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A Posteriori error estimates in Lo-norm for the
Least Squares Finite Element method applied
to a First Order System of differential equations

O. Axelsson* L.E. Kaporinf

Abstract

A class of boundary value problems for the first order systems is considered
and a least squares finite element method for their solution is analysed. The
solution method is based on the adaptation of a nonuniform grid aimed at the
reduction of the L norm of the residual.

The fundamental aspect in the solution of linear boundary value problems is
the error control, whereby the error estimate must include both discretization
and algebraic solver errors. In the present paper it is shown how this can be
done when the equations are written as a system of first order partial differential
equations, discretized by a least squares finite element (FE) method, and solved
approximately, e.g. by some iterative method.

An a posteriori estimate of the La-norm of the error based on the Lz-norm
of the residual is derived under rather mild assumptions on the smoothness of
the solution. This error estimate is essential for the understanding of such key
points as (a) correct termination of the iterative algebraic solver for the current
FE space; and (b) proper adaptive mesh refinement needed to construct the
next FE space.

We mainly consider the case of a linear differential problem and then use
the obtained result for the analysis of the nonlinear case under certain natural
assumptions on the nonlinearity properties.

The obtained estimates and the related solution method are illustrated by
numerical results for 2D Navier-Stokes equations with a known analytical solu-
tion.
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1 Introduction

When solving linear boundary value problems, two basic aspects must be considered:
a) solution of the linear algebraic systems which arise after discretization;
b) error control.

The present paper concerns mainly the second aspect, i.e. the error control.
There are two major error sources in the solution:

(i) the error due to stopping the iterations at some stage of the solution of the dis-
cretized problem, for instance, based on the norm of the residual;
(ii) the error due to discretizing the problem by the finite element method.

It will be shown how both types of errors can be estimated and controlled in the
solution process based on a certain unified framework.

In order to simplify the analysis, we assume that the differential equation has been
rewritten as a first order system of differential equations, so that the residual function
obtained using a standard FE space can be readily evaluated. This makes it possible
to let the reduction of the (weighted) Euclidean norm of the residual function be the
main objective at each stage of the algorithm. However, it is shown that certain more
subtle issues are fundamental as well for getting a small solution error. Such issues
include the choice of a proper first-order reformulation of a given differential problem
and the use of a proper stopping criterion for the discrete solver over the current FE
space.

Recent years have shown a renewed strong interest in the least-squares finite el-
ement methods for systems of first order partial differential equations, see [5], [6],
[7] [11], and [12], for instance. These papers considered mainly linear problems and
were concerned with error estimates for various components of the systems. Since
any (system of) partial differential equations can be rewritten as a system of first
order equations, such least squares methods are generally applicable. Their disad-
vantage is that many different unknown (physical) variables are introduced, such as
all components of the gradient vectors. Moreover, the optimal order of convergence
for the finite element error may not be obtained for all variables concerned. Besides,
since a first order reformulation is never unique, there exists the nontrivial problem
of finding a correct setting of a first order problem which should not involve too many
additional unknown functions and equations, but, at the same time, should not suffer
from bad regularity and nonlinearity properties.

On the other hand, as we shall see, the least-squares methods have many advan-
tages which may outweigh these disadvantages.

The main advantages are:

(i) The choice of finite elements is much simplified. For instance, there is no need to
find stable finite element pairs for (divergence) constrained problems (for the pres-
sure and velocity components, for instance). It is known that finding such stable
pairs satisfying the Ladyzhenskaya-Babuska-Brezzi condition is difficult, in particular
for problems in three space dimensions. On the other hand, if one accepts that not
all variables are always approximated with the best possible order of accuracy, in
the least squares methods one can use the same finite element space for all variables
involved. Hence, one may also use a single finite element mesh.



(ii) The finite element matrices can be stored in element-by-element form. If one uses
the same space for all variables, there is only one such space to store. This greatly
simplifies the data structure and makes computation on (massively) parallel comput-
ers much easier.

(iii) Even if one uses standard finite element spaces in the function space H', the
residuals are directly computable when the least squares method is applied to first
order operator problems. This simplifies a posteriori error analysis and adaptive re-
finement of the underlying finite element mesh to obtain the optimal convergence
order of the errors, and not only of the residuals.

