
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/18683

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/18683

Processes and their Identifiers in Synchronous Network Systems

M.I.A. Stoelinga

Computing Science Institute/

CSI-R9807 March 1998

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands

Processes and their Identifiers in Synchronous Network
Systems

Marielle Stoelinga

Computing Science Institute,
University of Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen,
The Netherlands

marielle@cs.kun.nl

Abstract
This paper formalizes the two notions of “comparison based process” and of ‘process
isomorphism up-to process identifiers.” The Key Lemma is proven which states that
comparison based processes which are isomorphic up-to PIds behave very similarly,
if the PIds in the processes in their enviromnents are what is called order equivalent.
Key words and phases: leader election, synchronous networks, comparison based
processes, isomorphic processes, process identifiers, communication complexity.
AM S Subject Classification: 68QfO, 68Q22, 68Q25.
CR Subject Classification: F .f .f , F .f.2, F.2.m, F.3.3.

N ancy Lynch in C hapter Three of her book “D istribu ted algorithm s” [Ly96] gives a proof
of a lower bound result on a leader election problem : The am ount of com m unication needed
to solve this problem is O (n lo g n). The result is s ta ted in a synchronous ring network,
consisting of processes th a t are isom prphic except for a unique process identifier - a unique
P Id for short. Furtherm ore, the algorithm solving the leader election problem should be
com parison based, which m eans th a t the only operation on PIds is com parison.
The key to the lower bound result is a lem m a expressing th a t a certain am ount of sym m etry
can arise even in the presence of PIds. This sym m etry can only be broken at the cost of
O (n lo g n) messages.
Several notions on the way to this result are in troduced in tuitively ra th e r th a t formally.
The proof of the Key Lem m a takes some large and inform al steps. This report provides
a form al basis for all notions to com plete a form al proof. In particu lar, form al definitions
are proposed for the notions of “com parison based processes” and of “process isom orphism
up-to P Ids.” This report provides syntax-free definitions of bo th notions for a rb itra ry
network system . We prove and generalize the Key Lem m a to any network system . We also
sketch the lower bound result.

f

mailto:marielle@cs.kun.nl

2

The crucial step in our form alization is the in troduction of the operations pid and [], which
retrieve and substitu te respectively the PIds present in a message or state. These allow
for access to the PIds in a s ta te or message, w ithout m aking fu rther assum ptions on their
nature . Once a process contains a (single) P id it m ay copy it or send it to o ther processes
though processing.
Using these operations we are able to express form ally th a t two processes in a ring th a t
are isom orphic up-to PIds, m ay only differ in the PIds of the ir s ta rt states. For ease of
no ta tion we firstly in troduce this notion for ring networks and then for a rb itra ry networks.
Intuitively, a com parison based process is a process which, if im plem ented in code, perform s
no other operations on PIds th an com parisons. O ur definition uses the functions pid and
[] again.
An im portan t property of com parison based processes is th a t, com parison being the only
serious operation on PIds, the relative ranks of PIds in states and messages are of interest
ra th e r th an the ir particu lar values. In fact, the Key Lem m a states th a t two processes
in a network consisting of processes which are isom orphic except for a P id behave very
similarly, if the processes in the ir neighbourhoods (which they receive messages from)
contain PIds w ith the same relative ranks. We prove this lem m a for ring networks first
and then generalize it to o ther networks.

R elevance and related work
We believe th a t the m ain contribution of this report is the form alization of the concepts
of “com parison based process” and of “isom orphic processes” in a synchronous network
system.
The notion of com parison based process is in troduced at a m ore syntactic level and more
inform ally in [Ly96] and [FL87].
The notion of isom orphic processes (except for a P id), in our view, is m ore fundam ental.
Such processes often occur in real-world applications. It is therefore desirable to have an
abstrac t and general definition of this notion. M oreover, the sym m etry present in networks
of isom orphic processes can be used to reduce the com plexity of (verification) algorithm s,
c.f. [CFJ93], [ES95], [EA93], which in troduce the notion of isom orphic processes in a more
syntactic way.

O rgan iza tion o f th e sec t io n s

This report is organized as follows. Section f introduces the synchronous network model.
The operations pid and [] are specified axiom atically in Section 2. T hen Section 3 defines
the notion of process isom orphism up-to PIds in ring networks and Section 4 the notion of
com parison based processes. We prove the Key Lem m a to the lower bound result in Section
5 for rings and m ention some obvious generalizations. Section 6 trea ts the generalization of
the notion of process isom orphism up-to PIds and the Key Lem m a to a rb itra ry networks.
The reader is referred to A ppendix A for no ta tional conventions and a glossary of symbols.

3

1 T h e sy n ch ro n o u s n e tw o rk m o d e l

This section recalls the general m odel of synchronous network system s. The ideas in this
section are taken from Lynch [Ly96], C hapter 2. We deviate from Lynch’s m odel in some
m inor details. Furtherm ore, we present our definitions at a higher level of form ality and
in troduce some additional notations.
A synchronous ring network system consists of a num ber of processes, running on some
pieces of hardw are, processors, th a t com m unicate via channels. The adjective synchronous
refers to the situation th a t the execution of the system , i. e. all processing and all com­
m unication, proceeds simultaneously, in infinitely m any consecutive rounds. The systems
begins w ith all processes in a rb itra ry s ta rt states. The processes, in lock step, repeatedly
perform the following two steps: F irstly they sim ultaneously send messages through the
channels, then they sim ultaneously do some processing, based on the current states and
on inputs they received, in order to reach the next state. The message a process sends
through a channel is indicated by the message generation function, the next s ta te by the
s ta te transition function.
A synchronous ring network system consists of a num ber of processes, th a t com m unicate
via channels. The system s begins w ith all processes in a rb itra ry s ta rt states. The processes
sim ultaneously and repeatedly perform the following two steps: F irstly they send messages
through the channels, then they move to the next sta te , using the current states and on
inputs they received,

C o n v e n t i o n 1.1 If M is some set of messages, then we assum e th a t null ^ M , as we
w rite null as a placeholder for the absence of a message. We define M 0 = M U {null}.
Furtherm ore, we fix for the entire report th a t n, k are na tu ra l num bers.

D e f i n i t i o n 1.2 A synchronous network sys tem , or sim ply a network is a tup le (G } P , M),
where G is a directed graph, P a V -tuple of processes and M a set of messages such tha t:

- G = (V}E) } V is a finite set of vertices and E Ç V 2 a set of edges. If (i , j) G E
then we w rite i —>■ j . For i G V, in (i) is the set of “incoming neighbours,” th a t is
in(i) = { j G V | j —ï i } and out(i) = { j G V \ i —ï j } the set of “outgoing neighbours.”
The distance between i and j , denoted by d (* ,j) , is the length of a shortest pa th
between i and j , if there is such a path , otherw ise d (i , j) = oo.

