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Chapter 1

Introduction

1.1 Optimisation

Chemometrics is a discipline which originates from analytical chemistry.
Chemometrics is involved in the analysis of chemical data. By applying tools
from mathematics, statistics and computer science, the goal of chemometrics is
to increase the information yield of chemical data [1]. With the availability of
more sophisticated measuring devices, the nature of chemical analysis changed
from measuring direct observable properties (e.g. colour and weight) to in-
direct observable properties (e.g. spectral intensities). At a certain moment,
analysing this new data became as difficult and important as the measure-
ments itself and this is where chemometrics justifies its existence.

One of the first research areas of chemometrics is the optimisation of ex-
perimental conditions, also known as experimental design. For a (chemical)
process to function properly, usually a few variables have to be set. Finding
optimal settings is not that difficult when only a few variables are involved,
but when a larger number of variables is involved and these variables have
interaction effects, finding correct settings is not straightforward anymore.
Experimental design gives the possibility, by performing a minimal number
of experiments, to assess the influence and to find correct settings for a given
process variable.

The introduction of computers in chemistry gave rise to new possibilities.
A new type of experiment became possible, the in silico experiment. In-
stead of performing a minimal number of (slow) experiments, it now became
possible to perform many experiments in a relatively short period of time in-
side the computer. The use of computers also lead to different optimisation
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strategies. Several new optimisation algorithms were invented: Simulated An-
nealing (SA), Genetic Algorithms (GA’s) and Tabu Search (TS), all using the
potential that computers had to offer.

Together with neural networks, SA and GA’s form the natural computa-
tion methods. SA, GA’s and TS are global optimisation methods. All three
methods are able to optimise a cost function F (x) by searching the parameters
space of x for the optimal combination of x.

SA is an optimisation technique which stems from statistical physics. The
principles were first described in 1953 by Metropolis [2]. In 1983 Kirkpatrick
et al. [3] recognised the importance for general optimisation. The original
technique was used to make predictions about the behaviour of a multi-particle
system when the temperature was lowered. The physical system will reach a
stable global ground state with minimal energy. For general optimisation
purposes, predefined given cost function can be regarded as the energy of a
system. By carefully lowering the temperature, the system can be trapped in
a low energy conformation.

Although evolution can be considered much older, the principle for using it
as an optimisation technique were first described by Holland in 1975 [4]. GA’s
mimic the biological process of evolution. Unlike SA or TS, GA’s operate on a
group of solutions (called a population) at a time. The best solutions of each
population are modified by applying evolutionary inspired operators, such as
crossover and mutation. By discarding not-so-good solutions and focussing on
the better performing members of the population, the population as a whole
moves towards the global optimum.

TS originates from the 1980’s with its foundations being laid in the late
1970’s by Glover et al [5,6]. TS is based on concepts from artificial intelligence.
It uses basic, problem specific operators to explore a search space. Parts of the
search space which have been examined are stored in memory (called the tabu
list) and are not visited again. By guiding the optimisation to unknown parts
of the search space, TS hopes to reach the global optimum. TS is a relatively
new technique, especially within chemometrics. TS has traditionally been
applied on combinatorial problems. TS can be used on continuous functions
by choosing some sort of discretisation step. Applications in literature involve
integer programming, routing and scheduling.
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1.2 Optimisation categories

Optimisation problems can appear very diverse, but nevertheless they can
all be divided into three basic categories [7]:

1. Parameter optimisation
In this type of optimisation problem, parameter values, used as input
for modelling, are optimised. Usually, the goal is to find settings for
a particular model so the model is able to match experimental output.
Analysis of the model parameters, lead to knowledge of the experimental
system. Usually, only one set of values for the variables gives output
which matches the experimental data.

2. Variable selection (also called subset selection)
In this class of problems, the goal is to select a small group of variables
from a large group. This subset usually has identical properties com-
pared to the original, larger group of variables or performs even better.
It can happen that many subsets exist which have the desired perfor-
mance.

3. Sequence optimisation
When dealing with sequence optimisation, no parameter values have to
be set or variables to be selected. In this case, the optimal sequence of
objects, data, processes or states that has the optimal value with respect
to a certain property, has to be found. In this type of problem, there is
usually only one correct solution.

1.2.1 Parameter optimisation

In parameter optimisation problems, the goal is to determine the optimal
values for model parameters. When these parameters are used, the output
of the model fits best to measured data. Analysis of the model parameters
usually leads to a better understanding of the experimental system.

A well known example of parameter optimisation within analytical chem-
istry is curve fitting. The goal of curve fitting is to resolve overlapping peaks in
a chromatogram or spectrum. Two steps are required to resolve a spectrum in
its individual peaks. First an estimate has to be made of the number of peaks
and their corresponding peak width, peak height and peak position. The next
step is the parameter optimisation [8].
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The fitting of strongly overlapping X-ray equator diffractometer scans of
poly(ethylene naphtalate) indicated that local optimisers can perform reason-
ably, but only under strict constraints. Global optimisers, such as GA’s do
not require these estimates and are a logical tool [9]. A different example
is the characterisation of thin layered materials by glancing incidence x-ray
reflectometry with GA’s [10].

When the underlying physics of a chromatogram or spectrum is known
and can be calculated by using a model, curve fitting can be replaced by a
somewhat different analysis. In this case, model parameters, other than peak
width, peak height and peak position, are adjusted in such a way that the
output of the model matches the experimental data. Examples are the analysis
with the use of GA’s of multilayer films with the use X-ray fluorescence [11]
and the indexing of powder diffraction patterns with GA’s by Paszkowicz [12]
and later by Kariuki et al. [13]. After powder pattern indexing, GA’s have
also proven useful for the elucidation of a crystal structure [14, 15]. Martin
et al. used the GA’s for designing optical multilayers [16]. Westhead et al.
successfully applied GA’s and TS to a molecular docking problem [17]. GA’s
are also used by Forshed et al. [18] for peak alignment of NMR signals. Kasat
et al. have described an application of GA’s in polymer science and engineering
for optimising reaction time and minimisation of reaction side products [19].

1.2.2 Variable selection

The goal of this type of optimisation problem, is to select a small group
of variables from a larger group. The subset contains identical properties
compared to the original group of variables or performs even slightly better
for a given task. Selecting a subset of variables from a large collection is a
task that cannot be easily done exhaustively. When selecting n variables from
a collection of m variables, the number of possible subsets is given by:

m!
n!(m − n)!

(1.1)

The number of possibilities increase drastically even for small values of n and
m.

A very well known example of variable selection problems in chemistry is
wavelength selection prior to (PLS/PCR/MLR) modelling. In this particular
case, m in Eq. 1.1 are spectra (consisting of hundreds of wavelengths) and
n is usually a small percentage of m. The goal of wavelength selection is
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to create better performing and easier understandable models by eliminating
non-contributing wavelengths. Exhaustive searches for wavelength selection
are not feasible with a reasonable number of wavelengths. Traditional meth-
ods, such as forward selection and backward elimination, use simple heuristics
for locating an optimal solution but these solutions are likely not the best
possible solutions. The application of global optimisation methods has greatly
improved this research area. Comparative papers have been published, testing
both the performance of SA and GA’s on wavelength selection [20], giving the
preference to GA’s. While others demonstrate an equal performance between
SA and GA’s [21, 22]. Wavelength selection prior to (PLS) modelling is a
much used practice, which can easily increase the predictive power of models.
It is not surprising many chemometrical papers have been published applying
this technique. Most of the recent examples use GA’s for wavelength selec-
tion and this appears to be successful. In a number of papers, Leardi et al.
describes properties of wavelength selection [23–25] and the application for
prediction of additive concentrations in polymer films from Fourier transform-
infrared spectral data [26]. To mention only a few, researchers have reported
beneficial effects of wavelength selection in Raman spectroscopy [27], several
polarographic and stripping voltammetric data sets [28] and pyrolysis mass
spectrometry [29]. Only very recently, TS has been used for variable selection
in a study to assess the influence of different validation techniques [30, 31].

Feature selection for determining quantitative structure activity relation-
ships (QSAR) is not so widespread compared to wavelength selection but it is
rather similar in use. Hemmateenejad et al. [32] used GA-based variable selec-
tion to select relevant theoretical descriptors to optimally model the calcium
channel activity of nifedipine analogues. Others apply feature selection to re-
duce the number of data points originating from one descriptor, for instance
to reduce the number of points located on the electron density distribution of
the molecules [33]. A selection of local and global descriptors is also possi-
ble [34]. Zupan et al. use feature selection for reducing a 120 parameter set to
15, using the correlation between the experiment output and a neural network
model output as the evaluation function [35]. Xu et al. [36] compared different
heuristic feature selection techniques with GA’s using a QSAR data set.

A somewhat different goal for feature selection is data reduction. In this
particular case, a representative subset is created from the complete data set,
usually for building a model or clustering where the use of the complete data
set would be troublesome.

Guo et al. proposed a feature selection method to select a subset of vari-
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ables in sequential projection pursuit (SPP) analysis. The inhomogeneity of
the complete data was explored by SPP, and a subset, retaining inhomogene-
ity information, was obtained by applying a GA [37]. A similar application
was used in principal component analysis (PCA) [38] and in parallel factor
analysis (PARAFAC) [39]. Other examples of feature selection for obtaining
representative subsets with GA’s are [40] and [41].

1.2.3 Sequence optimisation

Sequence optimisation problems are rarely encountered in chemistry, al-
though not uncommon in other research areas. The perhaps well known trav-
elling salesperson problem is an example of a sequence optimisation problem.
Due to its rareness in chemistry, it is not possible to distinguish different
types of problems. Only a few examples are found in literature and most of
these problems do not involve any of the natural computation methods. Some
examples of chemical related sequence problems are given below.

Massart et al. discuss the chromatographic separation of a three compo-
nent mixture using a separation based ion-exchange chromatography [42]. In
production level chromatographic separations, one or more rapid and clear-
cut separation steps are used to resolve a mixture. Separation is better if a
mixture of three components is separated in three steps where one component
is eluted in each step, rather than one step where there is an overlap between
components. The sequence of separation steps can be varied, giving rise to
several possible sequences.

A second chemical sequence problem is the shortest synthesis route prob-
lem. In this case, the sequence consists of a number of sequential reactions
which lead to a desired product. Alternatively, the problem can be refor-
mulated as finding the synthesis route for a target compound in the fewest
possible steps. To reduce the number of possible synthesis routes, an im-
portant methodology is the retrosynthesis [43]. Computer based systems for
designing retrosynthesis are LHASA (Logic and Heuristic Applied to Synthetic
Analysis) [44].

The Chemical Batch Scheduling (CBS) problem is a specific version of the
Job Shop Scheduling (JSP) problem. In the chemical setting, this problem is
formulated as follows: a set of orders for chemicals has to be processed on a set
of facilities. For each order a given amount of a chemical must be synthesised
before a certain deadline. The production consists of a sequence of reaction
processes where each process has to be performed by a reactor suitable for that
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process. The problem is to assign the processes to the facilities, splitting them
into batches, and to schedule these batches in order to produce the demands
within the given deadlines. Articles discussing the CBS problem use global
optimisation methods as TS [45] and SA in a hybrid system [46]. Chang et al.
uses a hybrid system of GA’s and TS for the JSP [47]. A review by Cheng,
Gen and Tsujimura summarises the representation and search strategies in
GA for the standard JSP [48]. A comprehensive literature review on the CBS
problem is written by Rippui [49] and Reklaitis [50].

Elucidation of the 3D structure of proteins can be accomplished with two-
or multidimensional nuclear magnetic resonance (NMR). Wehrens et al. pre-
sented an automatic system for the interpretation of two-dimensional NMR
spectra of proteins, HIPS [51]. A GA is used to tackle a search problem of
huge dimensions in which spin patterns found in the NMR spectra should be
mapped to amino acids in the sequence. Other global optimisation methods
which have been used to analyse the spin pattern sequence are SA [52,53] and
neural networks [54].

Another sequence optimisation problem is the analysis of DNA sequence.
To elucidate the sequence of the nucleotides in the DNA, the DNA is treated
with small primers (consisting of several oligonucleotides) which randomly
hybridise with the DNA and generate random fragments. The small fragments
can be analysed. The optimisation problem reduces to identifying the overlap
between the small DNA fragments. When combining the overlap information,
long DNA segments can be reconstructed [55].

1.3 Problems in global optimisation

Several parts can be distinguished in SA, GA’s and TS that are identical
for all three algorithms. These parts are shown in figure 1.1. Since there are
many tutorials describing the inner workings of SA [3], GA’s [56] and TS [5,6],
this section only summarises the inner workings of the three optimisation
algorithms. Besides a summary, this section also stresses current problems
which are associated at each stage of the optimisation algorithms.

• Choice of optimisation algorithm

Although this is not part of an actual algorithm, this part is still very
important. Before starting any optimisation, it has to be decided which
optimisation algorithm is going to be used. This choice will depend
on the type of optimisation problem and a possible representation of
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Figure 1.1: General flowchart of an optimisation algorithm.

the optimisable parameters. Some guidelines exist, for instance it has
been concluded that GA’s are very well suited for optimisation problems
where the parameter space contains forbidden areas [56]. But for other
problems, this choice may not be so clear.

• Initialisation

The first step is the initialisation. Before starting the algorithm, values
for the meta-parameters have to be chosen. This part of the initialisation
is very important and determines for a large part the success of the
optimisation. Examples of meta-parameters are the temperature in SA,
the population size in GA’s and the tabu list length in TS. Choosing
suboptimal values for the meta-parameters will lead to an ill performing
optimisation. Usually some sort of meta-optimisation is performed to
choose correct values.

In the case of SA and TS, a starting solution has to be chosen. In
the case of GA’s, a group of starting solutions has to be chosen. The
starting solution(s) can be completely random or can be based on prior
knowledge and carefully constructed.
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• Evaluation

The evaluation function determines the fitness (or suitability) of a trial
solutions. The fitness of a trial solution is expressed in one single number.
Depending on the fitness of solutions, the course of the algorithm will
be decided.

The evaluation function determines the shape of the search landscape.
In an ideal case, a search landscape contains one broad optimum. In
practice however, many local optima usually exist which make it hard
to detect the global optimum. When a high number of local optima is
present, the chance increases of converging to a (undesired) local op-
timum instead of the correct global optimum. Carefully designing an
evaluation function will certainly yield a more smooth and clearer search
space.

Each optimisation problem requires a specific evaluation function. A
specific type of evaluation function is the evaluation function that com-
pares two spectra (or any other vector-like data). In this comparison,
the similarity between a calculated spectrum (originating from the opti-
misation procedure) and a predefined spectrum is assessed. This prede-
fined spectrum corresponds with the desired solution, which is usually an
experimental spectrum. This type of comparison can be needed for opti-
misation problems in the parameter optimisation class. A conventional
method for assessing the similarity between two spectra is to calculate
a difference spectrum. By summing (and sometimes weighting) this dif-
ference spectrum, the similarity can be expressed in one value [10, 57].
A drawback with this type of evaluation function is that it is based on a
pointwise comparison. When peaks in a spectrum shift only slightly in
position, peaks do no longer overlap with the corresponding peak in the
reference spectrum. In this case, a pointwise comparison will no longer
recognise any similarity between two spectra. An evaluation function
based on a pointwise comparison will fail to recognise similar spectra
without substantial overlap between corresponding peaks.

The evaluation function encountered in the variable selection class, is
usually simpler compared to the parameter optimisation class. In the
case of wavelength selection or variable selection, the quality of the sub-
sets of variables is assessed. A much used technique to estimate the
predictive ability of models is Leave-One-Out Cross-Validation (LOO-
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CV). In LOO-CV, each object is removed once from the training set
and used as a validation set. However, different studies pointed out that
LOO-CV leads to overfitting [30,31,58]. A better technique would be to
use Leave-Multiple-Out Cross Validation (LMO-CV) [30]. In this case,
multiple objects are left out of the training set and treated as the valida-
tion set. When looking at computational time, LMO-CV is also faster,
since it requires the use of less (but somewhat larger) validation sets.
If PCR or PLS is used as a regression technique, the number of latent
variables must also be chosen. The optimal number of latent variables is
usually taken as the number where the RMSECV no longer significantly
decreases [26, 59].

• Stop ?

The optimisation continues, usually until a predefined number of iter-
ations has been used or when a certain result has been obtained. It is
important not to stop to soon, when better results still can be obtained,
but on the other hand, it is also important not to continue too long when
the best solution is not going to change anymore.

• Step

To investigate the possible existence of better performing solutions com-
pared to the ones already found, new solutions are created and examined.
The step function determines how these new solutions are created and
thus how the search space is examined.

In the case of SA, the next solution is chosen randomly from all the
possible solutions that can be created by changing the current solution
with a single step. Not all the possible solutions are generated and
examined, but one is chosen randomly. This solution is accepted as
the new solution if it performs better than the previously encountered
solution. If the solution performs worse, it can still be accepted with
a certain chance. The chance of acceptance is higher when the SA-
temperature is higher, when the temperature is lowered, the chance of
acceptance decreases.

In the case of TS, all possible steps that can be taken from the current
position, are generated and examined. The next solution will be the
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solution that performs best of all these neighbouring solutions. However,
this solution cannot be chosen, if it is present in the memory of TS
(which is called the tabu list). This presence indicates that the solution
has already been visited. This feature ensures that TS can overcome
local minima by forcing it to accept solutions worse than the current
solution. Newly visited solutions are added to the memory of TS.

In the above cases, it is up to the user to create a step function. There
are usually many step functions possible, but not all are likely to yield
good results. By taking too large steps, there is a risk that there is no
cohesion between successive steps. When this happens, the algorithm
cannot sense better performing areas in search space and the global
optimum can be overlooked. By taking too small steps, the explorative
power of the optimisation algorithm is limited to a small area of the
search space which could lead to missing the global optimum.

In GA’s, the user does not have to come up with a step function, the algo-
rithm takes care of that. New solutions are creating by using biologically
inspired operators such as crossover (random combination of solutions)
and mutation (random adjustment of variables). The search space is ex-
amined by replacing not so good performing solutions by modifications
of more promising solutions. The use of a predefined step function in
GA’s requires a correct representation of the problem parameters. The
choice of the representation determines which solutions are close to each
other (which means that these solutions can be reached in one steps)
or far apart in the search space (which means they are separated by
several steps). In GA’s, the predefined step functions may be advan-
tageous, but this has only shifted the problem to the representation of
problem parameters. This representation will greatly affect the search
characteristics.

1.4 Objectives

Unfortunately, despite the many SA, GA’s and TS examples, the use of
global optimisation methods is still not straightforward in all cases. The pre-
vious section listed many difficulties which are still encountered when using
global optimisation algorithms. This thesis aims at investigating and improv-
ing the use of global optimisation algorithms. Not all the problems from the
previous section, such as the choice of optimisation method, initialisation and
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GA representation, will be treated as exhaustively as the main focus of this
thesis. This thesis will focus at three specific problems associated with global
optimisation:

• Evaluation function

This thesis aims at finding a similarity criterion which deals with the
problem of correctly comparing spectra when many shifted peaks are
present. An evaluation function of this type is encountered in the pa-
rameter optimisation class. It compares an experimental state with a
theoretical state (e.g. an experimental spectrum and a theoretical one)
and expresses the (dis)similarity in one single number. This comparison
can be a problem when small changes in peak positions are present. Cur-
rent comparison methods use a point wise comparison and will fail to
find any similarity when no overlap between peaks is present. A correct
similarity assessment is necessary for a correct optimisation of model
parameters.

• Tabu Search

SA, GA’s and TS are global optimisation methods and all three methods
should, in theory, be able to locate an optimum of a given optimisation
problem. However, implementational aspects of the optimisation algo-
rithms and problem specific characteristics could make some optimisa-
tion algorithm more effective than others.

TS is an optimisation technique with different characteristics compared
to SA and GA’s. The existence and careful examination of a neighbour-
hood, requires the definition of a step function. This step function can
be similar to the one used in SA. The use of memory in TS is not found
in SA or GA’s and it requires special bookkeeping. By implementing TS
to solve several chemical optimisation problems, this thesis investigates
the properties and the possibilities of TS.

• Meta-optimisation

SA and GA’s have been applied in the past to a variety of chemical op-
timisation problems. TS is a relatively new technique, with examples
outside chemistry. Unfortunately, for all three methods, there exists
no standard recipe on how or when to use SA, GA’s or TS. For each
optimisation problem, the meta-parameters have to be set correctly, a
representation has to be chosen and an evaluation function has to be



1.5 Outline of thesis 17

devised if any useful results are to be obtained. By studying and solv-
ing several chemical optimisation problems, another goal is to detect
guidelines on how to use them and when to use them.

The previous objectives are studied by solving four chemical optimisation
problems, which are divided over the three different optimisation categories.
The optimisation problems solved in this thesis, are not exhaustively solved
with all three optimisation methods, as this is not a comparative study.

1.5 Outline of thesis

Chapter 2 deals with the problem of finding a similarity criterion which is
able to deal with shifting peaks when comparing spectra or any other vector
like data. In this chapter, the weighted cross correlation (WCC) is introduced.
This criterion is able to recognise similar spectra even while shifts in peak
positions are present. The WCC criterion is applied to the classification of
crystal structures of cephalosporin complexes, based on the comparison of
their calculated powder diffraction patterns. The WCC criterion will be used
in chapter 3 and chapter 4 as basis for the evaluation function.

Based on the different optimisation problem categories, chapters 3 to 6 can
be divided into the next three categories:

• Part A: Parameter optimisation

Chapter 3 and 4 deal with problems which can be classified as param-
eter optimisation problems. A common aspect of both problems is the
evaluation function. In both cases, it compares many theoretical and
experimental states with the possibility of many shifted peaks. The
weighted cross correlation, as introduced in chapter 2, provides the nec-
essary approach to correctly deal with shifted peak positions.

Chapter 3 deals with the elucidation of rotational constants from laser
induced fluorescence spectra with the aid of GA’s and the weighted cross
correlation. Rotational constants are an important tool in determining
the spatial geometry of molecules.

Chapter 4 deals with the important first step of structure elucidation
from (X-ray) powder diffraction patterns: powder pattern indexing. The
aim of indexing is to retrieve the unit cell parameters of a sample. In
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chapter 4, GA’s in combination with the weighted cross correlation are
used for indexing.

• Part B: Variable selection

Chapter 5 investigates properties and possibilities of TS by applying TS
to the well known problem of wavelength selection, a problem from the
variable selection class. Several implementational aspects of wavelength
selection with TS will be discussed. Eventually, two implementations of
wavelength selection with TS are tested, one which searches for a solution
with a constant number of wavelengths and one with a variable number
of wavelengths. Optimising the meta parameters of TS will be done by
using an experimental design. The performance and characteristics of
both implementations are compared with results which are obtained by
wavelength selection methods which are based on SA and GA’s.

• Part C: Sequence optimisation

Chapter 6 can partly be classified as a sequence optimisation problem.
In this chapter, a new method for optimising and refining multilayer
optical coatings (MOCs) will be presented. MOCs are coatings which
consists of a stack of thin layers of materials with differences in refractive
indices. Depending on the total number of layers, the composition and
thickness of each layer, a MOC is able to reflect certain wavelengths while
other wavelengths are transmitted unhindered. By carefully choosing an
appropriate representation, the GA is able to determine the total number
and the sequence of the materials in a MOC. Together with the sequence,
the GA will provide an estimate of the optimal thickness of each layer.
After the optimisation with GA’s, the thicknesses will be refined by a
method based on TS. Optimising the thicknesses can be classified as a
parameter optimisation problem. In this approach, the starting solution
of TS will be the best solution obtained with GA’s.

Table 1.1 summarises the outline of the thesis.
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Chapter Subject Method
1 Introduction
2 Weighted cross correlation
3, 4 Parameter optimisation GA’s
5 Variable selection SA, GA’s, TS
6 Sequence and parameter optimisation GA’s, TS
7 Conclusions and future prospects

Table 1.1: Outline of this thesis, together with division in optimisation problem
categories and optimisation methods.
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Chapter 2

A Generalised Expression for

the Similarity of Spectra:

Application to Powder

Diffraction Pattern

Classification

A generalised expression is given for the similarity of spectra, based on the
normalised integral of a weighted crosscorrelation function. It is shown that
various similarity and dissimilarity criteria previously described in literature
can be written as special cases of this general expression. A new similarity cri-
terion, based on this generalised expression, is introduced. The benefits of this
criterion are that it properly recognises shifted but otherwise similar details in
spectra and that the resulting similarity measure is normalised. Moreover, the
criterion can easily be adapted to specific properties of spectra resulting from
various analytical methods. The new criterion is applied to the classification of
a series of crystal structures of cephalosporin complexes, based on comparison
of their calculated powder diffraction patterns. The results are compared with
those obtained using previously described criteria.

This chapter is published as: R. de Gelder, R. Wehrens, J.A. Hageman, J. Comp. Chem.,

22(3), 273-289, 2003.
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2.1 Introduction

Many chemical and physical methods for the analysis of compounds in
solution and/or the solid state yield one-dimensional spectra or diagrams that
consist of isolated and/or (partly) overlapping sharp peaks. Examples of such
spectra are 1D-NMR spectra and powder diffraction patterns. In the case of
powder diffraction patterns, the positions of the peaks are very sensitive to
small deviations in unit cell parameters. This means that in the case of crystal
structure prediction, or ab initio structure determination, strongly related
structures may give (calculated) powder diffraction patterns that look similar
from an overall point of view but differ significantly on a more local scale. The
same situation may occur for isomorphous compounds that differ only slightly
in unit cell volume or unit cell shape. These compounds may give experimental
or calculated powder patterns that by visual inspection are definitely related
and recognisable as isostructural compounds. Unfortunately, in all those cases
the calculation of a reliable and objective measure of similarity or dissimilarity,
even when the whole pattern is considered, is nontrivial.

