PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/20725

Please be advised that this information was generated on 2018-07-07 and may be subject to change.

New type of $\mathrm{t}(14 ; 18)$ in a non-Hodgkin's lymphoma provides insight in molecular events in early B-cell differentiation

J. P. P. Mrijerink, J. M. M. Raemaekers and E. J. B. M. Mensink Division of Haematology, Department of Medicine, University Hospital St Radboud Nijmegen, the Netherlands

Received 20 March 1995; accepted for publication 17 July 1995

Abstract

Summary. In this report a follicular non-Hodgkin's lymphoma (NHL) carrying an unusual $t(14 ; 18)$ is described. This translocation most likely occurred during the V_{H} to $\mathrm{D}-\mathrm{J}_{\mathrm{H}}$ rearrangement process of the IgH locus. From the data combined with data from the literature we conclude that the chance for development of a $t(14 ; 18)$ decreases during progression of the immunoglobulin rearrangement process in the pre-B-cell ontogeny. This is probably due to decreased accessibility of the bcl-2 locus by reduced transcription. We analysed the somatic mutation pattern of the productively rearranged IgH gene. Like other follicular lymphomas,

Abstract

somatic mutations were present in this gene and indicated positive selection, probably for an antigen. We found no evidence for ongoing induction of somatic mutations during lymphoma development. We conclude that bcl-2 gene deregulation, but not the precise moment at which this occurs during the pre-B-cell stage, influences the development of follicular NHL.

Keywords: NHL, bcl-2, $\mathrm{t}(14 ; 18)$, IgH rearrangement, somatic mutation.

Molecular studies at the $14 Q^{+}$chromosomal junctions from $\mathrm{t}(14 ; 18)(\mathrm{q} 32 ; \mathrm{q} 21)$ carrying cell lines and follicular nonHodgkin's lymphoma (NHL) samples revealed the rearrangement of the B-cell lymphoma/leukaemia 2 gene (bcl-2 gene) from chromosome 18 to the immunoglobulin heavy chain (IgH) joining $\left(\mathrm{J}_{\mathrm{II}}\right)$ region on chromosome 14 (Tsujimoto et al, 1984). The breakpoints on chromosome 18 cluster in mainly two cluster regions, i.e. the major breakpoint region (MBR) and the minor cluster region (MCR) (Cleary et al, 1986a, c: T'sujimoto et al, 1985 a ; Tsujimoto \& Croce, 1986). The expression of bel-2 gene is elevated as a consequence of translocations involving this gene (Bertheas et al, 1991; Osada et al, 1989; Tsujimoto et al, 1985a).

The $\mathrm{t}(14 ; 18)$ most likely occurs during early g H gene rearrangements at the pre- B cell stage and a J_{11} gene segment and a diversity (D) gene segment are frequently involved. The presence of random nucleotides at the translocation junctions further supports this hypothesis (Bakhshi et al, 1987: Cotter et al, 1990; Tsujimoto et al, 1985b). Translocations as a result of ontogenetically later IgH gene rearrangements are rare and have been found until now confined only to the D to D -J J_{H} rearrangement stage (Cotter et

[^0]al, 1990; Seto et al, 1991; Wyatt et al, 1992). The t (2;18) and the $\mathrm{t}(18 ; 22)$, which most likely occur during IgL rearrangements, have only occasionally been described in follicular lymphoma (Bertheas et al, 1991; Hillion et al, 1991; Osada et al, 1989).

Studies at the normal IgH and IgL alleles of lymphoma cells have provided an important insight into the development of the malignant phenotype. Although an expanded oligoclonal $\mu^{+} \kappa^{-}$pre-B-cell population in the bone marrow of a follicular lymphoma patient has been found (Bertoli et al, 1988), the lymphoma cells are monoclonal regarding their IgH and IgL chain rearrangements (Cleary et al, 1988). Within these genes, somatic mutations have been found (Cleary et al, 1986b; Kon et al, 1987; Levy et al, 1987, 1988). The somatic mutation pattern provides evidence for affinity selection for antigen prior to, and during clonal expansion (Bahler \& Levy, 1992; Zelenetz et al, 1992). Although the bcl-2 gene is deregulated in all lymphoma cells, this seems not to be sufficient for all cells to survive the selection process.

The development of a monoclonal follicular NHL population out of a polyclonal pre-neoplastic pre-B-cell population indicates that additional mutations besides antigen selection are necessary for the development of the malignant phenotype. This is further supported by the finding of $\mathrm{t}(14 ; 18) \mathrm{s}$ in individuals with benign follicular hyperplasia
(Limpens et al, 1991), and the continuing accumulation of genetic defects in lymphoma subpopulations, eventually leading to a more dedifferentiated status (Yunis et al, 1987; Zelenetz et al, 1991). Also in the transgenic mice model with a deregulated bol-2 gene, only 11% of mice develop a monoclonal high-grade diffuse large-cell immunoblastic lymphoma after a relatively long latency period of 12-24 months (McDonnell \& Korsmeyer, 1991).

In this report we describe a follicular NHL carrying an unusual $t(14 ; 18)$. To investigate the moment of translocation in the pre-B-cell ontogeny, we performed a detailed molecular study involving the translocation junctions of the $14 Q^{+}$and the $18 Q^{-}$chromosomes. To investigate the consequences of the deregulation of the bol-2 gene at a relative late pre-B-cell stage on the subsequent development of follicular lymphoma, mutation analyses of the normal IgH allele were performed. The data presented here combined with data available in the literature provides insight into molecular events occurring in normal early B-cell development as well as in the development of follicular lymphoma.

MATERIALS AND METHODS

Description of patient. A 43-year-old male was diagnosed as having a follicular centroblastic-centrocytic (CB-CC) NHL of low-grade malignancy. Immunological examination of a cervical lymph node showed the presence of $30-40 \%$ follicular IgM/K-positive lymphoma cells. This lymph node sample and a concurrent blood sample were used in the present study as the only material available.
DNA isolation. DNA was isolated from blood or lymph node samples according to a standard procedure (Miller et al, 1988).

