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J. Gáll, G. Pap, M,C,A, van Zuijlen

Report No. 0207 (April 2002)

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NIJMEGEN

Toernooiveld

6525 ED Nijmegen

The Netherlands



Note on the proportions of financial assets with
dependent distributions in optimal portfolios1
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Abstract

In this paper we shall study the proportions of the financial assets in optimal
portfolios, where the portfolio is optimized by the maximization of its expected
utility with respect to a given utility function. Our main goal is to investigate the
magnitude of the proportions of the assets in optimal portfolios provided that
the assets’ distributions display a certain type of stochastic dominance, which
means that one asset is better in a certain sense than the other. Our main
question is to understand why people buy more of an asset than of another one.
For this, we introduce and study new notions of stochastic dominance which
can be appropriate candidates for the study of the proportions. Based on these
notions we derive new versions (and a generalization) of the results of Hadar and
Seo [1], where, in case of independent asset returns, the stochastic dominance
of the returns implies that the dominant asset has a larger proportion in the
optimal portfolio. Our results apply to not necessarily independent returns as
well. We give several realistic examples in which these new types of stochastic
dominance are fulfilled.

Keywords. Optimal portfolio, utility function, risk aversion, stochastic
dominance, multidimensional distributions for the rate of returns of financial
assets.

1 Introduction and notations

A widely studied area of econometrics is the problem of finding optimal portfolios
under uncertainty. The basic setup is the following: we are given a market with
financial assets and a certain capital to be invested. Now, many approaches are
known on how to invest our capital. In this paper we study the expected utility

1This research has been supported by the Hungarian Foundation for Scientific Research under
Grant No. OTKA-T032361/2000
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approach, i.e. the possible portfolios are ordered according to the expected utility of
their future value, and thus an optimal portfolio (‘best allocation’ of our money) can
be taken.

The different notions of stochastic dominance provide tools to compare the future
value and the riskiness of financial assets. Now, one can formulate the main questions
of the paper generally as follows: ”What conditions lead the investors to invest more
in an asset than in another one?” and ”How are the proportions of the financial assets
in the optimal portfolios related to the riskiness of the assets?”

To put the questions in a more precise way, we first summarize some notations
and fundamental results in literature.

Securities market. Let us consider a securities market where the individuals are
trying to invest their money and thus to create their portfolio by allocating their
money among the different financial assets available in the market. We shall suppose
that the number of assets is finite, say n. Now the market is modeled by a set

{r1, r2, . . . , rn},

where ri is a random variable, with property P(−1 ≤ ri) = 1 (i = 1, . . . , n), repre-
senting the rate of return of stock i at some future time point T . We assume that the
individual does not intend to reallocate the portfolio before T , hence the ri’s contain
all the information available on the market at the time of the investment decision.
Put Xi = 1 + ri for i = 1, . . . , n.

Portfolios. A portfolio will be denoted by

π = (β1, β2, . . . , βn), (βi ∈ R),

where βi is the amount of money invested in asset i. Let X0 > 0 be the initial capital
to be invested by the individual. Denote the value of portfolio π at time T by Xπ

T .
Thus,

Xπ
T =

n∑
i=1

βi(1 + ri) =
n∑

i=1

βiXi,

where
∑n

i=1 βi = X0.

Now, the individuals are supposed to perform rationally in the market and thus
to choose the optimal portfolio according to their preferences. The individual’s pref-
erences shall be given by his or her utility function U . Thus, we shall call a portfolio
optimal if it is promising the largest possibly expected utility. Here we mention that it
is just one of the several definitions for optimality of the portfolio known in literature.
(For this and other approaches see e.g. [2], [3] or [5].)

In other words, we shall call a portfolio optimal and denote it by

π∗U = (β∗1,U , β∗2,U , . . . , β∗n,U ) (1)

if
E U

(
X

π∗U
T

)
= sup

π∈CX0

E U (Xπ
T ) , (2)
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where CX0 is the set of portfolios which can be set up from initial capital X0, i.e.

CX0 =

{
π

∣∣∣∣∣ π = (β1, β2, . . . , βn) ∈ Rn,
n∑

i=1

βi = X0

}
.

Note that no selling or buying restrictions are imposed (π ∈ Rn). If it does not cause
any misunderstanding, we will omit to indicate the utility function U in the solution
(1).

We shall suppose in the paper that X0 = 1. In fact, this assumption does not
lead to any loss of generality. Indeed, given X0 and a utility function U , one can
reformulate the problem of maximizing EU(Xπ

T ) as follows. Define Ū(x) = U(X0x)
(x ∈ R) and then maximize EŪ(Xπ

T ) provided that the initial capital is 1. If we have
a solution (β∗

1,Ū
, . . . , β∗

n,Ū
) of this problem then (X0β

∗
1,Ū

, . . . , X0β
∗
n,Ū

) is a solution of
the original problem.