A conventional method for the comparison of powder diffraction patterns
is calculating the difference pattern and quantifying the dissimilarity between
the patterns as the sum of the differences or the sum of the squared (and
weighted) differences. In the field of Rietveld refinement such criteria of fit
are known as Rp (R-pattern) and Rwp (R-weighted pattern) [1]. Because
these measures are based on a pointwise comparison of patterns, small shifts
in peak positions may result in a large (undesired) increase of the dissimilarity
measures.

In the present article, it is shown that there is a simple relationship between
the conventional criterion based on squared differences, the Pearson product-
moment correlation coefficient [2] and the overlap integral described by Lawton
and Bartell [3] who define a measure for the similarity of powder diffraction
patterns on an absolute scalewhen these criteria are written in terms of the
correlation function. With respect to the correlation function, the drawback
of these criteria is that they only consider one point (the value at the origin)
from the auto- and crosscorrelation functions and neglect the information that
is present in the remainder of the auto- and crosscorrelation functions.

Karfunkel, Rohde, Leusen, Gdanitz, and Rihs [4] describe a method, that
is based on the work of Stephensen and Binsch [5], in which they not only
compare powder patterns pointwise but compare a point of one diagram with
the neighbourhood of the corresponding point on the other diagram and vice
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versa. As a matter of fact, Stephensen and Binsch transformed the conven-
tional squared difference criterion into a criterion based on correlation func-
tions, by introducing this neighbourhood concept in the comparison of pat-
terns. This can easily be shown by rewriting their so-called fold in terms of
auto and crosscorrelation integrals. A drawback of their criterion is that the
resulting values are not on an absolute scale so that limits for acceptance can
not easily be defined.

Although in principle all the information on the similarity of two patterns
is contained in the crosscorrelation function, an additional function must be
used to extract this similarity information. Such a function defines the effec-
tive neighbourhood and related weights in the target pattern that should be
compared with the corresponding point on the reference pattern. The fold
used by Karfunkel et al. contains such a function in the form of matrix F;
however, it will be shown that a more convenient function can be used for
this purpose. This alternative function is easier to tune with respect to the
particular properties of the spectra of interest, because it contains only one
adjustable parameter.

Because powder diffraction patterns, and also 1D-spectra from many other
analytical methods, are on an arbitrary scale, an obvious question is how to
scale the patterns before applying a (dis)similarity criterion. Karfunkel et al.
scale the patterns by equalising the total number of counts, which is the same
as normalising the area under the patterns. This choice was not based on
specific arguments, although it is clear that for closely related structures the
patterns should have a similar number of counts. In this article it is shown
that on the basis of crosscorrelation and autocorrelation integrals you should
scale the patterns according to the self-similarities of the patterns. In practice,
this leads to almost the same scaling as proposed by Karfunkel et al. However,
in principle, scaling according to self-similarities may lead to a different sum
of counts for each individual pattern.

The similarity and dissimilarity criteria described above can be written as
a special form of a generalised expression for similarity, based on normalised
weighted auto and crosscorrelation functions. Using this generalised expression
it can easily be seen that the various criteria only use a different weighting
function and/or different normalisation factors. One of the major advantages
of this generalised form is that it shows how to obtain a similarity measure on
an absolute scale, given a suitable weighting function. Another advantage is
that prescaling of the patterns becomes unnecessary.

Although the power of a newly proposed similarity criterion that is based
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on this generalised expression is demonstrated for powder diffraction patterns
corresponding to a series of crystal structures of cephalosporin complexes, the
similarity concept presented in this article provides a general method for quan-
tifying the match between spectra of various physical and chemical techniques
for the analysis of matter. The applicability of the generalised expression for
similarity lies in the field of pattern classification, data base searching and
optimisation problems. Its recent successful use in the direct determination
of molecular constants from rovibronic spectra with genetic algorithms is de-
scribed by Hageman, Wehrens, De Gelder, Meerts, and Buydens [6].

2.2 Auto- and Crosscorrelation Functions

A function that describes the similarity (or overlap) of two patterns, which
are here expressed as two continuous functions f(x) and g(x), as a function
of the relative shift r between the patterns, is the correlation function. The
maximum and minimum value of the relative shift r is determined by the
interval for which the patterns f(x) and g(x) are measured or calculated. The
autocorrelation function cff (r) for a given reference pattern f(x) is given by:

cff (r) =
∫

f(x)f(x + r)dx (2.1)

The integral of cff (r), the autocorrelation integral, is given by (see Ap-
pendix 2.8.1):

∫
cff (r)dr = (

∫
f(x)dx)2 (2.2)

This shows that the area under the autocorrelation function cff (r) is equal
to the square of the area under the reference pattern f(x).

Similar expressions can be defined for the autocorrelation function cgg(r)
of target pattern g(x):

cgg(r) =
∫

g(x)g(x + r)dx (2.3)

∫
cgg(r)dr = (

∫
g(x)dx)2 (2.4)

It can easily be seen from expressions (2.2) and (2.4) that setting the
total number of counts for f(x) and g(x) to the same value also results in
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setting the autocorrelation integrals for f(x) and g(x),which express the self-
similarities of the patterns, to the same value. In this way it is possible to
put the autocorrelation functions for f(x) and g(x) on an absolute scale (in
principle, arbitrarily chosen) and compare the values of the crosscorrelation
function cfg(r) with the values of the autocorrelation functions cff (r) and
cgg(r).

The crosscorrelation function cfg(r) for patterns f(x) and g(x) is defined
in a similar way by:

cfg(r) =
∫

f(x)g(x + r)dx (2.5)

∫
cfg(r)dr =

∫
f(x)dx

∫
g(x)dx (2.6)

From (2.6) it can be seen that the area under the crosscorrelation function
cfg(r), the crosscorrelation integral, is always equal to the product of the areas
under the patterns f(x) and g(x). The crosscorrelation function cfg(r) can
be normalised by dividing it by the root of the product of the autocorrelation
integrals [the product of the areas under the patterns f(x) and g(x)], which
makes prescaling of the patterns f(x) and g(x) unnecessary:

c
′
fg(r) =

cfg(r)

(
∫

f(x)dx

∫
g(x)dx)

(2.7)

The integral of c
′
fg(r) will always be equal to 1. This means, however,

that the crosscorrelation integral itself is not a measure for the similarity
between f(x) and g(x). It is the shape of the correlation function cfg(r)
[or c

′
fg(r)] that contains the information on the similarity between patterns

f(x) and g(x). In Figure 2.1, two different powder diffraction patterns are
shown (corresponding to entries 2 and 20 of Table 2.2, which will be explained
later). Their corresponding (normalised) auto- and crosscorrelation functions
are shown in Figure 2.2. The areas under the correlation functions are the
same; however, the different shapes of the curves clearly reflect the differences
and dissimilarity of the patterns.

In the next sections it will be shown that various similarity and dissimi-
larity criteria that are described in the literature can be written in terms of
auto- and crosscorrelation functions.
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Figure 2.1: Example of two different powder diffraction patterns correspond-
ing to the Cefradine/beta-nafthol complex (A2) and the Cefradine/methyl 3-
hydroxybenzoate complex (N20) (see Table 2.2).
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Figure 2.2: Auto- and crosscorrelation functions corresponding to the powder pat-
terns shown in Figure 2.1.
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2.3 Pointwise Similarity and Dissimilarity Criteria

A criterion often used for expressing the dissimilarity between two spectra
or diagrams is the conventional pointwise criterion that includes the sum of
the squared differences (see, e.g., Harris, Johnston, and Kariuki [7] or Dods,
Gruner, and Brumer [8]). The difference criterion dfg is given by:

dfg =
∫

(f(x) − g(x))2dx (2.8)

The difference criterion dfg can be rewritten into an expression that only
includes terms that are identical to the autocorrelation functions for f(x) and
g(x) and the crosscorrelation function for f(x) and g(x) at r = 0 (see Appendix
2.8.2):

dfg = cff (0) + cgg(0) − 2cfg(0) (2.9)

Therefore, dfg is only based on the values of the auto and crosscorrelation
functions at r = 0 (no relative shift between the patterns is taken into account).
Another criterion often used for expressing the similarity between two patterns
or two vectors is the Pearson product-moment correlation coefficient rfg: [2]

rfg =
∫

(f(x)− < f(x) >)(g(x)− < g(x) >)dx

(
∫

(f(x)− < f(x) >)2dx
∫

(g(x)− < g(x) >)2dx)
1
2

(2.10)

where < f(x) > and < g(x) > are the mean values of patterns f(x) and
g(x), i.e., < f(x) >=

∑ f(xi)
n and < g(x) >=

∑ g(xi)
n (n being the number of

points xi at which values for f(xi) and g(xi) are measured or calculated).
Defining the new patterns f ′(x) = f(x)− < f(x) > and g′(x) = g(x)− <

g(x) >, this expression can also be written in terms of auto- and crosscorrela-
tion functions (see Appendix 2.8.3):

rfg =
Cf ′g′(0)

(Cf ′f ′(0)Cg′g′(0))
1
2

(2.11)

The value of rfg is independent of the scale of the patterns f ′(x) and
g′(x), and thus independent of the scale of the patterns f(x) and g(x). rfg

can directly be used to express the similarity between two ”unscaled” patterns
f(x) and g(x). The most important conclusion is that the Pearson product-
moment correlation coefficient is also based on the values of the auto- and
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crosscorrelation functions at r = 0 only. However, the terms < f(x) > and
< g(x) > in expression (2.10) introduce a shift of the original patterns f(x)
and g(x) in the y-direction. Moreover, a specific scaling is implicitly applied
to f(x) and g(x), while using criterion (2.10). When the values of

∫
f ′(x)2dx

and
∫

g′(x)2dx are normalised to 1, by scaling f(x) and g(x), the values of
rfg and cf ′g′(0) will become the same. This is not the same as scaling by
the total number of counts [setting the areas under f(x) and g(x) to the
same value]. Instead, for a simple pointwise comparison of patterns based
on the correlation function, cfg(0) divided by the root of the product of the
autocorrelation integrals for f(x) and g(x) [see expression (2.7)] could be used:

c′fg(0) =
cfg(0)

(
∫

f(x)dx
∫

g(x)dx)
(2.12)

This criterion can be used for ”unscaled” patterns and measures the simi-
larity on the basis of the crosscorrelation function in point 0, as if the patterns
were prescaled according to the total number of counts. The value of c′fg(0)
ranges from 0 to 1.

The Pearson product-moment correlation coefficient is closely related to
the overlap integral Sαβ that is described by Lawton and Bartell [3]. In prin-
ciple, the method they propose is based on peak positions (lines) deduced from
powder diagrams. By representing the diffraction peaks by Gaussian functions
they simulate a profile that can be used to calculate an overlap integral. This
overlap integral is a direct index of how well two patterns match each other.

It can easily be seen that the overlap integral is a normalised crosscorrela-
tion function at r = 0 and is similar to expression 2.11, the Pearson product-
moment correlation coefficient, when the simulated profile, based on lines, is
replaced by the whole pattern, calculated or measured [see Appendix 2.8.4].
The only difference is a base-line shift [via the terms < f(x) > and < g(x) >],
which is not incorporated in the overlap integral. In other words, if the terms
< f(x) > and < g(x) > are removed from expression (5a) one obtains the
overlap integral of Lawton and Bartell:

Sαβ =
cfg(0)

(cff (0)cgg(0))
1
2

(2.13)

To summarise for these pointwise criteria: the difference criterion can be
transformed into a criterion, which includes terms that are identical to the val-
ues of the autocorrelation functions for f(x) and g(x) and the crosscorrelation
function for f(x) and g(x) at r = 0. The difference criterion is, in principle,
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the dissimilarity counterpart of the overlap integral of Lawton and Bartell
if the patterns are scaled according to

∫
f2(x)dx and

∫
g2(x)dx. If a base-

line shift is applied to f(x) and g(x), according to < f(x) > and < g(x) >,
the overlap integral of Lawton and Bartell is transformed into the Pearson
product-moment correlation coefficient.

2.4 Similarity and Dissimilarity Criteria Including

Neighbourhoods

The pointwise difference criterion dfg can be extended to a neighbourhood
criterion by defining an expression dfg(r) in analogy with cfg(r) [see Appendix
2.8.5]:

dfg(r) =
∫

(f(x) − g(x + r))2dx

= cff (0) + cgg(0) − 2cfg(r)∫
dfg(r)dr = cff (0) + cgg(0) − 2

∫
cfg(r)dr (2.14)

Although the dissimilarity criterion (2.14) contains two constants cff (0)
and cgg(0) and the same term as (2.6), this criterion is not just the dissimilarity
counterpart of (2.6). When f(x) and g(x) are scaled on the basis of

∫
f(x)dx

and
∫

g(x)dx, the sum of the terms cff (0) and cgg(0) may have a different
value for each different pair of patterns, because these terms are related to the
sum of the squared pattern values.

It will now be shown that criterion (2.14) shows close resemblance to the
fold used by Karfunkel et al [4]. Their fold criterion is defined as: dTFd where
an element of the vector d, d(x) = f(x) − g(x).

The elements of the matrix F are defined as: Fij = 1/(1 + α|i − j|β). To
compare this criterion with the crosscorrelation function we initially assume
that all elements of F are equal to 1. This would mean that we use equal
weights in the comparison of a point of the reference pattern with the neigh-
bourhood of the corresponding point on the target pattern. It can easily be
shown that in that case the fold criterion is a criterion based on correlation
integrals only [see Appendix 2.8.6]:

dTFd =
∫

cff (r)dr +
∫

cgg(r)dr − 2
∫

cfg(r)dr (2.15)
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where r = i − j. Note the analogy of expression (2.15) with expressions (2.9)
and (2.14).

If patterns f(x) and g(x) are scaled on the basis of the total sum of the
counts, the fold criterion leads to the same but opposite results as criterion
(2.6),which would mean a fold-value of 0 for any combination of f(x) and g(x),
when all matrix elements of F are set to 1. Where (2.6) is a similarity criterion,
(2.15) is the corresponding dissimilarity criterion. By introducing the concept
of comparing one point on the reference pattern with the neighbourhood of the
corresponding point on the target pattern, Karfunkel et al. transformed the
conventional criterion, based on squared differences, to a correlation integral
criterion. It may now be clear that, before calculating the fold, the scaling of
the patterns must be the procedure proposed by Karfunkel et al. for reasons
related to the normalisation of the autocorrelations integrals, the first and
second term of (2.15). However, once the original matrix F of Karfunkel et
al. is used, renormalisation of the crosscorrelation integral may be needed, as
will be shown now.

Introducing the original matrix F into the expression for (2.15) would lead
to [see Appendix 2.8.6]:

dTFd =
∫

w(r)cff (r)dr +
∫

w(r)cgg(r)dr − 2
∫

w(r)cfg(r)dr (2.16)

where w(r) = 1/(1 + α|r|β)(r = i − j).
The similarity counterpart of (2.16), expressing the similarity between the

patterns using the same function w(r), would be a weighted crosscorrelation
integral:

∫
cw
fg(r)dr =

∫
w(r)

∫
f(x)g(x + r)dxdr (2.17)

and the associated autocorrelation integrals would include the same func-
tion w(r):

∫
cw
ff (r)dr =

∫
w(r)

∫
f(x)f(x + r)dxdr (2.18)

∫
cw
gg(r)dr =

∫
w(r)

∫
g(x)g(x + r)dxdr (2.19)

An important conclusion is that the fold criterion of Karfunkel et al. can be
seen as a dissimilarity counterpart of a weighted correlation integral

∫
cfg(r)dr,

as given in (2.6) [weighted with the function w(r)].
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If the patterns f(x) and g(x) are scaled on the basis of the total number of
counts, it may be clear from expressions (2.18) and (2.19) that the correspond-
ing autocorrelation integrals do not necessarily result in the same value. On
the other hand, it may now be clear that the matrix F, or a different function
w(r), is needed to extract the similarity information from the crosscorrelation
function. To ensure that the autocorrelation integrals will give identical val-
ues, the weighted crosscorrelation integral

∫
cw
fg(r)dr must be normalised to

obtain a similarity measure Cfg on an absolute scale:

Cfg =

∫
cw
fg(r)dr

(
∫

cw
ff (r)dr

∫
cw
gg(r)dr)1/2

(2.20)

This similarity criterion will yield a value of 1 when patterns f(x) and g(x)
are identical and a value between 0 and 1 for other cases. The corresponding
dissimilarity criterion, which can be obtained from (2.15) by substituting Cfg,
Cff , and Cgg for

∫
cfg(r)dr,

∫
cff (r)dr and

∫
cgg(r)dr, respectively, will yield

values between 0 and 2. In fact, this dissimilarity criterion is a renormalised
”fold.”

2.5 A Generalised Expression for Similarity and

Dissimilarity

All criteria described before can be summarised by the following expres-
sions for similarity and dissimilarity. The generalised expression for the simi-
larity Sfg between patterns f(x) and g(x) is given by:

Sfg =
∫

wfg(r)cfg(r)dr

(
∫

wff (r)cff (r)dr
∫

wgg(r)cgg(r)dr)1/2
(2.21)

The corresponding generalised expression for the dissimilarity Dfg is given
by:

Dfg = Sff + Sgg − 2Sfg (2.22)

The function wfg(r) determines the way in which the similarity information
is extracted from the crosscorrelation function and the functions wff (r) and
wgg(r) determine the normalisation of the weighted crosscorrelation function
via the autocorrelation functions. For obtaining a similarity or dissimilarity
measure on an absolute scale the following condition must hold:
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wff (r) = wgg(r) = wfg(r)

To include the neighbourhood in the comparison of points the weighting
functions should be defined for r �= 0. Both aspects are important and can
easily be combined.

The differences between the various criteria described in literature can
simply be explained by a different definition of the weighting functions wff (r),
wgg(r), and wfg(r). In Table 2.1 an overview is given of the various criteria
and their corresponding use of the three weighting functions. From Table 2.1
it can be seen that none of the criteria described in literature include both the
concept of neighbourhood and a correct normalisation to obtain a measure
on an absolute scale. To define a similarity measure on an absolute scale in
analogy with the fold of Karfunkel et al. the generalised similarity measure
Sfg could be used with weighting functions:

wfg(r) = 1/(1 + α|r|β)

wff (r) = wgg(r) = wfg(r)

In principle, we now have defined a new criterion, a normalised fold, with
different characteristics than the original fold. In the next section it is shown
that the weighting function wfg(r), as defined for the fold, can be replaced by
a simple triangle function.

2.6 Application of the Generalised Expression for

Similarity to Structure Classification from Pow-

der Diffraction Patterns

It has been shown that the various criteria for similarity and dissimilarity
described in the literature can be deduced from the generalised expressions
(2.21) or (2.22). To obtain a measure on an absolute scale, a suitable normal-
isation should be used, which is easily done by taking identical expressions
for the weighting functions wff (r), wgg(r), and wfg(r) in expressions (2.21
or (2.22). The question of which similarity (or dissimilarity) criterion can
best be used for a given application now focusses on the choice of the weight-
ing function wfg(r). This weighting function defines the neighbourhood and
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Table 2.1: (Dis)similarity Criteria and Their Corresponding Weighting Functions.

Criterion Equation Type wfg(r) wff (r) wgg(r)

Difference criterion dfg 2.8 and Dfg 1 if r = 0 1 1
2.9 0 if r �= 0

Pearson product moment 2.10 and Sfg 1 if r = 0 = wfg(r) = wfg(r)
correlation coefficient rfg

a 2.11 0 if r �= 0
Overlap integral Lawton 2.13 Sfg 1 if r = 0 = wfg(r) = wfg(r)
and Bartell 0 if r �= 0
Fold criterion Karfunkel et al. 2.16 Dfg 1/(1 + α|r|β) 1 1
Normalised fold criterion 2.20 Dfg 1/(1 + α|r|β) = wfg(r) = wfg(r)
Newly proposed similarity 2.21 Sfg 1 − |r|/l if |r| < l = wfg(r) = wfg(r)
criterion 0 if |r| >= l

aA mean centering of f(x) and g(x) should be applied first.

associated weights in the comparison of two corresponding points on the ref-
erence and target patterns. The conventional difference criterion, the Pearson
product-moment correlation coefficient, and the overlap integral of Lawton
and Bartell use a delta function for wfg(r) and do not incorporate any con-
tributions from the neighbourhood of a point. The fold criterion of Karfunkel
et al. includes a weighting function that can be tuned by two parameters α

and β. These two parameters define the shape and width of the weighting
function. The differences in discriminating power between the conventional
difference criterion, the overlap integral of Lawton and Bartell, the fold cri-
terion of Karfunkel et al., and a newly proposed similarity criterion, which is
obtained by using a simple triangle weighting function in the generalised ex-
pression for similarity, was investigated in the classification of 20 crystal struc-
tures of complexes of cephalosporin antibiotics on the basis of their calculated
powder diffraction patterns. From single-crystal X-ray diffraction analyses of
these compounds (Kemperman, De Gelder, Dommerholt, Raemakers-Franken,
Klunder, and Zwanenburg [9,10]) it was found that among these 20 complexes
six different crystal forms are found. Ten compounds crystallise in form A,
four compounds in type B, two compounds in form N and the remaining four
compounds in types C, D, E, and F. In Table 2.2 the crystal data are shown for
these 20 complexes. From this table it can be seen that small differences are
present in the cell parameters of the compounds belonging to the same crystal
form. These small differences give rise to large peak shifts in the corresponding
powder diffraction patterns. In Figure 2.3, the simulated powder diffractions
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patterns for the different crystal forms are shown. For forms C, D, E, and F,
only one member can be shown. For forms A, B, and N, two representative
members are shown, clearly illustrating the large peak shifts resulting from
the small differences in unit cell parameters. The question is now whether
these 20 complexes can be classified on the basis of their powder patterns
using a dedicated similarity criterion. The different crystal forms should be
recognised as dissimilar, however, the complexes belonging to the same crystal
form should ideally be recognised as similar compounds, and should somehow
be clustered together.

Similarities or dissimilarities [which can be interconverted, see (2.21) and
(2.22)] were calculated with four criteria (the difference criterion, the overlap
integral of Lawton and Bartell, the fold criterion, and the newly proposed
similarity criterion) for each pair of patterns. For the parameters α and β

corresponding to the fold criterion, the optimised values of the authors [4] were
used (10−7 and 4, respectively). For the newly proposed similarity criterion
the following simple triangle weighting function was used:

wfg(r) = 1 − | r |
l

if |r| < l

wfg(r) = 0 if |r| � l

The parameter l defines the width (degrees 2θ) of the neighbourhood taken
into account. This function extracts information from the central part of
the crosscorrelation function with a weight that decreases proportionally to
the distance from the origin (r = 0). After a number of experiments it was
found that values of l between 0.6 and 3.0 lead to stable and comparable
results for the powder diffractions patterns of the 20 complexes. A value of
0.6 was chosen for further calculations. In Figure 2.4, the weighting function
of Karfunkel et al. and triangle weighting function for l = 0.6 and l = 3.0 are
shown for comparison. The effect of the triangle weighting function on the
crosscorrelation function, that was also shown in Figure 2.2, is illustrated in
Figure 2.5.

The similarity calculations lead to four (dis)similarity matrices [similar-
ities are eventually converted to dissimilarities using expression (2.21)] that
are shown in Tables 2.3, 2.4, 2.5 and 2.6. Note that only the similarity ma-
trices obtained with the overlap integral of Lawton and Bartell and the newly
proposed similarity criterion, using the triangle weighting function, contain
values on an absolute scale (values between 0 and 1).
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Figure 2.3: Simulated powder diffraction patterns of the various crystal forms found
for complexes of cephalosporin antibiotics.
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Figure 2.4: The weighting function of Karfunkel et al. (solid line), the triangle
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Figure 2.6: (a) Clustering dendrogram found for the difference criterion. (b) Clus-
tering dendrogram found for the Lawton and Bartell overlap integral. (c) Clustering
dendrogram found for the Fold criterion. (d) Clustering dendrogram found for the
newly proposed similarity criterion.

On the dissimilarity matrices, a clustering algorithm was applied to group
the patterns that are considered to be similar on the basis of the data in
the matrices. A hierarchical agglomerative clustering method was used for
this purpose. Initially, each object is viewed as a separate cluster; in each
subsequent step, similar objects are joined according to a distance criterion,
and the distances of the newly formed cluster to the other clusters or objects
are recalculated. This process continues until all objects are joined into one
cluster. The criterion that is used is known as ”Ward’s method,” [11] where
elements or clusters are joined in such a way that the sum of heterogeneities
of all clusters (defined as the summed squared distance of each member of
a cluster to the centroid of that cluster) increases as little as possible. The
method performs best in cases where the clusters are approximately spherical
in shape and of equal size, and is widely applied. This clustering procedure
yields the dendrograms as depicted in Figure 2.6. Clearly, the results are quite
different for the four (dis)similarity criteria. The newly proposed similarity
criterion, using the triangle weighting function, leads to the most homogeneous
classification and is able to separate the crystal structures into four groups
consisting of 1: only N, 2: only A, 3: four B’s and one D, and 4: E, C, and F.

To illustrate the stability of the generalised similarity criterion using the
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simple triangle weighting function, similarity matrices were calculated for in-
creasing values of the parameter l. The same clustering procedure was applied
on the corresponding similarity matrices, and the resulting dendrograms are
shown in Figure 2.7. For small values of l (smaller than 0.6), very inhomoge-
neous classification dendrograms are found. For very large values of l (larger
than 3.0) also inhomogeneous classification dendrograms are found. However,
in the range 0.6 to 3.0, similar dendrograms of comparable homogeniety are
found.

