Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/18683

Please be advised that this information was generated on 2017-12-05 and may be subject to
change.

http://hdl.handle.net/2066/18683

Processes and their Identifiers in Synchronous Network Systems
M.I.A. Stoelinga

Computing Science Institute/

CSI-R9807 March 1998

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1

6525 ED Nijmegen

The Netherlands

Processes and their Identifiers in Synchronous Network
Systems

Marielle Stoelinga

Computing Science Institute,
University of Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen,
The Netherlands

marielle@cs.kun.nl

Abstract
This paper formalizes the two notions of “comparison based process” and of ‘process
isomorphism up-to process identifiers.” The Key Lemma is proven which states that
comparison based processes which are isomorphic up-to Plds behave very similarly,
if the PIds in the processes in their enviromnents are what is called order equivalent.
Key words and phases: leader election, synchronous networks, comparison based
processes, isomorphic processes, process identifiers, communication complexity.
AMS Subject Classification: 68Q10, 68Q22, 68Q25.
CR Subject Classification: F.1.1, F.1.2, F.2.m, F.3.3.

Nancy Lynch in Chapter Three of her book “Distributed algorithms” [Ly96] gives a proof
of a lower bound result on a leader election problem: The amount of communication needed
to solve this problem is Q(nlogn). The result is stated in a synchronous ring network,
consisting of processes that are isomprphic except for a unique process identifier — a unique
PId for short. Furthermore, the algorithm solving the leader election problem should be
comparison based, which means that the only operation on Plds is comparison.

The key to the lower bound result is a lemma expressing that a certain amount of symmetry
can arise even in the presence of Plds. This symmetry can only be broken at the cost of
Q(nlogn) messages.

Several notions on the way to this result are introduced intuitively rather that formally.
The proof of the Key Lemma takes some large and informal steps. This report provides
a formal basis for all notions to complete a formal proof. In particular, formal definitions
are proposed for the notions of “comparison based processes” and of “process isomorphism
up-to PlIds.” This report provides syntax-free definitions of both notions for arbitrary
network system. We prove and generalize the Key Lemma to any network system. We also
sketch the lower bound result.

mailto:marielle@cs.kun.nl

The crucial step in our formalization is the introduction of the operations pid and [], which
retrieve and substitute respectively the Plds present in a message or state. These allow
for access to the Plds in a state or message, without making further assumptions on their
nature. Once a process contains a (single) PId it may copy it or send it to other processes
though processing.

Using these operations we are able to express formally that two processes in a ring that
are 1isomorphic up-to Plds, may only differ in the Plds of their start states. For ease of
notation we firstly introduce this notion for ring networks and then for arbitrary networks.
Intuitively, a comparison based process is a process which, if implemented in code, performs
no other operations on Plds than comparisons. Our definition uses the functions pid and
[] again.

An important property of comparison based processes is that, comparison being the only
serious operation on Plds, the relative ranks of Plds in states and messages are of interest
rather than their particular values. In fact, the Key Lemma states that two processes
in a network consisting of processes which are isomorphic except for a PId behave very
similarly, if the processes in their neighbourhoods (which they receive messages from)
contain Plds with the same relative ranks. We prove this lemma for ring networks first
and then generalize it to other networks.

Relevance and related work

We believe that the main contribution of this report is the formalization of the concepts
of “comparison based process” and of “isomorphic processes” in a synchronous network
system.

The notion of comparison based process is introduced at a more syntactic level and more
informally in [Ly96] and [FL87].

The notion of isomorphic processes (except for a PId), in our view, is more fundamental.
Such processes often occur in real-world applications. It is therefore desirable to have an
abstract and general definition of this notion. Moreover, the symmetry present in networks
of isomorphic processes can be used to reduce the complexity of (verification) algorithms,
c.f. [CFJ93], [ES95], [EA93], which introduce the notion of isomorphic processes in a more
syntactic way.

Organization of the sections

This report is organized as follows. Section 1 introduces the synchronous network model.
The operations pid and [] are specified axiomatically in Section 2. Then Section 3 defines
the notion of process isomorphism up-to PIds in ring networks and Section 4 the notion of
comparison based processes. We prove the Key Lemma to the lower bound result in Section
5 for rings and mention some obvious generalizations. Section 6 treats the generalization of
the notion of process isomorphism up-to Plds and the Key Lemma to arbitrary networks.
The reader is referred to Appendix A for notational conventions and a glossary of symbols.

1 The synchronous network model

This section recalls the general model of synchronous network systems. The ideas in this
section are taken from Lynch [Ly96], Chapter 2. We deviate from Lynch’s model in some
minor details. Furthermore, we present our definitions at a higher level of formality and
introduce some additional notations.

A synchronous ring network system consists of a number of processes, running on some
pieces of hardware, processors, that communicate via channels. The adjective synchronous
refers to the situation that the execution of the system, i. e. all processing and all com-
munication, proceeds simultaneously, in infinitely many consecutive rounds. The systems
begins with all processes in arbitrary start states. The processes, in lock step, repeatedly
perform the following two steps: Firstly they simultaneously send messages through the
channels, then they simultaneously do some processing, based on the current states and
on inputs they received, in order to reach the next state. The message a process sends
through a channel is indicated by the message generation function, the next state by the
state transition function.

A synchronous ring network system consists of a number of processes, that communicate
via channels. The systems begins with all processes in arbitrary start states. The processes
simultaneously and repeatedly perform the following two steps: Firstly they send messages
through the channels, then they move to the next state, using the current states and on
inputs they received,

Convention 1.1 If M is some set of messages, then we assume that null ¢ M, as we
write null as a placeholder for the absence of a message. We define My = M U {null}.
Furthermore, we fix for the entire report that n, k are natural numbers.

Definition 1.2 A synchronous network system, or simply a network is a tuple (G, P, M),
where (G is a directed graph, P a V-tuple of processes and M a set of messages such that:

— G = (V,E), V is a finite set of vertices and £ C V?* a set of edges. If (i,7) € E
then we write 1 — j. For ¢ € V, in(¢) is the set of “incoming neighbours,” that is
in(i) ={j eV |j—i}and out(:) = {j € V| i— 7} the set of “outgoing neighbours.”
The distance between ¢ and j, denoted by d(7,7), is the length of a shortest path
between i and j, if there is such a path, otherwise d(i, j) = oo.

