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A b stract

This paper introduces a tem poral logic for coalgebras. N exttim e and last
tim e operators are defined for a coalgebra, acting on predicates on the  sta te 
space. They give rise to  w hat is called a  Galois algebra. Galois algebras 
form models of tem poral logics like Linear Temporal Logic (LTL) and Com
putation Tree Logic (CTL). The m apping from coalgebras to  Galois algebras 
tu rn s out to  be functorial, yielding indexed categorical structures. This con
struction gives many examples, for coalgebras of polynomial functors on sets.
More generally, it will be shown how “fuzzy” predicates on m etric spaces, and 
predicates on presheaves, yield indexed Galois algebras, in basically the same 
coalgebraic manner.
K eyw ords: Temporal logic, coalgebra, Galois connection, fuzzy predicate, 
presheaf
C lassification: 68Q60, 03G05, 03G25, 03G30 (AM S’91); D.2.4, F.3.1, F.4.1 
(CR’98).

1 In tro d u c tio n

This paper combines the areas of coalgebra and of temporal logic. Coalgebras are 
simple mathematical structures (similar, but dual, to  algebras), underlying state- 
based dynamical systems [JR97, Rut99], including autom ata, transition systems and 
classes in object-oriented languages. Temporal logic is a logic which is particularly 
suitable for reasoning about (reactive) state-based systems, as argued for example 
in [Pnu77, Pnu81], via its nexttime and lasttime operators. Hence one expects 
a connection. It is probably Moss [Mos99] who was the first to  realise th a t the 
shape of a coalgebra (as given by its interface functor) determines a logical modal 
language. His emphasis lies on characterisation results, capturing bisimilarity as 
validity for the same formulas. This line is followed in [RoB99b, RoB99a, Kur98]. 
Here the emphasis lies on the temporal aspects of a coalgebra, in particular on the 
associated nexttime and lasttime operators. Moreover, this is basically a semantical 
study, leaving proof-theoretic aspects for future work.

We will give a sketch of the underlying developments, leaving some notions (at 
this stage) without precise definition. Let a: X  T ( X )  be a coalgebra. One can

* Research Fellow of the Royal Netherlands Academy of Arts and Sciences.

1

mailto:bart@cs.kun.nl
http://www.cs.kun.nl/~bart


think of it as a particular transition system (in particular when T  is powerset V),  
with the set X  as its state-space (i.e. set of states). There is the following familiar 
definition of bisimilarity (i±Q) with respect to  a.  For x , y  £ X ,

x  ±±a y 3 R  C l  x X.  R  is an a-bisimulation, and R(x,y) .

This introduces bisimilarity as the greatest bisimulation. It contains those pairs of 
states which are observationally indistinguishable.

Besides bisimulation, invariance is very im portant in the theory of coalgebras 
(and in system theory in general). An invariant is a predicate on the state space 
which is maintained by all operations. The following definition is probably less 
familiar. For an arbitrary predicate P  C X ,  a new predicate DP  C 1  is defined as:

DP(x)  3Q C X.  Q is an «-invariant, Q C P,  and Q(x).

It is not hard to  see th a t DP  is the greatest invariant contained in P.  It may be 
read as: “henceforth P ”, th a t is, “in all future states, P  holds” . We like to  write 
c^P for DP.  There is a related operation a_ on predicates on X ,  given by:

^_P(x)  VQ C X.  Q is an «-invariant and P  C Q implies Q(x).

Then cxP is the least invariant containing P.  It may be read as: “in some earlier 
state, P  holds” . There is the following fundamental Galois connection: cxPi C 
P2 44* Pi  C i 1 / .

The definitions of _a P  and a_P occur in [Rut99] (as [P] and (P) respectively)

and in [Jac97] (as P_ and P).  In [Jac97, before Proposition 3.8] the connections 
with temporal logic are mentioned, but not elaborated. Also the single-step, future 
and past operators and occur there. The full impact of these operators be
comes apparent when they are identified as giving examples of “Galois algebras” , 
introduced in [Kar98]. These Galois algebras are simple structures consisting of 
a complete Boolean algebra carrying a Galois connection (in the spirit of [JT51]). 
The latter is interpreted as the connection between lasttime and nexttime opera
tors. It is shown in [Kar98] tha t all axioms and rules of Computation Tree Logic 
(CTL) [MP92, Eme90, Gol92] are valid in Galois algebras, and th a t all axioms and 
rules of Linear Temporal Logic (LTL) are valid in Galois algebras satisfying certain 
linearity conditions. Several examples of Galois algebras are given in [Kar98], but 
no systematic construction is presented. The main contribution of this paper lies in 
establishing a connection between coalgebras and temporal logic (at a semantical 
level), by showing th a t each coalgebra (of a suitable functor T)  gives rise to  a Galois 
algebra. Technically, this mapping is functorial, and gives rise to  “coalgebra-indexed 
Galois algebras” of the form

CoAlg(T)op-------------------------s- G A

where CoAlg(T) is the category of coalgebras of the functor T,  and where G A  is the 
category of Galois algebras (see Theorem 6.1 below). Further, it will be shown how 
familiar models of temporal logic given by fuzzy predicates and presheaves [GM88] 
exhibit the same underlying structure of coalgebra-indexed Galois algebras. Proba
bly, the contribution of this paper lies not so much in the results th a t are obtained, 
but more in the integration of fields.
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One area of direct application of the definitions and results in this paper is 
specification and verification for classes in object-oriented languages, based on coal
gebras, see [Rei95, Jac96, Jac97, HHJT98, JvdBH+98, Hen99]. When a class is 
seen as a coalgebra of its interface functor, then the definitions in this paper give 
tailor-made temporal operators for the class, incorporating appropriate clauses for 
all the methods of the class. This makes it possible to  formulate and prove proper
ties about future and past states of an object of the class. In particular, safety and 
liveness properties of classes can be expressed, and also refinements (as in [Jac97]) 
can be formulated via □. A suitable logical language with temporal operators for 
such coalgebraic specifications will be described elsewhere (together with a com
parison with alternative approaches [SSC95] based on Kripke structures). This is a 
topic on its own. Here we will simply give an illustration, see Example 3.7 (iii).

A crucial aspect of the connection between coalgebra and temporal logic tha t 
is unveiled here is th a t it is param etric in the functor (or interface) and coalge
bra involved. This means th a t the definitions of the temporal operators can be 
instantiated with different functors (and coalgebras) and thus give different logics. 
This opens a new perspective, in which for example the operators from LTL and 
CTL arise from the same pattern, see Example 3.7. Also this opens up new re
search questions. One of the more interesting ones involves the possibility of model 
checking [CE81, McM93] for coalgebras, in suitably parametrised form.

The paper is organised as follows. It starts with a preliminary section providing 
some order-theoretic background information, and also introducing the definition of 
Galois algebras. The next section 3 shows how coalgebras of so-called polynomial 
functors on sets give rise to  Galois algebras, making crucial use of “predicate lifting” . 
Section 4 forms an intermezzo, showing how the temporal operators can also be 
defined pathwise, as in [Mos99, RoB99b, RoB99a, Kur98], and give rise to  Galois 
algebras as well. Then, Section 5 elaborates on Galois algebras. Most of this comes 
directly from [Kar98] (with our own notations and proofs), except for the part 
dealing with strict and affine lifting. The final section 6 describes the main result 
(Theorem 6.1) and elaborates on the examples of fuzzy predicates and presheaves. 
These examples are mere illustrations which do not contribute to  the general theory. 
Especially the last example requires some categorical sophistication. But the first 
sections (2 -  5) do not really require experience in category theory.

2 P re lim in arie s

We start with a brief overview of the notions and notations th a t will be used. At the 
end we will briefly introduce Galois algebras. They are studied further in Section 5. 
We do not include an introduction to  coalgebra, and refer to  [JR97, Rut99] instead.

Some basic constructions on sets will be used, like product, coproduct and ex
ponent. The product of two sets X, Y  will be written as X  x Y ,  with projection
functions I  f -  I  x F  4  Y.  The coproduct, or disjoint union, of X , Y  is X  + Y ,  
with coprojection (or injection) functions l 4 i  +  F  I -  Y.  And the exponent, or 
function space, is X 1 , with evaluation function X 1 x Y  —i X . The empty product 
is a singleton set, typically written as 1 =  {*}.

