
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/18759

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16108301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/18759

Gambling for Leadership: Verification of Root Contention in
IE E E 1394

M.I.A. Stoelinga

Computing Science Institute/

CSI-R9904 March 1999

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands

Gambling for Leadership: Verification of Root
Contention in IEEE 1394

Mariëlle Stoelinga
Computing Science Institute

University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

m a r ie l le S c s .k u n .n l

A b s tr a c t

This report presents a formal verification of root contention in IEEE 1394.
Root contention is a simple yet realistic protocol th a t solves leader election
for two processes, using coin flips.

The verification has been carried out in the probabilistic autom aton model
of [Seg95]. Correctness of an im plem entation autom aton w .r.t. a specification
autom aton is defined as so-called fair trace distribution inclusion.

Similarly to the non-probabilistic setting, probabilistic simulation relations
provide a technique for proving trace distribution inclusion. Then additional
reasoning proves fair trace distribution inclusion. O ur verification follows
th is strategy. We introduce two simulation relations, viz. probabilistic step
refinements and probabilistic hyperstep refinements. These notions are not
very com plicated and are sufficiënt in our verification. They are special cases
of the simulation relations from [Seg95].

The verification also involves non-probabilistic techniques. For instance,
the invariants have been checked w ith the model checker SMV.
K e y w o rd s a n d p h a se s : IEEE 1394, leader election algorithms, communi
cation protocols, probabilistic and distributed algorithms, formal verification,
SMV, probabilistic autom ata.
A M S S u b je c t C la ss ific a tio n : 68Q10, 68Q22, 68Q60, 68Q75.
C R S u b je c t C lass ific a tio n : C.2.2, C.3, F.1.2, K .l.

1 In tro d u c tio n
Recently, the analysis of probabilistic, distributed algorithms and protocols has
gained new attention. Various methods and formalisms have been extended with
probabilism and quite some case studies have been carried out using these for
malisms, c.f. [Agg94, PSL97].

This report verifies a small sub-protocol of the IE E E 1394 protocol, called root
contention. The IE E E 1394 high performance serial bus [IEE96, IEE98], also called
FireW ire, has been developed for interconnecting computer and consumer equip
ment, such as PCs, VCRs and CD players. The bus is “hot pluggable,” which means
that equipment can be added and removed at any time, and allows quick, reliable
and inexpensive high-bandwidth transfer. This protocol probably becomes the new
standard for connecting digital multimedia equipment. Various parts of IE E E have
been verified formally, see [DGRV97, Sha98, Lut97]. However, as far as we know,
root contention has not.

Root contention in IE E E 1394 is a simple but realistic protocol that involves
both real-time and probabilistic aspects. As a first approach we abstract from

1

the real-time aspects and model time passage by discrete actions. The verification
in this report is carried out in the probabilistic automaton model from [Seg95].
Following the tradition, the correctness of the protocol is proven by establishing a
probabilistic simulation relation between the implementation and the specification,
both probabilistic automata.

The probabilistic simulation relations from [Seg95] are rather complex. In order
to simplify the simulation proofs, this report introduces the notions of probabilistic
step refinement and of probabilistic hyperstep refinement. These are rather obvious
extensions of non-probabilistic simulations. However, it has taken some effort to find
a formulation which makes the definition fit into the standard pattern of simulation
relations.

The strategy followed in the simulation proof is the following. Given the pro
tocol specification P and the abstract specification S, we define two intermediate
automata, J and A. The automaton J abstracts from the message passing in P
but keeps all probabilistic choices. The automaton A combines the probabilistic
choices in I . Then we can separate our concerns. The simulation between P and J,
a probabilistic step refinement, is easy from probabilistic point of view and mainly
deals with traditional, non-probabilistic techniques like proving invariants. There
fore, existing tools for the analysis of non-probabilistic systems can be used. We
have checked the invariants with the tool SM V. The probabilistic analysis is con
centrated in the simulation relations between between J and A and between A and
S. Since these automata are small, this is not so difficult any more.

Furthermore, we have proven inclusion of fair behaviour - technically: fair trace
distribution inclusion - between the protocol specification P and the high level
specification S. Therefore, we have developed a result that reduces reasoning about
fair probabilistic executions to reasoning about fairness of (non-probabilistic) exe
cutions.

This report is organized as follows. Section 2 recalls some probability theory
and Section 3 introduces the probabilistic automaton model. Section 4 provides au
tomaton models of the implementation and the specifications of the root contention
protocol. Then Sections 6 and 7 proves the simulation relations. Finally section 8
presents the conclusions and some topics for future research.

2 P ro b ab ility th eo ry
This section recalls some probability theory. We denote the set R U {oo} by [0, oo].

Sum m ation over index sets

D e fin ition 2.1 Let I be a(n index) set and x¡ € [0, oo] for all i £ 1. Define
by

!• E i€0*i - °;

2. xì — xh + xì2 + x ¡3 + • • • + xì„ , if I is finite, nonempty and 1 =
{ i i , Í2 , ' ¿ 3 , ■ ■ ■ , i n };

3. J 2 ie ixì = suPr{S *G l7 xi I is finite }, if 1 is infinite.

Here suprX denotes the supremum, i.e. the smallest upper bound, of the set
X . Notice that that x* = x% because the summation order is irrelevant,
due to the fact that Xi > 0.

Fact 2.2 Let ... be sets, 1 = U „gn 1-n and, X i £ [0, oo] for all i € 2 .

2

1. then £ ¿gIi X i < '£ i€x2 x¡>’

2. I f h Ç l 2Ç l3, . . . , then]T\GI xH = lini,, , x E * Gx„ XH

3. I f I i , I 2, Î 3 , • • • are pairwise disjoint, then = X ^ gn E ¿ gx„ x%-

Fact 2.3 Let 1 be a set, Xi € [0, oo] for all i £ 1 and J2 ie iXi < 00• Then the set
{x i € [0, oo] I x, > i (r 1 } is finite for every e > 0 and {x i € [0, oo] | x¿ > 0, z € 1 }
is countable.

P ro b a b ility spaces and d istribu tions

D e fin ition 2.4 A probability space is a triple (O, T , P), where

• O is a set, called the sample space,

• T Ç 2fi is a-field, i.e. a collection of subsets of O which is closed under
countable1 union and complement and which contains O,

• P : T —¥ [0,1] is a probability measure on T , which means that P [0] = 1 and
for any countable collection {C ¿}¿ of pairwise disjoint subsets in T we have
P [U i Ci] = E « P P i] .

If {ar} € T then we write P[x] for P [{x }]. If V is a probability space, we denote its
sample space by O-p, its <r-field by T-p and its probability measure by P -p.

D efin ition 2.5 A probability distribution (function) over a set X is a function
ß : X [0,1] such that

^ x) = L
xex

Define the support of ß by supp(p) = {x € X | ¿¿(x) > 0}. B y fact 2.3 this is a
countable set. We denote the set of all probability distributions over X by II(X) .

R em ark 2.6 A probability space (0 ,.F , P) is discrete if T = 2fi and P [C] =
E æGC,P[a;], for all C Ç Q. A discrete probability space (0 ,.F , P) determines
a unique probability distribution ƒ : Q [0,1] by f (x) = P[x]. Conversely, a
probability distribution ƒ determines a unique discrete probability space: take
O = X , T = 2fi and P [C] = X ^ Go f (x) f ° r C Ç Q.

We denote a (probability distribution) function ƒ on a countable domain by-
enumerating it as a set of pairs. So, if Dom (/) = {x\,x 2 • • • } then denote ƒ by
{x\ i—>- f (x i) ,X 2 f (x 2) . . . }. If the domain of ƒ is known, then we often leave
out elements of probability zero. For instance, the probability distribution assigning
probability one to an element 1 € X is denoted by {x 1—>■ 1}, irrespective of X . Such
distribution is called the Dirac distribution over x. The uniform distribution over a
finite set, say {x \ ,... ,xn}, is given by {x\ ... , xn ^ }.

D e fin ition 2.7 Let X and Y be sets. If ß € n (X) and v € 11(F) then the product
ß x v : X x Y —¥ [0,1] defined by

(ß x p)(x ,y) = ß (x)-p (y)

is a probability distribution over X x Y .

1In our terminology, countable objects include finite ones.

3

The operation above can also be defined for general probability spaces by a more
complex definition, see [Seg95].

D efin ition 2.8 Let V = (O, T, P) be a probability distribution, Q' a set and ƒ :
0 —¥ 0 ' be a function. Define the image space o fV under ƒ , notation f* (V), as the
triple consisting of

1. /(Q);

2. { X G 2 f W I f - H X) G Q-p};

3. P o / - 1.

It is not difficult to show that f*(V) is a probability space indeed. If V is discrete,
then so is f* (V). We write f*(p) to indicate the distribution function associated to
f*('Pß), where V ß is the distribution function associated to p.

Lem m a 2.9 The operations » and o commute, that is (t?° ƒ)„ = o ƒ» for all
functions ƒ : X Y and g : Y Z.

The below definition gives two formulations for choosing a probability space
with a certain probability.

D e fin ition 2.10 1. If is a collection of reals in [0,1] such that = 1
and ß i G n (X j) for all i G 1 , then x J 2 i P i ' ß i (x) is a probability space
over LJ, X j.

2. Let X be a set and p G I I (I I (X)) . Then p induces a probability distribution
P f on X , given by

p F (x) = ß (v) - H x)-
ren(x)

for all x G X . We call pp the fold of p. The idea is that pp chooses between
all probability distributions the distribution v with probability p (v) and then
elements x of X with probability v (x) .

Exam p le 2.11 Let x,y,z denote different elements.