2.7 Discussion and Conclusion

The generalised expression for the similarity of powder diffraction patterns
shows that the criteria described in literature all refer to the correlation func-
tion. It also shows that the differences between the criteria can be explained
by different choices of weighting functions for the auto- and crosscorrelation
terms. The nature of the weighting functions used determines whether a point-
wise or neighbourhood approach is applied, and whether the resulting measure
for similarity or dissimilarity is on an absolute scale or not.

The importance of a neighbourhood approach has been demonstrated for
the classification of crystal structures on the basis of their calculated pow-
der diffraction patterns. Including the neighbourhoods leads to a significant
improvement of discriminating power compared to pointwise approaches, and
makes it possible to recognise closely related structures. The way in which
the neighbourhood is taken into account depends on the shape of the weight-
ing function used. A simple triangle function leads to very useful results and
performs even better than the more complex weighting function used by Kar-
funkel et al. It should, however, be emphasised that we did not try to adapt
the parameters defining the fold weighting function to optimise the classifica-
tion of our set of structures. We just took the function and parameters the
authors optimised for their specific problem.

In our tests we used calculated powder diffraction patterns as the source of
structural information. In practice, one should like to apply the classification
procedure on experimentally obtained powder patterns. In that case, there
might be factors like zero-point shifts, preferred orientation, peak broadening,
nonzero background and experimental noise that may influence the outcome
of the classification procedure. However, the classification of experimentally
obtained patterns and its associated problems will be the subject of our further



48 A Generalised Expression for the Similarity of Spectra

N
 1

9
N

 2
0

D
 1

6
A

 6
B

 1
1

B
 1

4
E

 1
7

C
 1

5
F

 1
8

B
 1

2
B

 1
3

A
 5

A
 4

A
 1

A
 3

A
 8 A
 7

A
 9 A
 2

A
 1

00.
0

1.
0

2.
0

3.
0

l = 0.02

N
 1

9
N

 2
0

B
 1

3
D

 1
6

B
 1

2
B

 1
1

B
 1

4
E

 1
7

C
 1

5
F

 1
8

A
 7

A
 9 A
 2

A
 1

0 A
 6

A
 5

A
 4

A
 1

A
 3

A
 8

0.
0

1.
0

2.
0

3.
0

l = 0.22

N
 1

9
N

 2
0

B
 1

3
D

 1
6

B
 1

2
B

 1
1

B
 1

4
E

 1
7

C
 1

5
F

 1
8

A
 7

A
 9 A
 2

A
 1

0 A
 6

A
 5

A
 4

A
 3

A
 1

A
 8

0.
0

1.
0

2.
0

3.
0

l = 0.42

N
 1

9
N

 2
0

A
 7

A
 9

A
 2

A
 1

0 A
 6

A
 5

A
 4

A
 3

A
 1

A
 8 D

 1
6

B
 1

2
B

 1
3

B
 1

1
B

 1
4 E

 1
7

C
 1

5
F

 1
80.

0
1.

0
2.

0
3.

0

l = 0.62

N
 1

9
N

 2
0

A
 9

A
 1

0
A

 2
A

 7 A
 6

A
 4

A
 5

A
 3

A
 1

A
 8 E

 1
7

C
 1

5
F

 1
8

D
 1

6
B

 1
2

B
 1

3
B

 1
1

B
 1

4

0.
0

1.
0

2.
0

l = 1.62

N
 1

9
N

 2
0

A
 9

A
 1

0
A

 4
A

 6
A

 2
A

 5
A

 7
A

 3
A

 1
A

 8 E
 1

7
B

 1
2

B
 1

3
B

 1
1

B
 1

4
D

 1
6

C
 1

5
F

 1
8

0.
0

1.
0

2.
0

l = 2.22

N
 1

9
N

 2
0

A
 9

A
 1

0
A

 2
A

 5
A

 7
A

 3
A

 1
A

 8 A
 4

A
 6

B
 1

2
B

 1
3

B
 1

1
B

 1
4 E
 1

7
D

 1
6

C
 1

5
F

 1
8

0.
0

0.
5

1.
0

1.
5

l = 2.82

N
 1

9
N

 2
0

A
 9

A
 1

0 A
 6

A
 2

A
 5

A
 7

A
 3

A
 1

A
 8

B
 1

2
B

 1
3

B
 1

1
B

 1
4

E
 1

7
D

 1
6

F
 1

8
A

 4
C

 1
5

0.
0

0.
5

1.
0

1.
5

l = 3.22

N
 1

9
N

 2
0

A
 9

A
 1

0 A
 6

A
 2

A
 5

A
 7

A
 3

A
 1

A
 8

B
 1

2
B

 1
3

B
 1

1
B

 1
4

E
 1

7
D

 1
6

F
 1

8
A

 4
C

 1
5

0.
0

0.
5

1.
0

l = 3.42

Figure 2.7: Clustering dendrograms found for increasing values of l (only unique
dendrograms in the range l = 0.02 to 3.42 are shown).
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research, and will not be discussed any further here.
In the introduction it was mentioned that the generalised expression might

also be used for database searching and optimisation problems. For database
searching it is of crucial importance that a measure for similarity or dissimi-
larity is defined on an absolute scale. It is necessary to know the numerical
range of the measure to define limits for acceptance in the selection of subsets
of patterns from a database. The newly proposed criterion for similarity can
be used for the purpose of database searching, because its value always ranges
from 0 to 1. The width of the triangle function can be adapted to change the
search from a strict to a more generous one. It is up to the user to optimise
the settings for his particular case.

For optimisation problems the aspect of normalisation, to obtain a mea-
sure on an absolute scale, is less important. The width of the neighbourhood,
however, may determine the overall success of an optimisation procedure (see
Hageman et al. [6] in which parameters defining a theoretical pattern are op-
timised with respect to an experimental spectrum. The effect of the inclusion
of the neighbourhood is a more realistic assessment of the error, and this may
guide the process to the global optimum. A possible application of the newly
proposed similarity criterion could be the determination of cell and/or posi-
tional parameters of crystal structures from powder diffraction data only. In
principle, the criterion allows for a gradual improvement of both peak positions
and peak intensities as was shown by Hageman et al.

Although this article has focussed on powder diffraction patterns, which
are one-dimensional patterns, it should be emphasised that the generalised
expression for similarity is applicable to other types of spectra and is not
limited to one-dimensional patterns only. If the variables x and r are replaced
by vectors the expression can directly be used in multidimensional space. Then
it can also be applied, for example, to express the similarity between 2D, 3D,
or 4D-NMR spectra.

2.8 Appendix

2.8.1 The integral of the autocorrelation function

cff (r) =
∫

f(x)f(x + r)dx
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∫
cff (r)dr =

∫ ∫
f(x)f(x + r)dxdr

=
∫ ∫

f(x)f(r′)dxdr′ (r = r′ − x)

=
∫

f(x)dx

∫
f(r′)dr′ = (

∫
f(x)dx)2

2.8.2 dfg Written as auto- and crosscorrelation function

dfg =
∫

(f(x) − g(x))2dx

=
∫

f2(x)dx +
∫

g2(x)dx − 2
∫

f(x)g(x)dx

A pointwise comparison of patterns f(x) and g(x) (neglecting the neigh-
bourhoods of points in the patterns) would, speaking in terms of the crosscorre-
lation function cfg(r), be identical to calculating the crosscorrelation function
for patterns f(x) and g(x) at r = 0:

cfg(0) =
∫

f(x)g(x)dx

Therefore, dfg can be written as:

dfg = cff (0) + cgg(0) − 2cfg(0)

2.8.3 rfg Written as auto- and crosscorrelation function

rfg =
∫

(f(x)− < f(x) >)(g(x)− < g(x) >)dx

(
∫

(f(x)− < f(x) >)2dx
∫

(g(x)− < g(x) >)2dx)
1
2

Defining the new patterns f ′(x) = f(x)− < f(x) > and g′(x) = g(x)− <

g(x) > and considering these new patterns f ′(x) and g′(x) as vectors f ’ and
g’ in n-dimensional space (n being the number of points xi at which values for
f ′(xi) and g′(xi) are measured or calculated) this expression reduces to the
cosine of the angle αf ′g′ between vectors f ’ and g’:
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rfg = cos(αf ′g′)

=
∫

f ′(x)g′(x)dx/(
∫

f ′2(x)dx

∫
g′2(x)dx)1/2

= f ’ · g’/|f ’||g’|
cf ′f ′(0) =

∫
f ′2(x)dx

cg′g′(0) =
∫

g′2(x)dx

cf ′g′(0) =
∫

f ′(x)g′(x)dx

rfg = cf ′g′(0)/(cf ′f ′(0)cg′g′(0))1/2

(2.23)

2.8.4 The overlap integral of Lawton and Bartell

The overlap integral for peaks i from pattern α and peaks j from pattern
β, defined by Lawton and Bartell, is expressed as follows:

Sαβ =
∑∑

(Iα(i)/(σα(i)a1/2
α ))(Iβ(j)/(σβ(j)a1/2

β ))

× exp[−(dα(i) − dβ(j))2/4(wα(i) · wβ(j))]

where

aα =
∑∑

(Iα(i)/(σα(i))(Iα(j)/σα(j))

× exp[−(dα(i) − dα(j))2/4(wα(i) · wα(j))]

aβ =
∑∑

(Iβ(i)/(σβ(i))(Iβ(j)/σβ(j))

× exp[−(dβ(i) − dβ(j))2/4(wβ(i) · wβ(j))]

(2.24)

Iα and Iβ correspond to the diffracted relative intensities in patterns α

and β, σα, and αβ are parameters representing the characteristic variations in
these intensities, dα and dβ correspond to the interplanar spacings in patterns
α and β and wα and wβ are window parameters describing the windows of
acceptance.
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2.8.5 dfg(r) Written as auto- and crosscorrelation function

dfg(r) =
∫

(f(x) − g(x + r))2dx

=
∫

f2(x)dx +
∫

g2(x + r)dx − 2
∫

f(x)g(x + r)dx

= cff (0) + cgg(0) − 2cfg(r)∫
dfg(r)dr = cff (0) + cgg(0) − 2

∫
cfg(r)dr

2.8.6 The fold written as auto- and crosscorrelation integrals

fold = dTFd

where an element of the vector d, d(x) = f(x)− g(x). The elements of the
matrix F are initially set to 1: Fij = 1.

dTFd =
∫ ∫

(f(x) − g(x))(f(x + r) − g(x + r))dxdr

=
∫ ∫

f(x)f(x + r)dxdr +
∫ ∫

g(x)g(x + r)dxdr

−
∫ ∫

f(x)g(x + r)dxdr −
∫ ∫

f(x + r)g(x)dxdr

=
∫

cff (r)dr +
∫

cgg(r)dr − 2
∫

cfg(r)dr

where r = i − j.
Introducing the original matrix F into the expression for the fold leads to:

Fij = 1/(1 + α|i − j|β)

dTFd =
∫ ∫

(f(x) − g(x))w(r) × (f(x + r) − g(x + r))dxdr

=
∫ ∫

w(r)f(x)f(x + r)dxdr +
∫ ∫

w(r)g(x)g(x + r)dxdr

−
∫ ∫

w(r)f(x)g(x + r)dxdr −
∫ ∫

w(r)f(x + r)g(x)dxdr

=
∫

w(r)cff (r)dr +
∫

w(r)cgg(r)dr − 2
∫

w(r)cfg(r)dr



2.8 References 53

where w(r) = 1/(1 + α|r|β)(r = i − j).
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Chapter 3

Direct Determination of

Molecular Constants from

Rovibronic Spectra with

Genetic Algorithms

It is shown that a new procedure, based on Genetic Algorithms (GA’s),
can be used for direct determination of molecular constants, in particular rota-
tional constants, from rovibronic spectra. This new approach only requires an
estimate of the acceptable range of the parameters. The power of the method is
demonstrated on the rotationally resolved fluorescence spectra of indole, inda-
zole, benzimidazole and 4-aminobenzonitril. A rigid asymmetric rotor Hamil-
tonian is used to calculate the theoretical spectra. The GA matches the gener-
ated spectra with an experimental spectrum with the use of a new method for
spectra comparison. This spectra comparison function is able to deal with fre-
quency shifts which are caused by (small) changes in the rotational constants
and it yields better results in comparison with traditional spectra comparison
methods, like RMS. In addition, the robustness of the method is tested.

This chapter is publised as: J.A. Hageman, R. Wehrens, R. de Gelder, W. Leo Meerts

and L.M.C. Buydens, Direct Determination of Molecular Constants from Rovibronic Spectra

with Genetic Algorithms, J. Chem. Phys., 113(18), 7955-7962, 2000
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3.1 Introduction

Rotational constants are an important tool in determining the spatial ge-
ometry of molecules. These constants give access to intra- and intermolecular
bond lengths and their changes upon excitation. Rotational constants can
be obtained from a large variety of methods, among others micro wave spec-
troscopy, IR Fourier transform, diode laser spectroscopy and high resolution
laser induced fluorescence (LIF) excitation spectra. Especially the last 3 meth-
ods deal with a two state problem, either two vibrational or two electronic
states. The resolution of such spectra is such that individual rotational tran-
sitions can be observed and the spectra contain large number of lines. Usually,
to determine molecular rotational constants a spectrum is simulated using a
model (for instance an asymmetric rotor Hamiltonian) which uses rotational
constants estimated from other experiments or from ab initio calculations and
the appropriate selection rules. The spectrum is calculated and compared with
the experimental one. In what we will call the classical method, an initial as-
signment in terms of theoretical quantum numbers of transitions is made. In a
least squares fit procedure the molecular parameters are adjusted to reproduce
the assigned lines. The assignments are refined and the process is repeated
until all lines in the spectrum are successfully reproduced [1]. The quality
of the fit is, amongst other factors, dependent on the sophistication of the
used model. The determination can be facilitated and speeded up by using
reasonably accurate estimates of the molecular constants although this is not
crucial.

Recently, attempts to automate the interpretation of rovibronic spectra
have been undertaken. Automation becomes increasingly important when
spectra become more difficult to interpret and/or prior-knowledge about the
molecule is little or lacking. The group of Neusser et al. [2] used a procedure
which directly fits the experimental data, without any preceding assignment
of lines, with the help of the so called correlation automated rotational fitting
algorithm. This algorithm still relies on accurate initial estimates of the ro-
tational constants obtained from other experiments. Their experimental data
were also analysed by assigning lines and using a least squares fit procedure.
They concluded, by visual inspection, that the correlation method yielded
better results [2]. Unfortunately, the method still has limited applicability.

The approach of fine-tuning the parameters of the Hamiltonian model so
that the theoretical spectrum is in close agreement with the experimental
one, can be seen as an optimisation problem. The process of determining
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molecular constants can be automated with global optimisation methods like
Simulated Annealing (SA) [3], Tabu Search (TS) [4] or Genetic Algorithms
(GA’s). In this paper it is shown that a GA with a specially developed fitness
function is very successful in directly determining the molecular constants
from LIF spectra. This is done without using any initial estimates of these
constants, except their global limits. This new approach is demonstrated for
4 rotationally resolved (LIF) spectra from indole, indazole, imidazole and 4-
aminobenzonitril (4-ABN). The spectra were measured by Berden et al. [5,6].
The essence of the analysis of Berden et al. was an assignment of quantum
numbers of the initial and final states of the transitions in the spectrum. In a
second step an overall fit of the intensities was carried out in which only the
intensity parameters were determined. By carefully adapting the parameters
Berden et al. succeeded in minimizing the difference between the experimental
and simulated spectrum and obtained the complete set of molecular constants.

In the next section, a description is given of the parameters that appear in
the Hamiltonian model, the use of GA’s and the new method for comparing
spectra. It will be shown in section 3.3 that a GA is very capable of deter-
mining the molecular parameters that reproduce the experimental spectra. In
addition, the robustness of this GA-based method will be assessed by artifi-
cially deteriorating the quality of the data. It is shown that the method is
quite robust and, therefore, widely applicable.

3.2 Theory

3.2.1 Model Representation

Given a set of molecular parameters, a theoretical rovibronic spectrum can
be calculated using a rigid asymmetric rotor Hamiltonian. All experimental
spectra analysed in this paper are fitted to this type of calculated spectra. It
is assumed that, if a theoretical spectrum matches the experimental one, the
parameters used to calculate the spectrum are very close to the true values.
Since a discussion of the theory of the rigid asymmetric rotor Hamiltonian
is beyond the scope of this paper, we will suffice to say that all rotational
levels of the molecules under study can be calculated with this model [5, 6].
The important details of the model are described briefly below. It contains 13
parameters, which are optimised by the GA. They can be divided in 5 groups.

1. Six rotational constants. Three parameters (A”, B”, C”) describing the
ground state and three parameters (∆A, ∆B and ∆C) describing the
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difference between the ground and excited state values, ∆A=(A’ - A”)
etc. Here the double and single primes label the ground and excited
states, respectively. These parameters are responsible for the positions
of the transition frequencies.

2. A frequency shift parameter (ν). This parameter shifts the whole spec-
trum relative to an arbitrary zero point.

3. Three parameters that describe the relative intensities of the transitions
(T1, T2, W). A three-parameter two-temperature model has been used
[5]. By definition, T2 must be higher that T1. W is a weighting factor.

4. The direction of the electronic transition moment of the electronic exci-
tation (θ) and a parameter (θT ), which is the angle between the principal
axes systems in the ground and in the excited states. θT is not optimised
in this approach as it influences only a very small number of lines (< 10)
and can only be determined by visual inspection of the appropriate lines.
See for an example figure 5 in Ref. [5].

5. The line width (∆ν) of lines in the spectrum. In Ref. [5] it is shown that
the transitions in all 4 spectra are best described by a Lorentzian profile.
However, this is not an essential limitation for the present discussion.

3.2.2 Genetic Algorithms

GA’s are a special class of global optimisers, based on the theory of evo-
lution. A GA is able to minimise (or maximise) a function G(x), where x
represents a parameter vector, by searching the parameter space of x for the
optimal solution. Several general steps can be distinguished that are identical
for all GA’s.

1. Initialisation: GA’s do not operate on an individual solution for search-
ing the parameter space but rather on a group of solutions (called pop-
ulation) at a time. A solution, called string or chromosome, consists of
several parts, called genes. Each part is a parameter which needs opti-
misation. All initial solutions are set to random values. In the present
examples each chromosome contains 12 genes which are the 12 parame-
ters of the rigid Hamiltonian model.

2. Evaluation: All strings in the population are evaluated by an objective
function. This results in a measure of quality of the string, expressed
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in a single number. The evaluation function is usually tailor made for
the specific GA application. It should be able to discriminate between
’good’ and ’bad’ strings in a given generation, to allow selection in a
later phase.

3. Stop: A stop criterion is checked.

4. Selection: A percentage of the best strings in a population is selected
and placed in the next generation.

5. Recombination: To form the new population, new solutions are created
by combining two existing solutions (parents) to yield two different ones
(children). This is called crossover.

6. Mutation: Genes on a string in the new population are selected randomly
and modified. An example of a mutation operator is addition of a (small)
random number. To prevent the search from random behaviour the
probability of mutation is usually chosen to be quite low.

Several parameters, for instance the rate of crossover and mutation, regu-
late the performance of the GA and each specific problem has its own specific
set of parameters for which the GA performs at its optimum. This so-called
meta-optimisation of the GA parameters can be tedious and can be considered
a disadvantage of GA in general [7]. In this paper it is shown that one set of
GA parameters can successfully be used for estimating molecular constants of
indole, indazole, benzimidazole and 4-ABN, so it is not necessary to repeat
this meta-optimising for each new compound. The most important advantage
of the GA approach is that it does not need prior knowledge of the molecu-
lar constants. All that is required, is an estimate of the accessible range for
each parameter. The narrower this range is chosen the faster the optimisation
will be. These ranges can be chosen, for instance, on physical grounds or be
adapted from similar molecules known from literature.

Some literature is available about GA’s. For an introduction to the subject
Ref. [8] or for a more sophisticated level Ref. [9] are very well suited.

3.2.3 Evaluation or objective function

The parameters on each string are used in the rigid asymmetric rotor
Hamiltonian model to calculate a theoretical spectrum. The similarity between
the calculated spectrum and experimental spectrum has to be expressed in a
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single number. Several methods are known to compare spectra. The more
traditional methods perform a pointwise comparison between two spectra and
express this as the sum of the squared differences [9, 10]. More sophisticated
comparison methods include a comparison of the neighbourhood to deal with
peak shifts [11].

Our initial attempts clearly demonstrated the inability of evaluation func-
tions based on a sum of squared differences to differentiate reliable between
spectra originating from nearly identical sets of parameters. Other approaches,
based on peak picking and minimising the distance to neighbouring peaks in
both spectra, failed as well. Moreover, since the relative position of peaks can
change dramatically, one is never sure if the correct peak pairs are compared.
With these types of evaluation functions, similar spectra with shifts in peak
positions will not properly be recognised as similar. An improvement over the
RMS-based evaluation function is the correlation coefficient Cr:

Cr =

x=k∑
x=0

(f(x)− < f >)(g(x)− < g >)

√√√√x=k∑
x=0

(f(x)− < f >)2
x=k∑
x=0

(g(x)− < g >)2

(3.1)

Here < f > and < g > are the average intensity value of spectrum f and g

respectively, f(x) and g(x) are the spectra f and g with length k. Further
improvement is obtained if the average value is no longer subtracted from
each point and (a possible) elevated baseline is removed. This ensures that
all signals present in the spectrum are originating from peaks. This yields an
evaluation function cos γ:

cosγ =
f · g

‖ f ‖‖ g ‖ (3.2)

Here f · g is the dot product of the experimental (f) and calculated (g) spec-
trum, ‖ f ‖ and ‖ g ‖ represent the length of spectrum f and g respectively.
Cos γ ranges from < −1 | 1 >. For equal spectra cos γ=1.

Eq. 3.2 does not take into account small frequency shifts in the peak
position. The evaluation function of Eq. 3.2 can be improved to deal with
shifts if a crosscorrelation function is used:
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Cfg(r) =

x=k∑
x=0

f(x) · g(x + r)

‖ f ‖ · ‖ g ‖ (3.3)

The crosscorrelation function compares two spectra shifted by r. In order
to deal with ’end points’ the sum should run from −∞ to +∞. Formally this
can be realised by adding to the spectra points of zero intensity. In this way
the normalisation by ‖ f ‖ and ‖ g ‖ is properly defined. Figure 3.1 shows
several Cfg with r ranging from [-100,100]. The solid line is the autocorrelo-
gram where both f and g are the original calculated spectrum of indole from
Ref. [5]. The dashed and the dashdotted line are crosscorrelograms of the
calculated spectra of indole with two calculated spectra in which A” and ∆A,
respectively, are slightly changed by 1.0 MHz. The dotted line is the crosscor-
relogram of the calculated spectrum of indole with the calculated spectrum
of benzimidazole from Ref. [5]. It can be seen from figure 3.1 that no shift
whatsoever of the benzimidazole spectrum will significantly increase Cfg, in-
dicating no correlation at all between the spectra of indole and benzimidazole.
Although the solid, dashdotted and dashed lines originate from spectra cal-
culated with nearly identical parameters, the change in Cfg(0) (which equals
Eq. 3.2) is quite large. This implies that almost identical spectra may have
quite different values for Cfg(0). However, the area under the curve can be
used as a convenient measure if a suitable weight function is used.

To penalise larger shifts, Eq. 3.3 is modified by introducing a weight
function w(r):

w(r) = 1 − | r |
l

(3.4)

The parameter l defines the width of the neighbourhood that is taken into
account, typically in the order of 100 data points in the current work. Several
weight functions were tested, including the sigmoidal function from Ref. [11].
Eventually the simple triangle function (Eq. 3.4) is used, because it depends
on only one parameter. The sigmoidal function showed no improvement over
Eq. 3.4.

The final overlap function is obtained by integrating Eq. 3.3 multiplied by
the weight function and normalising between 0 and 1:
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Figure 3.1: Correlogram of the calculated spectrum of Indole. Autocorrelogram:
solid line, Crosscorrelogram: dashed line (A” increased by 1.0 MHz), dash dotted line
(∆A increased by 1.0 MHz) and dotted line (calculated spectrum of Benzimidazole).

Cws
fg =

r=l∑
r=−l

Cfg(r)w(r)

√√√√ r=l∑
r=−l

Cff (r) ∗ w(r) ∗
√√√√ r=l∑

r=−l

Cgg(r) ∗ w(r)

(3.5)

For two identical spectra Cws
fg is 1 and for two distinctly different spectra Cws

fg

is close to zero. The final evaluation function used in the GA calculations is
defined as

F = 100 ∗ (1 − Cws
fg ) (3.6)

and its value is minimised.
Error landscapes of an RMS-based evaluation function and F are plotted

in figure 3.2. In both plots A” and B” are varied over a grid covering the
complete range, while the remaining parameters are held fixed. The effect
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of Eq. 3.6 clearly shows a more smooth error landscape, which reduces the
number of local minima.
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Figure 3.2: Difference in error landscape between a RMS-based evaluation function
(left) and one based on Eq. 6 (right).

A more detailed discussion and comparisons with other methods for the
assessment of similarity between 1-dimensional spectra can be found in the
work of De Gelder et al [12].

3.3 Experimental

The spectra of indole, indazole, benzimidazole and 4-ABN are shown in
figure 3.3. The spectra of indole and benzimidazole contain 65536 equidistant
data points, the spectrum of indazole 61821 data points and the spectrum of
4-ABN contains 40972 data points. All 12 parameters were coded as 10-bit
gray binary numbers. T2 is coded on the string as α, with T2=α*T1 and
α > 1. The calculated spectra always contain the same number of data points
as the corresponding experimental ones. The optimal settings of the GA were
determined by trial and error and based on previous experience using the
experimental spectrum of benzimidazole and are shown in Table 3.1.

