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An optimal order multilevel preconditioner with
respect to problem and discretization parameters

by O.Axelsson*and S. Margenov'

Abstract

Preconditioners based on various multilevel extensions of two-level finite el-
ement methods lead to iterative methods which have an optimal order compu-
tational complexity with respect to the size (or discretization parameter) of the
system. The methods can be on block matrix factorized form, recursively ex-
tended via certain matrix polynomial approximations of the arising Schur com-
plement matrices or on additive, i.e. block diagonal form using stabilizations of
the condition number at certain levels.The resulting spectral equivalence holds
uniformly with respect to jumps in the coefficients of the differential operator
and for arbitrary triangulations. Such methods were first presented by Axelsson
and Vassilevski in the late 80s.

An important part of the algorithm is the treatment of the systems with
the diagonal block matrix, which arise on each finer level and corresponds to
the added degrees of freedom on that level.This block is well-conditioned for
model type problems but becomes increasingly ill-conditioned when the coeffi-
cient matrix becomes more anisotropic or, equivalently, when the mesh aspect
ratio increases.

In the paper two methods are presented to approximate this matrix also
leading to a preconditioner with spectral equivalence bounds which hold uni-
formly with respect to both the problem and discretization parameters. The
same holds therefore also for the preconditioner to the global matrix.

1 Introduction

In many problems in mathematical modelling in natural sciences, engineering and
in other areas as well where second order boundary value problems must be solved
numerically, large scale linear systems arise which frequently must be solved a number
of times for each modelling case.

Often, the arising systems are severely ill-conditioned due to some problem parameters
taking near limit values. Examples of such parameters are ratio of coefficient jumps,
anisotropy, aspect ratio of the mesh and domain geometry, Poisson ratio for nearly
incompressible materials etc. Furthermore, the condition number may increase rapidly
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when the discretization mesh is refined (due to both a smaller mesh parameter and
possibly irregularity of the mesh elements). In finding a good solution method one
must preferably search for efficient preconditioners for the, parameter free, conjugate
gradient iterative solution method.

The method to be presented is a block matrix approximate factorization precon-
ditioning of the algebraic multilevel iteration, AMLI type. It is based on two or
multilevel finite element meshes and can handle arbitrary coefficient jumps on the
coarsest mesh used (which, by itself can be quite fine) and also ratio of anisotropy,
using newly developed finite element based preconditioners for the block correspond-
ing to the added nodes. The condition number is bounded for any ratio of coefficient
jumps and anisotropy.

Algebraic multilevel preconditioners were first presented in [10, 11] and are multilevel
extension of the two-level methods in [13] and [7]. Here block matrix approximate
factorizations were considered and it was shown that that by recursively extending
the two level method using certain matrix polynomial approximations of the aris-
ing Schur complement matrices, one can derive a preconditioning with a condition
number which is bounded independent on the number of levels and on jumps in the
coefficients, assuming the coarsest mesh used had no jumps inside any element. Simi-
larly, preconditioners in additive form, i.e., using block diagonal preconditioners, but
with stabilization at certain levels (see [4]) were developed with the same properties.

In the above methods the block matrix corresponding to the on each level added de-
grees of freedom gets increasingly ill-conditioned with increasing degree of anisotropy.
Until recently, no efficient generally applicable method to handle this problem has
been given. In [16], a preconditioner to this matrix in multiplicative form and in
[9] an element by element preconditioner in additive form were suggested. The first
method considered either x- or y-dominated anisotropy while the latter considered
the general case with arbitrary coefficients in the differential operator. It was shown
that the preconditioner is spectrally equivalent to the given matrix with bounds which
holds uniformly in the number of levels and in the coefficients of the operator.

In the present paper we consider possible improvements of these methods. In partic-
ular it is shown that for a new element by element preconditioner in multiplicative
form, an significant improvement in the condition number can be achieved.

The remainder of the paper is organized as follows: In section 2 we survey the major
results for multiplicative and additive preconditioners in algebraic multilevel form. In
Section 3 we recall some basic results for element by element analysis while Section 4
deals with the construction of the new preconditioners for the block diagonal matrix
corresponding to the added degrees of freedom on each level.



