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A b stra c t

Index expressions are expressive descriptors that capture some of 
the linguistic structure of natural language. Index expressions have 
proven of value for Information Retrieval (IR) in many applications. 
However, quantitative matching schemes, or similarity measures, have 
not been provided for index expressions yet. In this article, sev
eral quantitative matching strategies for index expressions are devised. 
This vastly increases the potential of applying index expressions for IR. 
Both content and structure play a role in these matching strategies. 
Different views on the semantics of index expressions are analysed: or
der of subexpressions, embedding, and headedness. These views are 
formalised in criteria for which corresponding similarity measures are 
devised. These measures are proven optimal for the corresponding cri
teria. In designing the similarity measures, both the inductive and the 
structural representations of index expressions are exploited.



1 Introduction

Index expressions (see e.g. [8, 17, 4]) have proven of great value for In
formation Retrieval (IR). As expressive, yet simple descriptors, they have 
been applied for query formulation ([3]), document indexing ([7]), and the 
construction of hyperindices ([6]) and association indices (see e.g. [16, 15]). 
Index expressions exhibit a nice structure which captures some of the linguis
tic structure of natural languages. Index expressions also provide a useful 
simplification of no un-phrases.

However, matching cannot yet be done properly with index expressions. 
The reason for this is the lack of numerical similarity measures. In this 
article, several such similarity measures for index expressions are devised, 
thus enabling index expressions to be used in important IR tasks tha t involve 
matching.

Matching is one of the three main concepts in IR next to query for
mulation and document characterisation. At a conceptual level, matching 
measures the strength of resemblance between descriptors. Matching is used 
for query processing, classification, clustering, filtering, routing, etc.

The resemblance between index expressions can be expressed qualita
tively and quantitatively. The qualitative approach deals with equality, 
equivalence, and notions of subexpressions. In [17], a formalisation of in
dex expressions and several qualitative relations describing subexpressions 
are given. For the mentioned IR tasks tha t involve matching, qualitative 
approaches are not sufficiently expressive. In stead of qualitative relations, 
quantitative (numerical) functions are needed.

The only currently existing way of matching index expressions numer
ically is with the use of belief networks ([5]). However, one needs expert 
knowledge about such networks to set up a system with it. Furthermore, 
the belief network approach seems hard to augment with additional lin
guistic knowledge. Another major drawback is that it cannot be based on 
different views on the semantics of index expressions.

Clearly, matching is to establish the resemblance in meaning of index 
expressions. In other words, matching should deliver the degree of semanti
cal resemblance. We therefore first analyse important issues concerning the 
semantics of index expressions and, directly based on that, devise several 
corresponding matching functions.

In this article, we do not consider the use of additional linguistic knowl
edge. For example, we do not consider stemming and the use of thesauri. 
However, since these issues are largely orthogonal to our approach, they can 
readily be incorporated.
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Related work is done in the areas of fuzzy matching using WordNet 
([12]), where descriptors are flattened before being matched and tree in
clusion algorithms ([11]), concentrating on the algorithmical aspects of tree 
embedding.

In the next section, preliminaries of index expressions are given. In 
section 3, several issues concerning the semantics of index expressions are 
analysed. In section 4, matching strategies for index expressions correspond
ing to the result of section 3 are introduced. Section 5 elaborates on related 
work. Finally, section 6 provides concluding remarks and directions for fur
ther research.

2 Index  E xpressions

Index expressions can be represented in several ways (see e.g. [17]). Each 
representation has its own advantages and disadvantages. We use the in
ductive and the structural representations. These representations describe 
the same language of index expressions but differ in denotational properties.

2.1  In d u c tiv e  R e p r e se n ta tio n

The inductive representation, as described in definition 2.1, is used since 
it most basically describes the (de)composition of index expressions. The 
underlying idea is tha t index expressions can be augmented with subexpres
sions through connectors. This is illustrated in figure 1. An advantage of 
such an elementary representation is that it allows several auxiliary functions 
to be readily designed.