The optimal size of the neighbourhood in Eq. 3.5 has been established
from several experiments. The optimal value for l was 100 data points. A
larger range also results in a correct solution but leads to longer run times.
For a significantly smaller range no correct solution is obtained indicating that
the inclusion of neighbourhood information is crucial. After establishing the
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Figure 3.3: High resolution LIF spectra of Indole, Indazole, Benzimidazole and 4-
ABN. In all cases the absolute frequency is set to 0.0 according to Ref. 5 and Ref. 6.
The intensity on the vertical scale is in arbitrary units.

optimal settings, the experimental spectra of indole, indazole, benzimidazole
and 4-ABN were fitted using boundary constraints as given in Table 3.2. The
duration of a run has been set to 500 generations, long enough to converge to
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Table 3.1: GA settings.

Setting Value

maximum number of generations 500

population size 300

elitism 150

crossover type two-point-crossover

crossover probability 0.85

mutation type new random value within boundaries

mutation probability 0.05

selection type probabilistic

fitness type rawa

aFitness value increases inversely proportional with evaluation value of a string.

a minimum. All runs were repeated 5 times with different random generator
seeds to exclude lucky and/or unlucky runs.

The robustness of the GA method was investigated in a number of runs. We
investigated the influence of (high) noise levels, increased line widths and the
total number of points in a spectrum. Synthesised spectra of indole and ben-
zimidazole were modified with different levels of normally distributed (white)
noise, increased line widths and a combination of these two factors. Spectra
with a reduced number of data points were also investigated. Figure 3.4 shows
parts of the spectrum of indole with (a) a signal-to-noise level (S/N) of 10 (for
the peak with the largest intensity), (b) a line width of 90 MHz and (c) a S/N
of 10 combined with a line width of 90 MHz. The spectrum with a combination
of large line widths and low S/N can be considered as very extreme.

All GA calculations were performed with the GA library PGAPack ver-
sion 1.0 [13], which can run on parallel processors. PGAPack and the evalua-
tion function are written in ANSI-C, the rigid asymmetric rotor Hamiltonian
function was written in Fortran. All calculations were performed on a Sun-
Ultra-Enterprise-10000 with 24 processors each running at 333 MHz. With 16
processors, the average runtime was about half an hour for 500 generations
and 65536 data points. In practice this runtime can be reduced drastically,
because often runs converge to their final solution long before the maximum
number of generations is reached. If the boundaries are taken narrower run-
times can be further reduced because runs will converge even earlier. This
will also lead to increased reproducibility and this decreases the need for more
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Table 3.2: Boundary constraints for all 12 parameters used for Indole, Indazole and
Benzimidazole and 4-ABNa.

Parameter Boundary constraints

Indole and Benzimidazole 4-ABN

A” 3800 - 4200 5000 - 6000

B” 1400 - 1800 800 - 1200

C” 800 - 1400 600 - 1000

T1 1 - 6b 1 - 6

Td
2 1.5 - 5 1.5 - 5

W 0 - 1 0 - 1

θ 0◦ - 90◦ 90◦, fixede

ν -300 - 300c -5000 - 5000

∆A -200 - 0 -400 - 400

∆B -50 - 0 -100 - 100

∆C -50 - 0 -100 - 100

∆ν 10 - 40 10 - 90

aRotational constants in the ground state are indicated by A”, B” and C”. Rotational

constants in the excited state are given by their deviations from the ground state (∆A, ∆B

and ∆C). ∆ν is line width of the Lorentzian peaks. Rotational constants, ν and ∆ν are in

MHz, T1 and T2 in K.
bRange is 2 - 8 for the spectrum taken from Benzimidazole.
cThe frequency of the origin (ν) is set to zero. The area of deviation is taken to be ± 10%

of the reported value from Refs. [5] [6]
dT2=α*T1 where α has been optimized with the constrained α > 1
eDetermined by the geometry of the molecule.

replicated runs. On a single processor (500 MHz) one complete analysis can
be executed in about 12 hours.

3.4 Results and Discussion

Table 3.3 shows the 12 parameters for all four experimental spectra as
they resulted from the GA, together with the results of a re-evaluation of the
spectra reported in Ref. [5] (indole, indazole and benzimidazole) and Ref. [6]
(4-ABN) using the classical methods. The molecular constants from Ref. [5]
are averages from multiple spectra and were determined using very accurate
ground rotational constants from microwave experiments. Results reported in
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Figure 3.4: Synthesized spectra of indole with (a) S/N=15 (for strongest line),
(b)∆ν= 90 MHz and (c) S/N =15 (for strongest line) together with a ∆ν= 90 MHz.
The intenstity on vertical scale is in arbitrary units.

Table 3.3 are based on a spectral analysis of the same spectrum as used for the
GA-method and the ground rotational constants were also determined from
that spectrum. The values obtained in the present GA approach are in close
agreement with those from the classical method. For most of the parameters
the results are within the experimental error. If the results are outside the
error, the deviations are very small. These deviations are probably caused
by the lack of precision of a GA. It is know that GA’s can locate the global
minimum but that they are not as precise as, for instance, local optimisers.

The GA method gives no information about the accuracy of the best fit
parameters. However it should be possible to assign quantum numbers to the
experimental transitions after a GA-fit. The experimental errors can then be
estimated by performing a classical calculation like in Ref. [5], where it is no
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longer necessary to go through the sometimes tedious assignment process.
All GA runs were repeated 5 times with different seeds for the random

number generator and the solution with the lowest evaluation values are shown
in Table 3.3. Results from Ref. [5] can be expected to be more accurate because
the ground rotational constants were determined by microwave experiments
which are more precise.

The parameters that describe the relative intensity of a transition (T1, T2,
W) have different values in comparison with the reported values from Ref. [5].
(Ref. [6] used a one-temperature model so this cannot be compared with the
present results).The deviation is due to the fact that for these parameters
several sets can be used with equal spectral intensities as a result.

The GA was able to find the correct solution for the indole, indazole and
benzimidazole spectra in all 5 replicated runs. For the 4-ABN data, the correct
solution was only found in 2 of the 5 cases, as shown in figure 3.5. The cause
of the reduced reproducibility of the 4-ABN run is probably due to larger
boundary constraints, which makes it more difficult for the GA to locate the
correct solution.

The absolute evaluation function values do not reach the same level for the
4 compounds. This is due to noise level, line width and total number of data
points in a particular spectrum. High noise levels intrinsically give rise to large
evaluation function values. However, the minimum reached in each case is the
global minimum irrespective of the absolute evaluation value. The similarity
between all four experimental and the corresponding calculated spectra is very
high. As an example this is shown in figure 3.6 for a representative area of
the spectrum of indole.

3.5 Applicability of the GA-method to partly re-

solved spectra

Figure 3.7 shows results for synthesised spectra of indole and benzimidazole
with increased noise levels, line widths and spectral resolutions. Again, the
GA-runs were repeated 5 times with different seeds for the random number
generator. The best set of parameters found in these runs was used to generate
spectra which are free of noise, have normal line widths and the same number
of data points as the source spectra. The source spectra and the generated
spectra are then compared with the evaluation function F . The evaluation
values calculated in this way can directly be used to compare the quality of
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Table 3.3: Results from GA runs for Indole, Indazole, Benzimidazole and 4-ABN.a

Indole Indazole

GA Ref [5]b GA Ref [5]b

A” 3879.8 3880.7 (1.0) 3979.9 3979.2 (0.8)

B” 1637.0 1637.5 (0.4) 1633.8 1633.9 (0.3)

C” 1151.3 1152.1 (0.4) 1158.4 1158.6 (0.3)

T1 2.22 1.50 2.60 2.60

T2 7.93 5.03 7.35 8.18

W 0.1 0.22 0.23 0.19

θ 37.4◦ ±38.3◦ 62.3◦ 62.2◦

νc 0.78 0.0 (1.6) -1.7 0.0 (1.7)

∆A -134.70 -134.66 (0.09) -102.44 -102.30 (0.09)

∆B -18.08 -17.96 (0.18) -29.23 -29.20 (0.13)

∆C -20.72 -20.77 (0.32) -23.31 -23.20 (0.28)

∆ν 16.158 20.05 26.452 32.75

Evaluation Values

best 4.18 0.68

mean 4.24 0.74

std. dev. 0.08 0.06

Benzimidazole 4-ABN

GA Ref [5]b GA Ref [6]

A” 3929.0 3930.5 (1.0) 5579.7 5579.3 (0.5)

B” 1679.2 1679.5 (0.2) 990.23 990.26 (0.09)

C” 1177.1 1176.7 (0.2) 841.45 841.39 (0.08)

T1 5.63 4.88 2.63 3

T2 21.52 20.0 4.56 -

W 0.42 0.42 0.84 -

θ 22.1◦ ±22.0◦ 0◦ 0◦

νc 1.04 0.0 (1.64) -1.61 0.0

∆A -155.62 -155.70 (0.03) -315.54 -316.61 (0.06)

∆B -15.30 -15.37 (0.08) 10.66 10.849 (0.003)

∆C -21.41 -21.31 (0.13) 0.29 0.095 (0.001)

∆ν 19.33 19.45 16.16 26

Evaluation Values

best 0.65 1.2

mean 0.71 14.7

std. dev. 0.06 13.9

aValues from Ref. [5] and Ref. [6] are listed in the respective columns. Rotational constants,

ν and ∆ν are in MHz, T1 and T2 in K.
bResults in this column differ partly from those reported in Ref. [5]. See text for details.
cThe absolute frequency of the origin is given as the deviation from the reported value from

Ref. [5] and Ref. [6].



70 Determination of molecular constants with GA’s

0 100 200 300 400 500
0

10

20

30

40

Number of generations

E
va

lu
at

io
n 

fu
nc

tio
n 

va
lu

e

Indole

0 100 200 300 400 500
0

10

20

30

40

Number of generations

E
va

lu
at

io
n 

fu
nc

tio
n 

va
lu

e

Indazole

0 100 200 300 400 500
0

10

20

30

40

Number of generations

E
va

lu
at

io
n 

fu
nc

tio
n 

va
lu

e

Benzimidazole

0 100 200 300 400 500
0

10

20

30

40

50

Number of generations

E
va

lu
at

io
n 

fu
nc

tio
n 

va
lu

e
4−ABN

Figure 3.5: Progression of the best solution during a run for indole, indazole, benz-
imidazole and 4-ABN.

the different fits since the effects of added noise and line widths is removed
from the evaluation function. Figure 3.7 demonstrates the results for indole
and benzimidazole.

In both cases, all modifications to the calculated spectra lead to an increase
in evaluation value and thus in a deterioration in quality of the solution. How-
ever, the effect of the increased line widths is somewhat less and more constant
than the effects of other contributions. If the noise levels increase, the qual-
ity of the solutions decreases. The combination of both increased line widths
and high noise levels does not lead to further deterioration of the best solu-
tion. A decrease of the number of data points (where the frequency is kept
constant) only shows an effect on the benzimidazole spectrum. For a smaller
number of data points, the solutions become worse. This is due to the fact
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Figure 3.6: Representative area of the experimental (a) and calculated (b) spectrum
of indole. The intensity on the vertical scale is in arbitrary units.

that spectral information gets lost if the distance between two successive data
points becomes too large. Although the quality of the obtained parameters
deteriorated, the rotational constants are hardly influenced by the elevated
noise levels. The deviations are mostly found in T1 and T2 and in θ and θT .
Because one is mostly interested in the rotational constants the method can
be considered quite robust for the determination of these parameters.

3.6 Conclusion

The automated interpretation of high resolution spectra becomes of great
importance if the interpretation by other methods is no longer feasible, too
time-consuming or more a routine matter. In the approach presented in this
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Figure 3.7: Influence of noise (S/N), line width (∆ν) and the total number of data
points in a spectrum on the best solution found of indole (top) and benzimidazole
(bottom). Calspec indicates the spectrum which fits with the experimental one best.

paper, only knowledge of the range of the parameters is needed for the deduc-
tion of molecular constants. In general, feasible ranges can be given and may
even be quite large. The meta optimising can be tedious for GA’s. However,
in the present case it is demonstrated that one set of GA settings suffices
to retrieve the molecular constants from different rotationally resolved spec-
tra. The success of the GA method crucially depends on the newly developed
evaluation function. Other, more standard, evaluation functions lead to no
results.

The problem of spectrum comparison in this particular application is re-
lated to peak shifts which are caused by small changes in the rotational con-
stants. This makes it necessary to include a comparison of the neighbourhood
of a given point in the spectrum. All attempts based on the sum of squared
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differences without considering the neighbourhood of points failed, precisely
because these criteria do not properly deal with peak shifts. This demon-
strates that a special tailor-made evaluation function is crucial to obtain any
results. It shows that, apart from an optimisation of the settings of the GA,
GA’s in combination with a standard evaluation function can not be used as
a black box to solve any optimisation problem.

The GA method is quite robust. It is insensitive to large line widths in
the spectrum, and only at very high noise levels do the results deteriorate.
It is shown that the GA is able to use all information present in the spec-
trum and therefore its performance increases with the number of data points.
The method of matching experimental data (represented as a vector) with
simulated model data by optimising model parameters with a GA can be suc-
cessfully used in other fields, especially with the newly developed evaluation
function.
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Chapter 4

Powder pattern indexing

using the Weighted Cross

Correlation and Genetic

Algorithms

X-ray diffraction is a powerful technique for investigating the structure of
crystals and crystalline powders. Unfortunately, for powders the first step in
the structure elucidation process, retrieving the unit cell parameters (indexing),
is still very critical. In the present paper, an improved approach to powder pat-
tern indexing is presented. The proposed method matches peak positions from
experimental X-ray powder patterns with peak positions from trial cells using a
recently published method for pattern comparison (weighted cross correlation).
Trial cells are optimised with Genetic Algorithms. Patterns are not pretreated
to remove any existing zero point shift as this is determined during optimisa-
tion. Another improvement is the peak assignment procedure. This assignment
is needed for determining the similarity between lines from trial cells and ex-
periment. It no longer allows calculated peaks to be assigned twice to different
experimental peaks, which is beneficial for the indexing process. The procedure
proves to be robust with respect to false peaks and accidental or systematic
absences of reflections and is successfully applied to powder patterns origi-
nating from orthorhombic, monoclinic and triclinic compounds measured with

This chapter is published as: J.A. Hageman, R. Wehrens, R. de Gelder and L.M.C.

Buydens, J. Comp. Chem., 24(9), 1043-1051, 2003.
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synchrotron as well as with conventional laboratory X-ray diffractometers.

4.1 Introduction

X-ray diffraction is perhaps the most important method for investigating
the structure of crystalline materials. Structure determination from single
crystals is nowadays a standard technique for the identification of new com-
pounds, the analysis of stereochemistry and the elucidation of intra- and in-
termolecular interactions in various materials [1]. As it may be impossible to
grow suitable crystals, not all compounds can be examined by single-crystal
diffraction. Although powder diffraction data contain less information, it is
often possible to use powder data for a full structure determination. For this
reason, structure determination from powder diffraction data is becoming in-
creasingly important and consequently it receives more and more attention in
literature.

Elucidation of a crystal structure from powder diffraction data consists of
four stages [1]:

1. Identification of the repeating unit of the sample (the unit cell)

2. Space group determination

3. Structure solution (building of an initial model)

4. Structure refinement (obtaining a final and accurate model)

Today, steps two, three and four can be performed reasonably successful,
although there always remain specific problems. Step one, identifying the unit
cell (this process is also referred to as indexing), has become the bottle neck
in the complete process of structure elucidation and this is often the reason
why a structure elucidation of a compound from powder data is unsuccessful.

There are a number of reasons why indexing is difficult and often fails,
especially for low symmetry cases. Several reasons are of an experimental
nature; e.g. peak broadening, which leads to a loss in resolution, and peak
shifts. Other reasons are more fundamental in nature, for instance the increas-
ing peak density at higher angles (with low intensities), which makes correct
peak assignment difficult, systematic and accidental absences of reflections,
dominant zones and/or the possible presence of impurity phases, leading to
spurious peaks.
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Methods for indexing powder patterns have adopted several strategies.
They might use either peak positions or the whole profile. Whole-profile fitting
methods have to deal with peak profile description: asymmetry, peak shape
variation, etcetera. Using the whole profile requires incorporation of reflection
intensities, when calculating trial patterns. This knowledge is in principle
not present at the indexing stage, so peak intensities have to be assigned
(for example using a Pawley refinement [2]). When a continuous pattern
is converted into a list of peaks, some of these disadvantages are overcome.
Information on peak shapes and peak width is simply not used, so this cannot
interfere with the fitting process. Crucial will be the quality of the peak picking
process. Peak picking has two problems. The first is picking spurious peaks
(false positives), the second one is not picking existing peaks (false negatives).
In the first case there will be an extra peak in the experimental peak list, which
might interfere with the fitting of the experimental pattern. This extra peak
can also be seen as a peak originating from an impurity phase. In the second
case the peak list will be one peak short. As usually not every theoretical
reflection is present in a powder pattern, due to accidental and systematic
absences, an extra absent peak will very likely not cause a problem when
enough peaks are present.

All indexing strategies generate trial powder patterns and calculate the
agreement between experiment and theory. When the agreement is sufficiently
high, the results are presented as possible solutions to the user. A number of
criteria exist for the quantification of the agreement between experimental and
trial powder patterns [3–5]. Most criteria sum, in some way, the discrepancies
between experimental and calculated lines. An often used figure of merit
(called M20 or MN ) was proposed by De Wolff [6]. This criterion sums all the
discrepancies in peak positions, after assigning the nearest calculated peaks to
experimental peaks. This figure of merit is very sensitive to peak accuracy, as
was demonstrated by De Wolff [6], and also to false peaks, as will be shown in
this paper. Moreover, as part of De Wolff’s strategy, when two experimental
peaks are assigned to one calculated peak, one of the experimental peaks is
marked as unindexed and will not contribute to MN but to the auxiliary X20,
a situation which should not occur for the true cell parameters.

Trial solutions are generated by either varying the h, k, l indices or by di-
rect modification of the unit cell parameters. This can be done exhaustive
or in a grid like manner. Several methods have applied specific crystallo-
graphic knowledge for aiding exhaustive searches. This knowledge diminishes
the search space and increases the chances for obtaining a good solution. A
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property of all current methods is that they do not correct for zero point shifts
(originating e.g. from sample misalignments) on the fly, which leads to erro-
neous results if a significant zero point shifts is present in the experimental
data. An overview of existing indexing methods can be found in Ref. [1].

A more recent approach for generating trial cells is the use of Genetic Al-
gorithm’s (GA’s) [4, 7], a global optimisation method that has been shown to
be successful in a variety of applications. In this paper, an improved method
for indexing powder patterns is presented. It is based on GA’s and the use of
the weighted cross correlation (WCC). As seen in previous work [8–10], the
use of the WCC figure of merit ensures a certain insensitivity to peak broad-
ening and peak shifts. This figure of merit is applied here to peak positions
alone and uses no information on intensities. The zero point shift correction is
treated as an extra variable during optimisation, so patterns do not need to be
pretreated. The peak assignment procedure is different from the one suggested
by De Wolff [6]. When a calculated peak should be assigned twice to different
experimental peaks, as a results of distance considerations, a different assign-
ment is made here, allowing only the assignment of one calculated peak to one
experimental peak. This also has beneficial effects on the indexing process,
as will be shown. The procedure uses a minimum of prior knowledge of the
molecule under study and proves not to be very sensitive to impurity phases.
The method is successfully applied to powder patterns originating from or-
thorhombic, monoclinic and triclinic compounds, measured with synchrotron
as well as conventional laboratory X-ray diffractometers.

4.2 Theory

4.2.1 Calculating powder lines

A unit cell can be described in terms of three cell edge lengths (a, b, c) and
the angles between the edges (α, β, γ) as is shown in figure 4.1, where α is
the angle between b and c, β is the angle between a and c and γ is the angle
between a and b. All unit cells can be grouped into seven crystal systems,
which range from simple (cubic, where a = b = c and α = β = γ = 90◦) to
more complex (triclinic, where a �= b �= c and α �= β �= γ).

It is possible to calculate all theoretical peak positions in a powder pattern
for a given compound provided that its unit cell parameters are known. The
formula for determining the positions of peaks in a theoretical powder pattern
is shown in Eq. 4.1. A detailed description of this formula is beyond the scope
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Figure 4.1: Definition of the unit cell, where α is the angle between cell edge length
a and b, β is the angle between a and c and γ is the angle between a and b.

of this paper, but details can be found in textbooks like ref. [11]. In short, it
calculates, assuming the most general crystal system, all lattice plane spacings
dhkl.

dhkl =
√

(h2A + k2B + l2C + 2klD + 2hlE + 2hkF ) (4.1)

Here A = a∗ · a∗, B = b∗ · b∗, C = c∗ · c∗, D = b∗ · c∗, E = c∗ · a∗, F = a∗ · b∗.
The asterixes indicate reciprocal lattice unit cell vectors. The dhkl values are
converted by Bragg’s law (Eq. 4.2) into 2θ values.

2θ = 2sin−1 λ

2dhkl
(4.2)

These 2θ values can be compared with the location of the peaks in the ex-
perimental powder pattern. When we have no information about the structure
of our compound under investigation, or any information on electron densities,
we are not able to calculate the intensity of the peaks. So a peak from a cal-
culated powder pattern is only represented by its 2θ value, and the complete
pattern is given by a vector of peak positions.

Theoretical peak positions are determined by 11 parameters:

• three cell edge lengths and three cell angles. When there is reason to
assume that some of these lengths are equal or that some angles are 90◦

or 120◦ this knowledge can be used.

• one lambda parameter which gives the radiation wavelength which was
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used during the experiment. This parameter is usually known and it is
kept fixed during optimisation.

• a zero point shift parameter. This parameter counteracts a shift which
arises from the physical thickness and/or misplacement of the sample or
any misalignments in the apparatus.

• one parameter giving the starting angle, one parameter giving the max-
imum angle (both in degrees) and one parameter giving the sampling
rate. These three parameters are in principle defined by the experimen-
tal pattern but the maximum angle must be chosen carefully to select
an appropriate number of lines for the indexing process.

Since four parameters are experimental or optimisation settings, seven pa-
rameters are determined by the indexing procedure.

4.2.2 Fitting an experimental pattern

When the collection of peak positions in a theoretical powder pattern is
very similar to the one determined from the experimental pattern it is very
likely that the unit cell parameters, used for the calculation of the theoretical
pattern, are the true values. Determining the set of parameters which result
in calculated powder lines equal to the experimental ones can be seen as a
parameter optimisation problem in seven dimensions with many local optima.
The global optimum should represent the true parameters in this case. This
type of problem can be solved with global optimisation methods such as Ge-
netic Algorithms (GA), Simulated Annealing (SA) or Tabu Search (TS), using
a suitable evaluation function. In the approach described here, GA’s are used
to optimise the model parameters. GA’s are a special class of global optimisers
based on the theory of evolution. A GA is able to minimise (or maximise) a
function G(x), where x represents a parameter vector, by searching the pa-
rameter space of x for the optimal solution [12, 13]. In general, GA’s operate
not on a single trial solution but on a group of solutions, called a population.
Using evolutionary inspired operators such as fitness, crossover and mutation,
the best solutions are modified and passed on to the next generation. In this
way the population as a whole moves towards better solutions and hopefully
to the global optimum. A critical part in powder indexing is the assessment
of the similarity between an experimental powder pattern and a trial powder
pattern (or assessing the fitness of a trial solution). This assessment is required
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to give the GA the ability to discriminate between similar and dissimilar so-
lutions so it can select accordingly. For a tutorial on Genetic Algorithms, the
reader is referred to Ref. [14].

4.2.3 Evaluation function

One way to determine the dissimilarity between two (continuous) patterns
is to sum the (weighted) differences between the intensities of the patterns
pointwise, for instance via a root-mean-square-error (RMS) approach like in
Eq. (4.3):

RMS =

√√√√√√
x=k∑
x=1

(f(x) − g(x))2

k
(4.3)

Here f(x) and g(x) are vectors f and g with equal size k. The weighted R-
profile in the work of Harris et al. [7, 15] is an example of this. However, in
the indexing stage only information on the positions of peaks in the calculated
patterns and no information on intensities is available, so this approach is
only applicable in combination with Pawley refinement. In most methods for
indexing, the experimental powder pattern is converted by a peak picking
method to a list of peak positions. Figure 4.2 shows the conversion, for one
of the test compounds, C6F, from a continuous pattern to peak positions
(indicated at the bottom of the figure with PP).

A possibility to assess the dissimilarity between two lists of peaks is to sum
the differences in positions of corresponding peaks, like in the approach of De
Wolff [6]. An example is given in figure 4.3. The differences are summed like
in Eq. (4.4):

Dfg =

√√√√√√
i=N∑
i=1

min(Lf,i − Lg)
2

N
(4.4)

Here the list of peaks of experimental pattern f and calculated pattern g are
indicated by Lf and Lg, N is the number of experimental peaks and min(Lf,i−
Lg) indicates the shortest distance between peak i in list f and any peak in list
g. As we will demonstrate later in this paper, the Dfg dissimilarity measure
is not robust towards false peaks.
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Figure 4.2: Part of the powder pattern of C6F. The vertical lines in the bottom of
the figure indicate which peaks are selected with a peak picking method (indicated
with PP), the lines indicated with CAL give the positions of the peaks resulting from
the best fit. Only the range of 0-30◦ is considered.