The present paper is mainly concerned with the general error estimates that can
be used as an efficient global error indicator, and not with ”asymptotically optimum”
estimates referring to the maximum mesh stepsize h and some assumptions on the
smoothness of individual vector components of the unknown solution. It is a follow-
up of a previous paper [2] by the authors. Our main result is that the Li-norm
of the error decreases asymptotically faster that the Lo-norm of the residual as the
FE space is refined whenever a rather standard Regularity property holds true for
the first order reformulation. In the nonlinear case, a proper Nonlinearity condition
should also be assumed. The effect of refinement of the FE space is described by a
certain Approximation condition involving no derivatives of the degree higher than
one. A similar result was shown in [14] under some special least-squares bilinear form
regularity assumptions.

The remainder of the paper is organized as follows. In Section 2 we formulate our
main result for the case of the linear problem, and in Section 3 its proof is given. In
Section 4 we present a generalization of our results to the nonlinear case. In Section
5 we present a comparative numerical study of the residual and error convergence for
different first order reformulations of 2D Navier-Stokes equations with a nontrivial
analytical solution. In Section 6 some conclusions are drawn.

Standard notations are used; for instance || - || denotes the norm in Ly(Q), i.e. in
the space of square integrable functions. We will also use the notation

(£, 9)|
coslf,g] = ———— 1.1
L9 = el ()
for the cosine of the acute angle between f and g, and
cos[f, AW] = max (f, Aw) (1.2)

wew || f|ll| Awl]”

where W is a finite-dimensional linear subspace of functions, and A is a linear operator
which is nonsingular on this subspace. Obviously, these cosines lie between 0 and 1,
and cos[f,g] = 1 is equivalent to ||f — ag|]| = 0 for some nonzero scalar a while
cos[f, AW] =1 yields f € AW.



2 Problem setting, basic assumptions, and
the main result

Let us consider a linear problem

Lu=f in Q, (2.1)
Mu=g on 09, (2.2)
where v = (u1,...,un)’ € (H'(Q))™ is a weakly differentiable unknown vector

function, f = (f1,..., fa)T € (L2(Q))", n > m, is the right hand side, and £ is a first
order linear differential operator, i.e., involving no derivatives of the order higher than
one and defined on a domain Qin R¢, 1 < d < 3. The boundary condition operator M
is given by a [ x n matrix, I < n, with elements typically given by piecewise constant
functions defined on 0Q. Hence £ : V — V', where V = (H(Q))™, V' = (L2(Q2))".
Let (-,-) be the scalar product in V’'. We shall show that the discretization error
in Ls-norm can be bounded by the Ls-norm of the residual multiplied by a certain
quantity (typically of the order O(h)).

Further, let V;, be a finite element space, where we choose uy, an approximation
to the exact solution u. We will introduce the error function as

e:u—uhev (23)
and define the residual as
r=Lup — f = —Le. (2.4)

Here the subspace V contains typically functions v € V' satistying the homogeneous
boundary conditions Mv = 0 on 9€2. The condition u — up € V greatly simplifies
the analysis; hence, in the following we will restrict our considerations to polygonal
regions (2 (in a simplest case) and the boundary conditions given by the (piecewise)
linear or quadratic functions (according to the order of the FE bases used).

Let us now make the following two basic assumptions. They are similar to the
standard ones made in the theory of finite element methods (see [10], for instance)
and involve regularity-like and approximation-like assumptions.

Regularity assumption of the problem
In our case, the regularity assumption simply reads as follows:
There exists a constant o > 0 such that for any v € V the inequality
lvl| < of|Lv]| (2.5)
holds.

This is a condition widely used in the LSFE analysis. In practice one should use
only first order reformulations that possess this property. This explains why some
additional (redundant) equations are often added to obtain (2.1)-(2.2) with n > m,



see, e.g., [12], [5]. Note that condition (2.5) essentially coincides (up to the treat-
ment of boundary conditions) with the “Assumption H1” used in [16] to characterize
regularity properties of so called Friedrichs type first order systems [9].

Approximation assumption on the F.E. space

The approximation assumption is related to the finite element space V}, used and the
type of boundary conditions (2.2) imposed.
We relate this assumption to the solution w € V of the following auxiliary problem:

(Lw, Lv) = (e,v) Vv eV. (2.6)
and formulate it as follows:
sin[Cw, £V] = /1 — cos?[Lw, £V3] = 0 2.7)
where
‘O/h =ViN ‘0/

as the subspace V}, is refined. Further we will give some upper bounds for this quantity
which can be useful for the understanding of its behavior.