Figure 1: Basic Setup of Inductive Representation 

D efin ition  2.1
Let T  be a nonempty set of terms and C be a set of connectors such 

that T  D C  = 0 . Then, the language of non-empty index expressions 
is defined as:

1. if t €. T , then t is a non-empty index expression, and
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2. if I  and J  are non-empty index expressions and c € C is a con
nector, then add (I, c, J ) is also a non-empty index expression, 
and

3. no other non-empty index expressions exist.

□

E xam ple 2.1
Single word queries or document representations are modeled by terms. 

Example terms are conference, biology, and Holland. Composed index 
expressions can be constructed through the add operator. This also 
exploits connectors, such as in, with, and on. For instance, the com
posed index expression add(conference, on, biology) represents informa
tion on a conference on biology. As a more complex example, consider 
add(add(conference, on, biology), in, Holland) denoting information on a 
conference on biology held in Holland. The semantics of index ex
pressions depends on their structure. That is, differences in nested 
subexpressions may cause differences in semantics. As an example 
of this, compare the last index expression with the slightly different 
add (conference, on, add(biology, in, Holland)). The last one denotes a 
conference about biology for as far as it is practiced in Holland. □

Terms(i) =  {t}
Terms(add(I, c, J )) =  Terms(I) U Terms( J )

Conns(i) =  0
Conns(add(I, c, J)) =  Conns(I) U{c}U Conns( J)

Head(i) =  t
Head(add(/,c, J )) =  Head(I)

Figure 2: Auxiliary functions on index expressions.

Three auxiliary functions on index expressions are introduced in figure 
2. These functions are used in defining similarity measures. The definitions 
are formulated in terms of the inductive definition of index expressions. The 
functions result in the terms of an index expression, its connectors, and its 
head, respectively.
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2.2  S tru c tu ra l R e p r e se n ta tio n

The inductive representation provides a horizontal decomposition of index 
expressions: subexpressions are added on the right. Another representa
tional formalism for index expressions, called the structural representation, 
serves better if all subexpressions at a certain depth have to be addressed at 
the same time. The structural representation provides a vertical decomposi
tion of index expressions, allowing a direct and clear look on their structure. 
The structural representation is exploited in cases where the order of subex
pressions is to be taken into account. In the structural representation, a 
composed index expression is denoted by

h ®i=i Ci(Ii) = h c i ( h ) . . .  ck(Ik)

where h is the head and the k subexpressions ƒ* are connected with the 
head by connectors c*. The subexpressions are denoted by the structural 
representation as well. The composition operator <g> provides a notational 
shorthand.

h

Figure 3 gives a schematic view on the structural representation. 

E xam ple 2.2
The two last mentioned index expressions of example 2.1 are denoted 
in the structural representation as conference on (biology) in (Holland) 
and conference on (biology in (Holland)), respectively. Note that in the 
structural representation the differences in semantics are modeled by 
brackets. □

3 Issues concerning Sem antics

The index expression
h c i (h ) . . .  ck(Ik)
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can be seen as a description of a concept named h being further refined by 
relations called c \ . . .  ck and concepts I \ . . .  ƒ&, respectively.

As a consequence, comparison of both concepts names (contents) as well 
as the refining mechanism (structure) will be im portant issues when match
ing index expressions. This section presents several topics concerning con
tents and structure tha t refine the abovementioned view on the semantics 
of index expressions.

3.1  C o n te n ts

The contents of index expressions is given by their terms and connectors.

3.1.1 Terms

In order to match index expressions, their terms should be compared. There
fore, we assume a similarity function between terms, denoted simy : T x T  ^ > 
[0..1], The expression simy(i, t') denotes the similarity between the concepts 
referred to by terms t and t ' .

The similarity between terms can be obtained in several ways. For in
stance, it can be computed by string comparison algorithms such as n-grams. 
Furthermore, additional lexico-semantical knowledge can be used taking, for 
instance, hypernyms and synonyms into account. In IR, stemming is often 
performed to identify equivalent terms. We abstract from the particular 
techniques used in computing the similarity and concentrate on using this 
in computing similarity between index expressions.