1. If ƒ : {x ,y } -¥ Y for some set Y , then

f (jx _► 1 y 2 = Í {ƒ(*) ^ !} if ƒ(*) = f(y)’
* 3’ 3 \ {/ (x) i-+ \ , f (y) • y § } otherwise;

2. {x i-+ i ,y ^ r § } x { i n I ,zh+ \ } = {(x ,x) n | , (x,z) n \ ,{y ,x) •-+ §,
(v,z) ^

3. If p {x | , y §} = | and p {x | , z | } = then

/ J F = | - { x h | | , | ; h | } + | - { x h } Ì , 2 k | }
= {x n ^ , y | } .

3 P robab ilis tic p robab ilistic au to m ata
This section introduces probabilistic automata and their behaviour. Most of the
concepts in 3.1 and 3 .2 have been taken over from [Seg95]. However, we have
reformulated their definitions to a form that we believe is more readable.

4

3.1 The m odel
D efin ition 3.1 A probabilistic automaton A consists of five components:

1. a set states a of states;

2. a nonempty set startAÇstatesA of start states;

3. an action signature sigA = (ext a , intA), consisting of external and internal
actions respectively. Then define the set of actions as actA — ext a U intA',

4. a transition relation transAÇstatesA x actA x I I (statesa)- We write s ß
if (s ,a ,ß) € trans a ',

5. a task partition tasks a , which is a partial equivalence relation over actA with
countably many equivalence classes.

Sometimes, a more general definition of probabilistic automata is given by having
transAÇstatesA x 11(actA x states a)- In this context the probabilistic automata
from the definition are called simple probabilistic automata.

D e fin ition 3.2 Let A be a probabilistic automaton. The automaton A~, the non-
probabilistic variant of A, which behaves like A but discards all probabilistic infor
mation, is defined by

1. states a - = states a ',

2. start a - — start a ;

3. sigA- = sigA;

4. trans a - — {s -*a - s' \Bß £ H(statesA)[s ß A ß(s') > 0};

5. tasks a - — tasks a -

D efin ition 3.3 For a probabilistic automaton A define reach a , the set of reachable
states of A, by reach a = reach a - ■

D efin ition 3.4 Let A be a probabilistic automaton and X Ç ext a - The restriction
of A to X , notation . 1 | \ . is defined by

1. states a \x — states a ;

2 . start a \x = startA',

3. sigA tx = (x > actA \ X) ;

4. trans a \x = trans a ',

5. tasks a \x — tasks a -

Fact 3.5 For all probabilistic automata A and XCextA we have A~ fx = (-4 \x)^ ■

D efin ition 3.6 Let A± and A2 be two probabilistic automata.

1. Then A± and A 2 are com,pa,tibie if

(a) intA, H actA2 = 0> actA, H intA2 = 0 and

5

(b) for all Ci £ tasks a 1, C2 £ t a s k s a 2, either C± fl C2 = 0 or C± = C2.

2. For A i and A 2 compatible define the parallel composition of A± and A2, no
tation A i II A2, by

(a) states a , \ \ a 2 = s t a t e s a ¡ x states a 2 ',

(b) startAt\\A2 = start a , x starta 2]
(c) sigA l\\A2 = (extAl U extA2,intAl U intA2);
(d) t r a n s a t \ \ a 2 is t h e set of triples ((s i , s 2) , a , ß i x ß 2) such that for i = 1,2,

if a £ a c t A i then (S i , a , ß i) £ t r a n s a , , otherwise ß i = { « , 1};
(e) tasks a ¡\\ a 2 = tasks a 1 U t a s k s a 2 -

Informally, two probabilistic automata synchronize on their common actions and
evolve independently on others. Whenever synchronization occurs, the state reached
is obtained by choosing a state independently for both probabilistic automata. See
Remark 3.24 for a comment on the treatment of task partitions.

3.2 The behaviour of probabilistic autom ata
D efin ition 3.7 An execution (execution fragment, trace) of a probabilistic automa
ton A is an execution (execution fragment, trace) of A~. The set of executions
(execution fragments, traces) and finite executions (execution fragments, traces)
of A are respectively denoted by execs (A) (frags (A), traces (A)) and by execs*(A)
(frags*(A), traces* (A)).

An execution fragment is the result of resolving both probabilistic and nonde-
terministic choices. A probabilistic execution fragment only resolves the nondeter-
ministic choices. In any state of the probabilistic execution fragment, we choose
probabilistically between the enabled transitions. We choose Ö to obtain a finite ex
ecution (with some probability). Each of these executions lead to a Markov chain,
which allows us to compute the probabilities on the behaviour obtained by the
specific choice of resolving the nondeterminism.

D e fin ition 3.8 A probabilistic execution fragment E of a probabilistic automaton
A consists of three components.

1. A state space statesEÇfrags*(A) U frags*(A)-ö;

2. A start state s t a r t e £ s t a t e s e H frags* (A);

3. A transition function t r a n s e '■ s t a t e s e n (s t a t e s e) such that

(a) for all a £ s t a t e s e H frags* (A) there is a ßa £ H(transA(last(a)) U {$ })
satisfying

t r a n s e (ce) (c eö) = ß a (S) ,

trans e (a.) (aas) = H pa (a ,v)-v(s)
v : (la s t (a) ,a ,i/)E tra n s A

(b) and for all a £ s t a t e s e H f r a g s * (A)-5

t r a n s e (ce) (a) = 1.

6

Here trans a {ì) denotes {(a , v) | (t ,a ,v) £ trans a }- Notice that trans e (ce)
indeed is a probability distribution over statese - The idea is that ßa chooses
probabilistically between all transitions starting from last (a) and Ö. Further
more, we require that every state in statese is reachable from starte via the
relation { (a , a ') | trans e (ce) (a ') > 0}.

A probabilistic execution E is a probabilistic execution fragment such that startE £
start a - The set of probabilistic execution (fragments) is denoted by pexecs(A)
(pfrags(A)).

Fact 3.9 1. A probabilistic execution fragment E is a Markov chain over statesE-

2. The state space statesE is countable, due to the reachability condition.

A Markov chain allows us to compute the probability of reaching a state. Hence,
we can compute the probability on (certain) sets of execution fragments, given a
probabilistic execution. The following definition associates a probability space to a
probabilistic execution fragment.

D e fin ition 3.10 The associated probability space E = (SÌe , F e , 'P e) of a proba
bilistic execution fragment E is defined by

1. Ì Ìe is the lim it closure of statesE under the prefix order C;

2. T e is the smallest a-field that subsumes the set { C a | a £ statesE}- Here
Ca is the cone on a, defined by Ca = {ß £ Qe | ct'Cß}]

3. P ß is the unique measure on T e such that P# [(7Q] is the product of the prob
abilities on the (shortest) path starting in the start state of E and leading to a.
S o P £:[C'SoaiSia2...a„ sJ = transe (s o) • transE (s0a1s1) ■ ■ ■ tra,nsE (saa1s1. . .a nsn).

The fact that (H e , F e , 'P e) is well-defined follows from standard measure theory
arguments, see in [Seg95] for a similar case and [Hal50] for a more general treatment.
When no confusion arises, we denote both the probabilistic execution fragment and
its associated probability space by E .

The following definition allows us to compute the probability on (certain) sets
of traces given a probabilistic execution.

D e fin ition 3.11 The trace distribution H of a probabilistic execution fragment E
of A is the probability space given by

1. O h = extA* U extA°°;

2. T h is the smallest a-field that subsumes the set { Ca | a £ ext*(A)}. Now
Ca = { ß £ O f f I aQ ß};

3. P h = P Ë o trace-1, that is P / f[X] = P E [t r a c e - 1 (X) \ for all X £ T h -

The fact that (Ì Ìh , F h , P h) is well-defined follows from the fact that X £ T h = ^
trace-1 (X) £ T e , see [PSL97] and [Hal50]. Notice that the probability space above
is quite similar to the image space trace» (E) , but that it may contain some more
elements, which all have probability zero.

N o ta tio n 3.12 The set of trace distributions of A is denoted by trdistr(A). If
trdistr(A)Ctrdistr(B) then we write A CTD B . It is obvious that CTD is a partial
order.

7

3.3 Step refinem ents and hyperstep refinements
This section introduces two new probabilistic simulation relations, viz. probabilistic
step refinements and probabilistic hyperstep refinements. We show that these are
sound for trace distribution inclusion.2

P ro b ab ilis tic step refinem ents

D e fin ition 3.13 Let A, B be two probabilistic automata with the same external
actions. A probabilistic step refinement is a function r : states a statess such
that:

1. for all s £ startA,r(s) £ starts',

2 . for all s £ reach a , a £ actA,ß £ Ii(statesA) , if s A a ß then either of the
following conditions is met:

(a) r(s) A b r*(ß) or

(b) a £ intA A r(s) i’*(ß) for some a' £ ints or
(c) a £ intA A r» (ß) = {r (s) 1}.

We write A CPgR B if there is a probabilistic step refinement between A and B .
Remark that the third condition is equivalent to a € intA A Vs' £ supp(p)[r(s') =
r(s)].

Exam p le 3.14 The following diagrams illustrate three typical situations that may
occur if r is a probabilistic step refinement from A to B . The transitions on the left
are steps of the probabilistic automaton A, those on the right of B .

Condition 2a. and r(t\) ^ r (i2) 7 ̂r {H) 7̂ r (ti)'-

r(s)
1 -p-g 1 -p-Q

fl 12 ts r (i i) r (t2) r (t3)

Condition 2b., a £ intA, a' £ ints and r(t\) = r (i2) 7^

1 -p-g

ti t2 Í 3

0 ' P+ Q

r (t1) = r (t 2) r(t3)

Condition 2c. and a £ intA-

1 -p-g
r(s) = r (t i) = r(t2) = r (i3)

2 Concerning the terminology, we use the prefix hyper to refer to a probabilistic simulation of
type states a x n(statess). Our simulation relations abstract from internal computation, so one
could could add the adjective “weak” to their names.