Remark 2.1 Typically, this “sin” is of the order O(h®), where h is the maximum
mesh stepsize and a > 0 depends on the regularity of the auxiliary problem (cf.
Remark 3.3 below) and on the space V}, used.

Inexactness assumption on the F.E. solution

Finally, we will make an additional assumption on the closeness of the finite element
approximation uy € V3 to the exact solution of the discrete LSFE problem:

For the residual r defined by (2.4), the following condition holds:

cos[r, LV4] < 1. (2.8)

Recalling (2.4), the condition cos[r, £V,] = 0 obviously implies that standard discrete
LSFE problem is solved exactly:

(‘Cuh - f: Evh) = 0> VUl’z € ‘O/h- (29)

In the general case, this “cos” takes into account both numerical integration and/or
discrete numerical solution errors.



The main result

Under the assumptions given above, the following error estimate holds:
llell < (sin[cw,a"/h] + cos[r, cffh]) o7l (2.10)
provided that the solution w € V of the auxiliary problem (2.6) given above, exists.

Remark 2.2 It should be stressed that the above assumptions impose no additional
requirements on the regularity of the functions involved. Essentially, we are work-
ing with continuous functions w,e,vp,... which are weakly differentiable and sat-
isfy conditions of the type w € L2(Q) and Lw € L2(Q). However, in order to
prove the validity of the first two assumptions, a somewhat more restrictive condition
w,e,vp, ... € Wi(Q) is usually imposed.

Remark 2.3 The following trivial estimate can readily be obtained from (2.4) and
(2.5) with v =e:
lell < oflr].
Adaptive FE space refinement startegies which are actually based on this estimate
were presented, e.g., in [4]. The drawback of its use is that it does not show that
under certain conditions the error may converge to zero faster than the residual as
the FE space is refined. The additional assumptions underlying our error estimate
may comprise a basis of a solution technique for obtaining an error norm even smaller
than that of the residual.
In sufficiently regular cases, the new estimate demonstrates the order

lell = O(Allr[]),

where h is the maximum stepsize of the FE grid (cf. Remark 3.3. below).

3 The LSFE error estimate in Lo-norm

We now show how the above assumptions can be used in order to obtain the required
estimate (2.10). Let uj, be an approximate least squares FE solution and e € V' be
the corresponding error as defined in (2.3).

The auxiliary problem

Let w € V be the solution of the problem (2.6).
Using the regularity assumption (2.5), setting v = w in (2.6), and applying the
Cauchy-Schwarz inequality, one finds that the estimates

lwll < o*lel] (3.1)

and
|Lwl]| < ole]l (3.2)



hold. Indeed, one has by (2.5)
o2 Jwll* < [|1Lw|* = (e,w) < |lel|||w]| < olle]l[|£wl],

and both (3.1) and (3.2) readily follow.

We now prove the following two auxiliary propositions. To simplify the notations, we
will further denote )
0 = cos[r, LV}].

Lemma 3.1 For any vy, € ‘o/'h the following error estimate holds,
el < (N£(w = vp)|l + 8[| Lonl) (|71, (3.3)
where w is the solution of the auxiliary problem (2.6).

Proof. Taking any v, € Vj, setting v = e in (2.6) and using inexactness condition
(2.8) one obtains

[lell®

(Lw, Le)

(L(w —wvp), Le) + (Lop, Le)
= —(L(w—wp),r) — (Lop,T)
I1£(w = on)|[ll7 || + &l| Loallllr ],

IN

which is (3.3).
Q.E.D.

Lemma 3.2 Let w be the solution of the auxiliary problem (2.6). Then the following
error estimate holds:

lle]l* < (sin[cw,cffh] + 5cos[cw,a°/h]) lLCwl||r]. (3.4)
Proof. Let the maximizer of the cosine be the function

yr, = arg max cos[Lw, Lv]
vEV),

normalized by the condition
ILynll = [|Lw]].
To simplify notations, let us also denote the value of this maximum cosine by
0 = cos[Lw, Lyp].
We have then, setting v, = 0y, and inserting it into the estimate of Lemma 3.1,
lell/lrll - < [1£(w — vn)[] + 8| Lon]
= VIILw[]? = 20(Lw, Lyn) + O*[[Lynl]* + 60|| Lyal|
VIILwl[? = 262[[Lw|[[|Cynll + 62| Lyl + 68| Lyal|
= (V1-6%2+49) || Lw||




Q.E.D.