- P = (Pi)ieV. The process Pi , which runs at node consists of the following com po­
nents:

— s ta te s i , a (possibly infinite) set of states,

— start i Ç s ta te s i , a non-em pty set of s ta rt states,

— msgsi : statesi —> the message generation function.
m s g s i (m) is the tuple of messages, indexed by out(i), to be sent to the outgoing
neighbours of Pi. We often w rite m sgs i^ . j (m) for {rnsgsiirn))-.

4

— trans i : statesi X —> s ta tes i , the s ta te transition function.
trans i t s , ¡i) yields the next s ta te of process Pi , when being in s ta te s and re­
ceiving the message ¡ij from P j, for all j £ in(i).

We w rite sta tes = IJiGV statesi

The network size is the num ber of elem ents of V .

C o n v en tio n 1.3 Since we only consider one system at the tim e, the following notations
will do. Throughout this report S and M are sets of states and messages respectively. If
G is a graph, then V denotes the set of vertices and E the edges. If Pi is some process,
then we denote its com ponent by statesi , start i, trans i and msgsi .

A special class of networks are ring networks. In order to facilitate discussion, the definition
below fixes the nam es of the nodes and edges.

D efin it io n 1.4 f. A unidirectional ring of size n is a graph G = (V, E) such th a t
V = {1,. . . , n} and E = {1 —>- 2, 2 —>- 3 ,. . . , n — 1 —> n }n —> 1}.

2. A bidirectional ring of size n is a graph G = (V ,E ') , where V, E as above and
E' = E U {2 —> 1, 3 —> 2 , . . . , n —)■ n — 1 , 1 —>■ n}.

3. A unidirectional (bidirectional) ring network is a network (G, P , M) such th a t G is a
unidirectional (bidirectional) ring.

A ring network is either a uni- or bidirectional ring network. We often count m odulo n in a
ring network of size n; allowing 0 to be another nam e for n, n + 1 for 1, etc. Furtherm ore,
the right or clockwise neighbour of i is the node i + 1; node i — 1 the left or counterclockwise
one.

C o n v en tio n 1.5 The types of the s ta te transition functions and the message generation
functions in a ring network can be simplified, using the isom orphism s Mq* ^ = Mq*+1 ̂= M 0
and M q1 1,8+1̂ = M q . For unidirectional rings we get:

trans i : s tatesi X M 0 —> s ta te s i ,

msgsi : statesi —>■ M 0

and for bidirectional rings we get:

trans i : statesi X Mq —> s ta te s i ,

msgsi : statesi —> Mq.

By convention (to, to ') denotes (i — 1 : to, i + 1 : to ') £ Mq* 1,8+1̂ So the message con­
cerning the left neighbour is m entioned firstly and the message concerning the right one
secondly.

5

As a running exam ple, we consider the LCR algorithm - by Le Lann, Chang and R oberts
[La77] and [CR79] - as described in [Ly96]. It solves the leader election problem in an
unidirectional ring, which m eans th a t eventually exactly one of the processes becomes
“leader.” Later exam ples will show th a t the processes are isom orphic except for a P Id and
com parison based.

E x a m p le 1.6 (sy n ch ro n o u s netw ork s y s te m) Let R be a unidirectional ring of size n.
Let M = { u i , . . . , un} C N be a set of n different objects; the value U{ will be associated
to Pi. For each i £ F , define the process Pi as follows:

- statesi = { u i , . . . , un} x M 0 x {init, unknown, leader}. A sta te should be thought of
as a tup le (u, send, s ta tus) , where u = Ui rem ains unchanged by the process, send
is the message to be send and s ta tus indicates w hether or not the process is in its
in itia l s ta te and w hether or not it has declared itself leader.

- start i = {(ui, null, in it)}.

- msgsi : statesi —> M 0, given by
msgsi(u , send, s ta tus) = if s ta tu s = init then u else send fi.

- trans i : statesi X M 0 —> statesi , trans i((u, send, s ta tus) , m) is described by the
following pseudo code:

send := if m ^ null A m > u then m else null fi;

s ta tus := if m = u then leader else unknown fi.

The algorithm works in the following way: The process w ith the largest value Ui gets
elected. Each process Pi sends the value Ui around the ring. W hen a process receives a
non-null message, it com pares it to Ui, the first field of its state. If the incom ing message
is greater th an Ui, the process keeps passing this message; if it is less then it discards the
message; if it is equal, then Ui has been passed through the entire ring, so it is the largest
and the process declares itself leader.

1.1 The behaviour o f a synchronous network system
D efin it io n 1.7 1. A state assignment function for a network system (G, P, M) is a func­

tion which assigns a s ta te to each process, i.e. a function v : V —> sta tes such th a t
v(i) G statesi for all i G V. We often w rite v.i in stead of v(i).

2. A message assignment function is a function which assigns a message to each channel,
i.e. a function fj, : E M 0. We w rite ¡i.e in stead of /¿(e).

D efin it io n 1.8 An execution of a network system (G , P , M) is an infinite, alternating
sequence

^0, fj-l, /¿2, V2,

6

of s ta te and message assignm ent functions, starting w ith a s ta te assignm ent function.
This sequence should satisfy:

u0.i G starti

Hr+i.i j = m s g s i ^ j (v r .i)

ur+1 .i = t rans i (vr . i , (jir+1.l ->■ 0/em(8))

for all r G N, all z, j G V such th a t i —> j .

Notice th a t (jir+i.l —> i)iein^ G is the tup le of messages th a t Pi receives in round
r + 1 from all its incom ing neighbours. The sta te ur .i is called the s ta te of process i in
round r (or: after r rounds) of the execution; the message ¡ir .i —>■ j is called the message

sent by i to j in round r of the execution. If a = z/0, /¿i, Ui, . . . we also use a r = ur and
d

OLr — f lr .

E x a m p le 1.9 The diagram below shows the execution of the execution of the LCR algo­
rith m (see Exam ple 1.6), executing in ring of size 4, taking u\ = 4, u 2 = 3, u3 = 2, u4 = 1.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
Ps (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)

round 3 round 3 round 4 round 4 round 5
proc msgs states msgs states

Pi null (4 ,null,unknown) null (4 ,null, leader)
P2 null (3,null,unknown) null (3,null,unknown)
Ps 4 (2,null,unknown) null (2,null,unknown)
Pa 3 (1,4,unknown) 4 (1,null,unknown)

Process 4 is elected as leader in round 4 of the execution. Then the processes neither send
messages nor change to another state.

2 D ea lin g w ith P Id s in p rocesses

This section prepares for the definition of the notion of process isom orphism up-to PIds
1 as well as for the notion of “com parison based process.” These notions are defined

1 [Ly96] uses the word “uid” (unique identifier) and [FL87] “id” for w hat we call “P Id .” We deviate
from this term inology because in general we do not assume th a t each process has a different PId.

