
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/18702

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16108244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/18702

Matching Index Expressions for Information Retrieval

B.C.M Wondergem , P. van Bommel, Th.P. van der Weide

Computing Science Institute/

CSI-R9826 December 1998

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands

M atching Index Expressions
for

Inform ation Retrieval

B.C.M , W ondergem, P, van Bommel, and Th.P, van der Weide
C om puting Science In stitu te , University of Nijmegen

Toernooiveld 1, NL-6525 ED, Nijmegen
The N etherlands

(bernd@ cs,kun.nl)

Keywords: Information Retrieval, Similarity, Index Expressions,
Matching.

A b stra c t

Index expressions are expressive descriptors that capture some of
the linguistic structure of natural language. Index expressions have
proven of value for Information Retrieval (IR) in many applications.
However, quantitative matching schemes, or similarity measures, have
not been provided for index expressions yet. In this article, sev
eral quantitative matching strategies for index expressions are devised.
This vastly increases the potential of applying index expressions for IR.
Both content and structure play a role in these matching strategies.
Different views on the semantics of index expressions are analysed: or
der of subexpressions, embedding, and headedness. These views are
formalised in criteria for which corresponding similarity measures are
devised. These measures are proven optimal for the corresponding cri
teria. In designing the similarity measures, both the inductive and the
structural representations of index expressions are exploited.

1 Introduction

Index expressions (see e.g. [8, 17, 4]) have proven of great value for In
formation Retrieval (IR). As expressive, yet simple descriptors, they have
been applied for query formulation ([3]), document indexing ([7]), and the
construction of hyperindices ([6]) and association indices (see e.g. [16, 15]).
Index expressions exhibit a nice structure which captures some of the linguis
tic structure of natural languages. Index expressions also provide a useful
simplification of no un-phrases.

However, matching cannot yet be done properly with index expressions.
The reason for this is the lack of numerical similarity measures. In this
article, several such similarity measures for index expressions are devised,
thus enabling index expressions to be used in important IR tasks tha t involve
matching.

Matching is one of the three main concepts in IR next to query for
mulation and document characterisation. At a conceptual level, matching
measures the strength of resemblance between descriptors. Matching is used
for query processing, classification, clustering, filtering, routing, etc.

The resemblance between index expressions can be expressed qualita
tively and quantitatively. The qualitative approach deals with equality,
equivalence, and notions of subexpressions. In [17], a formalisation of in
dex expressions and several qualitative relations describing subexpressions
are given. For the mentioned IR tasks tha t involve matching, qualitative
approaches are not sufficiently expressive. In stead of qualitative relations,
quantitative (numerical) functions are needed.

The only currently existing way of matching index expressions numer
ically is with the use of belief networks ([5]). However, one needs expert
knowledge about such networks to set up a system with it. Furthermore,
the belief network approach seems hard to augment with additional lin
guistic knowledge. Another major drawback is that it cannot be based on
different views on the semantics of index expressions.

Clearly, matching is to establish the resemblance in meaning of index
expressions. In other words, matching should deliver the degree of semanti
cal resemblance. We therefore first analyse important issues concerning the
semantics of index expressions and, directly based on that, devise several
corresponding matching functions.

In this article, we do not consider the use of additional linguistic knowl
edge. For example, we do not consider stemming and the use of thesauri.
However, since these issues are largely orthogonal to our approach, they can
readily be incorporated.

2

Related work is done in the areas of fuzzy matching using WordNet
([12]), where descriptors are flattened before being matched and tree in
clusion algorithms ([11]), concentrating on the algorithmical aspects of tree
embedding.

In the next section, preliminaries of index expressions are given. In
section 3, several issues concerning the semantics of index expressions are
analysed. In section 4, matching strategies for index expressions correspond
ing to the result of section 3 are introduced. Section 5 elaborates on related
work. Finally, section 6 provides concluding remarks and directions for fur
ther research.

2 Index E xpressions

Index expressions can be represented in several ways (see e.g. [17]). Each
representation has its own advantages and disadvantages. We use the in
ductive and the structural representations. These representations describe
the same language of index expressions but differ in denotational properties.

2.1 In d u c tiv e R e p r e se n ta tio n

The inductive representation, as described in definition 2.1, is used since
it most basically describes the (de)composition of index expressions. The
underlying idea is tha t index expressions can be augmented with subexpres
sions through connectors. This is illustrated in figure 1. An advantage of
such an elementary representation is that it allows several auxiliary functions
to be readily designed.