Using now (3.2) and recalling that § < 1 one obtains the required error estimate
(2.10)

Remark 3.1 Since typically sin[Cw, £V}] tends to zero as b — 0, the error estimate
shows that the discretization error in Lo-norm converges faster than the Ls-norm of
the residual f — Luy. The latter can be related to an H'-norm of the error and (2.10)
is an example of what is sometimes called “L lifting”. The corresponding estimate
for second order problems is also referred to as the Aubin-Nitsche trick, see [10].

Remark 3.2 It can be readily shown that

. L w =)
sin[Lw, LV}] = min ——————
[Cw, LV] = min ==

and the minimizer
wy, = arg min |£(w — v)]

vEV},

coincides with the solution of the discretized auxiliary problem: find wy, € Io/h such
that

(Lwp, Lv) = (e,v) Yo € V. (3.5)

This easily follows from the main property of wy presented by
(L(w —wy),Lv) =0 Yo € V.

Thus, the quantity sin[Cw, £LV;] = ||£(w — wp)]|/||Lw|| is nothing but the relative
solution error in L£-norm obtained when applying the FE method to the auxiliary
problem (2.6).

Remark 3.3 The techniques of [14] can easily be applied to estimate the error/residual
norm ratio, and gives

llell = O(h™n@=1k) L coglr, LV3]),

7

where h is the maximum stepsize of the FE mesh, £ is the polynomial degree of the
FE space used, and « > 1 determines the regularity of the least-squares bilinear form
(Lw, Lv) in the sense that for any e € Ly the solution of the auxiliary problem (2.6)
lies in H® and satisfies ||w||o < Const||e]|-



4 A generalization of the LSFE error Ls-norm
estimate to the nonlinear case

Suppose now that we seek a solution v € V' of the nonlinear operator equation
Fu=0. (4.1)

Since F'is supposed to be a nonlinear first order differential operator, and the inclusion
Fu € Ly will further be used, we will assume V to be an appropriate subset of H'.
Let up, € Vi C V be a FE approximation to this solution that satisfies a certain
Nonlinear Inexactness condition to be specified later.

In order to estimate the solution error u — uj let us assume that the nonlinear
mapping F' is Frechet differentiable at uy, so that

Fv = Fuy, + F'(up) (v — up) + Q(un,v) (4.2)

and the nonlinear term @ satisfies the following Nonlinearity condition: for a certain
set of functions v containing the solution u (e.g., the level set {v : ||Fv|| < ||Fupl||})
the inequality

1Qun, v)[| < col[F'v = Fupll[[v — | (4.3)

holds. Note that we assume here that the space V' is chosen in such a way that both
F and F'(up) map V into certain subsets of Ls.
In order to relate this setting to the result of Section 2, let us denote

e=u—up, £L=F(uy), r=-—CLe, (4.4)

which correspond to (2.3) and (2.4). Therefore, taking v = v in (4.2) and using (4.1),
one has
0= Fup —r+ Q(un,u). (4.5)

A natural characterization of the error resulting from the finite-dimensional minimiza-
tion of ||Fu|| over the FE space V}, is given by the following Nonlinear Inezactness

condition: )
do = cos[Fup, LV}] < 1.

Let us now suppose that for the operator £ so defined, the Regularity assumption
(2.5) and FE Approximation assumption (2.6)-(2.7) hold true. Note that by (1.2) our
main estimate (2.10) can be rewritten as follows:

lell < sin[Cw, LV3ollrl| + o max (L] (4.6)
v EVR ||£Uh||

The last term of (4.7) can be readily estimated using (4.5) and (4.6):
|(r, Lon)| = [(Fun + Q(un,w), Lon)| < bol[Funlll| Lonll + |Q(un, w)l| Lonll-
Taking into account the nonlinearity condition (4.3) written for v = u,

1Q(un, )| < col| Funlllle]l, (4.7)



one obtains
|(r, Lon)| < dol|Funl|||Lonll + ol Funllllell| Lonl|-
Hence we get
|(7",E’Uh)|

max ———— < (g + colle|DI|Fupll. 4.8
maxe E il < (8 + o Jl)[1Funl (4.5)

It remains to note that (4.5) and (4.7) yield
P[] = 1 F'un + Q(un, w)l| < [[Funll + coll Funllllell = (L + collelD[[ Funll- (4.9)
Substituting (4.8) and (4.9) into (4.6), one has

lell < sin[ﬁw,ﬁvh]o(l n Co||€||> | Funll + U<50 + Co||6||> 1Pl

Using the latter inequality, one can easily obtain the following result: if the Euclidean
norm of the nonlinear residual Fuy is sufficiently small,

1
F <
1Punll < 5

then the error estimate

(sin[Lw, LV4] + cos[Fup, LVi])o|| Fus||
1 —2¢oo||Fun|

llell <

follows.

