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Abstract
This paper formalizes the two notions of “comparison based process” and of ‘process 
isomorphism up-to process identifiers.” The Key Lemma is proven which states that 
comparison based processes which are isomorphic up-to PIds behave very similarly, 
if the PIds in the processes in their enviromnents are what is called order equivalent.
Key words and phases: leader election, synchronous networks, comparison based 
processes, isomorphic processes, process identifiers, communication complexity.
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N ancy Lynch in C hapter Three of her book “D istribu ted  algorithm s” [Ly96] gives a proof 
of a lower bound result on a leader election problem : The am ount of com m unication needed 
to  solve this problem  is O (n lo g n ). The result is s ta ted  in a synchronous ring network, 
consisting of processes th a t are isom prphic except for a unique process identifier -  a unique 
P Id  for short. Furtherm ore, the  algorithm  solving the  leader election problem  should be 
com parison based, which m eans th a t the  only operation on PIds is com parison.
The key to  the  lower bound result is a lem m a expressing th a t a certain  am ount of sym m etry  
can arise even in the  presence of PIds. This sym m etry  can only be broken at the  cost of 
O (n lo g n ) messages.
Several notions on the  way to  this result are in troduced in tuitively  ra th e r th a t formally. 
The proof of the  Key Lem m a takes some large and inform al steps. This report provides 
a form al basis for all notions to  com plete a form al proof. In particu lar, form al definitions 
are proposed for the  notions of “com parison based processes” and of “process isom orphism  
up-to P Ids.” This report provides syntax-free definitions of bo th  notions for a rb itra ry  
network system . We prove and generalize the  Key Lem m a to  any network system . We also 
sketch the  lower bound result.

f

mailto:marielle@cs.kun.nl


2

The crucial step in our form alization is the  in troduction  of the  operations pid and [ ], which 
retrieve and substitu te  respectively the  PIds present in a message or state. These allow 
for access to  the  PIds in a s ta te  or message, w ithout m aking fu rther assum ptions on their 
nature . Once a process contains a (single) P id  it m ay copy it or send it to  o ther processes 
though processing.
Using these operations we are able to  express form ally th a t two processes in a ring th a t 
are isom orphic up-to PIds, m ay only differ in the  PIds of the ir s ta rt states. For ease of 
no ta tion  we firstly in troduce this notion for ring networks and then  for a rb itra ry  networks. 
Intuitively, a com parison based process is a process which, if im plem ented in code, perform s 
no other operations on PIds th an  com parisons. O ur definition uses the  functions pid and 
[ ] again.
An im portan t property  of com parison based processes is th a t, com parison being the  only 
serious operation on PIds, the  relative ranks of PIds in states and messages are of interest 
ra th e r th an  the ir particu lar values. In fact, the  Key Lem m a states th a t two processes 
in a network consisting of processes which are isom orphic except for a P id  behave very 
similarly, if the  processes in the ir neighbourhoods (which they  receive messages from) 
contain PIds w ith the  same relative ranks. We prove this lem m a for ring networks first 
and then  generalize it to  o ther networks.

R elevance and related work
We believe th a t the  m ain contribution of this report is the  form alization of the  concepts 
of “com parison based process” and of “isom orphic processes” in a synchronous network 
system.
The notion of com parison based process is in troduced at a m ore syntactic level and more 
inform ally in [Ly96] and [FL87].
The notion of isom orphic processes (except for a P id ), in our view, is m ore fundam ental. 
Such processes often occur in real-world applications. It is therefore desirable to  have an 
abstrac t and general definition of this notion. M oreover, the  sym m etry  present in networks 
of isom orphic processes can be used to  reduce the  com plexity of (verification) algorithm s, 
c.f. [CFJ93], [ES95], [EA93], which in troduce the  notion of isom orphic processes in a more 
syntactic way.

O rgan iza tion  o f  th e  sec t io n s

This report is organized as follows. Section f introduces the  synchronous network model. 
The operations pid and [ ] are specified axiom atically in Section 2. T hen Section 3 defines 
the  notion of process isom orphism  up-to PIds in ring networks and Section 4 the  notion of 
com parison based processes. We prove the  Key Lem m a to  the  lower bound result in Section 
5 for rings and m ention some obvious generalizations. Section 6 trea ts  the  generalization of 
the  notion of process isom orphism  up-to PIds and the  Key Lem m a to  a rb itra ry  networks. 
The reader is referred to  A ppendix A for no ta tional conventions and a glossary of symbols.
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1 T h e  sy n ch ro n o u s  n e tw o rk  m o d e l

This section recalls the  general m odel of synchronous network system s. The ideas in this 
section are taken from  Lynch [Ly96], C hapter 2. We deviate from  Lynch’s m odel in some 
m inor details. Furtherm ore, we present our definitions at a higher level of form ality  and 
in troduce some additional notations.
A synchronous ring network system  consists of a num ber of processes, running on some 
pieces of hardw are, processors, th a t com m unicate via channels. The adjective synchronous  
refers to  the  situation  th a t the  execution of the  system , i. e. all processing and all com­
m unication, proceeds simultaneously, in infinitely m any consecutive rounds. The systems 
begins w ith all processes in a rb itra ry  s ta rt states. The processes, in lock step, repeatedly  
perform  the  following two steps: F irstly  they  sim ultaneously send messages through the 
channels, then  they  sim ultaneously do some processing, based on the  current states and 
on inputs they  received, in order to  reach the  next state. The message a process sends 
through a channel is indicated  by the  message generation function, the  next s ta te  by the 
s ta te  transition  function.
A synchronous ring network system  consists of a num ber of processes, th a t com m unicate 
via channels. The system s begins w ith all processes in a rb itra ry  s ta rt states. The processes 
sim ultaneously and repeatedly  perform  the  following two steps: F irstly  they  send messages 
through the  channels, then  they  move to  the  next sta te , using the  current states and on 
inputs they  received,

C o n v e n t i o n  1.1 If M  is some set of messages, then  we assum e th a t null ^ M ,  as we 
w rite null as a placeholder for the  absence of a message. We define M 0 =  M  U {null}. 
Furtherm ore, we fix for the  entire report th a t n, k  are na tu ra l num bers.

D e f i n i t i o n  1.2 A synchronous network sys tem , or sim ply a network  is a tup le  (G } P , M ), 
where G  is a directed graph, P  a V -tuple of processes and M  a set of messages such tha t:

-  G  =  (V}E ) } V is a finite set of vertices and E  Ç V 2 a set of edges. If ( i , j )  G E  
then  we w rite i —>■ j .  For i G V,  in ( i ) is the  set of “incoming neighbours,” th a t is 
in(i)  =  { j  G V  | j —ï i }  and out(i)  =  { j  G V  \ i —ï j }  the  set of “outgoing neighbours.” 
The distance between i and j ,  denoted by d (* ,j) , is the  length of a shortest pa th  
between i and j ,  if there  is such a path , otherw ise d ( i , j )  =  oo.

-  P  =  (Pi)ieV. The process Pi , which runs at node consists of the  following com po­
nents:

— s ta te s i , a (possibly infinite) set of states,

— start i  Ç s ta te s i , a non-em pty set of s ta rt states,

— msgsi  : statesi  —> the  message generation function.
m s g s i ( m ) is the  tuple  of messages, indexed by out(i),  to  be sent to  the  outgoing 
neighbours of Pi. We often w rite m sgs i^ . j (m)  for {rnsgsiirn))-.
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— trans i  : statesi  X —> s ta tes i , the  s ta te  transition  function.
trans i t s ,  ¡i) yields the  next s ta te  of process Pi , when being in s ta te  s and re­
ceiving the  message ¡ij from  P j, for all j  £ in(i).

