
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/17257

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16107875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/17257

86

5

LEAN: AN INTERMEDIATE LANGUAGE

BASED ON GRAPH REWRITING

H.P. Barendregt2, M.C.J.D. van Eekelen2, J.R.W. Glauert1,

J.R. Kennaway1, M.J. Plasmeijer2 and M.R. Sleep1.

1School of Information Systems, University of East Anglia, Norwich, Norfolk NR4 7TJ, U.K.,

partially supported by the U.K. ALVEY project,
2Computing Science Department, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands,

partially supported by the Dutch Parallel Reduction Machine Project.

Abstract.

Lean is an experimental language for specifying computations in terms of graph rewriting. It is
based on an alternative to Term Rewriting Systems (TRS) in which the terms are replaced by
graphs. Such a Graph Rewriting System (GRS) consists of a set of graph rewrite rules which
specify how a graph may be rewritten. Besides supporting functional programming, Lean also
describes imperative constructs and allows the manipulation of cyclic graphs. Programs may exhibit
non-determinism as well as parallelism. In particular, Lean can serve as an intermediate language
between declarative languages and machine architectures, both sequential and parallel. This paper is a
revised version of Barendregt et al. (1987b) which was presented at the ESPRIT, PARLE conference
in Eindhoven, The Netherlands, June 1987.

5 . 1 INTRODUCTION

Emerging technologies (VLSI, wafer-scale integration), new machine architectures, new language
proposals and new implementation methods (Vegdahl (1984)) have inspired the computer science
community to consider new models of computation. Several of these developments have little in
common with the familiar Turing machine model. It is our belief that in order to be able to compare
these developments, it is necessary to have a novel computational model that integrates graph
manipulation, rewriting, and imperative overwriting. In this paper we present Lean, an experimental
language based on such a model. In our approach we have extended Term Rewriting Systems
(O'Donnell (1985), Klop (1985)) to a model of general graph rewriting. Such a model will make it
possible to reason about programs, to prove correctness, and to port programs to different
machines.

A Lean computation is specified by an initial graph and a set of rules used to rewrite the graph to its
final result. The rules contain graph patterns that may match some part of the graph. If the graph
matches a rule it can be rewritten according to the specification in that rule. This specification makes

Lean: an Intermediate Language based on Graph Rewriting 87

it possible first to construct an additional graph structure and then link it into the existing graph by
redirecting arcs.

Lean programs may be non-deterministic. The semantics also allows parallel evaluation where
candidate rewrites do not interfere. There are few restrictions on Lean graphs (cycles are allowed
and even disconnected graphs). Lean can easily describe functional graph rewriting in which only
the root of the subgraph matching a pattern may be overwritten. Through non-root overwrites and
use of global nodeids in disconnected patterns imperative features are also available.

In this paper we first introduce Lean informally. Then we show how a Lean program can be
transformed to a program in canonical form with the same meaning. The semantics of Lean is
explained using this canonical form. The semantics adopted generalises Staples’ model of graph
rewriting (Staples (1980a)), allowing, for example, multiple redirections. A formal description of
the graph rewriting model used in this paper can be found in Barendregt et al. (1987a), as it applies
to the special case of purely declarative term rewriting. After explaining the semantics we give some
program examples to illustrate the power of Lean. The syntax of Lean and the canonical form is
given in the appendix.

5 . 2 GENERAL DESCRIPTION OF LEAN

5 . 2 . 1 LEAN GRAPHS

The object that is manipulated in Lean is a directed graph called the data graph. When there is no
confusion, the data graph is simply called the graph. Each node in the graph has an unique identifier
associated with it (the node identifier or nodeid). Furthermore a node consists of a symbol and a
possibly empty sequence of nodeids which define arcs to nodes in the graph. We do not assume that
symbols have fixed arities. The data graph is a closed graph, that is, it contains no variables. It may
be cyclic and may have disjoint components. This class of data graphs is, abstractly, identical to that
discussed in Barendregt et al. (1987a). We refer to that paper for a formal discussion of the precise
connection between graphs and terms.

Programming with pictures is rather inconvenient so we have chosen a linear notation for graphs. In
this notation we use brackets to indicate tree structure and repeated nodeids to express sharing, as
shown in the examples below. Nodeids are prefixed with the character ‘@’. Symbols begin with an
upper-case character.