Hence, given the assumption X0 = 1 we can consider the value βi as the proportion
of asset i in the portfolio.

Stochastic dominance versus proportions. In this paper our main focus is on in-
vestigating the features of securities which lead the individuals to invest more in an
asset than in another one.

For this we discuss the relations between stochastic dominance and the proportions
of the asset. The notion of stochastic dominance between the returns of the financial
assets shall be used to express that an asset is better or less risky —in a certain
sense— than another one. Now, it would be natural to claim risk averse investors
to invest more of the less risky asset. However, easy counter-examples can be given
(see e.g. [1], [2]). Therefore, our main purpose is to derive conditions —especially
for dependently distributed asset price returns— under which more money will be
invested in the less risky asset, indeed.

Take first the example where in a two-securities market {r1, r2}, the distribution
of the rate of return of the first asset displays first order stochastic dominance over
the second one. It is known that under this condition an individual —even if he is
risk averse, e.g. he has concave utility function (see [2])— shall not necessarily invest
more in asset one than in asset two (see [1]). Hadar and Seo have shown (Theorem 4,
[1]) that for risk averse individuals with nondecreasing utility function U the following
two statements are equivalent:

(1) β∗1 ≥ β∗2 for each independent r1 and r2 with r1 <FSD r2,

(2) the function x 7→ xU ′(x) is nondecreasing over its domain,

where r1 <FSD r2 denotes that r1 displays first order stochastic dominance over r2.

There remains, however, the question of the dependent case in the problem con-
sidered by Hadar and Seo which is the subject of our next results. For this, first we
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introduce a new notion of stochastic dominance which is one way to represent the
dependence of the rates of return of the assets.

We shall also consider the problem at issue for other types of stochastic dominance
and for the case of more than two assets.

2 A strong version of the first order stochastic dom-
inance

Next, we introduce a new notion of stochastic dominance.

Given a random variable ξ, the measure Pξ will denote its distribution.

Definition 3 The random variable ξ is said to display strong first order stochastic
dominance (SFSD) over the random variable η, which is denoted by ξ <SFSD η, if
Fξ|η(x|y) ≤ Fη(x) for all x ∈ R and Pη-a.e. y ∈ R, where Fη is the distribution
function of η and Fξ|η is a regular2 conditional distribution function of ξ given η.

Secondly, strong second order stochastic dominance (SSSD) of ξ over η is defined
by
∫ x

−∞
[

Fξ|η(u|y)− Fη(u)
]

du ≤ 0 for all x ∈ R and y ∈ R. Notation: ξ <SSSD η.

Given random variables ξ1, ξ2, . . . , ξn, n > 2, we say that ξ1 conditionally domi-
nates ξ2 in the sense of strong first order stochastic dominance, and we write ξ1|ξ3, . . . , ξn <SFSD

ξ2|ξ3, . . . , ξn, if Fξ1|ξ2,...,ξn
(x|x2, . . . , xn) ≤ Fξ2|ξ3,...,ξn

(x|x3, . . . , xn) for all x ∈ R and
Pξ2,...,ξn

-a.e. (x2, . . . , xn) ∈ Rn−1, where Fξ1|ξ2,...,ξn
and Fξ2|ξ3,...,ξn

are regular con-
ditional distribution functions.

Now, we summarize some easy properties of SFSD.

Theorem 1 (Some features of SFSD)

(i) For any r.v.’s ξ and η, ξ <SFSD η implies ξ <FSD η.

(ii) If ξ and η are independent r.v.’s then ξ <SFSD η is equivalent with ξ <FSD η.

(iii) For any random variables ξ and η, ξ <SFSD η holds if and only if we have
E (g(ξ)|η) ≥ Eg(η) a.s. for all nondecreasing function g : R → R.

Proof.

(i) Let Pη be the distribution of η. Now, notice that for any x ∈ R∫
R

Fξ|η(x|y) Pη(dy) =
∫

R
P (ξ < x|η = y) Pη(dy) = P(ξ < x) = Fξ(x). (4)

2See e.g. [7] for the definition of regularity.
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Hence, Fξ|η(x|y) ≤ Fη(x), x ∈ R, Pη-a.s. y ∈ R, together with (4) implies Fξ(x) ≤
Fη(x), which is equivalent with ξ <FSD η (see 1.A.1. in [6]).