We w rite sta tes  =  IJiGV statesi

The network size is the  num ber of elem ents of V .

C o n v en tio n  1.3 Since we only consider one system  at the  tim e, the  following notations 
will do. Throughout this report S  and M  are sets of states and messages respectively. If 
G  is a graph, then  V  denotes the  set of vertices and E  the  edges. If Pi is some process, 
then  we denote its com ponent by statesi , start i,  trans i  and msgsi .

A special class of networks are ring networks. In order to  facilitate discussion, the  definition 
below fixes the  nam es of the  nodes and edges.

D efin it io n  1.4 f. A unidirectional ring of size n is a graph G  =  (V, E)  such th a t
V  =  {1,. . . , n}  and E  = {1 —>- 2, 2 —>- 3 ,. . . , n  — 1 —> n }n —> 1}.

2. A bidirectional ring of size n is a graph G  =  (V ,E ' ) ,  where V, E  as above and 
E'  = E  U {2 —> 1, 3 —> 2 , . . .  , n —)■ n — 1 , 1 —>■ n}.

3. A unidirectional (bidirectional) ring network is a network (G, P , M )  such th a t G  is a 
unidirectional (bidirectional) ring.

A ring network is either a uni- or bidirectional ring network. We often count m odulo n in a 
ring network of size n; allowing 0 to  be another nam e for n, n +  1 for 1, etc. Furtherm ore, 
the  right or clockwise neighbour of i is the  node i +  1; node i — 1 the  left or counterclockwise 
one.

C o n v en tio n  1.5 The types of the  s ta te  transition  functions and the  message generation 
functions in a ring network can be simplified, using the  isom orphism s Mq* ^  =  Mq*+1  ̂=  M 0 
and M q1 1,8+1̂  =  M q . For unidirectional rings we get:

trans i  : s tatesi  X M 0 —> s ta te s i , 

msgsi  : statesi  —>■ M 0

and for bidirectional rings we get:

trans i  : statesi  X Mq —> s ta te s i , 

msgsi  : statesi  —> Mq.

By convention (to, to ') denotes (i — 1 : to, i +  1 : to ') £ Mq* 1,8+1̂  So the  message con­
cerning the  left neighbour is m entioned firstly and the  message concerning the  right one 
secondly.
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As a running exam ple, we consider the  LCR algorithm  -  by Le Lann, Chang and R oberts 
[La77] and [CR79] -  as described in [Ly96]. It solves the  leader election problem  in an 
unidirectional ring, which m eans th a t eventually exactly  one of the  processes becomes 
“leader.” Later exam ples will show th a t the  processes are isom orphic except for a P Id  and 
com parison based.

E x a m p le  1.6 (sy n ch ro n o u s  netw ork  s y s te m )  Let R  be a unidirectional ring of size n. 
Let M  =  { u i , . . . , un} C N be a set of n different objects; the  value U{ will be associated 
to  Pi. For each i £ F ,  define the  process Pi as follows:

-  statesi  =  { u i , . . .  , un} x M 0 x {init, unknown, leader}. A sta te  should be thought of 
as a tup le  (u, send,  s ta tus) ,  where u =  Ui rem ains unchanged by the  process, send  
is the  message to  be send and s ta tus  indicates w hether or not the  process is in its 
in itia l s ta te  and w hether or not it has declared itself leader.

-  start i  = {(ui,  null, in it)}.

-  msgsi  : statesi  —> M 0, given by
msgsi(u ,  send,  s ta tus)  =  if s ta tu s  =  init then  u else send  fi.

-  trans i  : statesi  X M 0 —> statesi , trans i((u,  send,  s ta tus) ,  m )  is described by the 
following pseudo code:

send  :=  if m  ^  null A m  > u then  m  else null fi; 

s ta tus  := if m  = u then  leader else unknown fi.

The algorithm  works in the  following way: The process w ith the  largest value Ui gets 
elected. Each process Pi sends the  value Ui around the  ring. W hen a process receives a 
non-null message, it com pares it to  Ui, the  first field of its state. If the  incom ing message 
is greater th an  Ui, the  process keeps passing this message; if it is less then  it discards the 
message; if it is equal, then  Ui has been passed through the  entire ring, so it is the  largest 
and the  process declares itself leader.

1.1 The behaviour o f a synchronous network system
D efin it io n  1.7 1. A state assignment function  for a network system  (G, P, M )  is a func­

tion which assigns a s ta te  to  each process, i.e. a function v  : V  —> sta tes  such th a t 
v(i)  G statesi  for all i G V. We often w rite v.i in stead of v(i).

2. A message assignment function  is a function which assigns a message to  each channel,
i.e. a function fj, : E  M 0. We w rite ¡i.e in stead of /¿(e).

D efin it io n  1.8 An execution of a network system  (G , P , M ) is an infinite, alternating  
sequence

^0, fj-l, /¿2, V2,
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of s ta te  and message assignm ent functions, starting  w ith a s ta te  assignm ent function. 
This sequence should satisfy:

u0.i G starti

Hr+i.i j  = m s g s i ^ j ( v r .i)

ur+1 .i = t rans i (vr . i , (jir+1.l ->■ 0/em(8))

for all r G N, all z, j  G V  such th a t i —> j .

Notice th a t (jir+i.l —> i)iein^  G is the  tup le  of messages th a t Pi receives in round
r +  1 from  all its incom ing neighbours. The sta te  ur .i is called the  s ta te  of process i in 
round r (or: after r rounds) of the  execution; the  message ¡ir .i —>■ j  is called the  message

sent by i to  j  in round r of the  execution. If a  = z/0, /¿i, Ui, . . . we also use a r = ur and 
d

OLr — f lr .

E x a m p le  1.9 The diagram  below shows the  execution of the  execution of the  LCR algo­
rith m  (see Exam ple 1.6), executing in ring of size 4, taking u\  =  4, u 2 =  3, u3 =  2, u4 =  1.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
Ps (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)

round 3 round 3 round 4 round 4 round 5
proc msgs states msgs states

Pi null (4 ,null,unknown) null (4 ,null, leader)
P2 null (3,null,unknown) null (3,null,unknown)
Ps 4 (2,null,unknown) null (2,null,unknown)
Pa 3 (1,4,unknown) 4 (1,null,unknown)

Process 4 is elected as leader in round 4 of the  execution. Then the  processes neither send 
messages nor change to  another state.

2 D ea lin g  w ith  P Id s  in  p rocesses

This section prepares for the  definition of the  notion of process isom orphism  up-to PIds 
1 as well as for the  notion of “com parison based process.” These notions are defined

1 [Ly96] uses the word “uid” (unique identifier) and [FL87] “id” for w hat we call “P Id .” We deviate 
from  this term inology because in general we do not assume th a t each process has a different PId.
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independently  in Sections 3 and 4 respectively. W hen com bined, they  form  the  setting of 
the  Key Lemma.
An argum ent for introducing PIds is to  break the  sym m etry  present in networks consisting 
of entirely  isom orphic processes. W hen starting  in the  same states, such processes rem ain 
in identical states th roughout the  entire execution. As a result, such processes can not 
solve the  leader election problem .
However, PIds also m ake sense in o ther kind of networks containing very different processes. 
Once PIds are present in some process, it m ay m anipu late  them  and send them  around in 
various ways. A process th a t only uses com parison between PIds (not between a P Id  and 
a constant) is called com parison based. This notion is defined for any network in Section
4.
As we do not wish to  m ake m ore assum ptions on the  na tu re  of the  PIds th an  necessary, all 
access on PIds in messages and states is perform ed via the  operations [ ] and pid introduced 
below.

