are interested
in techniques which allow us to detect emotion on-the-go and in real-life set-
tings. In this paper, we explore a deep learning approach for multivariate time
series classification, combining environmental, physiological and location sensor
data using smart phones and wristbands. Inspired by the deep feature learn-
ing in images and speech recognition [13, 14, 15], we explore a deep learning
framework for multivariate time series classification for emotion recognition in
the wild, where users are walking in a urban area. Deep learning relieves the
burden of manually extracting hand-crafted features for machine learning mod-
els. Instead, it can learn a hierarchical feature representation from raw data
automatically. We leverage this characteristic by building models using a range
of deep learning methods to train raw sensor data. This eliminates the need for
data pre-processing and feature space construction, and simplifies the overall
machine learning process [16]. Due to its success in image and speech classi-
fication, deep learning has been increasingly used for non-image/speech data,
including human activity recognition using time series data such as in the case
of smart phone accelerometer data [17, 18, 1, 19]. There have also been recent
attempts using deep learning for emotion detection, although most studies have
only looked at lab based emotion data [20, 9]. Specifically, we propose a Multi-
Channels Deep Convolutional Neural Network (MC-DCNN) model. We follow a
hybrid approach based on Convolutional Neural Network and Long Short-term
Memory Recurrent Neural Network (CNN-LSTM) inspired by previous state of
the art [19, 21] which have been applied to human activity using accelerometer
data. The majority of the studies employing deep learning on activity recogni-
tion are restricted to a handful of data channels as opposed to this study where
we utilise 20 sensor channels from three different modalities to classify emotion

against self-reported emotion labels. The main contribution of our work lies in:

1. The use of multimodal sensor feeds (physiological, environmental and lo-



cation data) for emotion detection using features automatically extracted
with deep learning approach. Although deep learning has been used in
human activity/emotion detection, few studies looked into multimodal
datasets. Specifically, to the best of our knowledge, no other work has
applied deep learning on the combination of physiological, environmental
and location data for emotion recognition.

2. The collection of real-world data from participants walking in a transited
city location wearing a wristband and smart phone, while reporting their
emotion periodically using a smart phone. The data therefore better re-
flect the complexity of real life environments. Most previous studies in
automatic emotion detection are carried out in controlled lab settings as
opposed to ”in the wild” (i.e. in participants’ natural environments),
therefore the results are restricted to narrow application domains.

3. Various experiments carried out to compare different architectures of deep
neural networks, including hybrid models using hybrid multi-channel sen-
sor data (beyond human activity recognition).

4. The analysis and fusion of human physiological, environmental and lo-
cation features individually and combined to explore its significance in

emotion classification.

2. Related work

In recent years, smart phones and many wearable devices such as smart
watches and wristbands are equipped with a range of sensors which can continu-
ously monitor human physiological signals (e.g. heart rate, motions/movements,
location data) and in some cases the ambient environment data (e.g. noise,
brightness, etc.). This led to the emergence of large datasets in a wide vari-
ety of research areas such as healthcare and smart city. This burst of on-Body
and environmental data presents an unprecedented opportunity for healthcare
research, but it requires the development of new tools and approaches to deal

with large multidimensional datasets. In the past decades, researchers from var-



ious fields, particularly in ubiquitous and mobile computing have been exploring
the possibilities harnessing these data to infer or predict human behaviour, with
varying levels of success [17, 22, 23, 18, 1, 19, 24, 25]. Given the relative ease
of collecting time series sensor datasets, researchers have investigated the rela-
tionship between these sensor data and human emotion. The majority employ
traditional statistical analysis methods and machine learning techniques. Of-
ten, a number of hand-crafted features that summarise the raw sensor data are
extracted from the less structured data. These features are then filtered em-
pirically or using structured algorithms through a feature selection process [16].
Features with low level of correlation with its corresponding label are excluded
(through dimensionality reduction). Moreover, features are often removed to
avoid collinearity, when excessive correlation among explanatory variables (fea-
tures) exist in the dataset. Given the list of selected features, computational
models are built which help classify or predict human activity /emotion using
machine learning models such as logistic regression based models [6], support
vector machines (SVM), decision trees, artificial neural networks (ANN), etc.
[26, 27]. Although hand-crafted features have yielded promising results, they are
domain-specific, and often poorly generalise to other similar problem domains.
Handcrafted-based approaches involve laborious human intervention for select-
ing the most discriminating features and decision thresholds from sensor data.
Handcrafted features have a decisive impact on models [16] and often utilise
statistical variables, e.g., mean, variance, kurtosis and entropy, as distinctive
representation features. Moreover, traditional machine learning and feature en-
gineering algorithms may not be efficient enough to extract the complex and
non-linear patterns generally observed in multimodal time series datasets. In
addition, traditional feature engineering could also result in a large output fea-
tures set [28]. This is problematic because it is difficult to know without training
which features are relevant to a given task, and which are noise. As a result,
the ability to select features from a huge feature set is critical and will require
additional dimensional reduction techniques to process these features. Further-

