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Consistent solution rules for standard tree enterprises

J.R.G. van Gellekom and J.A.M. Potters

A b s t r a c t

This paper studies solution concepts for the  problem of cost sharing on a fixed 
tree w ith costs on the edges. A list of properties of solution rules is introduced 
of which the most im portant one is ‘ «/-consistency’. A one-param eter family o a 
(a € [0,1]) of solution rules satisfying ‘«/-consistency’ is characterized. For every 
tree, a related TU-game is defined. It appears th a t the reduced situation w.r.t. 
‘«/-consistency’ coincides w ith the reduced game introduced by Davis-Maschler 
(1965). The solution rule oa coincides w ith the  nucleolus if a  = 1 and w ith the 
constrained egalitarian solution introduced by D u tta  and Ray (1989) if a  = 0.
The rules o a are core selectors for all a € [0,1] and they satisfy population 
monotonicity.

1 Introduction
Consider the following situation: a network of cables connects a number of villages 
with a central supplier. Some villages are directly connected to  the supplier, other via 
other villages. The positions of the cables are fixed and the cables have maintenance 
costs which have to  be divided among the inhabitants of the villages. The question 
is how to divide them  in a ‘fair’ way. This situation can be modeled with a ‘standard 
tree enterprise’: the villages are represented by the nodes of the tree, the cables by 
the edges and the central supplier is situated in the root.

Several solution concepts for the problem of cost allocation on a fixed tree have 
been studied in the literature (Megiddo (1978), Galil (1980), Granot et al. (1996)) 
and also the special case th a t the tree is a chain (airport problem, Littlechild (1974), 
Littlechild and Thompson (1977), Dubey (1982)). In most papers solution rules are 
not defined on a tree, but on the related ‘tree game’ (N, C),  a concave game, in which 
C(S)  is equal to  the minimal to tal costs of the edges necessary to  connect all members 
of S  with the root.

Potters and Sudholter (1995) have studied a consistency property of solution rules, 
‘^-consistency’, on the class of airport problems. The idea of ^-consistency is the 
following: suppose th a t inhabitant i leaves after paying his amount <7, according to  a 
solution rule a. The costs of the tree are decreased by subtracting this amount from 
the costs on the edges of the (unique) path from the village where i lives towards 
the root of the tree. First the costs of the edge closest to  the village where i lives 
are decreased until <7, is subtracted or the costs have become 0. Then the costs of 
the next edge on the path to  the root are decreased and so on. The solution rule a
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satisfies ^-consistency if the remaining players have to  pay the same amount before 
and after the departure of i. In this paper we study a one-parameter family a a 
(a G [0,1]) of solution rules defined on the class of standard tree enterprises, which all 
satisfy V-consistency’. It appears th a t the standard tree game related to  the reduced 
standard tree enterprise coincides with the Davis-Maschler reduced game (1965) of 
the standard tree game related to  the original tree.

The one-parameter family a a coincides, for some a,  with well-known solution 
concepts for standard tree games. For a  = 1 the solution rule a a coincides with 
the nucleolus of the associated standard tree game (Megiddo (1978)) and for a  = 0 
it coincides with the constrained egalitarian solution introduced by D utta  and Ray 
(1989). For all a  G [0,1], a a is an element of the core of the associated standard tree 
game. We show by examples th a t the Shapley value and the r-value do not satisfy 
^-consistency, so they do not belong to  this one-parameter family. Sonmez (1994) 
has shown th a t the nucleolus is population monotonic on the class of airport games, 
but this is not the case on the whole class of concave games. We show th a t the rules 
cra are population monotonic on the class of standard tree games for all a  G [0,1]. In 
particular the nucleolus is population monotonic on the whole class of standard tree 
games (cf. Maschler et al. (1995)).

Section 2 repeats the concept of standard tree enterprise. Section 3 introduces 
properties of solution rules and in Section 4 the solution rules a a are defined. Section
5 studies the solution rules a a, both w.r.t. the properties of Section 3 and w.r.t. 
solution rules on standard tree games. Section 6 shows th a t the solution rules a a are 
the only solution rules on the class of standard tree enterprises satisfying all properties 
defined in Section 3.

2 Preliminaries

D e fin it io n  2 .1 : A standard tree enterprise F := ( ( V ,E ) , r , c , ( N p)pev)  consists of 
the following components:

•  (V, E) is an undirected tree (a tree is a connected graph without cycles) with 
node set (or vertex set) V  and edge set E.  The tree describes the network of 
cables. V  is non-empty and finite,

• r  G V  is a special node called the root (the central supplier is situated here),

• c : E  —¥ R+ is a cost function on the edges of the tree (maintenance costs),

• for every p  G V  there is a finite (possibly empty) set N p (the inhabitants of 
village p)  with the property Np n  N q = 0 Vp, q G V, p  + q.

o

Figure 2.1 gives an example of a standard tree enterprise. Since (V,E) is a tree 
there is, for every p  G V,  exactly one path p 0 = r , p 1, . . .  , p t = p  from the root 
to  p,  such th a t {Pi ,Pi+1 } G E  for all t, with the convention th a t the path consists
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of r  only if p = r .  Define the predecessor of p  G Vr\{ r}  by n(p) := p t_i_. The edge 
{ 7 r(p) ,p}  is denoted by ep and the costs of this edge by cp , hence cp := c({n(p),p}).  
For practical use we define cr := 0. Note th a t the map n  and the set of nodes V  
together determine the structure of the tree.

We define a partial ordering on the set of nodes V  by:

p  < q the (unique) path from the root r  to  q contains p.

A trunk of (V, E)  is a non-empty set of nodes T  C  V  with the property: if p  G T  and 
q < p  then also q G T.  In particular every trunk contains the root r.  Let p  G V.  
The branch ofp ,  B p , is the following subset of V: B p := {q  G V  | p  < q).

For U C  V  define N(U) := {Jp€U N p , the set of players in U (we use this term  
instead of ‘inhabitants’) and n(U) := \N(U)\,  the number of players in U. Further let 
N  := N ( V )  and n := |iV|, the set and the number of players in the tree respectively. 
If there is no node q G V  such th a t n(q) =  p  then p  is called a leaf. If, in addition, 
np = 1 then p  is called a lonely leaf. (We write np instead of n({p}) . )  The costs of 
an arbitrary subset U of nodes are defined by c(U) := ^2p€U cp and the costs of the 
standard tree enterprise by c(F) := c(V).  The problem we consider is how to share 
c(F) among the players. This is in general not immediately clear, as the edges are 
used by different players.

Figure 2.1: Example of a standard tree enterprise. The numbers in the nodes denote 
the numbers of inhabitants. Some nodes can be ordered w.r.t. <,  e.g. r  < p \  < 
P2 ^  Pb, but e.g. P2 and p$ cannot be compared. The nodes P4 , p$ and p g are 
leaves and p?, is the only lonely leaf. The tree can also be described by the map n: 
n(p4) =  ir(p5) =  P 2 ,7 t(P 6 ) =  P 3, t t ( P 2) =  ?r(P3) =  Pi  and n(pt ) =  r.  The set of 
nodes T  = { r , p i , p 2 , p 3 , p 5} is an example of a trunk and BP2 = { p 2 ,P4 ,Pb} is the 
branch of p^.

We only consider the following subset of standard tree enterprises:

T  := {F | cp > 0 Vp G V, n(V)  >  1 and Vp G V  : [n (B p ) =  0 c(Bp ) =  0]}.
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The subset of T  with n  players is denoted by T (n).  The set T  contains standard 
tree enterprises with non-negative costs, such th a t the costs of every branch without 
players is 0. Note th a t empty nodes are allowed and in particular empty leaves. In 
addition, it is allowed to  have players in the root and to  have more than one outgoing 
edge of the root. Let p  G V  with n(p) = r.  The standard tree enterprise with node 
set Bp U { r} is called a component of F. Usually we call elements of T  ‘trees’ for short. 
The set T  is rather large. The reason th a t we have chosen such a large set is tha t 
we stay in this set when we perform some operations on trees, like with ^-consistency 
(see Section 3). The following subset of T  contains trees with strictly positive costs 
on the edges, no empty leaves and no ‘empty villages along the road’. In fact, this is 
the class in which we are interested.

To := {F G T  | Vp G Vr\{ r }  : cp > 0 and [np = 0 =£- \{q G V  | tt(q) =  p}\ > 1]}.