Figure 1: Basic Setup of Inductive Representation

D efin ition 2.1
Let T be a nonempty set of terms and C be a set of connectors such

that T D C = 0 . Then, the language of non-empty index expressions
is defined as:

1. if t €. T , then t is a non-empty index expression, and

3

2. if I and J are non-empty index expressions and c € C is a con
nector, then add (I, c, J) is also a non-empty index expression,
and

3. no other non-empty index expressions exist.

□

E xam ple 2.1
Single word queries or document representations are modeled by terms.

Example terms are conference, biology, and Holland. Composed index
expressions can be constructed through the add operator. This also
exploits connectors, such as in, with, and on. For instance, the com
posed index expression add(conference, on, biology) represents informa
tion on a conference on biology. As a more complex example, consider
add(add(conference, on, biology), in, Holland) denoting information on a
conference on biology held in Holland. The semantics of index ex
pressions depends on their structure. That is, differences in nested
subexpressions may cause differences in semantics. As an example
of this, compare the last index expression with the slightly different
add (conference, on, add(biology, in, Holland)). The last one denotes a
conference about biology for as far as it is practiced in Holland. □

Terms(i) = {t}
Terms(add(I, c, J)) = Terms(I) U Terms(J)

Conns(i) = 0
Conns(add(I, c, J)) = Conns(I) U{c}U Conns(J)

Head(i) = t
Head(add(/,c, J)) = Head(I)

Figure 2: Auxiliary functions on index expressions.

Three auxiliary functions on index expressions are introduced in figure
2. These functions are used in defining similarity measures. The definitions
are formulated in terms of the inductive definition of index expressions. The
functions result in the terms of an index expression, its connectors, and its
head, respectively.

4

2.2 S tru c tu ra l R e p r e se n ta tio n

The inductive representation provides a horizontal decomposition of index
expressions: subexpressions are added on the right. Another representa
tional formalism for index expressions, called the structural representation,
serves better if all subexpressions at a certain depth have to be addressed at
the same time. The structural representation provides a vertical decomposi
tion of index expressions, allowing a direct and clear look on their structure.
The structural representation is exploited in cases where the order of subex
pressions is to be taken into account. In the structural representation, a
composed index expression is denoted by

h ®i=i Ci(Ii) = h c i (h) . . . ck(Ik)

where h is the head and the k subexpressions ƒ* are connected with the
head by connectors c*. The subexpressions are denoted by the structural
representation as well. The composition operator <g> provides a notational
shorthand.

h

Figure 3 gives a schematic view on the structural representation.

E xam ple 2.2
The two last mentioned index expressions of example 2.1 are denoted
in the structural representation as conference on (biology) in (Holland)
and conference on (biology in (Holland)), respectively. Note that in the
structural representation the differences in semantics are modeled by
brackets. □

3 Issues concerning Sem antics

The index expression
h c i (h) . . . ck(Ik)

5

can be seen as a description of a concept named h being further refined by
relations called c \ . . . ck and concepts I \ . . . ƒ&, respectively.

As a consequence, comparison of both concepts names (contents) as well
as the refining mechanism (structure) will be im portant issues when match
ing index expressions. This section presents several topics concerning con
tents and structure tha t refine the abovementioned view on the semantics
of index expressions.

3.1 C o n te n ts

The contents of index expressions is given by their terms and connectors.

3.1.1 Terms

In order to match index expressions, their terms should be compared. There
fore, we assume a similarity function between terms, denoted simy : T x T ^ >
[0..1], The expression simy(i, t') denotes the similarity between the concepts
referred to by terms t and t ' .

The similarity between terms can be obtained in several ways. For in
stance, it can be computed by string comparison algorithms such as n-grams.
Furthermore, additional lexico-semantical knowledge can be used taking, for
instance, hypernyms and synonyms into account. In IR, stemming is often
performed to identify equivalent terms. We abstract from the particular
techniques used in computing the similarity and concentrate on using this
in computing similarity between index expressions.

3.1.2 C onnectors

Similar to terms, we also assume a similarity function simc '■ C x C ^ > [0..1]
between connectors. This similarity expresses the strength of the relation
between connectors.

The similarity function for connectors can take several aspects into ac
count. For instance, it can be based on the types of connectors as identified
by Farradane (see [9] and [10]). In this approach, called relational indexing,
connectors model the relationships between terms. Connectors that model
the same relationship could be given a high similarity value. Furthermore,
the priority of connectors within index expressions can be exploited. In
addition, occurrence-frequencies of connectors could be used. Again, we
abstract from the different approaches and focus on exploiting similarity
between connectors for matching index expressions.