8

F a c t 3 .15 I f r is a probabilistic step refinement from A to B then it is a step
refinement from A~ to B ~ and a probabilistic step refinement from A fx to B fx
for all XCextA■

T h e o r e m 3 .1 6 The relation CpsR is a preorder, i.e. it is reflexive and transitive.

PR O O F: Reflexivity is obvious. For transitivity, suppose r is a probabilistic refine
ment from A to B and « is one from B to C. We claim that u o r is a probabilistic
step refinement from A to C. In fact the proof, which is spelled out below, is similar
to the proof of transitivity for non-probabilistic step refinements. We only need that
« » o r, = («o r)» .
c o n d i t io n 1 Obviously, if s £ start a , then (u o r)(s) £ starte■
c o n d i t io n 2 Assume s A a ß- As r is a probabilistic step refinement from A to B
we have the following cases.

1. a £ intA and j*»(m) = { r W ^ !}• Then (u ,o r t)(/i) = « » ({r (s) 1}) =
u *({r(s) 1}) = {« (r (s)) 1};

2. r(s) A b i'*(ß)- As « is a probabilistic step refinement we are in either of the
following cases:

(a) a £ ints and «*(r*(¿¿)) = {« (r (s)) 1}. Then a £ intA by ext a = extß
and (u o r)t (/i) = {« (r (s)) n 1} by « » o r, = « o r. Therefore, « o r is a
probabilistic step refinement from A to C;.

(b) « (r (s)) A c « , (r , (/ i)) . Then (u o r)(s) A c (« or)»(jt¿)) by (« o r), =
u„ o r , and therefore « o r is a probabilistic step refinement from A to
C;

(c) u (r(s)) A c «*(»•*(a*)) and a' £ ints and a" £ into- sim ilarly to the
case above;

3. r(s) r*(¿¿), a £ intA and a' £ ints'- sim ilarly to the above case.

Therefore, « o r is a probabilistic step refinement from A to C. □

P r o b a b i l i s t ic h y p e r s te p r e f in e m e n ts

D e f in it io n 3 .1 7 Let X , Y be sets and R Ç X x 11(F). Define the lifting of R to
n (X) x n (F), notation Ä**, as the set of pairs (ß ,v) £ I Ï (X) x 11(F) such that
there exists a choice function r : supp(p) —¥ II(Y) for R, (i.e. a function such that
(x ,r(x)) £ R for all x £ supp(p)) satisfying

ß(x) • r(x) = v.
x€supp(/i)

The idea is that we can obtain v by choosing the probability distribution r(x),
which should be related to x, with probability ß(x). The above sum is a probability
distribution by Definition 2.10.

F a c t 3 .18 I f R is a function - considered as a set of pairs - then so is Ä», and for
all ß £ n (x)

R**(ß) = ^ ß(x) ■ R (x) = {R (x) i—>- ß(x) I x £ X } F .
xex

9

Exam p le 3.19 Given a probabilistic automaton A and an action a £ actA, we can
lift the relation A over states a xH(statesA) to the relation A » » over I {(states a) x
I I (states a)- For instance, if si A ß i, s2 A ß2 and si 7 ̂s2, then

{s i ^ s2 !->■ | } —>** I • ¡ii + I • ß2.

Intuitively, if «i A /¡i, s2 A ß2 and the probability on being in si is | and on
being in s2 is | , then we choose the next state according to ßi with probability
I and according to ß2 with probability | . If there is another a-transition, say
s2 A v, then we can also choose the next state according to si with probability |
and according to v with probability | . Hence

f 1 91 a 1 ,9{ Sl i y g j S2 i y 3} —►** 3 • ßi + 3 • y-

We do not have

{s i i—y | , s2 i—>- | } —>** I • ß i + I • ß2 + I • v .

Furthermore, if the sequence s i,s 2 , ... is such that s. A»» ßi and s¡ ^ Sj for
i ^ j , then we have that

{ s ¡ n i I j ç N } A » » ^2 w '

*g n

Notice that in fact the tuple (H(statesA), { {« n 1} | s e startA }, sigA, —) is
in fact a non-probabilistic automaton. However, the moves of this automaton do
not coincide with the lifting of the moves of the automaton A.

D efin ition 3.20 Let A, B be two probabilistic automata with the same external
actions. A probabilistic hyperstep refinement is a function R : states a —ï n (statess)
such that:

1. for all s G s t a r t A , R (s) = {s ' 1} for some s' £ s t a r t s ' ,

2 . for all s £ reacliA, a £ actA and ß £ H(statesA), if s A a ß then either of the
following conditions hold

(a) R(s) A b ** R**(ß) or

(b) a £ intA A R (s) R*.r.(ß,) for some a' £ M b or
(c) a £ intA A R (s) =

We write A CPHsr B if there is a probabilistic hyperstep refinement between A and
B .

The idea of the above notion is the following. If s A a ß and R (s) = v, then
the state s £ states a is simulated by the state t £ statess with probability v(t).
Consider case 2a. We require that, for t with v(t) > 0, there is a v't such that
t A s v[and this transition is simulated with probability v(t) too: the requirement
implies v A b ** V , v(t) ■ v't = ÿ by definition of —>■»» . As R is a simulation relation,
ß should be related to t9, which means = t?.

The following theorem establishes some relations between the preorders defined
in this section. It implies that the simulations CpsR and Ep h sr are sound for trace
distribution inclusion. The proof is based on the soundness result for the simulation
relation CPFg from [Seg95], where A CPFg B means that there is a probabilistic
forward simulation from A to B .

10

Theorem 3.21 Let A, B be probabilistic automata with the same external actions.

1- I f A CpsR B then A CPHsr B ;

2. if A CpnsR B then A CPFS B ;

3. if A CpFS B then A CTD B .

3.4 Fairness in probabilistic autom ata
This section introduces notions of fairness for executions, traces, probabilistic exe
cutions and trace distributions. We state a result that concludes inclusion of fair
trace distributions from fair trace inclusion via a probabilistic step refinement.

D e fin ition 3.22 Let A be a (probabilistic) automaton.

1. An execution of A is called (weakly) fair if the following conditions hold for
each class C of tasks a -

(a) if a is finite then none of the actions in C is enabled in the final state of
a;

(b) if a is infinite, then a contains either infinitely many actions from C or
infinitely many occurrences of states in which no action in C is enabled;

2 . a trace of A is fair in A if it is the trace of a fair execution.

The sets of fair executions and fair traces of A are denoted by fexecs (A) and
ftraces(A) respectively.

Lem m a 3.23 Let . 11 .. l j be (probabilistic) automata and let a be an execution of
A i II A 2. I f the projections of a on A and B are both fair, then a is fair.

P ro o f: Let a = «oOi«i • • • = (so,i> «o,2)0-1 («1 ,1 , «1 ,2)0 2 («2 ,1 , «2 ,2)0 3 ... be an exe
cution of A i II A2. Let C be a task class from tasksAt \\A2- Then C € tasksA¡_, for
i = 1 or i = 2 . We prove that a is fair with respect to C by distinguishing between
the following cases.

1. If a is finite, then the projection of a on Ai is finite. Then C is not enabled
in the last state of the projection, so neither is C is enabled in the last state
of a. Therefore, a is fair with respect to C.

2. If a is infinite, then distinguish between two more cases: If the projection of
a to Ai is finite, then let Sk,i be its last state. Then C is not enabled in Sk,i-
The execution a does not contain actions from Ai after s*. More precisely,
an $ actA for n > k. But then Sk,i = sn¿ for all n > k, which implies that C
is disabled in sn for all n > k. So, C is infinitely often disabled. Therefore, a
is fair with respect to C.
If the projection of a to Ai is infinite, then either the projection contains
infinitely many actions in C, in which case a contains infinitely many infinitely
many actions in C, or C is infinitely often disabled in the projection, in which
case it is infinitely often disabled in a. Therefore, a is fair with respect to C.

□

11

R em ark 3.24 The definitions of compatible and of task partition we have given
here induce a notion of fairness which is different from that of literature, see for
example [Lyn96]. In particular, our notion of fairness does not satisfy the properties
with respect to compositionality from literature, viz. the converse of 3.23. However,
Proposition 7.6 shows that the automaton model P of the protocol does meet this
property. The same trivia lly holds for the other automata defined in this report.

Lem m a 3.25 Let E = (Í Íe , F e , P e) be a probabilistic execution of a probabilistic
automaton A. Then fexecs(A) n Í Í e £ F e -

PROOF: Sim ilar to the proof of the corresponding result in [PSL97]. □

D e fin ition 3.26 1. A probabilistic execution E = (0 e , F e , P e) is called fair if
PE[fexecs(A) fi Í Íe] = 1

2. A trace distribution H is called fair if it is the distribution of a fair execution.

N o ta tio n 3.27 The set of fair probabilistic executions of A is denoted by fpexecs(A)
and the set of fair trace distributions by ftrdistr(A). If ftrdistr(A)Cftrdistr(B) then
we write A CFTD B . It is obvious that CFTD is a partial order.

Fairness and p robab ilistic step refinem ents

Lem m a 3.28 Let A and B be probabilistic automata with the same external ac
tions. Let r : states a —*■ states b be a probabilistic step refinement Then r induces a
relation rÇfrags(A) x frags(B) as follows: if a = «oOiSi ■ ■ ■ £ frags A, index(a) is
the index set of a, ß = tobitib2 . . . G frags(B) and index(/3) is the index set of ß,
then a rß holds if and only if there exists a surjective, nondecreasing index mapping
m : index(a) index(/3), such that for all i £ index(a), j £ index(/3),

1. m(0) = 0;

2. r(si) =

3. if i > 0 then either of the following conditions holds

(a) a, = bm(i) A m (i) = m (i — 1) + 1 or
(b) a, G intA A bTO(¿) G intß A rn(ï) = m(i — 1) + 1 or
(c) a, € intA A rn(i) = m(i — 1).