7

independently in Sections 3 and 4 respectively. W hen com bined, they form the setting of
the Key Lemma.
An argum ent for introducing PIds is to break the sym m etry present in networks consisting
of entirely isom orphic processes. W hen starting in the same states, such processes rem ain
in identical states th roughout the entire execution. As a result, such processes can not
solve the leader election problem .
However, PIds also m ake sense in o ther kind of networks containing very different processes.
Once PIds are present in some process, it m ay m anipu late them and send them around in
various ways. A process th a t only uses com parison between PIds (not between a P Id and
a constant) is called com parison based. This notion is defined for any network in Section
4.
As we do not wish to m ake m ore assum ptions on the na tu re of the PIds th an necessary, all
access on PIds in messages and states is perform ed via the operations [] and pid introduced
below.

A x io m s 2.1 We assum e the following functions and sets to be available on the sets M
and S.

- A set U, the type of PIds. In exam ples we take 11 = N.

- Two functions pidm : M 0 —> IJ* and pids : S —> U*, which retrieve a list of all PIds
contained in a message and a s ta te , respectively.

- Two partia l functions []m : M 0 X IJ* ^ M 0 and []s : S X IJ* S } substitu ting a
sequence of P ids by some other sequence of the same length.

The subscripts m and s are om itted if it is clear w hether the function is defined for messages
or for states. This convention is also adopted for fu tu re objects defined on bo th states and
messages.
The pairs of functions (pidm, []m) and (pids, []s) should satisfy the following requirem ents,
for all v, w G U*, m G M 0 U S:

U - l <i==> |u| = |pid(ra)| .

The substituen t and the substituan t should have the same length.

U-2 ==> pid(m[u]) = v

U-3 m[pid(m)] = to.

Subsequent retrieval and (well-applied) substitu tion is the identity; inform ation is
neither created nor lost.

U -4 to[u]|. A to[u;]4, m[v][w\ = m[w\.

Substitu tion is destructive.

M oreover, the function pidm should satisfy:

8

U-5 pidm(nuII) = £

For the sake of convenience we define

pidsets(s) = set(pids(s)),
pidsetm(m) = set(pidm(m)),

so pidset yields the set of all PIds in a s ta te or message.

R e m a r k 2.2 A lthough a m ore general trea tm en t is possible, we have required th a t the
num ber of PIds in a s ta te or message is finite, m ostly for sake of convenience. Moreover,
this requirem ent is realistic in practice for physical processes only have a finite am ount of
memory.

E x a m p le 2 .3 Reconsider the LCR algorithm from Exam ple 1.6. The PIds in this algo­
rith m are U = { u i , . . . , un} C N. As M = U, we have

Ira if ra £ M ,
P'dm(ra) = <

I £ it ra = null.

Moreover, S = { u i , . . . , un} x M 0 x {unknown, leader, init}. Then,

. . , I [u , s e n d] if send £ M ,
pids [u, send, s ta tus) = [uj * pidm(sena) = <

I [it] if send = null.

For exam ple,

pids (1,1, leader) = [1,1],
pids (1, null, unknown) = [1],

pidm (3) = [3],
(1,1, leader)[3,1] = (3,1, leader).

Notice th a t the LCR algorithm is independent of the im plem entation of the P ids; it works
for any to ta l order ill, <).

3 P ro c ess iso m o rp h ism u p - to P id s in r in g n e tw o rks

Now we as able to express w hat it m eans for two process in a ring th a t they are “isom orphic
up-to P id s ,” also referred by as sim ply “isom orphic.” Section 6 generalizes this notion to
a rb itra ry networks.

D efin it io n 3.1 Let (i?, P, M) be a ring network and i }j £ V. The processes Pi and Pj.
are isomorpic up-to P ids , no ta tion Pi ~ ring P j , if the following requirem ents are m et:

9

IP -1 statesi = states j.

IP -2 # start i = # s tart j = 1.

The processes Pi and Pj have a single s ta rt state , denoted by and resp.

IP -3 |pidset(s°)| = |pidset(s°)| = 1.

Each process has a single P Id present in its s ta rt state. Process Vs P Id is denoted
by u t .

IP -4 5°[pid(5°)] =

Except for the PIds the s ta rt states, Pi and Pj are equal.

IP -5 The following functions are equal.

t ransi = t rans j ,

msgsi- t i + 1 = msgsj- t j+i , for all rings,

m s g s i ^ i - 1 = m s g s j - t j - i , for bidirectional rings only.

Notice th a t the s ta rt s ta te m ay contain m ultip le occurrences of its PId. Axiom IP-4
requires th a t all s ta rt states have th a t same num ber of occurrences. Furtherm ore, axiom
IP-4 implies s °[p id (s °)] =

E x a m p le 3 .2 It is easy to check th a t the processes in the LCR algorithm in 1.6 m eet the
requirem ents IP1 - IP5, so all processes in the LCR algorithm are isom orphic up-to PIds.

R e m a r k 3 .3 The notion of isom orphic processes up-to PIds can also be in terp re ted as
“isom orphic processes perform ing on different inpu t d a ta .” However, this requirem ent is
ra th e r weak. Take for instance the unidirectional ring of processes described by

statesi = U x N,

start i = { (u tl 0)},

t r a n s i ((u , n) , m) = (u, P r i m R e c (u ,m)) ,
msgsi- t i+i(u, n) = u.

These processes satisfy the axioms in 3.1, bu t behave very differently. P r i m R e c (n , m)
is the n th p rim itive recursive function on inpu t m. The only reason for using primitive
recursive functions is because these are to tal.

4 C o m p a r iso n b a se d p rocesses

As explained before, the syntactic idea behind the notion of com parison based processes
is th a t com parison between PIds - not between a P Id an a constant - the respect to

10

some order < on U is the only serious operation allowed on PIds; we also adm it syntactic
operations like copying, appending PIds to lists, etc.
The in tu ition behind the sem antic definition is the following. A com parison based process
can not really distinguish between e.g. the s ta te (2, 3, unknown) and the s ta te (3, 8, unknown),
th a t is between states or messages such th a t

1. The objects are equal except for the ir PIds.

2. All com parisons between the PIds in bo th objects yield the same results.

P roperty 1 is form ally in troduced as the notion of a-correspondence. For technical reasons
in the proof of the Key Lem ma, the substitu tion of PIds is perform ed by a partia l function
a : U v-} U . The property 2 is form ally expressed in the notion of order equivalence.
However, we use an equivalent form ulation in the definition of com parison based processes,
expressing th a t the PIds in the objects can be obtained from each other by application of
a s tric tly m onotone function. T hen a process is called com parison based if it the result of
the m sgs and t rans applied to cr-corresponding objects yields cr-corresponding objects, for
any stric tly m onotone a.
From now on we assum e th a t the set U of PIds is equipped w ith a to ta l order < . We also
assum e th a t X is some index set and th a t X i is either S or M 0, for all i £ l . Note th a t the
sets S', S' x and Mq“^^ can be considered as dependent products We use
different brackets, () and (), only for sake of readability.

4.1 Order equivalence
Order equivalence expresses th a t two sequences of PIds have the same relative ranks.

D efin it io n 4.1 For two sequences v , w £ Uk we define

v ~ w = \ / i , j < k[vi < Vj -<=>■ Wi < Wj\.

The relation ~ is called order equivalence. It is not difficult to see th a t it is an equivalence
relation.