3.1.2 C onnectors

Similar to terms, we also assume a similarity function simc '■ C x C ^ > [0..1] 
between connectors. This similarity expresses the strength of the relation 
between connectors.

The similarity function for connectors can take several aspects into ac
count. For instance, it can be based on the types of connectors as identified 
by Farradane (see [9] and [10]). In this approach, called relational indexing, 
connectors model the relationships between terms. Connectors that model 
the same relationship could be given a high similarity value. Furthermore, 
the priority of connectors within index expressions can be exploited. In 
addition, occurrence-frequencies of connectors could be used. Again, we 
abstract from the different approaches and focus on exploiting similarity 
between connectors for matching index expressions.
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3.2  S tru ctu re

The structure of index expressions partly determines their semantics and 
should, therefore, be taken into account in matching. Three issues con
cerning structure are considered in this article: the order o f subexpressions, 
embedding, and headedness.

3.2.1 Order o f Subexpressions

An important question considering the semantics of index expressions is 
whether the order of subexpressions is relevant. Consider for example the 
following index expressions.

hiking in mountains w ith friends 
hiking w ith friends in mountains

One may argue tha t their meaning is equivalent. In other situations, 
however, there may be cases in which the order of subexpressions is relevant, 
i.e., causes a different meaning. For instance, if the sequential order of 
paragraphs in a text is represented in an index expression.

The notion of order of subexpressions is formalised by the relation EqOrder 
as follows.

D efin ition  3.1
We call two index expressions I  =  h® f= lCi(Ii) and J  = h '® kj =\d i(J j)  

equivalent modulo order, denoted by EqOrder (I, J), iff

1. h =  b!, and
2. there exists a perm,ut,ation n o f [1. ,k] such that fo r all 1 < j  < k 

it holds that Ci = and EqOrder(/i, Jny)).

□

Two index expressions are equal modulo the order of their subexpres
sions iff their heads are equal and (recursively) their subexpressions can be 
grouped in pairs (by the permutation) tha t are also equal modulo order.

Lem m a 3.1 For every non-empty index expression / ,  we have EqOrder(J, I). 

Proof:
This follows from the observation that identity is to be taken as per
mutation.

Later in this article, we describe a matching strategy that is optimal for 
index expressions tha t are equal modulo order.
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3.2.2 Em bedding

Embedding or containment plays a prominent role in IR. For example, an 
often applied strategy to query-document matching is: if the query is con
tained or embedded in a document, then the document is deemed relevant 
to the query.

Different notions of embedding exist. The subexpression relation for 
index expressions, for example, defines a connected variant of embedding: 
a subexpression is a connected part of its superexpressions. For instance, 
surfing in Holland is a subexpression of surfing in Holland in November but 
not a subexpression of surfing in sunny Holland.

In the abovementioned case, sunny modifies the last term Holland of the 
path  expression sunny Holland. In our view, surfing in Holland is therefore 
embedded in surfing in sunny Holland. To cater for these cases, we exploit a 
slightly more liberal version of embedment.

Connectedness can, in the context of subexpressions, be described by di
rect ancestorship, or, parenthood. This means that for all terms in an index 
expression / ,  their parent must also be their parent in index expressions in 
which I  is embedded. In stead of direct ancestorship we use the notion of 
(general) ancestorship. This means that index expression I  is embedded in 
J  iff for all terms in I  their ancestors in I  are also ancestors in J .

These considerations are reflected in our notion of embedding of index 
expressions which is formalised by an embedment -C relation as follows.

D efin ition  3.2
Embedding of index expressions is captured in the binary relation -C, 

where I  -C J  means that I  is embedded in J , which is defined as: 
(Same)
(Sub) J -C  a d d (J ,c ,K )  if I  ^  J  or I  C  K  
(Split) add(I, c, J )  -C add(K , d, L) if c = d and I  -C K  and J « L  
(Stop) no other cases apply

□

Terms are embedded in themselves, as described by case Same of def
inition 3.2. Case Sub states that an index expression is embedded in a 
composed one add( J, c, K ), if it is embedded in either subexpression J  or K.  
The third case Split shows that a composed index expression add(I, c, J ) is 
embedded in another composed index expression add(K ,d ,L )  if their con
nectors are equal, the leftmost subexpression I  is embedded in the other 
leftmost subexpression K , and a similar argument holds for J  and L.