A single valued solution rule on T  is a map a  which assigns to  every F G T  a 
vector <r(F) in RN . The value <7j(F) denotes the amount of money th a t player i has to 
pay. The restriction of <r(F) to  the players in iV\{*} is denoted by <7_,(F). Solution 
rules for cost allocation on a fixed tree can be obtained by considering for every F G T  
a corresponding cost game:

D efin ition  2.2: Let F := ((V ,E ) , r , c , ( N p)pev ) G T. The corresponding standard 
tree game is a pair (N, C ) where the cost function C : 2N R is defined as follows: 
C (S ) is equal to  the minimal to tal costs of the edges necessary to  connect all members 
of S  with the root. o

The proof of the following proposition can be found in Granot et al. (1996). 

P rop osition  2.1: Standard tree games are concave games.

A solution rule on standard tree games can be considered to  be a solution rule 
on T . This paper initially studies solution rules on standard tree enterprises apart 
from standard tree games, although im portant relations will be mentioned. The next 
section introduces a number of properties of solution rules on T . The last property, 
^-consistency, is the most im portant one for this paper.

3 Properties of solution rules on trees
This section introduces properties of solution rules on trees. It will appear th a t the 
properties are not logically independent. Let a  be a single valued solution rule on T. 
Let F := ((V, E ) , r , c , ( N p)p€V) G T.

Efficiency (E f f ) Efficiency means th a t the players pay together exactly the costs of 
the edges: 'E i€N rTi(T ) = c(r ) =  E pev cv

Contraction (Contr) Let p  G Vr\{ r }  such th a t cp = 0. Contraction of edge ep 
means identifying nodes p  and ir(p). A solution rule satisfies Contraction if 
every player has to  pay the same amount before and after the contraction. Note 
th a t contraction of a zero-edge does not influence the related standard tree 
game. Let us give an example:
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Figure 3.1: Example of a contraction: edge eP2 has costs 0. Nodes p \  and P2 are 
contracted to  a new node p r .

Deletion (Del) Let p  G Vr\{ r}  be an empty village ‘along the road’, (i.e. np = 0 and 
|{<7 G V  | 7r (q) = p ) | =  1). Let F ' denote the tree obtained by deleting node p, 
where the cost function c' is given by

c'q '■= c p  +  cq if 7T(q) =  P and c'q := cq otherwise.

The solution rule a  satisfies Deletion if ct(F) =  a(T'). Again (N ,C ) does not 
change. Every game-theoretical solution rule satisfies Contraction and Deletion. 
Figure 3.2 gives an example.

Figure 3.2: Deletion of the empty node p%.

Homogeneity (Horn) A solution a is called Homogeneous if for every A > 0 we have 
<r(F) =  Act(F), where f  := ( ( V ,E) , r ,c ,  (Np)pe\z) and c(e) := Ac(e) Ve G E.  In
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words, if the costs of all edges are multiplied by the same constant A > 0, then 
all coordinates of <r(F) are multiplied by A.

Reasonableness (Reas) The stand alone costs of player i G N p are equal to  sa,(F) := 
qfzpGg, where P  is the path from the root r  to  node p.  Note th a t sa,(F) =  

C(i).  The marginal costs of i, mcj(F), are equal to  mc,(F) =  C(N) —C (N \{ i } ) .  
A solution rule a  is called Reasonable if mc,(F) < <7, (F) < sa, (F) Vi G N.  So 
every player pays at least his marginal costs and at most his stand alone costs. 
In particular <7, (F) =  0 if i G N r because sa, (F) =  mc, (F) =  0 for such a player. 
Milnor (1952) has studied reasonable outcomes for n-person games. Figure 3.3 
gives an example.

Figure 3.3: I f  i G NPl then mc,(F) =  0 and sa,(F) =  10. I f  i G 
amounts are equal to 0 and 17 respectively. Finally if i G N P3 
3, sa,(F) =  13.

Fair ranking (F R ) Fair ranking says th a t players living closer to  the
less than players who live farther away. More precisely, a  satisfies Fair ranking 
if

p < q. i  (r Xp. j  (r Xq ;■ o-j(F) <  CTj(F).

In particular two players living in the same village pay the same (take q = p). 
So Fair ranking implies ‘equal treatm ent of equals’.

Cost-monotonicity ( CostMon) This property says th a t players do not pay less, when 
the costs of an edge are increased. Let p  G Vr\{ r}  such th a t n(B p) > 0. 
Let F' := (V, E , r , c ' ,  (Np)pev)  G T  be the standard tree enterprise obtained by- 
increasing the costs of edge ep by 6 > 0, i.e. c'p := cp + 6 and c'q := cq otherwise. 
A solution a  satisfies Cost-monotonicity if <7,(r') >  <7,(r) for all i G N.

Population-monotonicity (PopMon) This property has to  do with the departure of 
a player without paying. Nobody pays less in the reduced situation. We have 
to  be careful with defining the reduced situation, because if e.g. the player who 
leaves is a lonely leaf with positive marginal costs, then just deleting this player 
from its village gives a tree which is not an element of T . If a player leaves then

NP2 then these 
then mcj(F) =

root pay weakly
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the edges which are not used by the remaining players are no longer needed. 
Therefore we do not only delete a player i from node p.  but we also delete 
the part of the path from p  to  the root r  which is used by player i only. In 
other words, if the marginal costs of player i are 0, then no edges are deleted, 
otherwise the edges who determine the marginal costs are deleted. In this way 
the reduced tree F' is an element of T . For example if the player in p 6 of Figure
3.2 leaves then both edge ePe and eP3 are deleted. The solution rule a  satisfies 
Population-monotonicity if <7j(F) < <7j (F') for all i, j  € N ,  where F' as described 
above and n >  2.

v-Consistency (v-Cons) In the literature several notions of consistency on the class 
of TU-games have been studied. The central idea is th a t a solution rule assigns 
to  a ‘reduced problem’ with less players the restriction of the outcome of the 
original problem. The question is how to define the ‘reduced problem’. For trees 
there are different possibilities. In this paper we study one of the possibilities. 
Let n > 2, p  € V,i  € Np , x  := <7j(F). Suppose th a t player i pays x  and leaves. 
In the reduced situation the remaining maintenance costs c(F) — x  have to  be 
shared among the other players. We want the reduced situation to  be a tree in 
T  which differs from the original one only w.r.t. player i and the costs. To get 
a tree with costs c(F) — x  the amount x  has to  be subtracted somewhere from 
the costs of the edges. As i only uses the edges of the path P  from p  to  the root 
r  it seems natural to subtract x  from the costs of P; i pays only for edges he 
uses. In the case of ^-consistency the costs are subtracted in the following way: 
decrease the costs of the edges of the path P,  starting in p  and going towards 
the root r.  First the costs of the edge closest to  the village where i lives are 
decreased until x  is subtracted or the costs have become 0. Then the costs of 
the next edge on the path to  the root are decreased and so on. Figure 3.4 gives 
an example.

Figure 3.4: Example of ^-consistency: suppose th a t one of the players in p 2) say i, 
leaves and th a t x  := o f  (F) =  9. Then we first subtract 7 from the costs of eP2, which 
becomes 0. The remaining 2 are subtracted from the costs of edge ePl .

Subtracting costs in this way may cause problems, namely if x  < mc, (F) or x  > 
sa,(F). Therefore we assume for v-Consistency th a t a  satisfies Reasonableness.
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The reduced standard tree enterprise with respect to  player i is denoted by F* i 
where x  := <Tj(F). Reasonableness of a  implies th a t F*j f  T . A solution a 
satisfies v-Consistency if V* € N: <7(F*j) =  <7_j(F), where x  := <7j(F). Note 
th a t the reduced tree with respect to  a player in the root is obtained by just 
deleting this player. Let (N, C ) and (N, C) be the standard tree game associated 
with F and F* i respectively. It is not difficult to  show tha t

C(S) =  m in {C 7 (S ), C(S  U { * } )  -  æ j .

So the standard tree game associated with the reduced tree is exactly the 
Davis-Maschler reduced game of the game associated with the original tree. 
The term  V-consistency’ is introduced in Potters and Sudhôlter (1995). The v 
has been chosen because the nucleolus satisfies this kind of consistency. They 
also study another kind of consistency on airport games, which they call i[i- 
consistency’ and which is satisfied by the ‘modified nucleolus’, introduced by 
Sudhôlter (1997). In the case of [¿-consistency, costs are subtracted from the 
path from the root to  the node where a player lives, starting in the root. It can 
be shown th a t there is no solution on T  satisfying [¿-consistency, Reas and FR.

The properties we introduced are not logically independent. We have e.g.

P rop osition  3.1: Let a be a solution rule on T ­

a. I f  a satisfies Reas and v-Cons then a also satisfies Eff.

b I f  a satisfies Contr, Reas, v-Cons and CostMon, then a also satisfies PopMon.