E x a m p le 4 .2 (2, 7, 5) ~ (2, 5, 3) * (2, 3, 5).

Fact 4 .3 For all v ,w,v,, w) we have

V ~ W A V ~ w ' ^ = V~kw ~ v' -kw' .

L e m m a 4 .4 The following statements are equivalent fo r all v , w £ U k :

1. v ~ w,

V z,j < k[vi < Vj <=> Wi < Wj],

11

3. There exists a partial function a : U ^ U such that

a(vi) = wt

for all i £ I and this function is strictly monotone. Notice that pidset(u8) = {i>i . . . v
C Dom(cr).

E x a m p le 4 .5 As (2, 7, 5) ~ (2, 5, 3), the partia l function {2 i—̂ 2, 7 i—̂ 5, 5 i—̂ 3} is stric tly
m onotone.

4.2 C orrespondence
We define the notion of correspondence via a substitution cr on S, on M and on dependent
products of these. An object x corresponds w ith y via cr if we obtain y from x by applying
the substitu tion cr to all PIds in x. T hen x and y are the same except for the ir PIds.
Firstly, we extend the definition of [] by allowing functions to be used for the substitu tion .

D efin it io n 4 .6 Let cr : U U be a function. Let to £ M and w rite pidm(m) = v =
Vi . . . Vk- Define

m[cr]m = m[a(vi) . . . cr(vk)]m.

By convention, a function is undefined whenever one of its argum ents are so. Therefore,
m[cr]mi -<=>■ {^i, • • • ^ Dom(cr). Similarly, s[cr]s is defined for s £ S and subscripts
are om itted like before.

D efin it io n 4 .7 1. Let cr : U U and to, to ' £ M . Define

<J. / d r i *to —> m = m[cr\m = m .

Similarly, define s s' for s , s ' £ S.

2. For x , y £ ° • U ^ U, define

x y = \/i £ X[xi yt\.

If x y we say th a t x and y correspond via a or sim ply th a t they are a-corresponding.

L e m m a 4 .8 For all x }y £ r L e j^ * an<̂ all cr,T \ U ^ U we have

x y A cr C r =>■ x y.

E x a m p le 4 .9 We investigate w hat correspondence boils down to for the states and the
messages in the LCR algorithm from 1.6.

On s ta te s
W hen do we have (it, sen d , s ta tu s) (it', send ' , s ta tu s ')?

12

case 1 send = null. Then (u, send, s t a tu s) [<r] = (cr(u), send, s ta tus) . So we have

(u, s en d , s ta tus) —)■ (u , send ' , s tatus ') -<=>■

i / = cr('u) A send' = send = null A sta tus ' = status.

case 2 send ^ null. Then (u, send, s t a tu s) [<r] = (cr(u), cr(send), s tatus) . So we have

(it, send, s ta tus) (u , send ' , s tatus ') -<=>■

i / = cr('u) A send' = a (send) A s ta tus ' = s tatus.

Lem m a 4.4.3 im plies th a t if a is m onotone then (u, send) ~ (u1, send').

Furtherm ore, it is easy to see th a t

(u, send, s ta tus) (u , send ' , s tatus ') =>■

(u, u, s ta tus) (u ' , u!, s tatus ') A

(u, send, unknown) (u', send ' , unknown) A

(u, null, sta tus) —)■ (u , null, sta tus ') A

send send ' .

On s ta te s and m essa g es
Similarly, we get on sta tes X

((u, send, s ta tus) , m) ((u ' , send ' , s tatus ') , m')

(m = m! = null V m! = cr(m)) A

u = a(u) A
(send = send' = null V send' = a(send)) A

sta tus ' = status.

4.3 Com parison based processes
If x y and a is stric tly m onotone, then it is easy to see th a t (pid Xi)ieI ~ (pid yi)teI —
choose a fixed order on X such th a t (pid Xi)i € l , (pid Vi)teI can be considered as elem ents of
U*. So, x and y are equal except for the ir PIds and all com parisons between PIds in x
and in y yield the same results. As we have argued in the in troduction to this section, a
com parison based process should yield sim ilar results on these objects. We can m ake this
more precisely now by saying th a t such a process yields cr-corresponding results on x and
y. Thus, a process is comparison based if bo th its s ta te transition and its message function
preserve cr-correspondence, for any stric tly m onotone a.

D efin it io n 4 .10 Let (G, P, M) be a synchronous network system . The process Pi is called
comparison based if for all s, s' £ statesi , for all ¡i, ¡i' £ and for all stric tly m onotone
(7 : U — y U '.

13

C B - 1 (s, ¡i) (s', ¡1 ') =>■ transi(s , ¡i) t rans i (s ' , n').

C B - 2 s A s ' ^ (m s g s ^ J(sj) jeout{t) ^ (m s g s ^ ^ s ' ^ ^ o u ^ y

Notice th a t the relation above is used respectively on the sets statesi X s ta te s i ,
s tatesi and

E x a m p le 4 .11 All processes in the LCR algorithm from 1.6 are com parison based. We
use some properties states in Exam ple 4.9

P R O O F : Consider the process Pi. Let s , s ' £ s ta te s i , to, to' £ M 0. We w rite s =

(u, send, s tatus) , s1 = (u ' , send ' , s ta tu s ') . Let a : U ^ U be a stric tly m onotone func­
tion.

C B - 2 the message function: Assume s s ' . Then s ta tus = status ' .

case 1 s ta tus = sta tus ' = init. Then

m s g s i (s) = u u = m s g s i (s ') .

case 2 s ta tus = sta tus ' ^ init. Then

msgsi(s) = send —)■ send' = msgsi(s ') .

C B - 1 the transition function: Assume (s, to) (s ' , to '). Then to = to ' = null or (to, u) ~
(to ', u').

case 1 to = null. Then

t r a n s i (s ,m) = (u, null, unknown)

(u', null, unknown)
= t rans i (s ' , to ').

case 2 to ^ null. T hen to ' ^ null and (m ,u) ~ (to ', u ') by m onotony of <r.

case 2.1 m > u. T hen to ' > u' and

t r a n s i (s ,m) = (i t , u, unknown)

(it', u!, unknown)
= t rans i (s ' , to ').

case 2.2 to = u. T hen to ' = u' and

t r a n s i (s ,m) = (i t , null, leader)

(it', null, leader)
= t rans i (s ' , to ').

14

case 2.3 m < u. T hen m! < u ', so

t rans i t s , m) = (it, null, unknown)

(it', null, unknown)
= trans i ts ' , to ').

□
R e m a rk 4.12 Some alternative form ulations of CB-1 and CB-2 are possible. The proof
of the Key Lem m a uses the form ulation given in the definition above.

1. CB-1 is equivalent to

s[<t]4. A /¿[cr]^, =>■ transi(s\(r\, h {(t}) = (transits, ¡i))\(t\.

A sim ilar reform ulation can be given for CB-2.