88 Lean: an Intermediate Language based on Graph Rewriting

 Lean notation: Graphical equivalent:

Hd (Cons 0 Nil);

Hd

Cons

Nil0

@Cyclic: F @Cyclic; @Cyclic: F

Plus @Child @Child,
 @Child: Fac 1000;

Plus

 @Child:Fac

1000

Tuple 1 -3 5 -7 11;

Tuple

 1 -3 5 -7 11

Fac 1000,
@Trace: TRUE;

Fac

1000

@Trace: True

5 . 2 . 2 LEAN PROGRAMS

A Lean program consists of a set of rewrite rules including a start rule. A rewrite rule specifies a
possible transformation of a given graph. The initial graph is not specified in a Lean program (see
also section 5.4.2).

The left-hand-side of a rewrite rule consists of a Lean graph which is called a redex pattern. The
right-hand-side consists of a (possibly empty) Lean graph called the contractum pattern and,
optionally, a set of redirections. The patterns may be disconnected graphs and they are open, that is,
they may contain nodeid variables. These are denoted by identifiers starting with a lower-case letter.
Nodeids of the data graph may also occur in the rules. These are called global nodeids. When there
can be no confusion with the nodeids in the data graph, we sometimes refer to the nodeid variables
and the global nodeids in the rules just as nodeids. Here is an example program:

Lean: an Intermediate Language based on Graph Rewriting 89

Hd (Cons a b) → a ;

Fac 0 → 1 |
Fac n:INT → *I n (Fac (-I n 1)) ;

F (F x) → x ;

Start → Fac (Hd (Cons 1000 Nil)) ;

The first symbol in a redex pattern is called the function symbol. Rule alternatives starting with the
same function symbol are collected together forming a rule. The alternatives of a rule are separated
by a ‘|’. Note that function symbols may also occur at other positions than the head of the pattern. A
symbol which does not occur at the head of any pattern in the program is called a constructor
symbol.

5 . 2 . 3 REWRITING THE DATA GRAPH

The initial graph of a Lean program is rewritten to a final form by a sequence of applications of
individual rewrite rules. A rule can only be applied if its redex pattern matches a subgraph of the data
graph. A redex pattern in general consists of variables and symbols. An instance of a redex pattern is
a subgraph of the data graph, such that there is a mapping from the pattern to that subgraph which
preserves the node structure and is the identity on constants. This mapping is also called a match.
The subgraph which matches a redex pattern is called a redex (reducible expression) for the rule
concerned.

We will use the following rules which have a well-known meaning as a running example to illustrate several
concepts of Lean.

Add Zero z → z | (1)
Add (Succ a) z → Succ (Add a z) ; (2)

Now assume that we have the following data graph:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) ;

There are two redexes:

 a z
Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2

 a z
Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2

90 Lean: an Intermediate Language based on Graph Rewriting

In graphical form this is:

data graph redex pattern data graph redex pattern

 Add

Succ

Zero

 Add

ZeroSucc

Succ

Zero

 Add

Succ

 a

z

 Add

Succ

Zero

 Add

Succ

Zero

 Add

Succ

 a

zZeroSucc

Note that there may be several rules for which there are redexes in the graph. A rule may match
several redexes and a redex can match several rules. For instance, in the example above there is only
one rule which matches any part of the data graph, but it matches two redexes. In general, therefore,
there are many rewriting sequences for a given graph.

Evaluation of a Lean program is controlled by a rewriting strategy. In its most general form:

1. It decides which rewritings to perform.
2. It decides when to perform no further rewritings. The graph at this point is said to be in strategy

normal form, or briefly, in normal form.
3. It specifies what part of the resulting graph is the outcome of the computation.

For the purposes of graphical implementations of functional languages, strategies need only consider
the subgraph of nodes accessible from the data root, for the purposes of identifying both redexes
and terminal states. However, more general applications of Lean may not wish to be constrained in
this way: for example, graphical rewrite rules may be used to represent non-terminating behaviours
of practical interest such as operating systems.

The choices made by a rewriting strategy may affect the efficiency of rewriting, as well as its
termination properties. We have not imposed an a priori restriction on the reduction strategy with
which a Lean program should be evaluated, e.g. the rules are ordered but the strategy may or may
not make use of this ordering. In the future we aim to incorporate facilities into Lean to permit
programmer control of strategy where necessary. this would enable the user to guide the evaluation.