~ P = (P;),cy,- The process P;, which runs at node 7, consists of the following compo-
nents:

— states;, a (possibly infinite) set of states,

— start; C states;, a non-empty set of start states,

— msgs; : states; — Mgut(i), the message generation function.

msgs;(m) is the tuple of messages, indexed by out(7), to be sent to the outgoing

neighbours of P,. We often write msgs;_,;(m) for (msgsi(m))j.

— trans; : states; x Mén(i) — states;, the state transition function.

trans;(s,p) yields the next state of process P;, when being in state s and re-
ceiving the message p; from P;, for all 5 € in(7).

We write states =,y states;

The network size is the number of elements of V.

Convention 1.3 Since we only consider one system at the time, the following notations
will do. Throughout this report S and M are sets of states and messages respectively. If
(G is a graph, then V denotes the set of vertices and E the edges. If P; is some process,
then we denote its component by states;, start;, trans; and msgs;.

A special class of networks are ring networks. In order to facilitate discussion, the definition
below fixes the names of the nodes and edges.

Definition 1.4 1. A unidirectional ring of size n is a graph G = (V| F) such that
V={l,....nJand F={1—-22—=3,... n—1—>nn—1}

2. A bidirectional ring of size n is a graph G = (V| E’), where V| E as above and
F=FEU{2—>1,3—=2,... ., n—=>n—1,1—>n}.

3. A unidirectional (bidirectional) ring network is a network (G, P, M) such that G is a
unidirectional (bidirectional) ring.

A ring network is either a uni- or bidirectional ring network. We often count modulo n in a
ring network of size n; allowing 0 to be another name for n, n + 1 for 1, etc. Furthermore,
the right or clockwise neighbour of ¢ is the node 14 1; node 7 — 1 the left or counterclockwise
one.

Convention 1.5 The types of the state transition functions and the message generation
functions in a ring network can be simplified, using the isomorphisms Mél_l} & MéH'l} =375

and Méi_l’”l} =~ MZ. For unidirectional rings we get:

trans; : states; X My — states;,

msgs; : states; — My
and for bidirectional rings we get:

trans,; : states; X Mg — stales;,

msgs; : states; — Mg.

By convention (m,m’) denotes (i —1:m,i+1:m') € Méi_l’i—l_l}, so the message con-
cerning the left neighbour is mentioned firstly and the message concerning the right one
secondly.

As a running example, we consider the LCR algorithm — by Le Lann, Chang and Roberts
[La77] and [CR79] — as described in [Ly96]. It solves the leader election problem in an
unidirectional ring, which means that eventually exactly one of the processes becomes
“leader.” Later examples will show that the processes are isomorphic except for a PId and
comparison based.

Example 1.6 (synchronous network system) Let R be a unidirectional ring of size n.
Let M = {uy,... ,u,} € N be a set of n different objects; the value u; will be associated
to P;. For each ¢ € V, define the process P; as follows:

— states; = {uy,... ,u,} x Mgy x {init,unknown, leader}. A state should be thought of
as a tuple (u, send, status), where u = w; remains unchanged by the process, send
is the message to be send and status indicates whether or not the process is in its
initial state and whether or not it has declared itself leader.

— start; = {(u;, nullyinit)}.

— msgs; : states; — My, given by
msgs;(u, send, status) = if status = init then u else send fi.

— trans; : states; x My — states;, trans;((u, send, status),m) is described by the
following pseudo code:

send :=if m # null A m > u then m else null fi;

status := if m = u then leader else unknown fi.

The algorithm works in the following way: The process with the largest value w; gets
elected. Fach process P; sends the value u; around the ring. When a process receives a
non-null message, it compares it to u;, the first field of its state. If the incoming message
is greater than wu;, the process keeps passing this message; if it is less then it discards the
message; if it is equal, then u; has been passed through the entire ring, so it is the largest
and the process declares itself leader.

1.1 The behaviour of a synchronous network system

Definition 1.7 1. A state assignment function for a network system (G, P, M) is a func-
tion which assigns a state to each process, i.e. a function v : V' — states such that
v(1) € states; for all i € V. We often write v.i in stead of v(7).

2. A message assignment function is a function which assigns a message to each channel,
i.e. a function p: £ — My. We write p.e in stead of p(e).

Definition 1.8 An execution of a network system (G, P, M) is an infinite, alternating
sequence

Vo, 1, V15 2, V25 -

of state and message assignment functions, starting with a state assignment function.
This sequence should satisfy:

vg.t € start;
P10 —>] = mSQSHj(Vr-i)

Vpg1.d = trans; (v, (g1 .0 — i)lem(i))
for all r € N, all 7,5 € V such that ¢ — 7.

Notice that (g,41.0 — i)lein(i) € Mén(i) is the tuple of messages that P; receives in round
r 4+ 1 from all its incoming neighbours. The state v,.1 is called the state of process 7 in

round r (or: after r rounds) of the execution; the message f,.0 — j is called the message

. - : .od
sent by 7 to j in round r of the execution. If o = vy, pq,114,... we also use &, = v, and

— d
Qp = fhp.

Example 1.9 The diagram below shows the execution of the execution of the LCR algo-
rithm (see Example 1.6), executing in ring of size 4, taking uy = 4, uy = 3, us = 2,uq = 1.

round 0 | round 1 round 1 round 2 round 2

proc states msgs state msgs states

Py || (4,nulljinit) 4 (4,null,unknown) null (4,null,unknown)

Py || (3,nullinit) 3 (3.4,unknown) 4 (3,null,unknown)

Ps; || (2,nullinit) 2 (2,3,unknown) 3 (2,4,unknown)

Py || (1,nulljinit) 1 (1,2,unknown) 2 (1,3,unknown)

round 3 round 3 round 4 round 4 round 5

proc msgs states msgs states

Py null (4,null,unknown) null (4,null; leader)

P, null (3,null,unknown) null (3,null,unknown)

Ps 4 (2,null,unknown) null (2,null,unknown)

Py 3 (1,4,unknown) 4 (1,null,unknown)

Process 4 is elected as leader in round 4 of the execution. Then the processes neither send
messages nor change to another state.

2 Dealing with Plds in processes

This section prepares for the definition of the notion of process isomorphism up-to Plds

1

as well as for the notion of “comparison based process.” These notions are defined

HLy96] uses the word “uid” (unique identifier) and [FL87] “id” for what we call “PId.” We deviate
from this terminology because in general we do not assume that each process has a different PId.

independently in Sections 3 and 4 respectively. When combined, they form the setting of
the Key Lemma.