Lem m a 3.2 For every non-empty index expression / ,  we have I  -C I.
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The subexpression relation for index expressions (see [17]), denoted by ==!, 
defines the (connected) subexpressions of index expressions. The expression 
I  4 J  means that index expression I  is a subexpression of J .

Lem m a 3.3 For every two non-empty index expressions I  and J , we have 
I  =4 J  I  J  ■
Proof: The lemma follows from the observation that in the subex
pression relation =<!, direct ancestorship is preserved, which is stricter 
than the general ancestorship which is preserved by the embedment 
relation <C.

3.2.3 H eadedness

The head of an index expression is considered to be its most im portant part. 
This concept is called headedness in [13]. The subexpressions modify the 
main concept stated in the head. Consequently, the lower terms occur, i.e., 
deeper with respect to nested expressions, the less im portant they are. This 
can be taken into account in matching by exploiting the depth of terms. 
Multiplying by a factor that is inversely proportional with the depth gives 
the desired result. We will indicate how the designed similarity functions 
can be equipped with such a depth factor.

4 S im ilarity  M easures for Index  E xpressions

In this section, several similarity measures for index expressions are designed. 
They vary from simple measures that only consider the content of index 
expressions to more comprehensive measures tha t consider both content and 
structure.

4 .1  C o n te n ts  O n ly

Measuring the similarity between index expressions by sets of terms and 
connectors considers only their contents. That is, these similarity measures 
are based solely on the terms and connectors of index expressions. This 
means tha t the structure of index expressions is not taken into account.

The similarity between sets of elements can be expressed by several stan
dard measures. Examples are the Dice and Jaccard coefficients and the co
sine and overlap measures (see e.g. [14]). These measures do not use the 
primitive similarity functions for terms and connectors as described in sec
tions 3.1.1 and 3.1.2, respectively. Instead, they use set primitives as union,
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disjunction, and cardinality which use equality of elements (terms and con
nectors).

As an example, we apply the Dice coefficient for matching index expres
sions. The Dice coefficient, which normalizes the intersection A  D B  with 
the sum of constituents, is defined as

2| A  D B |
( ’ ) “  \A\ +  \B\

in case A  or B  is nonempty. Furthermore, Dice(0, 0 ) =  0. As an exam
ple, consider the following similarity measure for index expressions based on 
the Dice coefficient:

sim(J, J )  =  aD ice(Term s(I), Terms( J ))  +  (1 — a)D ice(C onns(I), Conns(J))

Figure 4: Dice’s Similarity Measure for Index Expressions

For a  =  1, only terms are considered and for a  =  0 only connectors are 
taken into account. Note tha t a depth factor cannot be taken into account 
directly since no information about structure is available in sets of terms.

4 .2  C o n te n ts  an d  S tru ctu re

This section provides three similarity measures tha t take both content and 
structure of index expressions into account. The first measure, coined Full 
Product, adheres to the idea that the order of subexpressions is irrelevant 
for the meaning of index expressions. On the contrary, the second measure, 
called Embedded Content, deems the order relevant. Finally, the Twigs mea
sure is based on decomposing index expressions into elementary connections 
called twigs.

4.2.1 Pull Product

The Full Product similarity measure computes the degree to which an index 
expression is equivalent modulo order with another one. This means that 
the order of subexpressions is considered irrelevant. Since the structural rep
resentation appears most appropriate in this case, the Full Product measure 
is specified by it as depicted in figure 5.

