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Abstract
The construction of efficient iterative linear equation solvers for ill-conditioned 

general symmetric positive definite systems is discussed. Certain known two- 
level conjugate gradient preconditioning techniques are presented in a uniform 
way and are further generalized and optimized with respect to the spectral or 
the K-condition numbers. The resulting constructions have shown to be useful 
for the solution of large-scale ill-conditioned symmetric positive definite linear 
systems.

1 Introduction
In  the present paper, we address the construction of preconditionings for the Conju
gate Gradient algorithm, see, e.g.[1], and the rate of convergence of the method. This 
method is used for solving linear algebraic systems

A x  = b (1.1)

with a large, normally sparse, unstructured Symmetric Positive Definite (S P D ) matrix 
A  of order n, such as arising in computational mechanics, from symmetrization of 
unsymmetric problems, etc.

Below we consider a preconditioning which is closely related to both the Gen
eralized Augmented M atrix (G A M ) preconditioning [18] and the approximate Schur 
complement one [4], [1], [3]. W e restrict our considerations to two-level schemes based 
on a 2 x 2 splitting of the coefficient matrix and present a uniform framework for the 
analysis of such preconditioners. One of the main results is that the K-condition 
number of the preconditioned matrix is minimized under a very simple choice of 
approximation of the Schur complement. The upper bounds obtained for the K- 
condition and spectral condition numbers of the preconditioned matrix show that one
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can expect good overall preconditioning quality whenever the preconditioning of the 
leading block of the matrix has a sufficiently high quality. The latter can be attained 
by a proper choice of the 2 x 2 splitting of the matrix, as well as by application of 
improved preconditioning methods such as Second Order Cholesky type incomplete 
factorizations [16]. As shown in [8 ], for finite element applications of second order 
problems using a certain element based preconditioner, it is also possible to obtain 
accurate bounds of the condition number which hold uniformly in both problem and 
discretization parameters.

In  the present paper we consider a combined preconditioning strategy for the 
Conjugate Gradient algorithm intended to achieve fast convergence while providing 
low iteration costs. The algorithm can be considered as a proper combination of 
preconditioning strategies described in [4, 7, 18, 12, 13, 15, 16]. In  the first stage, 
the original matrix A  is split into a 2 by 2 block form with the leading block as 
large as possible while still well-conditioned. This is typically accompanied by a 
certain congruence transformation which is intended to enable a further improvement 
of the conditioning of the whole matrix or its leading block. In  the second stage, an 
(approximate) block Jacobi preconditioning is used to construct the preconditioner 
in its final form.

The remainder of the paper is organized as follows. In  Section 2 we recall two 
upper bounds on the number of iterations for the conjugate gradient method, and 
indicate their usefulness in the construction of preconditioners. In  Section 3 a uni
form presentation of various two-stage preconditionings is presented with condition 
number optimality results. In  the same framework, a treatment of Schur comple
ment preconditioners is given in Section 4. In  Section 5 we describe the Conjugate 
Gradient Normal Equations algorithm for a guaranteed precision iterative solution 
of highly unsymmetric systems and discuss the potential use of the above described 
preconditionings with this method.

2 Tw o iteration  bounds for the P reconditioned CG  
m ethod

In  order to highlight the target functions that should be optimized by the precondi
tioning, let us recall some known convergence results for the P C G  method.

Consider the P C G  method for the solution of SP D  systems with symmetric pos
itive definite preconditioner H  that approximates A - 1  in some sense. The standard 
estimation for the P C G  iteration number needed for an e times reduction of the error 
norm (rTA - 1r * )1/2 is (see. e.g., [1])

*«(e) <
i _______  2

k (h a ) log e

where, for any symmetrizable matrix M  with positive eigenvalues,

k ( M  ) = ^max(M  )/Amin(M ).
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This bound follows from a well-known estimate, cf.[1], establishing the linear rate 
of convergence for the P C G  iterations. In  some (model) cases, the latter estimate 
is useful for obtaining a priori bounds expressed via the parameters of the problem 
solved. For an important example, see [2]. However, the requirement of "optim al” 
conditioning does not in general yield a concrete construction of the preconditioning.

Therefore, an alternative approach was developed based on the use of an iteration 
number estimate via the K-condition number, cf.[15, 1]. Based on the corresponding 
superlinear convergence rate result, a simplified iteration number estimate of the 
following form holds (provided that the A-norm of the residual is replaced by the 
H  -norm):

This bound can be useful in predicting the superlinear rate of convergence for a 
number of iterations exceeding, but close to, log2 K  (H A ). It  follows that

where a is the arithmetic average and g is the geometric average of the eigenvalues 
of H A .  Typically, in practice for instance when considering a class of problems of 
increasing sizes, such as for difference methods for partial differential equations, it 
holds that a/g > 1 + c for some postive c, independent on n. Hence in such cases 
i K (e) < cn + log2 1 .
Therefore this condition number somestimes gives rather pessimistic a priori upper 
bounds of the number of iterations. However, it may readily be (nearly) minimized 
in the context of various preconditioning procedures, as shown already in [12, 15, 1]. 
Thus, the K-condition number can be viewed as a useful tool for the construction 
of preconditionings. As soon as the preconditioning is specified, one can also try 
to estimate its standard (spectral) condition number in order to verify its efficiency. 
Several examples of such investigations are found in the paper.