Lean: an Intermediate Language based on Graph Rewriting 91

Once the strategy has chosen a particular redex and rule, rewriting is performed. The first step is to
create an instantiation of the graph pattern specified on the right-hand-side of the chosen rule. This
instantiation is called the contractum. In general this contractum has links to the original graph since
references to nodeid variables from the left-hand-side are linked to the corresponding nodes
identified during matching. A new data graph is finally constructed by redirecting some arcs from
the original graph to the contractum. In most cases all arcs to the root node of the redex are
redirected to the root node of the contractum as in Staples’ model (Staples (1980a)). This has an
effect similar to “overwriting” the root of the redex with the root of the contractum. This is what
happens when no redirections are given explicitly in the rule. Explicit redirection of arbitrary nodes
is also possible.

The process of performing one rewrite step is often called a reduction. The graph after one reduction
is called the result of the reduction. Initially, the data graph contains a node with the symbol Start.
Hence, the rewriting process can begin with matching the start rule and hereafter rewriting is
performed repeatedly until the strategy has transformed the graph to one which it deems to be in
normal form.

Barendregt et al. (1987a) gives a formal discussion of how graph rewrite rules with root-only
redirection model term rewriting, and proves certain soundness and completeness results. The
definition of rewriting given in that paper only covers rules of this form, but the extension of the
formal description to the general cases of multiple and/or non-root redirection is straightforward.

The data graph of the previous example can be rewritten in the following way:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) → (2)
Succ (Add Zero (Add (Succ (Succ Zero)) Zero)) → (1)
Succ (Add (Succ (Succ Zero)) Zero) → (2)
Succ (Succ (Add (Succ Zero) Zero)) → (2)
Succ (Succ (Succ (Add Zero Zero))) → (1)
Succ (Succ (Succ Zero))

Note that in this example the graph was actually a tree, and remained a tree throughout. There was
no difference with a Term Rewriting System. In the following example there is a data graph in
which parts are shared. Rewriting the shared part will reduce the number of rewriting steps
compared to an equivalent Term Rewriting System.

Add @X @X, @X: Add (Succ Zero) Zero → (2)
Add @X @X, @X: Succ (Add Zero Zero) → (1)
Add @X @X, @X: Succ Zero → (2)
Succ (Add @Z @X), @X: Succ @Z, @Z: Zero → (1)
Succ (Succ Zero)

5 . 2 . 4 PREDEFINED DELTA RULES

For practical reasons it is convenient that rules for performing arithmetic on primitive types
(numbers, characters etc.) are predefined and efficiently implemented. In Lean a number of basic

92 Lean: an Intermediate Language based on Graph Rewriting

constructors for primitive types such as INT, REAL and CHAR are predefined. Representatives of
these types can be denoted: for instance 5 (an integer), 5.0 (a real), '5' (a character). Basic functions,
called delta rules, are predefined on these basic types.

The actual implementation of a representative of a basic type is hidden for the Lean programmer. It is
possible to denote a representative, pass a representative to a function or delta-rule and check
whether or not an argument is of a certain type in the redex pattern.

Nfib 0 → 1 |
Nfib 1 → 1 |
Nfib n:INT → ++I (+I (Nfib (-I n 1)) (Nfib (-I n 2))) ;

In this example ‘0’ is an abbreviation of INT ... which is a denotation for some hidden
representation of the number 0 (analogue for ‘1’ and ‘2’), ‘+I’, ‘-I’ and ‘++I’ are function symbols
for predefined delta rules defined on these representations. Hence, an integer consists of the unary
constructor INT and an unknown representation. Note that in general one is allowed to specify just
the constructor in the redex pattern of a rule. The value can be passed to a function by passing the
corresponding nodeid (n in the example).

These predefined rules are however not strictly necessary. For instance, one could define numbers
as: INT Zero to denote 0, INT (Succ Zero) to denote 1, INT (Succ (Succ Zero)) to denote 2
etc., and define a function for doing addition

PlusI (INT x) (INT y) → INT (Add x y) ;

where Add is our running example. This kind of definition makes it possible to do arithmetic in a
convenient way. However, for an efficient implementation one would probably not choose such a
Peano-like representation of numbers, but prefer to use the integer and real representation and the
arithmetic available on the computer.