An argument for introducing Plds is to break the symmetry present in networks consisting
of entirely isomorphic processes. When starting in the same states, such processes remain
in identical states throughout the entire execution. As a result, such processes can not
solve the leader election problem.

However, Plds also make sense in other kind of networks containing very different processes.
Once Plds are present in some process, it may manipulate them and send them around in
various ways. A process that only uses comparison between Plds (not between a PId and
a constant) is called comparison based. This notion is defined for any network in Section
4.

As we do not wish to make more assumptions on the nature of the Plds than necessary, all
access on Plds in messages and states is performed via the operations [| and pid introduced
below.

Axioms 2.1 We assume the following functions and sets to be available on the sets M

and S.
— A set U, the type of Plds. In examples we take U = N.

— Two functions pidy, : My — U™ and pids : S — U~*, which retrieve a list of all Plds
contained in a message and a state, respectively.

— Two partial functions []m : My x U* = My and []s : S x U* — 9, substituting a
sequence of Plds by some other sequence of the same length.

The subscripts o, and ¢ are omitted if it is clear whether the function is defined for messages
or for states. This convention is also adopted for future objects defined on both states and
messages.
The pairs of functions (pidm, [Jm) and (pids, []s) should satisfy the following requirements,
for all v,w € U*,m € My U S:
U-1 o]l > [o] = [pid(m)].

The substituent and the substituant should have the same length.

U-2 mv]l = pid(m[v]) =v

U-3 m[pid(m)] = m.

Subsequent retrieval and (well-applied) substitution is the identity; information is
neither created nor lost.

U-4 mv]l A mw]l = m[v][w] = m[w].
Substitution is destructive.

Moreover, the function pid,, should satisfy:

U-5 pidy(null) = ¢

For the sake of convenience we define

pidsets(s) = set(pids(s)),
pidsety,(m) = set(pidm(m)),

so pidset yields the set of all PIds in a state or message.

Remark 2.2 Although a more general treatment is possible, we have required that the
number of Plds in a state or message is finite, mostly for sake of convenience. Moreover,
this requirement is realistic in practice for physical processes only have a finite amount of
memory.

Example 2.3 Reconsider the LCR algorithm from Example 1.6. The Plds in this algo-
rithm are U = {uy,... ,u,} CN. As M = U, we have

m ifmeM,

pidm(m) = {

¢ if m = null.
Moreover, S = {uy,... ,u,} x Mg x {unknown, leader, init}. Then,

[u, send] if send € M,

[u] if send = null.

pids (u, send, status) = [u] xpidm(send) = {

For example,

pids (1, 1,leader) = [1, 1],

pids (1, null, unknown) = [1],
pidm(3) = [3],

(1,1,leader)[3,1] = (3, 1, leader).

Notice that the LCR algorithm is independent of the implementation of the Plds; it works
for any total order (U, <).

3 Process isomorphism up-to Plds in ring networks

Now we as able to express what it means for two process in a ring that they are “isomorphic
up-to Plds,” also referred by as simply “isomorphic.” Section 6 generalizes this notion to
arbitrary networks.

Definition 3.1 Let (R, P, M) be a ring network and ¢,5 € V. The processes P; and FP;.
are isomorpic up-to Plds, notation P; ~n, P;, if the following requirements are met:

IP-1 states; = states;.

IP-2 # start; = # start; = 1.

The processes P; and P; have a single start state, denoted by s? and 3? resp.

IP-3 |pidset(s?)| = |pidset(s%)| = 1.
Each process has a single PId present in its start state. Process i’s PId is denoted

by u;.

IP-4 s{[pid(s?)] = 5.

J
Except for the Plds the start states, F; and P; are equal.

IP-5 The following functions are equal.

trans; = trans;,
MSGSiiy1 = MSYS;_ 41, for all rings,

MSGSi—i—1 = MSYs;_;_1, for bidirectional rings only.

Notice that the start state may contain multiple occurrences of its PId. Axiom IP-4

requires that all start states have that same number of occurrences. Furthermore, axiom
IP-4 implies s?[pid(s?)] = s?.

Example 3.2 It is easy to check that the processes in the LCR algorithm in 1.6 meet the
requirements [P1 — IP5, so all processes in the LCR algorithm are isomorphic up-to Plds.

Remark 3.3 The notion of isomorphic processes up-to Plds can also be interpreted as
“isomorphic processes performing on different input data.” However, this requirement is
rather weak. Take for instance the unidirectional ring of processes described by

states; = U x N,
start; = {(u;,0)},
trans;((u,n),m) = (u, PrimRec(u, m)),
msgsi—ir1(u,n) = u.
These processes satisfy the axioms in 3.1, but behave very differently. PrimRec(n,m)

is the n*® primitive recursive function on input m. The only reason for using primitive
recursive functions is because these are total.

4 Comparison based processes

As explained before, the syntactic idea behind the notion of comparison based processes
is that comparison between Plds — not between a Pld an a constant — the respect to

10

some order < on U is the only serious operation allowed on Plds; we also admit syntactic
operations like copying, appending Plds to lists, etc.

The intuition behind the semantic definition is the following. A comparison based process
can not really distinguish between e.g. the state (2, 3, unknown) and the state (3,8, unknown),
that is between states or messages such that

1. The objects are equal except for their Plds.
2. All comparisons between the Plds in both objects yield the same results.

Property 1 is formally introduced as the notion of o-correspondence. For technical reasons
in the proof of the Key Lemma, the substitution of PIds is performed by a partial function
o : U — U. The property 2 is formally expressed in the notion of order equivalence.
However, we use an equivalent formulation in the definition of comparison based processes,
expressing that the Plds in the objects can be obtained from each other by application of
a strictly monotone function. Then a process is called comparison based if it the result of
the msgs and trans applied to o-corresponding objects yields o-corresponding objects, for
any strictly monotone o.

From now on we assume that the set U of Plds is equipped with a total order <. We also
assume that 7 is some index set and that X; is either S or My, for all : € Z. Note that the
sets S, 5 X Mén(i) and Mgut(i) can be considered as dependent products [],.; X;. We use
different brackets, () and (), only for sake of readability.

4.1 Order equivalence

Order equivalence expresses that two sequences of Plds have the same relative ranks.
Definition 4.1 For two sequences v,w € U* we define
vwwg‘v’i,jgk[vigvj — w; < wl.

The relation ~ is called order equivalence. It is not difficult to see that it is an equivalence
relation.