A x io m s  2.1 We assum e the  following functions and sets to  be available on the  sets M  
and S.

-  A set U, the  type of PIds. In exam ples we take 11 = N.

-  Two functions pidm : M 0 —> IJ* and pids : S  —> U*, which retrieve a list of all PIds 
contained in a message and a s ta te , respectively.

-  Two partia l functions [ ]m : M 0 X IJ* ^  M 0 and [ ]s : S  X IJ* S } substitu ting  a 
sequence of P ids by some other sequence of the  same length.

The subscripts m and s are om itted  if it is clear w hether the  function is defined for messages 
or for states. This convention is also adopted for fu tu re objects defined on bo th  states and 
messages.
The pairs of functions (pidm, [ ]m) and (pids, [ ]s) should satisfy the  following requirem ents, 
for all v, w G U*, m  G M 0 U S:

U - l  <i==> |u| = |pid(ra)| .

The substituen t and the  substituan t should have the  same length.

U-2 ==> pid(m[u]) = v

U-3 m[pid(m )] = to.

Subsequent retrieval and (well-applied) substitu tion  is the  identity; inform ation is 
neither created nor lost.

U -4  to[u]|. A to[u;]4, m[v][w\ = m[w\.

Substitu tion  is destructive.

M oreover, the  function pidm should satisfy:
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U-5 pidm( nuII) = £

For the  sake of convenience we define

pidsets(s) = set(pids(s )), 
pidsetm(m ) = set(pidm(m )),

so pidset yields the  set of all PIds in a s ta te  or message.

R e m a r k  2.2 A lthough a m ore general trea tm en t is possible, we have required th a t the 
num ber of PIds in a s ta te  or message is finite, m ostly for sake of convenience. Moreover, 
this requirem ent is realistic in practice for physical processes only have a finite am ount of 
memory.

E x a m p le  2 .3  Reconsider the  LCR algorithm  from  Exam ple 1.6. The PIds in this algo­
rith m  are U =  { u i , . . . , un} C N. As M  =  U, we have

Ira  if ra £ M ,
P'dm(ra) =  <

I £ it ra =  null.

Moreover, S  = { u i , . . .  , un} x M 0 x {unknown, leader, init}. Then,

. . , I [u , s e n d ] if send  £ M ,
pids [u, send,  s ta tus)  = [uj * pidm(sena) =  <

I [it] if send = null.

For exam ple,

pids (1,1, leader) = [1,1], 
pids (1, null, unknown) = [1], 

pidm (3) = [3],
(1,1, leader)[3,1] = (3,1, leader).

Notice th a t the  LCR algorithm  is independent of the  im plem entation of the  P ids; it works 
for any to ta l order ill, < ).

3 P ro c ess  iso m o rp h ism  u p - to  P id s  in  r in g  n e tw o rks

Now we as able to  express w hat it m eans for two process in a ring th a t they  are “isom orphic 
up-to P id s ,” also referred by as sim ply “isom orphic.” Section 6 generalizes this notion to 
a rb itra ry  networks.

D efin it io n  3.1 Let (i?, P, M )  be a ring network and i }j  £ V.  The processes Pi and Pj. 
are isomorpic up-to P ids , no ta tion  Pi ~ ring P j , if the  following requirem ents are m et:
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IP -1  statesi  =  states  j.

IP -2  #  start i  =  #  s tart j  =  1.

The processes Pi and Pj have a single s ta rt state , denoted by and resp.

IP -3  |pidset(s°)| =  |pidset(s°)| =  1.

Each process has a single P Id  present in its s ta rt state. Process Vs P Id  is denoted 
by u t .

IP -4  5°[pid(5°) ]  =

Except for the  PIds the  s ta rt states, Pi and Pj are equal.

IP -5  The following functions are equal.

t ransi  =  t rans j ,  

msgsi- t i + 1 =  msgsj- t j+i ,  for all rings, 

m s g s i ^ i - 1  =  m s g s j - t j - i ,  for bidirectional rings only.

Notice th a t the  s ta rt s ta te  m ay contain m ultip le occurrences of its PId. Axiom IP-4 
requires th a t all s ta rt states have th a t same num ber of occurrences. Furtherm ore, axiom 
IP-4 implies s °[p id (s °)] =

E x a m p le  3 .2  It is easy to  check th a t the  processes in the  LCR algorithm  in 1.6 m eet the 
requirem ents IP1 -  IP5, so all processes in the  LCR algorithm  are isom orphic up-to PIds.

R e m a r k  3 .3  The notion of isom orphic processes up-to PIds can also be in terp re ted  as 
“isom orphic processes perform ing on different inpu t d a ta .” However, this requirem ent is 
ra th e r weak. Take for instance the  unidirectional ring of processes described by

statesi  = U x N, 

start i  = { (u tl 0)},

t r a n s i ( ( u , n ) , m )  =  (u, P r i m R e c ( u ,m ) ) ,  
msgsi- t i+i(u,  n) =  u.

These processes satisfy the  axioms in 3.1, bu t behave very differently. P r i m R e c ( n , m ) 
is the  n th p rim itive recursive function on inpu t m.  The only reason for using primitive  
recursive functions is because these are to tal.

4 C o m p a r iso n  b a se d  p rocesses

As explained before, the  syntactic idea behind the  notion of com parison based processes 
is th a t com parison between PIds -  not between a P Id  an a constant -  the  respect to
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some order <  on U is the  only serious operation allowed on PIds; we also adm it syntactic 
operations like copying, appending PIds to  lists, etc.
The in tu ition  behind the  sem antic definition is the  following. A com parison based process 
can not really distinguish between e.g. the  s ta te  (2, 3, unknown) and the  s ta te  (3, 8, unknown), 
th a t is between states or messages such th a t

1. The objects are equal except for the ir PIds.

2. All com parisons between the  PIds in bo th  objects yield the  same results.

P roperty  1 is form ally in troduced as the  notion of a-correspondence. For technical reasons 
in the  proof of the  Key Lem ma, the  substitu tion  of PIds is perform ed by a partia l function 
a  : U v-} U . The property  2 is form ally expressed in the  notion of order equivalence. 
However, we use an equivalent form ulation in the  definition of com parison based processes, 
expressing th a t the  PIds in the  objects can be obtained from  each other by application of 
a s tric tly  m onotone function. T hen a process is called com parison based if it the  result of 
the  m sgs  and t rans  applied to  cr-corresponding objects yields cr-corresponding objects, for 
any stric tly  m onotone a.
From now on we assum e th a t the  set U of PIds is equipped w ith a to ta l order < . We also 
assum e th a t X  is some index set and th a t X i  is either S  or M 0, for all i £ l .  Note th a t the 
sets S', S' x and Mq“^^ can be considered as dependent products We use
different brackets, () and (), only for sake of readability.