Fact 3.29 For each probabilistic step refinement r, the relation f has the following
properties: For all a £ frags (A) and ß £ frags (B)

1. a rß \nga>\ngß;

2. a rß trace(a) = trace(ß).

C la im 3.30 ([SV99a]) Let A and B be probabilistic automata with the same exter
nal actions and let r : states a —*■ states b be a probabilistic step refinement. Then r
induces a function f : pfrags(A) pfrags(B) with the following properties:

1. For all E £ frags (A), E and r (E) have the same trace distribution;

2. Assume that Va £ frags(A), ß £ frags(B)[a is fair A arß ß is fair].
Then V E £ pfrags(A)[E is fair r (E) is fair].

12

C la im 3.31 ([SV99a]) Let A and B be probabilistic automata with the same exter
nal actions and let r : states a —*■ states b be a probabilistic step refinement.

1. A Çtd B.

2. I f Va € frags (Ä), ß € frags (B) [a is fair A a rß ß is fair], then A CFTD
B .

4 R oot con ten tion in IE E E 1394
The IE E E 1394 protocol is a high performance serial bus protocol, developed for
interconnecting consumer equipment such as PCs, VCRs and CD players. The
lowest level of this protocol runs a phase, called the Tree Identify Phase, which
elects a leader among the components. The leader serves as a bus manager in
subsequent phases of the protocol.

The components and their connections are represented respectively as nodes
and edges in an undirected graph. In the Tree Identify Phase, the protocol checks
whether the graph is a(n undirected) tree and, if so, it identifies a root c.q. leader.
The root is elected by directing all edges of the tree. The nodes, starting with the
leaves, send requests for being a child, that is to direct the edge from the sender
(c.q. child) to the receiver (c.q. parent). Then they wait for acknowledgments.

If all edges but one have been directed, a situation called root contention may
occur. Two nodes are in root contention if they have both sent a request to each
other. In this situation, it is not clear which of them should be the root. At this
moment a part of the protocol is executed which resolves this root contention. The
aim of this paper is to verify this part of IE E E 1394 formally.

Informally, the part of IE E E 1394 [IEE96] that solves root contention is de
scribed as follows. A process in root contention first flips a coin. If head comes up,
then it waits a short time between 0.76 and 0.80ßs (micro seconds). If tail comes
up, then it waits a long time; between 1.60 and 1.64/is 3 Then the processes, re
gardless the values of their coins, check whether input has arrived. If so - then this
can only be a request and the process has not yet sent one - the process sends an
acknowledgment and declares itself root. If no input has arrived, then the process
sends a request itself and waits for reply. If it receives an acknowledgment then it
declares itself child. If it receives a request, - then both processes have sent requests
and are in root contention again - the procedure starts all over again. The delay-
on the communication is 0.22 nano seconds per meter and the communication wires
are at most 16 meter.

Informally, the processes in root contention behave as follows. The protocol
elects the slowest process as root. This is so because the slower process receives a
request before it checks its input and then becomes the root. Therefore, if one of the
processes’ coin flips yields head and the other yields tail, the tail process is elected
as root. If the outcomes of both coin flips are the same then the the processes flip
check input and send requests almost simultaneously. Then they both send and
receive requests, so root contention occurs again. However, it can be the case that
one of the processes is somewhat faster that the other, e.g. if one process takes a
delay of 0.76ßs and the other of 0.80. The the first process receives a request when
checking its input. As it has not sent a request, it becomes the root. Which of
the two scenario’s is actually carried out depends on physical circumstances such
as temperature and processor speed.

The key idea of the protocol is that, eventually the coin flips in both processes
w ill yield a different result with probability one: the probability that the first n

3These figures have been taken from the IEEE 1394a standard [IEE98]; the IEEE 1394 standard
[IEE96] provides respectively 0.26,0.30,0.60 and 0.64[is.

13

coin flips are the same is Therefore, the probability that eventually a root is
elected equals one.

4.1 The probabilistic autom aton specification of root con
tention

This section presents an automaton specification of the root contention protocol in
IE E E 1394. We firstly specify the automaton in precondition-eflfect style and then
we explain the model informally.

Choices in the m odel

As a first approach to IE E E 1394, we use an untimed model, in which the passage
of a time unit time is modeled by a discrete action tick. We observe that the long
delay, between 1.60 and 1.64ßs, is almost twice as long as the short delay, between
0.76 and 0.80ßs. Therefore, we model the short delay as the passage of one time
unit and the long delay as the passage of two time units.

As time is a global notion, which elapses with the same speed for both processes,
the processes should synchronize on tick actions. This approach is similar to the
treatment of time in the timed automaton model from [LV96].

The delay on the communication channels, 0.22 nano seconds per meter is rel
atively small when compared to the delays mentioned above. We model the com
munication between the processes by instantaneous actions.

T h e m odel

As root contention only occurs in two (adjacent) nodes of the network the specifi
cation discards all other nodes and only describes the two processes P\ and P2 in
root contention. The protocol specification P is defined by

P = (P 1 \\ P2) Trooti,roots •

Below the specification of Pi is given in precondition-eflfect style. Let P j be the
other process, i.e. i, j € {1 ,2 },* ^ j . A more intuitive explanation follows.

We define an auxiliary automaton Pfup for technical reasons in the correctness
proof.

I*flip = (- ^ l II -^ 2) fflip1 ,flip2 ,rooti,root2 •

variab les range in itia lly
statusj init, waiting, checked, root, child init
coin¿ head, tail
clockj 0,1,2 ,0 0 0
delay¿ 1,2
in¿ empty, ack, req empty
portj empty, ack, req empty
sentj empty, ack, req empty

The external actions of Pi are flip¿, tick, root,, send,(reg), sendi(ack), sendj(req)
and sendj(ack) and the in te rn a l actions poll_once¿, poll_many¿, child, and retry¿.
The task p a rtitio n consists of two classes, {tick} and {flip,, poll_once¿, poll_many¿,
sendj(reg), sendi(ack), root,, child,, retryj.

14

a c t io n p r e c o n d i t io n e ffec t
flip» statusj = init statusj := waiting

i head £
coinj := < ;

[tail 1
i f coinj = head
then delay j := 1
e lse delays := 2
f i

tick statusj = waiting A
clockj < delay j

clockj := clockj + 1

tick status^ = checked A
in i = empty A
port¿ = empty A
sentj = req

clockj := clockj + 1

tick status^ = rooty
status^ = child

i f clockj < 2
then clockj := clockj + 1
e lse clockj := oo
f i

poll_once¿ status^ = waiting A
clockj = delay i A
in j = empty A
sentj = empty

statusj := checked
inj := port¿
portj := empty

pol Lima ny¿ statusj = checked A
in j = empty A
portj ̂empty A
sentj = req

inj := port¿
portj := empty

sendj(reg) statusj = checked A
inj = empty A
sentj = empty

sentj := req

sendj (ack) statusj = checked A
inj = req A
sentj = empty

sentj := ack

rootj statusj = checked A
sentj = ack

statusj := root

childj statusj = checked A
inj = ack

statusj := child

retry. statusj = checked A
inj = req A
sentj = req

statusj := init
clockj := 0
inj := empty
sentj := empty

sendj(TO) true portj := m

The intuition behind the variables of process F, is the following. The variable
status, reflects the phase in the protocol. It subsequently gets the values init,
waiting, checked, init, waiting, ... , until the process is elected as the root or the
child. This leads to statusj = root or statusj = child respectively. The value waiting
indicates the first phase of the protocol, in which the process waits and checks input;
the value checked indicates the second phase of the protocol, in which the process
reacts on the input. The variable coinj contains the outcome of the last coin flip.
The variable clockj records the number of time units passed since the last initiation
of the protocol (i.e. since the last time that statusj was init). The variable delay¿

15

determines the number of time units, 1 or 2, the process waits after its coin flip,
before checking input. Input messages from P j arrive at P i ’s variable portj. We
may think of the variable in¿ as a internal memory cell in which input is stored. The
variable sent, contains the last message sent since the last initiation of the protocol.

The process F, in root contention starts with coin flipping, taking flip¿. This ac
tion probabilistically chooses the value of coinj, determines the delay corresponding
to the outcome of this coin flip and moves to the next phase (status, := waiting.)
If coin¿ = head, then the process waits a short time unit. Indeed, if coinj = head,
then delay ¿ = 1, so the process takes only one action tick. If coinj = tail, then
delay ¿ = 2, so the process waits two time units, i.e. it takes two actions tick.

Now the process has waited the required amount of time, which means that
clockj = delay j, the process checks whether input has arrived: by taking the action
poll_once¿, it copies the value of the port to the variable in¿. Furthermore, the
process moves to the phase checked.

Now two situations may occur: either the process has received a request , or it
has received no message at all. (An acknowledgment can only arrive if the process
has send a request, which is not the case.) So either in¿ = req, or in¿ = empty.

Case 1: in¿ = empty. As the process has not sent a request itself, it sends an
acknowledgment, by taking sendj(ack). Then it declares itself root, by performing
root*.

Case 2: in¿ = req. As the process has not sent a request yet, it sends one now,
taking sendj (req). Now the process waits for reply. The process polls input until a
message arrive. The polling on input and the arrival of a message are combined in
the action poll-many. However, while waiting for input it may synchronize on an
action tick if no input has come. This only happens if the process’ coin is head an
the other coin is tail.