Oligonucleotides and polymerase chain reaction (PCR). Sense oligonucleotides used: MBR_{2} (Meijerink et al, 1993); set of V_{H} family-specific oligonucleotides $\mathrm{V}_{\mathrm{H}} 1$ to $\mathrm{V}_{\mathrm{H}} 6$ (Deane \& Norton, 1991); V $\mathrm{H}^{3-48 x}$: 5^{\prime}-TCC CCA CCC TAG AGC TTG CT- 3^{\prime}; NM1 3.5: 5^{\prime}-CAG CTA TGA CCA TGA TTA CGC CAA G-3'. Antisense oligonucleotides used: $\mathrm{J}_{\mathrm{H}} \mathrm{con}$ (Meijerink et al, 1993); J ${ }^{3}$-intron: 5^{\prime}-GGC AGA AGG AAA GCC CAT CTT'- ${ }^{\prime}$; J 4 -intron: 5^{\prime}-CCA AAA GTC ACA AAC CTC GAG T- 3^{\prime}; J ${ }^{3} 5-$ intron: 5^{\prime}-CTTT TCT TTC CTG ACC TCC AAA A- $3^{\prime} ; \mathrm{J}_{\mathrm{H}} 6$-intron (Meijerink et al, 1993): MBR 180 : 5^{\prime}-TGA TTTT TGG CAG GAT $\mathrm{AGC} \mathrm{AGC} \mathrm{ACA}-3^{\prime}$. PCR conditions were as described before (Meijerink et al, 1993). $1 \mu \mathrm{~g}$ of genomic DNA was used as template, unless indicated otherwise.

End-labelling of oligomucleotides. Oligonucleotides (50 pmol) were phosphorylated in the presence of 50 mm Tris- HCl ($\mathrm{pH} 7 \cdot 5$), $10 \mathrm{~mm} \mathrm{MgCl}_{2}, 5 \mathrm{~mm}$ dithiotreitol ($\mathrm{D}^{\prime} \mathrm{l}^{\prime \prime} \mathrm{I}$), () 1 mm spermidine, $92.5 \mathrm{MBq} / \mathrm{ml}\left[\gamma^{-32} \mathrm{P}\right]$ ATP (Amersham, 110 $\mathrm{TBq} / \mathrm{mmol}, 37\left(0 \mathrm{MBq} / \mathrm{ml}\right.$) and 20 U of T_{4} polynucleotide kinase (Gibco BRL), in a total volume of $20 \mu \mathrm{l}$ at $37^{\circ} \mathrm{C}$ for 45 min . After incubation, $25 \mu \mathrm{l} 4 \mathrm{~m} \mathrm{NH}_{4} \mathrm{Ac}, 5 \mu \mathrm{~g}$ yeast t RNA and $250 \mu \mathrm{l}$ of ethanol were added to the reaction sample, and the oligonucleotide was precipitated. The precipitation procedure was repeated twice. Alter precipitation, the oligonucleotide was dissolved in 10 mm Tris pH 8.0, $3 \cdot() \mathrm{mM} \mathrm{MgCl}_{2}$.
Amplification of IgH VDJ gene segments. Rearranged IgH

VDJ gene segments were amplified using V_{H} family-specific primers in combination with the $\mathrm{J}_{\mathrm{H}^{2}}$ con or J_{H}-intron primers at an annealing temperature of $55^{\circ} \mathrm{C}$. Genomic DNA $(0 \cdot 2 \mu \mathrm{~g})$ from the blood or lymph node sample was used as template. An aliquot of the PCR product, amplified with the $\mathrm{V}_{\mathrm{H}} 3$ and $J_{H} 6$-intron primers, was used for direct sequencing, and the remainder was purified using the Magic ${ }^{(24)}$ PCR Preps DNA purification system (Promega Corporation, Madison, U.S.A.). The concentration was determined by optical density. 5 pmol of PCR product was phosphorylated as described above in the presence of 2.0 mm ATP. The DNA was precipitated following a phenol extraction and a Sevag (phenol:chloroform: isoamylalcohol $=25: 24: 1$) extraction, and dissolved. The PCR product was subsequently treated by Klenow enzyme (Gibco BRL) to remove possible 3^{\prime} nontemplate directed nucleotide additions, in the precence of $100 \mu \mathrm{~m}$ dNTPs for 60 min at $14^{\circ} \mathrm{C}$ (Denney \& Weissman, 199()). The DNA was precipitated following a phenol extraction and a Sevag extraction, and dissolved in $\mathrm{dH}_{2} \mathrm{O}$.

Digestion and dephosphorylation of vector DNA. A sample of $10 \mu \mathrm{~g}$ of pBluescribe KS ${ }^{+}$(Stratagene, La Jolla, Calif., U.S.A.) was digested with Sma-I (Gibco BRL) for 2.5 h at $30^{\circ} \mathrm{C}$. The DNA was dephosphorylated using Call Intestine Alkaline Phosphatase (CIP) (Amersham, Bucks., U.K.) according to a standard protocol (Sambrook et al, 1989). The DNA was dissolved in $\mathrm{dH}_{2} \mathrm{O}$ to a final concentration of $20 \mathrm{ng} / \mu \mathrm{l}$.

Ligation, transformation and screening for recombinant clones. A sample of 100 ng of Sma-I digested and CIP-treated vector DNA and $1 \mu \mathrm{~g}$ of phosphorylated and klenow-treated PCR DNA was ligated using 800 U of T_{4} DNA ligase (Biolabs, Beverly, Mass., U.S.A.) in a total volume of $20 \mu \mathrm{l}$ at $14^{\circ} \mathrm{C}$ for 16 h . After ligation, the reaction volume was increased to $5\left(\mu \mathrm{I}\right.$ with $\mathrm{dH}_{2} \mathrm{O}$, and $25 \mu \mathrm{I}$ was used for the transformation of $100 \mu \mathrm{l}$ of competent Escherichia coli strain DH5 x bacterias (Giboo BRL). Transformation and Blue/White screening were performed according to standard protocols (Sambrook et al, 1989). White colonies were used to inoculate 5 ml of Luria-Bertani medium containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin, and incubated at $37^{\circ} \mathrm{C}$ for 16 h . DNA was isolated from all bacterial cultures using the small-scale plasmid DNA isolation procedure (Sambrook et al, 1989).

Sequencing of clones. Insert DNA from each recombinant clone was asymmetrically amplified using the $\mathrm{V}_{11} 3$ and NM1 3.5 oligonucleotides. Asymmetric DNA templates were sequenced using end-labelled $\mathrm{V}_{11} 3$. J J J_{11} on or $\mathrm{J}_{11} 6$-intron oligonucleotides. The asymmetric ampllitication reaction and sequencing reaction were performed as described (Innis et al, 1988) with minor modilications.

