
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/18717

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16108259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/18717


DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF NIJMEGEN The Netherlands

A dual description of the class of games with a 

population monotonic allocation scheme

Henk Norde and Hans Reijnierse

Report No. 9912 (March 1999)

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF NIJMEGEN 
Toernooiveld 
6525 ED Nijmegen 
The Netherlands



A dual description of the class of games with a 
population monotonic allocation scheme

Henk Norde* Hans Reijnierse^

A bstract

A balanced set of weights infers an inequality th a t games w ith a nonem pty core 
obey. This paper gives a generalization of the notion ‘balanced set of weights’. 
Herewith it provides necessary and sufficient conditions to  determ ine w hether a 
TU-game has a population monotonic allocation scheme or not.
Furtherm ore it shows th a t every 4-person integer valued game with a popula
tion monotonic allocation scheme has an integer valued population monotonic 
allocation scheme and it gives an example of a 7-person integer valued game 
th a t has only non-integer valued population monotonic allocation schemes.

1 In tro d u c tio n

In Sprumont (1990) the concept of a population monotonic allocation scheme (pmas 
for short) has been defined as a kind of extension of a core allocation (cf. Moulin 
(1989)). A pmas gives a core allocation for every subgame of a TU-game such that 
every player gets a weakly higher payoff in larger coalitions.
Games with a pmas have obviously a nonempty core. Bondareva  (1963) and Shapley 
(1967) independently proved that a game (N ,v )  has a nonempty core if and only if 
it is balanced, that is, for each balanced set of weights {A s} s c n , the game obeys the 
corresponding inequality: ANv ( N ) >  ASv ( S ).

S£N
Here, a balanced set of weights consists of nonnegative numbers with the property that 
An eN =  S(̂ N ASeS , in which eS denotes the indicator vector of S . The following 
interpretation can be given to this inequality: if every member of S  works AS hours 
in coalition S , which generates a profit of v ( S ) dollars per hour, and if every player 
in N  works the same number of hours (AN ) in total then it is more profitable for the 
whole society to work together all of the time in the grand coalition. The class of 
balanced games is a finitely generated cone in the space of TU-games. The class of 
games with a pmas is a subcone of it, also finitely generated. Hence, there exists a 
collection of inequalities that describes this subcone. This collection is larger than the
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collection of inequalities describing the cone of balanced games and will be described 
in this paper by introducing the notion ‘generalized balanced set of weights’. This 
description enables us to answer an open question postulated in Reijnierse (1995): 
”Do there exist integer valued games with only non-integer valued pmasses?” . In 
Section 6 we will show that the answer is negative for 4-person games. Section 7 
however, gives an example of such a game with 7 players.

2 P re lim in aries

Let N  be a finite set and let GN be the space of TU-games with player set N . Let 
M  =  { S  C N  | S  =  </>}.

D e fin it io n  1: A  population monotonic allocation scheme or pmas of the game 
(N , v) is a table x  =  {x S i } SGM iGS with the properties:
(i) E  x S,i =  v(S) for all S  G M,

ies
(ii) x S, i <  xT, i for all S ,T  G M, i G S  C T.

The class of games with player set N  that have a pmas is called P M N, or P M  if no 
confusion can occur. Sprumont (1990) was the first who proved the following result:

T h eo rem  2: The class P M N is a cone and it is generated by the collection of all 
simple monotonic i-veto games in GN, united with the games - u i (i G N ).

This collection will be called g (P M ).  A game is called simple if all its coalitional 
values are either 0 or 1, it is called monotonic  if v (S ) <  v (T ) whenever S  C T  and it 
is called i-veto  if v ( S ) =  0 implies i G S . The simple game ui is defined by ui (S ) =  1 
if and only if i G S .
Reijnierse (1995) submits a complete section to pmasses. Other results concerning 
pmasses can be found in Derks  (1991).