more, feature extraction and feature selection are computationally expensive.



The computational cost of feature selection may increase combinatorially as
the number of features increases [28]. In general, search algorithms may not
be able to converge to optimal feature sets for a given model [16]. Given the
complexity of human emotion detection, it is important to have abstract repre-
sentations of the sensor data which are invariant to local changes in the data.
Learning such invariant features is a major challenge in pattern recognition (for
example learning features which are invariant to the time of data collection).
Traditional shallow methods, which contain only a small number of non-linear
operations, do not have the capacity to accurately model such variation of time
series data. Therefore, to overcome the difficulties in obtaining effective and
robust features from time-series data, many researchers have turned their at-
tention to deep learning approaches. One interesting property of deep learning
techniques is that they can work on raw data and automate the feature ex-
traction and selection. Noisy time series samples are fed into the network as
input data, and during each transformation, a hidden representation of inputs
from the prior layer is generated to form a higher hierarchical architecture of
data representation (i.e. features). One can train the network by adjusting
the mapping parameters, in order to obtain finer abstraction levels. Specifi-
cally, each layer in a deep learning model combines outputs from the previous
layer and transforms them via a non-linear function to form a new feature set.
This gives a deep learning model the ability to automatically learn features di-
rectly from the underlying sensor data, forming a hierarchy where basic features
are detected in the first layers, and in the deeper layers the abstract features
from previous layers are combined to form complex feature maps. Empirical
studies showed that data representations obtained from stacking up non-linear
feature extracting layers as in deep learning often yield better results, e.g., im-
proved classification model accuracy [18], better generative models (to produce
better quality samples) [18], and the invariant characteristics of data represen-
tations [18]. Deep learning techniques have already made significant impacts in
computer vision [13, 29, 30], speech recognition [31, 32] and natural language

processing [20, 33, 34] where it performs better than standard machine learn-



ing methods and the performance is comparable to human level. While some
attempts at detecting human activity and emotion have been made using deep
learning[17, 21, 20],[8, 9], it is still a new and growing area of research which
requires further work. In recent years, deep learning has been increasingly used
in the field of human activity recognition [17, 21]. While progress has been
made, human activity recognition remains a challenging task. This is partly
due to the broad range of human activities as well as the rich variation in how
a given activity can be performed. Since deep learning is capable of high-level
abstraction of data, it can be used to develop self-configurable frameworks for
human activity as well as emotion recognition. For instance, in an attempt to
improve performance accuracy of activity recognition using mobile phone tri-
axial accelerometer data, [17] utilised a hybrid approach of deep learning and
hidden Markov models(HMM). This approach allows to model deep hierarchi-
cal representations of spatial data with restricted Boltzmann machines (RBM)
and stochastic modelling of temporal sequences in the HMM models. The pro-
posed approach was reported to have performed better than traditional meth-
ods of using shallow networks with handcrafted features. Other deep learning
architectures, including Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) have been increasingly applied in activity recognition
problems. The performance of CNN for some activity recognition tasks was
explored by [35, 36, 37]. Building on CNNs successes in image recognition, [13]
developed a method based on CNN and applied it in activity recognition prob-
lems in three different domains:assembling line activities, activities in kitchen
and jogging/walking. CNN was utilised to automatically extract features from
accelerometer data without any domain knowledge. It was shown that CNN can
capture local dependencies and invariant features in the data. Experimental re-
sults showed that CNN outperformed traditional machine learning approaches.
Using a CNN model, [17, 21] demonstrated that it can model complex multivari-
ate sensory time series data (considering accelerometer and gyro data) in recog-
nition common human activities, e.g. walking, sitting, laying, etc. Specifically,