Posets play an im portant role in the sequel. Finite meets in a poset will be 
written as T ,A , and finite joins as -L,V. A poset X  is complete if each subset 
S C X  has a join \ /  S  € X .  It is well-known th a t each subset S  then also has a 
meet f \ S  £ X ,  given as \ / { x  € X  | Vy € S. x  < y}.
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A function ƒ: .V —> Y  between posets X , Y  is monotone if x < x' =$■ f ( x )  < 
f ( x ' )  for all x , x '  G X .  Such a function f : X  Y  is said to  have a right (or 
upper) adjoint if there is a function g: Y  X  in the reverse direction such tha t 
f ( x )  < y x  < g(y) for all x G X , y  G Y.  Such a situation forms a Galois 
connection (or an adjunction between poset categories), and will often be denoted 
by ƒ H g. Then ƒ is also called a left (or lower) adjoint of g. If X,  Y  are complete 
posets, then ƒ: X  Y  has a right adjoint if and only if ƒ preserves all joins. The 
right adjoint is then g(y) = \ / { z  G X  | f ( z ) < y},  see e.g. [Joh82, I, Theorem 4.2] 
or [MSS85]. Similarly, a function g: Y  X  is a right adjoint (i.e. has a left adjoint) 
if and only if g preserves all meets.

Each monotone function ƒ: X  X  on a complete poset X  has both a least fixed 
point n f  G X  and a greatest fixed point v f  G X ,  see e.g. [DP90, Chapter 4]. These 
can be described explicitly as:

/j,f = / \ { x  G X  | f ( x )  < ar} and v f  =  \ / { x  G X  | x < f (x) } .

A Heyting algebra is a poset X  with finite meets and joins such th a t for each 
element x  G X , the function x A (—): X  X  has a right adjoint x D (—), also called 
implication. A complete Heyting algebra is a Heyting algebra which is complete as 
a poset. A complete poset is thus a complete Heyting algebra if and only if the 
following distributivity x  A (\/ S) = \ /  seS(x A s) holds. The canonical example 
of a complete Heyting algebra is the poset O( X )  of open subsets of a topological 
space X .

In a Heyting algebra one can define negation -<x as x D _L. Then x < — The 
Heyting algebra is called a Boolean algebra if — iar < x, for all x.  The canonical 
example of a complete Boolean algebra is the poset V ( X )  of subsets of an arbitrary- 
set X .  Such subsets P C X  are also called predicates on X ,  and membership x  G P  

is therefore also written as P(x).

2.1. D efin ition  ([Kar98]). A Galois algebra is a complete Boolean algebra B  to
gether with a “nexttime” function B —¥ B  th a t preserves all meets.

The nexttime operator B —¥ B  in the definition is written as © in [Kar98], but 
here we shall write it as Since this operation preserves all meets, it has a left 
adjoint given by »jy = f \ { z  G B  | y < ^ r } .  so th a t »jy < x  y < _•ƒ. If 
•^x is ‘nexttime x \  then »jy is ‘lasttime y \

3 P o lynom ial fu n c to rs  on Sets

In this section we introduce a collection of special functors1 on the category Sets  
of sets and functions, containing so-called polynomial functors. They can be ex
tended to  predicates, in what is called predicate lifting [HJ98, Jac97]. It forms a 
crucial technique for the construction of nexttime and lasttime operators for each 
coalgebra of a polynomial functor. These operators yield a Galois algebra on the 
complete Boolean algebra of subsets of the state space of the coalgebra. This will 
be illustrated in several examples.

1 Briefly, in this context a functor T  is a mapping X  M- T( X)  of sets to  sets, which also works on

functions, w ritten as (X A  Y)  >->• (T(X)  TH ) T(Y)) ,  in such a way tha t identities and composites 
are preserved. How polynomial functors work on functions is “obvious” and left to the reader.
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The polynomial functors are defined as the least collection of functors S ets —̂ 
Sets containing:

(i) the identity functor S ets Sets, and constant functors K i. given by X  
A,  for an arbitrary set A;

(ii) the product X  T \ ( X)  x T 2(X)  and the coproduct X  T i ( X)  +  T2(X) of 
polynomial functors T\, T2: Sets Sets;

(iii) the (constant) exponent X  T ( X ) A, for an arbitrary set A,  and the covari
ant powerset X  V ( T ( X j ) ,  of a polynomial functor T: S ets Sets.

Typical polynomial functors are X  1 +  (.4 x X ), where 1 is a singleton set 
{*}, and X  i-> P( B ■ X ). Coalgebras S  —¥ 1 +  (.4 x S)  give rise to  finite and infinite 
sequences of elements of A,  and coalgebras S  —¥ V ( B x S )  capture transition systems 
with labels in B.

In the sequel it is convenient to  use the coproduct JJ ƒ and product functions 
V(A)  —¥ V( B)  along a function ƒ: A B.  These are given by

U j  (P) = {y £ B  | 3x £ A. f ( x )  =  y A x £ P}
= { f ( x )  | x  £ P}  (the image of P  under ƒ)

Yl f (P)  = {y £ B  | Vx £ A. f ( x )  = y =$• x  £ P}.

There are the standard adjunctions JJƒ H ƒ* H ]Qƒ, where f * : V ( B )  V(A)  is 
the “substitution” or “inverse image” function, given by Q {a £ A  | f (a)  £ Q}.  
Using this notation will give a hint for the upgrade of the next result to  a more 
general setting where similar adjunctions exist.

3.1. D efin ition  (See [HJ98, Jac97]). Let T: Sets S ets be a polynomial functor 
as described above, and let X  be an arbitrary set.

(i) The predicate lifting function (—)T : V ( X ) —¥ V ( T ( X ) )  is defined by induc
tion on the structure of T.  For P C X ,  one gets P T C T ( X )  as:

pid = p
p K A _  j

p T 1x T 2 _  n * ( p Ti) Cl n' *(PT2)

= {(Zl,Z2) I Zi £ P Tl A 02 £ P T2}
p Tl+T2 = u K( PTl) u U A P T2) 

= U n ( P Tl) n U A P T2)
= {kZi I Zi £ P Tl} U { k 'Z2 I Z2 £ P T'2}

P T = 1[ - ov” ( l , r ) where e v : T ( X ) A x A  —̂ T ( X )
is the evaluation function 

=  {ƒ | Va G A.  ƒ (a) G P T j 
pV(T) = ¡ ] jr(eT(x) 3  n'*(PT j) where eT{X) C V ( T ( X ) )  x T ( X )

is the membership relation 

=  ¡ i '  | Vr G 7'(.V). r G r  ;■ r G  P r \.

(ii) A left adjoint (—)t ' -V(T(X))  —¥ V { X )  to  (—)T can also be desribed explic
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itly:

Qid =  Q
Qk a =  0

QT1 XT2 =  ( I L W M U C L U Q ) ) ^

=  ({zi I 3z2.(Zl,Z2) G Q })ti

Qt i+T2 =  (k*(Q))Ti u (k'*(Q))t2
=  ({zi  I KZ1 G Q }) t i  u {{Z2 1

Qt a =  (U ev 7r*(Q))T
=  ({f (a)  \ a £ A A f  G Q} ) t

Qv (T) =  ( U ^ ' ( eT(X) A 7T*(Q)))r

=  (UQ)t.

By induction on the structure of T  one checks th a t P T C  T( X)  as described in 
the definition can also be defined directly as T(P)  C  T( X ) ,  where P  is considered 
as set itself. The above inductive definition however is convenient, because it gives a 
good handle on the various cases, and allows us to  describe the left adjoint explicitly. 
It is not hard to  see, again by induction on the structure of T,  th a t Q t  C P ©  Q C 
P T . Thus (—) t  is indeed the left adjoint of ( ^ )T.

3.2. Lem m a. Let T  be a polynomial functor, and f : X  Y  be a function.
(i) For a predicate P  C  Y ,

( r ( p ) ) T = T ( f r ( P T).

(ii) And for a predicate Q C  T ( X ) ,

I I  ¡ ( Q t ) =  ( U t ( / ) ( <3 ) ) t -

P roof, (i) By induction on the structure of T.
(ii) Because for an arbitrary predicate P C X ,

I I  ¡ {Qt )  C P  Q C (f * (P) )T by the adjunctions 

^  Q Q T ( f ) * ( P T) by (i)

(U t( /)  (*3))t  c p . □

Next we turn  to  coalgebras of polynomial functors, see [JR97] for more informa
tion.

3.3. D efin ition . Let T: Sets Sets be a polynomial functor, and a: X  T( X)
be a T-coalgebra, with a predicate P  C l  on its state space (or carrier) X .

(i) Define a new predicate a^P C  X  as:

a P  d=  a*(PT)

= {x  G X  | a(x)  G P T}.