Proof:

a The proof is by induction to  the number of players. Suppose th a t a  satisfies Reas 
and v-Cons.  If n = 1 then c(F) is equal to  the costs of the path from the root 
r  to  the node where the player lives, i.e. c(F) =  sai(F) =  m ci(F). By Reas we 
have m ci(F) < <7i(F) < sai(F). So <7i(F) =  c(F) and efficiency follows.

Now suppose th a t a  is efficient if the number of players is a t most n — 1 (n > 2). 
Take a tree F € T(n).  Choose a player, say i, and let x  := <Tj(F). Applying v- 
Cons with respect to  player i gives a tree F* t with n — 1 players. The induction 
hypothesis together with v-Cons gives

E  CTi(r) =  E  ^•(rîi) = c(rîi) = c(r)-a: = c(r)-<7i(r),
j e N \ i  j e N \ i

from which it follows th a t a  is efficient.

b Suppose th a t a  satisfies Contr, Reas, v-Cons and CostMon. Let T £ T ,  i £ N,  
n >2 .  Player i and some edges, say E',  are deleted giving a tree F '. Note tha t 
E'  = 0 if mcj(F) =  0. Applying v-Cons w.r.t. player i gives a tree F*j. Let 
F" be the tree obtained by deleting E'  from F* Then CostMon, Contr and 
v-Cons give th a t for all j  G Ar\{ i} : <Tj(F') >  <7y(F") =  <7y(r*j) =  <7y(F). □
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The next proposition says th a t a solution rule on T  can be uniquely extended if 
we know it for standard tree enterprises with 1 or 2 players and if it satisfies Reas, 
v-Cons and CostMon. This is im portant for the characterization in Section 6.

P rop osition  3.2: Let a , r  be two solution rules o n T .  I f  a and r  both satisfy Reas, 
v-Cons, CostMon and if a = t  if n  < 2, then a = r .

Proof: Suppose th a t a  and r  both satisfy Reas, v-Cons, CostMon,  th a t a = t  if 
n  < 2 and th a t a  ^  r . Let F be a tree with a minimal number of players for which 
a  ^  t .  Then n  > 3.

Let i £ N  such th a t <7j(F) > r, (F) (i exists because a  and r  satisfy Eff  by Lemma 
3.1). Then from v-Cons, CostMon and the definition of F we get

a- i (T )  = < a(TT_ lP)  = r ( r l f }) = r_ j(F ). (3.1)

Now take a j  £ Ar\{ i} . Again v-Cons and CostMon and the definition of F give

a - j (F) =  a ( F ^ (r)) >  a (F r_ f  ̂  =  r ( F ^ r ) ) =  r_ j(F ). (3.2)

Next let k £ Then ct^F) =  ^ (F )  by (3.1) and (3.2). So by v-Cons and the
definition of F we have (using x  := ak(T)  = Tk(T))

a _ fc(F) =  a(T*_k) = t ( T*_k) = r - k(T),

from which it follows th a t ct(F) =  r(F ), a contradiction. □

We now want to  answer the question ‘Can we find solution rules satisfying the 
properties of Section 3?’. We start with a sub-question ‘Can we find solution rules 
satisfying v-Cons?’. This is not immediately clear. The next section gives a one- 
param eter family a a, a  £ [0,1] of solution rules on T  which all satisfy v-Cons. 
In Section 5 we show th a t a a satisfies all properties introduced in Section 3 for all 
a  G [0,1],

4 Definition of the solution rules <ra
For every a  £ [0,1] we define a solution rule on T . The computation of a a consists of 
computing trunks with minimal ‘weights’. We start - more general - with introducing 
weights for connected parts of a tree.

4.1 Prelim inaries
Let a £ [0,1], F G T.  We only compute weights in trees without players in the root. 
Therefore we assume in this subsection th a t N r = 0. Let Q C V  be a nonempty- 
connected set of nodes, Q ^  {r}. The degree of Q, d(Q), is the number of ‘outgoing’ 
edges of Q used by at least one player and not starting in the root:

d(Q) := |{p £ V \Q  | tr(p) G Q \{ r } ,  N (B P) #  0}|.
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The number i(Q) counts the ‘incoming’ edges of Q used by a t least one player and 
not starting in the root. If Q U {r} is connected or Q is contained in a branch without 
players then i (Q) =  0; otherwise i (Q) =  1. Consider for example the left tree of 
Figure 3.1. For Q i =  {p 2 ,P4 ,Pb} we have d(Q i) =  0, i(Qi) = 1. For Q2 = {P i ,P 3 } 
these numbers are 2 and 0 respectively. The grade of Q is defined by

ga(Q) : = n ( Q ) + a ( d ( Q ) - i ( Q ) ) -

Then ga (Q) >  0, because assuming th a t ga (Q) < 0 implies i (Q) =  1, d(Q) = 0 
and n(Q) = 0 which is impossible (because n(Q ) =  d(Q) = 0 implies i(Q) = 0). 
Note that, for Q i and Q2 as defined above, we have ga (Q 1 U Q2) =  8 +  a ( l  — 0) =
4 +  a(0  — 1) +  4 +  a (2 — 0) =  ga (Qi) + ga (Q2)- This property always holds if Qi  U Q2 
is connected and Qi  n  Q2 Q {t1}, because the number of players is additive and there 
is a t most one edge which connects Q 1 and Q2 , which cancels.

The weight of Q is defined by

f  jig iy  i f .?»(«) > 0
wa (Q) := < 00 if ga (Q) = 0 and c(Q) > 0 

[0 if g (Q) = 0 and c(Q) = 0 .

We are in fact interested in pairs (c(Q),ga (Q)), but we use the function w a to  order 
the pairs in R+ U {00}. Therefore it is not allowed to  simplify the fractions.

The following lemma will be used often in Section 5, in particular when Q2 is a 
trunk:

L em m a 4.1: Let Q 1 and Q2 be connected subsets o f V  with QiC]Q2 C {r} and such 
that Q 1 U Q2 is again connected. Then

w a (Q1) < wa (Q2) <=> wa (Q1) < wa (Q! U Q2) < wa (Q2)

and

w a (Qi) < wa (Q2) <=> w a (Q1) < wa (Q! U Q2) < wa (Q2).

Proof: The proof is straightforward and mainly based on the following relation:

, r a c ' i  a +  c r a c ' i
m m < ----- - < m a x < - , - >  b , d > 0 .

lb  d )  ~  b + d ~  lb  d)
□

Now let T  be a trunk. We have ga (T) = n(T)  + ad(T)  >  0 and ga (T) = 0 implies 
n(T) = 0 and ad(T) = 0. As there is a t least one player outside the root, there is 
always a trunk for which ga (T) > 0, i.e. with finite weight. Therefore

w“(r) := min{wa (T) | T  trunk of T , T   ̂{r}}
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is finite. If a  is fixed then we omit it in the notations.
Consider the tree in Figure 2.1. For a  = 1 we have

_  10 17 20 22 21 24 26 22 25 27 26 29 31 13 15 15

and there is one trunk with minimal weight: T* = { r , p \ , p z , p o } .

4.2 Definition of cra

Let a  G [0,1]. The idea of the solution rule a a is th a t villages closest to  the central 
supplier choose some neighbouring villages with which they want to  cooperate. They 
pay a part of the costs of the edges they use themselves and the remaining costs 
are paid by villages further away. The value a  determines which part of the costs is 
‘shifted’.

We define the solution rule a a by an algorithm. The algorithm consists of com­
puting repeatedly the maximal (w.r.t. the number of nodes) trunk Tm with minimal 
weight wm(F). The players in Tm each have to  pay wm(F). Then these players leave 
and Tm is ‘contracted to  the root’. The costs of every outgoing edge of Tm, i.e. the 
edges which d(Tm) counts, are increased by awm(T). The following algorithm gives 
the details. We use the fact th a t the function n  determines the tree.

C om p u tation  o f  cra
Take F € T, a  G [0,1].

Step  1: P u t a f  (F) := 0 Vi G N r and delete the players in the root.

Step  2: Compute wm(F) := min{w(T) | T  trunk of T , T  ^ {r}} and let Tm be the 
maximal trunk with minimal weight.

Step  3: P u t a f  (F) := wm(F) for all i G N (T m);
Compute the tree where Tm is contracted:
V : r '  U V \  7 ,1,: N r, = 0; 

p) := i r' if Av) e Tm,
\  n(p) otherwise; 

cP := cp + aw m(T) if n(p) G Tm\ { r }  and N ( B p) ±  0;
7r := 7r'; r  := r':
N  := N \ N ( T m);

Step  4: Repeat Steps 2 and 3 until there are no players left.

