
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/17285

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/17285

Term Graph Rewriting

H.P. Barendregt I, M.C.LD. van Eekelen 1, J.R.W. Glauert 2,

J.R. Kermaway 2, M.J. Ptasmeijer I and M.R.Sleep 2.

1 University of Nijmegen, Nijmegen, The Netherlands. Partially supported by the Dutch Parallel Reduction Machine Project.
2 School of Information Systems, University of East Anglia, Norwich, U.K. Partially supported by the U.K. ALVEY Project.

Abstract
Graph rewriting (also called reduction) as defined in Wadsworth [t971] was inn'educed in order to be able to give a more

efficient implementation of functional programming languages in the form of lambda calculus or term rewrite systems:
identical subterms are shared using pointers.

Several other authors, e.g. Ehrig [1979], Staples [i980a, b,c], Raoult [1984] and van den Brock et al. [1986] have given
mathematical descriptions of graph rewriting, usually employing concepts from category theory. These papers prove among
other things the correcmess of graph rewriting in the form of the Church-Rosser property for "well-behaved" (i.e. regular)
rewrite systems. However, only Staples has formally studied the soundness and completeness of graph rewriting with respect to
term rewriting.

In this paper we give a direct operational description of graph rewriting that avoids the category theoretic notions. We
show that if a term t is interpreted as a graph g(t) and is reduced in the graph world, then the result represents an actual reduet of
the origilaal term t (soundness). For weakly regular term rewrite systems, there is also a completeness result: every normal
form of a term t can be obtained from the graphical implementation. We also show completeness for all term rewrite systems
which possess a so called hypernormalising strategy, and in that case the strategy also gives a normalising strategy for the
graphical implementation.

Besides having nice theoretical properties, weakly regular systems offer opportunities for parallelism, since redexes at
different places car~ be executed independently or in parallel, without affecting the f'mal result.

O. Introduction and background.

Graph rewriting is a well-known and standard technique for implementing functional languages based

on term rewriting (e.g. Turner [1979a]), but the correctness of this method has received little attention,

bering simply accepted folklore. For both theory and practice, this makes a poor foundation, especially in the

presence of parallelism. Staples [1980a,b,c] provides the only published results we are aware of. (A

digested summary of these papers is in Kennaway [1984].) Wadsworth [1971] proves similar results for

the related subject of pure lambda calculus.

Our principal result is that the notion of graph rewriting provides a sound and complete representation

(in a sense precisely defined below) of weakly regular TRSs. A counterexample is given to show that for

non-weak2y regular TRSs completeness may fail: some term rewriting computations cannot be expressed in

the corresponding graph rewrite system. A second result concerns the mapping of evaluation strategies

between the term and the graph worlds. A counterexample is exhibited to show that an evaluation strategy

which is normalising (i.e. computes normal forms) in the term world may fail to do so when it is transferred

to the graph world. We prove that any strategy which satisfies a stronger condition of being

hypernormatising in the term world is normalising (and indeed hypernormalising) in the graph world. We

briefly consider the problem of defining a graph rewriting implementation of non-left linear term rewrite

rules.

The general plan of the paper is as fotlows: Section 1 presents basic definitions, and introduces a linear

syntax for terms represented as graphs. Section 2 introduces a category of term graphs. Section 3 defines

the notion of graph rewriting, and section 4 introduces the notion of tree rewriting as a prelude to section 5,

which develops our theory of how to relate the worlds of term and graph rewriting. Section 6 considers the

problem of mapping strategies between the two worlds. Finally, section 7 gives a summary of the work.

142

1. Terms as trees and graphs.

1.1 DEFINITION.

(i) Let F be a (finite or infinite) set of objects caUedfunction symbols. A,B,... range over F.

(ii) The set T of terms over F is defined inductively by:

A e F , t 1 t acT ~ A(t 1 tn)eT (n._>0)

A0 is written as just A. •

1.2 EXAMPLE. Let F={0,S}. Then T ={0,S(0),0(S,S(0,0)), S(S,S,S)...}. Note that we do not assume

that function symbols have fixed arities. This might appear inconvenient if one wished to represent, for

example, the Peano integers, with a constant 0 and a successor operator S, since one also obtains extra

"unintended" terms such as some of those listed above. When we define rewrite systems in section 3, we

will see that this does not cause any problems. •

1.3 DEFINITION. A labelled graph (over F) is a n'iple (N,lab,succ) involving a (finite or infinite) set N of

nodes, a function lab: N-~F, and a function succ:N---~N*. In this case we say that the n 1 n k are the

successors of n. The ith component of succ(n) is denoted by succ(n) i. []

When we draw pictures of graphs, a directed edge will go from each node n to each node in succ(n),

with the left-to-right ordering of the sources of the edges corresponding to the ordering of the components

of succ(n). The identity of nodes is usually unimportant, and we may omit this information from pictures.

1.4 EXAMPLE. Let N={nt,n2,n3} and define lab and succ on N as follows.

lab(nl)=G, lab(P-2)=A, lab(n3)=B,

succ(nl)=(n2,n3), succ(½)=0, succ(n3)=0.

This defines a labelled graph that can be drawn as:
~:G G

: : B A B

Using this notation, four more examples of graphs are the following.
G

1.5 DEFINITION. (i) A path in a labelled graph (N,lab,succ) is a list (n0,io,nl,i 1 nm.l,im.l,nm) where

m20, n o nme N, i 0 im.leN (the natural numbers) and nk+ 1 is the ik-th successor of n k. This path

is said to be from n o to n m and m is the length of the path.

(ii) A cycle is a path of length greater than 0 from a node n to itseLf, n is called a cyclic node.

(iii) A graph is cyclic if it contains a cyclic node, otherwise it is acyclic. •

1.6 DEFINITION. (i) A term graph (often, within this paper, simply a graph) is a quadruple (N,lab,succ,r)

where (N,Iab,succ) is a labeUed graph and r is a member of N. The node r is called the root of the graph.

(We do not require that every node of a term graph is reachable by a path from the root.) For a graph g, the

components are often denoted by Ng, labg, succg, and rg.

143

(ii) A path in a graph is rooted if it b e g ~ with the root of the graph. The graph is root-cyclic ff there is

a cycle containing the root.