2 Multilevel preconditioning methods for elliptic bound-
ary value problems

2.1 Variational formulation

Consider the variational formulation of an elliptic boundary value problem,

2

0 Ou .
Z 6_1‘Z (al]a—m]> = f in Q

ij=1

with proper boundary conditions, i.e., seek u € V = H}(Q) such that

a(u,v) = / fv, forallveV,
Q

where ,
Ou 0Ov
a(u,v):/ Z al]a—wz g, U,'UEV,
Q=1 J
and it is assumed that [a;;] is a symmetric and positive definite s.p.d. matrix. For its

numerical solution a finite element method is used, i.e., one seeks up, € V;, C V such
that

a(up,vn) = > al (un,vp) = (f,on) for all vy, € Vi, (1)
eeT
where 2 Our O
(h) — (e) Oth OUh
& /6121 i Oz; Oxj’

T denotes a set of triangles in a proper partitioning of the domain Q (which is assumed
to be polygonal for simplicity). Further A is a corresponding mesh size parameter and
V}, is the FEM space. In this paper we restrict the FEM space to piecewise linear
basis functions.

This leads to an algebraic system Au = f, where A is s.p.d. We survey here a result
showing the existence of a preconditioner C' with a condition number bound of C~' A
which holds uniformly in the parameter h and the coefficients [a;;], i.e. in ratio of
anisotropy or shape of elements and jumps in coefficients, if the latter occur only
across element edges of the coarsest mesh used. For simplicity, we assume further
that the coefficients are constant on each coarse mesh element. (By proper balancing
the computational costs of the method used on the coarse mesh with the cost on the
finest mesh one finds easily that the coarsest mesh can be quite fine by itself while
still allowing an optimal order of computational complexity even if a simple iterative
method is used on the coarse mesh, see [8] for further details.) In addition, it allows
for efficient computations of the action of C~1.

We consider then a sequence of finite element matrices partitioned in two by two block
form (k41 4(8)
Al Ay

A+ = . k=0,1,... kg —1

k k
Ay Ay



where A = A kg is the level number for the finest mesh and A© is the coarsest
mesh matrix. The order of AK*+1) ig ng+1 and the order of A;’;) equals ng, i.e. that
of A®) . Here A*+1) is either given on hierarchical basis function form, f/l\(k"‘l), in
which case A%) = A® or in standard basis form A(®). The latter is sparser than
A and it is therefore preferable to use it. Note that A\gliﬂ) = Ag’iﬂ). This matrix

corresponds to the added degrees of freedom on mesh level k.

2.2 A recursive block diagonal preconditioner

In this subsection, we consider matrices on hierarchical basis form. For A1) g g
efficient to use a block diagonal preconditioner,

k
B ¢
0 M (k)

D+ —

where B is a preconditioner to A" and M® is a preconditioner to A

The following theorem shows a bound of the condition number of D*+1~" 4(k+1)
It involves the CBS-constant « which is the cosine of the angle between the finite
element subspace Vl(kH) of added basis functions and subspace VQ(k) of the coarse
mesh basis functions. For further details regarding choices of V1, V5 see [11] and [7].
Below A > B means that A — B is positive semidefinite.

Theorem 1 (see [7]) Let Bi1, M be preconditioners to A1y and Ass, respectively and

b1Byy < Ay <boBii, (for allvy € V1)

and
ay M < Aoy < agM, (for all vy € V3).
Then )
By 0 An Ar 1 2 \21 1(4 1
a) cond { 0 M- Ay An <7 (1+w) 5(ao +bo)) - 5 (a_1 + H)
where
a(u,v)
v = sup T
wevi {a(u,u)a(v,v)}z
vEVy

b) For ag > by and a; < by it holds cond < }f—:’y Z—‘l)

This preconditioner can be readily extended by recursion to a ko-level matrix,
B )
D(k070) — '
1
By
0 A0)



where A ig the standard basis function matrix on th_e1 coarsest mesh level. It can
be seen (see [3]) that the condition number of D*0:0)™" A(ko) hecomes bounded by
a recursive expression derived from Theorem 1. If by < ag, by > a; on each level,

ko
this becomes bounded by (i‘—::) . Using certain matrix polynomials on some prop-
erly chosen levels or similarly using an inner iteration method, one can bound the
condition number so that it doesn’t grow with the number of levels. In the actual
implementation of the iteration method one can use relation (6) (see next subsection)

in order to avoid dealing with the less sparse hierarchical basis matrices.