CNN outperformed SVM which has previously achieved the best performance



in this dataset. [37] showed that CNN also outperformed other conventional
machine learning methods (e.g. KNN and SVM) in two other activity recogni-
tion datasets: breakfast activity and gesture recognition. A CNN is used in [38]
to extract features for gait pattern recognition so that labour intensive hand-
crafted feature extraction process is avoided. Furthermore, CNNs have been
applied for detection of stereotypical movements in Autism [39], where they sig-
nificantly improved upon the state- of-the-art. Recurrent neural network (RNN)
relying on Long Short-Term Memory (LSTM) cells have gained popularity due
to its ability to exploit the temporal dependencies in time series data. LSTM
have recently achieved impressive performance in various time-dependent ap-
plications, such as machine translations, automatic video subtitling, and others
[40]. A biometrics application of LSTM has been explored by [41] to identify
individual humans based on their motion patterns captured from smartphones,
i.e. accelerometer, gyroscope and magnetometer. This is a challenging task,
as temporal motion signals are generally very noisy. Their work using LSTM
demonstrated that human movement convey necessary information about the
persons identity and it is possible to achieve relative good authentication results.
Furthermore, the same LSTM algorithm can also be applied to other time series
data on gesture detection in a human conversation. In [21] a hybrid approach
was used based on CNN and LSTM to classify human activities using two public
datasets (daily activities and assembly line activities). The fundamental idea is
to use CNN to automatically extract spatial features from raw sensor signals,
and LSTM to capture the temporal dynamics of the human movement. Their
results showed that CNN-LSTM hybrid model outperformed other deep models
without using LSTM to model time dependencies. Importantly, it was shown

that the model can potentially be used in multimodal sensor data.

2.1. Conwvolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are a widely used deep learning al-
gorithm which performs especially well for images input data, although they

are now increasingly applied in time series data including human physiological



data and financial data [42, 21]. The inputs in a convolutional layer connect
to the subregions of the layers instead of being fully-connected as in traditional
neural networks models. These group of inputs in subregions share the same
weights, therefore the inputs of a CNN produce spatially-correlated outputs,
whereas in traditional neural networks (NN), each input has individual weight
and hence produce independent outputs. In a neural network with only fully-
connected layers, the number of weights can increase quickly as the dimension
of the input increases. CNNs reduce the number of weights compared with NN
with the reduced number of connections through weights sharing and downsam-
pling. CNNs typically consist of of three types of layers: convolutional layers,

pooling/downsampling layers and fully-connected layers.

e The convolutional layer is the main building block of a CNN which de-
termines the output of connected inputs in within local subregions. This
is done via a set of learnable filters (kernels) which are convolved across
the the width and height of the input data, calculating the scalar product
between the values of the filter and the input, hence producing a two di-
mensional activation map of that filter. Through this, CNNs are able to
learn filters which activate when specific type of features at some spatial

position of the input are detected.

e The pooling layer will perform downsampling along the spatial dimension-
ality of the given input, further reducing the number of weights within that

activation.

e The fully-connected layers are standard deep neural networks and attempt
to produce predictions from the activation, to be used for classification or

regression.

Convolution is the key operation in CNN. By convolution of the input signal
with a linear filter (or kernel), adding a bias term and then applying a non-linear
function, a 2D matrix named feature map is obtained, representing local cor-

relation across the input signal. Specifically, for a certain convolutional layer,
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the units in it are connected to a local subregion of units in the (1-1)th layer.
Note that all the units in one feature map share the same weight vector (for
kernel) and bias, hence, the total number of parameters is much less than tra-
ditional multilayer fully connected neural networks with the same number of
hidden layers. This indicates that CNN has a sparse network connectivity [14],
which results in considerably reduced computational complexity compared with
the fully connected neural network. For a richer representation of the input,
each convolutional layer can produce multiple feature maps. Though units in
adjacent convolutional layers are locally connected, various salient patterns of
the input signals at different levels can be obtained by stacking several convo-
lutional layers to form a hierarchy of progressively more abstract features. For
the jth feature map in the lth convolutional layer Cl,j, the unit at the mth row

and the nth column is denoted as vm,nl,j and the value of vm,nl,j is defined by:

vm,nl,j =o(bl,j+» kY pa=0Plaly pb=0Pl, (1)

b — lwpa, pbl, j, kvm + pa,n + pbll, k)