3 T w o-stage preconditionings
In  this section, we will consider the following general scheme for preconditioning of 
S P D  matrices. Let A  be a result of certain preprocessing of the original matrix Ao, 
e.g. by preordering, or scaling it to unit diagonal,

or, sometimes, even by a two-sided preconditioning by Incomplete Cholesky,

iK (e) = log2 K (H A )  + log2
1

e

where, by definition,

A  = D iag(Ao) 1/2AoDiag(Ao) 1/2

A  = U - T  A o U -1,
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such as with the use of the IC2 preconditioning of [16].

S tag e  1. Let Z  be a nonsingular matrix with 2 by 2 block structure, and 
consider a congruence transformation of A, keeping the same block structure

B  = Z TA Z  :
B 21

B 12

B 22

such that K ( B )  < K (A ) .  The main purpose of such a transformation is to 
reduce as much as possible the quantity

Y B - 1/2
11 B 12B 22

- 1/2 1

which always satisfies 0 < 7  < 1. W e will see that 7  should not be too close to
1 in order for the preconditioning to be efficient.

S tag e  2. Let D  be a block-diagonal 2 by 2 matrix with diagonal blocks D 1 and 
D 2 equal to the (approximate) inverses of B 11 and B 22, respectively. W e shall 
refer to such a preconditioning as Approximate Block Jacobi preconditioning. 
Then, typically, K ( D B )  < K ( B )  < K (A )  and since A j(D B ) = A1(H A ),  it holds 
K ( D B )  = K (H A ) ,  where the resulting preconditioner for A  will be

H  = Z D Z T

The effect of approximate Block Jacobi preconditioning on the spectal condi
tion number and on the K-condition number were first studied in [4] and [15], 
respectively.

W e consider first two illuminating examples of congruence transformations which 
can be related to the first stage of such preconditionings.

Example 1. Let
'  I 1 

0 I 2
Z —A 111 A 12

where /j, i = 1, 2 denote the identity matrices of consistent orders. Then an elemen
tary computation shows that

Z  T A Z : A 11 0 
0 S

where S  = A 22 — A 2 iA -11A i 2 is the Schur complement. Hence, in this case, 7  = 0. 
However, this is not a viable choice as it requires exact solutions of systems with A 11 
and S, and S  is in general a full matrix.

It  is anyhow interesting to note that the above transformation, when applied to 
the indefinite matrix _

A 11 A 12 

A 21 0
A =
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leads to

Z T AZ = A 11
0

0
— A21A h1 A 12

In  certain applications (such as for certain finite element approximation of finite ele
ment Stokes problem for incompressible fluids), it turns out that the matrix A 21A -11A 12 
is well-conditioned and the transformation can hence be of interest in this case.

Example 2. W e recall now (see e.g. [9] and [1]) another well known example of a 
congruence transformation showing the relation between the standard and hierarchical 
(nodal) basis function matrices. Let J 12 be the interpolation matrix between the sets 
of standard finite element basis functions and hierarchical basis functions, i.e., it holds 
vSB = J 12vHB for corresponding elements in the two sets. The matrix J 12 is typically 
very sparse. Let n 2 be the number of degrees of freedom of the coarse space, let n 1 
be that of the added basis functions, and let

Z I i  J 12
0  I 2

B i i  B 12 
B 21 B 22

Thus if A  is the standard basis function matrix, it holds

B  = Z T A Z  =

where 

and

B i i  = A B 12 = A 12 + A 11J ^ B 21 = B 12, 

T T
B 22 = A 22 + A 21J 12 + J 12 A 12 + J 12A 11J 12.

Here B  is the hierarchical basis function matrix, see, e.g.[9]. W hile  (e.g. in the case 
when a discretization of a 2-nd order elliptic equation is considered)

1 -  llA 111/2A 12A 221/2|l = O (h2 )J

where h is a meshsize parameter, it holds that

Y = y B 1i1/2B i 2B 221/2y = 1 — c, 0  < c < 1 ,

for some c which does not depend on size, nor shape of elements and also not on 
jumps of coefficients if they occur only at the coarse mesh edges, for further details, 
see [4, 9].

W hile  the hierarchical basis function submatrices B 12, B 21, are less sparse than 
the corresponding matrices for the standard basis function matrix (A ), the congruence 
transformation Z TA Z  allows one to work with A  in computing actions of the iteration 
matrix.

-1/2

Next we consider certain examples of Block Jacobi preconditionings, quite similar to 
those which were already described, e.g,, in [4], [1], [3].

5



3.1 E stim atin g  th e  K -cond ition  num ber for th e  E xact, Full 
and P artia l
2 by 2 B lock  Jacobi precon dition ing

Let us first consider the simplest case of the exact Block Jacobi method with precon
ditioner

0H B - i1
0 B.- l

22

to the matrix B .  It  is well known that this preconditioning (up to an arbitrary 
positive scalar factor) is optimum over all 2 by 2 preconditionings with respect to the 
spectral condition number. Furthermore, the condition number of H -1B  is k (H B )  =
(1 + y)/(1 — y), where y  = ||Bn 2 B 12B -22 1|. The following result [15] (see also [1]) 
shows that such optimality holds also in the sense of the K-conditioning.