4.1 Order equivalence
Order equivalence expresses th a t two sequences of PIds have the  same relative ranks. 

D efin it io n  4.1 For two sequences v , w  £ Uk we define 

v ~  w = \ / i , j  <  k[vi <  Vj -<=>■ Wi <  Wj\.

The relation ~  is called order equivalence. It is not difficult to  see th a t it is an equivalence 
relation.

E x a m p le  4 .2  (2, 7, 5) ~  (2, 5, 3) *  (2, 3, 5).

Fact 4 .3  For all v ,w,v,, w ) we have

V ~  W A V ~  w ' ^ =  V~kw ~  v' -kw' .

L e m m a  4 .4  The following statements are equivalent fo r  all v , w  £ U k :

1. v ~  w,

V z,j <  k[vi < Vj <=> Wi < Wj],
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3. There exists a partial function a  : U ^  U such that 

a(vi) = wt

for  all i £ I  and this function is strictly monotone.  Notice that pidset(u8) =  {i>i . . . v 
C Dom(cr).

E x a m p le  4 .5  As (2, 7, 5) ~  (2, 5, 3), the  partia l function {2 i—̂ 2, 7 i—̂ 5, 5 i—̂ 3} is stric tly  
m onotone.

4.2 C orrespondence
We define the  notion of correspondence via a substitution cr on S, on M  and on dependent 
products of these. An object x  corresponds w ith y via cr if we obtain  y from  x  by applying 
the  substitu tion  cr to  all PIds in x. T hen x  and y are the  same except for the ir PIds. 
Firstly, we extend the  definition of [ ] by allowing functions to  be used for the  substitu tion .

D efin it io n  4 .6  Let cr : U U be a function. Let to £ M  and w rite pidm(m) =  v = 
Vi . . . Vk- Define

m[cr]m =  m[a(vi)  . . . cr(vk)]m.

By convention, a function is undefined whenever one of its argum ents are so. Therefore, 
m[cr]mi -<=>■ {^i, • • • ^  Dom(cr). Similarly, s[cr]s is defined for s £ S  and subscripts 
are om itted  like before.

D efin it io n  4 .7  1. Let cr : U U and to, to ' £ M .  Define

<J. / d r i *to —> m  = m[cr\m = m  .

Similarly, define s s' for s , s '  £ S.

2. For x , y  £ °  • U ^  U, define

x y = \/i £ X[xi yt\.

If x y we say th a t x  and y correspond via a  or sim ply th a t they  are a-corresponding. 

L e m m a  4 .8  For all x }y £ r L e j^ *  an<̂  all cr,T \ U ^  U we have 

x y A cr C r  =>■ x y.

E x a m p le  4 .9  We investigate w hat correspondence boils down to  for the  states and the 
messages in the  LCR algorithm  from  1.6.

On s ta te s
W hen do we have (it, sen d , s ta tu s ) (it', send ' , s ta tu s ' )?
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case  1 send  = null. Then (u, send,  s t a tu s ) [<r] =  (cr(u), send,  s ta tus) .  So we have

(u, s en d , s ta tus)  —)■ (u , send ' , s tatus ')  -<=>■

i /  =  cr('u) A send'  = send  = null A sta tus '  =  status.

case  2 send  ^  null. Then (u, send,  s t a tu s ) [<r] =  (cr(u), cr(send), s tatus) .  So we have

(it, send,  s ta tus)  (u , send ' , s tatus ')  -<=>■

i /  =  cr('u) A send'  = a  (send)  A s ta tus '  =  s tatus.

Lem m a 4.4.3 im plies th a t if a  is m onotone then  (u, send)  ~  (u1, send').  

Furtherm ore, it is easy to  see th a t

(u, send,  s ta tus)  (u , send ' , s tatus ')  =>■

(u, u, s ta tus)  (u ' , u!, s tatus ')  A 

(u, send,  unknown) (u', send ' , unknown) A 

(u, null, sta tus)  —)■ (u , null, sta tus ')  A 

send  send ' .

On s ta te s  and m essa g es
Similarly, we get on sta tes  X

((u, send,  s ta tus) ,  m)  ((u ' , send ' , s tatus ') ,  m')

(m  =  m! =  null V m! =  cr(m)) A 

u =  a(u)  A
(send  =  send'  = null V send'  = a(send))  A 

sta tus '  =  status.

4.3 Com parison based processes
If x y and a  is stric tly  m onotone, then  it is easy to  see th a t (pid Xi)ieI  ~  (pid yi)teI —  
choose a fixed order on X such th a t (pid Xi)i € l , (pid Vi)teI  can be considered as elem ents of 
U*. So, x  and y are equal except for the ir PIds and all com parisons between PIds in x 
and in y yield the  same results. As we have argued in the  in troduction  to  this section, a 
com parison based process should yield sim ilar results on these objects. We can m ake this 
more precisely now by saying th a t such a process yields cr-corresponding results on x  and 
y. Thus, a process is comparison based if bo th  its s ta te  transition  and its message function 
preserve cr-correspondence, for any stric tly  m onotone a.

D efin it io n  4 .10  Let (G,  P, M )  be a synchronous network system . The process Pi is called 
comparison based if for all s, s' £ statesi ,  for all ¡i, ¡i' £ and for all stric tly  m onotone
(7  : U  — y U '.
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C B - 1  (s, ¡i) (s', ¡1 ') =>■ transi(s ,  ¡i) t rans i ( s ' , n').

C B - 2  s A s '  ^  ( m s g s ^ J(sj) jeout{t) ^  ( m s g s ^ ^ s ' ^ ^ o u ^ y

Notice th a t the  relation above is used respectively on the  sets statesi  X s ta te s i ,
s tatesi  and

E x a m p le  4 .11 All processes in the  LCR algorithm  from  1.6 are com parison based. We 
use some properties states in Exam ple 4.9

P R O O F : Consider the  process Pi. Let s , s '  £ s ta te s i , to, to' £  M 0. We w rite s =  

(u, send,  s tatus) ,  s1 =  (u ' , send ' , s ta tu s ' ) . Let a  : U ^  U be a stric tly  m onotone func­
tion.

C B - 2  the  message function: Assume s s ' . Then s ta tus  = status ' .  

case  1 s ta tus  =  sta tus '  =  init. Then

m s g s i ( s )  = u u =  m s g s i ( s ' ) .  

case  2 s ta tus  =  sta tus '  ^  init. Then

msgsi( s )  = send  —)■ send'  = msgsi(s ' ) .

C B - 1  the  transition  function: Assume (s, to) (s ' , to '). Then to =  to ' =  null or (to, u) ~  
(to ', u').

case  1 to = null. Then

t r a n s i ( s ,m )  =  (u, null, unknown)

(u', null, unknown)
=  t rans i ( s ' , to ').

case  2 to ^  null. T hen to ' ^  null and (m ,u )  ~  (to ', u ') by m onotony of <r. 

case  2.1 m  > u. T hen to ' >  u' and

t r a n s i ( s ,m )  =  ( i t ,  u, unknown)

(it', u!, unknown)
=  t rans i ( s ' , to ').

case  2.2 to =  u. T hen to ' =  u' and

t r a n s i ( s ,m )  =  ( i t ,  null, leader)

(it', null, leader)
=  t rans i ( s ' , to ').
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case 2.3 m  < u. T hen m! < u ', so

t rans i t s ,  m)  = (it, null, unknown)

(it', null, unknown)
=  trans i ts ' ,  to ').

