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Mapping and cloning hereditary deafness genes
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In the past two years, considerable progress has been made in the mapping 
and cloning of human deafness genes. Highlights are the chromosomal 
localization of at least five genes for autosomal forms of non-syndrom ic 
deafness and, more recently, the cloning of an X-linked deafness gene, 
DFN3, and the Usher syndrome type IB gene. This last gene encodes a 
myosin-like protein and was identified as the human homo log of the mouse 
shaker-l gene. The DFN3 gene Brain A encodes a POU domain containing 

transcription factor that is involved in the development of the inner ear.

Current Opinion in Genetics and Development 1995, 5:371 -37*r

Introduction

Deafness is the most common inherited hum an sensory 
defect, affecting one in 2000 children [1]. In 70% o f  
cases, the deafness is non-syndromic, i.e. no t associ
a ted  with other clinical features [2], Progress in m ap
p in g  deafness genes has been relatively slow for sev
eral reasons. Firstly, ~75%  o f cases are o f  the recessive 
type  [3] which, because o f  the inherently small pedigree 
sizes, renders linkage analysis difficult. Secondly, several 
form s o f  hearing loss are age-dependent; in others, dis
ease manifestation and clinical course depend on envi
ronm enta l factors. Thirdly, the nosologic classification o f  
hearing  loss is complicated by the inaccessibility o f  the 
in n e r  ear for clinical examination. Fourthly, our under
standing o f  the auditory signal transduction cascade in 
th e  sensory hair cells o f  the organ o f  C orti is still in 
its infancy, so we know o f  only a few candidate genes 
fo r  hereditary forms o f  sensorineural deafness that can 
b e  tested for mutations. Fifthly, only recently have in
n e r  ear specific cDNA libraries been established [4,5,6 "). 
Finally, w hen compared to the funding o f  eye research, 
.financial support for research into genetic forms o f  deaf
ness  has been relatively meager. Still, remarkable progress 
h as  been made in this field during the past few months. 
M o lecu la r  studies have recently shed m ore light on the 
e  tiology and pathogenesis o f  various syndromes in which 
deafness is an inconsistent or m inor sym ptom .

I n  this review, we have chosen, som ewhat arbitrarily, to 
c o n f in e  ourselves to two syndromes in which early-on- 
s e t  deafness is a major symptom, Usher syndrome (USH) 
a n d  Waardenburg syndrome (WS). T h e  central focus of 
t h e  review will be the human genes involved in non-syn
d ro m ic  deafness that have been mapped and cloned re
cently, and on the nosologic implications o f  this work. In

another review, Steel and Brown [7] have dealt with var
ious forms o f  m am malian deafness on the basis of their 
pathologic features.

Usher syndrome

U S H  comprises a group o f  autosomal recessive disor
ders associated w ith  congenital sensorineural deafness 
and progressive visual loss caused by retinitis pigmen
tosa. Clinically, at least three types o f  Usher syndrome 
(U SH  1—3) can be distinguished. Patients with USH1 
have congenital, severe to profound hearing loss and 
absence o f  vestibular function, whereas in USH2, the 
hearing loss is congenital but m oderate to severe and the 
vestibular function is normal.

Linkage studies suggest the presence o f  causal genes for
U SH  1 at 14q32.1—q32.3 (US’H/Zl), 1 lq l3 .5  
and 1 1 p 15.1 —p 14 ( I J S H I Q  [8-12], Recently, a novel 
type VII myosin gene at 1 1 q 13.5 has been shown to be 
homologous to the m urine deafness gene sluiker-I and is 
responsible for U S H  I B [13*\14**|. T he phenotypes o f  
the original shaker- ! m utant and five other shaker-1 m u
tants seem to be different from that o f  US Ml patients 
in that no retinal degeneration has so far been reported 
in these mouse mutants. In another study, the autoso
mal recessive deafness gene D FN Ü 2  has been localized 
to the same interval o f  chrom osom e 11 [15]. A major 
locus for U S H 2  (U SH 2A )  is situated at 1 q 4 1 [16-18], 
but evidence exists for a further US M2 locus, as one 
large U S I 12 family does not show linkage to tq  (19]. 
T he  choroideremia-like gene C H M L  is a candidate for 
U SH 2A  because it maps to the same chromosomal in
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terval, bu t the search for C H M L  mutations in U SH 2A  
patients has been unsuccessful [2 0 ,21 ],

The third type o f  U sher syndrome (USI-I3) differs from 
USH2 by the progressive nature of its hearing loss. 
Linkage studies have assigned the underlying gene to 
3q21—q25 [22]. A clear clinical distinction between 
U SH 2A  and U S H 3 is difficult, as exemplified by the 
observed linkage o f  one ‘U S H 3 ’ family to lq41 [22] and 
the linkage o f  five ‘U S H 2 A ’ families to 3q21—q25 (WS
Kimberling, personal communication).