2.3 Block matrix factorized preconditioner

Consider now a block matrix factorized preconditioner.
The exact block matrix factorization of A*+1) ig

AE 0 7 [ A e

A+ —
A

0 St
where Il(k), IQ(k)
plement matrix

are unit matrices of corresponding orders and Sék) is the Schur com-

S = AP — A0 A A,

It can be readily shown (see e.g. [10]) that the Schur complements for the hierar-
chical and the standard matrices are identical. We are primarily interested in using
the standard basis function matrix. Since S*) is normally a full matrix we must
approximate it with a sparse matrix. In general, Ag’iﬂ) must also be approximated.
The resulting preconditioning method is of AMLI type, i.e.

By 0 ] I BT 4

ck+1) —
N N R

where Bﬂﬁ_l) is a preconditioner to Aﬁ‘H) and Sg) to Sgk), which are assumed to

satisfy

ﬁ_lvf‘AgﬁH)vl < vlTBﬂcH)vl < ’U{AY;+1)’U1 for all v; € R™+17 "k (2)
n i S vy < vl'Spu, < U2TSZU2 for all vy € R™ (3)
~ By Ap .
where A = 5 SZ: A22 - A21B11 A12 and ﬂ Z ]., n Z 1.

Az Az
Finally, we assume that

Ozil’l}gSAUQ < U2TSXU2 < ngAvg, for all vy € R™. (4)

Here the right inequality follows directly from the right inequality (2). The left
inequality is assumed to be sharp. Since n~!vI S vy < vl Svs for all vy it follows
that a < 7.

As has been shown in [12], the following condition number bound holds.



Theorem 2 Let (2) - (4) hold. Then
kol Av < vT'Bv <vTAv,  for all v, where Kk <np

Hence, the condition number is bounded by the product of the condition numbers for
B! Ay and Sp'S4. However, as shown in [12], (see also [18]) 1 depends in general
on 3 unless hierarchical basis functions are used. (Note that S5 is involved in (3) and
S+ depends heavily on By;.) Loosely speaking, it must hold that vl Spve ~ vl Savs,
vl Biyvy ~ vl Ajjvp and vy = A7 Appvy ~ B1_1A12v2 when vy is a “smooth” vector.
In order to avoid this limitation in choosing Bj; one can introduce the following
perturbations of the off-diagonal blocks in the preconditioner. This important trick
was found already in [11].

The preconditioner takes now the form

k+1 -1~
D) B§1+ ) 0 Il(k+1) Bﬂ““) Ag’;)
el o
where i i i . i
(k41 1 1 1 1
T = Al (Al - B 4 .
(k41 k41 k+1)T k41 k41
R R ()

(k

Here J12+1) is an interpolation matrix which transforms the components of the current
coarse vector to the new components of the vector on the next finer level. The reason
for perturbing the off-diagonal block matrices as done in (5) is that in this way

MR+ = J(k+1)TM(k+1)J(k+1) (6)

where

Jk+1) —

Il(k) Jl(kJrl)
o Y|
takes the form

k+1)  (k+1
[ B AL

)

A‘é];-i—l) S(k) +/Tgi+1)3£]16+1) 1A(k+1)

which follows from an elementary computation. Here A(H = Ais + Anr J(Hl) i
the off-diagonal block in the hierarchical basis function matrix

(k+1)  F(k+1)
A1) _ Aly Ay
(k

)