Intuitively, a^P contains those states all whose direct successor states (w.r.t. a ), if 
any, satisfy P. It is the weak nexttime operator from temporal logic. The corre
sponding strong nexttime operator is -i a  -i, see Example 3.7.
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(ii) Call P  C  X  an «-invariant if P  C  a  P. This means th a t a  maintains P.—y
(iii) We further write

a P  ^  ( U a (P))T

= ({«(&) | X G P } ) T -

The predicate a P  contains those states which are direct successors of states in 
P.  It is the strong lasttime operator (involving an existential quantifier), with the 
corresponding weak version given by -'Or-', see Example 3.7.

It is not hard to  see th a t a^(—) and a { —) form a Galois connection: a  Pi C 

P2 Pi Q Hence, as an alternative formulation, a predicate P  is an invariant
if and only if a P  C  P.

3.4. P rop osition . For a coalgebra X  A- T ( X )  of a polynomial functor T : S ets —̂ 
Sets, the set V { X )  of predicates on its state space forms a Galois algebra, with 
(weak) nexttime operator a r .V {X ) V { X) .  □

Note th a t our construction of the nexttime ^  and lasttime ^  operations is 
very general, because it works for an arbitrary coalgebra of an arbitrary polyno
mial functor. It thus applies to  all (coalgebraic) systems whose interface forms a 
polynomial functor.

The weak lasttime operator V ( X )  V ( X )  also forms a Galois algebra on
V ( X ) —with left adjoint -1 a -̂>—but we shall take as basic operation. Similarly, 
the derived henceforth operator gives a Galois algebra, as shown in the next 
result.

3.5. D efin ition  (Least and greatest invariants). In the context of the previous def
inition, we write

c^P  for the greatest fixed point of S  P  A a^S 

cxP  for the least fixed point of S  P  V a  S.

One reads c^P  as “henceforth P ”, i.e. as: P  holds now and in all successor states 
(w.r.t. a). Similarly, one can read cxP as “P  sometime earlier” , i.e. as: P  holds 
now or at some predecessor state.

It is easy to  see th a t c^P  is the greatest invariant contained in P,  and tha t 
a P  is the least invariant containing P. The latter predicate contains all states 
which are reachable from P.  By construction we have a new Galois connection: 
a P 1 C  P 2 O  P i C  <[ I '?■

Alternative notation for a^P is XQP  [Eme90], or 0 aP  [Gol92], or [a]P [KT90] 
(in the style of dynamic logic). Similarly, one may write c^P as GaP  or as IHa P . 
And P  is also written as FaP,  or <)QP.

Before presenting examples, we consider the interaction of the future modalities 
with homomorphisms of coalgebras.
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3.6. Lem m a. Consider two coalgebras X  A- T ( X )  and Y  A- T ( Y )  of a polynomial 
functor T , with a homomorphism f : X  Y  between them— so that (i o f  = T ( f )  o
a. Then,

(i) r ( J ^ P )  =  a f ( P ) ;
(ii) Q is an a-invariant O j(Q ) is a /3-invariant;

(iii) =

P roof, (i) Since

r ( j ^ p )  = r ( 3 * ( P T)
= w o  f r ( P T)
= (T( f )  o a)*(PT) because ƒ is a homomorphism
=  a*( T( f )* ( PT))
= a*( ( f*(P) )T) by Lemma 3.2 (i)

=  ^ r ( p ) -

(ii) Assume Q is an a-invariant, i.e. ( I Iq ((?))t =  a Q  Q Q- Then ]J j(Q ) is a 
/^-invariant, because:

l i U f i Q ) )  =  ( U ^ ( U / ( Q ) ) ) t

=  (U/3o/ ( (3 ))t

=  (U t (/)oq((3 ))t

=  (U T (/)(U a (Q)))T
=  by Lemma 3.2 (ii)

^  I I /(Q )  since Q is an a-invariant.

(iii) By construction, c^f*(P)  is the greatest a-invariant contained in f * ( P ). We 
show th a t f * (_^P)  also satisfies this characterisation.

(a) ƒ*( (i P)  is contained in f *(P)  since (i P  is contained in P.
(b) f * { M P )  is an a-invariant, by (i): f * ( j ^ P )  C /*(_/3 j | P )  = _ a /* ( j |P ) .
(c) f * ( j y P )  is the greatest a-invariant contained in f*(P):  if Q C f * ( P ) is an 

a-invariant, then ]J j(Q ) C P  is a /^-invariant by (ii). Hence O j(Q ) C [P.  and 
thus Q C f * ( j y p ) .  □

3.7. E xam ple. First we investigate the temporal operators associated with the 
functors for infinite sequences and also for transition systems. These give the famil
iar operators of Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), 
see [Eme90, MP92]. Then, in the last point, we sketch an example of temporal 
operators in coalgebraic specification.

(i) Consider the functor T( X)  = B  x X  on the category Sets, for an arbitary 
set B.  For predicates P C X  and Q C T( X)  we have, following Definition 3.1,

P T = {(6, a?) G T ( X )  | b G B  A x G P}  and QT = {x  G X  | 36 G B.  (b, x) G Q}
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For an arbitary coalgebra 7 : X  —t T ( X )  we get

% P  = {x  G X  | 'y(x) G P T} and P  = ({7 (1 ) | x  G P } ) T 

= {x  G X  | 7r '7 (x) G P}  = {7r'7 (ar) | x  G P}.

So th a t P  C X  is an invariant if and only if x  G P  =$■ 7r '7 (x) G P,  for all x  G X .  It 
is easy to  see th a t the greatest invariant P  contained in P  is {x  | Vm. (7r'7 )TO(a:) G 
P}.  Similarly, the least invariant ^ _ P  containing P  is {(7r'7 )TO(a:) | x  G P. in G N}.

We now consider a concrete instantiation: we take B = {0,1} and write B u for 
the set of bit streams, consisting of infinite sequences (fen)ngN of bits bn G {0,1}. We 
consider B u with the (terminal) T-coalgebra (i =  (hd,tl): —t P ■ B u consisting 
of head and tail function given by

hd((fen)) =  b0 and tl((fen)) =  (fe„+i).

Let P C be the predicate given by (fen) G P  feio =  0. Then, for example,

(fen) G ¡ i P  (bn+1 ) G P

feu =  0

(fen) € J3^P 44s 3(&n) G P. ((¿n-(-i) =  (bn)

bg = 0

(fe„) G •£> -i((fen+1) G -iP)

(fen+l) € P
feu =  0.

This shows th a t ^  c°incides with due to a special property
of the interface functor T , namely th a t it has an “affine” lifting, as investigated in 
the second part of Section 5.

Further,

( K ) G [P •» VTO.tlro((fe„)) G P

•» Vto. (fen+TO) G P
•» Vn >  10. bn = 0

(fe„)G -1 3 - 1P •» -VTO.tlro((fe„)) $ P

•» 3TO. (fen+TO) G P
•» 3n >  10. bn = 0

( K ) G P •» 3(a„). 3to. (an) G P  A tlTO((a„)) =  (fen)

•» 3(&n). 3to. (¿io =  0 A ((¿n-|-m) =  (fen)
•» true

(fen■)€ -1 3 - 1P •» _,3(a„). 3to. (a„) ^  P  A tlm ((anj) = (fen

•» V(^n)-VTO. ((&n+m) =  (fen) ^10 =  0)
•» Vn < 10. bn = 0.

Next consider the T-coalgebra a  =  (hd, tl o tl): B u —t B x B u, together with the 
function evens: B u B u given by (fen) 1—>■ (62»)- Then evens is a homomorphism 
from a  to  (i.
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For the above predicate P  we have:

( bn ) £  evens* ( P ) •» (&2ra) £  P

•» &20 = 0

( b n )  G e l e v e n s *  ( P ) •» 3 (a n )i G e ve n s*(P ). ( a n + 1 ) =  ( bn

•» b w  = 0

( bn ) £  evens* ( £ _ P ) •» (b2n ) G J I P

•» b i s  = 0

This shows th a t Lemma 3.6 (i) does not hold for ^  instead of This point is 
stressed in [GM88].

(ii) In order to see the difference between the weak and strong versions of the 
nexttime and lasttime ^  operators we take a look at the functor T ( X )  = 
V ( A  x X ) on Sets, which forms an interface for transition systems with labels from 
A.  For predicates P  C X  we have, following Definition 3.1,

p T  _  p V { K A xid)

= {U £ T ( X )  I Vz G U. z £ P^AXid}

=  {U G T ( X )  I Vz G U. TTZ G P Ka A n' z  G P id}
=  {U G T ( X )  | V(a, x) £ U.a £ A A x  £ P}
=  {U £ T( X)  | V(o, x) £ U. x  £ P}.