2. The universal quantification over a can be replaced by a specific a. Let s , s ' £ statesi
and If there is a a : U ^ U such th a t (s ,/i) (s ', / /) then there exists
a sm allest one (w .r.t. to function inclusion), let us say r = T hen the following
statem ents are equivalent:

1. (s ,/i) -^> (s ',/i') =>■ t rans i t s , ¡i) t r a n s i t s ' , / /) , for all a,

2. (s, ¡i) (s ', n') =>■ t r a n s ^ s , ¡i) t r a n s i t s ' , ¡ir).

Again, a sim ilar reform ulation can be given for CB-2.

5 T h e K ey L e m m a a n d th e lower b o u n d re su l t

This section proves the Key Lem m a for rings networks. The point of this lem m a is the fol­
lowing: suppose we have two processes Pi and Pj in a bidirectional ring of com parison based
processes and isom orphic processes up-to PIds. Assume furtherm ore th a t the sequences
of the PIds contained in the processes lying w ithin distance k are order equivalent, i.e.

ki 1 • • • ^ i—i: ^ 1 • • • U'j—i? ^ i^ i+ 1 • • • î+A;)* The s ta rt
states of all processes are corresponding by axiom IP-4. Com parison based processes be­
have sim ilarly when they are in corresponding states and get corresponding messages, so,
Pi and Pj are in corresponding states w ithin k rounds of the execution; until distinguishing
inform ation has had a chance to propagate to the processes Pi and Pj.
Throughout this section, (R } P , M) denotes a bidirectional ring consisting of com parison
based processes th a t are isom orphic up-to PIds and n denotes its network size. Recall we
count m odulo n in such networks. Recall also th a t cxr .i is the s ta te of process Pi in round
r and a r .e the message sent through channel e in round r. The P Id of process i is denoted
by u t .
We need a few m ore definitions to form ulate the lemma.

15

D efin it io n 5.1 Define the ^-neighbourhood of process Pi , no ta tion Ni(k) , as the sequence
in JJ2k+1 containing the PIds of process P8’s neighbours w ithin distance k, i.e.

Ni(k) — . . . Ui—i'Ui'Ui .̂i . . .

Notice th a t, if k > [| J , then N i{k) contains the PIds of all processes.

N o ta t io n 5.2 If N i{k) ~ Nj{k) then Lem m a 4.4 im plies th a t the function in

{U’i — ki ^i-k-\-l i ' ' ' i ^i-\-k\ ̂ U,

u i+l l—̂ u j + h

for every /, i — k < I < i + k, is well-defined and stric tly m onotone. This function is denoted
by Vi,j,k-

P r o p o s it io n 5.3 For all i }j £ V, k £ N we have the following function inclusions

D efin it io n 5 .4 1. A message assignm ent function /i is called active if at least one non-null
message is sent, i.e. 3e £ E[f i .e ^ null], A round > 0 is called active if its message
assignm ent function is so.

2. For r £ N define actives(a, r) = # { r ' \ r' < r A a r> is active}.

5.1 The K ey Lem m a
Now we can form ulate and prove the Key Lem m a for rings. The result is due to [FL87]
and [Ly96]. O ur result is slightly m ore general and the proof we present is m ore precise
and uses fewer case distinctions. Section 6 trea ts its generalization to a rb itra ry networks.

L e m m a 5.5 (K e y L e m m a) Let (R } P, M) be a bidirectional ring network consisting of
comparison based processes that are isomorphic up-to PIds. Then for all k £ N; fo r all
executions a o f the ring we have

I f Pi and Pj are processes with order equivalent k-neighbourhoods, then at any point
r in a such that a 0, « 1 ,0 1 , • • • oir ,ar contains at most k active rounds, the states a r .i
and a r .j are corresponding through

PROOF: Before presenting the form al proof, we give a sketch. The proof proceeds
by induction on r. As Pi and Pj are processes w ith order equivalent ^-neighbourhoods,
the function is well-defined and stric tly m onotone. Furtherm ore, if Pi and Pj are
corresponding via or via Vi+ij+i,*;-! then also via Vij^ , by Lem m a 5.3. The
induction basis follows im m ediately from the fact th a t Pi and Pj are isom orphic up-to
PIds. The induction step distinguishes between two cases: round r + 1 is active and round
r + 1 is not active. In bo th cases we prove

16

1. The processes Pi and Pj are in corresponding states in round r by IH.

2. The processes receive Uj-j^-corresponding messages in round r + 1.

- If r + 1 is non-active this follows by the fact null-messages th a t are corresponding
via any a.

If r + 1 is active it follows by application of the IH to the neighbours of Pi
and Pf . these are in Uj-j^-corresponding states in round r, so they send VitJtk~
corresponding messages in round r + 1.

3. T hen Pi and Pj are in Uj-j^-corresponding states in round r + 1, for Pi and Pj
are com parison based and isomorphic: applying the transition functions to VitJtk~
corresponding states yield Uj-j^-corresponding states, for is stric tly monotone.

Now, for the form al proof, let a be an execution. By induction on r we prove for all r:

Vi, j G V \ / k G N[actives(a, r) < k A Ni(k) ~ N j(k) ==> a r .i ' ,3’k> a r .j\ (*)

in d u c t io n basis: r = 0
Let i }j G V . Let k G N. Assume Ni{k) ~ Nj{k). T hen Vij^ is well-defined and stric tly

Vi j k
m onotone. We prove ct0.i — a 0.3:
Axiom IP-4 requires th a t s°[pid(s°)] = The sequence pid(s°) only contains occurrences
of Ui, pid(s°) only of Uj and Vi j^ m aps Ui to u31 so we have i.e. =

Vi>J>k ■ _ 0a 0-i ------- > C(0-j — Sj.

in d u c t io n step: Fix r G N such th a t form ula (*) holds. Let i , j G V, let k G N. Assume
th a t actives(a, r + 1) < k and Ni{k) ~ Nj{k) . T hen Vi j^ is well-defined and stric tly
m onotone.

case 1: round r + 1 is not active.
Then Pi and Pj receive only null-messages in round r + 1. It follows from Axiom U-5 th a t

Vi j k
null-messages are corresponding via every substitu tion . So null— > null. As actives(a, r) <
actives(a, r + 1) < k the IH yields a r .i '’3’k> ctr .j. By Definition 4.7.3 we have

(ar .i, (i — 1 : null, i + 1 : null)} '’3’k> (ar .j, (j — 1 : null, j + 1 : null)}.

So, we have isom orphic processes in Uj-j^-corresponding states, receiving Uj-j^-corresponding
messages. Because V i j ^ is s tric tly m onotone, they move to Uj-j^-corresponding next states
by IP-5 and CB-1:

a r+i-i = t r ans i (a r .i, (i — 1 : null, i + 1 : null))
= t r a n s j (a r .i, (j — 1 : null, j + 1 : null))

' ’3’k> t r a n s j (a r . j , (j — 1 : n u ll, j + 1 : n u l l)))

Oir_|_i. j .