Example 4.2 (2,7,5) ~ (2,5,3) =~ (2,3,5).
Fact 4.3 For all v,w,v’,w’” we have
—
v~ w AU ~w'EE vkw ~ v R
Lemma 4.4 The following statements are equivalent for all v,w € U*:
1. v~w,

2. ‘v’i,jgk[vi<vj — w¢<w]‘],

11

3. There exists a partial function o : U — U such that
o(v;) = w;

forallv € T and this function is strictly monotone. Notice that pidset(v;) = {v1 ... vy}
C Dom(o).

Example 4.5 As (2,7,5) ~(2,5,3), the partial function {2 — 2,7 — 5,5 +— 3} is strictly
monotone.

4.2 Correspondence

We define the notion of correspondence via a substitution o on S, on M and on dependent
products of these. An object = corresponds with y via o if we obtain y from z by applying
the substitution ¢ to all Plds in . Then x and y are the same except for their Plds.
Firstly, we extend the definition of [] by allowing functions to be used for the substitution.

Definition 4.6 Let o : U «— U be a function. Let m € M and write pidyn(m) = v =
vy ...v;. Deflne

m[o]m = mlo(v) . .. o(v)]me

By convention, a function is undefined whenever one of its arguments are so. Therefore,
mlo)md <= {v1,...,0:} € Dom(o). Similarly, s[o]s is defined for s € S and subscripts
are omitted like before.

Definition 4.7 1. Let 0 : U = U and m,m’ € M. Define

m Zom’ < mlo]m = m'.

Similarly, define s = ' for s,s' € S.
2. For x,y € [[ier Xi, 0 : U o= U, define
z Dy 2 Vi € I[x; 5).
If 2 5y we say that and y correspond via o or simply that they are o-corresponding.
Lemma 4.8 For all z,y € [[,.; Xi and all 6,7 : U — U we have
t L yno Cr = 1 Dy,

Example 4.9 We investigate what correspondence boils down to for the states and the
messages in the LCR algorithm from 1.6.

On states
When do we have (u, send, status) = (u/, send’, status')?

12

case 1 send = null. Then (u, send, status)[o] = (o(u), send, status). So we have

(u, send, status) = (u', send', status') <=

u' = o(u) A send = send = null A status’ = status.

case 2 send # null. Then (u, send, status)[o] = (o(u), o(send), status). So we have

(u, send, status) =+ (v, send', status') <=

u' = o(u) A send = o(send) A status’ = status.
Lemma 4.4.3 implies that if o is monotone then (u, send) ~ (', send’).

Furthermore, it is easy to see that

4 ! 4 !
b b b b
(u, send, status) — (u', send', status’) =
(u,u, status) = (u', o, status’) A
(u, send, unknown) 7 (v, send’, unknown) A
(u, null, status) = (u', null, status’) A

send = send'.

On states and messages o
Similarly, we get on states x Mén(l),

((u, send, status),m) = ((u', send’, status’),m’) <=
(m=m'=nullvVm =o(m))A
u' = o(u) A
(send = send’ = null V send’ = o(send)) A

status’ = status.

4.3 Comparison based processes

If + =y and o is strictly monotone, then it is easy to see that (pid Ti)ier ~ (PidYi)ier —
choose a fixed order on T such that (pid #;),.7 , (pid¥;);o; can be considered as elements of
U*. So, z and y are equal except for their Plds and all comparisons between Plds in «
and in y yield the same results. As we have argued in the introduction to this section, a
comparison based process should yield similar results on these objects. We can make this
more precisely now by saying that such a process yields o-corresponding results on x and
y. Thus, a process is comparison based if both its state transition and its message function
preserve o-correspondence, for any strictly monotone o.

Definition 4.10 Let (G, P, M) be a synchronous network system. The process P is called
comparison based if for all s, 8" € states;, for all u, ' € Mén(l)

oc: U —U:

and for all strictly monotone

13

CB-1 (s,pu) 5 (s',p'y = transi(s,p) = trans;(s',1').

CB-2 s - = (mSQSiﬁj(S))jeout(i) — (msgsiﬁj(s’))jeout(i).

Notice that the relation Z+ above is used respectively on the sets states; x Mén(i)
states; and Mén(l).

, states;,

Example 4.11 All processes in the LCR algorithm from 1.6 are comparison based. We
use some properties states in Example 4.9

ProoOF: Consider the process P;. Let s,8 € states;, m,m’ € My. We write s =

(u, send, status), s = (v, send’, status’). Let o : U — U be a strictly monotone func-

tion.
CB-2 the message function: Assume s ~+s’. Then status = status’.
case 1 status = status’ = init. Then
msgsi(s) = u 2> u’' = msgs;(s).
case 2 status = status’ # init. Then
msgsi(s) = send 2 send’ = msgsi(s').
CB-1 the transition function: Assume (s,m) 2 (s’,m’). Then m = m’ = null or (m,u) ~
(m/,u).
case 1 m = null. Then

trans;(s,m) = (u, null, unknown)
2 (v, null, unknown)

= trans;(s’,m’).

case 2 m # null. Then m' # null and (m, u) ~ (m/,u’) by monotony of o.
case 2.1 m > u. Then m’ > u’ and
trans;(s,m) = (u, u, unknown)
2 (v, unknown)

7 7
= trans;(s’,m').
case 2.2 m = u. Then m' = v’ and

trans;(s,m) = (u, null, leader)
Zs (', null, leader)

= trans;(s’,m’).

14

case 2.3 m < u. Then m’ </, so

trans;(s,m) = (u,null,unknown)
2 (v, null, unknown)
= trans;(s’,m’).

4

Remark 4.12 Some alternative formulations of CB-1 and CB-2 are possible. The proof
of the Key Lemma uses the formulation given in the definition above.

1. CB-1 is equivalent to
slolb A ploll = transi(slo], ulo)) = (transi(s, p)) o).
A similar reformulation can be given for CB-2.

2. The universal quantification over o can be replaced by a specific o. Let s,s" € states;
and p, ' € Mén(l). If there is a o : U = U such that (s,) = (s, 4i') then there exists
a smallest one (w.r.t. to function inclusion), let us say 7 = 7, 5 . Then the following

statements are equivalent:

s, i) (s, 1) = trans;(s,) = trans(s', u'), for all o,

~~

1.
2. (s,p) = (s, 1) = transi(s,pu) = trans;(s',1').

Again, a similar reformulation can be given for CB-2.