The number of trunks is finite, so there is a trunk with minimal weight, but 
there can be more than one trunk with minimal weight. Lemma 4.2 shows th a t ‘the 
maximal trunk with minimal weight’ is a correct definition. In every iteration, the 
number of remaining nodes strictly decreases, hence the algorithm stops after finitely 
many iterations.
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L em m a 4.2: Let a  G [0,1] be fixed.

a I f  Ti and T2 are both trunks with minimal weight, then the union Ti U T2 has also 
minimal weight.

b I f T  is a trunk with minimal weight and T  = Ti UT2 with Ti C\T2 =  {r}, then both 
Ti and T2 have minimal weight.

Proof:

a  Suppose th a t Ti and T2 are two trunks with minimal weight. The statem ent follows 
immediately if Ti C T2 or T2 C Ti, so we suppose th a t this is not the case. The 
proof consists of applying Lemma 4.1 a number of times. Let S  := Ti fl T2. If
S  =  {r} then (in particular) w(Ti) < w(T2), hence w(Ti) < w(T\  UT2) < w(T2) 
and it follows th a t Ti UT2 has also minimal weight. If S  ^  {r} then w (T i \T 2) < 
w(S)  (because if w(S) < w (Ti \ T 2) then w(S) < w(S  U (T i\T2)) =  w(Ti)  which 
gives a contradiction because S  is also a trunk). So w (Ti \ T 2) < w ((Ti \ T 2) U
S) = w(Ti) = w (T2) and w(T±\T2) < w ((Ti \ T 2) U T2) =  w(T± U T2) < w(T2). 
Therefore w(Ti  U T2) =  w(T2).

b Suppose th a t T  is a trunk with minimal weight and T  = Ti UT2 with Ti fiT2 =  {r}. 
If w(Ti) ^  w(T2) then by Lemma 4.1 min{w(Ti), w(T2)} < w(T), contradicting 
th a t T  has minimal weight. So w(T\) = w(T2) and, again by Lemma 4.1, 
w(Ti) = w(T) = w (T2).

□
Rem ark: From b it follows th a t if there is more than one edge starting in the root, 
then we can split the problem and compute a a for the components of F.

We shall now compute a a for the tree in Figure 2.1 for different values of a.  We 
start with a  = 1. We have already seen th a t T* = { r , p i , p s ,p Q }  is the unique trunk 
with minimal weight wm(F) =  y-. So a f  (F) =  y- for all i G N(T*).  Contraction 
of T* gives the left tree of Figure 4.1. Now we find th a t T* = { r , p 2} is the unique 
trunk with minimal weight wm(F) =  3^-, hence the player in p 2 pays this amount. 
Contraction of T* gives the right tree of Figure 4.1. Now we find immediately tha t 
a f  (F) =  3 | j  for the players in p 4 and a f  (F) =  8 ^  for the player in p 5. We can 
summarize this as (2 y ,3 ^ j- ,2 y ,3 |j ,8 ^ j- ,2 |) , where the i-th coordinate is the amount 
th a t a player in node pi  has to  pay. In the same way we find for a  = \  the amounts 
(2i| , 3 | f , 2 i| , 3 f  , 6 ^ , 2 ^ )  and for a  =  0 we find ( 2 | , 3 | ,  2 | , 3 | ,  5 ,2 f).

We defined solution rules a a for a  G [0,1]. In the same way we can define solution 
rules for a  > 1. It will appear th a t such rules do not satisfy all properties introduced 
in the previous section.
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Figure 4.1: Trees in the computation of a 1 for the tree in Figure 2.1.

5 Properties of the solution rules <ra
This section studies two kinds of properties of the solution rules a a . Section 5.1 
shows th a t a a satisfies the properties as introduced in Section 3. Section 5.2 studies 
the relationship between the solution rules a a (a £ [0,1]) and well-known solution 
concepts for (standard tree) games.

5.1 Properties o f solution rules

In the proofs we use several times two trees F and F '. The weights w.r.t. F (F') are 
denoted by w (w ' ) and the maximal trunk with minimal weight is denoted by Tm 
(T4). The costs and grades w.r.t. F (F') are denoted by c and g (c' and g').

P rop osition  5.1: The solution rule a a satisfies Ef f  for all a  £ [0,1].

Proof: Eff  follows from the fact th a t the costs of every trunk Tm are paid

• partly by the players in Tm: „(Tj f f ”] (Tm) c(Tm),

• partly by shifting costs: n^ a)+ad(T )c(^m)-

P rop osition  5.2: The solution rule a a satisfies Contr for all a  £ [0,1].

Proof: Let F £ T  and let p  £ Vr\{ r }  such th a t cp =  0. If p  is the only node besides 
the root, then a a assigns 0 to  all players before and after contraction. Otherwise let F' 
be the tree after contraction of edge ep . There is a one-to-one correspondence between 
trunks T '  in F' and trunks T  in F with p  £ T  or n(p) T  such th a t corresponding 
trunks have equal weights. If T  is a trunk in F with it(p) £ T  and p  $  T ,  then 
w (T  Up) < w(T) (use w(p) = 0 and apply Lemma 4.1). So to find a trunk with 
minimal weight in F, it is sufficient to  consider only trunks with p  £ T  or it(p) T. 
As a consequence we can contract in F and F' corresponding trunks Tm and T^  and

□

wm(F) =  «4 (r ')-
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If p  £ Tm, the trees after contraction of Tm and T^  are the same and a a is the same 
for the remaining players. If p  $  Tm then n(p) Tm and we have after contraction 
of Tm a tree in which edge ep still has costs zero. Induction to  the number of nodes 
completes the proof. □

P rop osition  5.3: The solution rule a a satisfies Del for all a  £ [0,1].

Proof: Let F £ T  and let p  G Vr\{ r }  such th a t np = 0 and # { q  G V  | n(q) = p )  =
1. Let q be the unique node with n (q) = p  and F' the tree obtained by deletion 
of p. The proof is very similar to  the proof of Contr. As a a satisfies Contr we 
may assume th a t the costs on the edges are strictly positive. There is a one-to-one 
correspondence between trunks T'  in F ' and trunks T  in F with q G T  or p  T  
such th a t corresponding trunks have the same weight. If T  is a trunk in F with 
p  G T  and q $  T ,  then w (T \{p}) < w(T)  because cp > 0. So to find a trunk with 
minimal weight in F, it is sufficient to  consider only trunks with q G T  or p  £  T. 
As a consequence we can contract in F and F' corresponding trunks Tm and T‘'m and 
wm(F) =  w'm(T').

If q G Tm, the trees after contraction of Tm and T^  are the same and a a is the 
same for the remaining players. If q Tm then p  $  Tm and we have after contraction 
of Tm a tree in which node p  can be deleted. Induction to  the number of nodes 
completes the proof. □

Rem ark: as a a satisfies Contr and Del we assume from now on th a t T £ To- In 
particular, costs on the edges are strictly positive and, as a consequence, weights of 
trunks are strictly positive.

P rop osition  5.4: The solution rule a a satisfies Horn for all a  £ [0,1].

Proof: If the costs of all edges are multiplied by the same A > 0, then all weights are 
multiplied by A; and multiplication by A and taking the minimum can be interchanged, 
because A is positive. So a a satisfies Horn. □

P rop osition  5.5: The solution rule a a satisfies FR for all a  £ [0,1].

Let p , q  £ V, p < q. The rule u a divides the set of nodes V  in groups, such 
th a t <7° is constant for players in nodes in the same group. These groups correspond 
with maximal trunks with minimal weights in subsequent iterations. If p  and q are 
in the same group, then FR  immediately follows. For the other case, it is sufficient 
to  show th a t wm increases in subsequent iterations in the computation of a a . This is 
done in Lemma 5.6. In addition, the lemma shows th a t we can, in the computation 
of <7°, contract an arbitrary trunk with minimal weight, instead of the maximal one, 
without changing the output of the algorithm.

L em m a 5.6: Let a  £ [0,1] be fixed, T £%■ Let T* be a trunk of (V , E) with minimal 
weight wm(F) =  and let T  be an arbitrary trunk with T* c  T. Let F' be the
tree after contraction of T* and let T ' := T \T *  U {r'}. Then w'(T')  >  wm(F) and 
equality holds if and only if w(T) = wm(F). As a consequence w'm(T') > wm(T).