A recently developed function which is robust against variations in peak
positions, is the Weighted Cross Correlation (WCC) measure. This function
has been applied for clustering powder diffraction data [10] and for the deter-
mination of molecular constants from laser induced fluorescence (LIF) spec-
tra [8,9]. In short, the WCC function is based on the normal cross correlation
function as given in Eq. (4.5):

Cfg(r) =
x=k∑
x=1

f(x) · g(x + r) (4.5)

Again, f(x) and g(x) are vectors f and g with equal size k. Eq. (4.5) calculates
the cross correlation coefficient between two vectors when one vector has been
shifted relative to the other by an amount r. Coefficients calculated with larger
shifts (r -values) can be penalised by a simple triangular weighting function
w(r), where t is the maximum displacement that is taken into account:



4.2 Theory 83

Figure 4.3: Example of a similarity measure which sums the distances between peak
positions in an experimental and calculated powder pattern. Vertical lines indicate the
position of each peak and horizontal lines below x-axis indicate the shortest distance
between two pairs of peaks.

w(r) = 1 − | r |
t

if r � t

w(r) = 0 if r > t (4.6)

Combining Eqs. (4.5) and (4.6) and applying normalisation yields Eq. (4.7),
the weighted crosscorrelation function, which describes the area under the
weighted cross-correlogram:

Cws
fg =

r=t∑
r=−t

Cfg(r)w(r)

√√√√ r=t∑
r=−t

Cff (r) ∗ w(r) ∗
√√√√ r=t∑

r=−t

Cgg(r) ∗ w(r)

(4.7)

For two identical patterns Cws
fg is one and for distinctly different vectors Cws

fg is
close to zero. An example of the behaviour of Cws

fg (r) is given in Figure 4.4. The
top row shows the unweighted crosscorrelogram, the weights and the weighted
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crosscorrelogram, respectively, for the comparison of the experimental C6F
pattern with the theoretically correct pattern. The area under the curve (Cws

fg )
is equal to 1.00. The bottom row shows the same for an arbitrary theoretical
pattern, compared with the same experimental C6F pattern. Shifts from -5◦

to 5◦ are considered.

Figure 4.4: The top row shows the unweighted crosscorrelogram, weights and
weighted crosscorrelogram corresponding to the comparison of the experimental C6F
pattern with the correct theoretical pattern. The bottom row shows the same for the
comparison of the experimental C6F pattern with an arbitrary theoretical pattern.

In our case, patterns f and g are not continuous patterns but consist of
discrete peaks with equal intensities. It is very likely that a calculated pat-
tern will contain more peaks than the experimental pattern, due to accidental
and/or systematic absences. This can, for example, be seen in figure 4.2 where
there are six extra peaks in the correct pattern (indicated by CAL) compared
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to the number of peaks resulting from the peak picking procedure (indicated
by PP). If a calculated pattern is correct, it should match every experimental
peak (neglecting the possibilities of impurity phases for the moment). If there
are more peaks present in the calculated list, the extra peaks should be left out
before comparison. To get equal numbers of peaks, a subset of peak positions
must be selected from the calculated pattern. The subset is chosen in such
a way that the peak closest to a given peak in the experimental pattern is
selected. It is also made sure that every peak in the experimental pattern is
matched with one unique peak in the calculated pattern, unlike in the original
De Wolff approach [6] which uses an auxiliary criterion to deal with this.

The value returned by the WCC function is transformed into the final
evaluation function F by using information about the estimated volume of the
unit cell. An estimation of the molecular volume can be made by using the
18Å3-rule, which multiplies all non-hydrogen atoms by 18Å3. As the correct
number of molecules in a unit cell is in principle unknown, several runs are
executed in which the number of molecules present in a unit cell is varied.
During these runs the estimated molecular cell volume is simply multiplied by
the number of molecules in the unit cell to obtain an estimation for the unit
cell volume.

If the calculated cell volume deviates more than 20% from the estimated
volume, the evaluation function value F is given by:

F = Cws
fg ∗

Vmaxdiff
| (Vcalc − Vest ) |

(4.8)

If not, F equals Cws
fg . In Eq. (4.8) Vmaxdiff is the maximum allowed

deviation from the estimated volume, Vcalc is the cell volume corresponding
to the trial pattern and Vest is the estimated experimental cell volume. The
evaluation function F is maximised by the GA.

4.3 Experimental

4.3.1 Indexing powder patterns

The procedure described in the previous sections has been applied to a set
of 16 powder patterns. The data set consists of five triclinic, eight monoclinic
and three orthorhombic cases. Eleven cases have been reported in literature
before and were solved earlier by other methods. Five cases were measured in-
house (crystal data were available from single-crystal diffraction experiments).
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Part of this data set has also been used to demonstrate the usefulness of several
additions to TREOR [5], an existing indexing program.

All continuous powder patterns were converted into a list of peak positions
by the Bruker AXS Diffracplus EVA V4.0 software. This method performs a
Savitsky-Golay smoothing combined with a second derivative method. Peak
width and threshold parameters were set to their default values. The results
of the peak picking procedure were checked visually and for eight patterns
this resulted in the removal of a few peaks per pattern. Removed peaks were
either very low in intensity, using a signal-to-noise ratio of 3 as upper limit for
the intensity, had strongly deviating peak widths compared to the majority of
peaks or could clearly be recognized as artifacts of the peak picking procedure.
The removed peaks in the eight patterns are shown in figure 4.5.

Figure 4.5: Peaks which were removed after the peak picking procedure. Vertical
lines indicate peaks found by the peak picking procedure, asterisks indicate manu-
ally removed peaks. Removed peaks were either very low in intensity, had strongly
deviating peak widths or could clearly be recognised as artifacts of the peak picking
procedure.

Each pattern was fitted for all seven crystal systems. For each fit, a corre-
sponding number of parameters was optimised with the GA (for instance one
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for the cubic and six for the triclinic crystal system). An extra parameter that
was included in the fit was the zero point shift. All parameters were coded
as 20 bit gray binary numbers [14]. All trial solutions were transformed into
reduced cell parameters and the reduced cell parameters were put back on
the string. This speeded up convergence considerably. However, calculating
reduced cell parameters for the monoclinic and tetragonal crystal systems can
lead to a non-standard setting. To overcome this, it was decided not to use
reduced cell parameters for these crystal systems. Our evaluation function F ,
based on the WCC criterion, was compared with the Dfg function. As will be
shown below, results for the WCC criterion are much better.

The patterns were fitted with the boundary constraints given in Table 4.1.
For the AFRA, AGPZ, CIME, CUPZ, NBPO, SUCROS and YONO samples,
the maximum axis length was set to 30Å. The other patterns were fitted
with a maximum axis length of 20Å. Setting boundary constraints to large
values ensures that no prior knowledge is used on cell parameters. However,
when some prior knowledge is present, this can be used to narrow the lattice
parameter space and this will speed up the complete optimisation process.

The first 20-30 experimental peaks were usually used as input. This means
that roughly the area up to 25-30◦ was used.

Table 4.1: Typical boundary constraints for unit cell parameters and zero point
shifta.

Parameter Boundary constraints

a 3 - 20 or 30Å

b 3 - 20 or 30Å

c 3 - 20 or 30Å

α 60 - 120 ◦

β 60 - 120 ◦

γ 60 - 120 ◦

zero point shift -0.5 - 0.5 θ

aIf required by the crystal system, some parameters have been kept at a constant value.

The optimal size of the triangular weight function (l in Eq. 4.6) was
determined to be 5.0◦. Obtaining good solutions with values smaller then 5.0◦

proved difficult for some patterns, while larger values only slowed down the
calculations. The settings of the GA are given in Table 4.2. All runs were
repeated five times to exclude any effects of the random starting population.
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Table 4.2: GA settings.

Setting Value

maximum number of generations 300

population size 500

starting population randomly initialised

elitism 250

crossover type two-point-crossover

crossover probability 0.85

mutation type flipping random bit

mutation probability 0.25

selection type proportional

fitness type rawa

aFitness value increases inversely proportional with evaluation value of a string.

All GA calculations were performed with the GA library PGAPack version
1.0 [16]. PGAPack, the model and the evaluation function are written in
ANSI-C, the function which converts unit cell parameters to their reduced
counterparts was written in Fortran. All calculations were performed on a Sun-
Ultra-10 running at 440 MHz. The average runtime was about five minutes
per fit, which comes to roughly three hours for a complete fit for every crystal
system in five fold. In practice, run times can be reduced considerably because
it will probably not be necessary to try all crystal systems and very likely not
in five fold.

4.3.2 Robustness

The robustness towards false peaks is tested for both Dfg and WCC based
evaluation functions (based on Eq. 4.4 and 4.7, respectively) by using the
powder pattern of C6F, as shown in figure 4.2. The continuous powder pattern
of C6F is converted into a list of peak positions. During this conversion the
first peak (around 5◦) was mistakenly represented by two peaks in the peak list.
The effect of this false peak on one parameter, cell edge length b, will be shown.
To this end, the experimental pattern will be compared with several patterns
which are calculated with all parameters set to their correct values (which are
known from single crystal experiments and are shown in table 4.3) except for
cell edge length b which is varied over the range 3.5 - 5.5 Å. Together with the
influence of false peaks, two methods for selecting the subset of peaks from
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the calculated pattern are tested. In the first scheme, the nearest calculated
peak is assigned to an experimental peak. It is, however, possible that one
calculated peak gets assigned to two (or more) experimental peaks, a situation
which cannot be right. The second scheme prohibits these double assignments
by stating that a calculated peak can only be assigned once.

4.4 Results and Discussion

4.4.1 Indexing powder patterns

Table 4.3 shows the unit cell parameters and the zero point shift for the 16
powder patterns as they resulted from the GA fit, together with results from
literature. As can be seen, the results from the GA fit are in close agreement
with earlier reported values. In some cases the precision of the results can be
improved by repeating the run with narrower boundaries. An example of this
is also given in Table 4.3 for the fit of the powder pattern of YONO. The values
in brackets indicate the results with the smaller boundaries. It is a well known
fact that GA’s are very well able to locate a global minimum (the correct set
of unit cell parameters in this case), but they are not as precise as to pinpoint
the exact location, as for instance local optimisers can [13]. Narrowing the
search space will increase the ability to locate the exact solution. Only the
results with the best evaluation value are shown in table 4.3. Usually, the
global optimum was located several times out of five runs, with solutions only
differing in precision. As an example, the progression of all five runs of C6F
is shown in figure 4.6. For this particular pattern all runs lead to the same
solution, with one being slightly better. The powder pattern C6F could not
be solved by the CRYSFIRE package [17], a collection of available indexing
techniques which contains methods like ITO, DICVOL and TREOR. This is
likely caused by the false peak around 5◦ and the large zero point shift. Our
GA method is not sensitive to this peak.

4.4.2 Robustness

When fitting the powder pattern of C6F with an evaluation function based
on the Dfg function, the results do not describe the true cell parameters very
well. Both cell edge lengths as well as angles show sometimes (large) deviations
from the cell parameters obtained from single crystal data. Results for C6F
are shown in table 4.4. The fit for C6F with the Dfg evaluation function is also
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Table 4.3: Compounds in the data set and unit cell parameters.

Compounda a b c α β γ Z.P.e

AFRA(X) b 8.09 8.16 11.83 96.37 102.53 97.56 0.038

8.10 8.26 11.84 96.24 102.84 97.43

AGPZ(X) [18] 6.46 6.52 20.03 0.101

6.47 6.53 20.06 0.101

C6F(X) b 4.02 4.60 19.76 85.80 87.80 80.80 0.294

4.02 4.59 19.71 85.04 87.54 80.40 0.247

CF3BR(N) [19] 8.11 5.84 7.93 111.65 0.333

8.14 5.85 7.96 111.72 0.243

CIME(S) [20] 6.82 10.38 18.82 106.45 0.007

6.83 10.39 18.83 106.44

CROX(X) [21] 5.43 6.54 12.02 75.00 89.34 78.12 0.028

5.42 6.56 12.05 74.87 89.25 77.95

CUPZ(X) [18] 6.09 6.67 19.85 0.002

6.08 6.67 19.83

LASI(N) [22] 5.41 8.78 13.15 90.33 0.079

5.41 8.80 13.18 90.50

NBPO(S) [23] 8.72 8.80 29.89 91.72 0.000

8.72 8.79 29.87 91.77

NIZR(S) [24] 8.83 8.94 12.41 90.56

8.84 8.93 12.39 90.55

PBS(S) [25] 6.92 7.18 16.11 0.066

6.92 7.18 16.11

SBPO(S) [26] 8.36 8.84 11.94 91.289 0.088

8.32 8.73 11.94 91.12

SUCROS(S) b 7.76 8.71 10.86 102.90 0.10

7.72 8.68 10.82 102.98

TITUL6(X) b 6.45 9.50 12.21 96.90 98.37 94.64 0.041

6.41 9.50 12.16 97.10 98.24 94.55

VFXBS1(X)c b 10.12 10.23 13.83 72.17 70.00 63.89 0.033

10.11 10.21 13.81 72.22 69.97 63.92

YONO(S) d [27] 3.80 9.19 16.33 91.83 0.045

3.63 9.38 16.38 101.06 0.001

3.63 9.38 16.39 101.070

aAll unit cell parameters are given in reduced cell parameters, second line per compound

are literature values. bCompounds are measured inhouse and values on the second line are

results from single crystal analysis. c peak at 7.6◦ has been removed after identification as

an impurity phase. dValues on second line indicate results when smaller boundaries are used

during optimisation (a=[3,10], b=[5,15], c=[10,20], β=[95,110]). Third line are literature

results. eZero point shift: not all zero point shifts of all compounds from literature are

known. X: data collected on conventional laboratory diffractometer, N: neutron data, S:

synchrotron data.
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Figure 4.6: Progression of the best solution during all five replicate runs for the fit
of compound C6F.

repeated with the false peak removed. Although the results are better, they
do not completely agree with the single-crystal data. Clearly, the WCC-based
evaluation finds the correct solution.

Figure 4.7 shows the results for the tests of the influence of the false peak
on both types of evaluation functions. In the top figure the comparisons are
shown for the Dfg function. The solid line shows the values obtained with
the correct peak position list. The minimum of this line corresponds to the
correct value for b (which is 4.61 Å). When we use the peak list with the false
peak present, the solid line changes to the dashed line. The minimum has
shifted to the position marked with MIN. The solid and dashed line in the
top figure both exhibit significant roughness. This has its origins in the way
the subset is chosen. In the top figure the subset is chosen in such a way that
every experimental peak gets matched with the closest calculated peak from
the model. When applying the extra restraint on the subset selection so that
every calculated peak can only be assigned once to an experimental peak, we
get the middle figure. The dashed and solid line are now much smoother, which
is usually beneficial for optimisation methods in general because it makes it
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Figure 4.7: Effect of a false peak on Dfg with different subset selection approaches
(top and middle figure) and the effect of a false peak on the WCC (bottom) based
evaluation function. Solid lines indicate no false peak present, dashes lines indicate
one false peak present. Vertical dotted lines indicate location of correct minimum.
MIN indicates shifted minimum of Dfg function with one false peak.

easier to locate the minimum. Nevertheless, we can see that the addition of
one false peak still shifts the minimum to the right. A fit with this type of
evaluation function will lead to incorrect results if peaks are shifted or wrong
peaks are present.

If we use an evaluation function based on the WCC and allow for calculated
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Table 4.4: Results of the fit for C6F

C6Fa a b c α β γ zero point shift

Single Crystal 4.02 4.59 19.71 85.04 87.54 80.40 0.247

Dfg +f.p. 3.39 4.35 24.73 94.45 93.04 99.79 0.495

Dfg -f.p. 3.80 4.53 19.56 86.22 86.23 84.91 0.162

WCC +f.p. 4.02 4.60 19.76 85.80 87.80 80.80 0.294

aAll unit cell parameters are given in reduced cell parameters, +f.p., -f.p. indicate with or

without the false peak respectively.

peaks to be assigned only once, recalculate our previous example of C6F,
we get the bottom figure. Here we see that the only difference between the
comparison with or without a false peak is an offset difference between the two
curves. The shape and the location of the minimum remain the same. This is
a much better behaviour compared to the Dfg because the minimum remains
at the same position. However, there is a limit to the increased robustness.
Some false peaks will remain troublesome, even with the WCC figure of merit.
An example of this is VFXBS1, where the presence of a false peak at 7.6◦

disturbs the indexing process leading to a failure.
The shape and location of the minimum are thus influenced by the presence

of false peaks. However, this influence is dependent on the location of the false
peak, being larger at lower angles.

4.5 Conclusions

Powder pattern indexing is an area of the complete process of structure
elucidation which deserves attention as it usually is a slow and cumbersome
process. The method presented in this paper, demonstrates several improve-
ments. The use of the WCC function as a new figure of merit and the appli-
cation of it to peak positions, yields a certain robustness. The improved way
to select a subset of peaks yields a more smoothed error landscape which is
beneficial for the optimisation process. Zero point shifts do not need to be
pretreated, as the GA is capable of correcting this, by treating it as an extra
optimisation variable.

An important advantage is the increased robustness against false peaks,
as these peaks are usually hard to detect and mostly heavenly disturb the
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indexing process. The increased robustness may result in the indexing of
patterns which could not be indexed before.

The method is very general and uses no crystallographic knowledge on the
sample. However, when prior knowledge is available, this can be used to speed
up the optimisation process, by shrinking the search space.

Results are in close agreement with known literature values, so no fine
tuning with local optimisers is necessary. No tedious fine tuning of the meta-
parameters of the GA is needed, since one standard set of GA parameters is
able to correctly index a wide variety of examples. The method is demon-
strated with orthorhombic, monoclinic and triclinic examples, measured on
synchrotron and conventional laboratory X-ray diffractometers.
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Chapter 5

Wavelength Selection with

Tabu Search

This paper introduces Tabu Search in analytical Chemistry by applying it
to wavelength selection. Tabu Search is a deterministic, global optimisation
technique loosely based on concepts from artificial intelligence. Wavelength
selection is a method which can be used for improving the quality of calibration
models. Tabu Search uses basic, problem-specific operators to explore a search
space, and memory to keep track of parts already visited. Several implementa-
tional aspects of wavelength selection with Tabu Search will be discussed. Two
ways of memorising the search space are investigated: storing actual solutions
or storing steps necessary to create them. Parameters associated with Tabu
Search are configured with a Plackett-Burman design. In addition, two ex-
tension schemes for Tabu Search, intensification and diversification have been
implemented and are applied with good results. Eventually, two implementa-
tions of wavelength selection with Tabu Search are tested, one which searches
for a solution with a constant number of wavelengths and one with a vari-
able number of wavelengths. Both implementations are compared with results
obtained by wavelength selection methods based on Simulated Annealing (SA)
and Genetic Algorithms (GA’s). It is demonstrated with three real world data
sets, that Tabu Search performs equally well and can be a valuable alternative
to SA and GA’s. The improvements in predictive abilities increased with a
factor of 20 for data set 1 and with a factor of 2 for data set 2 and 3. In addi-

This chapter is publised as: J.A. Hageman, M. Streppel, R. Wehrens and L.M.C. Buy-

dens, Wavelength Selection with Tabu Search, J. Chemometrics., 17:1-11, 2003



98 Wavelength Selection with TS

tion, when the number of wavelengths in a solution is variable, measurements
on the coverage of the search space show that the coverage is usually higher
for Tabu Search compared to SA and GA’s.

5.1 Introduction

In analytical chemistry, Tabu search [1–4] is a relatively new technique
with only a few published examples, dealing with graph theory [5] and molec-
ular docking [6]. Tabu Search is an iterative deterministic global optimisation
method. It examines the search space in an highly ordered fashion using mem-
ory to keep track of parts already visited. Given a starting solution, it will
always come up with the same end solution. In this paper, Tabu Search will
be introduced for wavelength selection. Wavelength selection is a much used
procedure for improving the quality of calibration models for example. After
wavelength selection, predictive abilities are usually higher and the models
are simpler and more robust [7–10]. The easiest way for finding the opti-
mal combination of wavelengths would be an exhaustive search. However, an
exhaustive search for wavelength selection would require the examination of
an astronomical number of combinations. As this is usually not feasible due
to large computation times, other wavelength selection methods have been
designed. Originally these methods used simple heuristics for locating a so-
lution, but given the characteristics of the methods, these were likely not
the best obtainable solution. With the recognition that wavelength selection
is an optimisation problem and the increasing availability of faster comput-
ers, more sophisticated optimisation techniques such as Simulated Annealing
(SA) [11–13] and Genetic Algorithms (GA’s) [7, 10–12] have frequently been
used. SA and GA’s are both iterative probabilistic global optimisation meth-
ods. As a consequence, both methods do not always end up with the same
end solution, given identical starting solutions.

Several implementational aspects of wavelength selection with Tabu Search
will be discussed. As memorising the search space is an important character-
istic of Tabu Search, two possible ways for memorising are investigated. In
addition, it will be shown that configuring the parameters associated with
Tabu Search can be done with an experimental design. To further improve re-
sults, two extension schemes for Tabu Search for applying wavelength selection
have been implemented: intensification and diversification. It will be demon-
strated that both are valuable assets. Two implementations of Tabu Search
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have been made, one that searches for solutions with a constant number of
wavelengths and one with a variable number of wavelengths. Results of Tabu
Search are applied to three real world data sets and are compared with results
obtained by SA- and GA-based methods. Results indicate that Tabu Search
works equally well and is a valuable alternative to SA and GA’s. In addition,
when the number of wavelengths in a solution is variable, measurements on
the coverage of the search space show that the coverage is usually higher for
Tabu Search compared to SA and GA’s.

5.2 Theory

Where SA is based on the physical process of cooling down a heated liquid
and GA’s are inspired by the process of evolution, Tabu Search is based on
concepts from artificial intelligence [4]. It uses basic, problem-specific oper-
ators to explore a search space and memory (which is called the tabu list)
to keep track of parts already visited. By guiding the optimisation to ar-
eas not present in memory, Tabu Search hopes to find the global optimum.
The foundations for Tabu Search were laid out in the late 1970’s by Glover
and the principles were described in general terms in 1989 and 1990 also by
Glover [1–3]. In recent years, tutorials documenting successes accomplished
with Tabu Search have been published [3, 4, 14].

5.2.1 Tabu Search

Tabu Search is an optimisation technique which tries to optimise a func-
tion G(x) where x represents a parameter vector, by iteratively searching the
parameter space of x for the optimal solution. The framework of Tabu Search
consists of several steps which are described below and depicted in Figure 5.1.

1. Initialisation: a starting solution s is generated by choosing random
values for x. This solution is evaluated by the evaluation function and
solution s is stored in the algorithm’s memory. This memory is called
the tabu list.

2. Neighbourhood exploration: all possible neighbours of solution s are
generated and evaluated. Neighbouring solutions are solutions which can
be reached from the current solution by a simple, basic transformation
of the current solution. Solutions which are present in the tabu list are
considered unreachable neighbours.
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choose an initial solution s in x

s∗ = s; % best solution so far

k = 0; % iteration number

kbest = 0; % last improving iteration

kmax = ...; % maximum non-improving iterations

T = []; % Tabu list

stop = false

while not stop

generate V∗ ⊆ N(s) - T

if ((k - kbest > kmax) or (V∗ == []))

stop = true;

else

k = k + 1;

choose best s’ in V∗

s = s’;

if (f(s) < f(s∗))
s∗ = s;

kbest = k;

end

update tabu list

end

end

Table 5.1: Pseudo-code of the Tabu Search algorithm.

3. New current solution: a new current solution is chosen from the explored
neighbourhood. This solution cannot be in the tabu list and it has
to have the best evaluation value from all reachable neighbours. The
evaluation value can be worse compared to the current solution. In this
way the algorithm is able to overcome local minima. The new current
solution is added to the tabu list.

4. Stop: If no more neighbours are present (all are tabu) or a certain eval-
uation value or a predetermined number of iterations is reached, the
algorithm stops, otherwise the algorithm continues with step 2.

In Table 5.1 pseudo-code of the Tabu Search Algorithm is given.
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Figure 5.1: General flowchart of the Tabu Search algorithm. Iter keeps track of
the number of iterations without an improvement, s is the current solution, s’ is the
solution with the lowest evaluation value of all neighbours of s, s” is the best obtained
solution, V are all neighbours of solution s, T is the tabu list, maxiter is the allowable
maximum number of iterations without an improvement.
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5.2.2 Neighbourhood exploration of wavelength selection

The neighbourhood of a solution is defined by those solutions which can
be reached in one step. A solution reachable in one step is called a neigh-
bour. These steps are specific for each optimisation problem. Usually, two
neighbouring solutions resemble each other closely. In the case of wavelength
selection, a solution is a combination of a number of wavelengths and changing
this combination can be accomplished by 3 different types of steps:

1. Selecting or adding a number of wavelengths

2. Deselecting or removing a number of wavelengths

3. Moving a number of wavelengths

Selecting and deselecting wavelengths are operators which are used in clas-
sical methods for wavelength selection. The move operator can be seen as a
combination of both, it first deselects a wavelength and subsequently selects
a different one. The number of possible neighbours of a solution increases
drastically when more than one operator is allowed per step. Equations 5.1-
5.3 give the maximum number of unique neighbouring solutions by using the
operators select, deselect and move respectively.