5 The Key Lemma and the lower bound result

This section proves the Key Lemma for rings networks. The point of this lemma is the fol-
lowing: suppose we have two processes P; and P; in a bidirectional ring of comparison based
processes and isomorphic processes up-to Plds. Assume furthermore that the sequences
of the Plds contained in the processes lying within distance & are order equivalent, i.e.
(ui_k, Ui—fp1 oo s Ug—15 Ugy U1 - - - uH_k) ~ (u]‘_k, Uj—ft1 oo - Uj—1,Uj U547 - - - u]‘_|_k). The start
states of all processes are corresponding by axiom IP-4. Comparison based processes be-
have similarly when they are in corresponding states and get corresponding messages, so,
P; and P; are in corresponding states within £ rounds of the execution; until distinguishing
information has had a chance to propagate to the processes P; and P;.

Throughout this section, (R, P, M) denotes a bidirectional ring consisting of comparison
based processes that are isomorphic up-to Plds and n denotes its network size. Recall we
count modulo 7 in such networks. Recall also that ¢,.; is the state of process P; in round
r and @,.. the message sent through channel e in round r. The PId of process ¢ is denoted
by u;.

We need a few more definitions to formulate the lemma.

15

Definition 5.1 Define the k-neighbourhood of process P;, notation N;(k), as the sequence
in U?*+1 containing the Plds of process P;’s neighbours within distance k, i.e.

Nz(k) g (ui_kui_;ﬂ_l e U1 UUG41 - e uH_k).
Notice that, if £ > [%], then N;(k) contains the PIds of all processes.

Notation 5.2 If N;(k) ~ N;(k) then Lemma 4.4 implies that the function in

{Uipy Wickgry oo s Uigr) — U,
Uil > Ui,

forevery [,1—k <1 < i+k, is well-defined and strictly monotone. This function is denoted
by Ui 5k

Proposition 5.3 For all 1,5 € V,k € N we have the following function inclusions
Vil j—1k—1 S UVijky, Vitlj+1h—1 S Vijk, Vijk—1 & Vijk-

Definition 5.4 1. A message assignment function p is called active if at least one non-null
message is sent, i.e. de € Efu.e # nulll. A round > 0 is called active if its message
assignment function is so.

2. For r € N define actives(ar,r) = #{r' | ' < r A o, is active}.

5.1 The Key Lemma

Now we can formulate and prove the Key Lemma for rings. The result is due to [FL87]
and [Ly96]. Our result is slightly more general and the proof we present is more precise
and uses fewer case distinctions. Section 6 treats its generalization to arbitrary networks.

Lemma 5.5 (Key Lemma) Let (R, P, M) be a bidirectional ring network consisting of
comparison based processes that are isomorphic up-to Plds. Then for all k € N, for all
executions o of the ring we have

If P; and P; are processes with order equivalent k-neighbourhoods, then at any point
rin « such that &g, ay,0q, ... @&, contains at most k active rounds, the states &,
and ¢,.5 are corresponding through v; ;.

Proor: Before presenting the formal proof, we give a sketch. The proof proceeds
by induction on r. As P; and P; are processes with order equivalent k-neighbourhoods,
the function v;;; is well-defined and strictly monotone. Furthermore, if P; and P; are
corresponding via v;_1 j_1 -1 O Via ;41 j41,4-1 then also via v;;x, by Lemma 5.3. The
induction basis follows immediately from the fact that P, and P; are isomorphic up-to
Plds. The induction step distinguishes between two cases: round r 41 is active and round
r -+ 1 is not active. In both cases we prove

16

1. The processes P; and P; are in v; ; ;- corresponding states in round r by IH.
2. The processes receive v; ; p-corresponding messages in round r + 1.

— If r41 is non-active this follows by the fact null-messages that are corresponding
via any o.

— If r + 1 is active it follows by application of the TH to the neighbours of F,
and P;: these are in v, ;;-corresponding states in round r, so they send v; ; 4-
corresponding messages in round r + 1.

3. Then P, and P; are in v;;i-corresponding states in round r + 1, for P, and F;
are comparison based and isomorphic: applying the transition functions to v; -
corresponding states yield v; ; x-corresponding states, for v; ;; is strictly monotone.

Now, for the formal proof, let @ be an execution. By induction on r we prove for all r:

Vi g,k

Vi,j € VVk € N]actives(a,r) < kA N;j(k) ~ N;(k) = &, —= 6] ()

induction basis: r =0

Let 1,7 € V. Let k € N. Assume N;(k) ~ N;(k). Then v, is well-defined and strictly
monotone. We prove ¢yg.; Dok, 0g.j:

Axiom IP-4 requires that s7[pid(s?)] = s9. The sequence pid(s{) only contains occurrences
of u;, pid(s}) only of u; and v;;x maps u; to uj, so we have s{[v;;i] = s3, le. s} =
O‘éo.i —>Um,k Oé()] = S?.

induction step: Fix r € N such that formula (*) holds. Let 7,5 € V, let k € N. Assume
that actives(a,r + 1) < k and N;(k) ~ N;(k). Then v, is well-defined and strictly

monotone.

case 1: round r + 1 is not active.

Then P; and P; receive only null-messages in round r + 1. It follows from Axiom U-5 that
null-messages are corresponding via every substitution. So null 22 null. As actives(a,r) <
actives(a, 7 + 1) < k the IH yields d&,.; BN Gé,.;. By Definition 4.7.3 we have

Vi g,k

(&, (1 =1 :nulli 4 1 null)) —=(é&,.;, (7 — 1 : null, 7 + 1 : null)).

S0, we have isomorphic processes in v; ; y-corresponding states, receiving v; ; x-corresponding
messages. Because v; ;i 1s strictly monotone, they move to v; ; j-corresponding next states

by IP-5 and CB-1:
Gryr.i = trans; (., (1 — 1 :nullyi 4+ 1 2 null))
= trans;(&,..,(j — 1 :null; 7+ 1 : null))
N transi(dp.g, (G — 1 null, + 1 null)))

= Orq1.5.

17

case 2: round r + 1 is active.
We apply the TH to three cases: with the processes ¢ — 1,7 — 1 and k active rounds, with
14+ 1,7+ 1 and k active rounds, and with ¢, 7, k. We make the following observations:

1. Asround r+1 is active, we have that £ > 0 and the execution fragment o&y. &y, ... &, &,
contains at most & — 1 active rounds.