3  G eneralized  b alanced  se ts  of w eights

As stated in the introduction, we would like to find inequalities that games with a 
pmas obey, by generalizing the notion of a balanced set of weights.

D e fin it io n  3: A  generalized balanced set of weights, or gbw for short, is a tuple  
({$s } SeA, {At } t ga) with the following properties:
(i) A  and  A are disjoint subsets of M,
(ii) SS >  0 and AT >  0 for all S  G A , T  G A,
(iii) it  is possible to assign a nonnegative number iIS T to each triple 

( i , S , T ) G N  x A  x A with i G T  C S, in such a way that:
uSs t  =  SS for each S  G A  and i G S  and

T eA:ieT CS
''y  ̂ uS t  =  At  for each T  G A and i G T.

SeA:ieT CS
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It is easy to infer that a balanced set of weights is a gbw. Namely, if {A s} SGM is 
a balanced set of weights, take A  =  { N }, A =  { S  £  N  | AS >  0} and Sn  =  AN . 
Then the tuple ({Ss } Sga , {A t }T ga ) satisfies the properties (i) and (ii) of the previous 
definition.
Define for each T  G A and every i G T : i iN T =  AT . Then, for all i G N :

i N , t  =  53 At =  An =  Sn .
T GA:T3i T£N:T3i

Moreover, for each T  G A and every i G T :

Ms,t =  1 %n , t  =  at  .
SGA:T CS

Hence, the third property of Definition 3 has been satisfied as well.

E x a m p le  4: Let A  =  {(123), (234)} and A =  {(12), (23), (34)}. Let Ss  =  AT =  1 
for all S  G A, T  G A. Is ({Ss } Sga , {At } tga ) a gbw? Yes, take:

1 _ 2 _ 2 _ 3 _ 3 _ 4 _ i
1 (123),(12) =  1 (123) ,(12) =  1 (234),(23) =  1 (123),(23) =  1 (234),(34) =  1 (234),(34) =  1

and

l2 123),(23) =  i3 2 34),(23) =  °.

The gbw corresponds to the inequality:
v(123) +  v(234) >  v(12) +  v(23) +  v(34).

If a game (N, v) has a pmas x, then it obeys this inequality, since

v(123) +  v(234) =
^123,1 +  X 123,2 +  X123,3 +  X234,2 +  X234,3 +  X234,4 >

X12,1 +  X12,2 +  X23,3 +  x23,2 +  x34,3 +  x34,4 =
v(12) +  v(23) +  v(34).

Each relation corresponding to a gbw  is a necessary condition for having a pmas:

T h eo rem  5: Let the game (N ,v )  have a population monotonic allocation scheme, 
say x, and let ({Ss } Sga , {At } tg a ) be a gbw. Then v obeys the inequality:

J 2  S sv (S ) >  J 2  A t v ( T ).
sg a  tga

Proof: Let for i G N , S  G A  and T  G A with i G T  C S  the numbers i iS T be as in 
Definition 3. We have:

^  Ss v ( S ) =  ^ 2  S ^ E x s,i =  E  E S s x s,i =
SgA SgA iGS SgA iGS

E E  E 1 %S,TXS,i 1 %S,TXS,i >  1 %S,TXT,i =
SGA iGS TGA:iGTCS (i,S,T):iGTCS (i,S,T):iGTCSEE E i S , t xT,i =  E AtXT,i =53 A t v ( T ). <|
TGA iGT SGA:iGTCS TGA iGT TGA

C orollary  6: Let (N ,v )  have a population monotonic allocation scheme x  and let 
({Ss } Sga , {At } tga ) be a gbw with associated numbers { i iST  | i G T  G A ,T  C S  G 
A }. Suppose that  ^ ^ a  SSv ( S ) =  Tg_a ATv ( T ). Then XS,i =  XT,i for every triple 
(i, S, T ) with i G T  C S  and i iST  >  0.
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The following interpretation can be given to an inequality corresponding to a gbw: if 
the society N  works according to schedule {AT} tga and if a rescheduling {Ss } Sga  
is possible such that all members in the society work the same hours as before but 
in larger coalitions (not necessarily the grand coalition) then such a rescheduling is 
profitable for the whole society.