(ii) By the independence of the r.v.’s. we have Fξ|η(x|y) = Fξ(x) for x ∈ R and
Pη-a.s. y ∈ R.

(iii) Fix y ∈ R and take a r.v. ζ with cdf Fζ(x) = Fξ|η(x|y), x ∈ R. The
SFSD property implies ζ <FSD η. Secondly, recall that ζ <FSD η if and only if
Eg(ζ) ≥ Eg(η) for all non-decreasing function g : R → R (see 1.A.1. in [6]). �

Next, we collect some basic facts on the SSSD property.

Theorem 2 (Some features of SSSD)

(i) For any r.v.’s ξ and η, ξ <SSSD η implies ξ <SSD η.

(ii) If ξ and η are independent r.v.’s then ξ <SSSD η is equivalent with ξ <SSD η.

(iii) For any r.v.’s ξ and η, ξ <SSSD η holds if and only if we have E (g(ξ)|η) ≥ Eg(η)
a.s. for all nondecreasing, concave function g : R → R.

Proof. The proof of this theorem is fairly analogous to the proof of Theorem 1. The
description of SSD (see Chapter 5 in [3]) gives further hint for proving statement (iii).

3 Generalization of the theorem of Hadar and Seo

Theorem 3 Let U : R 7→ R be differentiable, concave and nondecreasing. Then the
following statements are equivalent:

(i) β∗1 ≥ β∗2 in any two-securities market {r1, r2} with r1 <SFSD r2,

(ii) the function x 7→ xU ′(x) is nondecreasing.

Proof. (1) =⇒ (2) Take markets {r1, r2} with independent returns r1, r2. Now
statement (ii) in Theorem 1 together with a theorem of Hadar and Seo (Theorem 4.
in [1]) directly implies (2).

(2) ⇐= (1) As in the proof of Theorem 4 in of [1], we can show β∗1 ≥ β∗2 by
proving that

∂E Xπ
T

∂β1

∣∣∣∣
β1=1/2

= E (X1 −X2)U ′
(

X1 + X2

2

)
≥ 0 (5)
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(which is equivalent with β∗1 ≥ β∗2). To check this first write∫ ∫
(x− y)U ′

(
x + y

2

)
PX1,X2(dx, dy) =

∫ ∫
xU ′

(
x + y

2

)
PX1|X2(dx|y) PX2(dy)−

∫
x

∫
U ′
(

x + y

2

)
PX1|X2(dy|x) PX2(dx).

(6)
Now, note that both the function x 7→ −U ′(x) and the function x 7→ xU ′ (x+y

2

)
for

y ≥ 0 are nondecreasing and hence (iii) of Theorem 1 can be applied to both terms
of the second line in (6) to get for∫

xU ′
(

x + y

2

)
PX1|X2(dx|y) ≥

∫
xU ′

(
x + y

2

)
PX2(dx) (7)

for PX2-a.e. y ∈ R and∫
U ′
(

x + y

2

)
PX1|X2(dy|x) ≤

∫
U ′
(

x + y

2

)
PX2(dy) (8)

for PX2-a.e. x ∈ R. Finally, (5) follows directly from the combination of (6) with (7)
and (8). �

Theorem 3 can be literally rewritten for the case of second order stochastic domi-
nance and thus we get Theorem 4. One can easily generalize the statement of Theorem
3 for n-securities market as well (Theorem 5).

Theorem 4 Let U : R 7→ R be differentiable, concave and nondecreasing. Then the
following statements are equivalent:

(i) β∗1 ≥ β∗2 in any two-securities market {r1, r2} with r1 <SSSD r2,

(ii) the function x 7→ xU ′(x) is concave and nondecreasing.

Since the proof of this theorem is analogous to the proof of Theorem 3, we omit
its proof here.

Theorem 5 Let U : R 7→ R be differentiable, concave and nondecreasing. Then the
following statements are equivalent:

(i) β∗1 ≥ β∗2 in any n-securities market {r1, . . . , rn} with r1|r3, . . . , rn <SFSD

r2|r3, . . . , rn,

(ii) the function x 7→ xU ′(x) is nondecreasing.

Proof. First we mention that instead of (5) this time it is sufficient to show that for
all (β3, . . . , βn) ∈ Rn−2 we have

0 ≤ E(X1 −X2)U ′

(
βX1 + βX2 +

n∑
i=3

βiXi

)
,
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where β = 1−
∑n

i=3 βi/2. One can write

E(X1 −X2)U ′(βX1 + βX2 +
n∑

i=3

βiXi) =

∫
. . .