Somatic: mutation analysis. Somatic mutations in the framework regions (FWRs) and the hypervariable regions of the rearranged IgH VDJ gene segments in the lymphoma cells were analysed in comparison to germline candidates in two separate mutation analyses. The hypervariable regions correlates with the complementary determining regions (CDRs), i.e. the contact sites of the antibody with the antigen, and are indicated according to Kabat et al (1987). The expected number of replacement (R) mutations (mutations which give rise to another amino acid residue) and silent (S) mutations (mutations which do not give rise to another

632 J. P. P. Meijerink, J. M. M. Raemaekers and E. J. B. M. Mensink

amino acid residue) by a random mutation mechanism in a region which is not under selective pressure is dependent on the composition of the codons (Jukes \& King, 1979). For the first mutation analysis the expected numbers of replacement and silent mutations in the rearranged VDJ region (bp 381-683; Fig 2) in germline configuration was calculated by summing all possible replacement substitutions for each codon and dividing by the total number of
potential substitutions (replacement and silent) for all codons. This resulted in $(1) \cdot 78 n$ and $0 \cdot 22 n$ respectively for n random mutations. The second mutation analysis was performed on the V_{11} gene segment only (bp 381-602). For this region, the expected numbers of replacement and silent mutations are $(0.79 n$ and $(0.21 n$ respectively for n random mutations. The distribution of replacement and silent mutations over the CDRs or FWRs in absence of
 CCTGCCCTCCTTCCGCGGGGGCTTTCTCATGGCTGTCCTTCAGGGTCTTCCTGAAATGCAGTGGTGCTTACGCTCCACCAAGAAAGCAGG
 Chr. $14 Q^{+}$CCTGCCCTCCTTCCGCGGGGGTTTCTCATGGCTGTCCTTCAGGGTCTTCCTGAAATGCAGTGGTGCTTACGCTCCACCAAGAAAGCAGQ

= = = = =

Chr 18 AAACCTGTGGTATGAAGCCAGACCTCCCCGGC

Chr. 14Q ${ }^{+}$AAACCTGTGGTATGAAGCCAGACCTCCCCGGCtccagtgetggactacogtaactacggacaccatcctccccctatTACTACTACTAC
Chr. 14

Chr.14Q ${ }^{+}$tACGGTATGGACGTCTGGGGCCAAGGGACCAC
A Chr. $14 \quad$ TACGGTATGGACGTCTGGGGGCAAGGGACCAC

Vh-region	N	Dh-region	N	Jh-region
tatattactgtgcgat	. GGAtCGGGCGAAAACACCAAAT.	. canctacggtanctac.	. TMICCGACA.	tactitegactac

Hsig4
HsigHDVN
TgTATTACTGTGCGAG. . AGG. GAGTACGGTGACTAC. . GGGAGAT TTTGACTACT

9	7	Dh-region	7	9
Gcturtug	TACTGTG.	. toactacagtanctac	. cacagmg. . Atgancccagca.	GCAAAAACT

$B \quad D A_{1}$
GCMTMTESE. GAAGGGCCCTCC . TGCTGT
tanctacagratctac.
. CATAGNG. . ATGAACCCAGTG.
. GCAAAAACT

$$
\mid<-- \text { CDR1 }-->\mid
$$

VH-gene 3-74

Chr. 14 GCCTCTGGATTCACCTTCAGTAGCTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTGTGGGTCTCACGTATTAATAGT

Chr.180GCCTCTGGATTCACCTTCAGTAGCTACTGGATGCACTGGGTCGCCAAGCRCCAGGGAAGGGGTGGTGTGGGTCTCACGTATTAATAGT

Chr. 14 AACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAGAGACACAGMGAGGGAAGTCAATGTGAGCCCAGACACAAACCTGCTG

Chr.18Q ${ }^{-}$AACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAatacggcgacggctcagcgggcctcagggancagantgatcagacct
$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$
gCGGGCCTCAGGGAACAGAATGATCAGACCT
Chr 18
*
CHR. 14 CAGGGCACTCTAGACCAGAGGGGTGTCCTGG ----------- bcl-2 gene --------
Chr. 180- TTGAATGATTCTAATTTTTAAGCAAAATATT
\boldsymbol{C} chr. 18 TTGAATGATTCTAATTTMTAAGCAAAATATT
selection is dependent of the relative size of CDRs and FWRs, assuming that all nucleotides have an equal probability to mutate. For the first mutation analysis the CDRs and FWRs corresponds to 38% and 62% of the total sequence respectively, and therefore $R_{\text {CDRs }}=0.38 \mathrm{R}, \mathrm{R}_{\mathrm{PWWR}}=0.62 \mathrm{R}$, $S_{\text {CDRs }}=0.38 \mathrm{~S}, S_{\text {FWRs }}=0.62 \mathrm{~S}$. For the second mutation analysis the $R_{\text {CDRs }}=0.30 \mathrm{R}, \mathrm{R}_{\text {l'WRs }}=0.70 \mathrm{R}, \mathrm{S}_{\mathrm{CDRs}}=0.30 \mathrm{~S}$ and $S_{\mathrm{FWRs}}=0 \cdot 70 \mathrm{~S}$. The p of $k R$ mutations in the CDRs for n mutations was calculated using a binomial mutation model $p=[N!/ k!(N-k)!] q^{k}(1-q)^{N-k}$, where q is the chance for a replacement mutation in the CDRs and $N=n_{\text {(olserved) }}+$ $\mathrm{R}_{\text {FWRs }}$ (Schlomchik et al, 1987a). For the first mutation analysis $q=0.78 \times(0.38=0.30$ and for the second mutation analysis $q=0.79 \times(0.30=0.24$.

RESULTS

The 140^{\prime} chromosomal junction ol the $(14 ; 18)$ was detected in the blood sample DNA in a routine investigation using PCR. With the MBR_{2} and $\mathrm{J}_{\mathrm{II}} \mathrm{con}$ oligonucleotides, a 449 bp PCR fragment was generated and sequencing confirmed the origin of this fragment. The fragment was partially homologous to the bol-2 gene on chromosome 18 as well as the $\mathrm{IgH} \mathrm{J}_{\mathrm{H}} 6$ gene segment on chromosome 14 (Fig 1A). Between both regions of homology, a region of 44 nucleotides was inserted. Comparison of this region to sequences of human rearranged IgH VDJ genes in the GenEMBL Database Library revealed a 15 bp region which is also present in the CDR3 region of Hsig4 (Stewart et al, 1993). 14/15 nucleotides are present in the CDR 3 region of Hsighdvn, and $13 / 15$ nucleotides are present in the CDR 3 region of HsigL3G5 (Fig 1B). We conclude that this region represents an IgH D gene segment, which is most homologous to the germine $\operatorname{IgH} \mathrm{D}_{A_{4}}$ or D_{A} segment (Ichihara et al, 1988).