When we draw pictures of term graphs, the topmost node is the root. II

Term graphs are exactly the graphs discussed in the paper Barendregt et a1.[1987], which defines a

language of genemlised graph rewriting of which the rewriting treated in this paper is a special case.

1.7 DEFINITION. Let g = (N,lab,succ) be a labelled graph and let ne N. The subgraph ofg rooted at n is the

term graph (N',lab',succ',n) where N'={n'E N I there is a path from n to n'} and lab' and succ' are the

restrictions of lab and succ to N'. We denote this graph by gin. The definition also applies when g is a term

graph. II

1.8 EXAMPLF&
(i) nl :A

The wabgraph r~x~ted at n2is: ~ * ' ~

C D

E

i \
A formal descripuon of a graph requires a complete speciHcadon of the quadruple (N,lab,succ¢). When

writing down examples of finite graphs, it is convenient to adopt a more concise notation, which abstracts

away from details such as the precise choice of the elements of N. We will use a notation based on the

definition of terms in definition 1.1, but with the addition of node-names, which can express the sharing of

common subexpressions. The notation is defined by the following context-flee grammar, with the

restrictions following it.

1.9 DEFINITION (linear notation for graphs).

graph ::= node I node + graph

node ::= A(nocle,...,node) I x l x : A(node,...,node)

A ranges over F. x ranges over a set, disjoint from F, of nodeids ('node identifiers'). Any nodeid x which

occurs in a graph must occur exactly once in the context x : A(node,...,node). Nodeids are represented by

tokens beginning with a lower-case letter. Function symbols will be non-alphabetic, or begin with an

uppet-case letter. We again abbreviate A0 to A. II

This syntax is, with minor differences, the same as the syntax for graphs in the language LEAN

(Barendregt et al.[1987]). The five graphs of the examples 1.4 are in this notation: G(A,B), G(A(x:B),x),

G(x:B) + H(x), G(B) + H(B) and x:G(A,B(x)). Note that multiple uses of the same nodeid express

multiple references to the same node.

The definition of terms in 1.I corresponds to a sublanguage of our shorthand notation, consisting of

those graphs obtained by using only the first production for graph and the first production for node. So

terms have a natural representation as graphs.

I. i0 EXAMPLES.

(i) G(Plus(i ,2), Plus(I,2)) (ii) G(Plus(nl: 1, n2:2), Plus(n 1, n 2))

144

(iii) G(n:Plus(1,2), n) (iv) n l : Cons(3, n t)

1 1 2 1 2 1 2

1.I 1 DEFINITION. A tree is a graph (N,lab,succ,r) such that there is exactly one path from r to each node in

N. Ii

Thus example (i) above is a tree, and (ii), (iii), and (iv) are not. Trees are always acyclic. Notice that a

graph g is a finite tree iff g can be written by the grammar of 1.8 without using any nodeids.

The natural mapping of terms to graphs represents each term as a finite tree. However, some terms can

also be represented as proper graphs, by sharing of repeated subterms. For example, the term

G(Plus(1,2),Plus(1,2)) can be represented by any of the graphs pictured in example 1.10 (i), (ii), or (iii), as

welt as by the graphs G(Plus(x:l,2),Plus(×,2)) or G(Plus(1,x:2),Ptus(1,x)).

2. Homomorphisms of graphs and trees.

2.1 DEFINITION. Given two graphs gt = (Nl,labt,succl,rl) and g2 = (N2,1ah2,succ2,r2), a homomorphism

from gl to g2 is a map f:NI-->N 2 such ttm~ for all n~N1,

lab2(f(n)) = labl(n)

succ2(f(n)) = f(succl(n))

where f is defined by f(nl,...,n Q = (f(nl),...,f(nk)). That is, homomorphisms preserve labels, successors,

and their order. •

2.2 DEFINITION. Graph(F) is the category whose objects are graphs over F and whose morphisms are

homomorphisms. Tree(F) is the full subcategory of Graph(F) whose objects are the trees over F. It is

easy to verify that these are categories. I

2.3 EXAMPLES. We shall write

gl ~m~l~ g2

when there is a homomorphism from gl to g2" We have the following pictures.

B C A B

B D B D
B

2.4 DEFINITION. (i) A homomorphism f:gl-+g2 is rooted ff f(rl)--r 2.

(ii) An isomorphism is a homomorphism which has an inverse. We write g - g' when g and g' are

isomorphic.
(iii) Two graphs are equivalent when they are isomorphic by a rooted isomorphism. We write g = g'

when g and g' are equivalent. II

2.5 PROPOSITION. (i) For any graphs gl and g2 we have gl = g2 ~ gl ~ g2"

(ii) Every rooted homomorphism from one tree to another is an isomorphism. •

t45

2.6 EXAMPLE. These two graphs are isomorphic but not equivalent (recaU that in diagrammatic

representations the root node is the topmost):
A

C

2.7 DEFINITION. Given any graph g=(N,lab,succ,r) we can define a tree U(g) which results from

'°unravelling" g from the root. We start with some examples.
(i) A A frd) A A

B B B B C B C

(~) g = c } u ~) = c
/ \

A A C

/ N
A C

1 \
A

Now we give the formal definition. U(g) has as nodes the rooted paths of g. The root of U(g) is the

path (r). For a path p=(n0,io,...,nm_t,im_l,nm), labu(g)(p) = labg(nm) and succu(g)(p) = (Pl,'",Pk) where Pi

is the result of appending (i,succg(nm)i) to p. Clearly this is a tree. •

2.8 PROPOSITION. For every graph g there is a rooted homomorphism u g: U(g)---~g defined by:

u g(no,io,..,n m) = nm. •
2.9 PROPOSITION. A graph g is a tree iff g -~ U(g). •

2.10 DEFINITION. Two graphs g and g' are tree-equivalent, notation g = ' t g , if U(g) = U(g'). •

For example, the graphs of example 1.10 (i), (ii), and (iii) are all tree-equivalent. So are these two

graphs:

0 o
3. Graph r e w r i t i n g .

We now turn to rewriting. First we recall the familiar definitions of terms with free variables and term

rewriting. We then explain informally how we represent terms with free variables as 'open' graphs, and

defme our notion of graph rewriting. Our definition is quite similar to the one in Staples [1980a].