#select =
ms∑
i=1

(
t − n

i

)
(5.1)

#deselect =
md∑
i=1

(
n

i

)
(5.2)

#move =
mm∑
i=1

(
t − n

i

)(
n

i

)
(5.3)

where ms, md and mm are the maximum number of wavelengths considered
for selection, deselection and move, respectively, n is the number of selected
wavelengths in s and t is the total number of wavelengths in the spectrum.
In a data set with 150 wavelengths of which 50 wavelengths are selected the
total number of neighbouring solutions is 6,075,075 when two select, deselect
or move steps are allowed. When only one select, deselect or move step is
allowed, there are only 5150 neighbouring solutions. Since a NIR-spectrum
can contain several hundred wavelengths, it is not feasible to allow more than
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one select, deselect or move step per iteration (ms = 1, md = 1, mm = 1).
The total number of neighbours per iteration is then given by

(
t − n

1

)
+

(
n

1

)
+

(
t − n

1

)(
n

1

)

= t − n + n + (t − n) · n
= t + t · n − n2 (5.4)

The number of neighbours which have to be evaluated is at a maximum
when n = t/2. This maximum is t + t2/4. To further reduce the number of
neighbouring solutions a restriction is placed on the maximum distance of a
move. When a wavelength is moved, it is only allowed to shift a distance d

to left or right. This causes Tabu Search to search the solution space more
structured, because the difference between two solutions is smaller when a
wavelength is moved over a short distance since the intensities at wavelengths
close to each other tend to be correlated. The total number of neighbours
that should be evaluated is now given by t+2dn2, where d is half the distance
allowed for the move.

Another possibility is to only allow the move operator (Eq. 5.3) and not
the select or deselect operator (Eq. 5.1 and 5.2). A consequence is that
the number of selected wavelengths can be predetermined and will be kept
constant during the optimisation. When the distance of a move is restricted,
the number of possible neighbours which needs to be evaluated is 2dn2.

5.2.3 Tabu list

In Tabu Search, the tabu list plays an important role. It keeps track of
previous explored solutions and prohibits Tabu Search from revisiting them
again. In this way Tabu Search can overcome local minima by forcing it to
accept solutions worse than the current solution. The tabu list has a finite
length l. After l iterations the first tabu restriction is removed and this first
solution becomes available again for selection. Keeping the tabu list too short
may result in visiting the same sequence of solutions over and over again.
The algorithm then ends up in a cycle and will not be able to locate better
solutions. A list too long may cause unnecessary long run times but also
may prevent the algorithm from reaching an optimal solution. In general, a
list with length l will prevent cycles with length l. In the list, the actual
solution can be stored (called explicit memory). In this case, the tabu list
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Table 5.2: Overview of operators on wavelength p and q and the subsequent tabu
restrictions in recency based Tabu Search.

Operator Tabu list
select p deselect p
deselect p select p
move q to p select q

deselect p

contains the actual combination of wavelength indices that are selected. It is
also possible to store the steps necessary to generate the new solution (called
recency-based memory). In the case when a wavelength is deselected, the
selection of this wavelength becomes tabu, to prevent the algorithm to retract
to the original solution. Table 5.2 shows the tabu restrictions that take place
after the execution of all three operators. If steps are stored, all operators
have their own tabu list. The tabu list is referred to as short-term memory
when it contains previously visited solutions. It deals with the most recent
history of the search trajectory.

5.2.4 Intensification and diversification

Two extension schemes are common for Tabu Search: intensification and
diversification. Both schemes are referred to as a form of long term memory
as they use information not available in short term memory. Intensification
focuses on the part of the solution space which seems promising and has often
been visited with good results. As an intensification approach, the best solu-
tions obtained after several runs with different starting solutions are stored.
Wavelengths which contribute to a good model will likely be selected more
often in best found solutions. So for a next run, a new starting solution is
generated consisting of the wavelengths which where selected in 30 and 60%
of the best results of these previous runs. This provides Tabu Search with a
promising starting solution.

Diversification is the opposite of intensification. It guides Tabu Search
towards unexplored parts of the search space. In this way, the solution space
will be covered more thoroughly and the chance of missing the optimal solution
will be reduced. To be able to guide Tabu Search to an unexplored part of



5.2 Theory 105

Figure 5.2: Example how a combination of selected wavelengths are transformed
into a bitstring. The bitstring indicates which region of the solution space has been
examined by that solution.

the solution space it is necessary to keep track of the parts of the solution
space which Tabu Search has explored during its search. To accomplish this,
each spectrum is divided into several bins, 12 in our case. When one or more
wavelengths in a bin are selected, this bin is represented by a one. If no
wavelengths in a bin are selected, it will be represented by a zero. All 12
ones and zeros put together form a bitstring. Each bitstring can be seen as a
point in the (simplified) solution space. By keeping track of which bitstrings
have been visited, the regions which have not been explored can be identified.
Figure 5.2 shows how a combination of selected wavelengths is transformed
into a bitstring.

After the end of a run it is checked which regions have not been visited. A
solution in the region which is the furthest from the visited regions is taken as
the initial solution for a new run. By comparing the number of visited regions,
it is also possible to measure the coverage of the search space. The higher this
number, the better the algorithm has been able to scan different regions of the
search space and thus should have been able to locate a good solution.

The distance between regions is calculated using the Hamming distance
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[15]. The Hamming distance between two regions j and k is given by

dj,k =
N∑

i=1

δj,k(i) (5.5)

where δj,k(i) = 1 when the ith bin of regions j and k do not contain the same
value and δj,k(i) = 0 when they contain the same value, N is the number of
bins.

5.2.5 Evaluation function

The goal of wavelength selection is to find a set of wavelengths for the
creation of an optimal predictive model. The prediction model used is Par-
tial Least Squares regression (PLS) [16] and in particular SIMPLS [17]. A
problem with PLS is that the number of latent variables should be specified.
As the information in each set of wavelengths is not the same, this number
cannot be kept constant but has to be determined again for each solution. For
determining the optimal number of latent variables and to prevent overfitting,
data sets are divided into two parts, a training set and a test set.

The correct number of latent variables for each subset is determined by
leave-p-out cross validation on the training set, with p being a number which
divides each data set in roughly 15-20 groups. Outliers should be removed from
any used data set as these will negatively influence the predictive abilities of
the obtained models. Crossvalidation results in an array of predictive abilities
for each number of latent variables. The correct number of latent variables
is obtained by comparing two consecutive values. When the next value still
increases the predictive ability with more than 10%, the number of latent
variables is increased by one. The complete trainingset in combination with
the correct number of latent variables is used to calculate the PLS coefficients.
The test set in combination with the PLS coefficients is used to calculate the
RMSEP (Eq. 5.6) value:

RMSEP =

√√√√√√
n∑

i=1

(ypred,i − yi)2

n
(5.6)

where ypred,i and yi are respectively the predicted and the measured response
values and n is the number of samples. This value is used as an evaluation
value in Tabu Search. The complete procedure for the evaluation function is
shown in Figure 5.3.
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Figure 5.3: Flow-chart of the evaluation function.

5.3 Experimental

5.3.1 Data sets

Three near infrared spectral data sets are used to test and compare the
performance of Tabu Search for wavelength selection. All three data sets are
assumed to be free of outliers.

1. Gasoline data set [18]: NIR spectra of gasoline samples with measured
octane numbers. Samples are measured from 900 to 1700 nm with a
sampling rate of 2 nm. The first 200 nm have been omitted as they
show no signal. This results in a total of 300 wavelengths. The training
set consists of 40 spectra and the test set of 20 spectra.

2. Wheat data set [18]: NIR spectra of wheat samples. Two responses have
been measured which are the moist and protein content. The spectra
have been recorded from 1100 to 2500 nm with a 2 nm interval. Every
two wavelengths have been averaged to reduce the number of wavelengths
which resulted in 350 wavelengths. The training set consists of 67 spectra
and the test set of 33 spectra.

3. Floodplains data set [19]: 67 NIR spectra of floodplains with four mea-
sured response values which are the Cd, Zn, clay and organic matter
content. The spectra have been measured from 400 to 2500 nm with a
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sampling rate of 2 nm. To reduce the number of wavelengths every three
wavelengths have been averaged, which resulted in 350 wavelengths. The
training set consists of 54 spectra and the test set of 13 spectra.

5.3.2 Tabu Search configuration

The Tabu Search algorithm for wavelength selection has been implemented
as explained in the previous section. To be able to decide whether to store
the actual solutions or the steps necessary to create them in the tabu list,
both methods are implemented. For an optimal performance, the parameters
associated with Tabu Search need to be optimised. For both cases these pa-
rameters are the locality of the move operator (parameter d), the maximum
number of iterations and the number of selected wavelengths in the initial so-
lution. When storing solutions, the length of the tabu list is kept long enough
to obtain all encountered solutions. When storing steps, four extra parame-
ters need to be optimised: the length of the tabu list for the select, deselect,
move from and move to operators. For selecting optimal values for these pa-
rameters, a Placket-Burman experimental design [20] was used in combination
with the gasoline data set and leave one out crossvalidation. The high and
low values used in the experimental design are shown in Table 5.3. All exper-
iments in the Plackett-Burman design were executed in five fold, each time
with a different starting solution, to cancel out random effects. The response
variable in the experimental design was the RMSEP. After configuring Tabu
Search while storing steps or storing solutions, it was decided which storing
method would be used by running both algorithms with five different starting
seed and comparing the results.

Eventually, two implementations of Tabu Search have been made: one us-
ing a variable number of wavelengths and one using a constant number of
wavelengths, only allowing the move operator. The configuration of the pa-
rameters associated with Tabu Search in combination with a constant number
of wavelengths was based on the results of the experimental design, but were
modified slightly after additional experiments. Both Tabu Search implemen-
tations have been used to select optimal combinations of wavelengths of the
three different data sets. When the number of wavelengths was constant, so-
lutions consisting of 15, 30 and 45 wavelengths were optimised. All runs were
repeated five times, to exclude any random effect of a starting solution.
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Table 5.3: The values used for the high and low levels for the variables in the
Plackett-Burman design.

Variable High Level Low Level
Locality 45 10
Maximum iteration 65 30
Number initially selected 20 5
Length select 50 10
Length deselect 50 10
Length move from 50 10
Length move to 50 10

5.3.3 Comparison with other wavelength selection methods

The performance of Tabu Search for wavelength selection is compared with
the results of 4 other methods. Two of these are simple heuristic methods:
forward selection and backward elimination [21]. The other two methods are
SA and GA’s. As it is possible for Tabu Search to search with a variable
number of wavelengths as well as a constant one, both ways have also been
incorporated into SA and GA’s. The implementation for the GA approach
with a variable number of wavelengths is based on Refs. [7, 11, 12] with one
exception, which is the mutation operator. The mutation operator used in this
paper has a 90% chance for selecting a zero and a 10% chance for selecting
a one. This ratio ensures that not too many wavelengths will be selected,
as this is disadvantageous for a good predictive model. When the number of
wavelengths must be kept constant, a different approach is used. Instead of
a bitstring representation, an integer array representation is used. This array
contains the indices of selected wavelengths. It is made sure that a wavelength
index can be selected only once. The implementation of wavelength selection
with SA with a constant number of wavelengths is based on Refs. [11, 12].
When allowing a variable number of wavelengths, some additions have been
made. Besides moving selected wavelengths in the step generating function,
it is also possible to add or remove wavelengths. The step generating function
of SA can apply the same operators as in Tabu Search. The optimal settings
for the SA and GA’s based methods were determined by trial and error and
are shown in Table 5.4 and in Table 5.5.
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Table 5.4: The GA settings used for all data sets for implementations with a variable
and constant number of wavelengths.

GA-method Variable number Constant number

of wavelengths of wavelengths

Number of generations 800 800

Population size 300 300

Elitism 150 150

Crossover type Uniform crossover 1-point crossover

Crossover probability 0.7 0.7

Mutation type 90/10% Bit flip Uniform random replacement

Mutation probability 0.05 0.05

Selection type Proportional selection Proportional selection

Fitness type Linear normalisation fitness Linear normalisation fitness

Table 5.5: Settings for the SA method used for all data sets for implementations
with a variable and constant number of wavelengths.

SA-method Variable number Constant number

of wavelengths of wavelengths

Starting temperature 0.01 0.01

Cooling constant 0.999 0.999

Maximum Markov Chain Length 300 300

Minimum Markov Chain 150 150

Minimum temperature 0.001 0.001

Minimum number of constant function values 300 300

Chance being moveda 0.1 0.1

Locality of moveb 10 10

Chance being addeda 0.01 -

Chance being deselecteda 0.1 -

aOnly one step of all possible three will be executed for each wavelength, but with different

chances.
bLocality indicates the maximum distance a wavelength can be moved.
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5.3.4 Software

All software was programmed in ANSI-C. The Tabu Search and SA meth-
ods were programmed from scratch. For the GA’s approach PGAPack [22] was
used as a basis. The SVD routine used in the SIMPLS algorithm was adopted
from Ref. [23]. Calculations were performed on a Sun-Ultra 10 running at 440
MHz. Runtimes were dependant on the size of the data set and the number
of properties that needed to be predicted. For the gasoline data set, runtimes
were in the order of two hours for the SA, GA and Tabu Search based methods
for one run.

5.4 Results and Discussion

5.4.1 Tabu Search Configuration

The main effects of the Plackett-Burman experimental design are shown
in Figure 5.4 for storing solutions (part A) and storing steps (part B) in
the tabu list. In both cases a larger number of non improving iterations is
beneficial for obtaining a good solution, which is logical because this prolongs
the searching time. The number was set to 65. A high number of initial
wavelengths is also beneficial. A high number increases the chance of selecting
good contributing wavelengths from the start. However, experiments which
were performed to choose the high and low limits for the experimental design,
demonstrated that when this number is too high, Tabu Search spends a lot
of time getting rid of non-contributing wavelengths, which in the end leads to
a decreased predictive power. This number was set to 20. The effect of the
locality between both approaches differs. When storing solutions, increasing
the locality means that a solution can be refined faster. When steps are
being stored, a moved wavelength cannot be removed for a certain number
of iterations. In that time, other wavelengths are changed and Tabu Search
crosses that (local) optimum without ever locating the exact minimum. This
is also reflected in the length of the tabu lists of the different steps. When
tabu lists are too long, certain wavelengths are not available anymore and this
forces Tabu Search to different areas in the search space. One exception is the
move from length, this list prohibits wavelengths from being reselected after
being moved. When this list is too short, it will lead to cycles. Lengths for
the select, deselect, move from and move to were set to 10, 10, 50 and 10
respectively.
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Figure 5.4: Results of the Plackett-Burman experimental design for determining an
optimal configuration of Tabu Search. Part A shows results when storing complete
solutions. Part B shows results when only storing steps. (x1: locality of the move
operator, x2: maximum number of iterations, x3: number of wavelengths in initial
solution, x4: length select tabu list, x5: length deselect tabu list, x6: length move

from tabu list, x7: length move to tabu list)

Based on the results of the Plackett-Burman design, optimal configurations
were determined for both approaches, as shown in Table 5.6. Analysis of
the five replicate runs with different starting solutions with both approaches
showed that there was no significant difference between the means of all runs.
However, storing steps yielded the best solution with the lowest RMSEP value.
A comparison of selected wavelengths in the best solution between all replicate
runs also showed that the reproducibility is higher. When steps are being
stored it appears that the algorithm is much more able to select the same
wavelengths during different runs. When the selection, deselection or moving
of wavelengths is made tabu, the number of neighbours decreases, which is
beneficial for running times. Therefore, storing steps in the tabu list has more
advantages and will be used for the remainder of the work in this paper. The
best RMSEP value for each of the five runs is given in Table 5.7.

Applying intensification resulted in an improvement of the RMSEP values.
When the new starting solution consisted of wavelengths which were present
in 30% of the best found solutions, the new RMSEP value was 6.99e-2, when
wavelengths were chosen which were present in 60% of the final solutions,
the improvement was even greater: 6.59e-2. It is very likely that wavelengths
which are selected more often in best found solutions contribute more to a good
predictive model. A starting solution based on these wavelengths enables Tabu
Search to come up with an improved predictive model.
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Table 5.6: Configuration of Tabu Search when storing actual solutions or steps
leading to solutions. WL constant, indicates the settings when using a constant
number of wavelengths

Tabu Search Approach Solutions Steps WL constant

Locality 45 10 30

Maximum iterations 65 65 65

Number initially selected 20 20 15

Length select TL 10

Length deselect TL 10

Length move from TL 50 5

Length move to TL 10 20

Table 5.7: Results of Tabu Search while storing steps in the tabu list and testing
different additions. Results are obtained with the gasoline data set and leave one out
crossvalidation.

Run 1 Run 2 Run 3 Run 4 Run 5

Basic Tabu Search 7.88e-2 1.05e-1 1.25e-1 7.00e-2 7.09e-2

Intensificationa 30%: 6.99e-2 60%: 6.59e-2

Diversificationb 7.69e-2 4.56e-2 4.56e-2 9.28e-2 6.68e-2

Both combined 1.30e-1 8.01e-2 1.02e-1 1.27e-1 1.14e-1

aIntensification is performed on the combined results of all previous five replicate runs. 30%

and 60% indicate the occurrences of selected wavelengths in the best found solutions.
bAfter each initial run five diversification runs have been performed, the best of these results

is shown.
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Diversification is also able to improve RMSEP values. Results are shown
in Table 5.7. After each replicate run, five diversification rounds were used. In
four out of five, diversification yielded RMSEP values which were lower. The
best RMSEP value after diversification is 4.56e-2.

Intensification and diversification have also been combined. Since wave-
lengths which are important for a good solution are likely to be in every best
solution, diversification is performed before intensification. By first applying
diversification, a large part of the solution space will be covered. After the
initial best solutions have been found, intensification is used to zoom in on
interesting wavelengths and perhaps locate a better solution. Results of the
combination are given in Table 5.7. Diversification appears to be highly effec-
tive and renders intensification superfluous, because intensification does not
lead to an improvement in all five cases. Therefore, only diversification is used.

5.4.2 Comparison with other methods

Table 5.8 show the results for all runs with all three data sets, including
the runs performed with the SA and GA based methods. Table 5.9 shows the
number of regions each method has examined. It can be seen that all tested
wavelength selection methods are able to increase the predictive abilities of
PLS models. It can also be seen that the simple heuristic methods backward
elimination and forward selection perform poorly. The resulting RMSEP val-
ues are higher and the coverage of the search space is also less.

Implementations of GA, SA and Tabu Search with a variable number of
wavelengths show comparable results with respect to RMSEP values, espe-
cially for the wheat and floodplains data set. The results for the gasoline data
set show some variations. Comparing results between all three methods is
somewhat complicated. Not all methods come up with the same number of
selected wavelengths and latent variables. Tabu Search selects the most wave-
lengths, but uses a smaller number of latent variables. This might indicate a
suboptimal solution. When a smaller number of latent variables is preferable,
Tabu Search has a slight advantage, if absolute predictive values are important
SA scores better.

When applying Tabu Search, the coverage of the search space is high for
the gasoline and wheat data set but the coverage of the floodplains data set is
lower than for SA and GA’s based methods. This is probably due to the large
number of selected wavelengths, which makes it difficult to move from one
region to another when only changing one wavelength. Coverage for backward
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Table 5.8: The results of the different wavelength selection methods. WL indicates
the number of wavelengths present in the solution. LV indicate the number of latent
variables.

Method Gasoline Wheat Floodplains
RMSEP WL LV RMSEP WL LV RMSEP WL LV

All wavelengths 6.88e-1a 301 4 7.84e-1 350 7 2.18 350 5

Stochastic methods

Backward elimination 2.21e-1 181 8 6.14e-1 161 7 1.60 77 3
Forward selection 1.54e-1 29 7 4.72e-1 13 10 1.59 42 3

Implementations with a variable number of wavelengths

GA 4.54e-2 30 6 3.37e-1 35 11 1.54 8 3
SA 3.33e-2 33 7 3.15e-1 21 12 1.55 6 3
Tabu Search 5.01e-2 38 5 3.19e-1 49 11 1.56 39 3

Implementations with a constant number of wavelengths

GA 7.15e-2 15 4 3.43e-1 15 9 1.48 15 4
SA 5.82e-2 15 5 3.33e-1 15 10 1.56 15 3
Tabu Search 5.70e-2 15 6 3.36e-1 15 12 1.55 15 3

GA 6.00e-2 30 5 3.33e-1 30 9 1.49 30 4
SA 4.06e-2 30 7 3.34e-1 30 10 1.63 30 3
Tabu Search 6.59e-2 30 7 3.41e-1 30 10 1.57 30 3

GA 7.59e-2 45 8 3.50e-1 45 9 1.49 45 4
SA 1.11e-1 45 7 3.47e-1 45 10 1.63 45 3
Tabu Search 6.03e-2 45 7 3.42e-1 45 11 1.58 45 3

aThe number of latent variables has been chosen visually as automated selection resulted in the

selection of one latent variable.

elimination is very low because with all wavelengths selected in the initial
solution, it is difficult to deselect all wavelengths in a bin, which is necessary
for changing the bitstring.

The implementations with a constant number of wavelengths show a some-
what different trend. Tabu Search is able to build models which usually have
slightly higher predictive abilities, especially for the gasoline and wheat data
sets. Again, the largest deviations can be found with the gasoline data set,
whereas the results obtained with the wheat and the floodplains data set are
more homogeneous. For all three methods, results deteriorate somewhat when
solutions are forced to contain more wavelengths. The coverage of the search
space shows some trends when keeping the number of wavelengths constant
in a solution. GA’s usually have the higher coverage, followed by SA and
Tabu Search. This reflects the degree of randomness is each method. Where
GA’s are able to take large steps in the search space, this ability is somewhat
reduced in SA and in Tabu Search this is highly structured. Nevertheless, so-
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Table 5.9: Coverage of the solution space by the different methods.

Method Gasoline Wheat Floodplains

Regions Regions Regions

Stochastic methods

Backward elimination 1 1 1

Forward selection 78 63 68

Implementations with a variable number of wavelengths

GA 202 161 873

SA 226 219 656

Tabu Search 334 362 413

Implementations with a constant number of wavelengthsa

GA(15) 702 725 743

SA(15) 301 440 876

Tabu Search(15) 394 279 376

GA(30) 141 207 356

SA(30) 106 125 196

Tabu Search(30) 48 64 142

GA(45) 26 57 248

SA(45) 40 59 71

Tabu Search(45) 12 22 72

aNumber between brackets indicate which number of wavelengths in a solution is kept con-

stant.

lutions obtained with Tabu Search perform equally well and sometimes better
as obtained with GA’s and SA.

Figure 5.5 shows the selected wavelengths in the best solutions obtained
with the SA, GA’s and Tabu Search based methods for each data set. When
looking at wavelengths which are selected by the different methods in the best
solutions, there is great overlap. Wavelengths selected in the gasoline data set
can be found more or less throughout the spectrum, but for the wheat and
even more for the floodplains data set, specific regions of selected wavelengths
can be identified. In these cases, wavelengths from specific regions contain the
most valuable information. For the wheat and floodplains data set, differences
in the positions of selected wavelengths in the best solutions between the
replicate runs were small. For the gasoline data set these differences were
slightly larger. As wavelengths near each other are often highly correlated,
small differences have only small effects on the predictive ability of models. Of
all three optimisation methods, replicate runs with different starting solutions,
performed with GA’s and Tabu Search have a higher reproducibility. An
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example of this is shown in Figure 5.6. In contrast to GA’s and Tabu Search,
it would appear that SA is easier caught in a local optimum.

The gasoline and wheat data set have also originally been used for demon-
strating the possibilities of wavelength selection with GA’s [10]. When com-
paring the results from [10] and our findings, selected wavelengths and RMSEP
values differ at some points. These differences are likely to be caused by the
differences in evaluation functions and the number of latent variables which
may have been used. In this paper, for each solution, a different number of
latent variables is calculated with leave-p-out crossvalidation, while Ref. [10]
used a constant number.

In this paper, data sets have not been preprocessed before wavelength
selection and PLS modelling. It is very likely that spectral preprocessing
would increase the predictive abilities of the models. It is also very likely
that the beneficial effects of preprocessing will be the same for the different
types of wavelength selection techniques, so this has been left out in this work.
To obtain the best possible predictive models, spectral preprocessing can be
recommended.

5.5 Conclusion

This paper shows the potential and an implementation for wavelength se-
lection with Tabu Search. Tabu Search is a relatively new method in analytical
chemistry, and in contrast to SA and GA’s it is not probabilistic but deter-
ministic. As a consequence it will always come up with the same best solution,
if it is provided with the same starting solution.

Wavelength selection is a much used procedure for easily increasing the
predictive ability of models. Even simple heuristic methods are able to im-
prove models. However, better improvements are obtained by using more
sophisticated methods like SA, GA’s and Tabu Search. It is demonstrated
that the implementation described here, yields results as good as those ob-
tained by other well established methods like SA and GA’s. Configuring the
parameters of Tabu Search, or meta-optimising, is no difficult task. It can be
done with an experimental design, or if some experience is present with trial
and error. The intensification and diversification approaches applied in this
paper are valuable extensions of Tabu Search.

It is possible to use Tabu Search for locating solutions with a variable
and constant number of wavelengths. In general, results are better when the
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Figure 5.5: Selected wavelengths in the best solutions obtained with wavelength
selection methods based on SA, GA’s and Tabu Search. The labels before the solutions
indicate which method was used: GA’s, SA or TS (Tabu Search), V or C indicate
variable or constant number of wavelengths. From the solutions with a different
constant number of wavelengths (15,30 or 45) only the one with the best RMSEP
values is shown.
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Figure 5.6: Results of five replicate runs, with different starting solution. Wave-
length selection is performed on the floodplains data set with SA, GA’s and Tabu
Search with a variable number of wavelengths.
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number of wavelengths is variable. Using Tabu Search with a variable number
of wavelengths, the coverage of the search space is usually better compared
with GA’s and SA. This can become important when more local minima exist
and it becomes harder to avoid getting trapped in them.