6

3.2 S tru ctu re

The structure of index expressions partly determines their semantics and
should, therefore, be taken into account in matching. Three issues con
cerning structure are considered in this article: the order o f subexpressions,
embedding, and headedness.

3.2.1 Order o f Subexpressions

An important question considering the semantics of index expressions is
whether the order of subexpressions is relevant. Consider for example the
following index expressions.

hiking in mountains w ith friends
hiking w ith friends in mountains

One may argue tha t their meaning is equivalent. In other situations,
however, there may be cases in which the order of subexpressions is relevant,
i.e., causes a different meaning. For instance, if the sequential order of
paragraphs in a text is represented in an index expression.

The notion of order of subexpressions is formalised by the relation EqOrder
as follows.

D efin ition 3.1
We call two index expressions I = h® f= lCi(Ii) and J = h '® kj =\d i(J j)

equivalent modulo order, denoted by EqOrder (I, J), iff

1. h = b!, and
2. there exists a perm,ut,ation n o f [1. ,k] such that fo r all 1 < j < k

it holds that Ci = and EqOrder(/i, Jny)).

□

Two index expressions are equal modulo the order of their subexpres
sions iff their heads are equal and (recursively) their subexpressions can be
grouped in pairs (by the permutation) tha t are also equal modulo order.

Lem m a 3.1 For every non-empty index expression / , we have EqOrder(J, I).

Proof:
This follows from the observation that identity is to be taken as per
mutation.

Later in this article, we describe a matching strategy that is optimal for
index expressions tha t are equal modulo order.

7

3.2.2 Em bedding

Embedding or containment plays a prominent role in IR. For example, an
often applied strategy to query-document matching is: if the query is con
tained or embedded in a document, then the document is deemed relevant
to the query.

Different notions of embedding exist. The subexpression relation for
index expressions, for example, defines a connected variant of embedding:
a subexpression is a connected part of its superexpressions. For instance,
surfing in Holland is a subexpression of surfing in Holland in November but
not a subexpression of surfing in sunny Holland.

In the abovementioned case, sunny modifies the last term Holland of the
path expression sunny Holland. In our view, surfing in Holland is therefore
embedded in surfing in sunny Holland. To cater for these cases, we exploit a
slightly more liberal version of embedment.

Connectedness can, in the context of subexpressions, be described by di
rect ancestorship, or, parenthood. This means that for all terms in an index
expression / , their parent must also be their parent in index expressions in
which I is embedded. In stead of direct ancestorship we use the notion of
(general) ancestorship. This means that index expression I is embedded in
J iff for all terms in I their ancestors in I are also ancestors in J .

These considerations are reflected in our notion of embedding of index
expressions which is formalised by an embedment -C relation as follows.

D efin ition 3.2
Embedding of index expressions is captured in the binary relation -C,

where I -C J means that I is embedded in J , which is defined as:
(Same)
(Sub) J -C a d d (J ,c ,K) if I ^ J or I C K
(Split) add(I, c, J) -C add(K , d, L) if c = d and I -C K and J « L
(Stop) no other cases apply

□

Terms are embedded in themselves, as described by case Same of def
inition 3.2. Case Sub states that an index expression is embedded in a
composed one add(J, c, K), if it is embedded in either subexpression J or K.
The third case Split shows that a composed index expression add(I, c, J) is
embedded in another composed index expression add(K ,d ,L) if their con
nectors are equal, the leftmost subexpression I is embedded in the other
leftmost subexpression K , and a similar argument holds for J and L.

Lem m a 3.2 For every non-empty index expression / , we have I -C I.

8

The subexpression relation for index expressions (see [17]), denoted by ==!,
defines the (connected) subexpressions of index expressions. The expression
I 4 J means that index expression I is a subexpression of J .

Lem m a 3.3 For every two non-empty index expressions I and J , we have
I =4 J I J ■
Proof: The lemma follows from the observation that in the subex
pression relation =<!, direct ancestorship is preserved, which is stricter
than the general ancestorship which is preserved by the embedment
relation <C.

3.2.3 H eadedness

The head of an index expression is considered to be its most im portant part.
This concept is called headedness in [13]. The subexpressions modify the
main concept stated in the head. Consequently, the lower terms occur, i.e.,
deeper with respect to nested expressions, the less im portant they are. This
can be taken into account in matching by exploiting the depth of terms.
Multiplying by a factor that is inversely proportional with the depth gives
the desired result. We will indicate how the designed similarity functions
can be equipped with such a depth factor.