4  V erifying w h e th e r a  tu p le  is a  gbw

Let ({Ss } Sga , {At } tg a ) be a tuple with properties (i) and (ii) of Definition 3. How 
can we find numbers i iS T such that property (iii) is satisfied or show that such 
numbers do not exist?
Let i G N . Define A i =  {S  G A  | i G S } and Ai =  { T  G A | i G T }. Because

E Ss  =  E ( E ¿ S , ^  =  E ( E ¿ S , ^  =  E At  ,
SgA* SgA* \ t GAi :TCS )  TGA* \SGAi:SDT )  TGA*

the first test the tuple has to pass to be a gbw, is that ^ Sea* Ss  =  ^ Tea* At . If 
so, a flow network r i =  (V , E) is constructed as follows. The node set V  consists of 
a source, a sink and a node for each coalition T  in A i U Ai . The nodes will be called 
So, S i  and node(T ) (T G A i U Ai ). The arc set E  consists of directed arcs. For all
5  G A i there is an arc from the source to node(S ), called arc (S ). The capacity of 
this arc is Ss . For all T  G Ai there is an arc called arc(T ) from node(T ) to the sink 
with capacity AT . If S  G A i , T  G Ai and S  D T , there is an arc called arc(S, T ) from 
node(S ) to node(T ) with a large capacity, i.e. strictly larger than X T GA AT .
Find a maximal source to sink flow with the maximal flow algorithm of Ford and 
Fulkerson (1956). If its value f  equals ^ Tea* At , take i iST  equal to the flow in 
arc(S, T ).
On the other hand, if there exist appropriate numbers i iS T (for this particular player 
i), f  will equal X T Ga* AT . Namely, take the flow which uses the arcs from the source 
and the arcs to the sink with full capacity and which uses the other arcs arc(S, T ) 
with capacity i iS T .
These observations lead to the following Proposition:

P r o p o s it io n  7: Let  ({Ss } Sga , {At } tga ) be a tuple with properties (i) and (ii) of 
Definition 3. Then ({Ss  } Sga , {At  } t  ga ) is a gbw if  and only if  for every player i G N : 

Ss  = 5 ^  At  , and the network  r i has value Ss  .
s g a * t  ga* s g a*

Let us give an example of such a network.

E x a m p le  8: Consider the tuple that corresponds to the inequality:
2v(1235) +  v(12345) +  v(1345) >  v(12) +  v(235) +  2v(135) +  v(245) +  v(134).

Let i =  5. The following figure illustrates the corresponding flow network (a node is 
represented by S o , Si  or its corresponding coalition):
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So

(1235) (12345) (1345)

(235) (135) (245)

Si
Thick arcs have large capacity, single tiny arcs have capacity 1, double tiny arcs have 
capacity 2. The network has a unique maximal flow, depicted in the following figure:

Hence, the value f  of the maximal flow equals 4, which is necessary for the tuple to 
be a gbw. The flow shows how the numbers 1 S T can be chosen:

For each player in N  we can perform this test. If all tests have a positive answer, the 
tuple is a gbw.

5 T h e  converse s ta te m e n t

The converse of Theorem 5 is also true:

T h eo rem  9: Let the game (N ,v )  obey all inequalities that arise from g b w ’s. Then 
v has a population monotonic allocation scheme.

Proof: The dual of the cone PM ,  called PM*, is defined by: {w  G GN | W, v) >  0 
for all v G P M } .  Here, ■) denotes the usual inner product of GN , i.e. W ,v )  =
Y.SGM w ( S )v (S ).
Because the cone P M  is generated by the finite collection g (P M )  (Theorem 2), we 
have P M  =  PM**  =  {v  g Gn  | W , v) >  0 for all w G P M * } .