Vn=12 Nl,m=12 Ml
where Ml and NI are height and width of feature map Cl,j. bl,j is the bias
of this feature map, k indexes over the set of feature map in the (1-1)th layer,
wpa,pbl,j,k is the value of convolutional kernel at position (pa,pb), Pl,a and P1,b

are the size of the convolutional kernel, and o() is the Rectified Linear Units

(ReLU) nonlinear function. ReLU is defined by:
o(x) = max(0,x) (2)

The proposed convolution operation is performed without zero padding (unlike
the conventional approaches of image processing). This means each dimension

of feature map will be reduced after a convolution operation. Thus:
Mi=Ml—-1—-Pl,a+1NI=Nl—-1-Pl,b+1 (3)

where 1 is the index of the layer that performs convolutional operation.
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2.2. Recurrent Neural Networks (RNN)

In a traditional neural network (with only fully connected layers) we assume
that all inputs are independent of each other. In CNN, we have seen that inputs
can be grouped into subregions where features are spatially dependent on each
other and share the same weights. For some classification/learning tasks, the
inputs are temporally dependent. For instance, if we want to predict the next
word in a sentence, it is important to know which words came before it. RNNs
can perform the classification task for every element of a time sequence, with the
output being depended on the previous computations. Another way to think
about RNNs is that they have a memory which captures information about
what has been calculated so far. In other words, RNNs take as their input not
just the current input data they see, but also what they perceived one step back
in time. The decision a RNN reached at time step ¢t — 1 affects the decision it
will reach at time step t. Hence, RNNs have two sources of input, the present
and the recent past. Here is what a typical RNN looks like: In theory RNNs
can make use of information in arbitrarily long sequences, but in practice they
have difficulties learning long-range dependencies due to the vanishing gradient
problem [43]. The vanishing gradient problem is the result of RNN seeking to
establish connections between the final output and inputs from many time steps
before as a RNN passes through many stages of multiplication. To address this,
we adopt Long Short-term Memory (LSTM) as the RNN memory unit. LSTMs
help preserve the error that can be backpropagated through time and layers by
using a gated cell which determines what information from the prior step should
be forgotten and what information in current time step should be remembered
into the next state, via gates that open and close (activate and deactivate).
This allows a RNN to continue to learn over many time steps, thereby opening
a channel to link causes and effects remotely. 1

The structure of a LSTM cell is illustrated in Figure and the mechanism
of the gates is described as follows: The first step in a LSTM cell is to decide
what information we will forget from the cell state. This decision is made by a

Sigmoid layer called the forget gate layer. It looks at h;—; and ¢, and outputs
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Figure 1: Long short term memory (LSTM) block [44].
a number between 0 and 1 for each number in the cell state Cy_1. 1 represents

completely keep this while 0 represents completely remove this. The output ft

of the gate is formalised as:
fe=oWf-lhi,z:] +0bf) (4)

Then the cell decides which new information will be stored in the cell state. This
has two parts. First, a sigmoid layer known as the input gate layer decides which
values will be updated. Then, a tanh layer creates a vector of new candidate
values, C, , which could be added to the state. These two will be combined to

create an update to the state, as follow:
it = O‘(WZ . [htfl, th} + bz) (5)

Ct = tanh(We - [he—1, 2] + be) (6)
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Then, we update the old cell state, C;_1, into the new cell state C; as follow:
= Cy_y * ft+i,C, (7)

To produce the output, a Sigmoid layer is first run, which decides which parts
of the cell state will be output. Then, the cell state is fed through tanh (to push
the values to be between -1 and 1) and multiplied by the output of the Sigmoid
gate, as follow:

=o(Wo-[ht—1,2¢] + bo) (8)
hy = tanh(Cy) * o, (9)

As we used Softmax as our last activation, our loss function is cross entropy

loss:

_ exp(Wax;)
Loss = Zl 761:1) W) (10)

Finally, Adam Optimizer can be used to have a better navigation through the

loss function.

3. Methodology

In this section, we explain in details the dataset used for emotion in the wild
classification and the architectures of deep learning models used for experimen-

tation.