4 S im ilarity M easures for Index E xpressions

In this section, several similarity measures for index expressions are designed.
They vary from simple measures that only consider the content of index
expressions to more comprehensive measures tha t consider both content and
structure.

4 .1 C o n te n ts O n ly

Measuring the similarity between index expressions by sets of terms and
connectors considers only their contents. That is, these similarity measures
are based solely on the terms and connectors of index expressions. This
means tha t the structure of index expressions is not taken into account.

The similarity between sets of elements can be expressed by several stan
dard measures. Examples are the Dice and Jaccard coefficients and the co
sine and overlap measures (see e.g. [14]). These measures do not use the
primitive similarity functions for terms and connectors as described in sec
tions 3.1.1 and 3.1.2, respectively. Instead, they use set primitives as union,

9

disjunction, and cardinality which use equality of elements (terms and con
nectors).

As an example, we apply the Dice coefficient for matching index expres
sions. The Dice coefficient, which normalizes the intersection A D B with
the sum of constituents, is defined as

2| A D B |
(’) “ \A\ + \B\

in case A or B is nonempty. Furthermore, Dice(0, 0) = 0. As an exam
ple, consider the following similarity measure for index expressions based on
the Dice coefficient:

sim(J, J) = aD ice(Term s(I), Terms(J)) + (1 — a)D ice(C onns(I), Conns(J))

Figure 4: Dice’s Similarity Measure for Index Expressions

For a = 1, only terms are considered and for a = 0 only connectors are
taken into account. Note tha t a depth factor cannot be taken into account
directly since no information about structure is available in sets of terms.

4 .2 C o n te n ts an d S tru ctu re

This section provides three similarity measures tha t take both content and
structure of index expressions into account. The first measure, coined Full
Product, adheres to the idea that the order of subexpressions is irrelevant
for the meaning of index expressions. On the contrary, the second measure,
called Embedded Content, deems the order relevant. Finally, the Twigs mea
sure is based on decomposing index expressions into elementary connections
called twigs.

4.2.1 Pull Product

The Full Product similarity measure computes the degree to which an index
expression is equivalent modulo order with another one. This means that
the order of subexpressions is considered irrelevant. Since the structural rep
resentation appears most appropriate in this case, the Full Product measure
is specified by it as depicted in figure 5.

The Full Product algorithm, as shown in figure 5, consists of four cases.
They can be readily translated to a functional algorithm using pattern

10

(Terms) sim (i, t')
s im ^ i, t')

(Top) sim (i, h ®f=l Ci(Ii))
= sim T(t ,h)

(Tall) sim (/i <8>|L1 Cj(7j), b! ®lj=l dj(Jj))
= simT (h ,h f) x jS jL jm a x -fs im c ic i, dj) x sim(7j, Jj)\ l < j < 1}

(Toll) sim (h®i= l Ci(Ii),t)
_ sim T(h,t)
~ \Terms(h®ki=1ci(ii))\

Figure 5: Full Product Algorithm

matching. The first case Terms computes the similarity between single terms.
In case Top, the embedment of a single term t in a composed index expres
sion h ®f=i Ci(Ii) is computed by comparing t with head h since both occur
at the same depth.

The third case Tall computes the similarity between composed index ex
pressions. Correspondingly to definition 3.1, this is the product of the sim
ilarity between the heads and the maximum similarity values of the subex
pressions of I with some subexpression of J .

The final case Toll gives a penalty for the fact that a composed index
expression cannot be fully embedded in a term. The returned similarity
value is smaller if the mismatch in size (number of terms) is larger.

Note tha t the Full Product measure computes a similarity value layer by
layer. That is, only terms and connectors that occur at the same depth are
compared. We say tha t a similarity measure is optimal for certain combi
nations of index expressions if it returns similarity value 1.

Theorem 4.1 The Full-Product similarity measure is optimal for index
expressions that are equal modulo the order of their subexpressions.

Proof:
We only investigate the (interesting) case of composed index expres
sions. Suppose I = h ®f=1 Ci(Ii) and J = h' l dj(Jj) are equal
modulo the order of their subexpressions. This means tha t for each
hci(Ii) the maximum value m.a.x{s\m(hci(Ii),h'dj(Jj)\l < j < 1} is 1
since

11

1. h = hf, meaning simt(/ i , /i') = 1, and

2. there exists a 1 < j < I such that dj = Ci and EqOrder(/¿, Jj)
meaning tha t simc(ci, dj) = 1 and, as can be shown by induction,
sim(/¿, Jj) = 1.