Waardenburg syndrome

W aardenburg syndrome (WS) is an auditory pigmentary 
syndrome in w hich hearing loss is associated with ab
normal pigm entation o f  hair, skin and eyes. Clinically, 
WS has been divided into two types, WS1 and WS2, 
which are distinguished by the presence or absence o f  
mild facial dysmorphic features such as dystopia can- 
thorum , a lateral displacement o f  the inner canthi o f  
the eyes, w hich is defined by the W  index. R edefin i
tion o f  the W  index now  allows a better classification 
o f  W S families. Patients w ith WS1 have been shown 
to have mutations in the P A X 3  gene [23,24], whereas 
W S2 patients have mutations in other genes. In a p u 
tative mouse m odel for WS, mutations were found in 
the microphthalmia gene, encoding a novel basic helix- 
loop-helix zipper protein  [25]. Subsequently, the hum an  
homologue o f  this gene, M IT F , and a locus for W S2 
were m apped at 3 p l4 .1 — p i 2.3 [26,27], and mutations 
were found in the M IT F  gene in two families with W S 2 
[28]. As a result o f  improved clinical classification, fam
ilies can now  be reliably defined as WS1 or W S2 and 
mutations sought in the appropriate genes.

Mitochondrially inherited deafness

in recent years, mutations in the mitochondrial genom e 
have been reported to be  associated with a variety o f  
multisystem disorders [29], many o f  which include sen
sorineural deafness as a symptom. In four unrelated fam
ilies, a maternally transmitted susceptibility to non-syn- 
dromic sensorineural hearing loss was associated w ith  
a mitochondrial D N A  m utation at nucleotide 1555 in 
the 12S rR N A  gene [30*]. In three o f  these families, the 
disease became manifest after aminoglycoside antibiotic 
treatment; in the fourth family, it was associated w ith a 
mutation in an (as yet) unknow n nuclear gene. Early-on- 
set sensorineural hearing loss in another maternal pedi
gree has been found to be associated with a mutation 
at nucleotide 7445, converting the 3' terminal thymine 
residue o f  tR N A -se r(U C N ) to a cytosine [31].

Autosomal recessive deafness

Non-syndromic autosomal recessive deafness is ex
tremely heterogeneous, as documented by the fact that 
most marriages betw een unrelated deaf individuals do 
no t result in affected offspring. Estimates o f  the number 
o f  genes involved in recessive deafness do not include the 
possibility that affected individuals are non-complemen- 
tary double heterozygotes, as shown recently in retini
tis pigmentosa [32**]. After a systematic genome-wide 
search using highly polymorphic microsatellite repeats, 
the first gene for autosomal recessive deafness (DFNB1) 
was localized to the pericentromeric region of chromo
some 13. In this study, homozygosity by descent was 
observed in affected individuals from consanguineous 
Tunisian families for two genetic markers [33]. The 
D FN B1  locus may also be involved in other popula
tions, as homozygosity for this region has also been 
found in a consanguineous family o f  Pakistani origin 
[34]. Using the same approach, a second locus for au
tosomal recessive deafness (D F N B 2) was mapped to 
chromosome l l q l 3 .5  [15], a region which also har
bours the human U SH 1B  gene [14**] (see above). A 
third autosomal recessive gene (DFNB3) was assigned 
to the pericentromeric region o f  chromosome 17 by 
a strategy termed allele frequency dependent homozy
gosity mapping [35*]. Evolutionary conserved synteny 
w ith  other markers indicates that the murine deafness 
gene shaker-2 may be the homologue o f  DFNB3  [36],