Ak 4

Hence M *+1) can be considered as a precondltloner to A®+1) and the extreme eigen-
values of M*+1)7" Ak+1) aqual those of M*+1D ™" Ak+1) gince

oT Ak+1),, 5TA(1¢+1)5 ) oT Ak+1) ) @Tg(kﬂ)@
SUp —+—-——— =Sup —————, mnf ——=inf ———
vp v M (k+1)y ?p T M+ v oI MGy S ST (DG



Since the off-diagonal blocks in JF(’““) equal those in A*+1) the estimate of the

extreme eigenvalues of M (*+1)"" 4(k+1) can be readily done. As shown in [11], see
also [18], if

vf’AﬁH)vl < UlTBﬂcH)vl < (1+b)vlTAgli+1)v1, for all v; € RI**+177k

and
vl AR yy < 0l Spus < (14+d)ol A® vy, for all vy € R™
then
cond (M(k+1)71A(k+1)) < —11+b+2d.
-

Both the additive and multiplicative methods can be extended recursively replacing
Sp with a matrix polynomial approximation

M® = [T — P,(M®™" 4(k))]~1 4(k)

where P,(0) = 1 and P, is small on the interval of the eigenvalues of M® 7 4®) | The
best approximation is by a shifted and scaled Chebyshev polynomial, see [10]. In this
way, the condition number can be stabilized, i.e. bounded by a number which does
not depend on the number of levels. The polynomial doesn’t have to be the same on
each level.

Remark 1 There are some restrictions on v (lower and upper bounds) to obtain
an optimal order, O(n) of computational complezity. As has been shown in [10], both
conditions can be met by applying, if necessary, the stabilization only on certain levels.
It remains now to construct approximations Bﬂﬁ_l) to Ag’iﬂ) which is the major topic
of the paper.

3 Element by element analysis of multilevel precon-
ditioners

A crucial part of the analysis of multilevel iteration methods is the analysis of the
behaviour of the constant v in the strengthened Cauchy-Bunyakowski-Schwarz in-
equality,
1
a(u,v) < v{a(u,u)a(v,v)}2, forallueVy, vel,

where Vi, V5 are defined in Section 2. As shown in [7], see also [14], [5], equivalently
we can analyze v from the inequality

(I—v)(a(u,u)+a(v,v)) < a(u,v) < (1+7)(a(u,u) +a(v,v)), forallu € Vi, v e Vs.

(7)
The inequality (7) corresponds to a block diagonal preconditioner. More generally,
the following result holds.



Al A12

Lemma 1 Let A = [ Aoy Ay

] be a symmetric and positive definite matriz par-
titioned in blocks consistent with a vector partitioning { Zl ] Let v, 0 <y <1 be
2

the smallest constant for which vT Aw < (T Av)z (wT Aw)2, for all v = { 161 ],

w = { 0 ] holds. Then
U2

(i) ~*=sup,, {viTAijAj_lAjivi/viTAivi}
(ii) (1 =) (v Av + wT Aw) < vTAw < (14 7) (0T Av + wT Aw), for all v, w.
(iiia) U?SS)Ul > (1 —~H)ol Ayvy, for all vy
(1iib) U%Sﬁf)vg > (1 — y*)vd Ay, for all vy
where SX) =A; - AijAjflAji, i # 7, 1,7 =1,2 and the inequalities are sharp.
Proof.Part (i) follows directly from the definition of . Further
(v +w)TA(w + w) = v Av + 20T Aw + w’ Aw,
so part (7¢) follows from part (),
[T Aw| < 'y{vTAvaAw}%

and the inequality 2ab < a®+b?. Further, to show that part (i) implies parts (iii, a, b)
we note that for any &, v < ¢ < 47! the generalized arithmetic-geometric mean
inequality 2ab < &a® 4+ €102, a,b > 0, with a = v” Av, b = wT Aw implies

(v +w) T A(w 4+ w) = vl Av + 20T Aw + w? Aw > (1 = &) Av + (1 — € y)w” Aw.
Letting here £ = v shows that

