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Abstract

A n approach  to  approx im ate  a g lobal a tt ra c to r  of a sem idynam ical system  
w ith  erro r estim ates  in  H ausdorff m etric  is p resen ted . T h is app roach  is based 
on th e  p ropertie s of a  function  of ra te  of a ttra c tio n  to  an  a ttra c to r  and  on some 
new  resu lts  for an  un stab le  m anifold in  a neighborhood  of an  essential nonhy- 
perbolical po in t. For som e classes of th e  sem idynam ical system  we co n stru c t an 
u nstab le  m anifold in  th e  neighborhood  of a  fixed iso lated  po in t, prove th a t  each 
tra je c to ry  is a ttra c te d  to  th e  m anifold and  find th e  function  of a ttrac tio n .

1 Introduction

The theory of the a, ^-attracting sets for a semidynamical system in a compact space 
was constructed fifty years ago. Main goal of this theory is to find the minimal closed 
set attracting each trajectory as the time tends to infinity.

The first results for a semidynamical system corresponding to ordinary differential 
equation in a noncompact space X  were proved in [1] by Dj. Hale. A t the same time,
O. Ladyzhenskaya [2] constructed the set M  for the Navier-Stokes equations in the 
2D case. She proved that M  is defined as a set which is compact, invariant, minimal 
among the closed sets attracting uniformly any bounded subset B  C X . The set M  
was called a minimal global B-attractor. Now the M  is called [4] a global attractor.

Later on, this result was reconstructed for so-called semigroups of genus one [5] 
whose resolving operators are completely continuous and proved [3] for semigroups 
of genus two. The Navier-Stokes equations, heat convection equations, equations of
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magnetohydrodynamics for viscous incompressible fluids, quasilinear parabolic sys
tems for which one-valued solvability is proved related to those classes.

The theory of attractors for evolution equations has been studied by A. Babin, M. 
Vishik, O. Ladyzhenskaya, R . Temam and by their followers.

The compactness property of a global attractor admits to construct an attractor 
finite approximation e-net M e. There are two basic directions to solve this problem. 
The first of them [6 ] is based on attracting property, and the other one [7] is based 
on a possibility to invert the operator S(t ,  h) for h G M .  In  the current work we deal 
with the first algorithm and realize numerically the wellknown formula

M  = n  [S ( t ,B „ ) ] t f ,
t>0

where B a is a bounded set attracting each trajectory.
The first problem for this approach was pointed out in [5]. There an example 

was constructed where the attractor for each finite subset of B a does not equal M .  
Moreover, when we solve this problem numerically we perturb the original operator 
S(t ,  h) to S(t ,  h) and find the attractor M  of the new semidynamical system.

The problem of closeness of attractors of two semidynamical systems under the 
closeness (in some sense) of their resolving operators was considered beginning [8 , 9] 
by many authors.

The most powerful test for the attractor M a  being in Oe( M \0), w ith Oe( M \0) the 
e-neighborhood of M Ao , was proved by Kapitanskij and Kostin, see also [3]. Later on 
this question was studied in [10]- [18]. For the semilinear parabolic equations this fact 
was proved in [9], [13]. In  [14] this problem was studied for the Navier-Stokes equations 
in i  C R 2, in [15] it was studied for one modification of the Navier-Stokes equations 
in i  C R 3 (this modification corresponds to the algebraic turbulence models).

In  the general case the closeness is absent. The method of attractor approximation 
by means of some sets converging to it as the approximate operator tends to the 
operator of the initial semidynamical system was considered in [6 ]. In  the current 
work (see [15]) we essentially simplify the structure of approximating sets and give 
estimates of closeness of an attractor and approximating sets in an explicit form [16] 
in a Hausdorff metric.

This approach is based on properties of a function of rate of attraction to an 
attractor. This function has appeared in [3], [17], [5], [18], [19].

W e shall construct this function for gradient dynamical systems based on some 
new results for unstable manifolds in a neighborhood of an essential nonhyperbolical 
point.

2 A n attractor approxim ation
Let X  be a Banach space with norm || • ||, Q be a nontrivial subgroup of the real 
numbers R  and let Q+ = Q n  [0, +rc>[ be the intersection of Q and R+. W e shall deal 
with the abstract semigroup {X ,  Q+, S (- )} of a nonlinear operator S  : X  x Q+ ^  X . 
The term semigroup or semidynamical system refers to any family of singlevalued
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continuous operator S  depending on a parameter t  G Q+ and enjoying the semigroup 
property:

S ( t 1, S ( t 2, u)) = S ( t i  + 12, u), V ti, t 2 G Q+, Vu g X .