Since it is suggested that the $(14 ; 18)$ occurs as an error during the $\mathrm{V}(\mathrm{I})$) gene rearrangement process in the \lg genes, we tried to amplify the reciprocal 180° chromosomal junction making use of V_{II} family-specific oligonucleotides in combination with the MBR_{180} oligonucleotide (located downstream of the MBR of the bel- 2 gene). Using the $\mathrm{V}_{11} 3$ oligonucleotide in combination with $M_{B R}$ IsO, a $P(R R$ fragment was generated. Sequencing of this PCR fragment confirmed the juxtaposition of a $V_{11} 3$ family member to the 3^{\prime} untranslated region of the bel-2 gene (Fig 1C) with insertion of random nucleotides. The consensus sequence segment was completely homologous to the $V_{\text {II }}$ germline gene 3-74
[DA-8; (Cook et al, 1994) and DP53 (Tomlinson et al, 1992)].

A search for heptamer-nonamer-like Ig recombination signals on both sides ol the breakpoint on chromosome 18 did not result in the identification of other signal-like sequences as described (Tsujimoto et al, 1985b) (Fig 1). Regions homologous to the χ consensus sequence (CC/T/ $\mathrm{A}] C \mathrm{C}[\mathrm{T} / \mathrm{A}](\mathrm{GC})$ are present in all germline gene segments involved in this translocation. A region directly upstream of the breakpoint on chromosome 18 had a $5 / 8$ match, a region directly upstream of the germline D_{At} or $\mathrm{D}_{\mathrm{A} 1}$ gene segments had a $7 / 8$ and $8 / 8$ match respectively, a region downstream of the signal sequences of the germline $V_{11} 3-74$ or DP5 3 gene segment had a $7 / 8$ match (Figs $1 B-C$) and a region within the first FWR of this gene was completely homologous to the χ consensus sequence (Tomlinson et al, 1992).

The malignant lymphoma cells were further investigated by analysis of somatic mutations present in the productively rearranged IgH allele. DNA derived from the lymph node sample, which was shown by immunochemistry to contain $30-40 \%$ of $\mathrm{IgM} / \mathrm{K}-\mathrm{positive}$ follicular lymphoma cells, and DNA from the blood sample were used as a template for the amplification of rearranged IgH VDJ gene segments of the lymphoma cells. Using all V_{II} family-specilic oligonucleotides (Deane \& Norton, 1991) in combination with J_{H}-intronspecific oligonucleotides under stringent conditions, only the $\mathrm{V}_{\mathrm{H}} 3$ oligonucleotide in combination with the $\mathrm{J}_{\mathrm{H}} 6$-intron oligonucleotide generated a 388 bp PCR product for both tissue samples (data not shown). After sequencing, the $\mathrm{V}_{\mathrm{H}} 3$ gene segment of this rearrangement was compared with sequences from the GenEMBL Database Library, and was most homologous to germline gene segment $\mathrm{V}_{\mathrm{H}} 3-48$ (Matsuda et al, 1993). The PCR fragment was cloned, and individual clones were used for mutation analyses.

For more accurate identilication of the germine counterpart of the $\mathrm{V}_{11} 3$ gene segment present in the VDJ rearrangement, we tried to amplify this specific rearrangement with an oligonucleotide located upstream of the leader peptide ($\mathrm{V}_{\mathrm{tI}}{ }^{3-}$ 48 x) in combination with the J J_{11} (-intron oligonucleotide. The specific VDJ rearrangement was amplified using these oligonucleotides and sequenced (see consensus sequence in Fig 2). The $\mathrm{V}_{11} 3$ region of this VD) rearrangement (bp 1 6()3), including upstream sequence and the leader intron, was $97 \cdot 2 \%$ homologous to the mapped germline $V_{11} 3-48$ gene segment and 92% homologous to the next most

Fig $\operatorname{l.}$ (A) Comparison of the 140^{\prime} chromosomal junction to the MBR of the bel-2 gene (cleary et al, l986c) and the fargion of the lght locus (Ravetch ef al, 1981). The N-region is shown in small characters. (Inderlined regions shares homology with human D) regions. Heptamer... nonamer signal and signal-like sequences as suggested by 'Tsujimoto et al (1985b) are indicated by double lines. (B) Comparison of the Noregion from the 140^{\prime} chromosomal junction to germline D segments D_{A+} and $D_{A 1}$ (IChihara et al, 1988), and somatie D segments. The somatic D) segments were deduced from VD) sequences Hsig4 (Stewart et al, 1993), Hsigl3g5 (GenBMBL, accession I(04332), and Hsighdvn (GenkMBI, accession M651()1). Gaps in sequences were introduced for clarity. The underlined region in the Hsig4 sequence represent the Dims gene segment, as indicated by the authors. The heptamer and nonamer sequences in the germline $D_{A t}$ and $D_{\text {al }}$ gene segments are underlined. Regions sharing homology to the x consensus sequence are marked by asterisks. (C) Comparison of the 180 chromosomal function togermiline
 case. The CDR 1 and CDR2 regions are indicated according to Kabat et al (1987). The signal heptamer and nonamer sequences are underlmed. Regions sharing homology to the x consensus sequence are marked by asterisks.

634 J. P. P. Meijerink, J. M. M. Raemaekers and E. J. B. M. Mensink

homologous mapped germline gene V_{H} 3-7 (Matsuda et al, 1993). The leader intron (bp 197-299) was completely homologous to germline $\mathrm{V}_{\mathrm{H}} 3-48$ gene segment. The D part of the VDJ rearrangement (bp 610-630) was 85% homologous to germline $\mathrm{D}_{\mathrm{XP}^{\prime} 1}$ gene segment (Ichihara et al, 1988). For subsequent analyses, we assumed that the productively rearranged VDJ gene segments in the lymphoma cells were composed of germline counterparts $\mathrm{V}_{\mathrm{H}} 3-$ 48 (Matsuda et al, 1993), $\mathrm{D}_{\mathrm{XP}^{\prime} 1}$ (Ichihara et al, 1988) and $\mathrm{J}_{\mathrm{H}} 6$ (Ravetch et al, 1981).

The consensus VDJ sequence (bp 1-713; Fig 2) contained several mutations compared to their germline counterparts. Five mutations and a deletion were present in the region upstream of the leader peptide. The leader peptide itself contained one replacement mutation, whereas the leader intron was completely conserved. 12 replacement mutations and two silent mutations compared to the germline genes were present in the CDRs and FWRs.