2. Both the processes P,_;, P;_; and P4y, Pj4; have order equivalent £—1-neighbourhoods.

Applying the IH with (1 — 1,5 — 1,k — 1) and with (¢ + 1,5 + 1,k — 1) yields that P,_; and

P;_q are in corresponding states in round r, and so are P4y and Pjyq:

. Vi—1,j—1,k—1 . . Vitl,j+1,k—1 .
Opojoy —————— 0o and Gy —————— Qg

Now, application of IP-5 and CB-2 leads to the conclusion that F,_; and P;_; send
V;_1,j—1,k—1-corresponding messages:

- .
Opp1.i—1 = mSQSi—1(Oér-i—1)

= msgs;_1(d.io1)

Vi—1,j—1,k—1 .
msgs;—1(&.j_1)
_ d

= Qp41-5-1

We then obtain by Definition 4.7

— Vi—1,9—1,k—1_
Opyleiclsi—— > Qi1 15

and by v;_1 j_14-1 € v; and by Lemma 4.8

— Vigk =
Opylgmlsi — 7 Opgl.j—1-j-

Similarly, we obtain for the clockwise neighbours

Vigk o

Opglgplosi = 7 Opglojpl—j-

Another application of the IH yields

Vi g,k

Qi =25 6,
Like in case 1, we have

(Gpoiy (7 =1t @rgreicisn 7+ 10 Qrgreipise))
Vi,9,k

— (G (= L2 rgrejmings I+ 10 Grgrjignng)-

by Definition 4.7.

18

Finally, Axioms CB-1 and IP-5 yield that

Crgri = trans(dp., (1 — 1 @ryriicisi, 0+ 10 Qrgreipiod))
= trans;(¢y,.;, (7 — 1 drgroicisi, 7 + 10 Qrgreipisd))
Vi,9,k . . — . —
—=rtrans;(dr.g, () — 1 @rgrjoimgs J + 10 Grprjgnsg)

— dr+1-j-
ad

Example 5.6 Reconsider the execution of the LCR algorithm, given in Example 1.9. Al-
though the algorithm works in a unidirectional ring, we can still apply the Key Lemma,
for we may imagine each process sending all null-messages to the counterclockwise neigh-
bours. This operation preserves the properties of being comparison based and consisting
of isomorphic processes.

round 0 | round 1 round 1 round 2 round 2
proc states msgs state msgs states
Py || (4,nulljinit) 4 (4,null,unknown) null (4,null,unknown)
Py || (3,nullinit) 3 (3.4,unknown) 4 (3,null,unknown)
Ps; || (2,nullinit) 2 (2,3,unknown) 3 (2,4,unknown)
Py || (1,nulljinit) 1 (1,2,unknown) 2 (1,3,unknown)

We apply the Key Lemma taking r = 1. All rounds before the election of the leader are
active. We have (4,3,2) = Ny(1) ~ N3(1) = (3,2,1). Now the lemma concludes that P;
and Ps are in states corresponding via v237 = {4 — 3,3 — 2,2 — 1} in round 1 of the
execution. Indeed, (3,4, unknown) —2%(2, 3, unknown). We also see that Ny(1) = Ny(1)
and that P, and P, are not in corresponding states.

5.2 From the Key Lemma to the lower bound result

This subsection formulates the lower bound result in our own terminology and sketches
the steps in the proof by [Ly96]. The leader election problem assumes that all processes in
the network have different Plds.

Theorem 5.7 Solving the leader election problem in a bidirectional ring of size n by com-
parison based processes being isomorphic up-to Plds requires Q(nlogn) messages.

The steps taken in the proof by [Ly96] are:

LB-1 An assignment of Plds to the nodes of a ring of size n is called c-symmetric if there

are at least Lﬁj order equivalent k-neighbourhoods, /n < 2k +1 < n.

LB-2 There exists a constant ¢ such that, for all n € N, there is a ¢-symmetric ring of size
n.

19

LB-3 A network system consisting of comparison based processes which are isomorphic
up-to Plds and whose Plds in the processes form a ¢-symmetric ring, has more than
L%J active rounds before the leader is elected, if n is large enough.

LB-4 In order to prove the lower bound result, fix ¢ as in LB-2 and take n sufficiently
large. Let R be a c-symmetric ring of size n. Then every active round r with
r > y/n+1 such that the leader has not yet been elected sends more than ==
messages through the network. This follows from: there is at least one process P,
that sends a non-null message. As R is c-symmetric, there are at least 5= processes

whose r — 1-neighbourhoods are order equivalent to N;(r —1). Then it follows from
the Key Lemma that all those 5= processes are in corresponding states in round

r — 1 by the Key Lemma, so all sent a non-null message in round r.

Because the network needs at least | < '2_2

the total number of messages send before the election is larger than

| active rounds before the leader is elected,

=572 =521
Z number of messages sent in round r > Z

r=0 r=+v/n+1

c'n

2r — 1

This last sum is shown to be Q(nlogn) by integral approximation.

5.3 Generalizations of the result

This subsection briefly and informally discusses some generalizations of the Key Lemma
and of the lower bound result.

Multiple start states

Definition 3.1, axiom IP-2, of “processes isomorphism up-to PIds” requires the processes
to have a single start state. This is mainly done for the sake of simplicity.

There are several weaker alternatives for this axiom such that the lower bound result still
holds. This is so because proving a lower bound only requires one “bad” execution.

Other relations than <

Given some relation R on U, there exists a sensible notion of R-based process such that
the Key Lemma holds when the processes are R-based instead of comparison based: gen-
eralizing the notion of order equivalence to R-equivalence is easy. Then we can adapt the
notion of congruence to R-congruence by replacing “order equivalence” by R-equivalence.
The proof of the Key Lemma is generalized in the same way. The lower bound result need
not hold for any relation, for the existence of large R-equivalent neighbourhoods like those
in LB-2 is not guaranteed.

20

Other problems than leader election

It is not difficult to see that the proof given in [Ly96] also works for networks solving other
problems than leader election. The only step in the proof of the lowerbound that uses the
fact that the network solves leader election is LB-3. It uses that in the round in which
the leader is elected there is a state that is not corresponding via any o to the state of
any other process. In the leader election problem, this is the state of the process which is
elected.

Other networks than bidirectional rings

The following section provides a definition of the notion “process isomorphism up-to Plds,”
such that the Key Lemma can be generalized to other networks than rings. The lower
bound result needs not hold for other networks, as the existence of large order equivalent
neighbourhoods like in those LLB-2 is not guaranteed.

Uniqueness of Plds in start states

The fact that each start state contains a single PId which is required by axiom IP-3, is
used only in the leader election problem, not in the Key Lemma. However, uniqueness of
Plds in the start states should not be confused with uniqueness of the Plds in different
processes.