T h e o r e m  3.1  Let an SPD  n x n matrix B  be split into  2 x 2 block fo rm  as above 
and let D 1 and D 2 be arbitrary SPD  matrices of the same orders n  and n 2 as B 11 
and B 2 2 , respectively, so that the block diagonal matrix

D  = D l 0
0  D 2

is also SPD. Then the m in im um  of the matrix functional K ( D B )  is attained at D 1 
B —11 and D 2 = B —1 and is equal to

min K  (D B )  = K  ( D ^ B )  = * ‘ (B11>det( » 22>
D2,D2 are SPD

where

d e t(B )

D B = B i i  0 

0 B 22

is the block diagonal part of B .

Proof. (See Section A1 of [15].) Since tra ce (D B ) = trace (D D B ), n 1trace(D - 1B )  =
1 and d e t (D B ) = d e t(D D B )d e t (D - 1B )  it follows that the identity

K ( D B )  = K ( D D B ) K ( D 1 1B )

holds. As follows from the arithmetic-geometric mean inequality, cf. [1, 15], the 
minimum of K ( D D B ) is equal to 1 and is attained if and only if D D B = a l  for some 
a  > 0. Hence, D  = a D - 1  and the required result readily follows for a  = 1.
Q.E.D.

Remark 3.1 Clearly, the 2 by 2 splitting should be chosen such that d e t (B 11B 22) is as 
small as possible to obtain a better K-conditioning. Further, one can readily see that the 
attained value of K  is

K  (D - 1B )  = 1/det( /2  — C T C ), C  = B l / ^ B ^ B ^ 2,
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where 12 is the identity matrix of order n 2, which stresses again the importance of making 
the norm of the matrix C  as small as possible.

In  practice, it appears to be an important case when the matrix D 1 is prescribed, 
and only D 2 can be optimized. The corresponding preconditioning can be regarded as 
the Partia l Block Jacobi one. The following result, which generalize that of Theorem 
3.1, holds in this case.

T h e o r e m  3 .2  Let an SPD  n x n matrix B  be split into 2 x 2 block form

B B 11 B 12 
B 21 B 22

with the orders of the diagonal blocks B 11 and B 22 being n 1 and n 2 , respectively. Let 
D  be the block diagonal matrix

D = D 1 0
0 D 2

with the n 1 x n 1 SPD  block D 1 fixed and the D 2 block being an arbitrary n 2 x n 2 SPD  
matrix. Then the m in im um  of the matrix functional K ( D B )  with respect to D 2 is 
attained for

D 2 = aB . 11
22

and is equal to

min K  (D B )
D2 is SPD d e t(B ) d e t(D 1)

K  (D 1B 1O K  (D - 1B ) ,

where
a  = — trace (D 1B 11). 

n 1

Proof. Using the inequality K ( X ) > 1 with X  = D 2B 22 (which holds for any diago- 
nalizable matrix X  with positive eigenvalues), one has

trace(D 2B 22) > n 2 (det(D 2B 22) ) 1/n2.

Therefore, we obtain the following lower bound for K (D B ) :

K ( D B )  = ( " (trace (D 1B n )  + trace(D 2B 22) ) ) "  > ( " (n 1 a  + n 2 (det(D 2B 22) ) 1/n2) ) "
d e t(D 1) det(D 2) d e t(B ) d e t(D 1) d et(D 2) d e t(B )

" 2 a  + " f  (det(D 2B 22) ) 1/n^  d e t ^ )  / .  . A "  d e t(B 22)"  "  1 > min ̂ ( r ) 1
I (d e t(D 2B 22) ) 1/n I d e t(B ) d e t(D 1) ^ > 0  J  d e t (B )d e t (D 1) ’ 

where we denoted t  = d et(D 2B 22) and

n 1 _ i  n 2 - 2^ (T ) = --aT n +----T n2 n .
n n

7



An elementary computation shows now that the minimum of ^ equals a ” 1 /n and is 
attained for

T a

Hence the expression for the optimum value of the K-condition number is proved. 
Further, it follows from the proof that this lower bound is attained when K ( X ) = 
K ( D 2B 22) = 1, which yields D 2B 22 = a12 w ith a  > 0. The above formula for t  now 
readily yields the required result by letting a  = a.
Q.E.D.

Remark 3 .2  Theorem 3.2 shows that by first minimizing the K-condition number with 
respect to D 2 (for D 1 fixed) and then minimizing the resulting condition number with 
respect to D 1 the same optimality result holds as when the condition number is minimized 
by simultaneously varying D 1 and D 2 .

Remark 3 .3  In the case when both D 1 and D 2 are only approximations to the inverses 
of the diagonal blocks of B  but the following scaling property holds,

trace (D 1B 11)/n 1 = trace(D 2B 22)/n 2 = 1,

a simple exact formula holds for the resulting K-condition number of the preconditioned 
matrix:

K  (D B )  = K  (D 1B n ) K  (D 2B 22) K  (D - 1  B ) .  (3.1)

3.2 E stim atin g  th e  spectra l cond ition  num ber for A p p roxi
m ate 2 by 2 B lock  Jacobi precond ition ing

Let us now consider the estimates for the standard (spectral) condition number k (D A )  
obtained when applying an Approximate Block Jacobi preconditioning.