□
R e m a rk  4.12 Some alternative form ulations of CB-1 and CB-2 are possible. The proof 
of the  Key Lem m a uses the  form ulation given in the  definition above.

1. CB-1 is equivalent to

s[<t]4. A /¿[cr]^, =>■ transi(s\(r\, h {(t}) = (transits, ¡i ))\(t\.

A sim ilar reform ulation can be given for CB-2.

2. The universal quantification over a  can be replaced by a specific a. Let s , s '  £ statesi  
and If there  is a a  : U ^  U such th a t (s ,/i)  ( s ', / / )  then  there exists 
a sm allest one (w .r.t. to  function inclusion), let us say r  =  T hen the  following 
statem ents are equivalent:

1. (s ,/i)  -^> (s ',/i') =>■ t rans i t s ,  ¡i) t r a n s i t s ' , / / ) ,  for all a,

2. (s, ¡i) (s ', n') =>■ t r a n s ^ s ,  ¡i) t r a n s i t s ' , ¡ir).

Again, a sim ilar reform ulation can be given for CB-2.

5 T h e  K ey  L e m m a a n d  th e  lower b o u n d  re su l t

This section proves the  Key Lem m a for rings networks. The point of this lem m a is the  fol­
lowing: suppose we have two processes Pi and Pj in a bidirectional ring of com parison based 
processes and isom orphic processes up-to PIds. Assume furtherm ore th a t the  sequences 
of the  PIds contained in the  processes lying w ithin distance k  are order equivalent, i.e.

ki 1 • • • ^ i—i: ^  1 • • • U'j—i? ^ i^ i+ 1  • • • î+A;)* The s ta rt
states of all processes are corresponding by axiom IP-4. Com parison based processes be­
have sim ilarly when they  are in corresponding states and get corresponding messages, so, 
Pi and Pj are in corresponding states w ithin k  rounds of the  execution; until distinguishing 
inform ation has had a chance to  propagate to  the  processes Pi and Pj.
Throughout this section, ( R } P , M )  denotes a bidirectional ring consisting of com parison 
based processes th a t are isom orphic up-to PIds and n denotes its network size. Recall we 
count m odulo n in such networks. Recall also th a t cxr .i is the  s ta te  of process Pi in round 
r and a r .e the  message sent through channel e in round r. The P Id  of process i is denoted 
by u t .
We need a few m ore definitions to  form ulate the  lemma.
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D efin it io n  5.1 Define the  ^-neighbourhood of process Pi , no ta tion  Ni(k) ,  as the  sequence 
in JJ2k+1 containing the  PIds of process P8’s neighbours w ithin distance k, i.e.

Ni(k)  — . . . Ui—i'Ui'Ui .̂i . . .

Notice th a t, if k  >  [ | J ,  then  N i{k ) contains the  PIds of all processes.

N o ta t io n  5.2 If N i{k ) ~  Nj{k)  then  Lem m a 4.4 im plies th a t the  function in

{U’i — ki ^i-k-\-l i ' ' ' i ^i-\-k\  ̂ U, 

u i+l l—̂ u j + h

for every /, i — k  <  I <  i + k, is well-defined and stric tly  m onotone. This function is denoted 
by Vi,j,k-

P r o p o s it io n  5.3 For all i }j  £ V, k  £ N we have the following function inclusions

D efin it io n  5 .4  1. A message assignm ent function /i is called active if at least one non-null 
message is sent, i.e. 3e £ E[f i .e  ^  null], A round >  0 is called active if its message 
assignm ent function is so.

2. For r £ N define actives(a, r) =  # { r ' \ r' <  r A a r> is active}.

5.1 The K ey Lem m a
Now we can form ulate and prove the  Key Lem m a for rings. The result is due to  [FL87] 
and [Ly96]. O ur result is slightly m ore general and the  proof we present is m ore precise 
and uses fewer case distinctions. Section 6 trea ts  its generalization to  a rb itra ry  networks.

L e m m a  5.5 (K e y  L e m m a )  Let ( R } P, M )  be a bidirectional ring network consisting of  
comparison based processes that are isomorphic up-to PIds. Then for  all k  £ N; fo r  all 
executions a  o f  the ring we have

I f  Pi and Pj are processes with order equivalent k-neighbourhoods, then at any point 
r in a  such that  a 0, « 1 ,0 1 , • • • oir ,ar contains at most k active rounds, the states a r .i 
and a r .j are corresponding through

PROOF: Before presenting the  form al proof, we give a sketch. The proof proceeds 
by induction on r. As Pi and Pj are processes w ith order equivalent ^-neighbourhoods, 
the  function is well-defined and stric tly  m onotone. Furtherm ore, if Pi  and Pj  are
corresponding via or via Vi+ij+i,*;-! then  also via Vij^ ,  by Lem m a 5.3. The
induction basis follows im m ediately from  the  fact th a t Pi and Pj  are isom orphic up-to 
PIds. The induction step distinguishes between two cases: round r +  1 is active and round 
r +  1 is not active. In bo th  cases we prove
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1. The processes Pi and Pj are in corresponding states in round r by IH.

2. The processes receive Uj-j^-corresponding messages in round r +  1.

-  If r  + 1  is non-active this follows by the  fact null-messages th a t are corresponding 
via any a.

If r  +  1 is active it follows by application of the  IH to  the  neighbours of Pi 
and Pf .  these are in Uj-j^-corresponding states in round r, so they  send VitJtk~ 
corresponding messages in round r +  1.

3. T hen Pi and Pj  are in Uj-j^-corresponding states in round r +  1, for Pi  and Pj  
are com parison based and isomorphic: applying the  transition  functions to  VitJtk~ 
corresponding states yield Uj-j^-corresponding states, for is stric tly  monotone.

Now, for the  form al proof, let a  be an execution. By induction on r we prove for all r:

Vi, j  G V \ / k  G N[actives(a, r)  < k  A Ni(k)  ~  N j(k )  ==> a r .i ' ,3’k> a r .j\ (*)

in d u c t io n  basis: r =  0
Let i }j  G V . Let k  G N. Assume Ni{k ) ~  Nj{k).  T hen Vij^  is well-defined and stric tly

Vi j  k
m onotone. We prove ct0.i — a 0.3:
Axiom IP-4 requires th a t s°[pid(s°)] =  The sequence pid(s°) only contains occurrences 
of Ui, pid(s°) only of Uj and Vi j^  m aps Ui to  u31 so we have i.e. =

Vi>J>k ■ _ 0a 0-i ------- > C(0-j — Sj.

in d u c t io n  step: Fix r  G N such th a t form ula (*) holds. Let i , j  G V,  let k G N. Assume 
th a t actives(a, r + 1) < k and Ni{k ) ~  Nj{k) .  T hen Vi j^  is well-defined and stric tly  
m onotone.

case  1: round r +  1 is not active.
Then Pi and Pj  receive only null-messages in round r +  1. It follows from  Axiom U-5 th a t

Vi j k
null-messages are corresponding via every substitu tion . So null— > null. As actives(a, r) <  
actives(a, r +  1) <  k  the  IH yields a r .i '’3’k> ctr .j. By Definition 4.7.3 we have

(ar .i, (i — 1 : null, i + 1 : null)} '’3’k> (ar .j, ( j  — 1 : null, j  + 1 : null)}.