The Full Product algorithm, as shown in figure 5, consists of four cases. 
They can be readily translated to a functional algorithm using pattern
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(Terms) sim (i, t') 
s im ^ i, t')

(Top) sim (i, h ®f=l Ci(Ii))
= sim T(t ,h)

(Tall) sim (/i <8>|L1 Cj(7j), b! ®lj=l dj(Jj))
= simT (h ,h f) x jS jL jm a x -fs im c ic i, dj) x sim(7j, Jj)\ l  < j  < 1}

(Toll) sim (h®i= l Ci(Ii),t)
_  sim T(h,t)
~  \Terms(h®ki=1ci(ii))\

Figure 5: Full Product Algorithm

matching. The first case Terms computes the similarity between single terms. 
In case Top, the embedment of a single term t in a composed index expres
sion h ®f=i Ci(Ii) is computed by comparing t with head h since both occur 
at the same depth.

The third case Tall computes the similarity between composed index ex
pressions. Correspondingly to definition 3.1, this is the product of the sim
ilarity between the heads and the maximum similarity values of the subex
pressions of I  with some subexpression of J .

The final case Toll gives a penalty for the fact that a composed index 
expression cannot be fully embedded in a term. The returned similarity 
value is smaller if the mismatch in size (number of terms) is larger.

Note tha t the Full Product measure computes a similarity value layer by 
layer. That is, only terms and connectors that occur at the same depth are 
compared. We say tha t a similarity measure is optimal for certain combi
nations of index expressions if it returns similarity value 1.

Theorem  4.1 The Full-Product similarity measure is optimal for index 
expressions that are equal modulo the order of their subexpressions.

Proof:
We only investigate the (interesting) case of composed index expres
sions. Suppose I  =  h ®f=1 Ci(Ii) and J  = h' l dj(Jj)  are equal 
modulo the order of their subexpressions. This means tha t for each 
hci(Ii) the maximum value m.a.x{s\m(hci(Ii),h'dj(Jj)\l < j  < 1} is 1 
since
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1. h =  hf, meaning simt( / i ,  /i') =  1, and

2. there exists a 1 < j  < I such that dj =  Ci and EqOrder(/¿, Jj) 
meaning tha t simc(ci, dj) = 1 and, as can be shown by induction, 
sim(/¿, Jj) = 1.

This means that, for the j  of case (2), simT (h ,h f) x simc(ci,dj)  x 
sim (/¿, J j)  =  1. The total similarity measure then comes down to 
jS f =1l which equals 1.

Corollary 4.1 The Full Product similarity measure computes sim(J, I) = 
1.

The depth factor d can be incorporated in the Full Product measure by 
altering case Tall of the Full Product algorithm of figure 5:

simd (h ®f=1 Ci(Ii), t i  ®lj=l dj(Jj))
= simd;r(h ,t i)  x l ^ f =l{s\md+lfi,(ci,dj) x simd+1(7i, Jj)\ l  < j  < 1}

4.2.2 Em bedded C ontent

The Embedded Content measure (see figure 6) computes the best way in 
which an index expression can be embedded (as defined in definition 3.2) 
in another one. This means that the order of subexpressions is considered 
relevant.

(Terms) s im (i, t')
= sim t ( M 0

(Top) s im (i, add(I, c, J ))
=  m ax{sim (i, I ) ,  s im (i, J ) }

(Tall) s im (add(I, c, J ) , add(K , d, L ))
=  m ax{sim (add(I, c, J ) , K),  s im (add(I, c, J ) , L ), 

sim ( I , K )  x sim c(c, d) x s im (J ,L )}

(Toll) sim(add ( I , c , J ) , t )
_  simT(Head(/),f)
— |Terms(add(/,c,J))|

Figure 6: Embedded Content Algorithm
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The cases considered by the embedded content measure are the same as 
for the Full Product measure. The case Terms is exactly the same and calls 
the similarity function for terms simy. The second case Top of figure 6 states 
tha t the strength at which a term  t is embedded in a composed index ex
pression add(I, c, J ) is equal to the maximal similarity to one of add(I, c, J). 
Case Tall computes the strength of embedding of a composed index expres
sion add(I, c, J )  in another one add(K,d,L) .  It computes the maximum 
similarity of the following three cases: (1) add(I, c, J )  is completely em
bedded in the leftmost subexpression K . (2) it is completely embedded in 
the rightmost subexpression L, and (3) subexpression I  is embedded in K . 
subexpression J  is embedded in L, and connectors c and d are similar. Again, 
case Toll gives a penalty for mismatch since terms can never be embedded 
in composed index expressions.