A  Banach space X  is a phase space of a semigroup, Q+ is a time space and S (•) is an 
evolution operator. W hen Q = R  a semigroup is a semigroup with continuous time.

Let B  and M  be bounded subsets of X . We say that B  is attracted to M  by the 
semigroup S(-) if

d is t (S ( t ,B ) ,  M )  ^  0 as t  ^  rc>.

Here
dist(A , B )  = sup {dist(y , B ) }  , dist(y, B )  = inf ||x — y ||.

yeA xeB

A  set M  is called an attracting set of the semigroup if M  attracts each bounded 
B  C X . The minimal one among the closed attracting sets is called the global 
attractor [4] (minimal global B-attractor [5]). The global attractor of a semigroup is 
defined as the set M  which is compact in X , invariant for S (•), i.e.

S (t, M ) =  M ,  t  > 0 .

and which attracts all the bounded sets of X .
Later on we need the following definitions, see [5].
A  set B a is called absorbing if for each bounded B  C X  and for each e > 0 there 

exists T  = T(e, B )  such that

S ( t , B )  C B a, Vt > T.

I f  a semigroup possesses a nonempty bounded attractor M  then for arbitrary 
e > 0  the set Oe( M )  is an absorbing set. Here Oe( M )  is the e-neighborhood of M ,  
i.e.

Oe( M )  = {u  : 3v G M , ||u — v|| < e } .

A  semigroup is called bounded if for each bounded B  the set S (t, B ) is bounded 
for any t  > 0 .

A  semigroup is called pointwise dissipative if it has a pointwise absorbing set B 0

Vx G X ,  3 T (x) : S ( t , x )  C B a, for any t  > T (x ) .

A  semigroup is called asymptotically compact if for each bounded B  such that 
S (t, B ) is bounded for any t  > 0 each sequence of the form

{S ( tk ,U k ) }^ L 1 , tk  T rc>, Uk G B

is precompact.
The following theorem holds, see [5].

3



T h e o re m  1 Let the semigroup { X ,  Q+, S (•)} be a continuous bounded pointwise dis
sipative asymptotically compact semigroup. Then there exists a non-empty attractor
M

M  = n  [S (t ,B a ) ]x  .
t>0

M  is compact and invariant. I f  X  is connected then M  is also connected.

Consider the problem of approximation of M  with respect to perturbations of the 
original operator S (•).

Suppose that a semigroup S A(•) : X  ^  X  is depends on a parameter A G A. W e 
assume that the following conditions (a ) hold:
a 1) A is compact with respect to the metric || •Ha and A0 is a nonisolated point of A. 
a 2) For each A G A the semigroup {X ,  Q+, S a (-)} possesses a pointwise absorbing set 
B A and non-empty attractor M A.
a 3) There exists a bounded absorbing set B a and for each A G A a set B A belongs to 
the set B a.

B y  definition, each e-neighborhood Oe( M A) is an absorbing set. Assume that we 
know a function 0 (A , e) = 0 ( A , e , B a) such that

d is t (S A(t, B a), M )) < e, as t  > 0 (e, A).

T h e o re m  2 Under the assumptions (a )
(i) Assume, that fo r  any e > 0 there exists S > 0 and a point T \ 0 > 0 (Ao,e) such 

that
HSa(Tao,u )  — Sao(Tao,u)| < e Vu G Ba, VA G O s (Ao). (1)

Then the attractor M a  is upper semicontinuous in the point Ao and the following 
estimate holds

d i s t ( M \ ,  M a o ) < 2e. (2 )

(ii) Assume, that fo r  any e > 0 there exists S > 0 such that
fo r  arbitrary A G Og(Ao) there exists a point Ta = T (A) > 0 (A ,e ) satisfies the 

following estimate

HSa(Ta,u) — Sao(Ta,u)H < e Vu G Ba. (3)

Then the attractor M a  is lower and upper semicontinuous in  the point Ao and the 
following estimate holds

max {d is t (M Ao, M a ) , d i s t ( M A, M Ao) }  < 2e. (4)

As was noticed the most natural set, the attractor M  of the semidynamical system 
| x , Q + ,S (0 } ,  allows one to approximate only a part of the attractor M ,  i.e., M  C
Oe(M ) .  Here, generally speaking, the inclusion is strict. The inverse inclusion, i.e., 
the continuity, holds only for some classes of the dissipative system.
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To approximate the attractor of initial semidynamical system, we consider the 
following set:

B a = \ hi G B a, i = 1, 2, ..., N o 1 Vh G B a 3ih : ||hih — h|| < ^  .