These results are found in [4, 1] but are presented here for completeness. In 
particular, we follow [1], pp. 378-380. They hold also for singular (i.e. positive 
semidefinite) matrices with B 11 nonsingular, for which B v  = 0 implies B 22v2 = 0. 

W e consider then the extreme eigenvalues of the generalized eigenvalue problem
“ D 1 0 “

0 D 2
singular if B 22 is singular. Further, 7  is the constant in the strengthened Cauchy- 
Bunyakowski-Schwarz (C B S ) inequality,

ADx = Bx . Note that in this subsection, we let D where D 2 will be

rrn rrn rrn 2
X  B 12X2 < y {x 1 B u X 1i 2 B 22X2} 2 .

_ 2  _ 2
I f  both B 11 and B 22 are positive definite, then, as we have seen, 7  = ||Bn 2 B 12B -22 1|. 
Clearly, 7  < 1.
Below, the notation A  > B  means that A  — B  is positive semidefinite.
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T heorem  3 .3  Let B be symmetric and positive semidefinite and split in a two by

two block fo rm  such that i f  B v  = 0 then B 22V2 = 0 when v = V1

V2
is split corre-

spondingly. Let 7  be the constant in the corresponding strengthened CBS inequality 
and assume that

a 1 B 11 < D 1 < & B 11 

a 2B 22 < D 2 < ^2B 22

fo r  some 0 < a 1 < ^ 1, 0 < a 2 < ^2 . Then with D D 1 0 
0  D 2

a) A„,„x < i  1 (1  + S )  + (1  (1  — g - ) )  + 02Y2

1

A ■ > 1 -7Amin > ^2 1 ( 1 + f 2 ) + 1 _  ¿ 2.
«2

and the condition number of the preconditioned matrix  D  1B  is k < Amax/An

b) I f  we scale the blocks so that ^  < f l  = 1, then k < f l  ./ J «2 — f 2 7 _  f 2 1-Y

c) The following simplified upper bound holds,

K < ( 0 2  + 0 2 )  (^ 1 + ^2).

Proof. The extreme eigenvalues are the extreme values of

x2  B x  x2  B 11X 1 + 2x2  B 12X2 + x2  B 22X2

x2  Dx x2 D ix i  + x  ̂D 2x2

Using the strengthened CBS-inequality and the arithmetic-geometric inequality %/ab <
1 (Za + Z- 1b), where Z > 0 , we find

rp rji -t rji

2 |x1 B i 2x2 | < YZxt B i i x i  + yZ- x2 B 22x2 .

This shows that

Amax < min max
(1 + yZ )x2 B i i x i  + ( 1 + yZ 4)x2 B 22x2

Z>o X2,x2 x2 D ix i + x2 D 2x2

and using the given spectral relations between B 11 and D 1 and B 22 and D 2 we obtain

1 + yZ 1 + yZ - 1

Z>o [ a i  a 2

where the optimal value of Z is found from the equation

(1 + YZ )/ a i = (1 + YZ- 1)/ a 2 .

2
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The lower eigenvalue bound is found in a similar way. Here

Amin > max min
Y<Z<Y—1 xi,x2

min (1—rQæf Biiæi + (1—yZ 1)^t  B 22 X2 
Diæi+æ^ D2 X2

where (if ^  < $ 2, otherwise exchange Z with Z 1 above) the optimal value of Z 
satisfies

and we note that y 2 < yZ < 1, i.e. Y < Z < Y 4, which gives the lower bound of Amin.
Part b) follows by direct computation and to prove part c) we let y  = 1  in the square 
root expressions for Amax and Amin. Q.E.D.

3.3 D eriv in g  th e  n2-R ank M odification  K -op tim u m  precondi
tion in g

Let us now consider preconditioners of the form

H  = I  + V S V 2

for the matrix A, where the matrix V  is a fixed n x n 2 matrix with n 2 ^  n, and S  is 
a symmetric n 2 x n 2 matrix depending properly on V  and A. This construction was 
investigated, e.g. in [12, 7, 18].

Following [12], let us choose S  as the solution of the following optimization prob
lem:

The resulting preconditioning was referred to as Low Rank Modification (L R M ) in
[12], in view of the requirement of limiting of the size of S  when it is supposed to be 
calculated explicitly.
Assume that the columns of V  are orthogonalized and let

S  = arg min K ( ( I  + V S V T )A )
S=ST

(3.2)

Z 2 = V  (V T V  ) —1/2,

so that

and introduce the n x n 1 matrix Z 1 such that

Z 2 — 0

and
z T  Z 1 — 1 1 .

In  this case, the matrix
Z  — [Z 1Z 2 ]

10



will be orthogonal, and, by Z Z 2  = I , one has

Z iZ T  + Z 2Z 2t  = i .