Hence, we obtain almost the same error estimate as in the linear case, with the
only additional requirement for the norm of the nonlinear residual to be sufficiently
small. The larger the regularity constant ¢ and nonlinearity constant ¢y are, the
more restrictive is the condition imposed on the residual error norm. However, using
the multilevel Gauss-Newton type procedure [3] for the minimization of ||Fuy|| one
can eventually reduce the residual to a level sufficient for this error estimate to be
applicable.

Remark 4.1 In the nonlinear case, taking properly account of the nonzero value of
cos[Fup,, LV}] seems to be essential since this term may never be negligible in practice.
Indeed, for each FE subspace we actually have a large-scale nonlinear least squares
problem with nonzero minimum to solve, and the numerical solution of it with high
precision would often require an excessively large computational cost.

5 Numerical Experiments

In this section we compare two first order reformulations of the 2-D Navier Stokes
equations with Dirichlet boundary conditions for velocities. The first one, the velocity-
vorticity-Bernoulli pressure formulation, is in general incompatible with the original
boundary conditions and thus does not even satisfy the Regularity condition. The sec-
ond one is a certain velocity-pressure-flux type formulation (which is a simplified and
modified version of the one used e.g., in [5]) possessing considerably better regularity
properties.
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5.1 A nontrivial analytical solution of Navier-Stokes equations

In our tests we used a family of solutions of the 2-D Navier-Stokes equations for
incompressible viscous flow with zero driving forces
Pz + V(—Ugs — Uyy) + utty +vuy =0,
Dy + V(—Ugg — Uyy) + uvgy +vvy, =0,

Uy +vy =0

in S = (0,1)2, with u,v given on S, p fixed at the origin, p(0,0) = 0. A special case
of analytical solution (with no regard to the boundary conditions) is given by

u=U(z,y) = (1 + log —I2i92) ,
v=Viny) = %(1+log=5r),

2 2 2 2
p="P(z,y) = —2Varctan%+%(1+10g2wty )

Using these functions, one can easily obtain a problem with analytical solution de-
pending on an arbitrary point (zg,yo0) lying outside S as follows:

U(Qf,y) = U(w_x07y_y0)7
'U(.’L',y) = V(x_x07y_y0)7
p(way) = P(.’I,' — Zo,Y _yO) - P(_w07_y0)7

with the boundary conditions for u and v defined via the traces of these functions on
0S.

This solution demonstrates a kind of singularity at the point (xg,yo), so this point
was chosen outside S. We used the values v = 1 and zg = —yo = 0.25 for our
numerical experiments (this was done in order to illustrate the essentially different
behavior of the two reformulations even for a rather smooth analytical solution).
Unlike the test solution used in [3] this one clearly demonstrates the troubles arising
from the incompatibility of the velocity-vorticity-Bernoulli pressure formulation with
the velocity Dirichlet boundary conditions. Namely, when using this incompatible first
order reformulation, the poor performance of the Least Squares-FE solvers for this test
problem closely resembles the erroneous behavior of approximate solutions observed
in attempts to solve the Driven cavity problem using the techniques presented in [3].

5.2 First order reformulations of the Navier-Stokes equations

Using the above analytical solution, let us compare the performance of the multilevel
adaptive Least Squares FE procedure described in [3] for the following two first order
reformulations of the Navier-Stokes equations. Here we use four equations with four
unknowns and nine equations with seven unknowns, respectively.