5 . 3 TRANSLATING TO CANONICAL FORM

Lean contains syntactic sugar intended to make programs easier to read and write. Explaining the
semantics of Lean will be done with a form with all syntactic sugar removed known as Canonical
Lean. In this section we show how a Lean program can be transformed to its canonical form.
Canonical Lean programs are valid Lean programs and are unaffected by this translation procedure.
Every Lean program can be seen as a shorthand for its canonical form. Note that this section is all
about syntax. The semantics of the canonical form are explained in section 5.4.

In the canonical form every node has a definition and definitions are not nested. Every redirection,
including any redirection of the root, is done explicitly and in patterns all arguments of constructors
are specified. In this canonical form a rewrite rule has the following syntax:

Graph → [Graph,] Redirections

Lean: an Intermediate Language based on Graph Rewriting 93

The first Graph is the redex pattern. The second is the optional contractum pattern. Each pattern is
represented as a list of node definitions of the form:

Nodeid: Symbol { Nodeid }

Braces mean zero or more occurrences. The initial Nodeid identifies the node, Symbol is some
function or constructor symbol and the sequence of nodeids identifies zero or more child nodes.
Occurrences of nodeids before a colon are defining occurrences. Every nodeid must have at most
one defining occurrence within a rule. Defining occurrences of global nodeids are allowed on the
left-hand-side only. Within a rule a nodeid which appears on the right-hand-side must either have a
definition on the right-hand-side or it must also appear on the left-hand-side.

5 . 3 . 1 ADD EXPLICIT NODEIDS AND FLATTEN

In the canonical form all nodes have explicit nodeids and there are no nested node definitions. Hence
in each rule we have to introduce a new unique nodeid variable for every node that does not yet have
one. Every nested node definition in the rule is then replaced by an application of the corresponding
nodeid variable, and the definitions are moved to the outer level. Applying this transformation to our
running example gives:

Add y z,
y: Zero → z |
Add y z,
y: Succ a → m: Succ n,

n: Add a z ;

All arguments of symbols (such as Add and ucc) have now become nodeids and brackets are no
longer needed.

5 . 3 . 2 SPECIFY THE ARGUMENTS OF CONSTRUCTORS

In Lean one may write the following function which checks to see if a list is empty:

IsNil n,
n: Nil → t: TRUE |
IsNil n,
n: Cons → t: FALSE ;

Cons is a binary constructor symbol, but in Lean one may omit the specification of the arguments if
they are not used elsewhere in the rule. This is not allowed in the canonical form hence the
arguments are made explicit by introducing two new nodeid variables. Transformation of the
example above will give:

IsNil n,
n: Nil → t: TRUE |
IsNil n,
n: Cons y z → t: FALSE ;

94 Lean: an Intermediate Language based on Graph Rewriting

5 . 3 . 3 MAKE ROOT REDIRECTIONS EXPLICIT

The meaning of both rules in the running example is that the root of the pattern is redirected to the
root of the contractum. Redirections are always made explicit in the canonical form. If no
redirections are specified explicitly, a redirection is introduced to redirect the redex root to the
contractum root. Note that if the right-hand-side of a rule consists only of a nodeid, the root of the
redex is redirected to this nodeid. The running example with explicit redirections now becomes:

x: Add y z,
y: Zero → x := z |
x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m ;

5 . 4 SEMANTICS OF LEAN

5 . 4 . 1 GRAPH TERMINOLOGY

- Let F be a set of symbols and N be a set of nodes.
- Further, let C be a function (the contents function) from N to F × N*.
- Then C specifies a Lean Graph over F and N.
- If node n has contents F n1 n2 ... nk we say the node contains symbol F and arguments

n1,n2,..., nk.
- There is a distinguished node in the graph which is the root of the graph.

In standard graph theory, a Lean graph is a form of directed graph in which each node is labelled
with a symbol, and its set of out-arcs is given an ordering. In Lean nodes are denoted by their
names, i.e. their nodeids. The canonical form defined in section 5.3 can be regarded as a tabulation
of the contents function. We will explain the semantics of Lean using this canonical form.