One has then

K  ( ( I  + V S V 2  )A ) = K  (Z 2  ( I  + V S V 2  ) Z Z 2  A Z  ) = K  ( ( I  + Z 2  V S V 2  Z  ) ( Z 2  A Z  )) 

= K  ( ( I  + Z 2  Z 2 (V 2  V  ) 1/2S ( V 2  V  ) 1/2z 2t  Z  ) ( Z 2  A Z  ))

Z T A Z i Z T A Z 2= K
Z T A Z 2 Z 2t A Z 2

I i  0
0 12 + (V 2  V  ) 1/2S ( V 2  V  ) 1/2

Thus we have the same problem, the solution of which was given by Theorem 3.2. 
Therefore, setting

one has

which gives

where

B j j  = Z 2 A Z j , i, j  = 1, 2, a  = trace (ZTA Z 1)/n 1, 

D i = I i ,  D 2 = 12 + (V 2  V  ) 1/2S ( V 2  V  ) 1/2,

12 + (V 2  V  ) 1/2S  (V 2  V  ) 1/2 = a (Z 22  A Z 2 ) - 1

S  = - ( V 2  V  ) - 1  + a (V 2  V  ) - 1/2 (Z 22  A Z 2 ) - 1(V 2  V  ) - 1 /2  

= - ( V 2 V ) - 1  + a  ( ( V 2 V ) 1/2Z 22 A Z 2 (V 2 V ) 1/2)  1, 

= - ( V 2 V ) - 1  + a  ( V 2 A V ) - 1 ,

trace(A) — trace ((V 2  V  ) - 1V 2  A V  )
n — n 2

This is the same formula as obtained in [12]:

H  = ( I  -  V ( V 2 V ) - 1  V 2 ) + a V  (V 2 A V )  1 V (3.3)

In  [7, 18] a somewhat different formula for S  (namely, without the term — (V 2 V ) - 1  
and with a different choice of a ) was used.

Thereby, the following more general preconditioner was considered,

H  = M - 1  + a V (5 - 1V 2 (3.4)

where M  and C  are positive definite preconditioners for A  and A V = V 2 A V , respec
tively. Here M  is typically a smoother used to damp the higher eigenvalue modes of A  
while C  can be chosen as a much simpler operator than . The positive parameter 
a  is chosen to move the set of smallest eigenvalues of M -1A  to a cluster of bigger 
eigenvalues, in this way improving the conditioning significantly for ill-conditioned

11



problems where, typically, there exist several small eigenvalues of A. A  good choice 
is a  = Amax( M - 1A )/A max((7- 1A V ), which number can normally be estimated with 
little expense (see [18]).

As we have seen, the projection operator from (3.3) is based on choosing S  to 
minimize the K-condition number in (3.2). However, as follows from the discussion 
in Section 2, this may not be the best choice in actually minimizing the number of 
iterations.

The following estimate of the extreme eigenvalues of H A  holds showing a signifi
cant reduction in the condition number when the vector space spanned by the column 
vectors of V  is sufficiently close to the eigenvector space for the smallest eigenvalues.

T h e o r e m  3 .4  ([18]) Let H  = M - 1  + a V (7 - 1V 2  and assume that {A j,v .j}"=1 is an  
ordered set o f  eigenpairs of  M -1A  such that Ai < . ..  < An. Let the matrix  Ve = 
[Vi, .. ., Vm]. I f  V  is such that the subspace W  = (Im  A 2 V )^  and Ve = Im (A 1 Ve) 
satisfy

v  \ x2yY = cos(W , Ve) = sup — ---— r
xgw jx 2 x y 2 y \  2yGVe L y yJ

then the minimal eigenvalue of C B  is bounded as

 ̂ • [Amax ( M - 1A )  ̂ ] ]Am in(HA) > max < A i, (1 — y ) min < — --- — , Am+i > >
[  [  k(C7- 1A v ) J  J

and the maximal eigenvalue o f  H A  is bounded as

Amax(HA) < 2Amax(M- 1A )

fo r  any choce of V  and C .

As shown in [18], the theorem can be generalized to include eigenspaces of M -1A  
for nearby matrices M  and A  satisfying M  > M  and A  < A.

The preconditioning method (3.4) has been called approximate subspace projec
tion (A S P ) method. Note that in the next section we will consider a similar precondi
tioning with M  having rank n 4 and therefore presenting a generalization of the A S P  
and L R M  preconditionings.

The numerical experiments presented in [12] showed that even with a relatively 
weak explicit preconditioning I IC  the L R M  techniques provides essential reduction of 
the total arithmetic costs of the method. (However, being used alone, L R M  may even 
sometimes lead to a somewhat slower convergence.) Therefore, one may expect even 
greater improvements in the case of IC2-LRM  preconditioning. Similarly, the exten
sive numerical experiments in [18] showed how the A S P  method can be implemented 
in practice and gave several examples of significant reductions of the condition numers 
of several orders of magnitude.