Proof: Let d := \{p £ T \T *  | n(p) £ T * \{r}} |, the number of edges in T  which
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costs are increased when T* is contracted. The following equalities hold:

• c '(T ') =  c(T) -  c(T*) + awm(T)d,

•  n '(T ')  =  n (T )  - n ( T * ) ,

• d '(T ') = d(T) ^ d ( T * )  + d.

Using

cm
Wm(r) < w(T) = (5.1)

we get

, , _  c(T) -  c(T*) +  aw m(T)d > wm(T)g(T) -  wm(T)g(T*) +  aw m(r)d  
W ( } ~  g(T) -  g(T*) + ad ~  g(T) -  g(T*) + ad

= wm(T). (5.2)

Equality in (5.2) holds if and only if equality in (5.1) holds, i.e. if and only if 
w(T) = wm(F). An arbitrary trunk in F' can be seen as the result, after contraction 
of T * , of a trunk in F which contains T*. So w'(T')  >  wm(F) for all trunks T'  of F'. 
Hence w'm(T') > wm(F). □

P rop osition  5.7: The solution rule a a satisfies CostMon for all a  G [0,1].

Proof: Let a  G [0,1]. We use induction to  the number of nodes. The case \V\ = 2 
follows immediately. Take F G %  with \V\ > 2. Let p  G Vr\{ r}  such th a t n(B p) > 0 
and let 6 > 0. Let F' =  (V , E,  r,  c', (Nq)qev)  be the tree with cost function c'p := cp +6 
and c'q := cq otherwise. We distinguish between two cases:

1. Suppose th a t there is a trunk T  with w(T) = wm(F) and p T. Then w(T)  < 
w{TL) < w '( r4 )  < w'(T).  Now p  $  T  implies w(T) = w'(T)  hence w'(T) = 
w '(T4). So in both F and F' we can contract T.  Then <7a (F) and a a (T') coincide 
on N (T )  and the shifted amounts are equal (aw(T) = aw'(T)).  Hence, by­
induction, we have a a (T') > o-a (F).

2. Suppose th a t p  G T  for every trunk T  with w(T) = wm(F). We increase the 
costs of cp gradually. Define for every e > 0 the cost function c6 : V  —¥ R+ by: 
Cp := Cp + e and cq := cq otherwise. Let Fe be the corresponding tree and let
be the maximal trunk of Fe with minimal weight » ^ (F ) . Define := m ax ji <
6 | there exists a trunk T  with w(T) = wm(F), wl (T) = w ^F*)} . There exists 
a trunk Ti which has minimal weight with respect to  both F and F51. Then 
wSl (Ti) > w(Ti)  and in both cases contraction of Ti gives <jf (F51) > <jf (F) for 
all i G N ( T i \ { r } ) .  By induction we have <7a ( r 51) >  o-a (F). We are done if
5 = S1. T i S 1 < S  then let T* #  Ti be such th a t wSl (T*) = wSl (Ti). If p  $  T* 
then we contract T* in F51 and we are in case 1: we can increase cp arbitrarily. 
If p  G T'  for all trunks T'  with wSl (T r) = wSl (Ti) then we define d2 := m ax ji <
6 | there exists a trunk T  with wSl(T) = w ^(F ), w*(T) =  w ^F *)} . Now we 
can repeat the procedure on F51 and F52. This procedure ends after finitely 
many steps because the number of trunks is finite. □
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P ro p o s i tio n  5.8: The solution rule a a satisfies Reas for all a  £ [0,1].

P ro o f: Let T £ To, a  £ [0,1]. If i £ N r then, clearly, Reas is satisfied. First the 
marginal costs: take p  £ V  and i £ N p .

• If p  is not a lonely leaf, then toc, (F) =  0 < a f  (F) because weights of trunks are 
nonnegative.

• If p  is a lonely leaf then t o c , ( F )  =  cp . If a trunk with minimal weight is 
contracted, then nonnegative costs are shifted. So it is sufficient to  show tha t 
i pays at least his marginal costs in a tree with p  £ Tm. If Tm = { p , r }  then i 
pays cp . Now suppose th a t Tm ^  {p,  r}  and let T  := Tm\{p}. If w(Tm) < cp
; P e(T)+Cp t h p n  _______C(T )_______  s '  r. Cn

n ( T )  +  l + a ( d ( T ) - l )  ^  CP  U le U  n ( T ) + a ( d ( T ) - l )  ^  CP ’ DU

W(T ) = ______ C(^) +  CP_________  ______ C(^)_______ >  W(T)
( n(T) + 1 +  a(d(T)  ^  1) n(T) + a(d(T) -  1) -  1 >

contradicting the fact th a t Tm has minimal weight. So o f  (F) =  w(Tm) > cp .

The proof for the stand alone costs is by induction to  the number of nodes. The 
case \V\ = 2 follows immediately. Now suppose \V\ > 2. We first show th a t a f  (F) < 
sa,(F) for all i £ N (T m). Let p  £ Tm\{ r} , i  £ N p . Let P  be the unique path from p  
towards the root r.  As P is also a trunk we have

o'“ (F) =  w(Tm) < w(P) rU^  < c(P) = sa,(F). (5.3)
g(P)

Let i N ( T m) and let F ' be the tree after contraction of Tm. It is sufficient to  show 
th a t sa,(F) >  sa,(F ') (induction completes the proof). To prove this inequality let q 
be the first node in Tm on the path from p  to  r  (in F). It is sufficient to  show tha t 
aw(Tm) < c(P) where P  is the path from the root r  to  node q. The inequality follows 
immediately if a  = 0 and if a  > 0 then g(P) > 0 and we can apply Formula (5.3). □

P ro p o s itio n  5.9: The solution rule a a satisfies v-Cons for all a  £ [0,1]

Let F £ To, p  £ V, i £ Np and define x  := a f  (F). Let F* i be the reduced standard 
tree enterprise, i.e. i is removed and the costs of the path from p  to  the root r  are 
diminished with x, starting in p  (see also the definition of v-Cons).  We have to  show 
th a t <7a (r* j)  =  <7“ j(F). This trivially holds if i £ N r , so we assume th a t p  ^  r.  In 
addition we assume th a t N r = 0 (otherwise first apply v-Cons w.r.t. the players in 
the root), th a t there is exactly one node q such th a t n(q) = r  (w.l.o.g. by Lemma 4.2) 
and th a t n >2 .  Let w be the weight with respect to  F* i , wm the minimal weight and 
let T m be the maximal trunk with minimal weight w.r.t. F* We write wm instead 
of wm(F).

We first consider the case p  £ Tm and g(Tm) =  1. Then a  = 0 and Tm is a path, 
which costs are entirely paid by i. Then v-Cons with respect to  player i followed 
by Contr applied on Tm is exactly one iteration in the algorithm to compute a a (T), 
hence ^ “ ¿(r) =  <7a (r* j) .
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The proof of the case g(Tm) > 1 consists of a number of steps. We first show tha t 
the weight of the minimal trunk does not change: wm = wm. We finish the proof tha t 
cra satisfies v-Cons by induction to  the number of nodes.

L em m a 5.10: wm < wm.

P ro o f: We distinguish between some cases:

• Suppose th a t p  £ Tm. Then we have w(Tm) = As w(Tm) = = x, 
we have w(Tm) =  w(Tm) = wm. Therefore wm < wm.

• Suppose th a t p  $ T m and g(P) >  1, where P  is the path from p  to  Tm.

— If x  < c(P) then w m < w(Tm) =  w(Tm) = wm.

-  I fx  >  c(P) then uJm < w(TmUP) = g(r” )+g(p)Ii < fofel =  W(T™) =

• Suppose th a t p  $  Tm and g(P) < 1 i.e. n(P) + a(d(P)  — 1) < 1, which is only- 
possible if d(P) = 0 ,n (P ) = 1 and a  > 0 (because i £ N (P ) ,  so n(P) > 1). 
Then P  = {p}  and N p = {*} because we have assumed th a t there are no 
empty leaves and no empty villages along the road. After contraction of Tm in 
F the costs of edge ep are increased by aw m and we have x  = aw(Tm) +  c(P). 
Therefore wm < w(Tm) = =  w(Tm) = wm. (Note th a t there is no 
division by zero, because if g(Tm) = a , then n(Tm) =  0 and d(Tm) =  1. This is 
impossible, since n(p)  would be an empty village along the road.)

□
Let S  := Tm fi T m ^  {r}. We write T m = S  U Q i U . . .  U Qt. The sets Qt are 

pairwise disjoint and each of them contains exactly one node qt such th a t 7r(qt ) £ S.

L em m a 5.11: The following inequalities hold

w(Qt) < w (T m) < w(Tm) < w(Qt).