So, we have isom orphic processes in Uj-j^-corresponding states, receiving Uj-j^-corresponding 
messages. Because V i j ^  is s tric tly  m onotone, they  move to  Uj-j^-corresponding next states 
by IP-5 and CB-1:

a r+i-i = t r ans i ( a r .i, (i — 1 : null, i + 1 : null))
= t r a n s j ( a r .i, (j  — 1 : null, j  + 1 : null))

' ’3’k> t r a n s j ( a r . j , ( j  — 1 : n u ll, j  +  1 : n u l l ) ) )

Oir_|_i. j .
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case  2: round r +  1 is active.
We apply the  IH to  th ree cases: w ith the  processes i — 1, j  — 1 and k  active rounds, w ith 
i +  1, j  +  1 and k  active rounds, and w ith j ,  A;. We m ake the  following observations:

1. As round r  + 1  is active, we have th a t k  >  0 and the  execution fragm ent â 0-,ôii, • • • a n  à r 
contains at m ost k  — 1 active rounds.

2. B oth the  processes i, P j- i  and i^+ i, Pj+i have order equivalent A; —1-neighbourhoods.

Applying the  IH w ith (i — 1, j  — 1, k  — 1) and w ith (i +  1, j  +  1, k  — 1) yields th a t Pi-\  and 
Pj - i  are in corresponding states in round r, and so are Pî+i and Pj+i'.

v i — l , j  — l ,k — l . -, . v i+l , j +l , k  — l -------------- ycxr .j—i and otr .{-|_i------- ------- ycxr .j-|_i.

Now, application of IP-5 and CB-2 leads to  the  conclusion th a t Pi-\  and Pj - i  send 
Vi-i j- i^ - i-c o rre sp o n d in g  messages:

— l  T f lS Q S i — i (oir — 1 )

=  m s g s j - i ( à r .i- i)

-------------- y m s g s j - i [ a r . j- i
Oir_(_i. j — i

We then  obtain  by Definition 4.7

-, v i - l , j - l , k - l  -,
+ — 1—M  ̂ + —1—

and by and by Lem m a 4.8

^ r - \ - l  ' i  — 1—H ' ^ r  +  1 - j  — 1—yj  •

Similarly, we obtain  for the  clockwise neighbours

^ r  +  ln ’+ l —H ' ^ r  +  1 • j +  1—yj •

A nother application of the  IH yields

v t , j , k  .
OLr .i ———y a r .j.

Like in case 1, we have

( ?  ( j  1 • ^ r  +  1 ' i  — 1—M i J  1 • C^r +  1 *¿+1 —M ) )

 ̂J ^ I * / * \  \
 ̂ \ OLr  ' j ) \ J  1 • C^r +  l — ? J  H- 1 * ^ r  +  1 • j +  1 —Yj  ) ) •

by Definition 4.7.
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Finally, Axioms CB-1 and IP-5 yield th a t

^ r  +  l * i  t vCl f l S{ ( ^Oi r  1  . CXy" - | - 1  • i  —  1  —  ̂i  5 X H-  1  . - | - 1  * —|— 1  — y i  ^ ^

t v a T l S  j  ( o i r  *i , ( j  1  . Oir _|_i J  - |-  1  . Oir _|_i

\j ̂ j k / • / •  ̂ \ \
 ̂t r a n s j ( a r .j, (j  1 . j  -)- 1 .

□  □

E x a m p le  5.6 Reconsider the  execution of the  LCR algorithm , given in Exam ple 1.9. Al­
though the  algorithm  works in a unidirectional ring, we can still apply the  Key Lem ma, 
for we m ay im agine each process sending all null-messages to  the  counterclockwise neigh­
bours. This operation preserves the  properties of being com parison based and consisting 
of isom orphic processes.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
P3 (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)

We apply the  Key Lem m a taking r = 1. All rounds before the  election of the  leader are 
active. We have (4 ,3 ,2 ) =  A ^(l) ~  A ^(l) =  (3 ,2 ,1 ). Now the  lem m a concludes th a t P 2 
and P3 are in states corresponding via ^ 2 ,3 , 1  =  {4 1—>■ 3, 3 1—>■ 2, 2 1—̂ 1} in round 1 of the 
execution. Indeed, (3,4, unknown) ^ ^ > ( 2 ,  3, unknown). We also see th a t A^i(l) ** A ^(l) 
and th a t Pi and P 2 are not in corresponding states.

5.2 From the K ey Lem m a to  the lower bound result
This subsection form ulates the  lower bound result in our own term inology and sketches 
the  steps in the  proof by [Ly96]. The leader election problem  assumes th a t all processes in 
the  network have different PIds.

T h e o re m  5.7 Solving the leader election problem in a bidirectional ring of  size n by com­
parison based processes being isomorphic up-to PIds requires O (n lo g n ) messages.

The steps taken in the  proof by [Ly96] are:

LB-1 An assignm ent of PIds to  the  nodes of a ring of size n is called c-symmetric  if there 
are at least [ J order equivalent ^-neighbourhoods, \ f n  <  2A; +  1 <  n.

LB-2 There exists a constant c such th a t, for all n £ N, there is a c-sym m etric ring of size 
n.
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LB-3 A network system  consisting of com parison based processes which are isom orphic 
up-to PIds and whose PIds in the  processes form  a c-sym m etric ring, has m ore than  
|_c’ 4~2 j active rounds before the  leader is elected, if n is large enough.

LB-4 In order to  prove the  lower bound result, fix c as in LB-2 and take n sufficiently 
large. Let R  be a c-sym m etric ring of size n. Then every active round r w ith 
r >  \ / n  +  1 such th a t the  leader has not yet been elected sends m ore th an  -̂ r~[ 
messages through the  network. This follows from: there is at least one process Pi 
th a t sends a non-null message. As R  is c-sym m etric, there  are at least processes 
whose r — 1-neighbourhoods are order equivalent to  Ni(r  — 1). Then it follows from 
the  Key Lem m a th a t all those processes are in corresponding states in round 
r — 1 by the  Key Lem ma, so all sent a non-null message in round r.

Because the  network needs at least [ c’”~2 j active rounds before the  leader is elected, 
the  to ta l num ber of messages send before the  election is larger than

L ^ J  L ^ J
num ber of messages sent in round r >

r = 0

c • n 
2 r -  1

r—y  n+1

This last sum  is shown to  be O (n lo g n ) by integral approxim ation.

5.3 G eneralizations o f the result
This subsection briefly and inform ally discusses some generalizations of the  Key Lem m a 
and of the  lower bound result.

M u lt ip le  s tart  s ta te s

Definition 3.1, axiom IP-2, of “processes isom orphism  up-to P Ids” requires the  processes 
to  have a single s ta rt state. This is m ainly done for the  sake of simplicity.
There are several weaker alternatives for this axiom such th a t the  lower bound result still 
holds. This is so because proving a lower bound only requires one “bad” execution.