For mutation analysis, the $388 \mathrm{bp} \mathrm{V}_{\mathrm{H}} 3-48-\mathrm{D}_{\mathrm{XP}^{\prime} 1}-\mathrm{J}_{\mathrm{H}} 6$ PCR product was cloned, and individual clones originating from blood (B3, B4a, B4b, B7, B8, B9 and B10; Fig 2) or nodule sample DNA (K1, K5, K7, K8, K10) and K12; Fig 2) were sequenced. The clones B3, B4b, K1, K7 and K12 shared 11 replacement mutations at positions $400,406,456,474$, $475,597,615,619,628,636,661$ and two silent mutations at positions 446 and 467 by comparison with the germline genes. A C-residue at position 656 was also present in the $\mathrm{J}_{\mathrm{H}} 6$ region of the $14 \mathrm{Q}^{+}$chromosome (Fig 1A), and may therefore reflect an allelic polymorphism rather than a mutation. These clones represent lymphoma subpopulation 1. Clones B4a, B7, B8, B9, B10, K5, K8 and K10 all had two additional replacement mutations at position 573 and 575 , and represent subpopulation 2. Besides these mutations shared by all members of the same
subgroup, individual mutations and mutations shared by only two members of the same subgroup were present. Clones K 8 and K 1() both had a common mutation in the $\mathrm{J}_{\mathrm{H}} 6$ intron region at position 705. Clone 34b had two additional replacement mutations at positions 570) and 571, clone B7 had a replacement mutation at position 602 , clone K 7 had a silent mutation at position 668, and clone K5 had a mutation within the $\mathrm{J}_{\mathrm{H}} 6$-intron region at position 699 .

Lymphoma subpopulations 1 and 2 shared 13 and 15 mutations respectively compared with their germline counterparts. These mutations reflect somatic mutations acquired during clonal evolution of both lymphoma populations. These mutations were used in two mutation analyses (Schlomchik et al, 1987a, b). Since the germline counterpart of the D gene segment was most likely $\mathrm{D}_{\mathrm{X} \mathrm{p}^{\prime} 1 \text {, and since not }}$, all germline D genes have been identified (Ichihara et al, 1988), we devided the analysis in two parts. In one part we analysed the mutations present in the entire VDJ gene (Table IA; region bp 381-683). In the other part we analysed the mutations in the V_{H} gene segment only (Table IB; region bp 381-602). The distribution of replacement and silent mutations as found in the CDRs and FWRs are summarized in Table IA and IB for both regions. The expected distribution of replacement and silent mutations by a random mutation process was calculated for both subpopulations for both regions (see Materials and Methods). The distribution of mutations as found in the VDJ gene or the V_{H} gene segment differ from the expected pattern of mutations. The $p_{(k R)}$ was calculated for both subpopulations in both regions analysed: For the VDJ rearrangement: the $p_{(9 R)}$ in subpopulation 1 was ().012 ($k=9, n=13, N=15)$; the $p_{(9 R)}$ in subpopulation 2 was $0 \cdot\left(05(k=9, n=15, N=19)\right.$; For the V_{H} region: the $p_{(5 R)}$ in subpopulation 1 was $0 \cdot() 3(k=5, n=8, N=9)$; the $p_{(5 R)}$ in subpopulation 2 was $0 \cdot 11(k=5, n=10, N=13)$.

Fig 2. Comparison of the consensus sequence and individual clones to germline counterparts. Only the complete consensus sequence is shown. Identical nucleotides are given by dots. Silent mutations compared to the germine counterparts $\mathrm{V}_{\mathrm{H}} 3$ - 48 (Matsuda et al, 1993), D_{xp}, (lchihara et al, 1988), $\mathrm{J}_{\mathrm{H}} 6$ (Ravetch et al, 1981), or the consensus sequence are shown in capitals, and replacement mutations are shown in bold capitals. The N -regions are shown in lower case. The $\mathrm{J}_{\mathrm{H}} 6$-intron region is shown by small characters in italic. The C -residue at position 656 represents allelic variation.

379
468
Vh3-48
$>|<---\operatorname{CDRI}-\cdots->|<$
. G.....G........
FWR-2
$>\mid<-\cdots-\ldots-\ldots$
Consensus B3
B4a
B4b
B7
B 8
B 9
B10
K1
K 5
K 7
K8
K10
K12
CCTCTGGATTCACCTTCA cctata

AATG

ancatragragca

469
558
Vh3-48
Consensus
B3
B4a
B4b
B7
B8
B9
K 1
K5
K7
K8
K10
K12
CDR2
FWR-3
. . . . AG
GTAGTGTTACCATATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACTCACTGTATCTGCAAATGA

559

649
FWR $4 \quad>1<$
sh-intron
713

Jh6 Consensus TCTGGGGCCAAGTGACCACGGTCACCGTCTCCTCAGgtaagaatggccactotagggcettegtt B3
B4a
B4b
B7 B8 B9 B10 K1 K5 K7 K8 K10 K12 \mathbf{T} . \mathbf{T}.
 . A. .g. . a. . a.

Nig 2 (comtinued)
(G) 1995 Blackwell Science Ltd, British Journal of Haematology 91: 630-639

Table I. Distribution of shared mutations in the rearranged VDJ gene segments (A) or in the V_{11} region of the VDJ rearrangement of the lymphoma cells (B).

A

	FWR1 (partial)	FWR2	FWR3	FWR4	Total FWRs	Expected FWRs	CDR1	CDR2	CDR 3	Total CDRs	Expected (RD)s
Subpopulation 1											
Replacement	0	0	1	1	2	6	2	3	4	9	4
Silent	$1)$	1	0	0	1	2	0	1	0	1	1
R/S	-	0	∞	∞	2	3	∞	3	∞	9	4
Subpopulation 2											
Replacement	$1)$	0	3	1	4	7	2	3	4	9	5
Silent	$1)$	1	()	0	1	2	()	1	0	1	1
R/S	-	0	∞	∞	4	$3 \cdot 5$	∞	3	∞	9	5

B

	FWR 1 (partial)	FWR2	FWR3	Total FWRs	Expected FWRs	CDRI	CDR2	Total CDRs	Expected CORs
Subpopulation 1									
Replacement	0	0	1	1	5	2	3	5	2
Silent	0	1	0	1	1	0	1	1	0
R/S	-	0	∞	1	5	∞	3	5	∞
Subpopulation 2									
Replacement	0	0	3	3	6	2	3	5	2
Silent	0	1	0	1	1	0	1	1	1
R/S	-	0	∞	3	6	∞	3	5	2