3.1 DEFINITION (term rewriting). (i) Let V be a fixed set of function symbols, disjoint from F. The

members of V are called variables, and are denoted by lower-case letters. An open term over a set of

function symbols F is a term over F u V in which every node labelled with a variable has no successors.

An open term containing no variables (that is, what we have been calling simply a term) is a closed term.

146

(ii) A term rewrite rule is a pair of terms t L and t R (written tL---> tR) such that every variable occurring in

t~ occurs in t L. t L and ~ are, l~spectively, the left- and right-hand sides of the term rewrite rule t L--> t w

(iii) A term rewrite rule is left-linear ff no variable occurs more than once in its left-hand side. •

The usual definition of a term rewrite rule requires that t L be not just a variable. However, our results

are not affected by the presence of such rules, so we do not bother to exclude them.

In order to introduce graph rewriting, first we need some preparatory definitions.

3.2 DEFINITION. (i) An open labelled graph is an object (N,lab,succ) like a labelled graph, except that lab

and succ are only required to be partial functions on N, with the same domain. A node on which lab and

succ are undefined is said to be empty. The definition of an open (term) graph bears the same relation to

that of a (term) graph. When we write open graphs, we will use the symbol _L to denote empty nodes. As

with terms, we talk of closed (labelled or term) graphs and closed trees as being those containing no empty

nodes.

(ii) A homomorphism from one open graph gl to another g2 is defined as for graphs, except that the

"structure preserving" conditions are only required to hold at nonempty nodes o f g 1. []

Open term graphs are intended to represent terms with variables. Instead of using the set V of

variables, we find it more convenient, for technical reasons, to follow Staples[1980a] by using empty

nodes. The precise translation from open graphs to open terms is as follows. Given an open graph over F,

we first replace each empty node in it by a different variable symbol from V, and then unravel the resulting

closed graph over FuV, obtaining an open term over F. Thus where a graph has multiple edges pointing

to the same empty node, the term will have multiple occurrences of the same nodeid. For example, the

graph Ap(Ap(_L,w:_L),Ap(.L,w)) translates to the term Ap(Ap(x,z),Ap(y,z)):
graph tema

F', /¢,.
~ ~ . L x ~ z Y A

We could obtain any term which only differs from this one by changes of variables. We shall treat such

terms as the same.

We now turn to the graph representation of term rewrite rules. We only deal with left-linear rules in

this paper. In 5.13 we discuss briefly the problems in graphically describing non-left-linear rules.

3.3 DEFINITION. (i) A graph rewrite rule is a triple (g,n,n~), where g is an open labelled graph and n and n'

are nodes of g, called respectively the left root and the right root of the rule.

(ii) A redex in a graph go is a pair A = (R,f), where R is a graph rewrite rule (g,n,n') and f is a

homomorphism from gln to go" The homomorphism f is called an occurrence of R. []

Rather than introduce our formal definition of graph rewriting immediately, we begin with some

examples. The formal defmition is given in section 3.6.

3.4 TRANSLATION OF TERM RULES TO GRAPH RULES.
Let t L --~ t R be a left-linear term rewrite rule. We construct a corresponding graph rewrite rule (g,n,n'),

where g is a labelled graph and n and n' are nodes of g. First take the graphs representing t L and t R. Form

the union of these, sharing those empty nodes which represent the same variables in tt. and t R. This graph

147

is g. Take n and n' to be the respective roots of t L and t R. Here are two examples which should make the

correspondence between term and graph rewrite rules clear.

(i) Term rule: Ap(Ap(Ap(S,x),y),z) ~ Ap(Ap(x,z),Ap(y,z))

Graph rule: (n:Ap(Ap(Ap(S,x:_L),y:±),z:_L) + n':Ap(Ap(x,z),Ap(y,z)), n, n')
left root n

~ right root n'

(ii) Term n~e: head(cons(x,y)) --~ x

Graph n~e: (n:~ad(cons(x:J.,.L)), n, x)
left root n

cons

right root x

3.5 INFORMAL DEFINITION OF GRAPH REWRITING.

A redex ((g,n,n'), f: gin ---> go) in a graph go is reduced in three steps. We shall use the following

redex as an example: (g,n,n') is the S-rule above, go = G(a,Ap(Ap(a:Ap(S,P),Q),R)) and f operates on n

as indicated in the picture (which completely determines how f behaves on the rest of gin).
g go

f

.L R

S P

First (the build phase) an isomorphic copy of that part of gtn' not contained in gin is added to go, with lab,

succ, and root defined in the natural way. Call this graph gt" Then (the redirection phase) all edges of g1

pointing to f(n) are replaced by edges pointing to the copy of n', giving a graph g2- The root of g2 is the

root of gl, if that node is not equal to f(n). Otherwise, the root of g2 is the copy of n'.

Lastly (the garbage collection phase), all nodes not accessible from the root ofg 2 are removed, giving g3,
which is the result of the rewrite.

148

Ap Ap Ap

Note that the bottommost Ap node of the redex graph and the S node remain after garbage collection,

since they are still accessible from the root of the graph. The other two Ap nodes of the redex vanish.

3.6 FORMAL DEFINITION OF GRAPH REWRITING.

We now give a formal definition of the general construction. Let ((g,n,n'), f: gin --~ go) be a redex in a

graph go- The graphs g] (the build phase), g2 (the redirection phase) and g3 (the garbage collection phase)

are defined as follows.

(i) The node-set N of gt is the disjoint union of Ng o and Ngln, - Ngln. The root is rg 0. The functions

labg 1 and SUCCg 1 are given by:

labgl(m) = labgo(m)

= labg(m)

succgl(m)i = succgo(m)i

= sUCCg(m)i

= f(sUCCg(m)i)

We write gl = go +f (g,n,n').

(m e Ngo)

(m e Ngln, - Ngln)

(m e Ngo)

(m, sUCCg(m)i E Ngln, - Ngln)

(m e Ngln, - Ngln, sUCCg(m) i E Ngln)

(ii) The next step is to replace in gl all references to f(n) by references to n'. We can define a

substitution operation in general for any term graph h and any two nodes a and b of h.

h[a:=b] is a term graph (Nh,lab,succ,r), where lab, succ, and r are given as follows.

lab(c) = labh(C) for each node c of N h

if SUCCh(C) i = a then succ(c) i = b, otherwise succ(c) i = SUCCh(C) i

if r h = a then r = b, otherwise r = r h

With this definition, g2 is gt[f(n):=n'].