O th er  re la t ion s  th a n  <

Given some relation R  on U, there exists a sensible notion of R-based process such th a t 
the  Key Lem m a holds when the  processes are i?-based instead of com parison based: gen­
eralizing the  notion of order equivalence to  ^-equivalence is easy. T hen we can adap t the 
notion of congruence to  i?-congruence by replacing “order equivalence” by R-equivalence. 
The proof of the  Key Lem m a is generalized in the  same way. The lower bound result need 
not hold for any relation, for the  existence of large i?-equivalent neighbourhoods like those 
in LB-2 is not guaranteed.
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O th er  p ro b lem s  th a n  leader  e lec t io n

It is not difficult to  see th a t the  proof given in [Ly96] also works for networks solving other 
problem s th an  leader election. The only step in the  proof of the  lowerbound th a t uses the 
fact th a t the  network solves leader election is LB-3. It uses th a t in the  round in which 
the  leader is elected there is a s ta te  th a t is not corresponding via any a  to  the  s ta te  of 
any o ther process. In the  leader election problem , this is the  s ta te  of the  process which is 
elected.

O th er  n etw orks  th a n  b id irec t io n a l rings

The following section provides a definition of the  notion “process isom orphism  up-to P Ids,” 
such th a t the  Key Lem m a can be generalized to  o ther networks th an  rings. The lower 
bound result needs not hold for o ther networks, as the  existence of large order equivalent 
neighbourhoods like in those LB-2 is not guaranteed.

U n iq u e n e ss  o f  P Id s  in s tart  s ta te s

The fact th a t each s ta rt s ta te  contains a single P Id  which is required by axiom IP-3, is 
used only in the  leader election problem , not in the  Key Lem ma. However, uniqueness of 
PIds in the  s ta rt states should not be confused w ith uniqueness of the  PIds in different 
processes.

6 P ro c ess  iso m o rp h ism  a n d  th e  K ey  L em m a m o re  
g en era lly

This section generalizes the  Key Lem m a to  o ther networks th an  rings. Therefore, the  no­
tions of process isom orphism  up-to PIds and of neighbourhood need to  be given a m eaning 
in an a rb itra ry  network. Since different processes have different channels, we need to  relate 
these when com paring two processes.
This is done via a so-called local autom orphism , which bijectively m aps the  incoming 
and outgoing channels of one process to  those of another. Then we in troduce the  notion 
of “process isom orphism  up-to PIds via a local au tom orphism .” We also com pare the 
^-neighbourhoods of two processes using a local autom orphism .
We claim  th a t the  Key Lem m a also holds for isom orphic processes in an a rb itra ry  network. 
The generalized Key Lem m a does not require all processes to  be isom orphic up-to PIds, 
bu t only the  pairs th a t are rela ted  by the  local autom orphism .
We assum e th a t X, J  are index sets and th a t X k  is some set, for all k  £ X U J .

D efin it io n  6.1 Let G  =  (V, E)  be a graph and i £ V.  A local automorphism  of G  in i 
is a bijection a  : V  V  such th a t for all k  £ V
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2. i —)■ k  -<=>■ a(i)  —y a(k) .

So, a local autom orphism  in i m aps incoming neighbours of i to  incom ing neighbours of 
cr(i) and the  same for outgoing neighbours. The set of local autom orphism s of G  in i is 
denoted by Loc(G, i). Notice th a t an autom orphism  of G  is local autom orphism  of G  in 
for every i.

D efin it io n  6 .2 Let X, J  be index sets. Let a  : X J  be a bijection. We define for all 
x  ^  T l j e j X j

x {<t ) = (x.( i)) i e r

so, x (<j ) £ I I i £ i X i an(i (x ((J))i = x <r(i)- If t  a,  then  we also use x (t ) = x (<j ). If 
x(cr) =  y, then  we say th a t y is obtained from  x  by substitu tion  of indices.

E x a m p le  6 .3  Let R  be a bidirectional ring of size n. Let i }j  £ V . Take a  : V  —>■ V,  
cr(i-\-l) =  j-\-l for all 0 <  I <  n, counting m odulo n. This is a local autom orphism  if R  in it 
is even an autom orphism  of R.  For to, to ' £ M , we have x  =  ( j  — 1 : to, j  +  1 : to ') £ 
and

x(<T) =  (xa[i)) ieI

1)5  ̂H- 1 •

=  (i -  1 : X j_ i,* +  1 : Zj+i)
=  (i — 1 : to, i +  1 : to ').

Rem ark, however,

x {<t ) = (x(i))ieT(<r)

+ (cr(j -  1) : m,cr(j  +  1) : to '),

for, in general, a ( j  — 1) needs not to  be defined.

6.1 P rocess isom orphism  up-to PIds more generally
It is not difficult to  form ulate a m ore general notion of process isom orphism  up-to PIds by 
com bining the  axioms of the  notions of process isom orphism  for rings from  Section 3 and 
by relating the  incoming and outgoing channels via a local autom orphism .

D efin it io n  6 .4  Let ( G , P , M )  be a network system . Let i , j  £ V  and let a  £ Loc(G,i)  
such th a t cr(i) =  j .  The processes Pi and Pj are isomorphic up-to PIds via a  , no ta tion  
Pi Pj, if the  following properties are satisfied:

IP-1 statesi  =  statesj
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IP-2 #  start i  = #  s ta r t3 =  1 

IP-3  |pidset(s°)| =  |pidset(s°)| =  1 

IP -4  5°[pid(s°)] =  4  

G IP-5 For all s £ statesi

msgsi( s )  =  (msgs j( s ) )  (cr).

G IP-6 For all s £ statesi  and all ji £ 

trans i t s ,  /¿(a)) =  t rans j( s ,  ¡i)

R e m a r k  6 .5  1. Notice th a t is not an equivalence relation. We have Pi P8-, 
Pi ~<r Pj — s Pj ^ ( j -1 Pi and Pi ~(j Pj A Pj ~ T Pk — ^ Pi ~ To<r Pk-

2. Com pare the  definition of above, applied to  a bidirectional ring network, and 
Definition 3.1, of ~ ring, i.e. of “process isom orphism  up-to P Ids” of rings A corre­
spondence between the  relations ~ ring and in a bidirectional ring network is given 
by

Pi ~ring Pj '' '' 3(7 £ Cn[Pi ~(j Pj\

Here Cn is the  cyclic group of order n, Cn =  { ok \ CTkii) = i + k  m odulo n}.  
So, definition 3.1 uses very specific (local) isom orphism s to  com pare the  processes, 
whereas the  definition above allows any local autom orphism .

6.2 The K ey Lem m a generalized
In order to  generalize the  Key Lem ma, we redefine the  notion of ^-neighbourhood and 
generalize the  notion of order equivalence to  X-tuples over U. Recall th a t d (*,/) is the 
distance between i and /, i.e. the  length of a shortest path .

D efin it io n  6 .6  Let (G, P , M )  be a network system . Let i £ V . The ^-neighbourhood of 
a process Pi is defined by

~Ni(k) = (u i);ey,d(*',0<fc'

D efin it io n  6 .7  Let v , w  £ U1 . We define

v  ~  w  =  \/i £ I [ v i  <  V j  -<=>■ W i  <  W j \ .
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Now order equivalence between neighbourhoods of different processes is expressed via a 
substitu tion  of indices, e.g. N4-(A;)(<t) N A k ) .

N o ta t io n  6 .8  If N i ( k ) ( a ) ~ N j ( k )  then  Lem m a 4.4 implies th a t the  function in u4-_jt+i,
. . . }Ui+k} —y U, m apping Ui+i to  u1+i} for every /, is well-defined and stric tly  m onotone. 
This function is denoted by Vika-

The proposition below is an analogue of proposition 5.3.