(A) For n mutations, the expected number of replacement and silent mutations in the VDI rearrangement of the lymphoma cells is: $\mathrm{R}_{\mathrm{exp}}=$ $0.78 \times n ; S_{\text {exp }}=0.22 \times n$. The expected distribution of replacement and silent mutations within the FWRS and CDRs of the VDI rearrangement is: $R_{F W R S}=0.62 \times R ; R_{C O R S}=0.38 \times R ; S_{F W R S}=0.62 \times S ; S_{C H R}=0.38 \times S$. (B) For the V_{H} segment, the expected numbers of replacement and silent mutations are: $\mathrm{R}_{\mathrm{exp}}=\left(0.79 \times n ; \mathrm{S}_{\mathrm{exp}}=() \cdot 21 \times n\right.$. The expected distribution of replacement and silent mutations within the FWRs and CDRs

DISCUSSION

In this study we describe a variant $1(14 ; 18)$ which was detected in a follicular NHL patient. It is the first demonstration of a $(14 ; 18)$ as the result of an error during the V_{H} to D - J_{11} rearrangement process in a pre-13cell. Almost all $t(14 ; 18) \mathrm{s}$ occur during the IgH I) to J 11 rearrangement process and seldomly during other Ig rearrangement processes. The reason for this phenomenon is not understood. The Ig recombination machinery for IgH and subsequent Igl, rearrangements remains active during the complete pre-B-cell stage and therefore both loci are highly accessible. This is different for the bel-2 locus. The bel-2 expression is down-regulated on mRNA level (Haury et (ll, 1993) as well as protein level (Merino et al, 1994) upon entry of pro-B-cells at the pre-B-cell stage. Therefore it seems likely that the reduced transcriptional rate of the bel-2 locus is accompagnied by a reduced accessibility, and therefore leads to a decreased incidence of $t(14 ; 18)$ s during later $I g$ rearrangement processes.

Due to the temporary open chromatin structure of the bel2 gene, the Ig recombination machinery may aberrantly
recognize target sequences on the brl-2 locus. The translocation in our case can not simply be explained by the presence of heptamer and nonamer signal sequences as targets of the VIJJ recombination complex, but more likely by t-like sequences (Wyatt at al, 1992). The x consensus sequences may act as primary recombination targets for distant Ig gene segments in an intermediate recombination process, which is further processed by the VDJ recombinase complex using the classic Ig recombination signals. These γ-like sequences are especially conserved in the FWR 1 of group $111 V_{11}$ families in mammals, to which the human $V_{11} 3$ family belongs (Thutter \& Rible, 1989), in 1) and J II gene segments, and have also been found in the MBR of the bol-2 gene (Wyatl et al, 1992). Recently, proteins have been identifted which bind to x-like sequences present in the MBR of the brl-2 gene (Aoki et al, 1994; Jaeger et al, 1993). These sequences may have been involved in the generation of the $(14 ; 18)$ in our case. and are present in all germline counterparts.

To study the effect of the relatively late occurrence of the $t(14 ; 18)$ in this case on lymphoma development, a mutation analysis was performed. The $V_{\text {II }}$ gene segment of the lymphoma specific VDJ rearrangement was most homo-
logous $(97 \cdot 2 \%)$ to germline $\mathrm{V}_{\mathrm{II}} 3-48$ gene segment, and only 92% homologous to the next most homologous V_{H} segment $\mathrm{V}_{\mathrm{HI}} 3-7$ (Matsuda et al, 1993). Since the map of the human Ig V_{H} locus is now complete and almost all the sequences are known (Cook et al, 1994), it is reasonable to assume that $\mathrm{V}_{\mathrm{H}} 3-48$ represents the germline counterpart in this case. Based on homology, we assume that the germline counterpart of the D gene segment is Dxp' 1 (Ichihara et al, 1988). From amplification conditions as well as sequence information it is obvious that the germline J_{H} gene segment is J_{H} b (Ravetch et al, 1981).

From both mutation analyses it is obvious that the amount of replecement mutations present in the CDRs of both lymphoma subpopulations exceeds the number of mutations expected in the absence of selection. As discussed by Schlomehik et al (1987 b), an R / S ratio >2.9 indicates positive selection. In both analyses the R/S ratios for the CDRs of both subpopulations strongly indicated positive selection. An R / S ratio <2.9 indicates negative selection, as is expected for the FWRs in order to maintain the function of the antibody. From both mutation analyses it is obvious that a negative selection pressure was acting on the FWRs of subpopulation 1. Although subpopulation 2 evolved from subpopulation 1, it is not clear whether a negative selective force was still maintained on the FWRs of subpopulation 2. Using the binomial model (Schlomchik et al, 1987a), it seems highly unlikely that the mutation pattern present in both lymphoma populations for both regions analysed occurred by chance.

Analysis of the individual mutations provides insight in the most recent selection forces which have been acting on the lymphoma cells. However, the insert of each clone is amplified by'taq DNA polymerase, and may contain unique mutations generated by this enzyme. Although the amount of unique mutations exceeds the number expected to be induced by Tal polymerase (Bakkus et al, 1992), it is less than expected if the somatic mutation process was ongoing. This frequency is estimated as 1 mutation in 1000 bps in each cell cycle (Berek, 1992), resulting in one mutation in the VDJ region of almost every lymphoma cell. Since we used ()$\cdot 2 \mu \mathrm{~g}$ of genomic DNA in our PCR (which roughly equals 3×10^{-4} cells) and since the amount of lymphoma cells within the lymph node biopt was $30-40 \%$, it seems highly unlikely that five out of seven clones originating from the blood sample DNA and two out of six clones originating from the lymph node sample DNA did not contain unique somatic mutations if this process was still ongoing. 'The position of these mutations also does not suggest positive selection. We conclude that the somatic mutation process in the lymphoma cells was turned off, active at a very low level or active in a minor lymphoma population at the time of presentation, which is in contrast with some other calses of follicular lymphoma (Cleary et al, 1986b, 1988; Kon et al, 1987; Zelenetz et al, 1992).

In conclusion, translocations involving the bol-2 gene which occur at other stages of the Ig rearrangements than the IgH D to $\mathrm{J}_{\text {II }}$ gene rearrangement process are extremely rare in follicular lymphoma. We propose that this correlates with decreased bel-2 transcription by pro-B-cells upon entry
in the pre-B-cell stage and a concomitant decreased accessibility of potential target sites within the bel-2 locus recognized by χ or the lg recombination machinery. Iike other cases, the somatic mutation machinery had been active in this follicular lymphoma case. We therefore conclude that bel-2 gene deregulation, and not the precise moment of deregulation during the pre-B-cell stage, is of influence on the subsequent development towards follicular lymphoma.