If the input arrived is a request, then the process has both sent and received
a request. This means that it is in root contention again. The process reruns the
protocol and takes the action retry¿. This action resets the variables. If the input
arrived is an acknowledgment, then P t declares itself child performing childj. When
root or child the process only performs tick actions. In order to keep the model
finite, the variable clock moves to the value oo if more than 2 time units have passed.

5 Stepw ise ab s trac tio n of P
This section defines the automata I , A and S. Sections 6 and 7 prove that these
automata are stepwise abstractions of P : We prove P CTD I CTD A CTD S and
P E f t d I E f t d A Cf td S.

The specification automaton S - the S stands specification - is the most abstract
specification. It expresses leader election for two processes.

The abstract automaton A is derived from S by including a minimal amount
of probabilistic information: it contains one flip action that combines the two flip
actions from P . The automaton J has been derived from A by separating the flip
action from A into two flip actions: one for each process.

5.1 The interm ediate specification
We define an intermediate specification J and an auxiliary automaton I f u p . The
state names in J (and Ifu p) stand for the following. The state init is the ini
tial state and moti means that process i has been elected as the root. The state
(i, outcome) reflects that process i has flipped its coin but that the other process
has not yet flipped it. The field outcome records the result head or tail. The state
(both, outcome) means that both processes have flipped their coins. The second field

16

outcome records again the result which can be same, (both, tail1) or (both,tail2).
The value same means that the results are the same and The value (both, tail•) that
the results are different and that P i ’s coin is tail.

A diagram of the automaton J and a formal definition are given below. All
transitions lead to a uniform distribution over the next states, that is, the transitions
labeled by an action flip¿ choose between the next states with probability The
other transitions choose with probability one.

D e fin ition 5.1 Define the probabilistic automaton Ifu p by:

statesiflip = {in it, (I, head), (I, tail), (2, head), (2, tail),
(both, same), (both, tail1), (both, tail2), rooti, root2 };

startifiir = {in it};

actifl<P = {flipi,flip2) retry, rooti, root2};

intifi,P - {retry};

extifl,P = {flipi,flip2, rooti, root2};

transiflip = { (in it,flip1, {(1, head) \, (I, tail) | }) ,
(init,Wip2, {(2, head) | , (2, tail) 1—>■ | }) ,
((1, ta il),flip2, {(both, same) \, (both, tail1) 1—>■ | }) ,
((1, head),flîp2, {(both, same) \, (both, tail2) 1—>■ | }) ,
((2, ía*/),fl¡p1, {(both, same) \, (both, tail2) | }) ,
((2, head),flïp1, {(both, same) 1—>■ (both, tail 1) | }) ,
((both, tail^ , rooti, {rooti 1 }),
((both, tail2), root2 , {root2 1 }),
((both, same), rooti, {rooti 1 }),
((both, same), root2 , {root2 1 }),
((both, same), retry, {in it 1 })};

tasksiflip = {{flipi,flip2, rooti, root2 , retry}}.

Now define

I = I flip rrooti,root2 •

17

5.2 The abstract specification
The informal meaning of the state names in automaton A is the following. The
state init is the initial state and the state rooti indicates that Pi has been elected as
the root. The other states same, taili, tail2 reflect that both processes have flipped
their coins. In the state same both coin flips have yielded the same result. The
value taili means that the results are different and that process i ’s coin equals tail.

The following diagram gives a graphical representation of A.

D efin ition 5.2 Define the probabilistic automaton A by:

(taih, rooti, {rooti 1 }),
(taih, root2 , { root2 1 }),
(same, rooti, {rooti 1 }) ,
(same, root2 , {root^ 1 }),
(same, retry,{ in it 1 })};

tasks a = { {flipj rooti, root2 , retry}}.

5.3 The specification
The specification of a leader election protocol simply requires that one of the pro
cesses is elected as the leader, here named root. A graphical representation of S is
given by:

init

rooti root2

t ra n s A — { (i n i t , i\\p { t a i l i | , t a ih | ,s a m e ^ })

init

rooti root 2

18

D efin ition 5.3 Define the probabilistic automaton S by:

statess — {in it, rooti, roo¿2 };

starts = {in it};

acts = {rooti, root2};

ints — 0;

exts = {rooti, root2};

transs — { {init, rooti, {rooti 1 }),
(init, root2, {roo i2 i—>■ 1})};

tasks s = {{rooti, root2} } .

6 Trace d is tr ib u tio n inclusion
This section proves the correctness P with respect to S as far as safety properties
concern. We therefore establish the following relations.

la . Pfup- CgR Ifup~, meaning that there is a (non-probabilistic) step refinement
from to Ifup^;

lb . PfUp CpSR I flip-

Then Fact 3.15 implies P CpsR I;

2- I Ephsr A;

3. A CpsR S.

Then P CTD S follows from soundness of CpsR and Cphsrj stated in Theorem
3.21, and from transitivity of CTD.

6.1 The probabilistic step refinement betw een PfHp and Ifiip

This section proves that P CTD J by establishing a probabilistic step refinement r
between Pfup and Ifu p- We firstly present the invariants and we point out how we
checked them with the model checker SM V, then we define the refinement mapping

Invarian ts

D e fin ition 6.1 Define the following abbreviations for i , j £ {1, 2} , i ^ j.

contentioni = (status, = checked A sentj = req A (inj = req V portj = req))
V statusj = init;

waiting i =statusj = waiting;

midphasCi =statusj G {checked, child} A ^contentions

p(ci,c2) = <
same if c± = c2,
tail i if ci ^ c2 A ci = tail,
tail 2 otherwise.

The following lemma formulates the invariants used in the refinement proof.

19

Lem m a 6.2 F o r a l l s £ reachpfl ,i, j £ {1 ,2 },* ^ j

s [=status, = init (waiting j V contention j) ;

s [=sentj = ack ==?• (coinj = tail V coini = coin2);
s |=sentj = ack ==?• midphase •;
s [=inj = ack ==?• port¿ = empty;
s \= (statusj = checked A inj = req A sentj = empty) =̂ >

(portj = empty A inj = empty A statusj = checked);
s \= (statusj = checked A sentj = empty A inj = empty) =̂ >

portj = sentj A portj = empty A inj = empty A

(statusj = checked V statusj = waiting);
s [=senti = req A sent2 = req coini = coin2 ;
s [=sentj = req A port¿ = req statusj = checked.

Checking the invarian ts w ith S M V

The SM V system is a tool for checking finite state systems against specifications in
C TL. The SM V language describes an unlabeled transition system. Basically, SM V
allows one to declare a variable of a certain type and to specify its initial value and
a next-value. The assignments of all variables are performed in parallel. For an
introduction to SM V, the reader is referred to [McM92].

There are a few differences between SM V and automata in precondition-eflfect
style, which prevents immediate encoding of automata in SM V. In order to minimize
the risk of introducing errors, we have followed a structured method of encoding
automata and invariants into SM V. We have takem the following three steps.

wegThe translation in SM V of the automaton P ~ can be found in the appendix.
We have taken the following steps.

1. Unlike a state in an automaton, needs a state in SM V to have a successor.
We therefore add an action skip to the automaton, which leaves the variables
unchanged and which is taken when no other action is enabled. Then these
automata have exactly the same reachable states. The automaton P ~ however
enables at least one action in each reachable state. This is not obvious and
can be checked in SM V, by showing that the disjunction of all preconditions
holds in every reachable state. Although the action skip is superfluous, we
leave it in the SM V encoding, for sake of a systematic translation.

2. For every variable in the automaton, we declare a variable with the same name
in the SM V encoding. In order to simulate the action labels, we operate in
two alternating phases. (This is crucial since an action may specify the next
values of several variables at the time, whereas the next-function in SM V
concerns one variable at the time. We must prevent the translation to update
variable x according to action a and the variable y according to b.) Phase
one nondeterministically chooses one of the enabled actions and phase two
updates the variables according to the chosen action. In order to encode the
set of enabled actions efficiently, we add, for each action a, this action to a
list if it is enabled and if not we add a default action which is enabled. The
latter is necessary to ensure that the list constructed is not empty.

3. The translation of the invariants is obvious. The invariants have the form V« £
r e a c h p V i , j £ {1 ,2 },* ^ j [s \= $ (i , j)] . This leads to the SM V equivalent

20

A G ($ (1 ,2) A $ (2 ,1)). Notice that AG^ft means that holds for all paths, for
all states on the path, which is indeed for all reachable states.

The refinem ent m apping

D e fin ition 6.3 Define the function r : states Pflip- —¥ states¡ - by

/ \ d r(s) =

init if s \= contentioni A contention2;
(1, «.coini) if s \= waiting1 A contention2 ;
(2, s.coin2) if s \= waiting2 A contentioni;
p(s.coini, s.coin2) if s \= (waiting 1 V midphasei)A

(waiting2 V midphase2);
rooti if s |= statusi = root;
root2 otherwise.

Notice that the conditions in the above case distinction are disjoint, so the
refinement r is well-defined.

Lem m a 6.4 The function r is a step refinement from the automaton P f u p~ to

P r o o f : Standard. □

Lem m a 6.5 For all reachable states s ,t i , t2 £ reachP ~, for all i £ {1 ,2 },

flip; flip; , / x , / x« --->p - i i A s --->p- t2 A ti ^ t2 ==$* r (t i) ^ r (t2).

(Notice that ti ^ t2 in this case means ii.co inj ^ i2-coinj J

Lem m a 6.6 The function r is a probabilistic step refinement from P f u p to Ifu p-

P r o o f : Let s £ statespflip.