∫ [∫ ∫
(x1 − x2)U ′(βx1 + βx2 +

n∑
i=3

βixi)

PX1|X2,...,Xn
(dx3, . . . , dxn)PX2|X3,...,Xn

(dx3, . . . , dxn)

]
PX3,...,Xn

(dx3, . . . , dxn).

The remaining part of the proof can be carried out in a similar way as in the proof
of Theorem 3, thus we omit the details here. �

We can see that having proved Theorem 3, it was easy to find its ‘multi-security’
version, namely, Theorem 5. One could, of course, define the conditional strong second
order stochastic dominance in the way the first order one was defined and then the
multi-security case of Theorem 4 could also be written immediately, but we shall not
consider this case in this paper.

In the Introduction we assumed that there are no trading constraints and hence
the proportions in the portfolios can take negative values as well. Hence, one needs
utility functions defined on the whole real line in such case since Xπ

T can be negative.
One can, of course, handle also the case where the utility function is defined only
on [0,∞) or (0,∞). In the first case, we have to assume furthermore that there are
trading constraints, namely, let βi ≥ 0 (i = 1, . . . , n). The later case can also be
handled by assuming the same trading constraints and, furthermore, the positivity
of the asset values: P(Xi > 0) = 1 (i = 1, . . . , n). Thus Theorem 3 can be literally
rewritten for U defined on [0,∞) or (0,∞).

In the theorems of Hadar and Seo and also in our theorems the monotonicity
of xU ′(x) turned out to be a crucial property. Hence, it should be mentioned that
commonly used utility functions have such a property. Here are some of them: loga-
rithmic utility (U(x) = log(x), x > 0); exponential (U(x) = c exp(dx) for x ≥ 0 with
c, d < 0); power type (also known as Cobb-Douglas utility function) (U(x) = xα,
x > 0, 0 < α ≤ 1).

4 Examples for the SFSD property

In this section we give several examples where the SFSD property is fulfilled and
examine some commonly used families of distributions as well. We try to study
distributions which seem to be realistic to play the role of the rates of returns (ri’s)
or of the future market prices (Xi = (ri + 1)’s). For this, we note that the SFSD (or
SSSD) property is preserved if r1 and r2 are shifted by a constant c, i.e. when Xi is
replaced by Xi + c for all i, where we claim Xi + c ≥ 0 for all i. Thus, in the following
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examples one can choose an appropriate value for the constant c to make the market
more realistic.

Just to show that SFSD can easily occur, first we give a fairly simple example.

Example 1 Consider a two-securities market {r1, r2} where both of the market prices
concentrate on two atoms, 0 and 1, as follows. Take an ε ∈ [− 1

12 , 1
12 ] and put

p1,1 =
2
6

+ ε, p1,0 =
2
6
− ε, p0,1 =

1
6
− ε, p0,0 =

1
6

+ ε,

where pi,j = P(X1 = i, X2 = j).

Clearly, independence of the two rates of returns occur if and only if ε = 0. Note,
moreover, that X1 <FSD X2 since we have P(X1 = 0) = 1

3 < P(X2 = 0) = 1
2 .

Furthermore, we can easily check that X1 <SFSD X2. Indeed, we have

FX1|X2(x|y) =
1/6 + ε

1/2
≤ Fx2(x) =

1
2
,

for 0 ≤ y < 1 and 0 < x ≤ 1, and

FX1|X2(x|y) =
1/6− ε

1/2
≤ Fx2(x) =

1
2

for 1 ≤ y and 0 < x ≤ 1. The remaining cases are trivial.

The following example shows that one can find the SFSD property among the
absolutely continuous distributions as well.

Example 2 Let ε be a constant in [−1/2, (
√

3−1)/2] and take a two-securities market
{r1, r2}, where the joint density function of X1 and X2 is

f(x, y) =

{
x + 2εy + 1

2 − ε, if (x, y) ∈ [0, 1]× [0, 1],
0, otherwise.

Then the cdf of X1 is FX1(x) = x(x + 1)/2 for x ∈ [0, 1], whereas the cdf of X2

is FX2(x) = εx2 + (1 − ε)x over [0, 1] and hence X1 displays first order stochastic
dominance over X2 due to FX1(x) ≤ FX2(x) for x ∈ R. Note that the case ε = 0 is
equivalent again with the independence of the two returns.

Turning to the verification of the SFSD property notice that a conditional distri-
bution function of X1 given X2 is

FX1|X2(x|y) =


1
2 x(x+1)+ε(2xy−x)

1+ε(2y−1) , if (x, y) ∈ [0, 1]× [0, 1]

1, if x > 1, y ∈ [0, 1],
0, otherwise.