P ro o f: Suppose th a t w(Qt ) > w ( T m). Then w(Qt) > w (T m\ Q t ), because if w(Qt ) < 
w (T m\ Q t ) then w(Qt ) < w (T m) by Lemma 4.1. Applying Lemma 4.1 again gives 
w (T m\ Q t ) < w (T m), which contradicts the definition of T m. The second inequality 
is exactly the previous lemma. Now suppose th a t w(Qt) < w(Tm). Then Tm U Qt is 
a better candidate for Tm because w(Tm U Qt) < w(Tm) by Lemma 4.1. □

L em m a 5.12: We have £ < 1 and if 1 =  1 then p  £ Q 1 =: Q.

Proof: If p  £ Tm we find w(Qt ) = w(Qt) and therefore (by Lemma 5.11) £ = 0. If 
p  $  Tm, then there is a t most one index t  with Qt n P  ^  0, where P  is the path from p  
to  Tm. Therefore £ < 1. Let us suppose th a t £ = 1 and th a t p  $  Q.  Let P  denote the 
path from p  to  Q. Note th a t x  > c(P) (otherwise w(Qt ) = w(Qt j). So w(P) = 0 and 
T m U P  is a better candidate for T m for the trunk is larger and w (T m U P ) < w (T m) 
by Lemma 4.1. □
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We continue by distinguishing between some cases with respect to  g(Q).  Lemma 
5.13 considers three cases which can all occur. Initially the cases of Lemma 5.14 
cannot be excluded, but they all give a contradiction.

L em m a 5.13:

1. I f  £ =  0 then wm = wm.

2. I f  £ =  1 and g(Q) < 1 then wm = wm.

3. I f  £ = 1, a  = 0 and n(Q)  =  1 (i.e. g(Q) = 1) then wm = wm.

Proof:

1. In this case T m C Tm.

• If p  G T m then p  G Tm and x  = wm; therefore we have

—   c(Tm) x _ c(Tm) wm g(Tm)wm wm _
Wm ~  g (T m) -  1 “  g(Tm) -  1 "  g(T m) -  1 “

• If p  T m then let P  denote the path from p  to  T m. In this case x  < c(P) 
(because if x > c(P) then w(P) = 0 and T m U P  is a better candidate for 
T m by Lemma 4.1). So wm = w (T m) = w (T m) > w(Tm) = wm.

2. Note th a t g(Q) < 1 d(Q) =  0 ,a  > 0 and n(Q) = 1. So if g(Q) < 1 then 
Q =  {p} and P is a lonely leaf. Then x  = cp + aw m and

_  c(S) + c(Q) — x  c(S) — aw m g(S)wm — aw m
w m = -----------i—  =  — TcFs------------------------------------^g(T m) — 1 g(S) -  a  g(S) -  a

3. In this case Q is a path. By Reas in the tree obtained by contraction of Tm we 
have x  < c(Q). Hence wm < w(S) =

□

Lem m a 5.14: The remaining cases all give a contradiction:

1. n(Q) = 2,d(Q) = 0 and a  = 1, (i.e. g(Q) = 1)

2. n(Q) = 1 ,d(Q) = 1 and a  > 0, (i.e. g(Q) =  I)

3. g(Q) > 1.

Proof: 1. First note th a t if n(Q) = 2,d(Q) = 0 and a  = 1 then Q = {p,ir(p) =: q} 
because the other three possibilities for Q give a contradiction immediately:

• Q =  {p}- Then x  > c(Q) otherwise S' is a better candidate for T m. Further 
c(Q)+wm = x  implies w(Q) = c(Q) < wm and Tm U Q is a better
candidate for Tm.
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•  Q =  {P-,q} with 7t(q) =  P■ Now S  U {p}  is a better candidate for T m because 
cq > 0.

• Q =  {P)Q)Q}(7r(Q) =  tt(p) =  <?)• As cq > 0 we find th a t S  U {p, q} is a better 
candidate for T m.

Contracting Tm in F and computing a a in the component which contains p  gives 
x  = cp + 7j(cq + wm). As .)■ > c(Q) (because otherwise S' is a better candidate for T m) 
we have eq < wm, which implies w({q}) < wm and Tm U {q} is a better candidate for 
Tm. Contradiction.

2/3. We prove 2 and 3 partly simultaneously. We first show, by induction to 
the number of nodes, th a t wm = wm. The case \V\ = 2 follows immediately. Let 
F € To, i € N ,  be a counterexample with \V\ as small as possible. Let p  be such tha t 
i £ Np . Let F be the tree obtained by performing one iteration in the computation 
of <7a (r)  such th a t Tm is contracted. Let F 1 be the component of F containing p. 
Then F has less nodes than F and <jf (F) =  x. Let be the largest trunk of F 1 
with minimal weight We have wm < (Lemma 5.6). We shall show tha t 
w := wm((F1)*j) < wJjj which gives a tree with less nodes than F for which the 
minimal weight strictly decreases when i leaves.

2. Suppose th a t n(Q) = 1 ,d(Q) = 1 and a  > 0. In this case there are two 
possibilities: Q = {p}  or Q = {p, ir(p)}. In both cases we have x  > c(Q), because 
otherwise S' is a better candidate for T m. Now we get a contradiction:

c(Q) + aw m - x  1
W <  -----------  < W m < Wm .

a

3. Now suppose th a t g(Q) > 1. Using c(S) > g(S)w m and wm = g[s)+ g@ -i we 
find c(Q) -  x  < wm(g(Q) -  1) < wm(g(Q) -  1). So

c(Q) + aw m - x  
W <  ------T=T------ — --------- <  W m  <  W m .

g(Q) -  1 +  a

Conclusion: in all cases wm =  wm- We shall now show tha t Tm U T ^ \{ f}  is a 
better candidate for Tm, from which it follows th a t the last two cases of this lemma 
can not occur.

2. If n(Q) = 1, d(Q) = 1 and a  > 0 then we have

- r r i \  c(Q) +  a w m - i  i \  c ( f ^ )  +  aw mw(Tm) =  Wm ( F  ) =  W <  --------------------------------  <  W m  <  W (Tm) =

where the last inequality follows from FR.  Now we find w(T^) =  g^ r̂ a =  wm and

by Lemma 4.1: w(Tm U T ^ \{ f} ) < w(Tm).
3. Finally if g(Q) > 1 then we find:

r r i \  c{Q) + aw m - x  .W (T J =  Wm(F ) =  W < -----=-----—------ < Wm < w(Tm)
g ( Q ) - l  + a
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and again Tm U T ^ \{ f}  is a better candidate for Tm. □

Now we can finish the proof th a t a a satisfies v-Cons by induction to  the number 
of nodes. If \V\ = 2 then v-Cons follows immediately. Now suppose th a t \V\ > 2. 
From Lemma 5.13 (and 5.14) we learn th a t wm = wm. If we go through the proof of 
Lemma 5.10 we see tha t w(Tm) = w (T m), i.e. Tm has minimal weight with respect to 
w and therefore Tm C T m. We distinguish between the same cases as in Lemma 5.13:

•  If £ =  0 then Tm =  T m and uJm =  wm so (F) =  <7“ (F* t) for all j  G N (T m).

If p  G Tm then we find after one iteration in the algorithm the same tree for 
F and F*j. So we also have u f (T )  = <t“ (F*j) if j  N ( T m). If p  $  Tm then 
x  < c(P) and one iteration in the algorithm applied on F and F* t respectively 
gives again a tree F1 and its reduced tree (F1) ^  . We can proceed by induction.

• If £ = 1 and g(Q) < 1 then T m = Tm U {p} and N p = {i} ,d (Q ) =  0 ,a  > 0. 
Contraction of Tm gives a tree F for which {p, r } is a trunk. We first contract 
{p, r }. Then we get the same tree as the one obtained by applying one iteration 
of the algorithm on F* i , such th a t T m is contracted.

• l i  £ = \ , a  = Q and n(Q) = 1 then T m = Tm U Q and Q is a path. One iteration 
in the algorithm applied on F and T* such th a t in both cases Tm is contracted, 
gives a tree F1 and its reduced tree (F1)** and induction completes the proof.

5.2 G am e-theoretical properties
The first question we ask is whether there is an a  G [0,1] such th a t a a is equal to 
well-known solution concepts for standard tree games. The answer is affirmative in 
case of the nucleolus and the constrained egalitarian solution as Theorem 5.15 shows:

T h e o re m  5.15:

• I f  a  = 1 then a a coincides with the nucleolus (Meggido (1978)).