1. The action flip¿: Let i £ {1 ,2 } and s A p /¡¡r ß £ transpflip. Then there are
t i , t 2 £ statespfiip such that ß = {t i H- \ ,t2 H- | } and í i .coinj ^ Í 2 -coin¿.
Therefore, we have r (t i) ^ r (t2). Then s A p /Iip- ti £ transP -, and
s A P - t2 £ transPfiip- by the definition of Pfi,¡, ■ As flip¿ is an out

put action and r a step refinement, we have r(s) r (t i) € transj -

and r(s) ~ ^ i fiip- r (h) £ trans¡ Then there exist and v2 such that

r(s) ^ - i flip vi £ transIflip- , r (t i) £ s u p p lì) and r(s) v2 £ transIjiip,
r (t2) £ supp(i/2). However, Ifu p enables at most one transition labeled by
flipj from each state and this transition leads to a uniform distribution over
two states. Therefore, v\ = v2 = { r (t i) H- \ ,r (t2) H- | } = r*(¿¿). Then
r (s) Mm);

2. The other transitions. Let s -+pflip ß £ transpflip, a ^ flip1,flip2. Then ß is a
Dirac distribution, say that ß = {t H- 1}. Then we have s A p /Iip- t. As r is
a step refinement we have three cases:

21

(a) s —>PfiiP ß- Then ß = { í H 1} and r(s) —>iflip r(t). Then there is a
v such that r(s) A / /Iip v and r(t) £ supp(i/). As transitions in Ifup
unequal to flip lead to Dirac distributions, we have v = {r (t) i—>■ 1} =
r*(ß). So, r(s) A i fUp r*(ß) £ trans iflip;

(b) a £ intpßip and s -Ap/Iip ß for some a' £ intißip. Then a' ^ flip¿, so we
are in a simular case to the one above;

(c) a £ intpßip and r(s) = r(t). Then r*(¿¿) = r * ({ i 1}) = {r (t) i—>■ 1} =
{r (s) H- 1}.

□

C o ro lla ry 6 .7 E p s r I flip-

C o ro lla ry 6.8 P C psR I-

C o ro lla ry 6.9 P CTd I-

6.2 The probabilistic hyperstep refinement betw een I and A
This section proves J CTD A by estabilishing a probabilistic hyperstep refinement
R between J and A.

D efin itio n 6.10 Define a function R : statesi Ü (statesa) by

R (in it) = {in it 1};
R(\,head) = {ta il2 \,same | } ;
R(2, head) = {ta ili •-+ same | } ;

R (\ ,ta il) = {ta ili \,same | } ;
R(2 ,ta il) = {ta il2 \,same | } ;

R^ o th jta il^ = {ta il 1 1};
R(both, tail2) = {ta il2 1};

R(same) = {same 1};
R(rooti) = {rooti ^ 1};
R(root2) = {root-2 1}-

L em m a 6.11 The function R is a probabilistic hyperstep refinement from I to A.

P r o o f : We prove that R meets the conditions in Definition 3.20.
co n d itio n 1. R (in it) = {in it 1} and init £ startA-
c o n d itio n 2. Let s £ statesi, a £ acti,ß £ II (statesi) such that s A / ß. Let

h j € { 1 , 2 } , i 7̂ j-

1. Consider the transition init {(*, head) | , (i, tail) | } , We have that
R(in it) = {in it 1} and

R r.r.{(i, head) | , (i, tail) | } =
I • R (i, head) + \ • R (i, tail) =
\ -{tailj i—>■ same | } + \ -{taili ^ | , same | } =
{ta ili H- \,taÜ 2 i— |,sam e | } .

And indeed, R (in it) = {in it 1} {ia ili taih same | } .

22

2. Consider the transition (i, tail) — {(both, same) \, (both, tail¿) | } ,fo r
* € {1 ,2 }. W e have R (i, tail) = {ta ili ^ same | } and

R**{(both, same) \ ,(i, tail) | } =

I • R(both, same) + \ ■ R(both, ta il•) =

{sam e | , taili ^ | } =
i?(*, tail).

3. Sim ilarly, one can prove that for the transition (*, head) —% / {(both,, same)
\, (both, taili) ^ è}> R**{(both, same) \, (both, tail•) | } = R (i, head).

4. The transition (both, same) 1}. W e have that R(both, same) =
{same 1} {in it i—>■ 1} = 1 • R(in it) = R»»{in it 1}.

5. The transitions s .— -1»/ {rooti ^ 1}, for s € {(both, ta il•), (both, same)} and
i € {1 ,2 }. W e have that R (s) = {s 1} r00t‘>A** {root, ->1} = 1 • R(rooti) =
R*r.{rooti H- 1}.

□

C oro llary 6 .1 2 I C td • 1.

6.3 The probabilistic step refinement betw een A and S

This section proves A C TD S by establishing a probabilistic step refinement «
between A and S.

D e fin itio n 6 .1 3 Define a function « : states a —*■ statess by

u(init) = init;
u(same) = init;
u (ta ili) = init;
u(tail 2) = in it;
u(rooti) = rooti;
u(root2) = root2 -

L em m a 6 .1 4 The function u is a probabilistic step refinement from A to S.
P r o o f :

c o n d it io n 1 u(init) = init € starts-
c o n d it io n 2

1. Consider the transition init -^>a {ta ili \,taÜ 2 H- |,sam e | } . Then
u(init) = init = u(same) = u (ta ih) = u(tail2), so condition 2b of Defini
tion 3.13 is met.

2. Consider the transition init .>a {in it 1 }.Then «(sam e) = init = u(init),
so condition 2b of Definition 3.13 is met.

3. Consider the transition s .-°°-i>a {rooti ^ 1}, for s € {same, taili}. Then
u(s) .— —>g «»{roo í, i—>- 1} = {u(rooti) 1} = {rooti ^ !}•

□

C oro llary 6 .1 5 A CTD S.

C oro llary 6 .1 6 P CTD S.

23

7 Fair trace distribution inclusion
This section proves that P implements S, i.e. that P C FTD S. W e therefore
establish the following relations.

1- PfUp E f t d I flip, using that the refinement r from Pfi,p to Ifu p preserves
fairness of executions. Then P C FTD J follows because P and Pfup as well as
J and Ifup have the same task partitions;

2. J C FTD A;

3. A Ç Ft d S.

Then P C FTD S follows from transitiv ity of C Ftd-

Fair trace distribution inclusion for P and I
This section proves that P C FTD I by showing that the refinement mapping r
defined in Definition 6.3 from Pfup to Ifu p preserves fairness of executions. Our
first aim is to show that the fa ir traces of P satisfy the properties desired w ith
respect to m odularity, c.f. Rem ark 3.24.

Fair and d iv erg in g e x e c u tio n s in P and

This section proves that the fair executions and the so-called diverging executions
of P and Pi are a ll strongly related. This implies that no “tim e deadlocks” can
appear in P and Pi and that the specification P has the desired properties w ith
respect to the parallel composition.

N o ta t io n 7.1 For i € {1 ,2 }, let C, = {flip,, poll_once¿, poll_many¿, send,(reç), root,,
childj,sendj(ac¿), retry¿}. Then taskspi = {{tick }, C ,} and tasksp = {{tick }, Ci, C2}.
Notice that every action of P is contained in a task class.

An execution of a timed automaton is called diverging if tim e elapses to infinity.
As tim e is modeled by the action tick in P and Pi, we have the following analogy.

D e fin itio n 7 .2 An execution of P , P i or P2 is called diverging if it contains in
fin itely many tick actions.

P r o p o s it io n 7 .3 1. Every reachable state s G P~ enables at least one transi
tion;

2. For all infinite executions a = sod is i... of P - there are infinitely many k ’s
such that

Sk [= (statusi = waiting A clocki = 0 A status2 = waiting A clock2 = 0) V

(status2 = root A status2 = child) V
(statusi = root A statusi = child);

3. For all infinite executions a = sod is i... of P - there are infinitely many k ’s
such that

Sk I (statusi = init V status2 = init V

statusi = root V status2 = root).

24

P r o o f :

1. It has been checked in SM V that the disjunction of the preconditions of all
actions is true in every reachable state of P

2. W e have checked w ith SM V that the formula AG A F ((statusi = waiting A
clocki = 0 A status2 = waiting A clock2 = 0) V (status2 = root A clock2 =
child) V (statusi = root A clocki = child)) holds for the SM V model of P

3. W e have checked that the formula .4G .4F(statusi = init V status2 = init V
statusi = root V status2 = root) holds for the SM V model of P

□

P r o p o s it io n 7 .4 Every fair execution of P i s infinite and diverging.

P r o o f : Let a be a fair execution of P Assume that a is finite. Then the
last state of a enables an action by Proposition 7.3. As this action is in one of
the task classes, a is not fair. Therefore, a is infinite. Then Proposition 7.3-2
implies that the action tick is in fin itely often enabled. Then tick is infinitely often
taken because if tick is enabled, then no other action is enabled. (It is easy to see
that the disjunction of the preconditions of tick and any other actions P is false.)
Therefore, a is diverging. □

P r o p o s it io n 7 .5 Every diverging execution of P C is fair.

P r o o f : It is easy to see that that the disjunction of the preconditions of tick and
any action of C, is false. This means that if tick is enabled, then no action in C, is
enabled. As a diverging execution contains infinitely many ticks, the actions from
Ci are in finitely often disabled. Hence, every diverging execution of P is fair. □

C o ro llary 7 .6 Let a € execs(P). Then the following statements are equivalent.

1. a is fair;

2. a is diverging;

3. The projections of a on P i and P 2 are both diverging;

4- The projections of a on P i and P 2 are both fair.

P r o o f : Proposition 7.4 states that 1 2. The definition of diverging immedi
ately yields 2 3 and 3 4 follows from Proposition 7.5. Proposition 3.23
finally implies 4 1. □

Fair tra ce d is tr ib u tio n in c lu sio n b e tw e e n P and I

Recall that r : statespßip —¥ states^ is the probabilistic step refinement defined in
6.3 and that a probabilistic step refinement induces a relation f according to Lem ma
3.28. Now we prove fair trace distribution inclusion between P and I by showing
that the refinement r preserves fairness of executions.