Here B a is an arbitrary absorbing set.
Let X  be a compact metric space where semidynamical systems {X ,  Q+, S (•)} and 

| x ,  Q+,S(-) j  are given and these two systems have a common bounded absorbing 

set B a and satisfy for Vh, h G B a the following inequalities

HSao(T ,h )  — Sao(T,h)H < L||h — h||, HSao(T, h) — Sa (T , h)|| < S. (5)

This estimate means that S (•) is continuous with respect to its second argument and 
the operators S  and S  are uniformly close on elements of the absorbing set B a.

Suppose T  > 0 (A o,e 1, B a), i.e. each trajectory attracts to the e1-neighborhood 
of M :

Sao ( t ,h )  C Oai (M ) ,  Vt > T, Vh G Ba. (6 )
The following statement holds.

T h e o re m  3 Under the assumptions (5), (6 ) let the set B ‘a be a finite e-net in  the set 
B a. Then the set B i  = Sa (T , B^ ) satisfies the following injections:

B i  C Oa1+g (M ), M  C Og+La(Bi).

Note that while the algorithm enables us to approximate the attractor of the initial 
problem with the required precision by means of a finite number of arithmetic op
erations when we know the function ©(•), it is useless now when d im (B a) is greater 
then 10. The reason is that it requires solution for each element of Ba on the time 
point T  ^  1. The current algorithm was tested on a parallel computer under a T- 
system for the Lorenz [4] and for the 1D Chafee-Infante [18] problems. A  T-system 
is a modern programming environment for a parallel computers and clusters which 
provides dynamic parallelization of programs written in a simple extension of C lan
guage. The original sequential C-program for attractor computation achieves efficient 
parallelization on 32-processor Linux cluster after insertion of a little amount of TC  
programming language keywords. The nice property of a T-system technology is a 
transparency of the used C-syntax extension, what makes a possibility to develop and 
run programs written in TC  language without cluster and a T-system installed same 
way as normal C program. Attractor computation program is a simple but real-life 
example used as demonstration in a ’’Super-Computing Initiative —  Phoenix” (” Su- 
perKomputernaja Iniciativa —  Feniks” , S K IF )  Russian-Byelorussian supercomputer 
project. For references see http://cluster.msu.ru and other links.

3 G lobal attraction  to  an attractor
Assume that for a bounded B  the estimate

d is t (S n (B),  M )  < ^ (n )
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holds for each n  > 0. Then we say that M  attracts B  via the operator S (•) at the rate 
^ . W e shall construct the function ^  for a gradient semidynamical system possessing 
a finite number of fixed points. This result is based on the local function of attraction 
to the attractor in some neighborhoods of fixed points and on a global estimate for a 
Lyapunov functional.

Let us consider the rigorous results. Later on we deal w ith a discrete semigroup. 
Let T+ = {n to, n  G N + }, to > 0, S (h) = S ( t o, h) and S k (h) = S (tok, h). According 
to theorem 1 the above result can be adopted to a discrete case.

Assume that the following conditions (p) hold: 
p 1) The discrete system { S k(-), k  G N + }  on a bounded subset Ba of a Banach space 
possesses the compact global attractor M .
p2) The operator S (  ) is a Lipschitz continuous on B a w ith a Lipschitz constant L. 
p3) There are a set of neighborhoods Oj C B a, 1 < i < N , such that S (O j)  n O j = 0, 
as i = j  and a set of decrease functions ^¿(n) of rate of attraction to the attractor 
M ,  i.e.

d is t(Sn (h), M )  < A ( n ) ,  for S k(h) g O „  as 0 < k  < n. (7)

N
Define the set O o = B a \ | |̂ Oj.

¿=1
p4) Each trajectory { S k( h ) } fc=o possesses in O o less than no points, no does not 
depend on h G B a, i.e.

mes { { S k(h ) } := o n o ^  < no, Vh G B a .