ACKNOWLEDGMENTS

Sequences of the 140^{+}and the 180 chromosomal junctions as well as the rearranged $V 1) J$ gene segments as outlined in this report are available in the denBMBI, database library under accession numbers $750(0) 10$, 2500111 and 2500007 respectively. We thank Andrew Zelenetz for suggestions during this study, and Ian 'romlinson for helpful comments and critical reading of the manuscript. We also thank Dr M. J. J. 'T'. Bogman for providing lymph node material and immunochemistry data. This work was supported by Grants from the Vanderes Foundation, the Ank van Vlissingen Foundation and the Maurits and Anna de Kock Foundation.

REFERENCES

Aoki, K., Nakahara, K., Ikegawa, C., Seto, M., 'Iakahashi, 'T., Minowada, J., Strominger, J.L., Maziara, R.T' \& Kasai, M. 119941 Nuclear proteins binding to a novel target sequence within the recombination hotspot regions of bel-2 and the immunoglobulin D_{11} gene lamily. (hncogerue, 9, 1109-1115.
Bahler, J.W. \& Levy, R. (1992) Clonal evohution ol a lollieular lymphoma: evidence for antigen selection. Procedings of the National Acoulemy of Scicmes of the United Stutes of Ammitu. 89. 67706774.

Bakhshi, A., Wright, J.J., Graninger, W., Seto, M., Owens, I.. Cossman, J., Jensen, J.P., Goldman, P. \& Korsmeyer, S.J. (1987) Mechanism of the $(14 ; 18)$ chromosomal translocation: struc. tural analysis of both derivative 14 and 18 reciprocal partaers. Proceedings of the National Acomemu of Sciancers of the United Sitates of America. 84, 2396-2400.
Bakkus, M.H.c'., Heirman, L'.. Van Riet, l., Van Camp, B, \& Thielemans, K. (1992) Evidence that multiple myeloma ly heavy chain VIJ genes contain somatie matations but show no Intraclonal variation. Blool, 80. 2326,2335.
Berek, ('. (1992) The development of 13 cells and the Beedl repertoir In the microenviromment of the germinal center. Immunolyey Revicw, 126, 5.19.
Bertheas, M.J., Rimokh, R., Berger, li., (ameherand, M. Muthuels. P’., Vassolon, ('., Colmardoriol. P'., Jabbert. I.. (iuyotal. I). \& Magaud, J.I'. (1991) Molecular stady of a varbant (ranslocation (12:18)(pl1:21) in a folleular lymphoma. Brilish fournal of Hecmatology, 78.132-134.
Bertoli, L.F., Kubagawa, I., Borzillo. (.V.V., Burtows, P.D., Schreeder. M.'I'. C'arroll, A.J. \& Cooper, M.D. (1988) Bone marrow origin of a B-cell lymphoma. Blood, 72,94-101.
Cleary, M.L.. Galili, N. \& Sklar. J. (198(a) Detection of a second (14:18) breakpoint claster regton in human folleular lymphomas. Journal of lixperimantal Medicine, 164, 317...320.
Cleary, M.L.. Galilh. N., Trela, M. Levy, R. \& Sklar. J. (1988) Single cell origin of bigenotypic and biphenotyple B cell proliferations in
(6) 1995 Blackwell Science Ltd, British Journal of Ihaematolog! 91:630...639

638 J. P. P. Meijerink, J. M. M. Raemaekers and E. J. B. M. Mensink

human follicular lymphomas. Journal of Experimental Medicine, 167. 582-597.

Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. \& Levy, R. (1986b) Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma, Cell, 44, 97-106.
Cleary, M.L., Smith, S.D. \& Sklar, J. (1986c) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the $(14 ; 18)$ translocation. Cell, 47, 19-28.
Cook, G.P., Tomlinson, I.M., Walter, G., Riethman, H., Carter, N.P., Buluwela, L., Winter, G. \& Rabbitts, T.H. (1994) A map of the human immunoglobulin $V_{H I}$ locus completed by analysis of the telomeric region of chromosome 14 q . Nature Genetics, 7, 162168.

Cotter, F., Price, C., Zucca, E. \& Young, B.D. (1990) Direct sequence analysis of the $14 \mathrm{q}^{+}$and 18 q - chromosome junctions in follicular lymphoma. Blood, 76, 131-135.
Deane, M. \& Norton, J.D. (1991) Immunoglobulin gene 'fingerprinting': an approach to analysis of B lymphoid clonality in lymphoproliferative disorders. British Journal of Haematology, 77, 274-281.
Denney, D. \& Weissman, I. (1990) DNA generated by polymerase chain reaction using Taq DNA polymerase has non-template nucleotide additions: implications for cloning PCR products. Amplifications, 4, 25-26.
Haury, M., Freitas, A., Hermitte, V., Coutinho, A. \& Hibner, U. (1993) The physiology of bcl-2 expression in murine B lymphocytes. Oncogene, 8, 1257-1262.
Hillion, J., Mecucci, C., Aventin, A., Leroux, D., Wlodarska, I., Van-Den-Berghe, H. \& Larsen, C.J. (1991) A variant translocation $t(2 ; 18)$ in follicular lymphoma involves the 5^{\prime} end of bol-2 and Ig kappa light chain gene. Oncogene, 6, 169-172.
Ichihara, Y., Matsuoka, H. \& Kurosawa, Y. (1988) Organization of human immunoglobulin heavy chain diversity gene loci. EMBO Journal, 7, 4141-4150.
Innis, M.A., Myambo, K.B., Gelfand, D.H. \& Brow, M.A. (1988) DNA sequencing with Thermus aquatious DNA polymerase and direct sequencing of polymerase chain reaction-amplified IDNA. Procedings of the National Acudemy of Soiences of the United States of America, 85, 9436-9440.
Jaeger, U., Purtscher, B., Delle Karth, G., Knapp, S., Mannhalter, C. \& Lechner, K. (1993) Mechanism of the chromosomal translocation $1(14 ; 18)$ in lymphoma: detection of a $45-\mathrm{Kd}$ breakpoint binding protein. Blood, 81, 1833-1840.
Jukes, T.H. \& King, J.L. (1979) Evolutionary nucleotide replacements in DNA. Nature, 281, 605-606.
Kabat, E.A., Wu, 'T.T', Reid-Miller, M., Perry, H.M. \& Gottsman, K.s. (1987) Sequences of Proteins of Immunological Interest. U.S. Public Health Service, Bethesda, Md.
Kon, S., Levy, S. \& Levy, R. (1987) Retention of an idiotypic determinant in a human B-cell lymphoma undergoing immunoglobulin variable-region mutation. Procedings of the National Academy of Sciences of the United States of America, 84, 5053-5057.
Levy, R., Levy, S., Cleary, M.L., Carroll, W., Kon, S., Bird, J. \& Sklar, J. (1987) Somatic mutation in human B-cell tumors. Immunolog!! Reviews, 96, 43-58.
Levy, S., Mendel, E., Kon, S., Avnur, Z. \& Levy, R. (1988) Mutational hot spots in the Ig V region genes of human follicular lymphomas. Journal of Experimental Medicine, 168, 475-489.
Limpens, J., de Jong, D., van Krieken, J.H.J.M., Price, C.G.A., Young, B.D., van Ommen, G.J.B. \& Kluin, P.M. (1991) Bcl-2/JII rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene, 6, 2271-2276.
Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M.,