L em m a 7 .7 The relation rCfrags(Pflip) x frags (Iflip) induced by r is a function.

P r o o f : For s,t € s ta te s there is at most one action a such that s A ¡- t. □

N o ta t io n 7 .8 In the sequel we w rite r (a) = ß for (a ,ß) G f.

25

L em m a 7 .9 The induced function r : states Pflip- —>■ statesIflip- preserves fairness,
i.e. a £ fexecs (Pflip) r (a) £ fexecs (fyip).

P r o o f : It is clear that in the automaton I f u p ~

• all infinite executions are fair and

• a finite execution is fair if and only if its last state is either rooti or root2 ■

Let a = soaiSiü2 S2 • • • be a fair execution of Pfi,¡, ■ Lem m a 7.3 yields that a is
infinite. Consider the following cases.

If there are k, i such that s* | status, = root, then r(sk) = rooti by Definition
6.3. As the state rooti is quiescent in I f u p ~ , r (a) is finite and ends in a quiescent
state, so r (a) is a fair execution.

If, on the contrary, there are no k,i such that s* | status^ = root], then Lem m a
7.3-3 implies that there are infinitely many states sn i, sn2, sn3, . . . such that

snk |= statusi = init V status2 = init.

Let k £ N. As snk only enables the actions fnpx and flip2, we have ank +1 = flip¿,
which means that the action taken by a in the state snk is either flip1 or flip2- As flip¿

is an external action of P f iip- , we have r(snk) - r (snk+1) and therefore
r(snkank+is nk+i) = r(snk)ank+1r(snk+1) = r (s nJf l ip ¿r (s nfc+i). Therefore, r (a)
contains infinitely many flip actions and is therefore infinite, c.q. fair. □

C oro llary 7 .1 0 P fUp CFTD I flip.

C oro llary 7 .11 P C f td I-

Fair trace distribution inclusion for I and A

This section proves that J C FTD A by an ad hoc probabilistic argument. It is left
as a topic for future research to find a proof sim ilar to that of Section 7. The main
part of this research is to define a notion of “preserving fairness of executions” for
probabilistic hyperstep refinements.

L em m a 7 .12 I f H is a fair trace distribution of I , then P H[{i'oot\}] > | and
P H [{root2}] >

P r o o f : Consider a fair probabilistic execution I? of J of a fair trace distribution
H. Then there is a unique ß such that (in it,ß) £ transe ■ As init is not a fair
trace distribution of J , P E[init] = 0, so Ö P¿,. Then there is a p £ [0,1] such that

ß = p-{*n íífl¡p1(l, head) \, ¿n¿íflip1(l, tail) | } +

(1 — p) -{*n*iflip2(2, head) i—>■ \, ¿n¿íflíp2(2, tail) | } .

case 1: p ^ 0,1 . Then there is a unique v\ such that (¿n¿íflip1 (1, tail), v{) £ transe ■
B y fairness of E , P^ [¿n ¿íflip 1(l, tail)] = 0, so 5 supp(i/i). Then

v\ = {¿n¿íflip1(l, tail)Wip2(both, tail1) i—>■ | ,
¿m ífl¡p1(l , tail)Wip2(both, same) | } .

26

Again by fairness, the set transe contains the tuple (¿n¿íflip1(l, tail)i\\p2(both, tail1),
{¿n¿íflip1(l , tail)Wip2(both, tailj) rooti rooti 1 }). Sim ilarly, we have that

(im iflip2(l, head), v2) € transe ,
where v2 = {*m ífl¡p2(l , Aead)fl¡p1(6oíA, tail1) i—>■

¿n¿íflip2(l, Aead)flip1(6oift, same) |}a n d
(m ¿íflip2(2, Aead)flip1 (both, tail1),

{¿n¿íflip2(2, Aead)flip1(6oíA, ía ¿l1)roo tiroo íi i—>■ 1 }) € transE■

Then

Piï[C-róitflip1(l,tod)flip2(6ot/i,toiï1)rootirooti] — P' 2 ' 2
Piï[Ci»itflip2(2,/ieod)flip1(6ot/i,tod1)rootirooti] (1 — P) ' 2 ’ 2

case 2: p = l.Then there is a unique ^ such that (¿m ífl¡p1(l, tail), v) € transE• By
fairness of E , Ö supp(i/) so v = {flip2(ôoift, tail^ i—>■ |,flip 2(6oi/i, same) i—>■ | } .
Then

Pi?[Cf'm'iíflip1(l,íai/)flip2(feoí/i,ía'i/1)rootirooíi] 2*2 2 ' 2
Piï[C-róitflip2(2,/ieod)flip1(6ot/i,tod1)rootirooti] — 0 — (1 — P) ' 2 ’ 2

case 3: p = 0. Sim ilarly to the case above one proves

Piï[Ci»itflip1(l,tod)flip2(6ot/i,toiï1)rootirooti] P ' 2 ' 2
Piï[C,TOitflip2(2,/ieod)flip1(6ot/i,tod1)rootirooti] — (1 — P) ' 2 ’ 2

Now, let i f be the trace distribution of E . Then

P H [rooti] =

P E[traces-1 {rooti}] >

P /.'[^Vyu/fííp (l,to d)f lip 2(6ot/i,toiï1)ro o tiroot1 U

^ '¿m iflip2(2,/ieari)flip1 rooti ro o ii]

P f i [C in itf lip j (1, tod)flip2 (both, tail j) rooti rooti] I

P i í [C ¿ í } ¿ í f l ip 2 (2,/ieod)flip1 (both,tail rooti ro o ti] —

p - | ' è + (1 ^ p) ' è ' è =

Sim ilarly one proves P ff[ro o Í2] > j- □

Lem m a 7.13 /ƒ H is a fair trace distribution of I , then P H[{i'ooti}] > | and
P H [{root2}] > | .

P r o o f : Consider a fair probabilistic execution I? of J of a fa ir trace distri
bution H . G iven a state a € statesE, let ßa be a probability distribution in
I l (transA(last(a)) U {$ }) as in Definition 3.8. W e have init € statesE■ Consider
transE(init). As init is not a fair execution of J , we have P e [iîî! î] = 0 and there
fore ßinit(S) = 0. W rite

P = ßmit (init —^ {¿n ¿íflip1(l , head) | , ¿n¿íflip1(l , tail) i—>■ | }

27

Assume p ^ 0,1. Then

trans e (init) (initftip^l, head)) =p-\
transE (init) (¿n¿íflip1(l , tail)) = p- \
trans e (init) (inití\lp2(2, head)) = (1 - p) -\
transE (init) (inití\¡p2(2, tail)) = (1 -p) -\

Let a = ¿m ífl¡p1(l , tail), initflip2(2, head). Then a € statesE and ßa (5) = 0 by fair
ness. As (l, ta,il) and (2, head,) enable one transition, viz. (I , ta,il) {(both, ta,il
i—>■ \, (both, same) | } and (I , tail) {(bothjtail^ \, (both, H >)|}, we have

íranss(¿n¿íflip1(l, ía ¿l))(¿n ¿íflip 1(l, ía¿/)flip2(óoíft, tail1)) = |

íranss(m ¿íflip2(2, head))(initflip2(2, Aead)flip1(6oiA, tail1)) = | .

Again fairness and the fact that the state (both, tail1) enables only one transition
yield

transE(initflïp1 (1, tail)Wip2(both, tail1))

(¿m ífl¡p1(l , tail)W\p2(both, tail^rootirooti) = 1
transE(inití\¡p2(2, Aead)flip1(6oíA, tail1))

(¿n¿íflip2(2, Aead)flip1(6oíA, ía ¿l1)ro o tiro o íi) = 1.

From the above equations it follows im m ediately that

Piï[C i»itflip1(l,tod)flip2(6ot/i,toiï1)rootirooti] P ' 2 ' 2 ' 1
P iï[C ,TOitflip2(2,/ieod)flip1(6ot/i,tod1)rootirooti] — (1 — P) ' 2 ' 2 ' !•

For p = 0,1 an even simpler calculation proves the above equation. Now, as H is
the trace distribution of E , we have

P H [rooti] =

P E[traces-1 {rooti}] >

P l- \ (’ nu/ïï ïpx(l,ia.'i/)flip2(feoi/i,ia.'i/1)ro o tirooti ^

^ in iti\ ip 2(2 :head)i\ip1(both:ta il1)rootirooti\

1 ? E [C'initf\ip1 (1 ,iai/)flip2 (both, taif^) rooti rooti]

P E ^ in i t iW p2 (2,/?,ea.(i)fIip1 (both^tail^rooti ro o tii

p - | - | + (i — =
1
4 ’

Sim ilarly one proves Pn[root2] > | . □

L em m a 7 .1 4 I f H is a fair trace distribution of I , then P n [{ro o t i, root2}] = 1.

P r o o f :

28

Let L and R be the sets of execution fragments of I defined by:

L = {inití\\p1(í,head)í\\p2(both, same)retry,
¿n¿íflip1(l, tail)Wip2(both, same)retry,
initflip2(2, Aead)flip1(6oift, same)retry,
initWip2(2, tail^Wp^both, same)retry}

R = {initi\\p1(l,head)i\\p2(both, tail2)xooX2root2,
init f I i p1 (1, head) f I i p2 same root2 root2,
init f I i p1 (1, head) f I i p2 same rooti root i ,
¿m ífl¡P i(l, tail)Wip2(both, tail^rooXirooti,
init f I i Pi (1, tail) f Ii p2 same root2 root2,
¿n ííflip i (1, ía¿/)flip2 same rooti rooti,
initflip2(2, Aead)flipi(6oiA, tail 1)rooti rooti,
initWip2(2, head)i\\p1samerootirooti,
init f I i p2 (2, head) flîp i same root2 root2,
initWip2(2, ía¿l)flipi(6oí/i, tail2)rooX2root2,
initW\p2 (2, tail)flip i sameroot2 root2,
initW\p2 (2, ía¿/)flip1 same rooti ro o ii}

Then it is easy to see that the fair executions of I - are given by

fexecs (I -) = L* ■ R U L ° ° .