Note that the Embedded Content measure never results in a higher value 
than the basic skeleton measure since extra constraints are implied by the 
content.

Theorem  4.2 The Embedded Content measure is optimal for embedded 
index expressions.

Proof:
The theorem is proven by induction on the structure of index expres
sions. Suppose I  «  J .

B asis. Suppose I  is a term t. Only the first two cases of definition
3.2 of embedded content, Same and Sub, are to be examined since 
the third case Split cannot apply (I  is a term).

Same: Suppose this case of definition 3.2 applies. Then, J  =
I  = t and consequently sim(J, J) =  si my ( I ,  J ) =  1.

Sub: Suppose this case of applies which means that J  = add(K , c, L) 
and t -C K  or t -C L. Similar induction to the structure of 
J  shows that either sim(i, K)  =  1 or sim(i, L) =  1. This 
means that, by case Top of the embedded content algorithm, 
sim(J, J )  =  1.

Induction  step . Suppose I  is a composed index expression add(K , c, L). 
Furthermore, without loss of generality, let J  = add(M , d, N).  
Now, only cases Sub and Split of definition 3.2 need to be exam
ined. Both result in sim(J, J )  =  1:

Sub: Here, we have (1) I  -C M  implying sim(J, M)  =  1 or (2)
I  -C N  which means that sim( I , N)  = 1. Since case Tall of
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the algorithm is applied, computing the maximum of these 
cases, both options cause sim(J, J )  =  1.

Split: In this case, we have tha t c =  d and K  <C M, and L  <C N.  
By the induction hypothesis, this implies that sim (K, M)  =  1 
and sim (L ,N)  = 1. Together with simc(c,d) = 1 this causes 
case Tall of the embedded content algorithm to compute 
sim(J, J ) =  1.

We have shown that in all possible cases in which I  is embedded in J  
the embedded content measure computes sim ( I ,  J ) =  1.

Corollary 4.2

1. The embedded content measure is optimal for subexpressions, 
i.e., I  4 J  => sim(J, J )  =  1

2. sim ( I ,  I) = 1 for all index expressions I

The depth factor d can be incorporated in the inductive representation 
by the following scheme:

simcj(a d d (I, c, J ) , add(K , d, L)) =  simcj(J ,  K)  x  sim c(c, d) x simcj +^(J , L)

Figure 7: Depth-factor

4.2.3 Tw igs

The twigs (see [18] or [1]) of an index expression are its subexpressions that 
consist of exactly two terms and one connector. Twigs are the elementary 
connections in the concept graph which is formed by an index expression. 
Twigs enable us to form a global picture about similarity while focusing in 
on the elementary refinements.

Our contributions to the twigs measure are (1) the inclusion of headed- 
ness, (2) an functional algorithm to compute twigs for inductively defined 
index expressions, and (3) an implementation of the measure in the func
tional language Clean (see e.g. [2]).

To denote subexpressions of size two, we use the subexpression relation 
as given in the previous section.

tw igs (I) =  {tct'\tct/ 4  1}
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In terms of the inductive representation of index expressions, twigs can 
be defined constructively as follows. This shows that the twigs of an index 
expression can be produced by a straightforward syntactic process. Note 
that twigs are accompanied by their depth factor, modeled by a positive 
integer. The expression tw ig s ( I ,1) computes the twigs of I  and their depth.

twigs (e, d) =  0
tw igs(i, d) = 0
tw igs(add(I, c, J ), d) =  {(add(H ead(I), c, Head(J)), d)}

U tw igs(I, d) U twigs( J, d +  1)

Lem m a 4.1 If to index expressions are equivalent modulo order, then their 
twigs are the same, i.e., if EqO rder(J, J ) then tw igs (1 ,1) =  tw igs(J, 1).