So

(1235) (12345) (1345)

Si
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Hence, to prove the Theorem, it is sufficient to prove that v G PM**, i.e. that 
(w ,v) >  0 for every w G P M *.  In order to show this last statement, it suffices to 
prove that every w G P M *  induces an inequality that corresponds to some gbw. 
Therefore, let w G P M *  and define ({Ss } Sga , {At } tg a ) as follows:

A  =  { S  G M  | w (S ) >  0}, A =  { T  G M  | w ( T ) <  o},
Ss  =  w ( S ) for every S  G A  and XT =  - w ( T ) for every T  G A.

For each i G N  we must show that the tuple has the properties described in Proposi
tion 7. Let i G N .
We have (w, u) >  0 for all u G g (P M ).  Since both ui and —ui are elements of g (P M ),  
we have (w, ui ) =  0. Hence, ^ Sea » w ( S ) =  ^ Tea» —w ( T ) =: d, in which A i and Ai 
have been defined as in Section 4. We have to prove that the value f  of the network 
r  =  (V., E) equals d.
A cut in the network is a 2-partition (P, V \ P ) of the node set V , such that So G P  
and Si G V \ P . The capacity of (P, V \ P ), denoted by c(P, V \ P ), is the sum of the 
capacities of all arcs with begin-point in P  and end-point in V \ P .
By the famous Theorem of Ford and Fulkerson (1956), the value of a maximal source 
to sink flow equals the minimum of the capacities of all cuts. The capacities of the 
cuts ({So}, V \{S o } )  and (V \{ S i} , {S'i}) equal d. Hence, it is sufficient to show that 
c(P, V \ P ) >  d for every cut (P, V \ P ).
Take a cut (P , V \ P ). Let S  C A i be the collection of coalitions in A i of which the 
nodes are elements of V \ P . Let T  C Ai be the collection of coalitions in Ai of which 
the nodes are elements of V \ P . Let u t  be the smallest simple monotonic i-veto game 
such that all elements of T  are winning. Then the winning coalitions of u t  are the 
ones that have at least one element of T  as a subset.
If there exists a coalition S  G A i such that node(S ) G P  and u t (S) =  1, then there 
exists a T  G T  such that the capacity of arc(S, T ) contributes to the capacity of 
(P, V \ P ). The capacity of this arc alone exceeds d already.
Hence, we can assume that such a coalition does not exist, i.e. all elements of A i \ S  
have coalitional value 0 with respect to u t  and the capacity of each arc with begin- 
point in A i and end-point in Ai does not contribute to c ( P , V \ P ). Therefore:

c(P, V \ P ) =  £  Ss  +  XT = E  w (S ) — 5 3  w ( T ) =
sgs  tg_a»\t  sgs  t  g_a»\t

d + 5 3  w (S) + 5 3  w ( T ) >  d +  (w, u t ) >  d. <
SGS TGT

6 Four person  gam es

Consider for a (characteristic function of a) 4-person game v the following inequalities, 
which correspond to gbw’s:

(A) v ( i j )  >  v(i) +  v ( j )  (6 inequalities
(B) v ( i jk )  >  v ( i ) + v ( j k )  (12 inequalities 
(c )  v(1234) >  v(i) +  v ( jk l)  (4 inequalities
(D) v ( i jk )  +  v ( jk l)  >  v ( i j )  +  v ( jk )  +  v(kl)  (12 inequalities
(E) 2v(ijk )  >  v ( i j )  +  v(ik)  +  v ( jk )  (4 inequalities

7



(F) v ( i jk )  +  v(1234) >  v ( i j )  +  v ( jk )  +  v(ikl)
(G) v(1234) >  v ( i j ) + v ( k l )
(H) 2v(1234) >  v ( i j )  +  v ( jk l)  +  v(ikl)
(i) 3v(1234) >  v(123) +  v(124) +  v(134) +  v(234)

(12 inequalities) 
(3 inequalities) 
(6 inequalities) 
(1 inequality)