Tabu Search is a valuable alternative to SA and GA’s, especially in cases
where there is a clear definition possible of a neighbourhood of a solution.
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Chapter 6

A hybrid Genetic Algorithm -

Tabu Search Approach for

Optimising Multilayer Optical

Coatings

Constructing multilayer optical coatings (MOCs) is a difficult large-scale
optimisation problem due to the enormous size of the search space. In the
present paper, a new approach for designing MOCs is presented using genetic
algorithms (GA’s) and Tabu Search (TS). In this approach, it is not neces-
sary to specify how many layers will be present in a design, only a maximum
needs to be defined. As it is generally recognised that the existence of spe-
cific repeating blocks is beneficial for a design, a specific GA representation
of a design is used which promotes the occurrence of repeating blocks. So-
lutions found by GA’s are improved by a new refinement method, based on
TS, a global optimisation method which is loosely based on artificial intelli-
gence. The improvements are demonstrated by creating a visible transmitting
/ infrared reflecting filter with a wide variety of materials.

This chapter is published as: J.A. Hageman, R. Wehrens, H.A. van Sprang and L.M.C.

Buydens, A hybrid Genetic Algorithm - Tabu Search Approach for Optimising Multilayer

Optical Coatings, Analytica Chimica Acta, 490, 211-222, 2003
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6.1 Introduction

Multilayer optical coatings (MOCs) are coatings which consists of a stack of
thin layers of materials with differences in refractive indices [1]. Depending on
the total number of layers, the composition and thickness of each layer, a MOC
is able to reflect certain wavelengths while other wavelengths are transmitted
unhindered [1]. This property allows the design of filters with specific spectral
characteristics. An important use of MOCs is the use as a visible transmitting
/ infrared reflecting filter applied on halogen lamps. These types of filters
increase the efficiency of halogen lamps by reflecting the infrared radiation,
emitted by the filament, back to the filament for re-absorption and possible
re-emission in the visible wavelength range. Energy losses due to energy being
radiated in the infrared region are of the order of 80% for a halogenlamp
operating at 2800K but with the use of this type of filters, these losses can be
reduced [2]. The synthesis of a visible transmitting / infrared reflecting filter
has been the subject of a contest in 1996 [3].

Designing MOCs, or determining the optimal number of layers as well as
the composition and thicknesses of each layer, is an elaborate optimisation
problem, especially when considering that using state of the art deposition
techniques, coatings can be made up of 75 or even more layers and a number
of different materials can be used.

Several methods are available for designing MOCs. They can roughly
be divided into two categories: refinement methods and synthesis methods
[4]. Refinement methods need a starting design which should be close to the
optimal design, otherwise no good results are obtained. These methods usually
modify the thicknesses of the layers but do not influence the total number or
the sequence of the layers. Synthesis methods are more general. They create
a promising design without a starting design. This promising design can be
refined afterwards.

A recent development for designing MOCs is the introduction of Genetic
Algorithms (GAs) [5]. The GA-based method can be classified as a synthesis
method, as GA’s do not require a starting design. By using GAs, a 90%
rejection filter [5,6], a nonpolarising edge filter [7], an antireflection filter [6,7]
and a beam splitter [6] were designed by Martin et al [5–7]. These filters were
designed for the wavelength range of 200 until 600 nm.

This paper introduces several improvements for designing MOCs with GAs,
allowing for the design of more complex filters for a larger wavelength range. In
this method, only the maximum number of layers is specified. The algorithm
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will decide how many layers are optimal. As it is generally recognised that
the existence of specific repeating blocks can be beneficial for a design, a
special GA representation of a design is used, which promotes the occurrence
of repeating blocks. Solutions found by GA’s are improved by a new refinement
method, based on Tabu Search (TS), a global optimisation method which is
loosely based on artificial intelligence. The improvements are demonstrated
by creating a visible transmitting / infrared reflecting filter with various sets
of materials. However, as this is a general system, it is possible to design a
multitude of different MOCs.

6.2 Theory

6.2.1 Genetic Algorithms

GA’s are a special class of global optimisers, based on the theory of evo-
lution. A GA is able to minimise (or maximise) a function G(x), where x
represents a parameter vector, by searching the parameter space of x for the
optimal solution [8, 9]. GA’s do not operate on a single trial solution, but on
a group of solutions, called a population. A solution, which is called a string,
is a vector of all parameters which are to be optimised. Using evolutionary
inspired operators such as fitness, crossover and mutation, the best solutions
are modified and passed on to the next generation. In this way, the population
as a whole moves towards better solutions, ideally to the global optimum. For
a better understanding of GA’s the reader is referred to [9, 10].

Representation

A trial solution, containing values of all parameters that are to be opti-
mised, can be represented by a vector of bits, real values or integers. A design
consisting of p layers is completely described by a vector, one half containing
the thicknesses of each layer t = (t1, ..., tp) and one half containing the type of
material per layer m = (m1, ..., mp). Therefore, the search space for designing
MOCs consists of real values for the thicknesses and integer values indicating
what type of material is used for each layer. Figure 6.1 shows a schematic of
the representation used in the GA. This is also the representation used in the
work of Martin et al [5–7]. In addition, a few improvements are introduced. If
a solution is to be found with three types of material, these types are indicated
by 1,2 and 3. The first major improvement is the introduction of a zero-type
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Figure 6.1: Example of the representation of a design with a maximum of eight
layers in GA’s. The representation is a mixture of real values for the thicknesses (t)
and integer values for the material types (m).

material in the representation. When the material type is zero, a layer will
have no material assigned to it and it will not be used in the design. In this
way, the number of layers in a design is flexible, and the GA can decide how
many layers actually will be present in a design. Only the maximum number
of layers has to be specified. After applying the GA operators to a string, a
cleanup and back coding of this string is performed. This is a consequence
of using the zero-type material. An example of the cleanup process and the
back coding is shown in figure 6.2. Two adjacent layers with identical mate-
rial types are combined into one thicker layer and layers with a zero material
type are removed. After this cleanup, each design is coded back to the GA
string. A further essential improvement is that the representation for a design
is not coded back starting at position zero in the GA string, but at a random
position. In this way, the representation of a design can move across the com-
plete string in the GA and is not only located at the first part of a string.
When applying the crossover operator during a GA run, it is now possible to
copy complete blocks from one string to another. After applying a number of
crossover operators, it is possible that, within one string, a block is repeated.
The repeated occurrence of specific blocks is considered beneficial for the per-
formance of a design. Layers in the beginning or end in the GA representation
which are not used, are given a zero material type. At the beginning of a GA
run, the first generation is seeded with small designs. These design have only
a few layers with a material index other than zero. Positions in a string which
are not used are given material type zero.

Evaluation Function

The quality of a solution is given by the fitness value, which is calculated
by the evaluation function. The fitness value is used by the GA to discriminate
between good and not so good designs, so it can select accordingly. For optical
filters, the fitness of a design is determined by calculating the corresponding
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Figure 6.2: Example of the cleanup process of a string and of putting the cleaned
up design back to the string. A random offset (in the example six is used) determines
the position were the design is put back. Empty places in the lower string are filled
with zeros, but these are omitted for clarity.

transmission spectrum using the matrix formalism [1, 11]. This spectrum is
compared with a target transmission spectrum by using evaluation function
F , which sums the differences between the intensities of the calculated trans-
mission spectrum, indicated by T (λ), and the target transmission spectrum,
indicated by τ(λ), as shown in Eq. 6.1:

F =
λ=λmax∑
λ=λmin

| τ(λ) − T (λ) | ·W (λ)
N

(6.1)

The differences in intensities are multiplied by a weighting factor W (λ) to
stress the relative importance of some areas over others. N indicates the
number of wavelengths in the transmission spectrum. The resulting evaluation
value F is minimised by the GA. By changing the target transmission spectrum
τ(λ) it is possible to construct filters with specific properties. The target
spectrum, in combination with a set of weights, determines what kind of filter
is designed. Figure 6.3 gives a few examples of target spectra, corresponding
to a beam splitter, a visible reflecting / IR transmitting and a 90% rejection
filter.

6.2.2 Refinement with Tabu Search

GA’s are able to locate promising regions for global optima in a search
space, but sometimes have difficulty finding the exact minimum of this optima
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Figure 6.3: Examples of different target spectra for the construction of filters with
different characteristics. Left figure shows the target spectrum for a beam splitter,
the middle figure for a visible reflecting/ IR transmitting filter, the right figure shows
a 90% rejection band filter.
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Figure 6.4: General flowchart of the Tabu Search algorithm.

[9]. Especially since the search space for constructing a visible transmitting /
infrared reflecting filter is very large, it is likely that designs found by GA’s can
still be improved. Several examples are known from literature where a solution,
obtained by GA’s, are improved by a second optimisation method [12–14]. In
this paper, a new procedure, based on Tabu Search (TS), is used to refine
the designs. Where GA’s are inspired by the process of evolution and work
on a group of solutions at a time, TS is based on concepts from artificial
intelligence and operates on a single solution at a time [15]. TS uses basic,
problem-specific operators to explore a search space and memory (which is
called the tabu list) to keep track of parts already visited. By guiding the
optimisation to new areas, TS is able to overcome local minima and hopefully
reach the global optimum. Refining MOCs with local optimisers could easily
yield poor results, since the search space is very complex and consists of many
local optima in which a local optimisers would get stuck. The foundations for
TS were laid out in the late 1970’s by Glover and the principles were described
in general terms in 1989 and 1990 by Glover [16–18]. In recent years, tutorials
documenting successes accomplished with TS have been published [15,18,19].
The framework of TS consists of several steps which are described below and
depicted in Figure 6.4.

1. Initialisation: a starting design s is chosen. For the construction of
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simple filters, this starting design can be chosen randomly. Here, the
best result from the GA is used.

2. Neighbourhood exploration: all possible neighbours of design s are gen-
erated and evaluated. A neighbour is a design which can be reached
from the current design by a simple, basic transformation of this current
design. Two neighbouring designs resemble each other closely. For re-
finement of MOCs, the sequence of materials will be kept as it resulted
from the GA run and only the thicknesses of the layers will be adjusted.
Each thickness in turn can be adjusted by adding or subtracting a small
random value. So during one iteration, 2p neighbours have to be evalu-
ated for a design with p layers.

3. Choose a new non-tabu design: a new design is chosen from the explored
neighbourhood. This design has the best fitness value from all neigh-
bours and is not in the tabu list. The tabu list keeps track of previously
explored designs and prohibits TS from revisiting them again. Thus, if
the best neighbouring design is worse than the current design, TS will
go uphill. In this way, local minima can be overcome. Instead of storing
previously explored designs, it is also possible to store moves (changes
to previous designs). Any reversal of these moves is then tabu, and they
will remain so for a prespecified number of iterations.

4. Stop: If no more neighbours are present (all are tabu), or when during
a predetermined number of iterations no improvements are found, the
algorithm stops. Otherwise, the algorithm continues with step 2.

6.3 Experimental

The left part of figure 6.5 shows the target requirements for a visible trans-
mitting/infrared reflecting filter, viz. 100% transmission in the visible wave-
length range and zero transmission in the infrared region. In the evaluation
function, a weight of 5.0 is given to the visible wavelength range, as it is im-
portant that the transmission is as high as possible. For the infrared range,
the weights are determined differently because the spectral power distribution
of a tungsten coil is not constant in the IR range [2]. To emphasise areas
which have more output, the wavelengths in the IR range are weighted with
the coefficients of a black body radiator at 3000K. All weights are shown in
the right part of figure 6.5. Transmission spectra were calculated from 380 nm
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Figure 6.5: Target spectrum (left) and weights (right) for the visible transmit-
ting/infrared reflecting filter problem.

to 2000 nm with a total of 200 datapoints. The sampling rate for calculating
the transmission spectra was 5 nm in the visible wavelength range and 10 nm
in the infrared range.

Several visible transmitting/ infrared reflecting filters were constructed us-
ing four different combinations of materials. A combination consists of a mate-
rial with a low refractive index (SiO2, for instance) and a high refractive index
(rutile TiO2 or SiC, for instance). The choice of materials greatly influences
the quality of the filters after optimisation. To demonstrate the influence of
the number and the properties of the materials and the ability of the GA-TS
approach, several combinations of materials are tested. The combinations are
shown in table 6.1 and described below:

1. Combination I consists of SiO2 and Nb2O5. These materials are cur-
rently in use for sputtering visible transmitting/infrared reflecting filters.

2. Combination II consists of SiO2, ZrO2, and rutile TiO2. Currently, fil-
ters are used which are based on two materials (as in combination I).
However, in the future filters based on three different materials will be
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used, as it is expected that with three different materials more efficient
filters can be constructed [11]. The combination of materials is chosen
in such a way that the refractive indices are ideal for a three material
system. As a rule of thumb, when the refractive index of the interme-
diate material equals the square root of the product of the refractive
indices of the other two materials, the refractive indices are considered
optimal [11]. Both the dispersive and absorbing properties of the ma-
terials in combinations I and II have been taken into account, which is
closest to reality.

3. The materials in combination III are identical to combination II. How-
ever, in this combination nonabsorbing properties have been assumed
for all materials. Assuming nonabsorbing properties, is forcing the ma-
terials to behave more ideally. This should have a positive effect on the
resulting filter and demonstrates the negative influence of the absorptive
properties and thus the need for nonabsorbing materials.

4. Combination IV consists of MgF2, ZrO2 and SiC. Again, this is a three
material system which is expected to perform very well. It represents the
case were the properties of materials are ideal (nondispersive and nonab-
sorbing). In this case the materials also span a wide range of refractive
indices. Using materials which span a wide range in refractive indices
is considered beneficial for the construction of a visible transmitting/
infrared reflecting filter [2]. The refractive index of the intermediate ma-
terial (ZrO2) has, just as in combination II and III, the ideal value in
combination with MgF2 and SiC.

The wavelength dependencies of the refractive indices for the materials are
shown in figure 6.6. For all combinations, the incident medium was air, normal
incidence was assumed and glass was used as a substrate.

The optimal search settings of the GA and TS were determined based on
previous experience and by trial and error. The settings are shown in table
6.2 and table 6.3. The maximum number of layers was set to 60. The initial
population was seeded with designs which contained a maximum of 6 layers,
with thicknesses ranging from 10 to 75 nm. During a run, the lower limit for
the thickness of a layer was set to 10 nm, while there was no upper limit.

All software was programmed in ANSI-C. GA calculations were performed
using the GA library PGAPack, version 1.0 [20]. TS was programmed from
scratch. Calculations were performed on a Sun-Ultra 10 running at 440 MHz.
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Table 6.1: The materials used in each combination with refractive indices at 550
nm.

Comb nlow nint nhigh Properties

I SiO2 1.46 - Nb2O5 2.34 dispersive/absorbing

II SiO2 1.46 ZrO2 2.06 rutile TiO2 2.74 dispersive/absorbing

III SiO2 1.46 ZrO2 2.06 rutile TiO2 2.74 dispersive/nonabsorbing

IV MgF2 1.35 ZrO2 2.00 SiC 2.60 nondisp/nonabsorbing
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Figure 6.6: Refractive indices for the material types.
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Table 6.2: Settings used for GA optimisation.

Setting Value
Number of generations 250
Population size 600
Elitism 50
Crossover type two-point
Crossover probability 0.7
Mutation type Gaussian distribution with zero mean

and standard deviation of 0.4
Mutation probability 0.05
Selection type tournament selection
Fitness type Raw

Table 6.3: Settings used in the TS-refinement of layer thicknesses in GA-generated
designs.

Setting Value

Stepsize Random value within [0...5] nm

Length of tabu list 20 iterations

Number of iterations without improvement 50
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Runtimes were in the order of 15 minutes per run. The GA runs were repeated
with different random seeds to exclude any negative effects of the random
starting population. At the end of a GA run, only designs which have a
transmission average of over 96.5 % in the visible range are considered. An
average below 96.5% is considered too low to yield an effective filter.

6.4 Results and Discussion

The left parts of figures 6.7, 6.8, 6.9 and 6.10 show the best transmission
spectra after applying the GA method and refinement with TS when using the
combinations of materials from table 6.1. In each of these figures, the dashed
line indicates the target spectrum. Table 6.4 contains the characteristics of all
four spectra. In figure 6.7, the dotted line indicates a transmission spectrum
of a filter which is currently used on halogen lamps. This reference design
uses the materials of combination I, consists of 47 layers and was created
by refinement of a stack of blocks which influence different spectral ranges.
The number of layers was kept constant during the design of this reference
filter. The design located with GA’s transmits an equal amount of radiation
in the visible region but is able to reflect 7% more radiation in the IR range.
The right parts of figures 6.7, 6.8, 6.9 and 6.10 show the composition of each
design together with the thicknesses per layer in nm. All GA-runs start with
completely random designs of only a few layers, but in the end, the best designs
show a high degree of repetition, like one would expect when using analytical
methods for filter design. Apparently, the GA-TS approach mimics the results
of analytical methods.

When comparing the transmission spectra obtained with combination I
and combination II, the results are better for combination II wich has three
materials. The reflective properties for combination II in the IR range are
good. However, mainly due to the absortance of rutile TiO2 in the visible
wavelength range, wavelenghts near 400 nm are absorbed by the filter, as
shown in figure 6.8. A lamp coated with a filter based on this design will
not be color neutral and will have limited applicability. Restricting the use
of rutile TiO2 improved the performance in the visible wavelength range, but
deteriorated the performance of the IR wavelength range considerably. In
combination III, nonabsorbtivity of all materials has been assumed. Immedi-
ately, results increased in quality, as the best transmission spectrum, shown
in figure 6.9, greatly improves.
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Figure 6.7: Transmission spectrum (left, solid line) and the thicknesses for each
layer (right figure) for the design with combination I. In the left figure, the target
spectrum is shown with the dashed line, the dotted line is the transmission spectrum
of a reference filter which is actually used on halogen lamps. In the right figure: black
indicates SiO2, grey indicates Nb2O5.

The best results are obtained with combination IV in table 6.1, where both
materials have nondispersive and nonabsorbing properties. In this example,
transmission averages in both the visible and IR wavelength ranges have ex-
cellent properties. When using nondispersive and nonabsorbing materials for
filter design, the problem is somewhat simplified which leads to a simpler
search space and, subsequently, to the location of better solutions.

The use of more than three materials yielded no better designs. As the GA
is capable of selecting the materials, it often used mainly three materials when
four materials were offered. It seems more important that the three materials
span a reasonable range of refractive indices.

The number of layers is not constant during a GA run. Figure 6.11 shows
the number of layers in the best design of each generation for combination II
from table 6.1. In the beginning of a run, the best designs contains a very
small number of layers and during a run, this number steadily increases. It is
very likely that the best solution will contain a large number of layers (but still
below the maximum) since better designs can be created with more layers [11].

Refinement with TS is a worthwhile process as all designs optimised with



6.4 Results and Discussion 137

Figure 6.8: Transmission spectrum (left, solid line) and the thicknesses for each
layer (right figure) for the design with combination II. In the left figure, the target
spectrum is shown with the dashed line. In the right figure: black indicates SiO2,
dark grey indicates ZrO2, light grey indicates rutile TiO2.

Figure 6.9: Transmission spectrum (left, solid line) and the thicknesses for each
layer (right figure) for the design with combination III. In the left figure, the target
spectrum is shown with the dashed line. In the right figure: black indicates SiO2,
dark grey indicates ZrO2, light grey rutile TiO2.
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Figure 6.10: Transmission spectrum (left, solid line) and the thicknesses for each
layer (right figure) for the design with combination IV. In the left figure, the target
spectrum is shown with the dashed line, the dotted line indicates the transmission
spectrum after the GA-run but before the TS refinement. In the right figure: black
indicates MgF2, dark gray indicates ZrO2, light gray indicates SiC.

Table 6.4: Average transmittances for the visible and IR wavelength range for each
combination of materials from table 6.1, together with the number of layers, physical
thickness and measure of improvement for refinement with TS and the number of TS
iterations.

Combination Visible IR Layers Thickness TS impr TS iter

I 96.6 22.1 49 4690 nm 11% 277

Ref MOC Fig.6.7 96.5 29.4 47 3718 nm

II 93.5 4.8 57 5421 nm 22% 409

III 99.5 4.2 59 5056 nm 52% 375

IV 99.4 2.2 52 4690 nm 56% 754
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GAs could still be improved by TS. GA’s are able to locate promising designs,
but lack a certain precision to obtain the exact (global or local) minimum.
This minimum is obtained by refinement with TS.

The improvements in evaluation value F for all four combinations are
shown in table 6.4 and range from 11% to 56%. The main improvements
in the transmission spectra for all four combinations are located in the IR
range. The visible range usually performs well after the GA optimisation.
The largest improvement (56%) can be found for combination IV. In the left
part of figure 6.10, the best design obtained with the GA is shown with the
dotted line. After refinement with TS (shown with the solid line), the trans-
mission spectrum clearly shows improvement, mainly reached by the decrease
of the large transmission peak around 900 nm. The number of iterations for
the TS refinement varies somehow, the minimum being 277 (combination I),
the maximum being 754 iterations (combination IV).

In this approach, TS is used for refining designs which were obtained with
GA’s. However, designing simple filters without a good starting point is also
possible with TS. When using two materials, an alternating sequence of mate-
rials is used. When using more than two materials, the sequence of materials
also needs to be optimised. If the sequence has to be optimised with TS, it
is necessary to determine operators which modify the material type of a layer
when a neighbourhood is explored. However, in the approach demonstrated
here, it is shown that GA’s are very well able to establish a good sequence of
materials with reasonable values for the thicknesses. These thicknesses can be
refined with TS with good results.

It is unknown how the filters, optimised in this paper, will perform when
implemented. Since small errors in the deposition of layers could change the
characteristics, some changes could be expected. It is possible to create filters
which are more robust against small deviations in thicknesses. To asses the
influence of these deviations, filters can be evaluated multiple times while
some random deviations to the layers thicknesses are added. Filters which are
sensitive to these deviations while deteriorate more and get a lower evaluation
value. In the end, the obtained filter will more robust.

It is also possible to perform the TS refinement during a GA run and refine
the members of the GA population at each generation. It might be possible,
due to synergetic effects, that better solutions might be obtained. However,
calculation times would become too long and this makes any practical appli-
cation virtually impossible.

The transmission spectra obtained with the GA-TS method for construct-
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ing a visible transmitting / IR reflecting filter, cannot directly be compared
with results from the contest [3]. The contest used different materials, a dif-
ferent evaluation function which also took into account the number of layers
while the wavelength ranges between 380-400 and 720-750 were left out. How-
ever, these wavelengths are crucial for some real-world applications, such as
the halogen lamp filters. Furthermore, it was not necessary to penalise larger
designs compared to smaller designs because in our approach only a maximum
number of layers was important.

6.5 Conclusion

As a typical design for a MOC can contain up to 75 layers, each with
their own thickness and material type, the search space for creating MOCs is
enormous, which makes constructing MOCs a difficult optimisation process.

In this paper, several improvements are introduced for optimising MOCs
with GA’s. Firstly, the representation employed, including a zero-type ma-
terial, makes it unnecessary to specify beforehand how many layers will be
present in a design. The algorithm can decide this, which is very efficient.
Secondly, the special cleanup of the GA representation of a MOC and subse-
quently back coding at a random position makes it possible, by applying the
crossover operator, to copy complete blocks from one design to another design
at any position. The repeated occurrence of blocks is considered beneficial for
the performance of MOCs. Finally, GA’s are able to locate promising designs,
but lack a certain precision. Designs optimised with GA’s, are refined by a
new refinement method, based on TS. TS refinement leads to improvements
in the range of 10 - 50% for the examples shown in this paper.

All the improvements are demonstrated by the creation of a visible trans-
mitting / infrared reflecting filter using several combinations of materials. The
choice and number of materials influences the quality of the best designs. As
expected, the use of three materials yielded better designs compared to the
use of two materials. Using dispersive and absorbing materials make it harder
to obtain a good filter, for instance in combination II where the specific ab-
sorbance of rutile TiO2 is a problem. Using nondispersive and nonabsorbing
materials yield good filters by simplifying the problem. This also stresses the
importance of the use of materials with the correct properties. Three mate-
rials, with no or a minimum of absorbing or dispersive properties and a large
difference between the lowest and highest refractive index, while the third
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has an intermediate value, seems to work the best. As this is a very general
method, it is possible to design a multitude of different MOCs.
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Chapter 7

Conclusions and future

research

7.1 Conclusions

SA, GA’s and TS are global optimisation techniques. All three methods
are able to optimise a cost function F (x) by searching the parameters space of
x for the optimal combination of x. All three methods should perform equally
well, however, given their characteristics, one method could be more suitable
than others for a given problem.

In this section, the conclusions of the research presented in this thesis in
relation to the question posed in section 1.4, will be discussed.

7.2 Evaluation function

7.2.1 Parameter optimisation

An evaluation function is an important part of all three optimisation algo-
rithms. It determines the shape of the search landscape and greatly influences
the chance of finding the global optimum. This thesis investigated a specific
type of evaluation function, a criterion which determines the (dis)similarity
between two spectra (e.g. an experimental and a theoretical one). An evalu-
ation function of this type can be encountered in the parameter optimisation
class. Traditional comparison methods, which are based on pointwise com-
parisons between the two states, often fail in the presence of shifted peaks.
This is clearly demonstrated in chapters 3 and 4. Both applications are exam-



146 Conclusions and future research

ples where a correct comparison between experimental and theoretical states
is crucial. When peaks do not completely overlap anymore, a point wise com-
parison reveals no information on similarity. This effect is only strengthened
by the comparison of the position of peaks without line widths in chapter 4.