This means that, for the j of case (2), simT (h ,h f) x simc(ci,dj) x
sim (/¿, J j) = 1. The total similarity measure then comes down to
jS f =1l which equals 1.

Corollary 4.1 The Full Product similarity measure computes sim(J, I) =
1.

The depth factor d can be incorporated in the Full Product measure by
altering case Tall of the Full Product algorithm of figure 5:

simd (h ®f=1 Ci(Ii), t i ®lj=l dj(Jj))
= simd;r(h ,t i) x l ^ f =l{s\md+lfi,(ci,dj) x simd+1(7i, Jj)\ l < j < 1}

4.2.2 Em bedded C ontent

The Embedded Content measure (see figure 6) computes the best way in
which an index expression can be embedded (as defined in definition 3.2)
in another one. This means that the order of subexpressions is considered
relevant.

(Terms) s im (i, t')
= sim t (M 0

(Top) s im (i, add(I, c, J))
= m ax{sim (i, I) , s im (i, J) }

(Tall) s im (add(I, c, J) , add(K , d, L))
= m ax{sim (add(I, c, J) , K), s im (add(I, c, J) , L),

sim (I , K) x sim c(c, d) x s im (J ,L)}

(Toll) sim(add (I , c , J) , t)
_ simT(Head(/),f)
— |Terms(add(/,c,J))|

Figure 6: Embedded Content Algorithm

12

The cases considered by the embedded content measure are the same as
for the Full Product measure. The case Terms is exactly the same and calls
the similarity function for terms simy. The second case Top of figure 6 states
tha t the strength at which a term t is embedded in a composed index ex
pression add(I, c, J) is equal to the maximal similarity to one of add(I, c, J).
Case Tall computes the strength of embedding of a composed index expres
sion add(I, c, J) in another one add(K,d,L) . It computes the maximum
similarity of the following three cases: (1) add(I, c, J) is completely em
bedded in the leftmost subexpression K . (2) it is completely embedded in
the rightmost subexpression L, and (3) subexpression I is embedded in K .
subexpression J is embedded in L, and connectors c and d are similar. Again,
case Toll gives a penalty for mismatch since terms can never be embedded
in composed index expressions.

Note that the Embedded Content measure never results in a higher value
than the basic skeleton measure since extra constraints are implied by the
content.

Theorem 4.2 The Embedded Content measure is optimal for embedded
index expressions.

Proof:
The theorem is proven by induction on the structure of index expres
sions. Suppose I « J .

B asis. Suppose I is a term t. Only the first two cases of definition
3.2 of embedded content, Same and Sub, are to be examined since
the third case Split cannot apply (I is a term).

Same: Suppose this case of definition 3.2 applies. Then, J =
I = t and consequently sim(J, J) = si my (I , J) = 1.

Sub: Suppose this case of applies which means that J = add(K , c, L)
and t -C K or t -C L. Similar induction to the structure of
J shows that either sim(i, K) = 1 or sim(i, L) = 1. This
means that, by case Top of the embedded content algorithm,
sim(J, J) = 1.

Induction step . Suppose I is a composed index expression add(K , c, L).
Furthermore, without loss of generality, let J = add(M , d, N).
Now, only cases Sub and Split of definition 3.2 need to be exam
ined. Both result in sim(J, J) = 1:

Sub: Here, we have (1) I -C M implying sim(J, M) = 1 or (2)
I -C N which means that sim(I , N) = 1. Since case Tall of

13

the algorithm is applied, computing the maximum of these
cases, both options cause sim(J, J) = 1.

Split: In this case, we have tha t c = d and K <C M, and L <C N.
By the induction hypothesis, this implies that sim (K, M) = 1
and sim (L ,N) = 1. Together with simc(c,d) = 1 this causes
case Tall of the embedded content algorithm to compute
sim(J, J) = 1.

We have shown that in all possible cases in which I is embedded in J
the embedded content measure computes sim (I , J) = 1.