(iii) Finally, we take the part of g2 which is accessible from its root, by defining g3 = g21rg2 " We give

this operation a name: for any term graph h, we denote hlr h by C,C(h) (Garbage Collection).

We denote the result of reducin.g a redex A in a graph g by RED(A,g). Collecting the notations we have

introduced, we have

RED(((g,n,n'),f),g0) = GC((g 0 +f (g,n,n'))[f(n):=n']). []

Our definition of graph rewriting is a special case of a more general notion, defined in Glauert et

a1.[1987] by a category-theoretic construction. Those familiar with category theory may recognise the build

phase of a rewrite as a pushout, and redirection and garbage collection can be given definitions in the same

style (though the categories involved are not those defined in this paper). For the purpose of this paper -

describing graph rewritings which correspond to conventional term rewritings - the direct "operational"

definition we have given is simpler.

3.7 DEFINITION. (i) If g reduces to g' by reduction of a redex A, we write g ___~a g,, or g --~ g' if we do not

wish to indicate the identity of the redex. The reflexive and transitive closure of the relation ~ is ---r*.

149

(ii) A graph rewriting system (GRS) over F consists of a pair (G,R) where R is a set of rewrite rules

and G is a set of graphs over F closed under rewriting by the members of R.

Clii) We write g -'*R g' if g "-¢ g' by reduction of a redex using one of the rules in R. The reflexive and

transitive closure of "*k is ")*R" If clear from the context, we omit the subscript R.

(iv) A graph g such that for no g' does one have g "-)R g' is said to be an R-normal form (or to be in

R-normal form). If g -¢*R g' and g' is in R-normal form, we say that g' is an R-normal form of g, and that

g has an R-normal form. Again, we often omit the R. •

Note that a GRS is not required to include all the graphs which can be formed from the given set of

function symbols F. Any subset closed under rewriting will do. This allows our definition to automatically

handle such things as, for example, sorted rewrite systems, where there are constraints over what function

symbols can be applied to what arguments, or arities, where each function symbol may only be applied to a

specified number of arguments. From our point of view, this amounts to simply restricting the set of

graphs to those satisfying these constraints. So long as rewriting always yields allowed graphs from

allowed graphs, we do not need to develop any special formalism for handling restricted rewrite systems,

nor do we need to prove new versions of our results.

Our definition of a graph rewrite rule allows any conventional term rewrite rule to be interpreted as a

graph rewrite rule, provided that the term rewrite rule is left-linear, that is, if no variable occurs twice or

more on its left-hand side. As some of the following examples show, however, some new phenomena

arise with graph rewrite rules.

3.8 EXAMPLES.

(i) Term rule: A(x) --¢ B(x);

Graph: x:A(x);

(ii) Term rule: I(x) -~ x;

Graph: I(3);

Graph rule: (n:A(x:_l_) + n':B(x), n, n')

Result of rewriting: x:B(x)

Graph rule:(n:I(n':_L), n, n')

Result of rewriting: 3

(/ii) The fixed point combinator Y has the term rewrite rule Ap(Y,x) ~ Ap(x,Ap(Y,x)). This can be

transformed into the graph rewrite nile (n:Ap(Y,x:_l_) + n':Ap(x,Ap(Y,x)),n,n'). However, it can also be

given the graph rewrite rule: (n:Ap(Y,x:£) + n':Ap(x,n'),n,n'):

Y .1_ Ap

(n:Ap(Y,x:l) + n':Ap(x,Ap~,x)),n,n') (n:Ap(Y,×:&) + n':Ap(x,n'),n,n)

This captures the fact that the B~hrn tree (Barendregt [19841) of the term Ap(Y,x) is:
Ap

x Ap

X

The graph rule can do all the 'unravelling' in one step, which in the term rewrite world requires an infinite

sequence of rewritings.

(iv) Here is a more subtle example of the same phenomenon illustrated by (iii). Consider the term

rewrite rule

150

F(Cons(x,y)) -~ G(Cons(x,y))

Our standard representation of this as a graph rewrite rule is:

(n:F(Cons(x:±,y:±)) + n':G(Cons(x,y)), n, n')

Note that each application of this rule will create a new node of the form Cons(.......), which will have the

same successors as an existing node Cons (.......). In a practical implementation, there is no need to do

this. One might as well use that existing node, instead of making a copy of it. The foUowing graph rewrite

rule does this:

(n:F(z:Cons(±,±)) + n':G(z), n, n')

Both the languages Standard ML and Hope, which are languages of term rewriting, allow an enhanced form

of term rewrite rules such as (using our syntax):

F(z:Cons(x,y)) ---> G(z)

with precisely this effect. Of course, given referential transparency (which ML lacks) there is no reason for

an implementation not to make this optimisation wherever there is an opportunity, even if the programmer

does not. But providing this feature to the programmer may make his programs more readable.

(v) Term rule: I(x) -~ x; Graph rule: (n:I(n':_L), n, n')

Graph: x:I(x); Result of rewriting: x:I(x)

Example 3.8(v) is deliberately pathological. Consider the GRS for combinatory logic, whose rules are

those for the S, K, and I combinators. The graph can be interpreted as "the least fixed point of I" (cf. the

example of the Y combinator above), and in the usual denotational semantics in terms of reflexive domains

should have the bottom, "undefined" value. As the graph reduces to itself (and to nothing else), it has no

normal form. Thus our operational semantics of graph rewriting agrees with the denotafional semantics.

This is not true for some other attempts we have seen at formalising graphical term rewriting.

We now study some properties of graph rewrite systems. We establish a version of the theorem of

finite developments for term rewriting, and the confluence of weakly regular systems. For reasons of

space, the longer proofs are omitted from this paper. They appear in Barendregt et aI. [1986].