“4 by 4” reformulation

11



Let us consider the Navier-Stokes problem in the first order velocity-vorticity-Bernoulli
pressure formulation for incompressible viscous flow:

by + vwy —vw =0,
by — vw, + uw =0,
Uy — vy +w =0,
Ug +vy =0

in S = (0,1)2, with u,v given on 85, b fixed at the origin, p(0,0) = 0.
Here, the Bernoulli pressure is defined as

b=t u? + v?
=D 2 )
so the analytical expressions for b and w can readily be obtained from those given for

u7 v’p'
Let us choose V C (H'(S))* and V' = (L5(S))* and define the standard scalar

product
1 p1 4
(p,q)Z/ / > pile,y)qi(z,y)dzdy.
o Jo i

Unfortunately, as it turns out in this case, the Regularity condition (2.5) does not
hold under any natural choice of V, see e.g. [5].

“9 by 7” reformulation

Another first order formulation involves four additional functions (components of the
flux tensor), a = ug, b = uy, ¢ = v,, and d = v,. The equations which we used were

Uy —a =0,
uy —b=0,
vy —c =0,
vy —d =0,
ay — by =0,
cy —dy =0,

Pz + v(—ay; — by) + ua + vb =0,
py +v(—cg —dy) +uc+vd =0,
a+d=0
in S = (0,1)2, with u,v given on 85, p fixed at the origin, p(0,0) = 0, and with the

following additional boundary conditions written in terms of tangential derivatives of
the boundary data functions (without which this setting is as bad as the above one):

bz, 0) = Z—Zu,m, b, 1) = Z—Z@:, D,

12



ov ov

d(l‘,O) = (9—y(x’0)’ d(l‘, 1) = a_y(mv 1);
a0,5) = 940.y), ally) = S2(Ly),
(0.) = 2(09), ell9)= 2(1,y).

Even better results are observed when adding the boundary conditions obtained from
the continuity equation v, + v, = 0 written for the boundary,

a(x)o):_g_Z(x)O)v a(x)]-):_g_Z(x)]-)v
40,5 = ~22(0,9), d(L,y) = —or(1,y).

In recent publications, e.g., [5], the following three equations are used instead of the
last equation a + d = 0: the original one u, +vy, =0 and a, +d, =0, ay, +d, = 0.
At the same time, the last two additional boundary conditions for a and d are not
used there.

5.3 The solution method

Given the (nonlinear) equation
Fu=0,

with (typically linear) boundary conditions
Gu=y,

where u is a vector function from a proper functional space V', we start from some
initial FE space V} and an initial guess up € V}, such that Gup = gp.
Then we perform several updating steps of the form

up, = up + 7dp,

with proper stepsizes 7 > 0 (however, 7 = 1 often works well even when uy, lies far
from the exact solution), and the directions defined as an approximate solution of the
following linear least squares problem:

dy ~ arg min (|[Fun -+ F'(un)dpl|” + pl| Gl 3o,

where p is a very large positive number, say u = 10*® (hence dj, appears to be very
close to the minimizer of ||Fup + F'(up)dy|| and nearly satisfies the homogeneous
boundary conditions). The integrals over triangles were approximated using a fourth
order quadrature rule presented in [8], while the integral along the boundary was
replaced by a simple sum of squares of appropriate components of d;, taken at the
boundary nodes. The discretized problem was then solved by the (preconditioned)

13



Conjugate Gradient method. In our experiments, we used the Robust second order
Incomplete Cholesky preconditioning [13] with a bandwidth reduction preordering of
the stiffness matrix.

The stopping criterion for these iterations over the same space V}, is

cos[Fup, F’(U,h)Vh] < 4,

where § is a small positive number chosen consistently with the maximum stepsize h.
(The relative precision parameter for stopping the Conjugate Gradient iterations was
chosen as 0(6%).)

If this criterion is satisfied but ||Fup|| is still large, then a refinement of the space
Vi, is performed (and a slight update of u;, to conform the refined boundary conditions
is done). Some details of the adaptive h-refinement procedure used are given in the
next subsection.

As follows from the previous discussion, when the residual norm is sufficiently
small and the problem is sufficiently regular, one should have the error estimate of
the the same type as in [1], [|u — up||/||Funl| = O(ch + ¢0), that is, the Euclidean
norm of the error should decrease faster than the Euclidean norm of the residual.