Corollary 4.2

1. The embedded content measure is optimal for subexpressions,
i.e., I 4 J => sim(J, J) = 1

2. sim (I , I) = 1 for all index expressions I

The depth factor d can be incorporated in the inductive representation
by the following scheme:

simcj(a d d (I, c, J) , add(K , d, L)) = simcj(J , K) x sim c(c, d) x simcj +^(J , L)

Figure 7: Depth-factor

4.2.3 Tw igs

The twigs (see [18] or [1]) of an index expression are its subexpressions that
consist of exactly two terms and one connector. Twigs are the elementary
connections in the concept graph which is formed by an index expression.
Twigs enable us to form a global picture about similarity while focusing in
on the elementary refinements.

Our contributions to the twigs measure are (1) the inclusion of headed-
ness, (2) an functional algorithm to compute twigs for inductively defined
index expressions, and (3) an implementation of the measure in the func
tional language Clean (see e.g. [2]).

To denote subexpressions of size two, we use the subexpression relation
as given in the previous section.

tw igs (I) = {tct'\tct/ 4 1}

14

In terms of the inductive representation of index expressions, twigs can
be defined constructively as follows. This shows that the twigs of an index
expression can be produced by a straightforward syntactic process. Note
that twigs are accompanied by their depth factor, modeled by a positive
integer. The expression tw ig s (I ,1) computes the twigs of I and their depth.

twigs (e, d) = 0
tw igs(i, d) = 0
tw igs(add(I, c, J), d) = {(add(H ead(I), c, Head(J)), d)}

U tw igs(I, d) U twigs(J, d + 1)

Lem m a 4.1 If to index expressions are equivalent modulo order, then their
twigs are the same, i.e., if EqO rder(J, J) then tw igs (1 ,1) = tw igs(J, 1).

The similarity between two twigs is the product of the similarity between
the two connectors and the average similarity between the left- and rightmost
terms. In addition, the depth factors are taken into account by function
ƒ :A f x A f ^ [0..1],

, ■ ■ {{-t- -J i \ { j r i r\\ t n i>\ ■ (j \ s\mT (t ,u)+ s \m T (i/,u') twigsim((tc t , k), (udu , k)) = f (k , k) x simc(c, d) x -------------------------------

The twig measure is defined as the normalized sum of similarity between
the twigs of both index expressions.

simtw igs(J >J) = av§ ^ tW'gsim(p ,g)
petwigs(i) getwigs(J)

Figure 8: Twigs similarity

Corollary 4.3 If index expressions I and J are equivalent modulo or
der, then for every index expression K we have simtw jgS(J, K) =

s'rntwigs(t̂ ’

As observed in [1], twigs conserve most of the structure of index ex
pressions. In fact, if all terms are different the complete structure can be
correctly reconstructed without any additional information. For twigs with
depth factor, this can be relieved further to all terms should be different at
the same depth.

15

Twigs of index expressions seem to resemble trigrams for strings. Con
siderations similar to trigrams are therefore expected to hold for twigs. For
instance, an advantage of the use of twigs over equality-matching is their
robustness for ‘spelling variations’ such as variations in order of subexpres
sions.

4 .3 O v erv iew o f P r o p e r tie s

Figure 9 gives an overview of the optimality of the different similarity mea
sures with respect to several criteria. The columns correspond to Dice’s
measure, the full product, embedded content, and the twigs similarity mea
sure, respectively. The rows correspond to the notion of equality modulo
the order of subexpressions (EqOrder), embedding (<C), identical arguments
(sim(J, /)) , and subexpressions (4). A + denotes tha t the measure is optimal
for the criterion.

Optimal Dice FullProd EmbCont Twigs
EqOrder

■C
sim(J, I)
4

+ + - -
- - + -
+ + + -
- - + -

Figure 9: Overview of optimality.

The optimal cases were proven earlier in this section. Below, illustrative
counterexamples are given for the non optimal cases. The contents of figure
9 is discussed row by row.

First, consider the following pair of index expressions that are equal mod
ulo the order of their subexpressions: I = conference on (biology) in (Holland)
and J = conference in (Holland) on (biology). Since their corresponding sets
of terms and connectors are equal, the Dice measure is optimal.

Since in the embedded content measure the order of subexpressions is
relevant, index expressions I and J are not optimally similar.

Although the sets of twigs for I and J are equal, the twigs measure is
not optimal. This is caused by the fact tha t the twigs measure computes
the average similarity over all pairs of twigs. This includes pairs tha t are
not equal, such as conference on biology and conference in Holland.