8.1. The EnvBodySens DataSet

We use the EnvBodySens dataset [6] to evaluate the models, which con-
sists of 40 data files collected from 40 female participants (average age of 28)
walking around the city centre in Nottingham, UK on specific routes. The
dataset is composed of on-body data such as heart rate (HR), galvanic skin
response (SGR), body temperature, motion data (accelerometer and gyro), en-
vironmental data such as noise levels, UV, air pressure and location data, GPS
locations associated with time stamp and self report emotion levels (5-step Self-
Assessment-Manikin (SAM) Scale for valence) logged by the EnvBodySens mo-

bile application on Android phones (Nexus), connected wirelessly to Microsoft
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wrist Band 2 [45]. The participants were asked to spend no more than 45
minutes walking in the city center. Data was collected in similar weather con-
ditions (average 20 ° degrees), at around llam. During the data collection
process, 550,432 sensor data frames were collected as well as 5,345 self-report
responses. The statistical data analysis of the dataset is reported in [6]. Par-
ticipants were asked to periodically report how they feel based on predefined
emotion scale as they walked around the city centre. We adopted the 5-step
SAM Scale for Valence taken from [46] to simplify the continuous labelling pro-
cess. On average, 134 self-reports were entered per participants. We disabled
the screen auto sleep mode on our mobile devices, so the screen was kept on
during the data collection process. [6]. Data from six users were excluded due
to logging problem. For example, one user was unable to collect data due to
battery problem with the mobile phone, another user switched the application
off accidentally. The correlation matrix in [6] shows a low level of correlation be-
tween the independent variables, suggesting that our model will not be affected

by the multi-collinearity problem.

4. Model implementation

We use TensorFlow [47] to implement our models and Tensorboard for visu-
alisation on Xeon E5-2640 v4 Processor (25Mb Cache, 2.4GHz, 8 core). In this
paper, we first train a Multi-layer Perceptron (MLP) for emotion classification
based on twenty raw sensor input from three modalities: i) on-body (i.e. physi-
ological and motion/movement data), ii) environmental, iii) and location data.
Initially, we train each modality individually and then we combine all sensor
input modalities in a separate training process, see Figure 2 for the four differ-
ent learning architectures. Then we evaluate the performance of each modality
against the combined model. This is then followed by training deep learning
models in order to test the efficacy of the deep learning approach for accurately

classifying multimodal time series data.
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for Location separately d) and then fused using all the data input and feed it into the Deep

Layers.

4.1. Data pre-processing

After the data collection the signals were pre-processed and cleaned. The
first and the last 30 s were removed from the start of the data collection pro-
cess for each user data, the reason for this step is that users needed a few
seconds to fully engage in the movement and also few seconds to terminate the
data collection process. A non-overlapping sliding window strategy has been
adopted to segment the time series signal.12 shows the difference between the

two segmentation methods.

4.2. MLP Models

Our implementation of ”Multi-Layer Perceptron” (MLP) network consists
of two hidden layers. The first layer has 64 neuron, whereas the second hidden
layer has 32 neurons. The input layer is 20*40 dimensions per iteration. The

output layer has 5 neurons, each corresponds to the 5 emotional classes.

4.3. CNN Models

We start with the notations used in the CNN. A sliding window strategy
is adopted to segment the time series signal into a (n,c,t) tensor, where n =
number of instances, ¢ = sensor channels, ¢ = time steps. After preliminary
experiments with various deep learning topologies using multiple modalities
combinations, we choose the CNN architecture as follows: Input of n batch x 20

channels x t window size, 2 convolutional layers (Convl, Conv2), 2 maxpooling
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layers (Poolingl, Pooling2) and fully-connected layer as shown in 3. The first
layer Convl has 32 filters (feature maps) while the second one Conv2 has 64
filters. This procedure may hinder partially the generality of the created models,
as the average cross-validation accuracy is used to guide the feature selection
search. However, the comparison between single, multiple modalities, and across
fusion approaches is fair because all experiments follow the same procedure. The
window size, r=40 (i.e. the height of sliding window) is chosen experimentally,
by trying different sample rates from 10 to 100 as shown later in table 2. The
convolution kernel is 2x2, stride is 1x1, i.e. strides= [1,1,1,1], Padding=1 (which

does not shrink the matrix).