UITSS)Ul = iru1]f(v +w)TA(w +w) > (1 —*T A

which is (iiia). Similarly letting & = ! (iiib) follows. The relation in (i) and
the sharpness of the estimates follows by considering o7 A;;o; < (07 9;07%;}%,
1 - _1 _1 .
where ¥; = AZv;, Ajj = A, 2AijAj 2 and repeating the above for the matrix A =
L Ap ]
Iy _ m
[ An Iy
Next we make the well-known observation that

a(u,v) = Z ae(u,v),

eeT



where a.(u,v) is the element contribution. This is the basis for the assembly pro-
cess in finite element methods. If the preconditioner to the global stiffness matrix is
constructed in the same way by assembly of local stiffness matrices, it follows there-
fore that the analysis of the corresponding condition number can be done for the
element matrices. This observation was first done in [6] and tremendously simplifies
the analysis of preconditioners for finite element matrices.

We make next the last basic observation, which enables the analysis of finite element
matrices for an arbitrary linear form (1). We show that the analysis for an arbitrary
finite element triangle (e) with coordinates (z;,y;), @ = 1,2,3 can be done on the
reference triangle (€), with coordinates (0,0), (1,0), (0,1). Transforming the finite
element function between these triangles, the element bilinear form becomes (see e.g.
),

ae(u,v) = ag(ﬂ),ﬁ) =

/~ [aa aﬂ [(xz_ml) (y2_yl)} [an am] {(@—xl) (z3—1) % | s,

9%’ 9y (z3—z1) (y2—y1) 21 Q22 (W2=1)  (ws=11) ou

where 0 < Z, ¥y < 1, i.e., it takes the form
o~ . Ou Ov _ __
ae(u,v) = /~Z aij 7= == dz dy,
By 61‘1 8a:j

where Z; = T, T» = y and where the coefficients @;; depend on both the coordinates in
e (or, equivalently, the angles in e) and the coefficients a;; in the differential operator.
We conclude that it suffices for the analysis of the CBS-constant v and as we shall
see, also of the condition number of Bj;' A;; to consider (7) for the reference triangle
and arbitrary coefficients [a;;], or alternatively, for the operator —A and an arbitrary
triangle e, see [4], respectively [15]. A computation (see [4]) shows that 7* < 2
for any coefficients [a;;] and any triangulation. In the next section it will be seen
that the construction and analysis of preconditioners for matrix Agliﬂ) can be done

elementwise also.

4 Optimal order preconditioners of Ag’iﬂ)

In this section we describe two algorithms for construction of optimal order precondi-
tioners Bﬂcﬂ) to the matrices A§’§“) which are required within the AMLI methods
under consideration. For both algorithms the condition numbers are bounded for all

levels, i.e.
-1
f(BEDARTY) =00) K=k, 01

where the constant in the estimate is independent of the initial triangulation and the
coefficients a;j(z) of the differential operator. The construction and the analysis of

the preconditioners Byfﬂ)

procedure.

are based on a macroelement-by-macroelement assembling



Let us consider two consecutive levels of uniform refinement (k) and (k + 1). They
correspond to the triangulations 7 and 7T;4+1 where each element of 7}, is divided into
four congruent triangles of 7r4+1. We call the union of these four triangles macroele-
ment E € Try1 (see Figure 1).

z\a

Figure 1: Four levels of uniform refinement of T' € 7y and macroelement E € T3.

Following the standard FEM assembling procedure we can write Agliﬂ) in the form
k41 E+D) T (k+1) 5 (k41
D ST ®
E€Tkt1
(k+1)

where Ly stands for the restriction mapping of the global vector of unknowns to
the local one corresponding to the macroelement E. Accounting for the general form
of the element stiffness matrix corresponding to T' € 7Ty we get the following simple

presentation of AﬁfEl), see e.g. [5].

- [aT+bT+CT —CcT =br -|
Agle):?TT —CcT ar+br+er —a T (9)
[ b —arT aT+bT+cTJ

where rr depends on the shape of T € To and on the related coefficients of the
differential operator.