Second, we focus on embedding of index expressions, as denoted by -C.
Consider the example index expressions I = surfing in Holland and J =
surfing in sunnyoHolland from section 3.2.2. The Dice measure, setting a = 1

16

for reasons of clarity, computes the similarity based on the sets of terms
Term s(I) = {surfing, Holland} andTerm s(J) = {surfing, Holland, sunny}. Since
these sets are not equal, the Dice measure does not return value 1. In stead,
it results in D ice(I, J) =

Since the full-product measure computes the similarity between index
expressions layer by layer, the expression sim(Holland, sunny o Holland) has
to be evaluated at depth one. By case two of the full-product measure, this
expression results in sim(Holland, sunny) = 0.

The resulting sets of twigs, not considering their depth, are tw ig s (I) =
{surfing in Holland} and tw igs(J) = {surfing in sunny, sunny o Holland}. The
similarities between the individual twigs are less than one. For instance,
tw igsim(surfing in Holland, sunnyoHolland) involves computing sim c(in , o) and
s im ^su rfing , sunny), which both are less than one.

Third, consider I = conference on (biology) in (Holland). This single in
dex expression contains two different twigs. The twigs measure also com
pares these different twigs and therefore is not optimal for this case.

Finally, the explanation of the line for subexpressions, denoted by ==!,
follows a similar line of argument as for embedding. Consider, for example
Holland and surfing in Holland. Clearly, the sets of terms and connectors
are unequal, preventing Dice to be optimal. Since the heads of both index
expressions are unequal, the layer by layer computation of the full product
measure is not optimal either. Finally, note tha t the sets of twigs are not
equal.

5 R ela ted W ork

In this section, related approaches to our work are described.

5.1 F ram es

In the DORO (see [13] and [12]) project, noun phrases and verb phrases are
normalized before being matched. The first normalisation phase, syntactic
normalisation, consists of three steps: (1) elimination of redundant elements,
(2) morphological normalisation by lemmatization, and (3) syntactic normal
isation by mapping syntactically different but semantically equivalent forms
onto the same form.

The third step has strong resemblance to computing twigs. In the DORO
project, noun phrases are represented by by so called frames which consist

17

of a head and a number of modifiers. Both head and modifiers can contain
nested frames. In the syntactic normalisation, unnesting is applied to flatten
the frames, resulting in a multiset of unnested frames. Unnesting frames is
done in order to raise recall.

As an example, taken from [13], the somewhat curious sentence

man visited conference on software engineering

might be transduced to the nested frame

[visit, [conference, onfengineering, software]]]

which is unnested to

{[visit, conference], [conference, on engineering], [engineering, software]}

Fuzzy matching is used in the DORO project. This means tha t (1) frames
are matched partially after unnesting, and (2) that semantical knowledge in
the form of hypernym relations is exploited.

The similarity of unnested frames is expressed as the product of similar
ities between head and modifiers. This is similar to our approach.

5.2 T ree In c lu s io n

In [11], Kilpelafnen and Mannila describe a language for querying structured
text based on tree inclusion. Their approach, which exploits inclusion pat
terns to ensure preservation of binary properties between nodes, takes both
structure and content into account. Example inclusion patterns are L for
labels, A for ancestorship, and O for (left-to-right) ordered tree inclusion.

Our skeleton-content approach resembles their {LAO}-embedding. That
is, ancestorship and ordering are preserved and labels are taken into account.
However, our approach does not hinge on equality of labels but uses approx
imate matching of strings by exploiting similarity functions for terms and
connectors. In the introduction of the mentioned article the authors indi
cate tha t such ’’standard IR techniques should be added to the language” .
Although the authors claim that such techniques are largely orthogonal to
preserving binary properties, we claim tha t computing similarity between
index expressions involves more.

Our skeleton-content approach thus ‘preserves’ labels by taking into ac
count their similarity. In a way, it searches for the best {L'AO}-embedding
and delivers the degree of embedding.

18

A similar line of reasoning shows that our full product approach com
putes the degree of {LA}-embedding. Since the order of subexpressions is
irrelevant, the corresponding inclusion pattern O is not satisfied.

6 C onclusions

In this article, we devised several similarity measures for index expressions.
Since many Information Retrieval tasks require numerical matching, these
measures enable numerous new possibilities to exploit index expressions.

We investigated different views on the semantics of index expressions
(order of subexpressions, embedding, and headedness) and formalised these
into criteria. This enabled the design of corresponding similarity measures.
Our similarity measures exploit the inductive as well as the structural rep
resentations for index expressions using profitable aspects of both.