Fukita, Y., Taka-ishi, S., Imai, Tr., Riley, J.H., Anand, R., Soeda, E. \& Honjo, T. (1993) Structure and physical map of 64 variable segments in the $3^{\prime} 0,8$-megabase region of the human immunoglobulin heavy-chain locus. Nature Gemetics, 3, 88-94.
McDonnell, T.J. \& Korsmeyer, S.J. (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the $t(14 ; 18)$. Nature, 349, 254-256.
Meijerink, J.P.P., Smetsers, T.F.C.M., Raemaekers, J.M.M., Bogman, M.J.J.T., Dewitte, 'T. \& Mensink, E.J.B.M. (1993) Quantitation of follicular non-Hodgkin's lymphoma cells carrying $t(14 ; 18)$ by competitive polymerase chain reaction. British Journal of Haematology, 84, 250-256.
Merino, R., Ding, L., Veis, D.J., Korsmeyer, S.J. \& Nunez, (i. (1994) Developmental regulation of the bel-2 protein and susceptibility to cell death in 13 lymphocytes. EMBO Journal, 13, 683-691,
Miller, S.A., Dykes, D,D. \& Polesky, H.F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215.
Osada, H., Seto, M., Ueda, R., Emi, N., Takagi, N., Obata, Y., Suchi, 'l'. \& Takahashi, T. (1989) Bel-2 gene rearrangement analysis in Japanese B cell lymphoma; novel bol-2 recombination with immunoglobulin kappa chain gene. Japaness Journal of Cancor Research, 80, 711-715.
Ravetch, J.V., Siebenlist, U., Korsmeyer, S., Waldmann, 'I', \& Leder, P. (1981) Structure of human immunoglobulin mu locus: characterization of embryonic and rearranged J and I) genes. Cell, 27, 583-591.
Sambrook, J., Fritsch, E.F. \& Maniatis, 'T. (1989) Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
Schlomchik, M.J., Aucoin, A.H., Pisetsky, D.S. \& Weigert, M.G. (1987a) Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Procedings of the National Academy of Sciences of the United States of Americo. 84. 9150-9154.
Schlomehik, M.J., Marshak-Rothstein, A., Wollowle\%, C.B., Rothstein, T.L. \& Weigert, M.G. (1987b) The role of clonal selection and somatic mutation in autoimmunity. Nature, 328, 805-811.
Seto, M., Osada, H., Veda, R., Ito, C., Iwaki, O., Oyama, A., Suchi, I'. \& Takahashi, T. (1991) Bcl-2 translocation in Japanese 13 cell lymphoma: novel bel-2 translocation with immunoglobulin heavy chain diversity segment. Japanese Journal of ' 'uncar Reseateh, 82. 65-71.
Stewart, A.K., Huang, C., Stollar, B.J). \& Schwart\%, R.S. (1993) High-frequency representation of single V_{11} gene in the expressed human B cell repertoires. Journal of Lipherimental Medicine. 177. $409-418$.
T'omlinson, I.M., Walter, (3., Marks, I.I)., Lewelyn, M.B. \& Winter, (i. (1992) The repertoire of human germine V_{11} sequences reveals about difty groups of V_{11} segments with different hypervariable loops. Journal of Molecular Biolog!, 227.776 798.
Tsujimoto, Y., Cossman, J., Jafle, 1\% \& (roce, ('M. (1985a) Involvement of the bol-2 gene in human follteular lymphoma. Sclence, 228, 1440-1443.
Tsujimoto, Y. \& Croce, C.M. (1986) Analysis of the structure, transeripts, and protein products of bel-2, the gene involved in human follicular lymphoma. Procedings of the National Academy of Sciences of the United States of Americu, 83, 5214-5218.
Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C. \& Croce, C.M. (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the $\mathrm{t}(14: 18$) chromosome translocation. Science: 226 . 1097-1099.
Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, I:, \& Croce, C.M. (1985b) The $414 ; 18$) chromosome translocations involved in

B-cell neoplasms result from mistakes in VDJ joining. Science. 229, 1390-1393.
'Iutter, A. \& Riblet, R. (1989) Conservation of an immunoglobulin variable-region gene family indicates a specific, noncoding function. Proceedings of the National Academy of Sciences of the United States of America, 86, 746()-7464.
Wyatt, R.T., Rudders, R.A., Zelenetz, A., Delellis, R.A. \& Krontiris, T.G. (1992) Bcl-2 oncogene translocation is mediated by a chi-like consensus. Journal of Experimental Medicine, 175, 1575-1588.
Yunis, J.J., Frizzera, G., Oken, M.M., McKenna, J., Theologides, A. \&

Arnesen, M. (1987) Multiple recurrent genomic defeets in follicular lymphoma: a possible model for cancer. New lingland Journal of Medicine, 316, 79-84.
Zelenetz, A.D., Chen, T.'T. \& Levy, R. (1991) Histologic transformation of follicular lymphoma to diffuse lymphoma represents tumor progression by a single malignant B cell. Journad of Lxperimental Medicine, 173, 197-207.
Zelenetz, A.D., Chen, T.T. \& Levy, R. (1992) Clonal expansion in follicular lymphoma occurs subsequent to antigenic selection. Journal of Experimental Medicine, 176, 1137-1148.

[^0]: Correspondence: Dr E. J. B. M. Mensink, Division of Haematology, Department ol' Medicine, University Hospital St Radboud Nijmegen, Geert Grooteplein zuid 8,6500 HB, the Netherlands.