As was pointed out in [7, 18] the subspace spanned by the columns of V  should 
well approximate the subspace corresponding to the eigenvectors of A  with the small
est eigenvalues. W hen there are few very small isolated eigenvalues of A, then such
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a matrix V  can be computed via the Lanczos method, and the A S P  preconditioning 
will give a substantial reduction of the iteration number even with small n 2. How
ever, such matrices V  are not easily found in a general case, especially when n 2 may 
not be small. Some techniques are demonstrated in [18] to find a proper V  for dis
cretizations of second order elliptic problems. In  more general cases we will consider a 
somewhat different approach which can be related to approximate Schur complement 
type preconditioners.

Remark 3 .4  It is interesting to note that the theory developed above in Section 3.2 
can be applied here in order to estimate the spectral condition number of the LRM 
preconditioned matrix as defined above. One can readily see that in this case all the 
conditions of Theorem 3.3 hold with

£l = Amin (Z 2  A Z i) ,  ni = Amax (Z 2  A Z i) ,  £2 = ^2 = a,

and
Y = | | (Z l A Z i ) - 1 /2  z 2  A Z 2 ( z 2  A Z 2 ) - 1/2||.

Thus, the condition number estimate appears to be expressed essentially in the same 
terms as those of [7, 18] for a similar preconditioning.

Remark 3.5 Replacing this "exact” expression of S  satisfying (3.2) with a certain ap
proximation

S  = —(V 2  V  ) - 1  + B -1, 

one should require, by Theorem 3.3, that

6  ( /2  + (V 2 v ) 1/2S ( V 2 v ) 1 /2 ) - 1  < Z 22 A Z 2 < n2 (12 + (V 2 v ) 1/2s ( v 2 v ) 1/2) - 1 , 

which is eqiuvalent to
£2 B y  < V 2A V  < n2B v .

Hence, if the latter spectral bounds holds, Theorem 3.3 gives an estimate for the spectral 
condition number attained with the Approximate LRM preconditioning

H  = (1 — V  (V 2  V  ) - 1V 2 ) + V B - 1V 2 .

In particular, one can see that as soon as n2/ £ 2 < ni/£i, such an approximation to V 2 A V  
can be regarded as quite acceptable.

4 A pproxim ate Schur C om plem ent typ e precondi
tionings

In  this section, we present a common framework for two-level preconditionings using 
approximate Schur complements.
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Let us suppose that the SP D  matrix A  is preordered in a proper way and consider 
its 2 x 2 splitting as

A 11 A 12 

A 21 A 22
A  =

Let the orders of the diagonal blocks A 11 and A 22 be n 1 and n 2, respectively. For prac
tical reasons, we assume that n 1 ^  n 2 ^  1 and that the matrix A 11 is considerably 
better conditioned than A.
It  is a well known fact that the following exact formula for the inverse matrix holds:

A - 1  =

where

A  1 1 + A  1 1 A  1 2S  A 2 1A  1 1 —A  1 1 A  1 2S
- S - 1A 2 iA - 11 S - 1

S  = A 22 — A 21A -11A 12

1

is the corresponding Schur complement. It  is clarifying for the presentation to note 
that the above formula can be rewritten as a n2-rank modification of a n 1-rank sym
metric nonnegative definite matrix:

A 1 A 11
11
0

+
— A  11 11 A  

I 2
12 S  1 [ —A 21 A l 11 ^2 ]

■ I 1 — A 1- 11 A 12 01A I 1 0  ■
0 I 2 0 S - 1 —A 21A-11 ^2

Both of the above formulas are readily obtained from the following simple block matrix 
L T D  L-factorization:

A - 1  =

As above, we denote by I 1 and I 2 the identity matrix of the order n 1 and n2, respec
tively.
Another useful relation is det(A ) = d e t(A 11) d e t(S ).
The statement of the problem is rather simple: let us replace the matrix A —1 by 
certain approximate inverses, symmetric D 1, or even unsymmetric H 1, that is,

A 11 D 1 A 11H 1 «  /1,

and determine the matrix D 2 (to be used instead of S  1) in order to obtain the 
preconditioner

H D 1 0 ' — H 1A 12 '
0 0 +

I 2
D 2 [ — A 21H T  ^2 ] (4.1)

which is as close to A  1 as possible, e.g. in the sense of minimization of k (H A ) or 
K  (H A ).

Note that if D 2 is dense, and D 1 = U —1 as is the case when an incomplete 
Cholesky decomposition for A 11 is used, and H 1 is taken as a sparse approximate 
inverse, then only about of

2nz(U1) + 2nz(H1) + 2nz(A12) + n2

1
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floating point operations (flops) are needed to m ultip ly such a preconditioner H  by a 
vector.

As follows from Theorem 3.2, if the additional scaling condition trace (D 1A 11) = n 1 
holds, then the solution to the above problem is given by

D 2 = (A 22 -  A 21(H 1 + H T  -  H T A 11H O A 12)- 1,

in the sense that this m atrix gives the minimum value of both the spectral and the 
K-condition numbers, cf.[1, 15].
This can be easily demonstrated if one considers

Z I 1 —H 1A 12 
0 I 2

and writes the preconditioner as previously,

H  = Z D Z T .