Similarly, for Q C V ( A  x X ),

Q t  =  { i g X | 3 o g  A.  3 U £ Q. (a, x) £ U}

Consider now a T-coalgebra a: X  V ( A  x X ). For elements x ,x ' £ X  and a £ A 
one often writes x  A  x' for (a, x') £ a(x),  and one says th a t x  can do an a-step to 
x ' . The associated nexttime and lasttime operators are, on P  C X ,

a^P = {x G X  | a(x)  £ P T }

= {x £ X  | Vx' G X. Va G A.  i A i ' ^ i ' g P }  (weak nexttime)
a  P  = ({«(x) | x  £ P } ) T

= {x'  £ X  \ 3x £ X.  3a £ A. x  A- x'  A x  £ P}  (strong lasttime)
-i P  =  {x G X  | 3x' G X. 3a G A. i A x ' A x ' g  P} (strong nexttime)

P  = {x' G X  | Vx G X. Va G A. x  A  x'  x  £ P}  (weak lasttime)

(iii) In coalgebraic specification (see [Rei95, Jac96]) one specifies object-oriented 
systems via coalgebraic operations and initial states, satisfying certain assertions. 
Typically in these assertions, one uses bisimilarity ±± instead of equality =  on states. 
We shall present an example of a coalgebraic specification of a stack, using some
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(hopefully) self-explanatory notation.

S iack\ 1 : TYPE] : C L A SSSPE C  
M E T H O D

size: Self — ► Z
push: Self x A — ► Self
pop: Self — y 1 +  (.4 x Self)

A SSE R T IO N
Vx  G Self. Va G A  size(push(x,a)) =  size(;c) +  1 
Vx  G Self. CASES pop(x) OF 

ku  : she(x) = 0 
k 'v : size(7rw) =  size(;c) — 1 

ENDCASES 
Vx G Self. Va G A. CASES pop(push(;c, a)) OF 

ku : false
k ' v  : ttv =  a  A t t ' v  i ±  x  

ENDCASES 
C O N ST R U C T O R  

new_stack: Self 
C R E A T IO N  

pop(new_stack) =  k *

Notice th a t the last assertion says th a t pop(push(a;, a)) is always of the form K'(a, y)  
with y bisimilar to  x. This says th a t after a push, the pop operation returns and 
removes the most recently pushed element from the stack (leaving a stack which is 
indistinguishable from the stack before the push). The pop method can also fail, 
by returning k * in the 1-component of its codomain 1 +  (.4 x Self). This indicates 
th a t the stack is empty.

The first thing to  note is th a t the interface of the operations is captured by a 
polynomial functor, namely:

T ( X )  = Z x X A x (1 + (A x X ))

A coalgebra X  T( X)  of this functor combines the three methods size, push, pop 
in a single function. For a predicate P  C I ,  we get the predicate lifting P T C  T(X)  
consisting of:

P T =  {(n, ƒ, z)  | Va G A. P( f (a) )  A Va G A .V y  G X .z  =  k !(a,y) =? P(y)}-

Thus, for a coalgebra c =  (size, push, pop) the predicate c^P for ‘nexttime P ’ is 
defined by:

c P(x)  <£> P T (c(x))

Va G A  P(push (x ,a ))  A Va G A.Vy G X.  pop(x) =  K' (a ,y)  =>■ P(y).

It holds for x  if P  holds at each (immediate) successor state, obtained by either 
push or pop.

In order to  say something interesting about this stack, we use the following aux
iliary iterate function. For arbitrary f : X —t l  + ( A x X )  and n  G N, we introduce

ite ra te (/,n )
X -------------- > 1 +  (-4 x X )

11



as:
iterate(/,0)(x) =  f(x)

ite ra te (/,n + l)(x) =  CASES f ( x )  OF
ku : K*
k'v : iterate(/, n ) ( 7 r ' w )

ENDCASES

Consider now the following specific predicate Q.

Q(x)  size(a:) >  0 A iterate(pop,size(a:)) = k *  .

We claim th a t for each T-coalgebra c =  (size, push, pop) satisfying the assertions in 
the class specification Stack, the predicate Q is an invariant, i.e. Q C c^Q. Then, 
writing D(c) for the weak henceforth operator and <)(c) for strong one 
we can prove:

□  (c) (Xx. s\ze(x) = 0 =4- pop(a:) =  k  * ) (new_stack). (1)

This says th a t for all reachable states, pop fails if (and only if) the size is zero. For 
the proof we use th a t there is an invariant P  (namely Q) with P(x)  =$■ (size(x) =  
0 =£- pop(ar) =  k*) and P(new_stack). This proves the result because □  yields the 
greatest invariant.

Similarly, one has:

□  (c) ^Xx.  size(a:) >  0 A 0(c )  (Ay. size(y) =  0) (x) j  (new_stack). (2)

This statem ent says th a t for all reachable states x the size is positive, and for some 
future state y of x the size is zero. It can be proved via a slightly stronger invariant 
Q'  given as

Q'(x) Q(x)  A Vn G N. n < size(a:) =4- iterate(pop,n) ^  k *  .

The tool described in [HHJT98] translates class specifications as above into log
ical theories for a back-end proof tool (like PVS [ORSvH95] or Isabelle [Pau94]). It 
extracts the interface functor from a class specification, generates the associated lift
ing, and thereby also the definitions of invariant and bisimulation. Additionally, it 
generates tailor-made D(c) =  and <)(c) =  operators for the class/coalgebra 
c. This allows us to  formulate and prove results like above in the back-end proof 
tool. Actually, the above statem ents (1) and (2) have been proved in PVS.

3.8. Rem ark. In the end one can ask what is so special about polynomial functors 
to  make the construction of Galois algebras work, for example, in order to  generalise 
the approach. For an arbitrary functor T: B —¥ B one can require th a t T  preserves 
arbitrary2 weak pullbacks. The structure one needs in B is th a t pullbacks of monos 
exist and th a t the posets Sub(X) of objects I g B  are complete Boolean (or Heyt- 
ing, see Defintion 5.5) algebras and th a t the induced substitution (pullback) functors 
ƒ* preserve meets (or equivalently have left adjoints Uf) -  One can then define pred
icate lifting ( ^ )T:Sub(X ) —̂ Sub(T(X)) simply by (.4 >—> X ) (T(A)  >—> T(X )).

2This means weak pullbacks of arbitrary set-indexed collections of morphisms with a common 
codomain. This is an essentially stronger requirement than preservation of weak pullbacks of just 
two morphisms, as shown in [Gum99].
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This operation preserves all meets (because T  preserves arbitrary weak pullbacks), 
and thus has a left adjoint, say (—)t-  In this way one gets nexttime a*(PT) and 
lasttime ( ] ja (P) )r  operations for a coalgebra a : X  T ( X )  as above, and thus a 
Galois algebra on the poset Sub(X) of subobjects of the state space X .

Allthough this generalises the construction of Galois algebras for polynomial 
functors, it does not cover examples like in Subsection 6.1 where fuzzy predicates 
are used, which are not subobjects. There, the more general notion of indexed 
category or fibration (see [Jac99]) is needed. This goes beyond the scope of the 
present paper.

We have concentrated on polynomial functors because they include many im
portant examples, and because their lifting (with left adjoint) can be described by
induction on the structure of the functor. This makes it possible to  mechanise the 
lifting, and generate appropriate notions of invariant, and thereby nexttime and 
lasttime operators, as described in Example 3.7 (iii).

4 G alois a lgebras from  n e x ttim e  an d  la s ttim e  along p a th s

Sofar we have seen the nexttime operator a^P, containing those states all of 
whose successor states (w.r.t. a) satisfy P. Consider for example, a coalgebra 
a: X  X  x X  of the functor T ( X )  = X  x X .  Then a^P(x)  means th a t both
P( na( x ) ) and P(n'a(x))  hold. In this section we shall introduce nexttime and last
time operators with respect to  paths, so th a t we can use “nexttime P  along the 
first path” , holding on x if P(na(xj ) .  Such operators have been studied previously 
in [Mos99, RoB99b, RoB99a, Kur98]. Here we introduce them  in a slightly different 
manner, via operations on predicates (like in Definition 3.1), and we show th a t they 
also give rise to  Galois algebras.