Different characters are used to denote different players. If a 4-person game has a 
pmas then this game satisfies all conditions (A)-(I). In this section we prove that these 
conditions are sufficient conditions in order to guarantee that a game has a pmas. As 
a byproduct we get that an integer-valued 4-person game with a pmas has an integer
valued pmas. Note that the conditions (A), (B), (C) and (G) imply superadditivity, 
the conditions (C), (G), (H) and (I) imply balancedness and the conditions (A), (B),
(C), (E), (G), (H) and (I) imply totally balancedness. Note moreover that for every 
condition in (A)-(I) the following statement is true: if v is monotonic and v ( S ) =  0 
for some coalition occuring in the right-hand side of this condition then v satisfies 
this condition.
If a 4-person game satisfies the conditions (A)-(I) then the corresponding 0-normalized 
game also satisfies these conditions. This statement is an immediate consequence of 
the fact that linear games satisfy all conditions (A)-(I) with equality. Moreover, due 
to conditions (A)-(C), this 0-normalized game is monotonic. Let v be a 0-normalized 
monotonic game. A 0-normalized monotonic simple veto game is subtractable from 
v if v — eu is monotonic for some e >  0. Note that v ( N ) >  v ( N \ i )  is a necessary 
and sufficient condition for the existence of a monotonic simple i-veto game which 
is subtractable from v. Moreover, if ui and u2 are both monotonic simple i-veto 
games which are subtractable from v then also u := m ax{u1, u2} is subtractable from 
v. This enables us (in case v ( N ) >  v ( N \ i ) )  to define ui  as the maximal monotonic 
simple i-veto game which is subtractable from v . Moreover, the positive number 
a" := m in{v(S) — v ( T ) : S  D T , u i ( S ) =  1 ,u i (T ) =  0} indicates how many times 
ui  can be subtracted from v at most such that the remainder is still monotonic. If 
v ( N ) =  v ( N \ i )  then ui  := 0.

L em m a 10: If a 0-normalized 4-person game v satisfies conditions (A)-(I) and 
v ( S ) >  0 for some S  C N  then there is an i G S  such that u i(S )  =  1.

Proof: W ithout loss of generality we may assume that v ( S ) >  v ( S \ j )  for every j  G S  
(if there is a j  G S  with v(S) =  v ( S \ j )  >  0 it is sufficient to prove the statement for 
S \ j ). We distinguish between three cases: i) |S| =  4; ii) |S| =  3; iii) |S| =  2.
Case i): |S| =  4. Then S  =  (1234). Since v (S ) >  v ( S \ j )  for every j  G S  the game 
u 1234 (which is the monotonic simple veto game with (1234) as unique (minimal) 
winning coalition) is subtractable from v. Hence ui (S ) =  1 for every i G S.
Case ii): S 11 =  3. W ithout loss of generality assume that S  =  (123). Since v satisfies 
condition (I) there is at least one j  G S  with v ( N ) >  v ( N \ j ), say j  =  1. Then at 
least one of the games ui23, ui23ji24, ui23ji34, ui23ji24Ji34 or ui23;i4 is subtractable 
from v (the subscripts refer to the minimal winning coalitions in the corresponding 
monotonic simple veto games). Hence u \ ( S ) =  1.
Case iii): |S| =  2. W ithout loss of generality assume that S  =  (12). Either v ( T ) >  
v(T \1 ) for every T  D S  or v ( T ) >  v (T \2) for every T  D S  (otherwise there is a
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Ti D S  with v(Ti ) =  v(Ti \1 )  and a T2 D S  with v(T2) =  v(T2\2 ) which contradicts 
condition v(T i ) +  v(T2) >  v(12) +  v(Ti \1 )  +  v(T2\2 ), which is one of the conditions 
in (D)-(F) and (H)). Assume v ( T ) >  v ( T \1 ) for every T  D S . If v(134) =  v(34) then 
v(123) >  v(13) (because v(123) +  v(134) >  v(12) +  v(13) +  v(34)) and v(124) >  v(14) 
(because v(124) +  v(134) >  v(12) +  v(14) +  v(34)) and hence u i2 is subtractable. If 
v(134) >  v(34) then the monotonic simple 1-veto game u defined by u (S ) := 1 iff 
1 G S  and v ( S ) >  0 is subtractable from v. Anyhow, u \ ( S ) =  1. <