L

tl - .
10
Input Layer ~ Covolutional  Covolutional  Fully Fully Qutput Layer
+Maxpool +Maxlayer ~ Connected Connected (SoftMax
Laver 1 Layer 2 Layer 1 Layer 2 classification)

Figure 3: CNN architecture

4.4. CNN-LSTM Models

CNN-LSTM has a similar structure as CNN, with an added LSTM layer
(see Figure3). In particular, the temporal dimension of the data is preserved
during the convolution operation, and the resulting fully connected layer is fed
into LSTM cell( see Figure 4). Each LSTM cell keeps track of an internal state
that represents its memory. Over time the cells learn to output, overwrite, or
reset their internal memory based on their current input and the history of past
internal states. The MaxPool kernel is 2x2, stride is 1x2, i.e. strides=[1, 1, 2, 1],

padding is 1. So that the temporal dimension is preserved and we only shrink
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the spatial dimension. Thus output filters are of 40x10 dimension after first
MaxPool layer and 40x5 after the second MaxPool layer. Similarly, 32 filters
are used for the first Convl layer and 64 used for the second Conv2 layer. The
output of these filters are also shown in Figure 4. We train all models mentioned
above on each subject dataset using fused data from all sensors modalities. We
also train the models on three subsets of the data based on three modalities:
on-Body, Env and Location. In total, we train 12 models on each user dataset
(3x3 models on subsets and 3 models on fused data). Here, n=40 raw samples
and ¢=20 the number of the attributes from sensor input. Similarly, c=2 for
the location models, ¢=3 is for Env models (Noise, Air-Pressure and UV) and

¢ =15 for the On-body models (the rest of the attributes).
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Table 1: Average Performance metrics for all the models

Average Precision | Recall | F-measure | Accuracy | RMSE
MLP All 0.734 0.728 | 0.729 72.9 0.95975
Body 0.654 0.621 | 0.63 62.2 1.264
Environment | 0.424 0.428 | 0.424 42.6 1.54
Location 0.59 0.605 | 0.58 60.2 1.22
CNN All 0.818 0.79 0.787 78.6 0.788
Body 0.734 0.712 | 0.709 70.8 1.01
Environment | 0.529 0.47 0.468 46.5 1.41
Location 0.79 0.761 | 0.769 8.7 0.99
CNN-LSTM | All 0.927 0.95 0.949 94.7 0.291
Body 0.881 0.878 | 0.874 87.3 0.6
Environment | 0.607 0.593 | 0.574 59.7 1.18
Location 0.655 5.586 | 0.621 64 1.03

Accuracy

W CNMN+RNN All
W CNN Al
= MLP All

W CNN+RNN Body

W CNN Body
M MLP Body

B CNMN+RMNN Env

B CNN Enwv

= MLP Env

B CNN+RMNN Spatial

CMN Spatial
MLP Spatial

Figure 5: Comparison of average accuracy levels of all models
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4.5. Results

All the experiments presented here are run for data files of each individual
participant and then the average (and standard error) of the resulting models
prediction accuracy and other performance metrics are reported. The perfor-
mance of the trained model is evaluated by splitting each subject data using
random sampling technique into training set of 70% data instances and test set of
30%. Evaluation results across all experiments are illustrated in Table 1, based
on five standard performance evaluation metrics: Precision, Recall, F-Measure,
Accuracy, Error rate and RMSE (root mean squared error). The accuracy levels
of the results are also compared between single modalities (on-body, environ-
mental and location modality) and combined modalities across all the three
models. When MLP was trained only on on-Body data subset, it achieved an
average accuracy of 0.62 (F-Measure: 0.63 + 0.039). Location model achieved
an average accuracy of 0.60 (F-Measure:0.580.032) while MLP did not not per-
form well on Environment data with an average accuracy lower than 0.50. MLP
achieved an average accuracy of 0.72 (F-Measure:0.580.032) when performed on
fused modalities data which is significantly higher than each single modality (p
<0.01). Moreover, the results show that CNN outperforms MLP significantly by
6% (p <0.01) with an average accuracy 0.79. (F-Measure:0.79 + 0.034). Both
on-Body and Location models were improved with CNN. CNN-LSTM model
achieved an average accuracy of 0.95 (F-Measure:0.95 + 0.022) with significant
16% increase margin in performance, compared to CNN model (p <0.01). Fur-
thermore, the accuracy level of the CNN-LSTM model increased considerably
based on on-Body data at 0.87 (F-Measure:0.87 + 0.024, (p <0.01)), although
the model did not do as well with Location data. The results suggested that
on-Body modality is the more robust data source for emotion classification ”in
the wild”. The other two modalities, i.e. Environment and Location, are not as
effective on their own but together they yield improved performance when fused
with on-Body data by approximately 7% in accuracy. The high levels of accu-
racy achieved with the hybrid CNN-LSTM model reinforces the effectiveness