P r o p o s it io n  6 .9  For all i , K N  and a  £ Loc(G,i)  we have

1. Vjtk-i,<r C v lka, fo r  all j  £ m (i )  U {%},

2. N 8'(A;)((T} ~  ^a{t){k) VI £ in(i)  U {z } [N ;(A; -  l)(c r) ~  ^ a{i){k -  1)].

Now we can generalize the  Key Lem ma. Suppose we have two processes Pi , Pj which are 
isom orphic up-to PIds via a  and whose ^-neighbourhoods are order equivalent via a  also. 
Then the  processes rem ain in corresponding states via during the  first k  rounds of
the  execution. Notice th a t, contrary  to  the  Key Lem m a for rings, we do not require all 
processes to  be isom orphic, bu t only the  pairs th a t are rela ted  by <r, i.e. only Pi and Pa(i), 
for all I w ithin distance k  from  i.

L e m m a  6 .10  (K e y  L e m m a  g en era lized )  Let ( G , P , M )  be a network system, consist­
ing of  comparison based processes. Let i £ V, k  £ N and a  £ Loc(G,i ) .  Write a(i)  =  j .
I f

V/ £ V, d(i ,  I) < k[Pi ^  Pa{l) A N t (k){(T) ~  N j (k)]  

then for  all r

" / \ 7 • ^ z /c O’ •actives(r) < k a r .i--- >ar .j.

P R O O F : Sim ilar to  the  proof of lem m a 5.5. □  □

E x a m p le  6 .11 The Key Lem m a concludes th a t the  processes 3 and 4 in the  execution of 
the  LCR agorithm  of Exam ple 1.9 are in corresponding states during the  first round of the 
execution, the  Generalized Key Lem m a th a t these are so during the  f irst two rounds of the 
execution.

round 0 round 1 round 1 round 2 round 2
proc states msgs sta te msgs states

Pi (4,null,init) 4 (4,null,unknown) null (4 ,null,unknown)
P2 (3,null,init) 3 (3,4,unknown) 4 (3,null,unknown)
Ps (2,null,init) 2 (2,3,unknown) 3 (2,4,unknown)
Pa (l,null,init) 1 (1,2,unknown) 2 (1,3,unknown)
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7 F u r th e r  re sea rch

It would be in teresting to  investigate w hether or not com parison based processes can be 
verified autom atically. We conjecture th a t this is indeed possible. We suggest an adaption 
of a result by [PJ96], sta ting  th a t b isim ulation equivalence is decidable for program s th a t 
can only read, w rite and store the ir data , i.e. program s th a t do not depend on the  actual 
d a ta  values. The idea behind this suggestion is th a t given a fixed assignm ent of PIds to  all 
the  processes, the  network can be considered as only moving around data. As a com parison 
based process behaves sim ilarly on order equivalent inpu t, there  is only a finite num ber 
of really different assignm ents. If n is the  num ber of processes, we have n n , assignm ents 
leading to  different behaviour which we need to  check.

As a second topic for fu rther research, it would be m ore elegant to  form ulate the  notion 
of “process isom orphism  up-to P Ids” m ore generally using bisim ulation equivalence. Our 
form alization requires the  s ta te  spaces of all processes to  be equal. It would be m ore na tu ra l 
to  allow each process to  have its own sta te  space, expressing equivalence of behaviour by 
m eans of bisim ulation.

Moreover, it would be elegant to  have an absolute notion of isom orphic processes, inde­
pendent of an local autom orphism , like we have for ring networks. We could try  to  find 
an analogon of Cn as used in R em ark 6.5, using a specific class of (local) isom orphism s to 
com pare processes. It is not im m ediately clear which class to  take.
A nother direction for fu rther investigation is to  adap t the  lower bound result on the  leader 
election problem  to  o ther networks th an  rings. The proof of the  lower bound given by 
[Ly96] does not apply to  o ther networks th an  rings because the  existence of as m any and 
as large order equivalent neighbourhoods as those in LB-2 is guaranteed in rings only.
In fact, we conjecture th a t the  lower bound result O (n lo g n ) does not hold for a rb itra ry  
networks, networks. It is likely th a t the  higher the  connectivity of the  network, i.e. 
the  num ber of channels, the  less messages are needed to  elect a leader. It would be an 
in teresting com binatorial problem  to  find large order equivalent neighbourhoods in other 
networks th an  rings, in order to  prove an adap ted  lower bound.

A N o ta t io n a l  conven tions

Sets
V  (A) powerset of A  
A  U B  the  disjoint union of A  and B

{(a, 0) | a £ A }  U {(&,1) | b £ B }
#  A  the  num ber of elem ents in A
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Functions
A  —>■ B  the  set of (to tal) functions from  A  to  B
A ^  B  the  set of injective functions from  A  to  B
A  -» B  the  set of surjective functions from  A  to  B
A  B  the  set of bijective functions from  A  to  B
A  u—̂ B  the  set of partia l functions from  A  to  B
D o m (/) the  dom ain of ƒ
R a n ( /)  the  range of ƒ
ƒ  C  g D o m (/) C  Dom(g) &  V i G D om ( f ) [ f ( x )  =  g(x)\
f ( x ) l  x  G D om (ƒ)
f ( x )  =  f ( y )  x }y  G D o m (/) and they  are equal as elem ents in R a n ( /)

Sequences
A* set of finite sequences over A
£ em pty  sequence
\x\ length of the  sequence x
Xi 1 <  i <  \x , the  i th elem ent of x
~k concatenation of sequences
se t s e t  : [ / * —>■ V  (U ) ,se t (x i  ■ ■ ■ Xk) =  {®i, • • •x k}

D ependent products
X-tuples are tuples over another index set X th an  { 0 ,1 , . . .  k}  or N.

iei
l\ . X\ , %2 x 2 i  *3  :

the  set of over tuples an index set X, such th a t 
the  elem ent at place i is an elem ent of Ai  

El iei  a
X-tuple consisting of elem ents Xi at index i 
X-tuples consisting of elem ents Xi3 a t index 
X =  {¿i,¿2, *3, • • • } 
i G X, the  i th of x

Typically, we use the  dependent product as a “com m on super ty p e” of the  sets S,  S  X

and M 0oui. Note th a t S  X ~  rLe{i}um(i) where X (lj0) =  S,  =  M ° , i  G in(i).
We m ix the  notations of the  product and the  dependent product. Some exam ples: if 
out(i) = {3,5}, then  (3 : to, 5 : to ') G Furtherm ore, if in(i)  = {i — l , i  +  1} and
s ta tus  G S,  then  (s t a t u s , (i — 1 : to, i +  1 : to ')) G 

G M :to,-

S  X MqÛ \  If T O i _ i , T O 4-+ i  G M 0 then

Jiy ̂ * Jiy • L
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G lossary o f sym bols
G graph
R uni- or bidirectional ring
V set of vertices
E set of edges
X index set

h J , l elem ents of V,  X or N
P (sequence of) processes
S set of states
s sta te
s?' s ta rt s ta te  of process i
M set of messages
null absence of a message
Mo M  U {nu ll}
m message
x , y indexed sequences (of messages and states)
a execution
n, k natu ra l num bers
U set of PIds
u PId
ut the  P Id  of process i
V, w sequence of PIds
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