We introduced measures that are only based on the contents of index
expressions and similarity functions that exploit both structure and con
tent. The similarity measures were proven optimal with respect to the cor
responding criteria. In addition, other criteria, such as subexpressions, were
also checked. Finally, we compared our approach with related work.

Future research can be directed towards including wildcards and vari
ables in matching index expressions. In addition, other criteria for the se
mantics of index expressions may exist, leading to different optimal similar
ity measures. Several of the similarity measures provided in this article are
not symmetric since they compute the degree of embedment. Symmetric
variants of these measures can be defined readily.

We have implemented the mentioned similarity measures in a functional
language. Large-scale experiments researching the effectiveness of index
expressions in comparison to other descriptor languages are also considered
an issue for further research.

R eferences

[1] F.C. Berger. Navigational Query Construction in a Hypertext Envi
ronment. PhD thesis, Department of Computer Science, University of
Nijmegen, September 1998.

[2] T. Brus, M.C.J.D. van Eekelen, M. van Leer, and M.J. Plasmeijer.
Clean - A Language for Functional Graph Rewriting. In Proceedings of

19

the Third International Conference for Functional Programming Lan
guages and Computer Architectures (FPCA ’87), volume 274 of Lecture
Notes in Computer Science, pages 364-384, Portland, Oregon, USA,
1987. Springer-Verlag.

[3] P.D. Bruza. Hyperindices: A Novel Aid for Searching in Hypermedia.
In A. Rizk, N. Streitz, and J. Andre, editors, Proceedings of the Euro
pean Conference on Hypertext - ECH T 90, pages 109-122, Cambridge,
United Kingdom, 1990. Cambridge University Press.

[4] P.D. Bruza. Stratified Information Disclosure: A Synthesis between
Information Retrieval and Hypermedia. PhD thesis, University of Ni
jmegen, Nijmegen, The Netherlands, 1993.

[5] P.D. Bruza and L.C. van der Gaag. Efficient Context-Sensitive Plausible
Inference for Information Disclosure. In Proceedings of the 16th Annual
International AC M SIGIR Conference on Research and Development
in Information Retrieval, pages 12-21, 1993.

[6] P.D. Bruza and Th.P. van der Weide. Two Level Hypermedia - An
Improved Architecture for Hypertext. In A.M. Tjoa and R. Wagner,
editors, Proceedings of the Data Base and Expert System Applications
Conference (DEXA 90), pages 76-83, Vienna, Austria, 1990. Springer
Verlag.

[7] P.D. Bruza and Th.P. van der Weide. The Modelling and Retrieval of
Documents using Index Expressions. AC M SIGIR FORUM (Refereed
Section), 25(2), 1991.

[8] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Struc
tures for Information Disclosure. The Computer Journal, 35(3):208-
220, 1992.

[9] J. Farradane. Relational Indexing Part I. Journal of Information Sci
ence, 1(5) :267—276, 1980.

[10] J. Farradane. Relational indexing part II. Journal of Information Sci
ence, 1(6) :313—324, 1980.

[11] P. Kilpela'fnen and H. Mannila. Retrieval from hierarchical texts by
partial patterns. In Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in Information Re
trieval, pages 214-222, Pittsburgh, PA, USA, 1993.

20

[12] C.H.A. Koster. Fuzzy Matching using WordNet. Addendum to [13],
Department of Computer Science, University of Nijmegen, Nijmegen,
The Netherlands, 1998.

[13] C.H.A. Koster. Normalization and matching in the DORO system.
Deliverable T3.1 of DORO project, Department of Computer Science,
University of Nijmegen, Nijmegen, The Netherlands, 1998.

[14] C.J. van Rijsbergen. Information Retrieval. Butterworths, London,
United Kingdom, 1990.

[15] B.C.M. Wondergem, P. van Bommel, and Th. P. van der Weide. Asso
ciation Index Architecture for Information Brokers. Technical Report
CSI-R9820, Computing Science Institute, University of Nijmegen, Ni
jmegen, The Netherlands, July 1998.

[16] B.C.M. Wondergem, P. van Bommel, and Th. P. van der Weide. Con
struction and Applications of the Association Index Architecture. In
Proceedings of C IW ’98, the Conferentie Informatiewetenschappen 1998,
Antwerp, Belgium, December 1998.

[17] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Nesting
and Defoliation of Index Expressions for Information Retrieval. Knowl
edge and Information Systems. To appear.

[18] P. Wouda. Similarity between Index Expressions. Master’s thesis, Uni
versity of Nijmegen, Nijmegen, The Netherladnds, February 1997.

21