In what follows we will simplify the notations omitting the argument and the subscript
T. This will not lead to any confusion as all the constructions we will introduce are
local, that is they are within one and the same element of the initial triangulation
T € To. Now without loss of generality we assume that |a| < b < ¢. This follows from
the following relations.

Lemma 2 Let 61,05,03 be the angles in an arbitrary triangle. Then if a = cot by,
b = cot s, c = cot B3 it holds

(Z) a = lb:_bcc

10



(it) If61 >0y > 05 then|a| <b<c
(iii) a+b> 0.
Proof.Since a = cot(m — (62 + 63)) elementary trigonometric relations show that

1 — cot 85 cot 03

a = —COt(92 +03) = m’

which is part (7). To prove part (i), note that if 6; < T, then 6; > 6> > 63 shows
that 0 < a < b < c. If the triangle is obtuse, i.e. ) > 7, then 6 + 603 < T and it
follows that a < 0 and

cotfycotfs — 1 cotf3 — 1/ cot B,

ol = cotfy + cotfy cot 0 cot B3 + cot B, <cotfy =b.
Finally, a + b = sin(6; + 62)/(sin 6y sin 65) > 0. [ |
Then
a+pB+1 -1 -0
AR — 9y ¢ -1 a+f+1  -—a : (10)
-3 -3 a+B+1

where a@ = a/c, = b/c. Taking into account, that a = cot 0(1T), b = cot 0(2T), and
¢ = cot 0(32 where 0(;) + 0(2T) + 9(?}) = 7 are the angles of some auxiliary triangle
depending on T € Ty and on the corresponding coefficients a;;(T") of the differential

operator (see e.g. [5]), we get that (a,3) € D where

D:{(a,ﬁ)ERQ:—%<a§1, 0<p8<1, a+8>0, and |a| < B}. (11)

o=P

o+B=0

Figure 2: Domain of parameters (a, 3).

The next pure algebraic inequality will also be used in the following two subsections.

11



Lemma 3 For all (a,3) € D holds the inequality

af+a+pB+1 4
> — 12
(a+B8+1)(a+B8+2) " 15 (12)
Proof.The inequality is equivalent to
40® + 4% - 3(a+p) —Taf < 7. (13)

Introduce the auxiliary function 1 (a, ) = 4a? + 43% — 3(a + 3) — TaB defined in D
(see Figure (2)). From
oY _
da

It follows that if ¢» has an extremum in some interior point (&,3) € D then & =
(78 + 3)/8. Now we consider

8a—TB—3

6+3

—3 1582 — 908 — 9)

~ 1

W2, 8) = 9(8) =
which is strictly decreasing if 0 < 8 < 1. This means that ¢ («a, 8) achieves its infimum
on the boundary of D. From the expression (12) follows that the extreme values must

be taken either for a < 0 and |a|8 mazimum or for « = § = 1. This simply leads to

Ymaz = ¢(_%71) =7

which completes the proof of the lemma. [ |
The approach used to construct the preconditioners discussed in the next subsec-
tions can be summarized as preserving the links between the mesh nodes along the
dominating anisotropy.

4.1 Additive preconditioning of Ag’iﬂ)

The additive preconditioner is defined as follows
T
Byt = Y LEtV BRRLEY. (14)
E€Tkt1

The local matrix Bﬁ}l) is obtained by preserving only the strongest off-diagonal

entries, i.e., we have

[a+6+1 -1 0 ]
Billc:g) =2rc -1 a+pB+1 0 , (15)
0 0 a+ﬁ+1J

It is important to note that the so defined matrix B;Ifj;;l) has a generalized tridiagonal

structure (see [9] and also [17]) which means that the solution of linear systems with

12



B%’f}l) has a computational cost which is proportional to t)he related problem size.

The structure of the assembled preconditioning matrix Bg’f“ is convenient for a rapid

solution. Due to the form of the corresponding element matrices BﬁcfEl), each node
is coupled to none, one or at most two neighbors. This means that the coupled nodes
form either a single point, a polyline or a polygon. Therefore, there are no cross-
points. If we order the nodes along the connectivity lines, we get a block-diagonal
form of the matrix Bﬂcﬂ), where each block matrix is tridiagonal and corresponds
to such a group of coupled nodes. Clearly, each of the blocks can be solved by a
direct method with an arithmetic cost proportional to its dimension. Furthermore,
an algorithm for ordering the unknowns can also be implemented with such an optimal
order of complexity.