The next theorem gives us the global function of rate of attraction to an attractor.

T h e o re m  4 Under the assumptions (p) the following estimate is valid

d is t(S 2n0+n(B a ) ,M )  < L 2 n 0 ]), ^ ( k )  = .m a x ^ * (k )

fo r  n  > 0 .

P ro o f. Let ^ o(n) = L n be a local function of rate of attraction to an attractor as 
h G O o. Then the theorem can be proved in the same way as [18]. The theory of 
iterated function systems [26] also permits one to construct the function ^  for L  < 1.

The conditions (p1,2) are valid for a semigroup of genus two [3], the condition (p4) 
is verified for a gradient dynamical system possessing a Lyapunov functional.

A  continuous function V  : B  ^  R  is called a Lyapunov functional for S(-), if
V  (S(h)) < V (h) Vh G B , t >  0, for S (h ) = h.

For a gradient system we may assume that

0 < v  < V (h) < V, V h G B a

and rewrite condition p 4) in the following form.
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P4) There is a set of neighborhoods Oj C Oj, 1 < i < N , such th a t S(Oj) C Oj and

N
V (S (h ) )  < qV(h), q < 1, Vh G Oo = Ba \ U  Oj.

j=1

The above estimate, together with n o = [log1/q -V] + 1, gives us the condition (p4). 
The condition (P4) is valid, for example, for the following semidynamical system [21]:

—— + V F (x )  = 0, F (x) G C 2(B a), max F (x) < inf F ( x ) , x  G R n .
dt x^Ba xER\Ba

Note, that for a gradient system one can prove the continuity property for the attrac
tor.

To construct the local function of attraction to an attractor, which is required in 
the condition (p3), let us consider the concept of an unstable manifold [2 2 ].

Denote by W (S, O ) an unstable invariant set of an operator S(-) on O

W  (S, O ) = {u o G O  : 3u k G O , u k = S  (uk+1), k  = 0,1, 2 ,..} .

The following theorems hold. {  }
L e m m a  (O .A. Ladyzhenskaya) Let a discrete semigroup { S k(-),k G N + } in a 

closed subset B  of a Banach space possess a compact attractor M .  Then

M  = W  (S ,B ) .

Le m m a  (O .A. Ladyzhenskaya, I.N . Kostin) Let a semigroup { S k( ) , k  G N +}  in  a 
closed subset B  o f a Banach space possesses a compact attractor M  have a Lyapunov  
functional and the set of fixed points Z ( S ) = { z j : S ( z j ) = Zj} = 1  o f S (•) be finite. 
Then

M  = U  U  S k (W (S ,  Oz) ) ,
zeZ(S) k£N+

the sets O z being arbitrary small neighborhoods of the points z.

4 N eighborhood o f a fixed point
The classical results for the hyperbolic sets deal with the structure of the stable and 
unstable manifolds in a neighborhood O  of a fixed hyperbolic point. One can prove 
that the unstable manifold M +  attracts O  via operator S(-) at the same exponential 
rate -0. For more details see, for example [22, 23]. However when a spectrum of 
the linear part of the original operator S(-) has the eigenvalue ^  : | |̂ = 1 a rate 
of attraction is a polynomial and we may use the classical results for the specific 
semidynamical systems [18] only.

Later on we present a generalization of the hyperbolic theory [18, 24] to the non- 
hyperbolic case. For some classes of the semidynamical system we shall construct an
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unstable manifold in a neighborhood of a fixed isolated nonhyperbolic point and esti
mate the rate of attraction to the manifold. These considerations suggest the concept 
of a polynomial contraction mapping.

Let F  be a mapping of a metric space U into itself. Then u  is called a fixed 
(stable) point of F  if F (u ) = u . The mapping F  is said to be a weak (or polynomial) 
contraction mapping when there exists a , p >  0 such that

p ( F K ) ,  F (u2 )) < (1 + P(pu(1,u2) ) ) 1/p (8 )
(1 + a.pP(u1, u2))1/p

for every pair of points u 1,u 2 G U . The great variety of contracting mappings was 
studied in [25].

C o ro lla ry . Every weak contraction mapping F  defined on a complete metric space 
has a unique stable point

F (u ) = u.