5 . 4 . 2 THE INITIAL GRAPH

The initial graph is not specified in a program. It always takes the following form:

@DataRoot: Graph @StartNode @GlobId1 @GlobId2 ... @GlobIdm,
@StartNode: Start,
@GlobId1: Initial,
@GlobId2: Initial,
...
@GlobIdm: Initial;

The root of the initial graph contains the nodeid of the start node which initially contains the symbol
Start. The root node will always contain the root of the graph to be rewritten. Furthermore the root
node contains all global nodeids addressed in the Lean rules. The corresponding nodes are initialised
with the symbol Initial.

Lean: an Intermediate Language based on Graph Rewriting 95

5 . 4 . 3 OPERATIONAL SEMANTICS FOR REWRITING

Let G be a Lean graph, and R the ordered set of rewrite rules. A reduction option, or redop, of G is
a triple T which consists of a redex g, a rule r and a match μ. The match μ is a mapping from the
nodeids of the redex pattern p to the nodeids of the graph G such that for every nodeid x of p, if
Cp(x) = s x1 x2 ... xn then Cg(μ(x)) = s μ(x1) μ(x2) ... μ(xn) . That is, μ preserves node
structure. Note that μ maps multiple occurrences of nodeids in a redex pattern to one and the same
node in the graph. A redop introduces an available choice for rewriting the graph. A redop that is
chosen is called a rewrite of the graph. The process of performing a rewrite is also called rewriting.

The contractum pattern may contain nodeid variables which are not present in the redex pattern.
These correspond to the identifiers of new nodes to be introduced during rewriting. The mapping μ'
is introduced taking as its domain the set of nodeid variables which only appear in the contractum
pattern. Each of these is mapped to a distinct, new, nodeid which does not appear in G or R.

The domains of μ and μ' are distinct, but every nodeid variable in the contractum pattern is in the
domain of one or the other. In order to compute the result of a rewrite one applies the mapping μ"
formed by combining μ and μ', to the contractum pattern resulting in the contractum.

 Finally the new graph is constructed by taking the union of the old graph and the contractum,
replacing nodeids in this union (and in the case that global nodeids are mentioned also in the rules)
as specified by the redirections in the rewrite rule of the chosen redop.

Hence rewriting involves a number of steps:

1. A redop is chosen by the rewriting strategy. This gives us a redex in the graph G, a rule which
specifies how to rewrite the redex and a mapping μ.

2. The contractum is constructed in the following way.
- invent new nodeids (not present in G or R) for each variable found only in the contractum

pattern. This mapping is called μ'.
- apply μ", the combination of μ and μ', to the contractum pattern of the rule yielding the

contractum graph C. Note that the contractum pattern, and hence C, may be empty.

3. The new graph G' is constructed by taking the union of G and C.

4. Each redirection in a rule takes the form O := N. In terms of the syntactic representation, this is
performed by substituting N for every applied occurrence of O in the graph G' and in the rules
R. The definition of O still remains. The nodeids O and N are determined by applying μ" to the
left-hand-side and the right-hand-side of the redirection. All redirections specified in the rule are
done in parallel. This results in the new graph G".

96 Lean: an Intermediate Language based on Graph Rewriting

The strategy will start with a rewrite rule which matches the symbol Start in the initial graph. When
a computation terminates, its outcome is that part of the final graph which is accessible from the
root. Thus a “garbage collection” is assumed to be performed at the end of the computation only. A
real implementation may optimise this by collecting nodes earlier, if it can predict that so doing will
not affect the final outcome. Which nodes can be collected earlier will in general depend on the rule-
set of the program and the computation strategy being used. Note that before the computation has
terminated, nodes which are inaccessible from the root may yet have an effect on the final outcome,
so they cannot necessarily be considered garbage. For certain strategies and rule-sets they will be,
but inaccessibility is not in itself the definition of garbage.

Redirection of global nodeids has as a consequence that all references to the original global nodeid
have to be changed. An efficient implementation of redirection can be obtained by overwriting nodes
and/or using indirection nodes. Also references in the rewrite rules to global nodeids have to be
redirected. Hence global nodeids can be viewed as global variables (they have a global scope),
where nodeid variables are local variables (they have a meaning only within a single rule). If global
nodeids are redirected, also references to them in the rewrite rules change accordingly.