L em m a 11: Let v be a 0-normalized 4-person game that satisfies conditions (A)-(I) 
and let N v C N  be the set of players i with u i  =  0. Let i* G N v be such that u i  has 
a minimal number of veto players. Then v — ai* ui* also satisfies conditions (A)-(I).

Proof: Let v' := v — ai ,u i*. We will distinguish between four cases.
Case i): ui* has only one veto player, say i* =  1. Then ui(123) =  u i (124) =  
ui(134) =  1. In order to show that v' satisfies all conditions (A)-(I), consider an 
arbitrary condition in (A)-(I), to be referred to as condition (*). If u\  satisfies condi
tion (*) with equality then clearly v' satisfies condition (*). If u\  satisfies condition 
(*) with strict inequality then in the right-hand side of this inequality occurs some 
coalition S  with 1 G S  and u i ( S ) =  0. So |S| <  2. If |S| =  1 then clearly v ( S ) =  0 
and hence v'(S)  =  0. If |S| =  2 then u i(S ) =  0 implies v ( S ) =  0 and we also get 
v ' (S ) =  0. Now v' satisfies condition (*) because of monotonicity of v ' .
Case ii): ui* has two veto players, say 1 and 2. So, ui* =  u i2 or ui* =  u i23ji24. 
If ui  (13) =  1 then u\  has (13) and (124) as winning coalitions and therefore only 
one veto player, giving a contradiction. Hence, uf (13) =  0. If ui  (13) =  1 then 
ui  =  u i3 is subtractable and hence u i (13) =  1 leading, as before, to a contradiction. 
So, u i (13) =  u3(13) =  0 and hence, according to Lemma 10, v(13) =  0. Analogously 
we get v(14) =  v(23) =  v(24) =  0. Hence v ' (13) =  v'(14) =  v'(23) =  v'(24) =  0 and 
v' satisfies all conditions (A)-(F) by monotonicity. Condition (G) with (ij) =  (13) 
or (14) is satisfied by v' due to monotonicity. Condition (G) with (ij) =  (12) is 
satisfied by v' due to monotonicity in case v(12) =  v'(12) =  0 and due to the fact 
that ui* =  u i2 satisfies this condition with equality in case v(12) >  0. Condition 
(H) with (ij) G {(13), (14), (23), (24)} is satisfied by monotonicity of v ' , condition
(H) with (ij) =  (34) is satisfied because ui* satisfies this condition with equality 
and condition (H) with ( i j ) =  (12) is satisfied because v(134) =  v(34) (and hence 
v'(134) =  v'(34)) and v'(1234) >  v'(12) +  v'(34). Condition (I) is satisfied by v' 
because v'(134) =  v'(34), v' satisfies condition (H) with ( i j ) =  (34) and monotonicity
of v '.
Case iii): ui* has three veto players, say 1, 2 and 3. Then v ( S ) =  0 if S  =  (123) and 
S  =  (1234) and the statement is trivial.
Case iv): ui* has four veto players. Then v(S) =  0 if S  =  (1234) and the statement 
is trivial. <

Lemmas 10 and 11 provide the basis for an algorithm in order to determine whether a 
0-normalized 4-person game v has a pmas or not: compute in each step the games ui 
and subtract that game ui  which has a minimal number of veto players (ai  times). 
If the game v satisfies conditions (A)-(I) then Lemma 11 guarantees that after such
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a step we are left with a game v' := v — a iu i  which also satisfies conditions (A)-(I). 
Moreover, if v' =  0, Lemma 10 guarantees that there is at least one player i with 
ui  = 0  and hence the algorithm does not stop. Note also that if v is integer valued, 
all a i ’s are integer. We have proved the following theorem.