The newly developed weighted crosscorrelation (WCC), as introduced in
chapter 2, overcomes the drawbacks of traditional comparison methods. By
taking the neighbourhood of peaks into account, the presence of shifted peaks
is detected and can be taken into account when calculating the (dis)similarity.
The use of the WCC function proved to be critical for the analysis of rota-
tionally resolved spectra (chapter 3) and for the indexing of powder patterns
(chapter 4). In these cases, an ordinary comparison function yielded no re-
sults, because of the possibility of shifting peaks after small adjustments in
the optimisation parameters.

7.2.2 The use of error landscapes

The influence of changes to the evaluation function can be spotted at fore-
hand by visualising the error landscape. It is not straightforward to visualise
an error landscape for every optimisation problem. However, visualising the
effects of changes to the parameters of parameter optimisation problems is
simple. By varying two parameters in a grid like manner while keeping the
others constant, calculating the response values gives the error landscape. A
2D error landscape cannot show the changes as they would appear in a mul-
tidimensional error landscape, but still it will demonstrate trends. This is
clearly demonstrated in figure 3.2 in chapter 3. In this way, any influence
can be judged before, rather than after numerous experiments. These exper-
iments can then be used for other purposes, e.g. an experimental design for
optimising the meta-parameters.

In the case of including the neighbourhood of peaks in a comparison, this
leads to a decrease in the number of local optima and a widened and smoothed
global optimum. These effects are beneficial for optimisation in general. This
shows that it is important to know the characteristics (e.g. the possible exis-
tence of shifting peaks) of an optimisation problem, so an evaluation function
can be devised which is able to deal with it properly.

7.2.3 Variable selection

The evaluation function used in the wavelength selection application (chap-
ter 5) is less complicated, compared to the previous examples, but nevertheless
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requires attention. The use of PLS requires the calculation of the number of
latent variables which need to be done correctly since the use of too many la-
tent variables can lead to overfitting. In our work, we used leave-m-out cross
validation to determine the number of latent variables, with m being a number
(4 or 5) which divided the training set into roughly 15-20 groups. By leav-
ing multiple observations out, overfitting was avoided, something what easily
happens when using leaving-one-out crossvalidation [1, 2].

7.3 Tabu Search in relation with SA and GA’s

TS is a relatively new technique, especially within chemometrics but with
equal possibilities compared with SA and GA’s. In contrast to SA and GA’s,
TS is deterministic, which means that given a starting solution, it will always
come up with the same end solution. This makes replicate runs unnecessary.
However, when TS is started with a random solution, the probabilistic nature
of SA and GA’s is also introduced in TS.

SA and TS are both methods that can be started with a single starting
solution, unlike GA’s which need a group of starting solutions. SA and TS
can therefore be used to refine a single solution. When used as a refinement
method, SA and TS use a suboptimal solution as a starting solution. This
suboptimal solution can be the end result of another method. An example is
the construction of a infrared reflecting mirror as described in chapter 6. In
this case, TS uses the solution obtained by GA’s as a starting solution.

7.3.1 Characteristics of neighbourhood

TS carefully examines the neighbourhood of a current solution with a step
function. This step function can be identical to the one used in SA. To exam-
ine the neighbourhood, every single solution which can be reached from the
current solution, is generated and tested. This is an important difference with
SA, since SA just picks one single solution from the neighbourhood. When
designing a step function, it is important that the step function keeps the num-
ber of neighbours limited. Since all neighbours have to be examined in every
iteration, this part of the algorithm can easily make TS too slow in practice.
A good step function, keeps the numbers of neighbours minimal but is still
able to cover a lot of search space. The latter characteristic is also influenced
by the tabu list, as is discussed later on. If an optimisation problem has many



148 Conclusions and future research

parameters, changing only some of the parameters per iteration can help to
keep the number of possible neighbours at a minimum.

When an optimisation problem consists of integer variables, as in the case
of the wavelength selection problem (chapter 5), the examination of the neigh-
bourhood can be exact. In this case, the step function is the addition or re-
moval of a wavelength from the current solution. When the neighbourhood
of a solution consists of real variables (for instance in the case of parame-
ter optimisation problems), the examination of the neighbourhood uses some
discretisation step. A grid like approach could also be possible, but was not
investigated in this thesis. An example of a discretisation step can be found in
the refinement of multilayer optical coatings with TS (chapter 6). In this case,
the step function added small random values to the optimisable parameters to
explore their neighbourhood. Using a discretisation step introduces two draw-
backs. Firstly, randomness is added to the otherwise deterministic nature of
TS. Secondly, it now becomes possible when reaching the global minimum to
miss the exact minimum because of the random step size. These drawbacks
do not exist when an exact scan of the neighbourhood is possible.

7.3.2 Characteristics of tabu list

An aspect which is not encountered in SA or GA’s is the tabu list. The
tabu list is the memory of TS and prevents returning to previously visited
solutions. In this way, TS is able to overcome local minima. When the tabu
list is too short, TS will end up in a cycle and is not able to examine new parts
of the error landscape. When the tabu list is too long, checking solutions will
take longer than (perhaps) necessary. It is also possible that the exclusion
of parts of the search space (still present in the tabu list) will hinder TS by
finding the global minimum.

It is possible to store the exact solutions that have been encountered. How-
ever, when many parameters are involved, storing and checking the memory
of TS becomes a rather computer memory and computer intensive process. It
is also possible to store the steps which were necessary to create previously
visited solutions. The main advantage of storing steps, is that it takes less
memory and less time to find restricted solutions.
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7.4 Choice of optimisation algorithm

TS is very useful for optimisation problems where an exact definition of
the neighbourhood is possible. This is the case when dealing with optimisa-
tion problems defined by integers, for instance with problems from the subset
selection class (for example the wavelength selection problem in chapter 5).
When there is no clear definition of a neighbourhood of a solution, the use of
SA or GA’s seems more justified. The drawbacks of using a discretisation step
have no extra influence on SA, since this algorithm already has a probabilistic
nature. When it is difficult to define a step function which limits the number
of neighbours, TS can become a rather slow process. In that case, it might be
advantageous to use SA, since SA chooses one random neighbouring solution
rather than generate all first and pick one.

When forbidden areas in the search space can be expected, GA’s are a
more logical choice. An advantage of GA’s is that they do not need a user de-
fined step function, but this has only shifted the problem since the user has to
come up with a correct representation of the problem parameters. This repre-
sentation is very important and will determine the possibilities of optimisation
with GA’s. An example of an efficient GA representation is shown in chapter
6. In this representation, a zero material design was introduced which allows
for a flexible number of layers. The special cleanup of this representation after
each GA iteration demonstrates that the representation is not static but can
be changed at any moment.

7.5 Meta-optimisation of SA, GA’ and TS

Finding correct values for the meta-parameters of all three global optimi-
sation methods can be a tedious work. Especially when, at the same time, a
correct expression for the evaluation function has to be devised. In this thesis,
finding the settings for the meta-parameters was done by using an experimen-
tal design (chapter 5) or, when more experience is present, trial-and-error can
be used while using results from past experiments (chapters 3,4 and 6).

When developing an optimisation application, starting simple can help
clarify things. It can be useful to test an optimisation application by using
synthetic data. In this way, the influence of noise and other experimental arti-
facts is removed. When, in this case, the application fails, this can be ascribed
to the method and not to other (experimental) effects. The introduction of
different levels of noise also gives the opportunity to investigate the effects of
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deteriorated data on the optimisation method, which can help to discover the
limits of the method in terms of the experimental data. An example was given
in chapter 3.

By optimising only a few of all optimisable parameters (and keeping the
rest constant at the correct values), the influence of incorrect meta-parameters
diminishes somewhat, while the evaluation function remains as important as
before. In this way, it can be determined if the meta-parameters or perhaps
the evaluation function is the cause of a failure to produce good results.

7.6 Future research

7.6.1 The use of error landscapes

The development of the weighted cross correlation (WCC) was of
paramount importance for obtaining correct results when analysing LIF flu-
orescence spectra (chapter 3) and the indexing of powder patterns (chapter
4). By examining the search landscape, the influence of using the WCC cri-
terion instead of a point wise criterion could very well be visualised. The
search landscape also played an important role during the development of the
WCC criterion. In many areas of sciences, multi-dimensional error landscapes
(or sometimes called hypersurfaces) are encountered [3,4]. Understanding the
characteristics of error landscapes can facilitate in understanding and devel-
oping applications. An example is given in chapter 3. Changes to the WCC
criterion have a clear effect on the error landscape. Visualising these changes
can help understand how the method works. In this example, the visualisation
was done in 2D, but other possibilities exist. For instance, a plot in 1D or an
aspect of an error landscape(e.g. roughness) can simply be expressed in one
single number.

The visualisation of the search landscape can be an important tool for
the development of an evaluation function. In this thesis, error landscapes
were constructed by varying two parameters while keeping the other constant.
When dealing with a multiple parameter problem, this gives a limited impres-
sion of the error landscape. Nevertheless, in our cases it sufficed to demon-
strate the effects of changes to the evaluation function (see chapter 3). A
different way to visualise parts of a multi-dimensional error landscape would
be by taking a trajectory through the hypersurface by allowing changes to
all parameters simultaneously [5]. This method can be extended to a plane.
This method allows general trajectories through a multi-dimensional param-
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eter space in which the values of more than one variable are changed simul-
taneously. An advantage of this approach is that it is possible to show the
dependencies of more than two variables.

A interesting combination, which has not been made in this thesis, would
be the visualisation of the search trajectory of the global optimisation method
in combination with the error landscape [6]. Analysis could possibly aid in
finding correct settings for the meta-parameters and/or help devise a correct
step function in SA and TS. Alternatively, such a technique would allow the
visualisation of the quality criteria for evaluating the performance of optimi-
sation algorithms [7].

A future line of research in global optimisation methods should focus more
on the use of search landscapes. In this thesis, a visualisation has been made
only for problems from the parameter optimisation class. However, problems
from the variable selection and sequence optimisation class could benefit as
well from insights gained during the investigation of the search landscape.
The visualisation of the search landscapes from these problem classes is more
difficult and requires more research. Ultimately, an 1D or 2D impression of a
multi dimension search landscape would be ideal. A difficult challenge will be
the visualisation of a multi-dimensional error landscape.

7.6.2 One step structure elucidation from X-ray powder
diffraction patterns

The elucidation of crystal structures from X-ray powder diffraction data
can be divided into four steps [8]: (i) indexing of powder diffraction patterns
(determination of unit cell parameters), (ii) space group determination, (iii)
crystal structure solution (initial model) and (iv) crystal structure refinement
(final model). Traditional methods for solving crystal structures follow these
steps. Recent developments and improvements have mainly been focussed on
step (iii) [9–12], but the bottleneck for a complete structure elucidation via
this scheme is step (i). Chapter 4 describes a method based on GA’s and the
WCC for indexing powder patterns (step (i)).

Something which has not been investigated in this thesis, is a different ap-
proach for structure elucidation. When indexing has been unsuccessful, crystal
structure prediction methods [13] may still be able to predict a structure that
matches the experimental powder pattern. Crystal structure prediction relies
on knowledge of the contents of the unit cell and the use of force field cal-
culations. By varying the unit cell parameters (a, b, c, α, β and γ) and the
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parameters on the molecular structure (describing the location per (group of)
atom(s) in the unit cell), crystal structure prediction is able to optimises a
structure. Comparison of the patterns calculated with the predicted structure
and the experimental pattern determines whether the predicted structure was
correct. The unit cell parameters determine the location of the peaks while
the molecular structure parameters determine the intensity of the peaks. The
number of molecular structure parameters can be reduced by working with
molecular fragments and expressing their location in rotational and transla-
tional terms.

The principle of optimising model parameters and matching the output
to experimental data has been described in chapters 3 and 4. For such an
application to correctly work, a suitable optimisation algorithm and a suitable
evaluation function has to be found. In chapters 3 and 4, GA’s have been used
as optimisation technique, while the similarity between theory and experiment
was determined by the WCC. It is possible that a similar approach could
work for a one-step structure prediction from powder patterns. GA’s (or
other global optimisation techniques) can be used for optimising the unit cell
parameters and structural parameters, while the WCC determines the match
between theory and experiment. Since peak positions can easily shift after
small changes to the unit cell parameters, the WCC will still determine a
correct match between calculated and experimental pattern.

An advantage of this approach over the traditional method would be that
structure elucidation from powder patterns is now possible in one step while
using all the information present in a powder pattern a the same time. Practi-
cal problems such as peak overlap and peak picking will become less important
in such an approach, while other (such as impurities and zero shift) may re-
main a problem.
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Summary

The goal of chemometrics is to increase the information yield of chem-
ical data by applying tools from mathematics, statistics and computer sci-
ence. A specific group of chemometrical tools are the global optimisation al-
gorithms such as Simulated Annealing (SA), Genetic Algorithms (GA’s) and
Tabu Search (TS). These tools can be used for finding optimal parameters
for optimisation problems. Global optimisation algorithms are very useful
since optimisation problems are present in abundance in chemistry. In gen-
eral, optimisation problems can be divided into three categories, (i) parameter
optimisation, (ii) subset selection and (iii) sequence optimisation.

Unfortunately, the use of global optimisation methods is not straightfor-
ward, especially for the more difficult optimisation problems. Solutions have to
be found for items such as the evaluation function, representation, step func-
tion and meta-parameters, before any useful results can be obtained. This
thesis aims at investigating and improving the use of global optimisation al-
gorithms. In particular, this thesis will focus at three specific problems which
are associated with global optimisation. (1) It aims at finding a similarity
criterion which deals with the problem of correctly comparing spectra when
many shifted peaks are present and that can be used as an evaluation function
for optimisation purposes. (2) TS is a relatively new optimisation technique
with different characteristics compared to SA and GA’s. By implementing TS
to solve several chemical optimisation problems, this thesis investigates the
properties and the possibilities of TS. (3) Unfortunately, for all three meth-
ods, there exists no standard recipe on how or when to use SA, GA’s or TS.
By studying and solving several chemical optimisation problems, a third goal
is to detect guidelines on how and when to use global optimisation algorithms.

Chapter 2 describes a newly developed similarity criterion, the weighted
cross correlation (WCC). When comparing spectra which contain many shifted
peaks relative to each other, traditional methods often fail to recognise any
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similarity. The WCC criterion is able to deal with shifting peaks when com-
paring spectra or any other vector like data by including a comparison of the
neighbourhood of peaks. In chapter 2, the WCC criterion is applied to the
classification of crystal structures of cephalosporin complexes, based on the
comparison of their calculated powder diffraction patterns. Inclusion of the
neighbourhoods of peaks leads to a significant improvement of discriminating
power and in this way, makes it possible to recognise closely related structures.

Chapter 3 and 4 deal with optimisation problems which fall in (i) the
parameter optimisation category. Chapter 3 describes a new procedure for the
analysis of rotationally resolved fluorescence spectra based on GA’s. Chapter
4 describe a method for the indexing of powder diffraction patterns based
on GA’s and TS, respectively. In these cases, the success crucially depended
on the newly developed similarity criterion, the weighted cross correlation
(see chapter 2). The problem of a correct comparison of rotationally resolved
fluorescence spectra or the comparison of powder patterns is related to peak
shifts which are caused by small changes in the model parameters. To be able
to make a meaningful comparison, it is necessary to include a comparison of
the neighbourhood of a given point in the spectrum. This demonstrates that
a special tailor-made evaluation function is crucial to obtain any results.

Chapter 5 investigates the properties and possibilities of TS in chemomet-
rics by applying it to wavelength selection, a problem from (ii) the subset
selection category. In this class of problems, the goal is to select a small group
of variables from a large group. This subset usually has identical properties
compared to the original, larger group of variables or performs even better.
TS is a deterministic, global optimisation technique loosely based on concepts
from artificial intelligence. TS uses basic, problem-specific operators to explore
a search space. TS stores solutions in memory to keep track of parts already
visited. Several implementational aspects of wavelength selection with TS are
discussed. Several intensification and diversification approaches are applied
and are shown to be valuable extensions of TS. It is possible to use TS for
locating solutions with a variable and constant number of wavelengths. It is
demonstrated with three real world data sets, that TS performs equally well
and can be a valuable alternative to SA and GA’s, especially in cases where
there is a clear definition of a neighbourhood of a solution.

Chapter 6 deals with a problem from (iii) the sequence optimisation cat-
egory. In this chapter, GA’s and TS are used for constructing multilayer
optical coatings (MOCs). MOCs are coatings which consists of a stack of thin
layers of materials with differences in refractive indices. Depending on the
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total number of layers, the composition and thickness of each layer, a MOC
is able to reflect certain wavelengths while other wavelengths are transmitted
unhindered. Constructing multilayer optical coatings (MOCs) is a difficult
large-scale optimisation problem due to the enormous size of the search space.
The approach described in chapter 6 makes it unnecessary to specify at fore-
hand the total number of layers. A special GA representation is used which
allows specific blocks to be copied from one solution to another. This ap-
proach promotes the occurrence of repeating blocks which is beneficial for the
performance. Solutions which are found by the GA approach are refined by a
new refinement method based on TS. The improvements are demonstrated by
creating a visible transmitting / infrared reflecting filter with a wide variety
of materials.

Some conclusions and ideas for future research are given in chapter 7.
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Samenvatting

Het doel van chemometrie is het verhogen van de informatie opbrengst van
chemische data door de toepassing van technieken uit de wiskunde, statistiek
en informatica. Een specifieke groep technieken zijn de globale optimalisatie
algoritmen zoals Simulated Annealing (SA), Genetische Algoritmen (GA’s)
en Tabu Search (TS). Door het gebruik van deze algoritmen is het mogelijk
om optimale instellingen voor optimalisatie problemen te vinden. Globale op-
timalisatie algoritmen zijn zeer nuttig voor chemici aangezien optimalisatie
problemen in overvloed binnen de scheikunde aanwezig zijn. Optimalisatie
problemen kunnen in drie categorieën worden verdeeld, (i) parameter opti-
malisatie, (ii) subset selectie en (iii) volgorde optimalisatie.

Het gebruik van globale optimalisatie methoden is niet zonder problemen,
zeker niet voor de wat moeilijkere optimalisatie vraagstukken. De evalu-
atiefunctie, de representatie van het probleem, de stap functie en de meta-
parameters zijn onderdelen van de algoritmes die eerst gekozen moeten wor-
den, voordat nuttige resultaten geboekt kunnen worden. Dit proefschrift on-
derzoekt het gebruik van globale optimalisatie algoritmen en hoopt zo het
gebruik ervan te verbeteren. Dit proefschrift richt zich op drie specifieke prob-
lemen die kunnen voorkomen bij optimalisatie vraagstukken. (1) Het vinden
van een similariteitscriterium dat op een correcte wijze spectra, met vele ver-
schoven pieken daarin, kan vergelijken. Dit criterium moet geschikt zijn om
gebruikt te kunnen worden als evaluatiefunctie voor optimalisatie doeleinden.
(2) TS is een vrij nieuwe optimalisatie techniek. TS heeft andere kenmerken
in vergelijking met SA en GA’s. De eigenschappen en mogelijkheden van TS
worden onderzocht door TS te implementeren om verschillende chemische op-
timalisatie problemen op te lossen. (3) Er bestaat helaas geen standaardrecept
hoe en wanneer SA, GA’s en TS, te gebruiken. Een derde doel van dit proef-
schrift is om richtlijnen voor het gebruik van globale optimalisatie algoritmen
te ontdekken. Hiertoe worden verschillende chemische optimalisatie problemen
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bestudeerd.
Hoofdstuk 2 beschrijft een recent ontwikkeld similariteitscriterium, de

weighted crosscorrelation (WCC). Traditionele methodes slagen er vaak niet in
om een correcte similariteit te bepalen tussen spectra, waar vele, ten opzichte
van elkaar verschoven pieken, in voorkomen. Het WCC criterium is in staat
om om te gaan met verschoven pieken door tijdens het vergeleken van twee
spectra, of andere vector georiënteerde data, ook de omgeving van een piek
mee te nemen. In hoofdstuk 2, wordt het WCC criterium gebruikt in de classi-
ficatie van kristalstructuren van cephalosporine complexen. Deze classificatie
is gebaseerd op de vergelijking van berekende poederdiffractie patronen. Het
meenemen van de omgeving van pieken tijdens het bepalen van de similariteit,
leidt tot een significant verbeterde bepaling van de similariteit en maakt het
mogelijk om sterk verwante structuren te herkennen.

Hoofdstuk 3 en 4 behandelen optimalisatie problemen uit categorie (i), de
parameteroptimalisering. Hoofdstuk 3 beschrijft een nieuwe procedure voor
de analyse van rotationeel opgeloste fluorescentiespectra. Deze methode is
gebaseerd op GA’s. Hoofdstuk 4 beschrijft een methode, eveneens gebaseerd
op GA’s, voor het indexeren van poeder diffractie patronen. In beide gevallen,
werd het succes bepaald door het recent ontwikkelde similariteitscriterium, de
weighted crosscorrelation (zie hoofdstuk 2). Een correcte vergelijking van rota-
tioneel opgeloste fluorescentiespectra of van poederpatronen wordt bemoeilijkt
door piekverschuivingen die door kleine veranderingen in de modelparameters
worden veroorzaakt. Om toch een zinvolle vergelijking te kunnen maken, is
het noodzakelijk om de omgeving van pieken in een spectrum mee te nemen.
Dit toont aan dat een op maat gemaakte evaluatiefunctie essentieel kan zijn
om goede resultaten te krijgen.

Hoofdstuk 5 onderzoekt de eigenschappen en de mogelijkheden van TS
in de chemometrie door TS op het probleem van de golflengteselectie toe te
passen. Golflengteselectie is een probleem uit categorie (ii), subsetselectie. In
deze klasse, is het doel om een kleine groep variabelen uit een grote groep te se-
lecteren. Deze subset heeft gewoonlijk identieke eigenschappen in vergelijking
met de originele set, de grotere groep variabelen, of presteert nog beter. TS is
een deterministische, globale optimalisatie techniek die op concepten van kun-
stmatige intelligentie is gebaseerd. TS gebruikt simpele, probleem-specifieke
operatoren om een zoekruimte te onderzoeken. TS slaat oplossingen in het
geheugen op, om zo reeds bezochte oplossingen bij te houden. Verscheidene
implementationele aspecten van golflengteselectie met TS worden besproken.
Verschillende intensivering en diversificatie benaderingen worden toegepast en
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blijken waardevolle uitbreidingen van TS te zijn. Het is mogelijk om TS te
gebruiken om oplossingen te vinden met een variabel of een constant aantal
golflengten. Met behulp van drie data sets, wordt aangetoond, dat TS even
goed presteert als GA’s en SA. TS kan een waardevol alternatief zijn voor SA
en GA’s, vooral in gevallen waarbij een duidelijke definitie is van de omgeving
van een oplossing.

Hoofdstuk 6 behandelt een probleem uit categorie (iii), de volgorde opti-
malisatie. In dit hoofdstuk worden GA’s en TS gebruikt voor het ontwerpen
van meerlaags optische coatings (MOCs). MOCs zijn coatings die bestaan
uit een aantal zeer dunne lagen van materialen met verschillende brekingsin-
dex. Afhankelijk van het totale aantal lagen, de samenstelling en de dikte
van elke laag, kunnen MOCs bepaalde golflengten reflecteren terwijl andere
golflengten ongehinderd kunnen passeren. Het construeren van meerlaags op-
tische coatings (MOCs) is een moeilijk optimalisatie probleem. Dit komt door
de enorme grootte van de zoekruimte. De benadering die in hoofdstuk 6 wordt
beschreven zorgt ervoor dat het totale aantal lagen niet gespecificeerd hoeft te
worden. Een speciale GA representatie zorgt ervoor dat specifieke blokken van
de ene oplossing naar de andere gekopieerd kunnen worden. Deze benadering
stimuleert herhaling van dezelfde blokken in een meerlaags structuur. Dit is
gunstig voor de prestaties van het filter. De oplossingen die met de GA aanpak
gevonden worden, worden verfijnd met een nieuwe methode die gebaseerd is
op TS. De verbeteringen worden gedemonstreerd door het ontwerpen van een
filter dat zichtbaar licht doorlaat en IR licht reflecteerd.

In hoofdstuk 7 worden enkele conclusies en ideëen voor toekomstig onder-
zoek gegeven.
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De studenten die mij geholpen hebben met een scriptie of een stage:
Wouter van Bommel, Micha Streppel en Egon Willighagen (toen bij ons als
student). Bedankt voor jullie hulp.

En alle andere mensen die er waren maar wiens naam ik hier vergeten ben.
Jullie ook bedankt.

Bij het bedanken van alle mensen die bij mijn proefschrift betrokken zijn
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geweest, kunnen mijn ouders niet ontbreken. Zij hebben de basis gelegd die
mij in staat stelde dit proefschrift te voltooien. Pap, mam, bedankt hiervoor.

Lieve Jacqueline. Het was fijn om jou aan mijn zijde te hebben tijdens het
werken aan dit proefschrift. Bovendien, de wetenschap dat jij in verwachting
was, gaf mij de juiste hoeveelheid energie om dit proefschrift af te ronden.
Samen met jou en onze zoon Joris zie ik een mooie toekomst tegemoet.

Gegroet, Jos.



Curriculum Vitae

Joseph Albert Hageman werd geboren op 10 april 1974 te Haarlem. Na
het behalen van zijn VWO diploma, begon hij in 1993 aan de studie Far-
macochemie aan de Vrije Universiteit te Amsterdam. Hoofdafstudeerrichting
was de synthese van biologisch actieve verbindingen. Nevenafstudeerrichting
was chemische informatica, waar neurale netwerken bestudeerd werden. In
1998 werd hij aangesteld als onderzoeker in opleiding (OIO) bij de vakgroep
Analytische Chemie aan de Katholieke Universiteit Nijmegen. Het daar uit-
gevoerde onderzoek staat beschreven in dit proefschrift.
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