For a polynomial functor T,  let Inputs(T) be the set of sets A  occuring as 
exponent (—)4 in T.  Thus, Inputs(id) =  Inputs(KJ4) =  0, Inputs(Ti x Ti) =  
Inputs(Ti +  T2) =  Inputs(Ti) U Inputs(T2), !nputs(Tj4) =  {.4} U Inputs(T), and 
Inputs('PT) =  Inputs(T).

The set PathSymbols(T) contains the symbols out of which paths will be built. 
It is defined as {n, it', k , k '} U U/teinputs(T){ev(a ) I a £ A}.

Next, the set Paths(T) is the subset of the set PathSymbols(T)* of lists of path 
symbols th a t is defined as follows.

Paths(id) =  {()} (where () is the empty list)
Paths(Kj4) = 0

Paths(Ti x T2) =  {tt ■ p  \ p  £ Paths(Ti)} U {ir' • p  | p £ Paths(T2)}
Paths(Ti +  T2) =  {k  ■ p  | p  € Paths(Ti)} U {k' ■ p  | p  G Paths(T2)}

Paths( TA) = {ev(a) • p  | a  G A , p  G Paths(T)}
Paths (PT)  = Paths(T).

where we have used • as shorthand for the cons operation which adds an element to 
a list.

For a set X  with predicates P C X  and Q C  T ( X ) ,  we define for a path
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p £ Paths(T) new subsets P p C T ( X )  and Qp C X  by induction on T:

p { )  — p
Q o =  Q

pTT-p _ TT*(PP) Qrr-p = (U ,(Q ))p
p n ' - p  — n ' * ( P P ) Qtt' -p =  (U ^(Q ))p
p n p  _ n . i n Q K-p =  («*(Q ))p

p d ' P  = n A p p ) Q k' -p =  (« '’ (Q))p
p e v ( a ) ‘p — {ƒ | f (a)  £ P P } Qev(a)-p =  ( { f ( a ) \ f £ Q } ) p

p p  — {U | V« £ U.u £ pp} Qp = (U Q)p-

ist like there is a Galois connection ( —)t H R t for the lifting of the previous
section, there is a Galois connection for the lifting with respect to  paths. The proof 
is by induction on the length of paths.

4.1. L em m a. For a path p  of a polynomial functor, the above operation (—)p is 
left adjoint to (—)p, that is, Qp C P  Q C P p. □

4.2. D efin ition . Consider a coalgebra a : X  T ( X )  of a polynomial functor T.  
For a path p £ Paths(T) we define two operators V { X )  V ( X ) ,  namely pa  for 
‘nexttime along p ’ and pa  for ‘lasttime along p ’ (w.r.t. a).  They are defined on 
P  C X  as

p a P  =f a*(Pp) and j m P  =f (U Q(-P))p.

4.3 . E xam ple. Fix a set A,  and consider the (polynomial) functor

T ( X )  = A + ((A x X ) +  (A x (X x X )))

describing an interface for finite and infinite A-labeled trees with at each node either 
only a label, or a label with one successor tree, or a label with two successor trees. 

The set Paths(T) contains the following three elements.

K KTT
k 'k 'tt'tt which will be written as

sub =  k'ktt' 
leftsub =  k ' k 'tt'tt 

rightsub =  k ' k 'tt'tt'

These paths point to  specific state positions in the interface functor:

leftsub
j

T ( X )  = A  +  ((.4 x X ) +  (.4 x (X x X )))

t t 
sub rightsub
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For predicates P C X  and Q C T ( X ) ,  the associated liftings are:

psub =  T (X)  | Vx G X. Va G A. z  =  k'(/c(o,®)) ^  P(x)}

Qsub =  {x G X̂  | 3a  G .4. k'(k(<x, x ) )  G Q}
pieftsub =  { z e r ( X ) | V x i , X 2 G X . V a G - 4 . 0  =  K ' ( K ' ( a , ( x i , x 2) ) ) ^ F ( x i ) }

Qieftsub =  {x G X  | 3a  G A. 3y G X. k'(k '(a , ( x , y ) ) )  G Q}
prightsub =  g T ( X )  | V x i ,x 2 G X .V oG  A.Z =  k ' ( k ' ( o , ( x i ,x 2))) P ( x 2) }

Qrightsub =  {x G X  I 3a  G A  3 y  G X. « '( « '( a ,  (y , x ) ) )  G Q }

Now assume we have a coalgebra a :X  —̂ T ( X) .  It gives for each tree x G X  the 
label and successors (if any) of x. Then, for example,

x G leftsubaF x G a * (P leftsub)

Vxi, X2 G X .V aG  A. a(x)  = « '(« '(a , (xi, x2)) =4- P (x i) 
if x has two successor trees, then P  holds for the left one 

x G leftsubctP  x G ( I I a (P))ieftsub

3a G A.  3 x i ,x 2 G X. a (x i)  =  « '(« '(a , (x ,x 2))) A xi G Q 
x is a left successor of a tree satisfying P.

Also the path modalities form a Galois algebra.

4.4. Lem m a. Por a coalgebra a: X  T ( X )  of a polynomial functor T  and a path 
p  G Paths(T) one has jxxQ C P  Q C p a P , so that V { X )  with pa  is a Galois 
algebra. □

For these path modalities pa  and jxx one can define corresponding strong -ipa-i 
and weak versions. But also:

4.5 . Lem m a. Por a coalgebra a: X  T ( X )  and a path p  G Paths(T) we define 
new operators pa  and jxx with type V ( X )  V ( X )  as fixed points: for P C X ,

p a P  is the greatest fixed point of S  P  A p a S  

p a P  is the least fixed point of S  P  V j)aS

Then jxx H pa , so that V { X )  with pa  is also a Galois algebra (for each path p). □

To conclude this section on operators along paths, we briefly discuss logics. For 
a polynomial functor T : Sets Sets one can define two logics, differing in the 
modal operators th a t they have. In one “single-modal” logic C(T)a there is only 
a single nexttime operator ip p and in the other “multi-modal” logic C(T)m 
there is a nexttime operator ip p^p for each path p  of T. The atomic propositions 
of both logics are given by the elements a G T (  1), where 1 is a singleton set {*}. 
And the propositional connectives are negation -> and conjunction A (say). Each 
proposition ip of C(T)a or C(T)m gives rise to  a subset Iv?]a C X  in the following
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way.

M a = { i e l | (T(l) o a)(x)  = a)
(where a € T(  1), and !

I~ y ]]a =  { i € l | x  £

[<¿>1 A <p2}a

c«£II 1^2 F

1 ^ 1“ =  j*Jv?]]a for ip £ £ ( T ) S

=  P ^ l v T for ip £ £ ( T ) m

Alternative notation for validity of ip a t x, i.e. for |<pja (;c), is a, x  \= ip.
An im portant result of [RoB99a] is th a t for two elements x  £ X ,y  £ Y  in the 

state spaces of coalgebras a: X  T ( X )  and [3: Y  T ( Y )  are bisimilar if and only 
if they satisfy the same formulas from the multi-modal logic £ ( T ) m. This result is 
proved under certain restrictions: the sets A  whose constant functors K i occur in 
T  should all be finite, and the powerset functor should not occur in T.  The result 
is proved3 via a terminal coalgebra construction out of maximally consistent sets of 
formulas. Similar such characterisation results occur in [Mos99, RoB99b, Kur98].

This logical characterisation of bisimilarity does not hold for the single-modal 
logic jC(T)s. The following two coalgebras present a counter example, for the tree 
functor T ( X )  = A + ((.4 x X )  +  (.4 x (X  x X)))  from Example 4.3. We take 
A = {a, b} and X  = {0,1,2} with the following two coalgebras a ,/3 :X  T(X) .

a  = / M  /

a(O) =  k '(k '(o , (1 ,2))) ¡3(0) = k '(k '(o , (1 ,2))
a ( l)  =  na, a(2) = nb ¡3(1) = Kb, ¡3(2) = na

Clearly, 0 0 does not hold, where a i± ^  denotes bisimilarity w.r.t. a  and ¡3. 
But the same propositions from the single modal logic C(T)a hold at 0: the same 
atomic propositions hold there, and, for a predicate P C X ,  the nextstep operators 
a  and [3 say th a t some observation can be made at both successor trees at the—y —y

same time. But since the labels are different, there are no such observations.
The “pathwise” modalities pa  thus give a more refined expressivity than the 

“broad” modality o•. But the latter is more useful for expressing safety and live
ness properties, involving all possible successor states in a single operator, see Ex
ample 3.7 (iii).