Autosomal dominant deafness

In isolated populations, a single or very few deafness 
genes may prevail. This was illustrated in a Costa R i
can and an Indonesian pedigree in which genes for 
non-syndromic autosomal dominant deafness mapped to 
5q31 (D FNA1)  and l p  (D F N A 2 ), respectively [37,38]. 
In the latter study, the locus on lp  was confirmed in 
an American family Using a large French family, a third 
locus for autosomal dominant deafness has been local
ized recently to human chromosome 13 [39]. Possibly 
the same locus is involved as in D F N B 1 , the reces
sive form o f  deafness described above. As this region 
has now been implicated in families from three differ
ent populations, it may be a major locus for deafness. 
D om inant and recessive forms o f  deafness may result 
from different mutations in the same gene, as shown 
recently for mutations in the C O L 1 1 A 2  gene which 
can be associated with autosomal dominant and reces
sive forms o f  Stickler syndrome, a syndromic form of 
sensorineural deafness [40**].
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X-linked deafness

T he most frequent form o f  X-linked deafness* D F N 3  
(X-linkcd deafness with perilymphatic gusher during 
stapes surgery), has been mapped to the X q l3 -q 2 2  re
gion by linkage studies [41—43]. In patients w ith D FN3, 
computerized tomography has revealed specific struc
tural defects in the temporal bone resulting in an ab
normal wide communication between the cerebrospinal 
fluid and the perilymph, which appears to account for 
the ‘gusher observed during stapes surgery. In families 
w ith X-linked sensorineural deafness w ithou t the bony 
defect, linkage studies suggest the association o f  one lo
cus at or near Xq21 and another at Xp21 [44,45], D e
tailed analysis o f  Xq21 deletions associated w ith  D FN 3, 
choroideremia and mental retardation, and others found 
in  patients with non-syndromic D FN 3, has localized the 
underlying gene to a 500 kb segment o f  X q 2 1 .1 [46-50],

These data, and the assignment o f  the mouse P O U  do
main encoding gene Brant 4 to the m urine X -ch rom o- 
some in a region homologous to hum an X q l3 - q 2 2  [51], 
have been instrumental in the recent isolation o f  the 
hum an DFN3 gene [52**], T he  hum an hom ologue o f  
Brain 4 , POU3F4 , could be mapped to the physical in
terval carrying the D FN 3 locus, and P O U 3F 4  mutations 
were found in five unrelated D F N 3  patients [52**]. Al
though  these observations demonstrate that mutations in 
the  POU3F4  gene cause D FN 3, they do n o t explain the 
association of D FN 3 with four microdeletions and a du
plication that map up to 400 kb proximal to PQ U3F4. 
A lthough the involvement o f  a second D F N 3 gene in 
the Xq21.1 band cannot be excluded, it is equally pos
sible that di-acting regulatory sequences proximal (5') to 
PO U 3F4  are involved.

P O U 3F 4  is a member o f  a multigene family encoding 
transcription factors (with >25 members) [53]. At least 
five P O U  domain genes have been found to be expressed 
in  different parts o f  the rat cochlea [54]. In the light o f  
o u r  data [52**], it is now tempting to speculate that these 
genes are implicated in other forms o f  deafness. In the 
mouse genome, several P O U  domain genes have been 
m apped [55], and the precise chromosomal localization 
o f  their human counterparts is eagerly awaited.

Conclusions

Hereditary deafness is extremely heterogeneous. M ost 
cases show an autosomal recessive m ode  o f  inheritance. 
T h rough  the widespread use o f  a dense array o f  m i
crosatellite markers, the introduction o f  novel genetic 
m apping techniques and improved clinical classification, 
several deafness genes have been m apped in the hum an 
genom e. Although in man, precise regional assignment 
o f  the underlying gene defects is frequently hampered 
b y  small family sizes, comparison o f  their map locations 
w ith  those of corresponding defects in the mouse will

greatly facilitate their isolation. Recently, this has been 
illustrated by the identification o f  the human USH1B  
gene on  the basis o f  its m urine homologue, shaker-1. 
Positional c loning  and candidate gene approaches have 
led to the identification o f  the gene for X-linked deaf
ness, D F N 3 . Future efforts in cloning deafness genes will 
benefit from the availability o f  an increasing number o f 
candidate genes w hich  are being isolated from inner ear 
specific cD N A  libraries.
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