6 Process isomorphism and the Key Lemma more
generally

This section generalizes the Key Lemma to other networks than rings. Therefore, the no-
tions of process isomorphism up-to Plds and of neighbourhood need to be given a meaning
in an arbitrary network. Since different processes have different channels, we need to relate
these when comparing two processes.

This is done via a so-called local automorphism, which bijectively maps the incoming
and outgoing channels of one process to those of another. Then we introduce the notion
of “process isomorphism up-to Plds via a local automorphism.” We also compare the
k-neighbourhoods of two processes using a local automorphism.

We claim that the Key Lemma also holds for isomorphic processes in an arbitrary network.
The generalized Key Lemma does not require all processes to be isomorphic up-to Plds,
but only the pairs that are related by the local automorphism.

We assume that Z, J are index sets and that X} is some set, for all k € Z U J.

Definition 6.1 Let G = (V, E) be a graph and ¢ € V. A local automorphism of G in 1
is a bijection o : V < V such that for all k € V

l. k=i < o(k)—= o),

21

2. i—=k < o(1) = o(k).

S0, a local automorphism in ¢ maps incoming neighbours of 7 to incoming neighbours of
o(i) and the same for outgoing neighbours. The set of local automorphisms of GG in 7 is
denoted by Loc(G, 7). Notice that an automorphism of ¢ is local automorphism of G in ¢,
for every 1.

Definition 6.2 Let Z, 7 be index sets. Let o : Z = J be a bijection. We define for all
T € Hjej XJ‘

2(0) Z (2o()) sor-

so, #(0) € [lier Xi and (2(0));, = @,@). If 7 2 o, then we also use x(r) 4 z(o). If
x(o) =y, then we say that y is obtained from x by substitution of indices.

Example 6.3 Let R be a bidirectional ring of size n. Let 1,5 € V. Take ¢ : V — V,
o(i+l) = g+l for all0 <[< n, counting modulo n. This is a local automorphism if R in 4; 1t
is even an automorphism of R. Form,m’ € M, wehavex = (j —1:m,j+1:m’) € Mén(])
and

<$U >2€I

(z—l To(im1),t + 1 :1;(24_1))
i—1:a,_ 1,@—|—1 Tjy1)
i—1:myi+1:m').

(
(i
Remark, however,
20} = (1)) iz ()
£ (o(j—1):m,o(j+1):m),

for, in general, o(j — 1) needs not to be defined.

6.1 Process isomorphism up-to PIds more generally

It is not difficult to formulate a more general notion of process isomorphism up-to Plds by
combining the axioms of the notions of process isomorphism for rings from Section 3 and
by relating the incoming and outgoing channels via a local automorphism.

Definition 6.4 Let (G, P, M) be a network system. Let 7,57 € V and let o € Loc(G, 1)
such that (i) = 5. The processes P; and P; are isomorphic up-to Plds via o , notation
P; =, P;, if the following properties are satisfied:

IP-1 states; = states;

22

IP-2 # start; = # start; =1
IP-3 |pidset(s?)| = ‘pidset(s?)‘ =1
IP-4 2[pid(s?)] = &9

GIP-5 For all s € states;
msgsi(s) = (msgs;(s)) (o).

GIP-6 For all s € states; and all y € Mé’n(j)

trans;(s, u(o)) = trans;(s,)

Remark 6.5 1. Notice that =, is not an equivalence relation. We have P; ~;y P;,
P, P]‘ — P]‘ ~,-1 P and PZ'%UP]‘/\P]‘ ~ P — P~.,, P

2. Compare the definition of ~, above, applied to a bidirectional ring network, and
Definition 3.1, of ARing, .. of “process isomorphism up-to PIds” of rings A corre-
spondence between the relations ~ine and /2, in a bidirectional ring network is given

by
P Rring P]‘ <= do € Cn[PZ Ry P]]

Here €, is the cyclic group of order n, C, = {0} | ox(i) = i + k modulo n}.
So, definition 3.1 uses very specific (local) isomorphisms to compare the processes,
whereas the definition above allows any local automorphism.

6.2 The Key Lemma generalized

In order to generalize the Key Lemma, we redefine the notion of k-neighbourhood and
generalize the notion of order equivalence to Z-tuples over U. Recall that d(¢,[) is the
distance between ¢ and [, i.e. the length of a shortest path.

Definition 6.6 Let (G, P, M) be a network system. Let i € V. The k-neighbourhood of
a process P; is defined by

d
Ni(k) = (ul)lev,d(i,l)gk'

Definition 6.7 Let v,w € UZ. We define

vwwg‘v’iEI[mgvi — w; < wl.

23

Now order equivalence between neighbourhoods of different processes is expressed via a

substitution of indices, e.g. N;(k)(o) ~ N, (k).

Notation 6.8 If N;(k)(o)~N;(k) then Lemma 4.4 implies that the function in {w;_x, w;—kt1,
Sy Uipk) — U, mapping w4y to w4y, for every [, is well-defined and strictly monotone.
This function is denoted by vz, .

The proposition below is an analogue of proposition 5.3.

Proposition 6.9 For all i,k € N and o € Loc(G,1) we have

1. Vjk-1,0 C Vike, for all j € in(i) U {i},

2. Ni(k) (o) ~ Nyiy(k) = VI € in(i) U {i}[Ni(k — 1)(o) ~ N,)(k — 1)].

Now we can generalize the Key Lemma. Suppose we have two processes P;, P; which are
isomorphic up-to Plds via ¢ and whose k-neighbourhoods are order equivalent via o also.
Then the processes remain in corresponding states via v;,, during the first £ rounds of
the execution. Notice that, contrary to the Key Lemma for rings, we do not require all
processes to be isomorphic, but only the pairs that are related by o, i.e. only F; and P,),
for all [within distance k from 1.