3.9 PROPOSITION. Garbage collection can be postponed. That is, given g --4 m gt _~a2 g2, Ai = (Rill), Ri

= (gi,ni,n') (i = 1,2) and g'l = (g +It Rt)[f(n) = nT, then A 2 is also a redex o fg ' 1, and g'2 ...~a2 g2. •

3.10 DEFINITION. Two redexes A 1 = ((gl,nl,n'l),fl) and A 2 = ((g2,n2,n'2),f2) of a graph g are disjoint if:

(i) f2(n2) is not equal to fl(n) for any nonempty node n of gllnl, and

(ii) ft(nl) is not equal to f2(n) for any nonempty node n of g21n2.

A 1 and A 2 are weakly disjoint if either they are disjoint, or the only violation of conditions (i) and (ii) is that

ft(nl) = fz(n,2), and the results of reducing A 1 or A 2 are identical.

A GRS is regular (resp. weakly regular) if for every graph g of the GRS, every two distinct redexes in

g are disjoint (resp. weakly disjoint). 1

3.11 PROPOSITION. Let za I = ((gl,nvn't), f l) and A 2 = ((g2,nz,n'2), f2) be two disjoint redexes of a graph

g. Let g _.~al g,. Then either f2(n 2) is not a node of g', or there is a redex ((g2,nz,n'2)f) of g" such that

f(n 2) = f2(n2). •

3.12 DEFINITION. (i) With the notations of the preceding proposition, if fz(n2) is not a node ofg ' then

A2/A 1 is the empty reduction sequence from g' to g'; otherwise, A2/A 1 is the one-step reduction sequence

151

consisting of the reduction of ((g2,n2,n'2),f)° This redex is the residual of A 2 by A I and is denoted by

A,2//A 1. For weakly disjoint A 1 and A 2, A2/A 1 is the empty reduction sequence from g' to g'. A2/A 1 is not

defined when A 1 and A 2 are not weakly disjoint, and A2//A 1 is not defined when A 1 and ~2 are not disjoint.

(ii) Given a reduction sequence g ~ a l ..,a2 ... ~ t a g, and a redex A of g, the residual of A by the

sequence A1...A i, denoted A//(A1...Ai) is (A//(A1...Ai4))//Ai (provided that (A//(A1...Ai_I)) exists and is

disjoint from ~i)" •

3.13 PROPOSITION. Let A 1 and A 2 be weakly disjoint redexes of g, and let g ~ g; (i = 1,2). Then there is

a graph h such that gl ~ / a t h and g2 _..:l/~ h. That is, weakly disjoint redexes are subcommutative. II

3.14 COROLLARY. Every weakly regular GRS is confluent. That is, i f g --9" gl (i = 1,2), then there is an h

such that gl -.9" h (i = 1,2). •

3.15 DEFINITION. Let g be a graph and F be a set of disjoint redexes of g. A development of I r is a

reduction sequence in which the redex reduced at each step is a residual, by the preceding steps of the

sequence, of a member of F. A complete development of F is a development of F , at the end of which

there remain no residuals of members of F. •

3.16 PROPOSITION. Every complete development of a finite set of pairwise disjoint redexes F is finite, in

fact, its length is bounded by the number of redexes in Y. •

3.17 PROPOSITION. Let F b e a set of redexes of a graph g. Every finite complete development o f f e n d s

with the same graph (up to isomorphism). This graph is:

GC((g +I1 RI +~ "'" +:Ri)[fl(nl) := n'll-"Lf~"(ni):=n7)
where the redexes whose residuals are reduced in the complete development are A s = O~l,R1),...,z~i =

~,R i). •

Note that since we allow infinite graphs, a set of redexes F as in the last two propositions may be

infinite. Nevertheless, it may have a finite complete development, ff rewriting of some members of I r

causes all but finitely many members of F to be erased.

4. Tree rewri t ing.

In order to study the relationship between term rewriting and graph rewriting, we define the notion of

tree rewriting. This is a formalisafion of conventional term rewriting within the framework of our

definitions of graph rewriting.

4.1 DEFINITION. (i) A tree rewrite rule is a graph rewrite rule (g,n,n') such that gin is a tree.

For a set of tree rewrite rules R, the relation "*tR of tree rewriting with respect to R is defined by:

tt "*tR t2 ¢~ for some graph g, t t "-'~R g and U(g) = t 2

0:1) A tree rewrite system (TreeRS) over F is a pair (T,R) where R is a set of tree rewrite rules and T is

a set of trees over F closed under -*tR" A term rewrite system (TRS) is a TreeRS, all of whose trees are

finite.

When t 1 reduces to t 2 by tree rewriting of a redex A, we write t 1 ---)t a t2, or t 1 -">t t2 when we do not

wish to indicate the identity of the redex. •

152

Tree rewrite systems differ from conventional term rewrite systems in two ways. Firstly, infinite trees

are allowed. We need to handle infinite trees, since they are produced by the unravelling of cyclic graphs.

We need to handle cyclic graphs because some implementors of graph rewriting use them, and we do not

want to limit the scope of this paper unnecessarily. Secondly, the set of trees of a TreeRS may be any set of

trees over the given function symbols which is closed under tree rewriting. This is for the same reason as

was explained above for GRSs.

If for each rule (g,n,n') in the rule-set, g is finite and acyclic, the set of all finite trees generated by the

function symbols will be closed under tree rewriting. This is true for those rules resulting from term rewrite

rules by our standard representation. Thus the conventional notion of a TRS is included in ours.

4.2 DEFINITION. Let t, tl,.., q be trees, and nl,...,n i be distinct nodes of t. We define t[nl:=tl,...,ni:=t i] to

be the tree whose nodes are

(i) all paths of t which do not include any of nl,..., ~, and

(ii) every path obtained by taking a path p of t, which ends at nj (l_<j_<i) and contains no other

occurrence of n 1...n i, and replacing the last node of p by any path of tj.

For any of these paths p, the label of p is the label of the last node in p, in whichever of t, q,... t i that

came from. The successors function is defined similarly. •

The results concerning disjointness, regularity, and confluence which we proved for graph rewriting all

have versions for tree rewriting. Again we omit proofs. We also have the following:

4.3 PROPOSITION. Unravelling can be postponed. That is, i f t l --9 t t 2 --9 t t 3, then there are graphs g and

g" such that

(1) t 2 = U(g) and t I --~ g (by graph rewriting)

(2) g ~ g' and t~ "~*t U(g'). •

5. Relations between tree and graph rewriting.

In this section we prove our principal result: for weakly regular rule-systems, graph rewriting is a

sound and complete implementation of term rewriting.