One has then

K  (H A ) = K  (Z D Z T A ) = K  (D Z T A Z  ) = K  (D B )

w ith

B  = Z TA Z : A 11 (/1 -  A 11 H 1)A 12
A 21 ( I 1 — H T  A 11) A 22 — A 21 ( H 1 + H T  — H T  A 11H 1) A 12

Note that if  a sparse approximate inverse H 1 is used, then the block B 22 is also sparse 
(or at least its rows are easily computable) which gives a possibility to use a relatively 
large n 2 and apply an approximate inversion also for the block B 22, e.g., using the 
IC2  factorization. Another possibility is to recursively apply the method, e.g. as in 
[9, 3].

Remark 4.1 Note that the same preconditioning (but with D 1 = H 1) was cited in [17], 
formulas (2.9), (2.10), (2.12); the references therein go back to [22, 20]. In [17] the above 
formula for H 2 was found too complicated to be implemented in a multilevel method.

A similar construction was also used and analyzed in [21] (again with D 1 = H 1, cf. 
formulas (2.8)-(2.10) there) with a reference to [19].

Remark 4.2 The obtained preconditioning appears to be rather similar to the approxi
mate subspace projection method, ASP, or generalized augmented matrix method, GAM, 
see, e.g. [18] and references therein. Indeed, let us denote the n x n 2 block by

then one has
H

V

D 1
0

—H 1A
I 2
1 A 12

1t/t+ V (V T A V )-1V

However, the first term in GAM preconditioning was chosen to be of full rank n rather 
than n 1 in our case. Such a restriction may likely impair the resulting preconditioning 
quality.
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4.1 Improving K -conditioning by the Approxim ate Schur Com
plem ent

Let us consider an approach to the construction of the m atrix H i approximating 
A n  by the m inim ization of K (Z T A Z ). Since d e t(Z ) = 1, such a setting is actually 
reduced to

min trace (A 2i ( 1 i -  A u H i)TA-ii (/ i -  A n H i)A i2 ),Hi is sparse

or, even simpler,

min tra ce (- 2A 2iH iA i2 + A 2iH ^  A - iH iA i2 ),Hi is sparse

which obviously presents an unconstrained quadratic optim ization problem. The lat
ter appears to be rather (structurally) complicated for general sparsity patterns of H i ; 
hence, let us consider certain special cases. Incidently, nearly the same m inim ization 
problem and sim ilar constructions for the m atrix H i were considered in [10].

In  the case of a diagonal m atrix H i = D iag(h ) the above optim ization problem 
appears to be rather easily solvable (at least, approxim ately). One can find that the 
vector h representing the diagonal of the m atrix H i , can be found as the solution of 
the system

(A iio (A i2A 2i) )h  = d iag (A i2A 2i),

where “o” stands for the Hadam ard (componentwise) product of matrices. The m atrix 
of this system typ ica lly has strong diagonal dominance, which makes it possible to 
determine an approximation to h by a simple iterative method. It  turns out that the 
case when A 12 A 21 has zero diagonal entries yields v irtu a lly  no essential complications.

In  the case, when the m atrix H 1 is chosen as a polynom ial in A 11,

k
H i = qk- i(A i i ) = Y iA i i  \

i= i

the polynom ial coefficients can be found as the solution of the Hankel type system

1
k2

1

Yi Mo
M2 M3 . ..  Mk+i Y2 = Mi

Mk Mk + i . . . M2k-i . Yk Mk- 1

where
Mi = trace (A 2iA i i A i2 ).

O f course, k should not be large in order to make the values of m® and the entries of 
B 22 easily computable.
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An im portant property of this Approximate Schur Preconditioning is that it tends to 
improve the value of K (D —1B )  as compared to K (D - iA ), which seems im portant in 
view  of the relation (3.1). Indeed, one has

K (D - iB )  = 1/d et(D - iB )  = 1/det(1i -  B —11/2B i 2B —̂ i B —/ /2),

where
R —i/2 R R —i R R —i/2 B 11 B 12B 22 B 21B  i i

= A 1 i / (1 i - A  i i H i )A  i 2 (A 22 A 2 i (H i + H  T —H T  A  i i H i )A  i 2 ) i A 2 1(1 1- H T  A  i i )A l i /

= A  — i / (1i —A  i i H i )A  12( S + A 2 i (11 —h T  A  i i )A  — ii ( / i—A  i i H i )A  12) i A 2 i (1 1— H  T A  i i )A  — i / . 
Then, using the equality

det(1i -  X ( S  + X TX ) —i X T ) = d e t(S )/  d e t(S  + X TX )

w ith
X  = A  — i / (11 -  A  i i H i )A  12 ,

one gets

K (D — i B )  = det(/2  + S — i /2A 2 i ( I i  -  H T A  i i )A  —¿ ( h  -  A  i iH ) A  12S — i /2)

~  ^  ~trace (A 2i (1i -  h T A  i i )A —ii(1 i -  A  i i H i )A i 2 )^  .

Note that the latter estimate actually presents an upper bound for K (D — i B )  in terms 
of K (B ) ,  the m inim ization of which w ith respect to H i has been discussed in this 
subsection.