5 G alois A lgebras

Now th a t we have seen several examples of Galois algebras—arising from next
time operators for coalgebras—it is time to  have a closer look at these structures. 
This section repeats several basic facts from [Kar98], and adds certain results (like 
Lemmas 5.3, 5.4) which relate specifically to  coalgebras and polynomial functors.

3In recent, as yet unpublished, work of Rofiiger these size restrictions are removed, and the 
finite powerset functors is included in this result.
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Definition 2.1 already introduced Galois algebras B  as complete Boolean alge
bras with a nexttime operator B B  preserving all meets. The resulting “last 
tim e” left adjoint was written as It should be noted th a t is the weak lasttime 
operator, and ^  the strong lasttime. To emphasise this aspect we sometimes write

• for • and • for • . For a general Galois algebra we write a bullet • where
- » ■ w  i —  °

we put a particular (coalgebraic) operation in concrete examples.
We first recall how other temporal operators can be defined, using fixed points.

Notation Meaning Definition

•  b at some next step b

•  b
w i-- at each previous step b

•  b
=>

always in the future b vx. (b A •  x)

•  b
<=

sometime in the past b ßx. (b V *_x)

b U c b until c ßx. (c V (6 A • xj)  
—H

b S c b since c ßx. (c V (6 A • x  j)

We use different notation from [Kar98]. The following table gives an overview.

Here • • • •
—y — — •<=

von Karger [Kar98] © 0 © 0 ffl 0

W hat makes Galois algebras appealing is th a t their defining requirements are 
very simple, but have strong consequences. For example, all axioms and rules of 
CTL are valid in Galois algebras, see [Kar98, 7.2].

As an example, we consider what is usually called the induction4 rule of temporal 
logic, formulated inside an arbitrary Galois algebra:

b A •  (b D •  b) <  •  b 
=X 7 -  =>■

where f e D c = - i f e V c i s  implication in a Boolean algebra. We call an element b in
a Galois algebra an invariant if b < *Jb, or equivalently, if *Ji < b. Then it is easy
to  see th a t  •  b is the greatest invariant below b. Hence it suffices to  show th a t  the
left-hand-side b A •  (b D •  b) is also below b and is also an invariant. The first 

=r* —y
point is immediate, and for the second we calculate:

b A •  (6 D •  b) =  6 A (6 D •  6) A (b D *Jb) since ^  is a  fixed point

< b A (6 D •  b)

(6 A •  (6 D •  b)) since is a right adjoint.

Certain additional requirements can be imposed on Galois algebras so th a t all 
axioms and rules from linear temporal logic (LTL) are valid, see [Kar98, 5.3 and 6].

4T o use  ‘in d u c tio n ’ fo r a  ru le  w h ich  c ru c ia lly  d e p e n d s  on a  g re a te s t fixed  is a  m isn o m er; it  is
b e t te r  ca lled  ‘c o in d u c tio n ’ ru le .
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Here we concentrate on the following points relating to  forward- or right-linearity. 
These requirements will be relevant for coalgebras.

5.1. D efin itio n . A Galois algebra will be called strict if • ±  =  ± . And it will--
be called affine (right-linear in [Kar98]) if •  b <  •  b, for all elements b.

Intuitively, in a strict Galois algebra there is a t every stage at least one successor 
state, whereas in an affine one there is a t most one successor state. There are dual 
requirements about predecessor states, but they will not be considered here. The 
combination of these requirements gives models of LTL, see [Kar98].

A typical property which holds in an affine Galois algebra is:

•  (6 D c) =  •  b D •  c (where •  =  •  )
—y —y —y —y —̂-w

The direction (<) holds in arbitrary Galois algebras because ^  preserves meets
(since it’s a right adjoint). The reverse direction (>) uses the affine inequality 
-i • x  < • -i& in:

by monotonicity of ^  

by the affine inequality

We consider some examples of strict and affine Galois algebras induced by coal
gebras of polynomial functors. We take the functor T ( X )  = X  x X  on Sets. For 
an aribitrary coalgebra a: X  T ( X )  and a predicate P  C  X  we have a  P  = 
{x  | P(wa(x))  V P ( 7r'a(x))} and a  P  = {x  | P(wa(x))  A P(Tr'a(x))}.  The—
Galois algebra induced by a  is strict, since a  I  =  I. But if it is affine or not 
cannot be stated in general. For instance, consider the state space N with coal
gebras (i, 7 :N —¥ T(H)  given by (i(x) = (x,x) ,  and 'y(x) = ( x , x  + 1). Then
¡3 P  =  {x  | P(x)}  =  ¡3 P,  but 7  P  =  {x  | P(x)  V P(x +  1)} which is not —y S —fw —

contained in 7  P  = {x  | P(x)  A P(x  + 1)}.
Thus the property of being affine depends on the coalgebra, and not on the 

functor. But there is a bit more we can say.

5.2. D efin ition . Consider a polynomial functor T :S ets Sets, with predicate 
lifting functions (—)T : V ( X ) V ( T ( X j )  as introduced in Definition 3.1.

(i) We say th a t T  has a strict (predicate) lifting if the function ( ^ )T is strict, 
i.e. preserves least predicates: 0T =  0.

(ii) And we say th a t T  has a (finitely) affine (predicate) lifting if ( ^ )T preserves 
non-empty finite supremema. This amounts to  (Pi U F2)T =  Pi U P2 for each 
pair of predicates Pi, P2 C l  on a set X .

(Strict and affine functions between complete lattices are considered in [Jac94] 
as one of the running examples giving categories having tensors with diagonals or 
with projections, and with exponential operators ! introducing only weakening or 
only contraction. The issue, like here, is the distinction between at least/m ost once. 
See also [Jac93] for examples of models of untyped lambda calculi with variables 
occuring at least/m ost once, constructed from strict/affine functions.)

•  (b D c) =  •  (-ib V c)

> • -ife v • C 
-  —> ->■
>  -1 •  b V •  c 
-  ->■ ->■ 
=  •  b D •  c.
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5.3. Lem m a. I f  T  is a polynomial functor with a strict/affine lifting, then the 
Galois algebra of each coalgebra o fT  is strict/affine.

P roof. If T  has a strict lifting, then for each coalgebra a: X  T( X)  we get

a  0 =  a*(0T) =  a*(0) =  0.--
And if the lifting is affine, then

a  P  C a  P  -ict*((-iP)T) C a*(PT)
—

a*((~iP)T U P T) =  X  
a * ( X T) =  X
a*(T(X))  = X  since (—)T is a right adjoint 
true. □

W hether a polynomial functor has a strict/affine lifting can be deduced from its 
structure.

5.4. Lem m a, (i) The identity functor Sets S ets has a strict lifting. And if 
Ti,T2:S ets —̂ Sets have a strict lifting, then so have T\ + T2, T A, Ti x S , where 
A is an arbitrary set and S  is an arbitrary polynomial functor S ets Sets.

(ii) The identity functor Sets S ets also has an affine lifting. And if both 
Ti ,T2: Sets —̂ Sets have an affine lifting, then so have T\ + T2, Ka  x T i, where A 
is an arbitrary set. □

These strict and affine lifting properties can also be investigated for the pathwise 
operators from Section 4. But th a t will not be done here.

Just like Heyting algebras are the intuitionistic versions of Boolean algebras, 
there are intuitionistic versions of Galois algebras. There, the weak and strong 
versions of nexttime and lasttime are not interdefinable via negation, and have to 
be present separately. We shall see examples in Subsection 6.1. Here we merely 
repeat the definition from [Kar98].

5.5. D efin ition . An intuitionistic Galois algebra consists of a complete Heyting 
algebra B  with a weak and a strong nexttime operator • , • :B —¥ B,  both

—
preserving arbitrary meets, and satisfying the inequalities:

•  x  A • y < •  (x  A y) and • x A • y < •  (x  A y)
— S-̂ --  w i--  S-̂ --

where • H • and • H • are the induced left adjoints, playing the role of
S-̂ --  — w i--  —

strong and weak lasttime operators.

We conclude this section by introducing homomorphisms of (intuitionistic) Ga
lois algebras. The canonical examples in the next section will be substitution func
tions ƒ*. In the examples they all preserve arbitrary meets and joins, so th a t is 
what we shall include in the definition of homomorphism. But possibly in another 
context, a different requirement is more appropriate.

5.6. D efin ition , (i) A homomorphism (B , (C, _*̂ ) between ordinary (non-
intuitionistic) Galois algebras is a function f : B  —y C  which preserves all meets and 
joins, and commutes with the nexttime operations: ƒ o ^  o ƒ. This yields a 
category, which we shall write as GA.
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(ii) Similarly, a homomorphism ƒ: (B , • , • ) (C, • , • ) between intu-
—hw —

itionistic Galois algebras is a function f : B ^ C  preserving all meets and joins and 
commuting with both nexttime operations: ƒ o • =  • o f  and ƒ o • =  • o—
ƒ. This gives a category iG A.