To estimate the condition number of the preconditioner (14) we consider the local
generalized eigenvalue problem

The characteristic equation for Ag is det(Agli}l) —)\EB%};)) = 0 which can be written

in the form

(a+B+1up —pE -3
—pE (a+B+1)ug —a =0, (17)
-3 —Q (a+B+1up

where ugp =1 — Ag. For the solutions of (17) we get

1 _ @23\2 _ (a+B8+1)(a® +5%) + 228

or, after simplification,

a+B+1D(a+p+2) (a+pB+1)(a+B+2)

(2,3)) 2 o+ +a+0 a+pB+1+ap
("E ) 1 -

2
Hence, applying the inequality (12), it follows that (,u(E2’3)) < 7/15, and the local

eigenvalue estimate
1—VT7/15< A <1++4/7/15 (18)

holds. Now we are ready to prove the next theorem.

Theorem 3 The additive preconditioner of Ag’;H) is of optimal order computational
complezity with a relative condition number uniformly bounded by

-1 1
. (B£Ilc+1) A§’§+1)) < 711+ V/105) ~ 5.31. (19)

This condition number holds independent on shape and size of each element and on
the coefficients in the differential operator.

13



Proof.Applying (18) we get

oTAE Dy = S0 L A L o S ymeny LD gD LD,
E€Trs1 E€Trs1
T
(14 V7/15) b L B L o = (14 V/7715) o BE D
and, similarly,
UTAinH)v > (1 — 7/15) vTBﬂH_l)v.

Combining the last two inequalities we complete the proof.

- ymaz (gk+1) " 4 (k+1)
S I Pl M 10 SR

\min (B§’{+1>_1A§’;+1>) 1—/7/15

Remark 2 The additive preconditioner B( ) was first introduced in [9] where the
above estimate of the condition number was derwed using a slightly different approach.

(k+1)

The parameter dependent version B(o), in the form

B(o){Et) = B 4 GRMFD 5 e [0,1),

where R(kH) = diag(—p,—a,—(a + B)) can be analyzed numerically, see Table 1.
Note that when o = 1 the row-sum criterion B(1 )(k+1) Ag’iﬂ)e is satisfied where

= (1,1,1)T is the unit vector. We observe that the best relative condition number
corresponds to the case o = 0. Moreover, for 0 — 1 the condition number deteriorates

when (a, ) = (=1/2,1).

-1
Table 1: Numerically computed estimates of (B (a)glfrEl) Aglel))

o| O 01102 ] 03] 04| 05|06 |07 0.8 0.9 0.99
k| 9531533539551 572|609 | 674|796 | 10.64 | 19.16 | 176.47

4.2 Multiplicative preconditioning of A (k+1)

In order to define a still stronger preconditioner we consider the multiplicative pre-
conditioner B§1+ ) where we partition the nodes corresponding to the block A(k+1)
into two groups where the first one contains the centers of parallelogram superele—
ments @ (see Figure (3)) which are weakly connected in the sense of the relations
between the coefficients |a| < b < ¢. It is important to note that the parallelograms
Q C T €Ty, ie. it is not allowed to be composed by triangles of neighbour elements

14



of the coarsest triangulation 7o. With respect to this partitioning, Ag’ffl) admits the
following two-by-two block-factored form

R it i A AR
iy By iy S 0 I
(20)
where Sﬂﬂ_l) stands for the related Schur complement. We define now Bglfﬂ) as the
symmetric block Gauss-Seidel preconditioner of A§’§“), ie.,
) _ DY;-H) 0 ] [ 7 D£,;+1)_1F1(f+1) ] (21)
N 2 e A I ‘

Figure 3: Block partitioning of the nodes of the superelement Q
Since Dg’fﬂ) is a diagonal matrix it follows that the Schur complement Sﬂﬂ_l) can be
assembled from the corresponding superelement Schur complements