5.1 DEFINITION. l e t (T,R) be a TreeRS.

(i) L(T,R), the lifting of this system, is the GRS whose set of graphs is

L(T) = {g I U(g)aT}, and whose rule set is R (but now interpreted as graph rewrite rules). It is trivial to

verify that L(T) is closed under ~ l t .

(ii) A graphical term rewrite system (GTRS) is a GRS of the form L(T,R), where (T,R) is a term

rewrite system.

(i~) A GRS (G,R) is acyclic if every member of G is acyclic. •

When (T,R) is a term rewrite system, L(T,R) represents its graphical implementation. There are two

fundamental properties it must have to be a correct implementation, which we now define.

5.2 DEFINITION. (i) A TreeRS (T,R) is called graph-reducible ff for every graph g in L(T), if t is a normal

form of U(g) in (T,R), then there is a normal form g' of g in L(T,R) such that U(g') = t, and if U(g) has no

153

normal form in (T,R), then g has no normal form in L(T,R).

(ii) A GRS (G,R) is tree-reducible if there is a TreeRS (T,R) such that (G,R) = L(T,R), and such that

if g' is a normal form of g in (G,R), then U(g') is a normal form of U(g) in if ,R), and if g has no normal

form in (G,R), then U(g) has no normal form in (T,R). •

L(T,R) is the graphical implementation of (T,R). Tree-reducibility of L(T,R) expresses soundness:

every result which is obtainable by graph rewriting in L(T,R) is also obtainable by tree rewriting in (T,R).

Graph-reducibility of (T,R) expresses completeness: every resuk which is obtainable by tree rewriting is

also obtainable by graph rewriting. We shall see that every GTRS is tree-reducible, and every weakly

regular TRS is graph-redncible. Not all GRSs, even those of the form L(T,R), are tree-reducible, nor is

every TreeRS graph-reducible, as the following examples show.

5.3 EXAMPLE. Tree reducibility can fail when there are cyclic graphs. Consider the term rewrite rule A(x)

--~ B(x), represented graphically by:

.1_

A cyc~c graph may contain a single redex with respect to this rule, while its unravelling contains infinitely

many:

O ~ O
A B

A B

A B

5.4 EXAMPLE. The following TreeRS is not graph-reducible:

T: trees over {A,D,0,1,2}, with the following arities: A is binary, D is unary, and 0, 1, and 2

are nullary.

R: A(1,2) --> 0; 1 -¢ 2; 2 --¢ 1; D(x) --* A(x,x).

For a counterexample, consider the following tree rewriting sequence:

1 i 1
In the graph rewriting system we have:

D - - ~ A ~ , ~

1 1

1 2

A ~ A ~ A .,-,,,-.~%~

2 1 2

In this example, the sharing of (gee) subrerms in the graph world has excluded from the graph world ce~ain

rewrite sequences of the tree world. Distinct subterms of A(1,1) correspond to the same subgraph of

A(x:l,x), forcing synchronized rewriting of siblings, which makes the normal form inaccessible.

5.5 DEFINITION.

(i) Redexes A = ((g,n,n'),f) and A' = ((g',m,m'),f) in a graph h are siblings if hlf(n) =t htf(m).

(ii) For a redex A = ((U(g),n,n'),f) of a tree U(g) we define ug(A) to be the redex ((g,n,n'),ug.f) of g.

154

(iii) For a redex A of a graph g, the set of redexes A' of U(g) such that ug(A') = A is denoted by

ug-l(A). For a set of redexes F of a graph g, ug-l(F) denotes L.) { ug-l(A ') I A' ¢ F }.

(iv) A redex A of a graph G is acyclic if ug-l(A) is finite. •

5.6 PROPOSITION. Let g --~ g" by rewriting of an acyclic redex A. Then U(g) -9" t U(g') by complete

development Of Ug'l(A). For any redex A" of g, weakly disjoint from A, Ug'I(A'//A) = ug'l(A')//ug'l(z~). •

5.7 PROPOSITION. Let g --o * g ' by a complete development of a set F of disjoint acyclic redexes of g whose

associated rewrite rules are acyclic. Then U(g) ~*t U(g ') by a complete development of uJ(19. •

5.8 DEFINITION. (i) In a weakly regular GRS, the relation of Gross-Knuth reduction, notation _+OK, is

defined as follows

g _..~OK g, ¢=> g ..** g, by complete development of the set of all redexes of g.

(ii) In a weakly regular TreeRS we define Gross-Knuth reduction by

t --->GK t t' ¢:~ t ---)*t t' by complete development of the set of all redexes of t. •

5.9 PROPOSITION. Let (TIC) be a weakly regular TRS. Then L(T,R) is weakly regular. Let g and g' be

graphs in L(T) such that g ._.~CK g,. Then U(g) __~K U(g'). •

5.10 PROPOSITION. If every graph in L(T) is acyclie, then L(TIC) is tree-reducible. In particular, a

graphical term rewrite system is tree-reducible. •

5.11 PROPOSITION. For any TreeRS (TIC) and any graph g in L(T), g is a normal form of L(T,R) iff U(g)

is a normal form of (TIC). •

Thus in a graphical term rewrite system L(T,R), everything which can happen can also happen in the

term rewrite system, and all the normal forms are the same. Graph-reducibility may fail, however, since it

may be that for some graph g, U(g) has a normal form but g does not.

5.12 THEOREM. Every weakly regular TRS is graph-reducible.

PROOF. Let (T,R) be a weakly regular TRS. Let g be a graph of L(T,R) such that U(g) has a normal form.

Proposition 5.7 relates the Gross-Knuth reduction sequences for g and U(g) in the following way.
g . _ _ ~ K ~ ~ . . .

U(g) ~ t ~ " " "

It is a standard result that for regular TRSs, Gross-Knuth reduction is normalising (Klop [1980]), and the

proof carries over immediately to weakly regular TreeRSs. Therefore the bottom line of the diagram

terminates with some tree U(g') in normal form such that g reduces to g' in L(T,R). Therefore g' is a

normal form of g, and (T,R) is graph-reducible. •

5.13 NON-LEFT-LINEARITY.

We shall now discuss non-left-linearity, and indicate why we excluded non-left-linear TRSs from

consideration. In term rewriting theory, for a term to match a non-linear left-hand side, the subterms

corresponding to all the occurrences of a repeated variable must be identical.