Notice th a t a morphism ƒ of (intuitionistic) Galois algebras maps greatest fixed 
points vg to  greatest fixed points vh, for meet-preserving functions g and h, with 
h o f  = f  o g. In particular, it will commute with the henceforth operators •

—

and • induced by the nexttime operators • and • —as in Lemma 3.6 (iii).=^s —Hv —

6 Indexed  G alois A lgebras

In this section we first collect results from the previous sections in a summarising 
theorem. Subsequently we concentrate on two specific examples, and show how 
the coalgebraic structures which are of central importance in this paper also exist 
in some other, possibly unexpected, situations th a t have been considered in the 
literature (without the coalgebraic perspective).

Proposition 3.4 and Lemma 3.6 (i) yield the following fundamental result.

6.1. T heorem . For each polynomial functor T: Sets Sets there is functor 

CoAlg(T)op-------------------------^ GA

given by

( x _ a ^ T ( x j )  l-----> ( v ( X ) , a ^ J  and ƒ l-----^  ƒ* □

This functor forms what may be called an “indexed Galois algebra” , providing a 
predicate logic on coalgebras. It can be seen as arising via composition (or change- 
of-base, see [Jac99]) along the forgetful functor CoAlg(T) S ets from the indexed 
complete Boolean algebra

S etsop----------- -------------► cB A

incorporating the standard predicate logic on sets—where cB A  is a category of 
complete Boolean algebras.

In this section we shall describe similar examples following this pattern.

6.1 G alois algebras indexed  by m etric spaces

Let [0,1] be the unit interval of real numbers. It can be seen as a domain of 
“fuzzy” tru th  values, with 0 as false and 1 as true (say). A function of the form 
X  [0,1] can then be considered as a fuzzy predicate, and a function of the form 
X x X  [0,1] as a fuzzy (transition) relation, describing for example the probability 
of a transition x  —¥ x ' . In [Kar98] an intuitionistic Galois algebra is constructed out 
of such fuzzy predicates, given a transition relation R: X  x X  [0,1]. It involves 
for a fuzzy predicate ip: X  [0,1] strong nexttime and lasttime operators, defined 
via the “max-min products” :

Ri p  = Aar. m axm in{R(x,y) , ip(y) j—>s y ex
Ri p  = Aar. m axm in {R( y , x ) , ip(y)j .y e x
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Here we shall redescribe this intuitionistic Galois algebra as resulting from the 
general constructions in this paper. We shall describe these constructions more 
generally in term s of metric spaces and metric predicates, see also [Law73, Ken90], 
or [Jac99, Example 4.6.3 (iv)].

First some preliminaries. We consider metric spaces (X, d )  where the distance 
function d: X  x X  4  [0, oo] takes values in the non-negative reals, extended with a 
top element oo. As morphisms (X, d )  —¥ (Y, d) between such metric spaces we take 
“non-expansive” functions ƒ: X  Y ,  satisfying d( f ( x ) , f ( x ' ) )  < d(x,x' ) ,  for all 
x ,x '  £ X . This yields a category M S, with a forgetful functor M S —¥ Sets. The 
latter has a left adjoint which provides an arbitrary set X  with the discrete metric: 
d(x,x' )  = oo for x  ^  x ' , and d(x,x)  = 0. We shall need the tensor product X  ® Y  
of two metric space. It has the Cartesian product X  x Y  as underlying set, with 
distance function d((x,y) , ( x '  ,y')) = d(x,x ' )  + d(y,y' ).  The projection function 
7r: X  x Y  —¥ X  is then non-expansive, so th a t we have a tensor with projections 
X ® 1 —y X , see [Jac94].

The interval [0, oo] with it usual order forms a complete Heyting algebra, with 
max as least upper bound and min as greatest lower bound. The implication r  D s 
for r, s  £ [0, oo] is given as r  D s = oo if r  < s, and r D s = s otherwise. Then 
m inji, r} < s - & t < r D s .  And thus for a subset S  C [0, oo], m in ji, max S'} =  
m ax{m in{i,s} | s £ £>}.

A metric predicate on a metric space (X, d) is a non-expansive function ip: X  —t  
[0, oo]. The set M P (X ,d) of metric predicates on (X ,d) is a metric space itself, 
with distance d(ip,tp) = max x€x  |tp(x) — tp(x)|. This set can be ordered pointwise, 
and thus inherits the complete Heyting algebra structure from [0, oo]. Moreover, 
the mapping (X, d) M P(X, d) extends to  a functor M Sop —¥ cH A , since a 
non-expansive function f : X  Y  yields a substitution function f *:MP(Y, d)  —¥ 
M P(X, d) by precomposition. We thus get metric-space-indexed complete Heyting 
algebras. Note th a t ƒ* preserves the (pointwise) joins and meets, and thus has both 
a left adjoint JJƒ and a right adjoint Explicitly, they are given on a metric 
predicate ip:X —¥ [0, oo] as IIj(<p)(y) =  max xex{ip(x)  | f ( x )  = y}  and ]~\f(ip)(y) = 
minxex{ip(x)  | f ( x )  = y}.  Using the exponents one can prove the “Frobenius” 
equation: \Jf(ip A = U /iv 5) ^  where A is min. We shall also make
use of the “Beck-Chevalley” property for coproducts and products along 
projections n: X  ® Z  X .  These satisfy, for ƒ: X  Y  and ip: Y  ® Z —¥ [0, oo],

r ( U A v ) )  = U M ® i d r m  and r ( n . M )  =  n . ( ( /® * d ) * M ) -

Next we consider taking metric predicates as a (covariant) functor MP: M S —¥ 
M S, given on morphisms as ƒ 4  J Jƒ. It can be seen as a metric analogue of 
the covariant powerset functor. A coalgebra a : ( X , d ) —¥ M P(X, d )  is a “metric 
fuzzy transition system” . As above, one can interpret a(x)(x' )  £ [0,oo] as some 
probability for a transition x —¥ x ' , for x, x'  £ X .

W hat we need to  understand is the lifting of the functor MP to predicates 
ip:X [0, oo]. It should yield a new predicate </?MP:M P(X , d) —¥ [0, oo]. Basically 
we follow the set-theoretic formulations for the powerset functor in Definition 3.1. 
Therefore we first need a metric membership relation e, given as metric predicate 
e: M P(X, d) ® (X,d)  —¥ [0, oo]. It is simply given by evaluation:5 (<p,x) ip(x), 
and is easily seen to  be non-expansive. Now we can can define for metric predicates

5The set-theoretic membership relation e V{A)  x A can equivalently be described as evalu
ation { 0 ,1}A x A —?- {0,1}, using characteristic functions instead of subsets.
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ip:X [0,oo] and tp:MP(X,d)  —¥ [0,oo],

ipMP =  ^ ( e  D (see Definition 3.1 (i))

=  A\: MI’fA.i/). m inx(y) 3  <p(y)
y ex

= Ax: M P(X, d). m in{ip(y) | tp(y) < X(y)}
y ex

V’mp =  L U e  A tt* (,ƒ>)) (see Definition 3.1 (ii))
=  Xx:X.  m ax{m in{x(a;),^(x)} | x  € M P (X ,d)}.

These operations are used for the weak nexttime and the strong lasttime opera
tions. For strong nexttime and weak lasttime we also consider, in analogy with the 
formulations at the end of Example 3.7 (ii):

L L M t t ' - M )  : M P(X, d) — y [0, oo] 
n ^ ( e  3  7T*(i/0) : x — y [0, oo]

Assuming a coalgebra a: (X,d)  —¥ M P(X, d), this leads to  the following weak and 
strong next- and last-time operators, all with type M P(X, d) —¥ M P(X, d).

a  ip = a* (ipMPa

Ax:X. min{tp(y) | ip(y) < a(x)(y)}
y e x

= ( U » ) m p

=  Xx:X.  m axm in{x(x), max{tp(y) | a(y)  =  x}} 
x y ex

= Xx: X .  maxm ax{m in{x(x), <p(y)} | ct(y) = x}
x y e x

= Ax:X. m axm in{ct(y)(x),ip(y)jyex
j x y  =  a* (U ^ (e  A tt'*(v?)))