of deep learning in multimodel time series sensor data for emotion recognition.
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Due to limited space, we only visualise the accuracy levels of ten participants.
Radar chart in Figure 5 shows the difference in accuracy levels of 10 users exper-
iments which are selected randomly. With CNN-LSTM accuracy levels ranging
between 0.89 to 0.996 (£ 0.027). Similarly, Figure4.5, presents 3 radar charts of
10 users models (figure per model MLP,CNN and CNN-LSTM). Its clear from
Figure4.5 that MLP models resulted in the highest variation between users, and
models based on Environment data achieved the lowest accuracy levels. While
in 4.5, we can see that all the combined modalities have achieved high levels
of accuracy. Figure 4.5, illustrate the confusion matrices yielded by the three
models based from one user data. There is a slight confusion between state
0 and 1 (negative emotions), which is improved when LSTM is added to the
architecture. During the user study, we have made a great effort to ask users
the meaning of each class and the difference between the very negative label ”0”
and neutral ”3”. In addition, we have cropped the first few minutes of the data
recording when users are stationary and using default rating (label) at 3. We
believe our dataset is reasonably balanced with small variation from one user

to another.

Confusion matrix Confusion matrix 7 Confusion matrix
o 1 2 3 & R R T ) R
56
64
Q 0 ° &
= 56 56
1 0 1 5 1 a8
40
2 32 2 2 o
32 2
24
3 3 24 3 24
e 16 16
3 3 4
) 8

Predicted label Predicted label Predicted label
MLP CNN CNN-LSTM

True label
True label
True label

£

Figure 6: Confusion matrices of three models for one user data (fused data).

Modern deep learning techniques allow us to train a network in batches
by interleaving multiple sequences together. Among others, batching allows to
further exploit the power of matrix multiplication on the GPU and to avoid
loading all data into memory at once. The batch size has implications for the
robustness of the error that is propagated in the learning phase [29]. Figure 3

shows an example of 3 batches that encode 3 sequences of 5 samples each.
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Figure 7: Radar charts showing the accuracy levels of three models(a) MLP, (b) CNN , and
CNN=LSTM, based on ten users data in ad-hoc and fused modes.
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Figure 8: The accuracy levels of 10 users across all the models in ad-hoc and fused modes.
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Figure 10: Cumulative distribution of recognition loss of 7 users.
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5. Discussion

The objectives of our study were to (i) evaluate deep learning as a compu-
tational model for emotion recognition ”in the wild” following state-of-the-art
methodologies, and (ii) to assess the overall power of deep learning on multmodal
sensor data including time series sensor input (Physiological, Environmental and
Location data). This is one of the few studies looking into emotional recogni-
tion of participants in their natural environment using multiple sources of time
series data. Our results have demonstrated that raw features can perform well
when fused utilising deep learning models. In particular, CNN combined with
LSTM has outperformed traditional MLP by more than 20% increase margin.
Furthermore, applying deep learning on multimodel sensor data outperformed
our earlier Ensemble algorithm by %6 margin [6] (see figure 11) which is based
on staking various learners and refine the output by another meta learner layer.