• I f  a  = 0 then a a coincides with the constrained egalitarian solution (Dutta and 
Ray (1989)).

For the Shapley value (Shapley (1953)) and the r-value (Tijs (1981)) we get nega­
tive answers, because both solution concepts do not satisfy v-Cons as the following 
example shows:
E x am p le  5.1: Consider the standard tree enterprise F as indicated in Figure 5.1.

The Shapley value of the standard tree game (N, C ) related to  F is given by 
$¿((7) =  y  +  ^ = 9 | i f i G  N q , $¿((7) =  y  =  2 |  if * G N p . Reduction with respect 
to  a player in node q gives the tree F. Now we have $¿((7) =  ^  ^  <£*(C') if i G Np .

The r-value of (N , C ) becomes r,((7) =  9 if i G N q and r,((7) =  3 if i G Np . 
Reduction with respect to  a player in node q yields the tree F '. Then r, (C") =  4 ^  ^  
Tj (C) if i G Np. o

20



20

10

10 ­- L U g

(I) P CD P

10

0  p 
10

11

Figure 5.1: Standard tree enterprises F, F and F ' respectively.

The next proposition shows th a t a a is a core element of the related standard tree 
game for all a  £ [0,1].

P rop osition  5.16: Let a be a solution rule on T  satisfying Reas and v-Cons. Then 
ct(F ) g  Corel .Y. C) := {y G R ^  | y(N ) =  C (N ), y(S) < C(S)  V S  C  N }  for all 
F  G r .

Proof: The proof is by induction to  the number of players. If n = 1 then <r(F) = 
c(P) = C (N ),  where P  is the path from the root r  to  the node the player lives in.

Let F g T  with n > 1, x  := <t(F), i £ N .  Let (N, C ) be the game related to  F^. 
i.e. N  =  i V \ { i } ,  C( S )  =  min{C'(S'U {¿ })  — Xi , C( S ) }  VS C  N. By v-Cons  with 
respect to  player i and the induction hypothesis we get

<7_j(r) =  f^ r ^ )  G Corel .Y. C).

So x (N )  = C ( N ) and x(S) < C (S ) for all S  C  N .  From x* > me, =  C (N ) — C (N ) 
and x (N )  = C (N )  it follows th a t x(N )  = C (N ) + X i  = min{(7(iV) — x*, C (N )}  + X i  = 
C(N). _

Now let S  C  N .  If * G S  then x (S \ i )  < C (S \ i )  < C(S) — x , and therefore 
x(S) < C(S). H i ^ S  then x(S) < C(S) < C(S).  So x £ Corel Y .C). □

6 Characterization of the solution rules cra
We shall now prove the main theorem of this paper.

T h e o re m  6.1: Let a be a solution rule on T- Then a satisfies Horn, Reas, Del, 
Contr, FR, CostMon and v-Cons if and only if there exists a parameter a  £ [0,1] 
such that a = a a .

We have already shown in the previous section th a t a a satisfies the seven prop­
erties. We shall now prove the ‘only if’ part. Suppose th a t a  satisfies the seven 
properties. Note th a t a  also satisfies Eff  by Proposition 3.1. We have, according to 
Proposition 3.2, only to  consider the cases n = 1 and n = 2. The case n = 1 follows
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from Reas. Now let F G T ,  n = 2, say N  = It is sufficient to  consider the four
classes of trees as indicated in Figure 6.1: T(2,  equal), T (2, separated), T(2, airport) 
with cp > 0 and T(2, empty) with cp ,cq,cs > 0.

NP = {i,j}

T(2, equal)

©  N p = {*}

Q ) N q = {j}

T(2, airport)

Figure 6.1: Trees with two players.

On T(2,equal) we have <7j(F) =  <7j(F) =  cp/2 = o f  (F) =  <t“ (F) for all a  G [0,1] 
by Eff  and FR. On T (2 ,separated) we have, by Reas, <7j(F) =  cp = <7f(F) and 
<7j(r) =  cq = <t“ (F) for all a  G [0,1]. The next two subsections consider the other 
two cases.

6.1 7~(2, airport)
This case is much more complicated. By Horn we may assume th a t cp = 1. Now <7, 
and (7j are functions of x  := cq. Consider the following function ƒ : R+ R, f ( x )  := 
Oi(T(x)), where T(x)  as in Figure 6.2. So f ( x )  is the amount th a t player i pays if 
cp = 1 and cq = x. Then player i pays x  + 1 — f ( x )  by E f f . For the <ra -rules, ƒ “ 
becomes: f a (x) = x  + 1 — m i n j j ^ ,  =^1^} =  m a x j ^ j i  +  1, So we want to
show th a t f ( x )  = m ax jl +  f i x , for some ¡3 G [0, |] .

The seven properties of a  put some restrictions on ƒ. We mention

• ^ (x  +  1) < f ( x )  Va; G R+ (FR).
We write U := {x  G R+ | f ( x )  = ^(x  + 1)},

• 1 < f ( x )  < 1 +  \ x  Vx G R +, in particular ƒ (0) =  1.
The first inequality follows from Reas. For the second one consider the tree F of 
T(2, airport) in Figure 6.1 where cp := 0 and cq := x. In this tree both players
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pay \ x  by Contr, Ef f  and FR.  By CostMon we find x  + 1 — f ( x )  > \ x ,  i.e. 
f ( x )  < 1 +  \ x .  If f ( x )  = 1 +  \ x  on R+ then ƒ =  ƒ “ for a  = 1 and we are done. 
So we assume from now on th a t f ( x )  < 1 +  \ x  for some
Let V  : = { i e l ( .  | f ( x )  =  1 +  \ x } .  Note th a t 0 G V  and U fi V  = 0.

Let x  > 0, y > 1 and consider the tree F of T (2, airport) of Figure 6.1 where 
cp := y, cq := x. By CostMon and Horn we find y ( |  +  1 >  * +  1 —f(x ) ,

Suppose tha t f ( x i) =  f ( x 2), where 0 < x\  < x 2- Then 1 < 1,
which implies f ( x i)  =  f ( x 2 ) =  1. As f ( x 2 ) >  \ { x 2 + 1) we have x 2 < 1. In 
particular ƒ is strictly monotonic on [l,oo).

• For every 6 > 0 : f ( x  +  (5) — f ( x )  < 6 Vx G R+ ( CostMon) and continuity of 
ƒ follows. Note th a t V  ^  R+, /(x )  >  | ( x  +  1) and continuity of ƒ imply tha t 
there exists a number x  G R+ \I /  such th a t f ( x )  > 1. We use this later on.

The property v-Cons with respect to  i and j  does not give extra conditions on 
ƒ. We get new conditions if we consider the airport problem T(x,y)  with 3 players 
(Figure 6.2). Define the functions a, b, c : —¥ Rby: a(x,y)  := Oi(T(x,y)),b(x,y) := 
Oj(T(x ,y) ) ,c(x,y)  := Ok(T(x,y)).  The conditions on a  put conditions on a,b,c  and 
ƒ. For all (x, y) G R̂ _ we have

• a(x, y) +  b(x, y) +  c(x, y) = x  +  y + 1 (Eff ).

• 1 < a(x, y) < x  + y + 1 (Reas)
0 < b(x, y) < x  + y
0 < c(x, y) < x.

• The function x  1—>■ 1 (x > 0) is (weakly) increasing.

as was to  be shown.

a(x ,y) (T)  Np = {*} 

1

f ( x )  ® i V p =  {i} b(x,y) ( t )  N q = {j}

x +  1 -  f(x)(Y) Nq = { j }  c ( x , y ) Q )  N s = {k}

X X

© r © r

Figure 6.2: The trees F(x) and T(x,y) .
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• 0 < c(x,y) < b(x,y) < a(x,y)  (F R ).

• Let 8 > 0. By CostMon: a(x,y)  < a(x + 6,y + 6) and the same inequality holds 
for b and c. By Eff: a(x + 6,y + 6) — a(x, y) + b(x + 6,y + 6) — b(x, y) + c(x + 
6,y + 6) — c(x, y) = 28. So a(x + 6, y + 6) — a(x, y) < 28 and a is continuous. 
Similarly b and c are continuous.