T h eo rem  12: If v is a 4-person game satisfying conditions (A)-(I) then v has a 
pmas. If, moreover, v is integer valued then v has an integer valued pmas.

E x a m p le  13: Let v be the 0-normalized game, given by v(1234) =  7, v(123) =  
v(124) =  v(134) =  4, v(234) =  6 , v(12) =  v(13) =  v(14) =  2, v(23) =  v(24) =  3, 
and v(34) =  4. Computing the u i ’s we get, e.g., ui  =  u2ij23j24 (one veto player) with 
a2 =  2. Determination of v' =  v — aiu'i yields v'(1234) =  5, v'(123) =  v'(124) =  2, 
v'(134) =  v'(234) =  4, v'(12) =  0, v'(13) =  v ' (14) =  2, v(23) =  v(24) =  1, and 
v'(34) =  4. Proceeding in the same way we subtract u3i 32 34 in the second step, 
u3 i ,34 in the third step, u4i 42 43 in the fourth step, u4i 43 in the fifth step, and u i234 

in the sixth step, after which the algorithm ends. So, v =  2u2ij23j24 +  u3ij32j34 +  
u3i,34 +  u4ij42,43 +  ^ ^ 4 3  +  ui234-

7  A n in teger gam e w ith  only non-in teger pm asses

The previous results enable us to find an integer game that has only non-integer 
pmasses. Let N  =  (1234567) and consider the inequality:

2v(12345) +  2v(12346) +  2v(12347) >
3v(1234) +  v(125) +  v(136) +  v(147) +  v(237) +  v(246) +  v(345).

It is easy to verify that it arises from a gbw, namely take:
A  =  {(12345), (12346), (12347)},
A =  {(1234), (125), (136), (147), (237), (246), (345)},
6 s  =  2 for ali S  G A  A(i234) =  3
XT =  1 for all T  G A \{(1234)},
Î s  T =  1 for all ( i , S , T ) G N  x A  x A with i G T  c  S .

Suppose that we have a game v with a pmas x  such that v ( S ) =  2 for S  G A u {(1234)}  
and v ( T ) =  1 for T  G A \{(1234)}. Then the inequality is tight. By Corollary 6 we 
can infer that there exist numbers a i , . . . ,  a 7, such that for all S  G A  U A: x Sji =  ai 
for all i G S .

5 4 5  4

We have: a 5 =  3̂ a i — 53 a i =  53 x (i2345),i — 53 x (i234),i =  v(12345) — v(1234) =  0 . 
i= i i= i i= i i= i 

Because of the symmetric roles of the players 5, 6 and 7, a 6 =  a 7 =  0 as well.
Let i and j  be players in (1234). Then there is a 3-person coalition T  G A which 
contains ( i j ) and one player of the coalition (567). Therefore a i +  a j  =  v ( T ) =  1. 
This makes 0 4 =   ̂ for every i G (1234).
Hence, in order to find an example we have to find a game v with the previous 
properties. This can be done by defining:

v (S ) = 0  if there is no T  G A  U A with T  C S ,
v ( S ) =  1 if there are T  G A \{(1234)}, U G A  such that T  C S  £  U ,
v(s ) =  2 if S  G A  U {(1234)} and
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v(S) =  \S n (1234) | else.
Let x  be defined as follows:

x Si  =  0 if v(S) =  0 or i G (567), 
x Si  =  0 if v(S) =  1, i G S  n (1234) and S \ i  G A, 
x s ti =  \  if v(S)  =  1, i G S  fi (1234) and S \ i  ^ A, 
x s ti =  |  if S' G A  U {(1234)} and i G (1234) and 
xs,i =  1 else.

Then x  is a pmas of v .
We have not been able to find examples with less than 7 players.
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