5 . 4 . 4 A SMALL EXAMPLE

We return to our running example with a small initial graph and see how rewriting proceeds. The
rewriting strategy we choose will rewrite until the data graph contains no redexes only examining
nodes accessible from the @Dataroot.

x: Add y z,
y: Zero → x := z | (1)
x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m ; (2)

x: Start → m: Add n o,
n: Succ o,
o: Zero,
x := m ; (3)

Initially we have the following graph G:

@DataRoot : Graph @StartNode,
@StartNode: Start;

We now follow the rewrite steps.

1. The start node is the only redex matching rule (3). The mapping is trivial: μ(x) = @StartNode
and the redex in the graph is:

@StartNode: Start;

Lean: an Intermediate Language based on Graph Rewriting 97

2. The variables found only in the contractum pattern are m, n, and o. We invent a new nodeid for
each of these, defining a mapping μ '(m) = @A, μ '(n) = @B, μ '(o) = @C. Applying μ", the
combination of μ and μ', to the contractum pattern gives the contractum C:

@A: Add @B @C,
@B: Succ @C,
@C: Zero;

In fact, for this example, μ is not used in making the contractum, as the contractum pattern does
not refer to x.

3. The union of C and G is G':

@DataRoot : Graph @StartNode,
@StartNode: Start,
@A: Add @B @C,
@B: Succ @C,
@C: Zero;

4. We have to redirect μ"(x) = @StartNode to μ"(m) = @A. All applied occurrences of @StartNode
will be replaced by occurrences of @A. The graph G" after redirecting is:

@DataRoot : Graph @A,
@StartNode: Start,
@A: Add @B @C,
@B: Succ @C,
@C: Zero;

This completes one rewrite. The start node will not be examined by the strategy anymore, as it is
inaccessible from @DataRoot. Therefore it can be considered as garbage and it will be thrown away.
The strategy will not stop yet because the graph still contains a redex accessible from the
@DataRoot.

1. The strategy will choose the only redop. It matches rule 2: μ(x) = @A, μ(y) = @B, μ(z) = @C,
μ(a) = @C;

2. Invent new nodeids and map the variables as follows: μ'(m) = @D, μ'(n) = @E. The contractum
is:

@D: Succ @E,
@E: Add @C @C;

3. The union of the graph and the contractum is:

@DataRoot: Graph @A,
@A: Add @B @C,
@B: Succ @C,
@C: Zero,
@D: Succ @E,
@E: Add @C @C;

4. We have to redirect μ"(x) = @A to μ"(m) = @D. Then after removing garbage the graph is:

98 Lean: an Intermediate Language based on Graph Rewriting

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @E,
@E: Add @C @C;

It is now clear how this process may continue: @E is a redex and it matches rule 1: μ(x) = @E, μ(y) =
@C, μ(z) = @C. The strategy chooses this redop, there is no new contractum graph but just a single
redirection which takes μ"(x) = @E to μ"(z) = @C yielding the expected normal form:

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @C;

5 . 5 SOME LEAN PROGRAMS

5 . 5 . 1 MERGING LISTS

The following Lean rules can merge two ordered lists of integers (without duplicated elements) into
a single ordered list (without duplicated elements).

Merge Nil Nil → Nil |
Merge f:Cons Nil → f |
Merge Nil s:Cons → s |
Merge f:(Cons a b)

s:(Cons c d) → IF (<I a c)
(Cons a (Merge b s))
(IF (=I a c)

(Merge f d)
(Cons c (Merge f d))) ;

=I and IF are predefined delta rules with the obvious semantics. Note that the right-hand-side of the
last rule uses an application of the argument as a whole as well as its decomposition.

5 . 5 . 2 HIGHER ORDER FUNCTIONS, CURRYING

In this example we show how higher-order functions are treated in Lean, by giving the familiar
definition of the function Map.