ST = B R D Bl
Such a procedure is sometimes called static condensation. The obtained sparse struc-
ture is such that solving systems with Eﬁ”l) requires: first, local elimination steps
along lines of dominated anisotropy; and at the end, solving at most a band system
the order and structure of which are similar to that of A(®). This means that the
computational cost to solve a system with the current matrix Bﬂﬂ_l) is proportional

to the size of this matrix. The connectivity pattern of the Eﬁ”l) block related to a
given triangle T € Ty is illustrated in Figure (4.b). The only difference between the
decoupled structure of the additive and the multiplicative preconditioners is in the
boundary layer which is parallel to the dominating anisotropy direction of the current
coarsest grid triangle T € 7.

A similar construction was first introduced and studied in [16] for the particular case
of triangulation 7y consisting of right triangles with legs parallel to the coordinate
axes.

As in the previous section, a local spectral analysis will be applied to estimate the
relative condition number of the preconditioner under consideration.

15
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Figure 4: Connectivity pattern of T' € Tp: (a) additive preconditioning of Aﬁ); (b)

multiplicative preconditioning of Aﬁ).

Lemma 4 Consider the generalized eigenvalue problem

(22)

(k41

= )‘QEH:Q)UQ'

E+1
551:-22)“@

Then the minimal eigenvalue Agm is uniformly bounded by

(23)

8
15

G >

and all remaining eigenvalues are equal to 1.
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Then, for the solution of the generalized eigenvalue

_ﬁ2w
-1 - afw

§ — BPw

—a?w
—afw

§— cw
—1—afw

5 — pBw
—afw

—1—afw
— B

§ — dPw
-1 - afw

—a?w
—afw

|

where d = a+ (#+1 and w

c
problem (22) we obtain

X 2r
k+1
S§1:Q) =

L
26°

~
|+
L=
w |+
+|8
3=
+|+
SIS
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)
[a\]

I

o
\A
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and )\8) = )\8) = )\8) = 1. It is easy to see that )\8) is really the minimal eigenvalue
because the inequality )\(Ql) < 1 is equivalent to the obviously satisfied inequality

a?+ %2 +a+ 3 > 0. Finally we have to show that /\8) > 18—5 which follows immediately
from (12).
The major result of this subsection is given in the theorem.

Theorem 4 The multiplicative preconditioner of AY;H) has an optimal order com-
putational complexity with a relative condition number uniformly bounded by

—1 1
K (BY;“) A§’§+1)) < §5 = 1.875 (24)

This is proved in the same way as used in Theorem 3 applying the estimate from
Lemma 4.

Based on the above estimates and estimates in Section 2 we conclude that the condi-
tion numbers of the preconditioners D09 and M (o) have optimal orders, uniformly
in size and shape of the elements and in the coefficients of the differential operator.

4.3 An example

Finally we consider briefly the particular case when the coefficient matrix of the
differential problem is diagonal, i.e., [a;;(2)] = diag[a11(x),as2(x)], and the initial
triangulation 7y consists of right triangles with legs parallel to the coordinate axes.
The goal of this consideration is better to illustrate the behaviour of the related
condition numbers. This model problem was studied during the years by various
authors, applying different preconditioning techniques (see, e.g., in [1, 16, 17]), and
the results we present here will allow better to recognize the advantages of the here
reported results. Here cot 0(T1 ) =0 and consequently ar = ar = 0 for the problem
under consideration. The parameter By € (0, 1] is referred as a ratio of anisotropy.
Then the estimates (19) and (24) of the additive and multiplicative preconditioners
take the following explicit forms.

—1
r(@dd) (BY{H) Ag’#l)) < max {1 + Br + / Br(Br + 2)} <2+V3~3.73 (25)

. -1 . 3
(mult) (BY;“) AlkF 1>) < max {1 + %T} <3 (26)

It is important to stress here that the model problem considered in this subsection
includes the interesting case when the direction of dominating anisotropy varies in
different T € 7.
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