=  Xx:X.  m axm in{ct(x)(y),ip(y)}yex
=  n ^ ( e => 7r*(nQM ))

W  >

=  Xx: X .  minmin{x(x),min{(p(t/) | a(y) = x}} 
x y ex

= Xx: X .  min min{a(y)(x), ip(y)}.yex

It is then easy to  see th a t there are Galois connections a  ipi < ip2 ipi < a  ip2
s-̂— —Hv

and a  ipi < ip2 ‘fii < a  ip2. For example,— wi—

_ajP! = a*(U ^(eA 7r '* (<p i)))  < ip2 L U «  A tt'*(v?i)) <  E L O ^ )

e A 7r'*(v?i) <  7 r*(nQ(<P2))

7r'*(v?i) <  e D 7T*(nQ(<P2))

<P1 < n̂ '(e => 7T*(nQ(<P2))) = aip2.
W  ^

Further, the additional requirements for intuitionistic Galois algebras can be proved
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by abstract “logical” calculation using the Frobenius equation:

a  ifx A a  ip2 =  « * ( U ^ ( e  A 7r'*(<pi)) A n ^ ( e  ^  7r'*(<p2)))
— T  s  — T W

=  I L  (e A 7r'*(y>i) A it* ¡ I J e  3  7r'*(y>2)))

<  L L  (e A 7r'*(v?i) A (e D 7r'*(v?2)))

<  « *  L L  ( e  A 7 r '* ( ^ i )  A 7t'* ( v?2 ))

=  a * L L  (e A 7r'*(v?i A v?2))
=  q  (</?i A </?2)

—rs
ŝ i A ŵ 2  =  U ^ ( e A 7 r * U a ( ^ i ) )  A n ^ ( e 3  7 r* n a (^2))

=  I L '  (e A ^  U a (^ l)  A 7r'* rijr' (e => ^  E l a ^ ) ) )
<  ( e A 7 T * 0 Q(<pi) A (e D 7 T * n Q(<P2)))

< u ^ ( e A ^ ( u a (<pi)A n a ( ^ ) ) )

=  I L '  (e A 7r* U a (^ l A «* I la O ^ )))
<  LL, (e A 7T *0Q(<pi A<p2))

=  q  (</?i A </?2).
si—

Finally, for a non-expansive function ƒ: X  —t Y  forming a coalgebra homomorphism 
from a: X  —̂ M P(X) to  ¡3: Y  —̂ M P(Y)—so th a t ¡3 o ƒ =  M P (/) o a —the induced 
substitution functor f * : MP( Y)  —¥ M P(X) commutes with the weak and strong 
nexttime operators. For instance,

ƒ*( 1  <p) =  t P * { v MF)
—T W

=  a * M P (/)* (n ,(€ D 7 r '* M ))
=  a*(n .((M P(/)® id)*(eD 7T '*(< p)))) 

by Beck-Chevalley

=  a* (rL ((M P (/)® id )* (e )
since substitution distributes over D 

=  a * ( n ^ ( ( U i d ® / ( e )  => 7 r ' * ( < p ) ) ) )

(M P (/) ® id)*(e) = U,,/ /  (e) follows by direct calculation

-  a * (IL  II,,/ ƒ(' => (id ® f )**'*(¥>)))
= a * ( I L r ( ^  *'•ƒ*(¥>)))
=  a—r w

(*)
In the marked equation =  we have used the law6 I I s (<p) D ^  =  Yigiw ^  9*('iP))j 
which follows easily from the Frobenius equation.

Thus we have arrived at the following result.

6.2. P ro p o s itio n . The metric predicate functor MP: M S  —¥ M S  on the category 
of metric spaces yields an indexed intuitionistic Galois algebra of the form:

5In logical term s it is (3a:. p) D •tp =  Vz. (<p D ip) with x not free in ij>.
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arising by composing the forgetful functor Coalg(MP) M S  with the indexed com
plete Hey ting algebra M S op —¥ cH A . □

Example 8.6 from [Kar98] is a special case of this result, involving an intuition- 
istic Galois algebra arising from a transition relation and metric predicates on a 
discrete metric space. Here we have shown th a t there is much more—both metric 
and indexed—structure involved.

6.2 G alois algebras indexed  by presheaves

In [GM88] a presheaf model for modal logic is presented. It involves nexttime
and lasttime ^  operators, given by cofreely and freely generated presheaves. 

Here we shall redescribe this model in the present coalgebraic context, as indexed 
Galois algebras, arising by change-of-base. This shows th a t the example fits into the 
general setting of this paper. We shall not introduce much extra structure—like in 
the previous fuzzy predicate example—but merely unveil the (implicit) coalgebraic 
content of the presheaf model.

The starting point is a small category C. We shall write Co for its set of ob
jects and C\ =  { ( A , B , f )  | A , B  G Cq A ƒ G C(.4, B)}  for its set of morphisms, 
with domain and codomain maps do ,d i:C i —¥ Cq, given by do( A , B , f )  = A  and 
di (A, B , f )  = B.  A presheaf on C is a functor Cop —¥ Sets. Presheaves with natural 
transformation between them  yield a category, written as S ets ' " .

Interestingly, this category of presheaves can also be described as a category of 
coalgebras, not of a functor but of a comonad. This comonad is given as dg on 
the slice category Sets/C o, see [Joh77, Proposition 2.21], [LM92, V, 7, Theorem 2] 
(involving the monad redescription, which is equivalent to  the present comonad 
form, using the Eilenberg-Moore Theorem, see also [Jac99, Remark 7.4.2 (iii)]). The 
objects of the slice category Sets/Co can be identified with Co-indexed collections of 
sets, written as (U a ) a z c 0 ■ The comonad T  =  dg sends such a family (Ua) AeCo

to  (Ilfceef1^ )  Udo(h))Aec0' ^  Pres^eaf H :Cop —¥ Sets, corresponds to  a 8q- 
coalgebra on the family ( H( A) ) a ^c . This coalgebra, say cr ,  can be described as 
(x G H(A))  i— ► (Xh: B  A.H(h)(x) ) .

There is a standard logic on the slice category (Sets/C o)°P —̂ cB A  obtained by 
change-of-base (composition) with the standard logic of sets S etsop cB A  via the 
domain functor dom: Sets/C o —¥ Sets. It maps a family (U —¥ Co) to  the Boolean 
algebra V(U)  of subsets of the domain. Such a subset P  C U can be identified with 
a family of of subsets (Pa Q Ua )a z c0- There is a lifting P T C dom (T(U —¥ Co)). 
Since the functor T  has a left adjoint, namely df ,  it preserves monos, so th a t P T 
is defined as T ( P  ^  U). Basically, this is also what happens in Definition 3.1, see 
also Remark 3.8. Explicitly, ( P t )a =  {4> G {A)u do(h) \ m £ d r 1(A).<j>(h)£
P do(h)}-

6.3. Lem m a. For a presheaf H: Cop —¥ Sets, considered as f l 9i Oq-coalgebra, the 
induced nexttime operator H  is given on P  = (Pa C H ( A ) ) AeC  ̂ as:

({x  | VS G C0.V /  G C ( B , A ) . H ( f ) ( x )  G PB} C H(A) )
\ ) Aec0

ind its left adjoint lasttime operator i i  on P  is:

( { y  | 3B  G C0. 3g G C(.4, B). 3x  G H(B) .  y = H(g)(x)  A x G PB} C H(A)^j
AeCq
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P roof. Recall th a t H P  is defined as c*H (P T ), where ch  is the above coalgebra 
x  i—>- Ah.H(h) (x)  associated with H.  This yields the formulation used in the lemma. 
It is easily seen th a t IJ forms a left adjoint. □

As discussed in [GM88], H P  is the maximum subpresheaf of H  contained in 
P,  and H P  is the minimum subpresheaf containing P.  Hence a predicate P  is an 
invariant if and only if it forms a subpresheaf. The presheaf model is used in [GM88] 
for a completeness result for modal predicate logic. Summarising our perspective, 
we get the following redescription of this presheaf model.

6.4. P rop osition . For a small category C, there is a presheaf-indexed Galois al
gebra:

( S e t s ^ ) ° P -------------------------> Gii

which is obtained by change-of-base along the forgetful functor from a category of 
(comonad) coalgebras to its underlying (slice) category. □

We conclude this example by adding the following observation.

6.5. Lem m a. In the above presheaf model H  =  H  and H  =  H .

P roof. It must be shown th a t H P  is the greatest fixed point of the operation 

(Sa Q H(A))Aec0 1—  ̂ ((Pa H (H^S)a) Q ^(A)) AeCo' f°U°ws from the 
“transitive” nature of categories. □
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