For each point u o the iteration process un+1 = F ( u n ) tens to the stable point and the 
following estimate holds

p ( u ,F n (uo)) < p (u ,u °)
(1 + napP(u, u o))1/P '

This corollary can be proved in the same way as the classical results for a contraction 
mapping. Note that for given F  we have

p (F n (u 1 ) ,F n (u2)) < p (u 1  ,u2)
(1 + napP(u1, u 2))1/P ’

and the sum E p (F n (uo), F n+1(uo)) is finite and depends only on p(uo, F (uo)).
n=o

The weak contraction mapping (8 ) for the semigroup corresponding to the Chafee- 
Infante problem was studied in [18]. For some discrete semigroup one can prove that

p (F ( u 1 ) ,F (u2 )) < p (u1,u 2 )(1  -  ap p(u1,u2)),

which implies (8 ) w ith p  = m ax {1 ,p }.
Let us construct the unstable manifold in a small neighborhood of a fixed point 

S(^). Let z = 0, otherwise replace S(-) = S ( z  + •) — z. W e assume that the following 
conditions (a) hold:

ao) The operator S (•) : H  ^  H  be the continuous mapping on a Banach space 
H  with respect to the norm || • || and S (0 ) = 0; there exist the bounded projections 
P+, P _  : H  ^  H , a bounded linear operator L  : H  ^  H , the nonlinear mapping 
R(h)  = S (h) — L h  such that

a 1) P+ + P -  = I ,  ||P+| = IIP-H = 1,
a2) L (P + H ) = P+H, L (P - H ) C P - H ,
as) 11Lx| > (1 + ¿+ )|x |, V-x G P+H, 5+ > 0,
a4 ) IILyII< (1 — 5 - )|y |, Vy G P - H ,  5 -  > 0 ,
a5) ||R(h1) — R (h 2)|| < 6 ( m a x {|h 1|, ||h2 |h 1 — h2 1, Vhj G H
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with a continuous positive monotone nondecreasing function

0 (-): 6(0) = 0 , m ax6 (||h||) < 1/2 ,

where x, y, hj are arbitrary elements possessing to O  C H . W hen 5+, 5- > 0 the point 
z= 0  is a hyperbolic point otherwise is a nonhyperbolic point.

B y  the (a5) we have

a5i) | | P ^ R (h 1) — R (h 2^  || < 6 (m a x {|h 1 |, ||h2 ||})(||x 1 — x2 || + ||y1 — y2

here x j = P+hj , yj = P - hj .
Replace the operator S (h) = L h  + R (h ) for h = x  + y, x G P+ (O ), y  G P - (O ) in 

the following way

S(h ) = f S+ (x + y) = L+x + R+ (x  + y), here S ±(-) = P±S(^)
S (h ) 1 S - (x  + y) = L - y  + R - ( x  + y), L± = P±L, R ± (.)  = P± R (0 .

Let us consider the set A Y (O ) of continuous functions g(x) : P+ O  ^  P - O, such that

g(0) = 0, Ilg^O  — g(x2 )| < Yllx 1 — x 2\l

and introduce the notation: S± (x + g(x))  = S±,g (x), h = x + g(x).
L e m m a  1. Under the assumptions (a) let y  < 1. Then the equation S+ (x  + 

g(x)) = x  possesses the unique solution x  G P+O for  any g(-) G A Y (O ) and each 
X G P+ O.

P ro o f. According to (a4), (a5 l) the operator L+ 1R+ (g(x ) + x) is a contraction 
mapping and the equation S+ (x + g(x))  = L+ x  + R+(g(x)  + x) = x  possesses the 
unique solution x  for any x  G P+O: x  = S -1g (x).

W e shall construct the manifold M +  = {x  + g(x), x G P+ H }  w ith g G A Y (O ), 
prove that M + attracts each trajectory and find the rate of attraction.