17

case 2: round r + 1 is active.
We apply the IH to th ree cases: w ith the processes i — 1, j — 1 and k active rounds, w ith
i + 1, j + 1 and k active rounds, and w ith j , A;. We m ake the following observations:

1. As round r + 1 is active, we have th a t k > 0 and the execution fragm ent â 0-,ôii, • • • a n à r
contains at m ost k — 1 active rounds.

2. B oth the processes i, P j- i and i^+ i, Pj+i have order equivalent A; —1-neighbourhoods.

Applying the IH w ith (i — 1, j — 1, k — 1) and w ith (i + 1, j + 1, k — 1) yields th a t Pi-\ and
Pj - i are in corresponding states in round r, and so are Pî+i and Pj+i'.

v i — l , j — l ,k — l . -, . v i+l , j +l , k — l -------------- ycxr .j—i and otr .{-|_i------- ------- ycxr .j-|_i.

Now, application of IP-5 and CB-2 leads to the conclusion th a t Pi-\ and Pj - i send
Vi-i j- i^ - i-c o rre sp o n d in g messages:

— l T f lS Q S i — i (oir — 1)

= m s g s j - i (à r .i- i)

-------------- y m s g s j - i [a r . j- i
Oir_(_i. j — i

We then obtain by Definition 4.7

-, v i - l , j - l , k - l -,
+ — 1—M ̂ + —1—

and by and by Lem m a 4.8

^ r - \ - l ' i — 1—H ' ^ r + 1 - j — 1—yj •

Similarly, we obtain for the clockwise neighbours

^ r + ln ’+ l —H ' ^ r + 1 • j + 1—yj •

A nother application of the IH yields

v t , j , k .
OLr .i ———y a r .j.

Like in case 1, we have

(? (j 1 • ^ r + 1 ' i — 1—M i J 1 • C^r + 1 *¿+1 —M))

 ̂J ^ I * / * \ \
 ̂ \ OLr ' j) \ J 1 • C^r + l — ? J H- 1 * ^ r + 1 • j + 1 —Yj)) •

by Definition 4.7.

18

Finally, Axioms CB-1 and IP-5 yield th a t

^ r + l * i t vCl f l S{ (^Oi r 1 . CXy" - | - 1 • i — 1 — ̂i 5 X H- 1 . - | - 1 * —|— 1 — y i ^ ^

t v a T l S j (o i r *i , (j 1 . Oir _|_i J - |- 1 . Oir _|_i

\j ̂ j k / • / • ̂ \ \
 ̂t r a n s j (a r .j, (j 1 . j -)- 1 .

□ □

E x a m p le 5.6 Reconsider the execution of the LCR algorithm , given in Exam ple 1.9. Al­
though the algorithm works in a unidirectional ring, we can still apply the Key Lem ma,
for we m ay im agine each process sending all null-messages to the counterclockwise neigh­
bours. This operation preserves the properties of being com parison based and consisting
of isom orphic processes.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
P3 (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)

We apply the Key Lem m a taking r = 1. All rounds before the election of the leader are
active. We have (4 ,3 ,2) = A ^(l) ~ A ^(l) = (3 ,2 ,1). Now the lem m a concludes th a t P 2
and P3 are in states corresponding via ^ 2 ,3 , 1 = {4 1—>■ 3, 3 1—>■ 2, 2 1—̂ 1} in round 1 of the
execution. Indeed, (3,4, unknown) ^ ^ > (2 , 3, unknown). We also see th a t A^i(l) ** A ^(l)
and th a t Pi and P 2 are not in corresponding states.

5.2 From the K ey Lem m a to the lower bound result
This subsection form ulates the lower bound result in our own term inology and sketches
the steps in the proof by [Ly96]. The leader election problem assumes th a t all processes in
the network have different PIds.

T h e o re m 5.7 Solving the leader election problem in a bidirectional ring of size n by com­
parison based processes being isomorphic up-to PIds requires O (n lo g n) messages.

The steps taken in the proof by [Ly96] are:

LB-1 An assignm ent of PIds to the nodes of a ring of size n is called c-symmetric if there
are at least [J order equivalent ^-neighbourhoods, \ f n < 2A; + 1 < n.

LB-2 There exists a constant c such th a t, for all n £ N, there is a c-sym m etric ring of size
n.

19

LB-3 A network system consisting of com parison based processes which are isom orphic
up-to PIds and whose PIds in the processes form a c-sym m etric ring, has m ore than
|_c’ 4~2 j active rounds before the leader is elected, if n is large enough.

LB-4 In order to prove the lower bound result, fix c as in LB-2 and take n sufficiently
large. Let R be a c-sym m etric ring of size n. Then every active round r w ith
r > \ / n + 1 such th a t the leader has not yet been elected sends m ore th an -̂ r~[
messages through the network. This follows from: there is at least one process Pi
th a t sends a non-null message. As R is c-sym m etric, there are at least processes
whose r — 1-neighbourhoods are order equivalent to Ni(r — 1). Then it follows from
the Key Lem m a th a t all those processes are in corresponding states in round
r — 1 by the Key Lem ma, so all sent a non-null message in round r.

Because the network needs at least [c’”~2 j active rounds before the leader is elected,
the to ta l num ber of messages send before the election is larger than

L ^ J L ^ J
num ber of messages sent in round r >

r = 0

c • n
2 r - 1

r—y n+1

This last sum is shown to be O (n lo g n) by integral approxim ation.

5.3 G eneralizations o f the result
This subsection briefly and inform ally discusses some generalizations of the Key Lem m a
and of the lower bound result.

M u lt ip le s tart s ta te s

Definition 3.1, axiom IP-2, of “processes isom orphism up-to P Ids” requires the processes
to have a single s ta rt state. This is m ainly done for the sake of simplicity.
There are several weaker alternatives for this axiom such th a t the lower bound result still
holds. This is so because proving a lower bound only requires one “bad” execution.

O th er re la t ion s th a n <

Given some relation R on U, there exists a sensible notion of R-based process such th a t
the Key Lem m a holds when the processes are i?-based instead of com parison based: gen­
eralizing the notion of order equivalence to ^-equivalence is easy. T hen we can adap t the
notion of congruence to i?-congruence by replacing “order equivalence” by R-equivalence.
The proof of the Key Lem m a is generalized in the same way. The lower bound result need
not hold for any relation, for the existence of large i?-equivalent neighbourhoods like those
in LB-2 is not guaranteed.

20

O th er p ro b lem s th a n leader e lec t io n

It is not difficult to see th a t the proof given in [Ly96] also works for networks solving other
problem s th an leader election. The only step in the proof of the lowerbound th a t uses the
fact th a t the network solves leader election is LB-3. It uses th a t in the round in which
the leader is elected there is a s ta te th a t is not corresponding via any a to the s ta te of
any o ther process. In the leader election problem , this is the s ta te of the process which is
elected.

O th er n etw orks th a n b id irec t io n a l rings

The following section provides a definition of the notion “process isom orphism up-to P Ids,”
such th a t the Key Lem m a can be generalized to o ther networks th an rings. The lower
bound result needs not hold for o ther networks, as the existence of large order equivalent
neighbourhoods like in those LB-2 is not guaranteed.