4.2 Improving spectral conditioning by the Approxim ate Schur 
Com plem ent

W ith  respect to the estim ation of the spectral condition number, one may expect a 
considerable reduction of y  as compared to the original m atrix A . For instance, it 
can be shown that if

A 2i (A  — I - -  H i -  h T  + h T A  i i H i )A i 2 < p2A 2i A  — iiA i 2 , p < -̂,

then
2 2  

YB  < p2—YA—
1 -  yB  -  p 1 -  yA

where
YA = yA —/ /2A  12 A —2i/2||, yb = y B —ii /2B  12 B —21 /2||.

The proof can easily be constructed using the same formulas as in the end of the 
preceeding subsection. In  particular, one can see that

2 yT X TX y
Yb  = max -y=o yT S y  + yTX T X y

17



w ith the same X  as above, and therefore, by X T X  -  p2A 2 A  A  2 ,
2

yB -  7 ^ ,  w = Amo* (S  — 1A 2 1A  —̂ A 1 2 ) = .
1 + W 1 -  Ya

Hence, the required estimate readily follows.

4.3 The choice of 2 by 2 splitting of the coefficient m atrix
As was demonstrated above, it is advantageous to have the block A  not only of 
large size n 1 but as well-conditioned as possible, since the latter requirement makes 
it easier to find a good approximate inverse for it. Also, it is advantageous when the 
columns of A 2 are pairwise orthogonal, or nearly orthogonal. The latter condition 
can easily be satisfied if A  is a sparse m atrix, e.g. of the type arising when solving 
boundary value problems for ellip tic P D E ’s using FD  or F E  discretizations. Hence, 
the splitting can be based on the extraction of the block A 22 corresponding to an 
’’independent set” of grid nodes. Otherwise, when A  is not sparse or its sparsity is 
not regular enough, one can base the splitting of A  using a certain ’ threshold pivot” 
Incomplete Cholesky factorization. For instance, supposing that A  is sym m etrically 
scaled to unit diagonal, one can set a certain threshold parameter (0 < 1 and, in 
the course of an incomplete factorization (e.g. IC2  algorithm  [16]) at the k-th step, 
one sets the whole current column of the right Cholesky factor U  equal to the k-th 
column of the identity m atrix whenever it appears that the actually computed value 
is Mjj — 0. Such an algorithm  returns the IC 2  factorization of certain subm atrix A  11 
of A  such that all diagonal elements of its IC  factor are sufficiently close to 1. The 
value of n 1 can be adjusted by a proper choice of the threshold 0 .

5 T he P reconditioned  C G N R  m ethod  w ith  tw o-sided  
2-norm  error bounds

A  possible application of high quality preconditionings for general SPD  matrices may 
be the iterative solution of highly unsymm etric (sparse) linear systems.

In  order to find the solution of unsymm etric linear system

Aox = b,

let us use the substitution x = A Ty; the system then takes the form

A y = b

w ith
A  = A o A T .

Using now the P C G  algorithm presented in [6 ] and using there the substitutions 
xk = A 0yk, qk = A Tpk, one readily gets the solution method in the following form:

ro = b — A 0X0, qo = A  Hro; a—i = 0 ,
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Oi
for i 0 , 1 ,... :

Oi-i + 1/rJ  H r i,
if  (i > 0 a n d  i = 0 mod d) t h e n

if (211̂ 11 — ||b — Aoxi y) t h e n  Q U IT  A  

Mii) = Amin (Ti)
i- i

if I V i ) ~  Mi and Y  Uj +--- <
O.M(i) -  1 — £2 ^  j ° i P l  j =0

Uj I t h e n  Q U IT _2

ai
Ui

Xi+1
ri+i

pi
qi+i

where

e n d i f

r J  H n / q J  qi,
(r J  H r- if/q J qi, 
xi + qiai, 
r i — Aoqiai, 
r J+ iH ri+ i/ rJ  H r i  
H ri+ i + qiPi,

Ti

1
ao

_1
ai

. ¿ 0.ao
¿0
ao

0
¿1

0 1
a j-2

1 + ¿ i-2 
a j_i a i-2

and it is assumed that the minimum eigenvalue of the latter tridiagonal m atrix is 
sufficiently close to

Ml ^min(H A )*

The latter situation typ ically takes place for sufficiently good preconditionings and 
small values of £ as the C G  iterations enter the final stage of superlinear convergence. 

Using the results of [6 ] one can see, from

lly -  y ilk  = llx -  xi||,

that the following two-sided estimate holds:

i - 1

Y  ^ j -  -  Xj-d| 
j=i-d

i -1

— Y  +
Mi

j=i-d
d < i < n.

In  practice, a value such as d = 1 0  proved to be satisfactory. W hen returning by 
Q U IT _2 , one can see that the above upper bound, the equality

n—1
|x — Xk ||2 , k = 0 , . .  ., n — 1 ,

j  = k

2£

dj

1

1
2
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used w ith k = 0 and k = i — d, and the well-known inequality ||x — Xj|| — ||x — xi—d|| 
guarantee that the iterations are term inated w ith

||x — Xj|| — £|x — Xo|.

The return by Q U IT _  1 corresponds to an inacceptably large discrepancy between the 
iterated residual and the ” exact” residual. In  this case, the restart of C G N E  w ith 
x0 := xi should be performed in an attem pt to achieve the required precision.
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