T h e o re m  5 . Let the mapping S (•) in  O  = {h  : |x|, |y| < r }  satisfies the above 
assumptions (a). Suppose in  addition that fo r  some y , corresponding to

Y = 1, 5+ = 5-  = 0,

Y (1 — 5- ) + (Y + 1)^  (Y + 1)

1 + 5+ — [5+]^ (y  + 1 )r ) (Y + 1) 

[5+] =

< y  < 1, 5+ + 5-  > 0,

0, 5+ = 0,
1, 5+ = 0

there exist a  > 0 ,p  > 1 such that, fo r  any x, x  G P+O, y G P - O  and any 
g(:),f}(:) G A y (O ) the inequalities (b) hold

b1) llS -,g(x) — S - ,g (x )| + Y^S +,g(x) — S +,g(x )| <
< (1  — a||g(x) — g (x ) |^  ||g(x) — g (x )|, 1 — a|2 r|p > 0 ,

b2 ) llS -,g(x) — S - ,g (x ) ll < |x — 
b3) | S +,g (x) — S +,g (x )|| > ||x — x | .
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1. There exists the manifold  M +  = {x  + g(x ), x  G P + H }  assigned by g : P + H  ^  
P - H  in A y (O ).

2. The manifold is an invariant set S (M + ) = M + , there exists the inverse 
mapping S - n (m), n  = 1 , 2,... fo r  Vm  G M +  and S - n (m) C O.

3. The following estimate is valid

d ist(M + , S n (h )) < ------ |2r| , N1/ , as S k (h) G 0 , 0 < k  < n
v v (1 + na|2 r|P )1/P v ' ~  ~

R e m a rk . According to (a5), (b2,s) we have

llS -,g(x) — S - ,g (x)|l < ( (1  — 5- )Y + 6((Y + 1 )r )(Y + 1 ))|x  — x|l

IIS +,g(x) — S +,g(x)|l > (1 + 5+ — [5+ ]6((Y + 1 )r )(Y + 1 ))|x  — x|l

P r o o f  of the theorem. Let us fixed the unstable manifold M + in the following
way

y  = g(x),  x  G P+O.

W e shall find the mapping g(x)  in the class A Y (O ) which was described above. The 
invariance of M + gives us

g (S+(x  + g(x)))  = S -  (x + g ( x ) ) , or g (S+,g(x )) = S - ,g (x ) .

Inverse the operator S+ g (x) = x  and rewrite the above equality in the following form

g(x) = S-,g  ( S - g (x )) = F (g, x) .

This equation defines the mapping g(-). In  oder to prove the solvability of this problem 
we make use of Newton’s like method

gn+1(x ) = F  (gn , x ) .  (9)

According to remark, for 5+ + 5- > 0, we have

I IF (g, x )  — F (g , ' ) | |  = |S- ,g (S - g (x )) — S - ,g (S- 1 g ('))|  <

< ((1 — 5-)y  + 6((y  + 1 )r)(Y  + 1 ))|S - i1g(x) — S - 1g ( ' ) |  <

(1 — 5- )y  + 6((y  + 1 )r )(Y + 1 ) ll ~M ^  ,,
< 1 x— ¡TiflT?— n r r ? — t t t |x  — < Y ^x  —1 + 5+ — [5+]6((y  + 1 )r )(Y + 1)

| F ( g, x ) — F ( g, x')| < Y^x — xl^

| F ( g ,x ) | <  Y lx l ,

which implies that the operator F  be a mapping of the set A Y (O ) into itself. Sim ilar 
inequalities one can prove with (b2s) as 5+ = 5-  = 0  and y  = 1.

Then
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Now we shall prove, that the operator F  is a weak contraction operator on A Y (O )
with respect to the metric C (P+ O ): max ||g(x)|| = |g|. Assuming 5+ + 5-  > 0 we

xeP+o
obtain

IIF (g ,x ) — F (x ,x )|| = |S- ,g (S - g (x )) — S- ,g (S-g (x ))|| <

< |S-,g (S- g  (x )) — S - g  (S - g  (x ))|  + ||S_,g (S-1g (x )) — S ^  ( S ^  ̂ l  <

< |S-,g (S-^g (x )) — S- ,g  (S - g  (x ))|  +

+((1 — 5-)y + 6 ( (y  + 1 )r)(Y  + 1 ))|S - I1g (x ) — S- g  (x)||.

B y  the definition we have x = S -1g (x), x = S+ 1- (x ) and S+,g (x) = x  = S+, g (x). 
Subtract from the both path the term S+,g (x) and with remark we obtain

llS +,g(x) — S +,g(x)|l = llS +,g(x) — S +,g(x)|l >

> (1 + 5+ — [5+]6((y  + 1 )r )(Y + 1 ))|x  — x | .