Now, let E be a probabilistic execution of J w ith trace distribution H. It follows
by induction that 0 < P^ [U ^ gl» Cß] < for a ll n £ N. Then

P ^ [L °°] = P ^ [n „GNU^GL" Cß] = lim P^ [U ^ GL" Cß] = 0
n—>oo

and therefore,

P e [{ rooti, root2}] > P E [L* ■ R] = P E [L* ■ R U L ° °] = P E [fexecs(/ ")] = 1.

□

Lem m a 7.15 I C f td • 1.

P r o o f : Let H be a fair trace distribution of I. Then Pn [{roo ti, root2}] = 1 and
Pn [{ro o ti}] > | , say p = Pn [{ro o ti}] — The diagram below represents a fair
probabilistic execution of A w ith trace distribution H.

init

So H £ ftrdistr(A). □

29

This section proves that A implements S by an ad hoc probabilistic argument.
Notice that A~ 2 f td S~, which means that the probabilistic nature of the protocol
is crucial for fairness (c.q. liveness).

L em m a 7 .16 A CpxD S.

PRO O F: Firstly , we prove that Pn [{roo ti, root?}] = 1 for a ll fair trace distributions
H of A. Let H be a fair trace distribution in A and let I? be a fair probabilistic
execution w ith trace distribution H. W e show that P # [fexecs(̂ 4-)] = 1. F irstly ,
define

L = inití\\psameretry ;

R ={initf\iptaihrootirooti,
{ initWipsamerooti rooti,
{ init f I i p tail 2 root2 root2,
{ init f I i p same root2 root 2 }.

Then, sim ilarly to the proof of Lem m a 7.14, we have

fexecs(A-) = L *-Rö L ° ° .

Furtherm ore,

P ^ [L °°] = P ß [n „GN CLn] = lim P E [CLn] = 0,
n—>00

because 0 < P e [Cl "} < for a ll n. So,

P e [L*-R] = 1

and as all these probabilistic executions have trace rooti or root2 ,

Pn [{roo ti, root2}] = P E[trace-1 {rooti, root2}] > P e [L*-R] = 1.

Therefore, Pn [{roo ti, root2}] = 1. Now, let Pn[rooti] = p. Then

Fair trace distribution inclusion for A and S

init

represents a fair probabilistic execution of S w ith trace distribution H . So H G
ftrdistr(S). □

C oro llary 7 .1 7 F C F t d S.

8 Conclusions and further research
The main result established in this paper is that the root contention subprotocol in
IE E E 1394 is correct in a model that abstracts from real-tim e aspects. The formal
verification carried out in the probabilistic automaton model model from [Seg95]
was not too complex. Actually, most of the work concerned the analysis of non-
probabilistic aspect of the protocol. A sim ilar conclusion was drawn in [PSL97] for
the verification of the Aspnes and H erlidy protocol.

30

As a first approach to this protocol, we have verified the protocol in an discrete
tim e model. A follow-up of this study, dealing w ith real-tim e is reported in [SV99b].
In fact, we have modeled a discrete tim e model, where tim e can have integer values,
into a untimed model using an action tick. As tick is neither an input not an output
action, we dropped distinction between input and output actions and only distin
guish between internal and external actions. The notion of parallel composition
therefore becomes more general but also somewhat artificial. However, the absence
of tim e allowed us to use tools for untimed systems.

W e have introduced several techniques and strategies to make the verification
easier, which can be useful in the analysis of other realistic protocols and algorithms.
Some of these techniques give rise to new questions and topics for future research.

1. W ith in our verification, we introduced two interm ediate autom ata between the
specification and the implementation. This allowed a separation of concern
and the use of existing tools for the analysis of non-probabilistic systems.
The actual probabilistic verification was carried out on an automaton w ith
less than ten states. Furtherm ore, we introduced two probabilistic simulation
relations. These are less general than the simulation relations from [SL95] but
they simplified the verification to a large extend.

2. W e have proven a result that reduces reasoning about fair probabilistic exe
cutions to reasoning about fairness of (non-probabilistic) executions. W e are
aiming at a more general result that relates probabilistic execution properties
(such as fairness) to execution properties v ia probabilistic step refinements
and probabilistic hyperstep refinements.

3. W e have described a method for encoding finite I/O autom ata in precondition
effect-style and invariant properties into the SM V input language. It would be
desirable to describe this relation more form ally and to prove the claims made
in this report more formally. Moreover, such a rigorous description would
be a first step to an autom atic translation from the 10A language [GLV97],
which is a form al syntax for I/O autom ata in precondition-effect style, to
SM V . Although IO A-to-PVS, IOA-to-Larch and IOA-to-Spin compilers are
currently being constructed, an IO A-to-SM V compiler is still useful because
SM V is easy-to-use model checker, whereas P V S and Larch are interactive
proof tools.

Another interesting topic for future research would be to use tools in the veri
fication of the probabilistic aspects of the protocol as well. Furtherm ore, it should
not be to difficult to do some performance analysis, for instance one could calculate
upper and lower bounds on the expected number of ticks before a leader is elected.

A ck n o w led g m en ts

Thanks to Ju d i Rom ijn and to David Griffioen for their useful comments on earlier
versions of the specification and to M arco Devillers for an introduction to SM V .

References
[Agg94] S. Aggarwal. Tim e optim al self-stabilizing spanning tree algorithms.

M aster’s thesis, Departm ent of E lectrica l Engineering and Computer
Science, Massachusetts Institute of Technology, M ay 1994. Available as
Technical Report M IT/LC S/TR-632 .

31

[GLV97]

[Hal50]

[IEE96]

[IEE98]

[Lut97]

[LV96]

[Lyn96]

[McM92]

[PSL97]

[Seg95]

[Sha98]

[SL95]

[DGRV97]

[SV99a]

M .C .A . Devillers, W .O .D . Griffioen, J.M .T Rom ijn, and F .W . Vaan
drager. Verification of a leader election protocol — form al methods ap
plied to IE E E 1394. Technical Report CSI-R9728, Computing Science
Institute, Un iversity of Nijmegen, December 1997. Subm itted.

S .J. Garland, N .A . Lynch, and M . Vaziri. IO A : A lan
guage for specifiying, programming, and validating dis
tributed systems, September 1997. Available through U R L
h ttp :/ / la r c h . le s .m it . edu: 8001/~garland/ioaLanguage.htm l.

P .R . Halmos. Measure Theory. Van Nostrand Reinhold Company Inc,
New York, 1950.

IE E E Computer Society. IE E E Standard for a High Perform ance Serial
Bus. Std 1394-1995, August 1996.

IE E E Computer Society. P 1394a D raft Standard for a High Perform ance
Serial Bus (Supplem ent). D raft 2.0, M arch 1998.

S.P. Lu ttik . Description and form al specification of the Link layer of
P1394. In I. Lovrek, editor, Proceedings of the 2nd International Work
shop on Applied Formal Methods in System Design, Zagreb, pages 43-56,
1997. Also available as Report SEN-R9706, C W I, Amsterdam. See U R L
h ttp : / / tw ¥ .c w i,n l/ ~ lu tt ik / .

N .A . Lynch and F .W . Vaandrager. Forward and backward simulations,
II: Timing-based systems. Information and Computation, 128(1): 1—25,
Ju ly 1996.

N .A . Lynch. Distributed Algorithms. Morgan Kaufm ann Publishers,
Inc., San Fransisco, California, 1996.

K .L . M cM illan . The smv system, draft, February 1992. Available
through U R L http://w w w .cs.cm u.edu/~m odelcheck/sm v.htm l.

A. Pogosyants, R . Segala, and N .A . Lynch. Verification of the ran
domized consensus algorithm of Aspnes and Herlihy: a case study. In
M . M avronicolas and Ph . Tsigas, editors, Proceedings of 11th Interna
tional Workshop on Distributed Algorithms (W D A G ’97), Saarbrücken,
Germany, September 1997, volume 1320 of Lecture Notes in Computer
Science, pages 111-125. Springer-Verlag, 1997. Also, Technical Memo
M IT/LC S/TM -555, Laboratory for Computer Science, Massachusetts
Institute of Technology.

R . Segala. Modeling and Verification of Randomized Distributed Real
Time Systems. PhD thesis, Departm ent of E lectrica l Engineering and
Computer Science, Massachusetts Institute of Technology, June 1995.
Available as Technical Report M IT/LC S/TR-676 .

C. Shankland. The Tree Identify Protocol of I E E E 1394, pages 299-319.
Stichting Mathem atisch Centrum, 1998.

R . Segala and N .A . Lynch. Probab ilistic simulations for probabilistic
processes. Nordic Journal of Computing, 2(2):250-273, 1995.

M .I.A . Stoelinga and F .W . Vaandrager. Gam bling together in Monte
Carlo: Step refinements for probabilistic autom ata. Report CSI-R99xx,
Computing Science Institute, University of Nijmegen, Nijmegen, 1999.
To appear.

32

http://www.cs.cmu.edu/~modelcheck/smv.html

[SV99b] M .LA . Stoelinga and F .W . Vaandrager. Root contention in IE E E
1394. Report CSI-R9905, Computing Science Institute, University of
Nijmegen, Nijmegen, 1999.

33