U n iq u e n e ss o f P Id s in s tart s ta te s

The fact th a t each s ta rt s ta te contains a single P Id which is required by axiom IP-3, is
used only in the leader election problem , not in the Key Lem ma. However, uniqueness of
PIds in the s ta rt states should not be confused w ith uniqueness of the PIds in different
processes.

6 P ro c ess iso m o rp h ism a n d th e K ey L em m a m o re
g en era lly

This section generalizes the Key Lem m a to o ther networks th an rings. Therefore, the no­
tions of process isom orphism up-to PIds and of neighbourhood need to be given a m eaning
in an a rb itra ry network. Since different processes have different channels, we need to relate
these when com paring two processes.
This is done via a so-called local autom orphism , which bijectively m aps the incoming
and outgoing channels of one process to those of another. Then we in troduce the notion
of “process isom orphism up-to PIds via a local au tom orphism .” We also com pare the
^-neighbourhoods of two processes using a local autom orphism .
We claim th a t the Key Lem m a also holds for isom orphic processes in an a rb itra ry network.
The generalized Key Lem m a does not require all processes to be isom orphic up-to PIds,
bu t only the pairs th a t are rela ted by the local autom orphism .
We assum e th a t X, J are index sets and th a t X k is some set, for all k £ X U J .

D efin it io n 6.1 Let G = (V, E) be a graph and i £ V. A local automorphism of G in i
is a bijection a : V V such th a t for all k £ V

21

2. i —)■ k -<=>■ a(i) —y a(k) .

So, a local autom orphism in i m aps incoming neighbours of i to incom ing neighbours of
cr(i) and the same for outgoing neighbours. The set of local autom orphism s of G in i is
denoted by Loc(G, i). Notice th a t an autom orphism of G is local autom orphism of G in
for every i.

D efin it io n 6 .2 Let X, J be index sets. Let a : X J be a bijection. We define for all
x ^ T l j e j X j

x {<t) = (x.(i)) i e r

so, x (<j) £ I I i £ i X i an(i (x ((J))i = x <r(i)- If t a, then we also use x (t) = x (<j). If
x(cr) = y, then we say th a t y is obtained from x by substitu tion of indices.

E x a m p le 6 .3 Let R be a bidirectional ring of size n. Let i }j £ V . Take a : V —>■ V,
cr(i-\-l) = j-\-l for all 0 < I < n, counting m odulo n. This is a local autom orphism if R in it
is even an autom orphism of R. For to, to ' £ M , we have x = (j — 1 : to, j + 1 : to ') £
and

x(<T) = (xa[i)) ieI

1)5 ̂H- 1 •

= (i - 1 : X j_ i,* + 1 : Zj+i)
= (i — 1 : to, i + 1 : to ').

Rem ark, however,

x {<t) = (x(i))ieT(<r)

+ (cr(j - 1) : m,cr(j + 1) : to '),

for, in general, a (j — 1) needs not to be defined.

6.1 P rocess isom orphism up-to PIds more generally
It is not difficult to form ulate a m ore general notion of process isom orphism up-to PIds by
com bining the axioms of the notions of process isom orphism for rings from Section 3 and
by relating the incoming and outgoing channels via a local autom orphism .

D efin it io n 6 .4 Let (G , P , M) be a network system . Let i , j £ V and let a £ Loc(G,i)
such th a t cr(i) = j . The processes Pi and Pj are isomorphic up-to PIds via a , no ta tion
Pi Pj, if the following properties are satisfied:

IP-1 statesi = statesj

22

IP-2 # start i = # s ta r t3 = 1

IP-3 |pidset(s°)| = |pidset(s°)| = 1

IP -4 5°[pid(s°)] = 4

G IP-5 For all s £ statesi

msgsi(s) = (msgs j(s)) (cr).

G IP-6 For all s £ statesi and all ji £

trans i t s , /¿(a)) = t rans j(s , ¡i)

R e m a r k 6 .5 1. Notice th a t is not an equivalence relation. We have Pi P8-,
Pi ~<r Pj — s Pj ^ (j -1 Pi and Pi ~(j Pj A Pj ~ T Pk — ^ Pi ~ To<r Pk-

2. Com pare the definition of above, applied to a bidirectional ring network, and
Definition 3.1, of ~ ring, i.e. of “process isom orphism up-to P Ids” of rings A corre­
spondence between the relations ~ ring and in a bidirectional ring network is given
by

Pi ~ring Pj '' '' 3(7 £ Cn[Pi ~(j Pj\

Here Cn is the cyclic group of order n, Cn = { ok \ CTkii) = i + k m odulo n}.
So, definition 3.1 uses very specific (local) isom orphism s to com pare the processes,
whereas the definition above allows any local autom orphism .

6.2 The K ey Lem m a generalized
In order to generalize the Key Lem ma, we redefine the notion of ^-neighbourhood and
generalize the notion of order equivalence to X-tuples over U. Recall th a t d (*,/) is the
distance between i and /, i.e. the length of a shortest path .

D efin it io n 6 .6 Let (G, P , M) be a network system . Let i £ V . The ^-neighbourhood of
a process Pi is defined by

~Ni(k) = (u i);ey,d(*',0<fc'

D efin it io n 6 .7 Let v , w £ U1 . We define

v ~ w = \/i £ I [v i < V j -<=>■ W i < W j \ .

23

Now order equivalence between neighbourhoods of different processes is expressed via a
substitu tion of indices, e.g. N4-(A;)(<t) N A k) .

N o ta t io n 6 .8 If N i (k) (a) ~ N j (k) then Lem m a 4.4 implies th a t the function in u4-_jt+i,
. . . }Ui+k} —y U, m apping Ui+i to u1+i} for every /, is well-defined and stric tly m onotone.
This function is denoted by Vika-

The proposition below is an analogue of proposition 5.3.

P r o p o s it io n 6 .9 For all i , K N and a £ Loc(G,i) we have

1. Vjtk-i,<r C v lka, fo r all j £ m (i) U {%},

2. N 8'(A;)((T} ~ ^a{t){k) VI £ in(i) U {z } [N ;(A; - l)(c r) ~ ^ a{i){k - 1)].

Now we can generalize the Key Lem ma. Suppose we have two processes Pi , Pj which are
isom orphic up-to PIds via a and whose ^-neighbourhoods are order equivalent via a also.
Then the processes rem ain in corresponding states via during the first k rounds of
the execution. Notice th a t, contrary to the Key Lem m a for rings, we do not require all
processes to be isom orphic, bu t only the pairs th a t are rela ted by <r, i.e. only Pi and Pa(i),
for all I w ithin distance k from i.

L e m m a 6 .10 (K e y L e m m a g en era lized) Let (G , P , M) be a network system, consist­
ing of comparison based processes. Let i £ V, k £ N and a £ Loc(G,i) . Write a(i) = j .
I f

V/ £ V, d(i , I) < k[Pi ^ Pa{l) A N t (k){(T) ~ N j (k)]

then for all r

" / \ 7 • ^ z /c O’ •actives(r) < k a r .i--- >ar .j.