Our method of using empty nodes to represent the variables of term rewrite rules suggests a very

different semantics for non-left-linear rules. Our representation of a term rule A(x,x) ~ B would be

155

(n:A(x:A_,x), n, x). This will only match a subgraph of the form a:A(b: b). That is, the subgraphs

matched by the repeated variable must be not merely textually equal, but identical - the very same nodes. If

one is implementing graph rewriting as a computational mechanism in its own right, rather than considering

it merely as an optimisation of term rewriting, then this form of non-lefl-linearity may be useful. However,

it is not the same as non-left-linearity for term rules.

To introduce a concept more akin to the non-left-linearity of term rules, we could use variables in

graphs, just as for terms, instead of empty nodes. A meaning must then be chosen for the matching of a

graph A(Varl,Varl) where Varl is a variable symbol, occurring at two different nodes. Two possibilities

natumUy suggest themselves. The subgraphs rooted at nodes matched by the same variable may be required

to be equivalent, or they may only be required to be tree-equivalent. The latter definition is closer to the

term rewriting concept.

When a variable occurs twice or more on the left-hand side of a rule, there is also a problem of deciding

which of the subgraphs matched by it is referred to by its occurrences on the right-hand side. One method

would he to cause those subgraphs to be first coalesced, replacing the equivalence or tree-equivalence which

the matching detected by pointer equality. This tecbaaique may be useful in implementing logic

programming languages, where non-linearity is much more commonly used than in functional term

rewriting. Further investigation of the matter is outside the scope of the present paper.

Lastly, we note that although some term rewriting languages, such as SASL (Turner [1979b]) and

Miranda (Turner [1986]), allow non-left-linear rules, they generally interpret the implied equality test neither

as textual equality, nor as poInter equality, but as the equality operator of the language (although pointer

equality may be used as an optimisation). In these languages, any program containing non-left-linear rules

can be transformed to one which does not.

6. Normalising Strategies.

In this section we define the notion of an evaluation strategy in a general setting which includes term

and graph rewrite systems. We then study the relationships between strategies for term rewrite systems and

for the corresponding graph systems.

6.1 DEFINITION. (i) An abstract reduction system (ARS) is a pair (0 , 4) , where O is a set of objects and

is a binary relation on O. This notion abstracts from term and graph rewrite systems. The transitive

reflexive closure of ~ is denoted by --¢°.

(ii) An element x of an ARS is a normal form (nO if for no y does one have x--~y.

(iii) An element x has a normal form if x--+* y and y is a normal form.

(iv) A reduction sequence of an ARS is a sequence x0--+x 1 --+...--¢x~. The length of this sequence is n.

A sequence of length 0 is empty. []

6.2 DEFINITION. (i) Given an ARS (O,---~), a strategy for this system is a function S which takes each xe O

to a set S(x) of nonempty finite reduction sequences, each beginning with x. Note that S can be empty.

(ii) S is deterministic if, for all x, S(x) contains at most one element.

(iii)S is a one-step strategy (or 1-strategy) if for every x in O, every member of S(x) has length 1.

(iv) Write x--~ s y ff S(x) contains a reduction sequence ending with y. By abuse of notation, we may

write x---r s y to denote some particular but unspecified member of S(x).

156

(v) An S-sequence is a reduction sequence of the form Xo--~ s x 1 "-~s x2 -~s

(vi) S is normalising if for all x having a normal form any sequence

x0"°s xl "~s x2-'~s
must eventually terminate with a normal form. m

6.3 DEFINITION. (i) Let S be a strategy of an ARS (O,--o). Quasi-S is the strategy defined by:

quasi-S(x) = {x ---)* x' ---)s y l x' in O}.

Thus a quasi-S path is an S-path diluted with arbitrary reduction steps.

(ii) A strategy S is hypernormatising if quasi-S is normatising. I

A 1-strategy for a TreeRS or GRS can be specified as a function which takes the objects of the system

to some subset of its redexes. This will be done from now on.

6.4 DEFINITION. Let S be a 1-strategy for a TreeRS (T,R). The strategy S L for the lifted graph rewrite

system L(T,R) is defined by SL(g) = ug(S(U(g)), l

For 1-strategies on TreeRSs, this is a natural definition of lifting. For multi-step strategies, it is less

clear how to define a lifting, and we do not do so in this paper.

Although a 1-strategy for a TreeRS may be normalising, its lifting may not be. This may be because

the lifting of the TreeRS does not preserve normal forms (e.g. as in example 5.4), or for more subtle

reasons, such as in the following example.

6.5 EXAMPLE. Consider the following TreeRS:

Function symbols: A (binary), B, I, 2 (nultary).

Rules: 1 ---) 2, 2 ~ 1, A(x,y) ~ B.

By stipulating that A is binary and B, I, and 2 are nullary, we mean, as discussed following definitions 3.7

and 4.1, that trees not conforming to these arities are not included in the system. Define a strategy S as

follows (where the redexes chosen by S are boldfaced):

A(1,1) -+ A(2,1) A(2,2) -+ A(2,1)

A(x,y) ~ B, if neither of the preceding cases applies

S takes the tree A(1,1) to normal form B in two steps. S L takes the graph A(x:l,x) to A(x:2,x) and back

again in an infinite loop.

The next theorem shows that if a 1-strategy S for a TreeRS is hypernormalising, then S L is

hypernormalising for the corresponding GRS.

6.6 THEOREM. Let (T,R) be a TreeRS and let S be a 1-strategy for it. Let (G,R') be the lifting of (T,R). If

S is hypernormalising then S L is hypernormalising.
PROOF. Assume S is hypernormalising. Let g be a graph in G having a normal form, and consider a

quasi-S L reduction sequence starting from g. By proposition 5.7 and the definition of S L, we can construct

the following diagram, where the top line is the quasi-S L reduction sequence:
S L SL SL

g ~ g ' ~ [gl ~ gl " - - - - ' ~ g 2 ~ . g 2 ~ " "

S ~ t ~ U(g') ~ U(g I) - ~ t ~ U(g~) ~ U(g z) --~ tz---I~ U(g~) ~ . . °

Since g has a normal form, so does U(g), so since quasi-S is normalising, the bottom line must stop at

some point, with a normal form of U(g). Therefore the top line also stops, and must do so with a graph

157

which unravels to the normal form in the bottom line. []

6.7 EXAMPLE. The converse does not hotd. If S L is hypernormalising, S need not be. Consider the

following TRS.