(9)
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Thus, it remains to check the following inequality

FX1|X2(x|y) ≤ FX2(x), ∀x, y ∈ [0, 1]. (10)

It’s easy to see that (10) is equivalent with

ε2(2y − 1) + ε− 1
2
≤ 0 for y ∈ [0, 1],

which is fulfilled due to the choice of ε.

5 Preferred stocks

In the previous section we have shown examples for the SFSD property introduced
in Definition 3. It should be mentioned that the way we gave a modification for
the first order stochastic dominance in Definition 3 in order to keep the statement
of the theorem of Hadar and Seo is not necessarily the only possibility. Although it
was easy to construct examples to fulfill the definition, many of the commonly used
classical two-dimensional distributions cannot satisfy the required property or lead to
the independent case. For instance, taking a two-dimensional exponential distribution
defined by the survival function

P(X1 > x,X2 > y) = F̄ (x, y) =

{
exp(−λ1x− λ2y − λ1,2 max(x, y)) for x, y > 0
0 otherwise

(11)
(λ1, λ2 > 0, λ1,2 ≥ 0), one can check that we have X1 <SFSD X2 if and only if
λ1,2 = 0 and λ1 ≥ λ2. However, these two conditions are met if and only if the
coordinates are independent and X2 is dominated by X1 in the sense of first order
stochastic dominance. Thus, it is a case for which the Definition 3 is not fruitful.

Therefore, still having in mind the purpose to understand the reasons that could
lead someone to prefer one asset to another one, we go on seeking for another possible
notion of stochastic dominance.

First, we introduce a new notion and then we show that it is also appropriate for
our purposes and finally we give examples of two-dimensional distributions with the
new property. We show that in these examples the new type of stochastic dominance
is fulfilled, although the strong first order dominance is not satisfied in most of the
cases, that is, further two-dimensional distributions can be studied in our portfolio
problems by the aid of the new notion.

Definition 12 Given two nonnegative random variables, X and Y , we say that X is
preferred to Y if

E(X − Y )f (X + Y ) ≥ 0 (13)

for all decreasing differentiable function f : [0,∞) → [0,∞). If X is preferred to Y
then we write X <PR Y .
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In Definition 12 the condition taken on the derivative of the function f seems to
be unnecessary, since in (13) no term involves the derivative. Therefore one could
claim less in the definition. However, as we shall see, for our purposes the way we
chose seems to be the most appropriate one.

Note that X <PR Y implies X + c <PR Y + c for c ∈ R provided that X + c and
Y + c remain nonnegative.

Theorem 6 Let X and Y be two random variables such that

X :=
V + W

2
and Y :=

V −W

2
,

where, given A > 0 and −A ≤ B < C ≤ A, V and W are independent random
variables with

P(V ≥ A) = P(W ∈ [B,C]) = 1.

Then we have the following statements:
(a) X and Y are nonnegative.
(b) X <PR Y ⇐⇒ EW ≥ 0 ⇐⇒ EX ≥ EY .
(c) If, furthermore, V is unbounded (i.e., P(V ≥ x) > 0 for all x ∈ R) then X �SFSD

Y .

Proof.

(a) Since P((V,W ) ∈ [A,∞) × [B,C]) = 1, we have V +W
2 ≥ A+B

2 ≥ 0 and
V−W

2 ≥ A−C
2 ≥ 0.

(b) If f : [0,∞) → [0,∞) then by the independence of V and W we obtain

E (X − Y )f
(

X + Y

2

)
= E(X − Y )Ef

(
X + Y

2

)
.

Since Ef
(

X+Y
2

)
≥ 0 for nonnegative functions f we have X <PR Y if and only if

E(X − Y ) ≥ 0.

(c) Due to the construction FX(x) < 1 and FY (x) < 1 for all x ∈ R. However,
fixing y ∈ R+, to satisfy both x + y ∈ [A,∞) and x − y ∈ [B,C] the value of x
must lie in [B + y, C + y]. Hence, the conditional distribution of X given {Y = y}
is concentrated in a bounded interval which means that FX|Y (x|y) = 1 if x is large
enough. For such x we have FX|Y (x|y) > FY (x). �

Theorem 7 Given a two-securities market {r1, r2} with

1 + r1 <PR 1 + r2

we have
β∗1,U ≥ β∗2,U

for all nondecreasing, concave and twice differentiable utility functions, where (β∗1,U , β∗2,U )
denotes the optimal portfolio with respect to the utility function U .
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Proof. Given a nondecreasing, concave and twice differentiable utility function U ,
we have

E (X1 −X2)U ′
(

X1 + X2

2

)
≥ 0

by the Definition 12. Hence, the statement is immediate (Hadar and Seo [1]). �
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