Our results in general have suggested that deep learning methodologies are
appropriate for modeling affective states and, more importantly, indicated that
ad-hoc feature extraction may not be necessary for as deep learning models
are able to identify high level of data abstraction automatically. Furthermore,
in some affective states examined (e.g., relaxation models built on Electroder-
mal Activities (EDA); fun and excitement models built on Blood Volume Pulse
(BVP); relaxation models built on fused EDA and BVP), deep learning without
prior feature selection manages to reach or even outperform the performances
of models built on ad-hoc extracted features which are boosted by automatic
feature selection. These findings showcased the potential of deep learning for
affective modeling based multiple sensors and multiple modalities input, as both
manual feature extraction and automatic feature selection could be ultimately
bypassed. Even though the results obtained are more than encouraging with
respect to the applicability and efficacy of deep learning for affective modelling,
there are a number of limitations and research directions that should be consid-
ered in future research. There are many parameters that can be tuned to obtain

the optimal performance of the network. e.g. we have managed to test various
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Figure 11: Accuracy and F-Measure levels of the base learners and the Stacking learner[6].

step sizes of the sliding window as shown in Figure 12. It demonstrates that by
only analysing a small chunck of data (40 samples, i.e. 160ms), the deep learning
model is able to classify emotions at high accuracy levels. The test has shown
that the model performs at its best when the sliding window step size is set to
40. However, there are other parameters which can be tuned based on similar
tests such as allowing window overlapping and the width of window overlap as
shown in Figure 12. While the EnvBodySens dataset includes key components
for emotion modelling and is representative of a typical affective modelling sce-
nario, our approach needs to be tested on diverse datasets with larger number
of participants and with more modalities and account to other factors such as
pollution levels and crowd density, which may have significant impact on hu-
man emotions. Furthermore, we expect that the application of deep learning
to model affect in large physiological datasets would show larger improvements
with respect to statistical features and provide new insights on the relationship
between physiology and affect. In addition, we have demonstrated that our
algorithms can work on three very different modalities including physiological,
enviromental and movement activities, we believe our models can also work on
almost any other sensor data (beyond emotion detection and city sensing). Also
we are in the process of deploying real-time mobile applications that can run

these models on mobile and IoT platforms such as Intel Edison module [48].
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Table 2: Average accuracy of CNN+LSTM models using different sliding window sizes. Bold

numbers represent the best performing window size

Window Size | F-measure | Accuracy | RMSE
20 0.942 94 0.5

40 0.949 94.7 0.291
60 0.946 94.7 0.313
80 0.911 92.7 0.8
100 0.922 93.7 1.1
120 0.912 92.5 1.3

We have attempted to combine all participants data into one single dataset
for emotion detection, however we found a high across-subject variation in the
dataset which led to low model accuracy of less than 50%. This observation is
in agreement with previous studies [49] which verify that emotion recognition is
subject dependent which makes it difficult to obtain a generalised model across
individuals.Others have successfully created a universal deep learning model for
gesture data as gestures performed by different individuals are typically quite
similar.For emotion however , there is higher levels of variations between indi-
viduals. Our results, confirm this, and verify that the emotion recognition is
subject dependent as the accuracy varies from subject to subject and exhibits

high variance of accuracy.
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Figure 12: Illustration of sliding window steps and overlapping
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6. Conclusion

Mobile phones along with other wearable devices produce large number of
data as people are going about their daily activities. In this study, we presented
a scenario of emotion detection ”in the wild” where people are moving from one
place to another in an urban environment. Although this type of time series
data can help us understand peoples emotion, traditional emotion recognition
techniques requires features engineering process to be applied to data prior to
modelling, which might be challenging especially if the dataset is multimodal
and large. Deep learning offers an automated way for features extraction embed-
ded in the process. This paper has demonstrated the advantages of employing
a hybrid deep learning approach for raw multimodal data modelling based on
smart device sensors input collected in city space. Our results have shown
that using a hybrid deep learning approach (CNN-LSTM) on large number of
raw sensor data increased the accuracy levels of emotion models by more than
%20 compared to a traditional MLP model. Furthermore, fusing various sensor
modalities including on-Body, Environment and Location data showed a signif-
icant increase in accuracy when compared to modelling single modality such as
physiological sensors only. Also, we have shown that deep learning can be a
promising approach for the study of human behaviour and emotion data. The
promising results demonstrated in the study holds the potential for novel appli-
cations in emotion recognition and can open new opportunity in the study of
mental health and well-being in real-life settings. In future work, we will further
explore the possibility of utilising LSTM gates to reset and forget some of the
states based on the emotion states and their history. Finally, we are planning
to run a larger scale studies with other modalities and sensor feed such as(e.g.
EEG data, air quality), and then build an emotion map using our model on

mobile devices along with the sensors.
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