The conditions concerning v-Cons are more complicated:

• v-Cons(c) (i.e. v-Cons w.r.t. player k ) (Del):

a(x,y)  = f ( x  +  y -  c(x,y)).  (6.1)

• v-Cons(b):

— if b(x,y) < y then (Horn, Del)

T
(l + y - b ( x , y ) ) f ( — ------ --------) =  a(x, y), (6.2)

1 + y - b { x , y )

— if b(x,y) > y then ( Contr)

a(x,y)  = f ( x  + y - b ( x , y ) ) .  (6.3)

• v-Cons (a):

— if a(x,y)  < 1 + y then (Horn, Contr)

T
(1 + y -  a ( x , y ) ) f ( — -------- ----- -) = b(x,y).  (6.4)

1 + y - a { x , y )

— if a(x,y)  > l  +  y then (Contr)

b(x,y) = c(x,y).  (6.5)

From now on, we only consider points (x, y) G with y = x + 1 —f(x ) .  Therefore 
we write a(x) instead of a(x, y) etc.

As f ( x )  > ƒ(0) =  1 for all x  G R+, we have U C [l,oo). The following lemma 
shows th a t U is an unbounded interval.

L em m a 6.2: There exists a number u0 >  1 such that U = [uq, og).

P ro o f: Take a: G K +\V  such th a t f ( x )  > 1. Let y := x + 1  — f(x)  and s := x + y —c(x). 
From v-Cons(c) and Eff  we get the following equalities:

a(x) =  f(s) ,  
b(x) = s + 1 — f ( s ) ,  
c(x) = x  + y — s.

We shall first show th a t s = x. From

s + 1 — ƒ (s) = b(x) > c(x) =  2ar + 1  — f ( x )  — s
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we get s > x  (FR  and monotonicity of the function t 2t + 1 — f ( t )) .  Then 
b(x) = s + 1 — f ( s )  > x  + 1 — f ( x )  = y. So (by v-Cons(b) and v-Cons(c)) f ( x  + y — 
b(xj) = a(x) = f ( x  + y — c(x)). If s > x  then b(x) > c(x) which implies th a t a(x) = 1, 
because ƒ is strictly monotonic on [1, oo). As a consequence f ( x )  < ƒ (s) = a(x) = 1, 
contradicting f ( x )  > 1. Conclusion: s = x.

We further have a(x) < y + 1 (because if a(x) > y +  1, then f ( x )  = f ( s )  = a(x) > 
y + 1 =  x  + 2 — f ( x )  gives 2f ( x )  >  x  + 2, i.e. x  € V).  Hence v-Cons(a) gives 
(1 + y -  a(x))f ( t (x) )  = b(x), where t(x) := 1+yl a(x) = 2+a- 2f(x) - So

=  x +  2 -  2f(x)  =  +  L e ' ^  €  U‘

So for x  V, f ( x )  > 1, we have t(x) G U. If x  € U then t(x) = x  and if x  U 
then t(x) > x. Let uq be the smallest number in U (exists because U is nonempty, 
closed and U C [l,oo)). Suppose th a t there exists a number x\  such th a t x\  > uq 
and x\  U. We may assume th a t V  fl (uq, x \) = 0, because one can always choose 
x\  G («o, Vo), where vq := inf(Vr n  [«o, oo)). Let x 2 be the largest number in U smaller 
than x\ .  As x 2 € U we have i(x2) =  x2. If x2 < z < x i then z V, f ( z )  > | ( z  + 1) > 
\ { uq + 1) >  1, so t(z)  is well defined, t(z) G U and t(z) > z. But (x2,x i)  fl U = 0 
from which we get t(z) > X\ for all z € (x2,x i) . So i(x 2) >  X\ (by continuity of t) 
contradicting x 2 < x \ .  □

C o ro lla ry  6.3:
a) V  = {0}.
b) I f  ƒ is not strictly monotonic, then f ( x )  = m ax jl, ^ ( x + 1)} =  f a (x) for a  = 0. 

P ro o f: a) Suppose v G F \{0}. Take x  > v, x  > u q .  Then |  =  , i.e.
x  e v  n u = 0.

b) Suppose tha t 0 < x\  < x 2 and f ( x i) =  / ( x 2). We have already seen tha t 
this implies f ( x i) =  / ( x 2) =  1 and x 2 < 1. Let x  := max{z G R+ | f ( z )  = 1}. 
We follow more or less the proof of Lemma 6.2. Consider the point (x,y)  where 
y := x  + 1 — f ( x )  = x  and let s := x  + y — c(x). Again, we have s > x  (FR) and 
b(x,y) > y (CostMon).  Now v-Cons(6) gives a(x, y) = f ( x  + y — b(x)) = f ( 2 x  — b(x)). 
From b(x) > y = x  it follows th a t 2x — b(x) < x, so a(x) = ƒ (2x — b(xj) = 1. 
Applying v-Cons(c) gives 1 =  a(x) = ƒ (2x — c(xj),  from which we get 2x — c(x) < x,  
i.e. c(x) > x. This together with Reas gives c(x) = x  and b(x) = x  (E f f ). Finally, 
a(xs) = 1 < 1 +  y, so u-Cons (a) gives x f ( ' f )  = b(x) = x,  i.e. / ( I )  =  1. Hence x  = 1 
and also uq = 1. □

L em m a 6.4: I f  ƒ is strictly monotonic then for all x  G (0, uq)

f ( x )  ^  1 =  f ( u o) -  1 =-
X  U q

Note that ƒ is completely determined and 0 < (i <

P ro o f: Let x  G (0 ,«o). Then /(^ 1 < ii'û 1 ■ Consider the point (x,y) := 
(x, x  + 1 — f ( x  j). As f ( x )  > ƒ(0) =  1 and x  V,  we get from the proof of Lemma
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6.2 tha t a(x) < 1 + y and b(x) = y. Applying v-Cons(a)  and v-Cons(b) gives

X
(1 +  y  — a(x)) f( t(x ))  = b(x) and a(x) = f ( x ) ,  where t(x) := ------------

1 y Qiixj

As t(x) G U (see again the proof of Lemma 6.2) we have

f ( x )  -  1 =  f ( t (x) )  -  1 >  ƒ (Up) -  1 
X t ( x )  ~  « 0

So

f ( x )  -  1 =  f ( u o) -  1
X  U q

□

6.2 7”(2, em pty)

We first consider the class T (3, nonempty), consisting of trees like in T (2, empty) (see 
Figure 6.1), but now there is one player in node s, say N s = {fc} and cs = 1, cp , cq > 0. 
According to  the previous section, there exists a number a  G [0,1] such th a t a  =  o a 
on T (2,airport).

Lem m a 6.5: On T (3 ,nonempty), a  =  o a .

Proof: Take F G T(3, nonempty) and define x  := cp , y := cq, a ( x , y )  := <7,(F), 
b(x,y) := <Tj(r) and c(x,y) := a k (F).

From Reas we get a ( x , y )  > x  and therefore applying v-Cons(a) and Horn gives 
b(x,y) =  y - f a {x+1^y<':X}V)). Similarly (v-Cons(b) and Horn) a(x, y)=x- f a ( y+1^ ( x,y) ^ 
As f a (z) = m a x jjq ^ z  +  1, ^jp-}, the following equalities must hold:

i \ r a  t , i  u  w , x  + y + 1 ^  b(x,y) a{x,y) = max{y-j—̂ (y  +  1 — b(x,y)) + x , -------------------------}

i /  \ r a  / / w x  + y + 1 -  a ( x , y ) ,b(x,y) = m ax{——- (x +  1 — a(x, y)) + y , -------------------------}.
1 +  a  2

By distinguishing between four cases, in fact corresponding with four trunks of F, 
it can be shown th a t a(x ,y) = o f  (F), b(x,y) = crf(T) and c(x,y) = crf(T).

□

Lem m a 6.6: On T(2, empty), o = o a .

Proof: Let F G T  (2, empty). Define x  := cp , y := cq. We may assume th a t cs = 1 
(Horn). We construct a tree F' G T(3,nonem pty) with costs cp = x 1, cq = y 1 and 
cs = 1, where x' and y' are defined later. Then we show th a t ct(F) =  <7a (F) using 
v-Cons(c).

We distinguish four cases, again corresponding with four trunks of F.

26



In this case o f  (F) =  \  + x, (F) =  |  +  y. Define
j q T h e n  we have

a fc(F') =  a fca (F') =  min{
1 +  2a 2 — n 2 — n o 1 +  2i i

1

Then ct^F') =  + x ' ,a j (T ' )  = + y ' . Applying v-Cons(c) gives a
tree F" G T (2 ,empty) and <7,(F") =  <7j(F'),<7j(F") =  <7y(F'). By Horn we 
have <7j(F) =  1j^2ag;(F") =  1j^2ag;(F ') =  x  + |  =  erf (F). And similarly

(r ) =  ( n  =  ( n  =  y + 1 =  ( f ) .

For the next three cases we only give x'  and y ' . The proofs are similar.
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