Lemma 6.10 (Key Lemma generalized) Let (G, P, M) be a network system, consist-
ing of comparison based processes. Let 1 € V.k € N and o € Loc(G,1). Write o(i) = j.
If

Vie V. d(i,l) <E[P ~; Pqy ANi(k){(o) ~N;(k)]
then for all r

actives(r) < k = dr.imm.j.
PRrROOF: Similar to the proof of lemma 5.5. O O

Example 6.11 The Key Lemma concludes that the processes 3 and 4 in the execution of
the LCR agorithm of Example 1.9 are in corresponding states during the first round of the
execution, the Generalized Key Lemma that these are so during the first two rounds of the

execution.
round 0 | round 1 round 1 round 2 round 2
proc states msgs state msgs states
Py || (4,nulljinit) 4 (4,null,unknown) null (4,null,unknown)
Py || (3,nullinit) 3 (3.4,unknown) 4 (3,null,unknown)
Ps; || (2,nullinit) 2 (2,3,unknown) 3 (2,4,unknown)
Py || (1,nulljinit) 1 (1,2,unknown) 2 (1,3,unknown)

24

7 Further research

It would be interesting to investigate whether or not comparison based processes can be
verified automatically. We conjecture that this is indeed possible. We suggest an adaption
of a result by [PJ96], stating that bisimulation equivalence is decidable for programs that
can only read, write and store their data, i.e. programs that do not depend on the actual
data values. The idea behind this suggestion is that given a fixed assignment of Plds to all
the processes, the network can be considered as only moving around data. As a comparison
based process behaves similarly on order equivalent input, there is only a finite number
of really different assignments. If n is the number of processes, we have n", assignments
leading to different behaviour which we need to check.

As a second topic for further research, it would be more elegant to formulate the notion
of “process isomorphism up-to PIds” more generally using bisimulation equivalence. Our
formalization requires the state spaces of all processes to be equal. It would be more natural
to allow each process to have its own state space, expressing equivalence of behaviour by
means of bisimulation.

Moreover, it would be elegant to have an absolute notion of isomorphic processes, inde-
pendent of an local automorphism, like we have for ring networks. We could try to find
an analogon of (', as used in Remark 6.5, using a specific class of (local) isomorphisms to
compare processes. It is not immediately clear which class to take.

Another direction for further investigation is to adapt the lower bound result on the leader
election problem to other networks than rings. The proof of the lower bound given by
[Ly96] does not apply to other networks than rings because the existence of as many and
as large order equivalent neighbourhoods as those in LLB-2 is guaranteed in rings only.

In fact, we conjecture that the lower bound result (nlogn) does not hold for arbitrary
networks. networks. It is likely that the higher the connectivity of the network, i.e.
the number of channels, the less messages are needed to elect a leader. It would be an
interesting combinatorial problem to find large order equivalent neighbourhoods in other
networks than rings, in order to prove an adapted lower bound.

A Notational conventions

Sets

P(A) powerset of A

AUB the disjoint union of A and B
{(a,0) |a € Ay U{(b,1)]|be B}

A the number of elements in A

25

Functions
A= B the set of (total) functions from A to B
A— B the set of injective functions from A to B
A—>»B the set of surjective functions from A to B
A—>» B the set of bijective functions from A to B
A—~B the set of partial functions from A to B
Dom(f) the domain of f
Ran(f) the range of f
fCyg Dom(f) € Dom(g) & Y € Dom(f)[f(x) = g(z)]

f@L zeDom(f)
flz)= fly) x,y € Dom(f) and they are equal as elements in Ran(f)

Sequences

A* set of finite sequences over A

g empty sequence

|z| length of the sequence

z; 1 <1< |z|, the i*" element of x

* concatenation of sequences

set set:U* — P(U),set(xy---ay) = {x1,... 2k}

Dependent products

Z-tuples are tuples over another index set Z than {0,1,...k} or N.

[Ler As the set of over tuples an index set Z, such that
the element at place 7 is an element of A;
T
A [lier A o ‘ .
(l’i)iez T-tuple consisting of elements z; at index 1

(41 : 21,02t ®9,05 1 X3,...) Z-tuples consisting of elements z;; at index 1i;,
7T = {Zl,lg,lg,...}
) i € I, the i*" of x

Typically, we use the dependent product as a “common super type” of the sets S, S x Mén(i)
and M§*“. Note that S x Mén(i) ~ Hie{l}Uin(i) X;, where X(10) = 5, X1y = M°,i € in(i).
We mix the notations of the product and the dependent product. Some examples: if
out(i) = {3,5}, then (3:m,5:m') € Mgut(i). Furthermore, if in(¢) = {¢ — 1,7+ 1} and
status € S, then (status,(t —1:m,i+1:m')) € 5 x Mén(i). If mi_y,miz1 € My then
(M4)icingiy € My,

Glossary of symbols

G graph

R uni- or bidirectional ring
V set of vertices

E set of edges

T index set

1,7,0 elementsof V, 7 or N

P (sequence of) processes
S set of states

S state

36 start state of process 1
M set of messages

null absence of a message
My M U {null}

m message

x,y indexed sequences (of messages and states)

o execution

n,k natural numbers

U set of Plds

u PId

U; the Pld of process 1
v,w sequence of Plds

26

27

References

[CR79]

[CFJ93]

[EA93]

[ES95]

[FLST]

[PJ96]

[La77]

[Ly96]

E. CHANG, R. ROBERTS An itmproved algorithm for finding extrema in circular

configurations of processes. In: Communications of the ACM, Vol. 22-5, pp. 144
— 156, May 1979.

E.M. CLARKE, T. FILKORN, S.JHA Exploiting symmetry in temporal logic model
checking. In: Proceedings of the international conference on computer-aided veri-
fication, Lecture notes in computer science, vol. 697, pp. 451 — 462, 1993. Springer-
Verlag, Berlin.

E. A. EMERSON, A.P. SISTLA Symmetry and model checking. In: Proceedings
International conference on computer-aided verification, Lecture notes in com-
puter science, vol. 697, 463 — 477, 1993. Springer-Verlag, Berlin.

E.A. EMERSON, A.P. SISTLA Utilizing symmetry when model checking under
fairness assumptions. In: Proceedings International conference on computer-aided
verification, Lecture notes in computer science, vol. 939, 309 — 318, 1995. Springer-

Verlag, Berlin.

G.N.FREDERICKSON, N.A. LYNCH Flecting a leader in a synchronous ring. In:
Journal of the ACM, Vol. 34-1, pp. 98 — 115, 1987.

B.JOHNSON, J. PARROW Deciding Bisimulation equivalences for a class of non-

finite-state programs. In: Information and Computation, 107-1L:pp. 272 — 302,
1993.

G. LE LANN Distributed algorithms — towards a formal approach. In: B. Gilchrist,

editor, Information Proceeding 77, Toronto, August 1977, vol. 7, Proceedings of
IFIP Congress, pp 155 — 160, North Holland, Amsterdam, 1977

N.A. LyNcH Distributed algorithms, pp. 17 — 49. Morgan Kaufmann Publishers,
Inc., 1996.