The similarity between two twigs is the product of the similarity between 
the two connectors and the average similarity between the left- and rightmost 
terms. In addition, the depth factors are taken into account by function 
ƒ :A f x A f  ^  [0..1],

, ■ ■ {{-t- -J i \ { j  r i r\\ t n  i>\ ■ ( j \ s\mT ( t ,u )+ s \m T (i/,u') twigsim( ( tc t , k), (udu , k ) )  = f ( k ,  k ) x simc(c, d) x -------------------------------

The twig measure is defined as the normalized sum of similarity between 
the twigs of both index expressions.

simtw igs(J >J ) =  av§ ^  tW'gsim(p ,g )
petwigs(i) getwigs(J)

Figure 8: Twigs similarity

Corollary 4.3 If index expressions I  and J  are equivalent modulo or
der, then for every index expression K  we have simtw jgS(J, K )  =

s'rntwigs(t̂ ’

As observed in [1], twigs conserve most of the structure of index ex
pressions. In fact, if all terms are different the complete structure can be 
correctly reconstructed without any additional information. For twigs with 
depth factor, this can be relieved further to all terms should be different at 
the same depth.
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Twigs of index expressions seem to resemble trigrams for strings. Con
siderations similar to trigrams are therefore expected to hold for twigs. For 
instance, an advantage of the use of twigs over equality-matching is their 
robustness for ‘spelling variations’ such as variations in order of subexpres
sions.

4 .3  O v erv iew  o f  P r o p e r tie s

Figure 9 gives an overview of the optimality of the different similarity mea
sures with respect to several criteria. The columns correspond to Dice’s 
measure, the full product, embedded content, and the twigs similarity mea
sure, respectively. The rows correspond to the notion of equality modulo 
the order of subexpressions (EqOrder), embedding (<C), identical arguments 
(sim(J, /)) , and subexpressions (4 ). A  + denotes tha t the measure is optimal 
for the criterion.

Optimal Dice FullProd EmbCont Twigs
EqOrder

■C
sim(J, I)
4

+ +  - - 
- - +  - 
+  +  +  - 
- - +  -

Figure 9: Overview of optimality.

The optimal cases were proven earlier in this section. Below, illustrative 
counterexamples are given for the non optimal cases. The contents of figure 
9 is discussed row by row.

First, consider the following pair of index expressions that are equal mod
ulo the order of their subexpressions: I  =  conference on (biology) in (Holland) 
and J  = conference in (Holland) on (biology). Since their corresponding sets 
of terms and connectors are equal, the Dice measure is optimal.

Since in the embedded content measure the order of subexpressions is 
relevant, index expressions I  and J  are not optimally similar.

Although the sets of twigs for I  and J  are equal, the twigs measure is 
not optimal. This is caused by the fact tha t the twigs measure computes 
the average similarity over all pairs of twigs. This includes pairs tha t are 
not equal, such as conference on biology and conference in Holland.

Second, we focus on embedding of index expressions, as denoted by -C. 
Consider the example index expressions I  =  surfing in Holland and J  = 
surfing in sunnyoHolland from section 3.2.2. The Dice measure, setting a  =  1
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for reasons of clarity, computes the similarity based on the sets of terms 
Term s(I) =  {surfing, Holland} andTerm s(J) =  {surfing, Holland, sunny}. Since 
these sets are not equal, the Dice measure does not return value 1. In stead, 
it results in D ice(I, J ) =

Since the full-product measure computes the similarity between index 
expressions layer by layer, the expression sim(Holland, sunny o Holland) has 
to be evaluated at depth one. By case two of the full-product measure, this 
expression results in sim(Holland, sunny) =  0.

The resulting sets of twigs, not considering their depth, are tw ig s (I) =  
{surfing in Holland} and tw igs(J) =  {surfing in sunny, sunny o Holland}. The 
similarities between the individual twigs are less than one. For instance, 
tw igsim(surfing in Holland, sunnyoHolland) involves computing sim c(in , o) and 
s im ^su rfing , sunny), which both are less than one.

Third, consider I  =  conference on (biology) in (Holland). This single in
dex expression contains two different twigs. The twigs measure also com
pares these different twigs and therefore is not optimal for this case.