P R O O F : Sim ilar to the proof of lem m a 5.5. □ □

E x a m p le 6 .11 The Key Lem m a concludes th a t the processes 3 and 4 in the execution of
the LCR agorithm of Exam ple 1.9 are in corresponding states during the first round of the
execution, the Generalized Key Lem m a th a t these are so during the f irst two rounds of the
execution.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4 ,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
Ps (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)

24

7 F u r th e r re sea rch

It would be in teresting to investigate w hether or not com parison based processes can be
verified autom atically. We conjecture th a t this is indeed possible. We suggest an adaption
of a result by [PJ96], sta ting th a t b isim ulation equivalence is decidable for program s th a t
can only read, w rite and store the ir data , i.e. program s th a t do not depend on the actual
d a ta values. The idea behind this suggestion is th a t given a fixed assignm ent of PIds to all
the processes, the network can be considered as only moving around data. As a com parison
based process behaves sim ilarly on order equivalent inpu t, there is only a finite num ber
of really different assignm ents. If n is the num ber of processes, we have n n , assignm ents
leading to different behaviour which we need to check.

As a second topic for fu rther research, it would be m ore elegant to form ulate the notion
of “process isom orphism up-to P Ids” m ore generally using bisim ulation equivalence. Our
form alization requires the s ta te spaces of all processes to be equal. It would be m ore na tu ra l
to allow each process to have its own sta te space, expressing equivalence of behaviour by
m eans of bisim ulation.

Moreover, it would be elegant to have an absolute notion of isom orphic processes, inde­
pendent of an local autom orphism , like we have for ring networks. We could try to find
an analogon of Cn as used in R em ark 6.5, using a specific class of (local) isom orphism s to
com pare processes. It is not im m ediately clear which class to take.
A nother direction for fu rther investigation is to adap t the lower bound result on the leader
election problem to o ther networks th an rings. The proof of the lower bound given by
[Ly96] does not apply to o ther networks th an rings because the existence of as m any and
as large order equivalent neighbourhoods as those in LB-2 is guaranteed in rings only.
In fact, we conjecture th a t the lower bound result O (n lo g n) does not hold for a rb itra ry
networks, networks. It is likely th a t the higher the connectivity of the network, i.e.
the num ber of channels, the less messages are needed to elect a leader. It would be an
in teresting com binatorial problem to find large order equivalent neighbourhoods in other
networks th an rings, in order to prove an adap ted lower bound.

A N o ta t io n a l conven tions

Sets
V (A) powerset of A
A U B the disjoint union of A and B

{(a, 0) | a £ A } U {(&,1) | b £ B }
A the num ber of elem ents in A

25

Functions
A —>■ B the set of (to tal) functions from A to B
A ^ B the set of injective functions from A to B
A -» B the set of surjective functions from A to B
A B the set of bijective functions from A to B
A u—̂ B the set of partia l functions from A to B
D o m (/) the dom ain of ƒ
R a n (/) the range of ƒ
ƒ C g D o m (/) C Dom(g) & V i G D om (f) [f (x) = g(x)\
f (x) l x G D om (ƒ)
f (x) = f (y) x }y G D o m (/) and they are equal as elem ents in R a n (/)

Sequences
A* set of finite sequences over A
£ em pty sequence
\x\ length of the sequence x
Xi 1 < i < \x , the i th elem ent of x
~k concatenation of sequences
se t s e t : [/ * —>■ V (U) ,se t (x i ■ ■ ■ Xk) = {®i, • • •x k}

D ependent products
X-tuples are tuples over another index set X th an { 0 ,1 , . . . k} or N.

iei
l\ . X\ , %2 x 2 i *3 :

the set of over tuples an index set X, such th a t
the elem ent at place i is an elem ent of Ai

El iei a
X-tuple consisting of elem ents Xi at index i
X-tuples consisting of elem ents Xi3 a t index
X = {¿i,¿2, *3, • • • }
i G X, the i th of x

Typically, we use the dependent product as a “com m on super ty p e” of the sets S, S X

and M 0oui. Note th a t S X ~ rLe{i}um(i) where X (lj0) = S, = M ° , i G in(i).
We m ix the notations of the product and the dependent product. Some exam ples: if
out(i) = {3,5}, then (3 : to, 5 : to ') G Furtherm ore, if in(i) = {i — l , i + 1} and
s ta tus G S, then (s t a t u s , (i — 1 : to, i + 1 : to ')) G

G M :to,-

S X MqÛ \ If T O i _ i , T O 4-+ i G M 0 then

Jiy ̂ * Jiy • L

26

G lossary o f sym bols
G graph
R uni- or bidirectional ring
V set of vertices
E set of edges
X index set

h J , l elem ents of V, X or N
P (sequence of) processes
S set of states
s sta te
s?' s ta rt s ta te of process i
M set of messages
null absence of a message
Mo M U {nu ll}
m message
x , y indexed sequences (of messages and states)
a execution
n, k natu ra l num bers
U set of PIds
u PId
ut the P Id of process i
V, w sequence of PIds

27

R eferences

[CR79] E . C H A N G , R . R o b e r t s A n improved algorithm for finding extrema in circular
configurations of processes. In: C om m unications of the ACM, Vol. 22-5, pp. 144
- 156, May 1979.

[CFJ93] E .M . C L A R K E , T . F i l k o r n , S . J h a Exploiting symmetry in temporal logic model
checking. In: Proceedings of the in ternational conference on com puter-aided veri­
fication, Lecture notes in com puter science, vol. 697, pp. 451 - 462, 1993. Springer­
Verlag, Berlin.

[EA93] E . A . E M E R S O N , A .P . S i s t l a Sym m etry and model checking. In: Proceedings
In ternational conference on com puter-aided verification, Lecture notes in com­
pu te r science, vol. 697, 463 - 477, 1993. Springer-Verlag, Berlin.

[ES95] E .A . E M E R S O N , A .P . S i s t l a Utilizing symmetry when model checking under
fairness assumptions. In: Proceedings In ternational conference on com puter-aided
verification, Lecture notes in com puter science, vol. 939, 309 - 318, 1995. Springer­
Verlag, Berlin.

[FL87] G . N . F r e d e r i c k s o n , N . A . L y n c h Electing a leader in a synchronous ring. In:
Journal of the ACM, Vol. 34-1, pp. 98 - 115, 1987.

[PJ96] B .JO H N S O N , J . P a r r o w Deciding Bisimulation equivalences fo r a class o f non-
finite-state programs. In: Inform ation and C om putation, 107-II:pp. 272 - 302,
1993.

[La77] G . L e L a n n Distributed algorithms - towards a formal approach. In: B. G ilchrist,
editor, Inform ation Proceeding 77, Toronto, A ugust 1977, vol. 7, Proceedings of
IF IP Congress, pp 155 - 160, N orth Holland, A m sterdam , 1977

[Ly96] N .A . LYNCH Distributed algorithms, pp. 17 - 49. M organ K aufm ann Publishers,
Inc., 1996.