This implies with (b1) the following estimate

llF  (g, x ) —F  (g ,x )| < IIS -,g(x) — S - ,g (x)|l + Y | S +,g(x) — S +,g(x)|l <

< ||g(x) — ff(x) | | ( 1  — a |g (x ) — g (x )|q) .  ( 1 0 )

This inequality is valid for any x  and we have

| F (g) — F (g )|  < ^g(x) — g ( x ) | ( 1 — a | g(x) — g (x )|P ) .

The right hand side of the inequality is monotonically increasing in ||g(x) — g(x)|| as 
x G P+ O  and hence

|F (g ) — F (g )| < |g — g | ( 1 — a|g — g|P)  < (  ig x  .
(1  + a|g — g|PJ

In  this way the mapping F (g , x ) is a weak contraction mapping. According to lemma 
this mapping has the unique stable point g, and the iterative process (9) tens to the 
g for each initial data, for example, go = 0. The manifold M +  is constructed.

The existence of the inverse mapping for S (h ) when h G M  is followed from the 
existence of the inverse mapping for the S+,g(x). Moreover, this implies with (bs) the 
inequalities

IIS-g(x)||< ||x||, IIS-g(x)||< ||x||,

and inclusions S -n(m ) C O  as n > 0 .
Let us prove that each h = x+ y G O  attracts to M + . Choose any point h1 = S (h ), 

there is the point m 1 G M +  such that m 1 = P+ S (h ) + g (P+ S (h )). The invariance of 
M + , together with the inequality (b1), gives us

Ih 1 — m 11 = ||P-S(h ) — g (P + S (h ))|  <
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< ||P-S (y  + x) — P - S (g (y )  + x )" + "g (P+ S(g (y ) + x )) — g (P+ S (y  + x ))"  <

< ||P-S (y  + x) — P - S (g (y )  + x )" + ||P+S(y + x) — P+ S (g (y ) + x)|| <

lly — g(x ) ll<
(1 + a " y  — g(x)||P)V P ' 

Whence
d is tn (M + ,S n (h )) < "hn — mn || <

lly — g(x )"<
(1 + n a "y  — g (x )"p) 1/p’

where mn = P+ (hn) + g (P+ (hn)) G M + . The theorem is proved.
The above theorem implies.

T h e o re m  6  Under the assumptions of Theorem 5 suppose in  addition that fo r  the 
operator S+,g(x) the following estimate is valid

b4) ||S +,g(x )" > ( 1 + P |x|q ) |x1, P >  0 ,q > 1 

fo r  Vx G O. Then fo r  any m G M +  we have

||S+ (m )" > ------1x1------, S k (m ) G O , 0 < k < n
" +V '"  > (1 — n/?"x "«)1/^  < <

iiS - n(m )|i < — — g  ,g. 1/q, ig = m in {/  m -^  n = l , 2 , ...
(1 + np|r|q ) 1/q 

" S -n (m )" — 0  n —— to

P ro o f. The existence of the inverse mapping for S (h ) as h G M  follows from the 
assumptions of the theorem. This, together with (b4), implies

" s +(x  + g (x ) ) || >
(1 — /?"x"9 ) 1/q

with some /  = m in {/ , |r|-p}. The above inequality gives us

IIS- ! (x ) "  < ------1x1---- r , S+ „ (x) = x," +,gw " < (1 + n,g"x"9 )1/q, +,sV ; x

and "S+ ng(x )" — 0 as n — to. Which, together with the continuity of the mapping 
g, shows that " S -n (m )" — 0 as n — to. This completes the prove.

It  should be noted, that for 5- > 0 the assumptions (a), (b) and the condition on
Y are valid for some O r C O  and r  > 0. Moreover, it is easy to prove that

b1) " S -,g(x) — S -,g(x )" + Y "S +,g(x) — S +,g(x )" <
< (1  — 5- + 20(r(1 + y ) ) )  "g(x) — g (x )".

Hence the current result implies the classical theorem [23] for an unstable manifold 
in a neighborhood of a fixed hyperbolic point:
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T h e o re m  7 Under the assumptions (a) assume that 5 = 5+ = 5- > 0 and fo r  the 
given operator S(-) : H  — H  the following estimate holds

" R (h 1) — R (h 2)|| < 0"h1 — h2", hi G H , d < 5/2.

Then the inequalities 1,2 o f Theorem 5 are valid.
3. The manifold M +  attracts each point h at the exponential rate

dist(M + , S n(h )) < (1 — 5 + 2<9)n2r.
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