5.4 The adaptive refinement procedure

Let the initial finite-dimensional subspaces V4 be constructed using some coarse initial
triangulation of €2. Since (2 is a unit square in our case, we started the calculations
from the standard uniform grid composed of uniformly shaped right isosceles tri-
angles. In our experiments we used for the construction of the sequence of nested
finite-dimensional subspaces Vg, ..., V}, ... the standard piecewise linear nodal basis
functions and the corresponding hierarchical quadratic basis (as is well-known, for
each element, the three quadratic elemental basis functions are obtained as pairwise
products of the corresponding linear ones). In order to construct the subsequent
triangulations, we choose the Longest Edge Bisection procedure [15], so that any
subsequent grid is composed only of right isosceles triangles having various sizes and
different orientations. Hence, any degeneration of triangles is prevented during the
refinement process; moreover, considerably more triangles than was prescribed by the
error estimator may be refined on each step, which prevents possible undermeshing.
After each refinement, new nodal values were obtained by linear interpolation along
the bisected edges (in the same order as they were bisected), and then the veloci-
ties and fluxes at the boundary nodes were set equal to their exact values using the
boundary conditions.

For each triangle, we use the local error estimator taken as the integral of the
squared residual function (Fuy)? over the element. Thus, on each refinement step the
bisection procedure was applied to those triangles over which the estimator exceeds
0? times its maximum over all triangles (we used ¢ = 0.5). Closely related adaptive
strategies were given in [15] and, in an abstract Least Squares setting, in [1].
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5.5 Discussion of the numerical results

We present the results obtained when the initial grid was 9 by 9 with 100 nodes; the
initial guess was simply set to zero at all nodes, except for those where the functions
has values prescribed by the boundary conditions.

For the “4 by 4” reformulation, the numerical experiments showed rather poor
decrease (or even increase) of the FE error as compared to the decrease of the residual
error. This clearly contradicts the theory presented above and thus indicates that the
Regularity condition does not hold (¢ = 00). The latter claim was checked numerically
by estimating the minimum eigenvalue of a generalized eigenvalue problem associated
with the corresponding stiffness and mass matrices, which showed that even for linear
FE bases, the stability constant o approaches 100 and is growing further along with
the refinement of the FE space. Thus, the residual norm appears as a not good error
indicator when trying to solve a problem that does not satisfy the Regularity property.

On the other hand, the “9 by 7” reformulation demonstrated very good conver-
gence behavior even with linear FE bases, and the numerical experiments were in nice
agreement with the theory. The numerical estimates obtained for ¢ were not much
larger than 10 for all grids. However, the iteration costs (especially the computer
memory space requirements) are considerably higher when one uses seven unknown
functions instead of only four ones.

Similar results were obtained for the quadratic elements. Typically, the adaptive
quadratic elements perform much better than the linear ones and sometimes give a
possibility to solve the problem even using an insufficiently regular first order refor-
mulation. In our case, it was possible to obtain a satisfactory approximation to the
solution using the “4 by 4” reformulation, but the use of more regular “9 by 7” one
made it possible to attain the same precision with much less computational cost.

The convergence histories for both of these formulations are given in Figures 1-4,
where the logarithms of error and residual norms are given versus the logarithm of
flops needed to compute the FE solution. It is seen that for both types of elements
the error norm is larger than the residual norm for the “4 by 4” reformulation and,
on the contrary, the reverse relation holds for the “9 by 7” one. However, for both
reformulations, the residuals behave virtually alike. Generally (in cases when the
exact solution is unknown), it appears expedient to check the numerical estimates of
the regularity constant ¢ in order to recognise the lack of regularity of the first order
reformulation used.

6 Conclusions

As suggested by both theory and the numerical tests presented above, one of the
key points in the analysis of First Order System Least Squares FE techniques is
to find a proper (regular) reformulation of the original problem. Otherwise, any
improvement in the Finite Element or nonlinear and linear solution techniques will
be rather useless. An alternative to (or a preliminary stage for) the theoretical analysis
of different settings of the problem may be a series of carefully planned numerical tests
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Figure 1: Residual and error norms vrs. flops count: “4 by 4” reformulation; linear elements
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Figure 3: Residual and error norms vrs. flops count: “4 by 4” reformulation; quadratic
elements
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Figure 4: Residual and error norms vrs. flops count: “9 by 7” reformulation; quadratic
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controlling the estimates of the Regularity constant o and/or using a properly chosen
analytical solution.

However, some formulation of a discrete analogue of the Regularity condition with
o = o(h) moderately growing as h — 0, as well as the further development of the
theory may lead to a reasonable compromise between strict regularity and simplest
possible first order reformulation. This is of special importance for the nonlinear case
since the nonlinearity constant ¢y (as was defined in Section 4) may often grow as the
FE space refinement progresses.
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