Function symbols: A (binary), B (nullary)

Rules: A(x,y) ~ B A(x,y) ~ A(x,x)

Every non-normal form of this system has the form A(a,13) for some terms a and [3. Let S be the strategy:

A(cq3) ~ s A(a,a) (if a ~ 13)
A(a,a) --'~s B

The first SL-Ste p in any quasi-SL-sequence will produce either a graph of the form A(x:a,x) or the normal

form B. In the former case, whatever extra steps are then inserted, the result can only be either another term

of the same form or B. In the former case, the next SL-Ste p will reach B. Therefore S L is

hypernormalising. However, S is not hypernormalising. A counterexample is provided by the term

A(A(B,B),B). An infinite quasi-S sequence beginning with this term is:

A(A(B,B),B) "+s A(A(B,B),A(B,B)) -+ A(A(B,B),B) "-)s A(A(B,B),A(B,B)) ---) ...

6.8 COROLLARY. l f a TreeRS (T,R) has a hypernormalising 1-strategy then it is graph reducible.

PROOF. By theorem 6.5 the lifting (G,R) of the TreeRS has a normalising strategy. Now assume U(g) = t.

Suppose g has no nf. Then the S L path of g is infinite. This gives, by the construction of 6.6, an infinite

quasi-S-path of t, hence t has no normal form. []

An application of this result is that strongly sequential TRSs (in the sense of Huet and IAvy [1979]) are

graph reducible. This follows from their theorem that the 1-strategy which chooses any needed redex is

hypemormalising.

The condition that a strategy be hypemormalising is unnecessarily strong. Inspection of the proofs of

the preceding theorem and corollary shows that the following weaker concept suffices.

6.9 DEFINITION. (i) Let S be a 1-strategy of a TreeRS (T,R). Then sib-S is the strategy defined by:

sib-S(x) = { x --*s Y "** z I the sequence y ---~* z consists of siblings of S(x)}.

That is, a sib-S path is an S-path diluted with arbitrary sib-steps from the reduction relation.

(ii) A strategy S is sib-normalising if sib-S is normalising. []

6.10 THEOREM. Let (T,R) be a TreeRS and let S be a 1-strategy for it. Let (G,R') be the lifting of (T,R). If

S is sib-normalising then S L is sib-normalising and (T,R) is graph-reducible.

PROOF. Immediate from the proofs of theorem 6.6 and corollary 6.8. []

7. Conclus ion.

Graph rewriting is an efficient way to perform term rewriting. We have shown:

1. Soundness: for all TRSs, graph rewriting cannot give incorrect results.

2. Completeness: for weakly regular TRSs, graph rewriting gives all results.

3. Many normalising strategies (the hypernormalising, or even the sib-normalising ones) on terms can

be lifted to graphs to yield normalising strategies there. In particular, for strongly sequential term

rewrite systems, the strategy of contracting needed redexes can be rifted to graphs.

158

We have also g iven counterexamples i l lustrating incompleteness for non-weakly regular TRSs and for

Iiftings of non-sib-normalising strategies.

References.

Barendregt, H.P.
[1984] The Lambda Calculus: its Syntax and Semantics (revised edition), North-Holland, Amsterdam.

Barendragt, H.P,, M.CJD, van Eekelen, Ja~.W. Glauert, LR. Kennaway, MJ. Plasmeijer and M.R. Sleep
[1986] Term graph rewriting, Report 87, Department of Computer Science, University of Nijmegen, and also as Report

SYS-C87-01, School of Information Systems, University of East Anglia.
[1987] Towards an intermediate language based on graph rewriting, these proceedings.

van den Broek, P.M. and G.F. van der Hoeven
[1986] Combinatorgraph reduction and the Church-Rosser theorem, preprint INF-86-15, Department of Informatics,

Twente University of Technology.
Ehrig, H.

[i979] Introduction to the algebraic theory of graph grammars, in: Graph grammars and their Applications in Computer
Science and Biology, ed. V. Claus, H. Ehrig, and Ga~ozenberg. Lecture notes in Computer Science 73, Springer,
Berlin, 1-69.

Glauert, J.R.W., J.R. Kermaway and M.R. Sleep
[1987] Category theoretic concepts of g r~h rewriling and garbage collection, in preparation, School of Information

Systems, Ufdversity of East Anglia.
Huet, G. and l.~vy, JJ.

[1979] Call-by-need computations in non-ambiguous term rewriting systems, Report 359, IRIA-Laboria, B.P. 105,
78150 Le Che~ey, France.

Kermaway, J2,.
[1984] An outline of some results of Staples on optimal reduction orders in replacement systems, Report CSA/19/1984,

School of Information Systems, University of East Anglia, Norwich, England.
Klop, J.W.

[1980] Combinatory Reduction Systems, Mathematical Centre Tracts n.127, Mathematical Centre, Kmislaan 4t3, 1098
SJ Amsterdam.

Raouh, J.C.
[1984] On graph rewritings, Theor. Comput. Sci. 32, 1-24.

Peyton Jones, S.L.
[t987} The Implementation of Functional Languages, Prentice-Hall, London, to appear.

Staples, J.
[1980a] Computation on graph-like expressions, Theor. Comput. Sci. i0, 171-185.
[1980b] Optimal evaluations of graph-like expressions, Theor. Comput. Sci. 10, 297-316.
[1980c] Speeding up subtree replacement systems, Theor. Comput. ScL 11, 39-47.

Turner, D.A.
[1979a] A new implem~ta~on technique for applicative languages, in: Software: Practice and Experience 9, 31-49.
[1979b] SASL Language Manual, "combinators" version, University of SL Andrews, U.K.
[1986] Miranda System Manual, Research Software Ltd., 1986.

Wadsworth, C2.
[1971] Semantics mad Pragmatics of the Lambda Calculus, D.Phil. thesis, Programming Research Group, Oxford

University.