Finally, the explanation of the line for subexpressions, denoted by ==!, 
follows a similar line of argument as for embedding. Consider, for example 
Holland and surfing in Holland. Clearly, the sets of terms and connectors 
are unequal, preventing Dice to be optimal. Since the heads of both index 
expressions are unequal, the layer by layer computation of the full product 
measure is not optimal either. Finally, note tha t the sets of twigs are not 
equal.

5 R ela ted  W ork

In this section, related approaches to our work are described.

5.1  F ram es

In the DORO (see [13] and [12]) project, noun phrases and verb phrases are 
normalized before being matched. The first normalisation phase, syntactic 
normalisation, consists of three steps: (1) elimination of redundant elements, 
(2) morphological normalisation by lemmatization, and (3) syntactic normal
isation by mapping syntactically different but semantically equivalent forms 
onto the same form.

The third step has strong resemblance to computing twigs. In the DORO 
project, noun phrases are represented by by so called frames which consist
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of a head and a number of modifiers. Both head and modifiers can contain 
nested frames. In the syntactic normalisation, unnesting is applied to flatten 
the frames, resulting in a multiset of unnested frames. Unnesting frames is 
done in order to raise recall.

As an example, taken from [13], the somewhat curious sentence

man visited conference on software engineering

might be transduced to the nested frame

[visit, [conference, onfengineering, software]]]

which is unnested to

{[visit, conference], [conference, on engineering], [engineering, software]}

Fuzzy matching is used in the DORO project. This means tha t (1) frames 
are matched partially after unnesting, and (2) that semantical knowledge in 
the form of hypernym relations is exploited.

The similarity of unnested frames is expressed as the product of similar
ities between head and modifiers. This is similar to our approach.

5.2  T ree In c lu s io n

In [11], Kilpelafnen and Mannila describe a language for querying structured 
text based on tree inclusion. Their approach, which exploits inclusion pat
terns to ensure preservation of binary properties between nodes, takes both 
structure and content into account. Example inclusion patterns are L  for 
labels, A  for ancestorship, and O for (left-to-right) ordered tree inclusion.

Our skeleton-content approach resembles their {LAO}-embedding. That 
is, ancestorship and ordering are preserved and labels are taken into account. 
However, our approach does not hinge on equality of labels but uses approx
imate matching of strings by exploiting similarity functions for terms and 
connectors. In the introduction of the mentioned article the authors indi
cate tha t such ’’standard IR techniques should be added to the language” . 
Although the authors claim that such techniques are largely orthogonal to 
preserving binary properties, we claim tha t computing similarity between 
index expressions involves more.

Our skeleton-content approach thus ‘preserves’ labels by taking into ac
count their similarity. In a way, it searches for the best {L'AO}-embedding 
and delivers the degree of embedding.
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A similar line of reasoning shows that our full product approach com
putes the degree of {LA}-embedding. Since the order of subexpressions is 
irrelevant, the corresponding inclusion pattern O is not satisfied.

6 C onclusions

In this article, we devised several similarity measures for index expressions. 
Since many Information Retrieval tasks require numerical matching, these 
measures enable numerous new possibilities to exploit index expressions.

We investigated different views on the semantics of index expressions 
(order of subexpressions, embedding, and headedness) and formalised these 
into criteria. This enabled the design of corresponding similarity measures. 
Our similarity measures exploit the inductive as well as the structural rep
resentations for index expressions using profitable aspects of both.

We introduced measures that are only based on the contents of index 
expressions and similarity functions that exploit both structure and con
tent. The similarity measures were proven optimal with respect to the cor
responding criteria. In addition, other criteria, such as subexpressions, were 
also checked. Finally, we compared our approach with related work.

Future research can be directed towards including wildcards and vari
ables in matching index expressions. In addition, other criteria for the se
mantics of index expressions may exist, leading to different optimal similar
ity measures. Several of the similarity measures provided in this article are 
not symmetric since they compute the degree of embedment. Symmetric 
variants of these measures can be defined readily.

We have implemented the mentioned similarity measures in a functional 
language. Large-scale experiments researching the effectiveness of index 
expressions in comparison to other descriptor languages are also considered 
an issue for further research.
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