Map f Nil → Nil | (1)
Map f (Cons a b) → Cons (Ap f a) (Map f b) ; (2)
Ap (*I a) b → *I a b ; (3)
Start → Map (*I 2) (Cons 3 (Cons 4 Nil)) ; (4)

This can be rewritten, for example, in the following way:

Start → (4)
Map (*I 2) (Cons 3 (Cons 4 Nil)) → (2)
Cons (Ap @L 3) (Map @L (Cons 4 Nil)), @L:*I 2 → (3)
Cons (*I 2 3) (Map @L (Cons 4 Nil)), @L:*I 2 → (*I)
Cons 6 (Map @L (Cons 4 Nil)), @L:*I 2 → (2)
Cons 6 (Cons (Ap @L 4) (Map @L Nil)), @L:*I 2 → (3)
Cons 6 (Cons (*I 2 4) (Map @L Nil)), @L:*I 2 → (*I)
Cons 6 (Cons 8 (Map @L Nil)), @L:*I 2 → (1)
Cons 6 (Cons 8 Nil)

Lean: an Intermediate Language based on Graph Rewriting 99

Rule (3) of this example will rewrite (Ap (*I 2) 3) to its uncurried form (*I 2 3) which makes
multiplication possible. One will need such an “uncurry” rule for every function which is used in a
curried manner. Note that during rewriting the node @L:(*I 2) is shared. In this case sharing only
saves space, but not computation.

5 . 5 . 3 GRAPHS WITH CYCLES

The following example is a solution for the Hamming problem: it computes an ordered list of all
numbers of the form 2n3m, with n, m ≥ 0. We use the map and merge functions of the previous
examples.

Ham → Cons 1 (Merge (Map (*I 2) Ham) (Map (*I 3) Ham)) ;

A more efficient solution to this problem can be obtained by means of creating cyclic sharing in the
contractum making heavy use of computation already done. This cyclic solution has a polynomial
complexity where the previous one has an exponential complexity. The new definition is:

x: Ham → Cons 1 (Merge (Map (*I 2) x) (Map (*I 3) x)) ;

5 . 5 . 4 COPYING A TREE STRUCTURE

This example is very straightforward if the structure of tree nodes is known. Here is a program
which copies a binary tree structure.

Copy (Bin left right) → Bin (Copy left) (Copy right) |
Copy Leaf → Leaf ;

In the present version of Lean it is not possible to copy an arbitrary unknown data structure. We
hope to support more general solutions in a future version of Lean.

5 . 5 . 5 COUNTING SPECIFIC REWRITES VIA GLOBAL ASSIGNMENT

r: Hd (Cons a b),
@HdCount: Total n:INT → newvalue: Total (++I n),

r := a,
@HdCount := newvalue ;

r: Start → nr: Hd (Cons 1 (Cons 2 Nil)),
initvalue: Total 0,
r := nr,
@HdCount := initvalue ;

We are dealing with disconnected graphs and patterns in this example. The global nodeid @HdCount
in the graph is addressed in a rewrite rule. The integer value in @HdCount will be increased each time
a head of a list is taken. Global nodeids and arbitrary redirections in rewrite rules make other styles
of programming possible involving globals and side effects. Here, the retention of the canonical
notation forces the user to make his text inelegant. Perhaps a useful danger signal, both to reader and
writer?

100 Lean: an Intermediate Language based on Graph Rewriting

5 . 5 . 6 UNIFICATION USING REDIRECTION

This program implements a simple unification algorithm. It operates on representations of two types,
returning “cannot unify” in case of failure. The types are contructed from three basic types I, B and
Var and a composing constructor Com. Different type variables are represented by distinct nodes.
Repeated type variables are represented by shared nodes. References to such a shared node are taken
to be references to the same type variable.

r: Start → Unify t1 t2 r,
t1: Com i t1,
t2: Com i (Com i t2),
i: I ;

 Unify x x r → x |
o: Unify t1:(Com x y) t2:(Com p q) r

→ n: Com (Unify x p r) (Unify y q r),
o := n, t1 := n, t2 := n |

o: Unify t1:Var t2 r → o := t2, t1 := t2 |
o: Unify t1 t2:Var r → o := t1, t2 := t1 |
 Unify t1:Com t2:I r → n: "cannot unify", r := n |
 Unify t1:Com t2:B r → n: "cannot unify", r := n |
 Unify t1:I t2:Com r → n: "cannot unify", r := n |
 Unify t1:B t2:Com r → n: "cannot unify", r := n |
 Unify t1:I t2:B r → n: "cannot unify", r := n |
 Unify t1:B t2:I r → n: "cannot unify", r := n ;

Of course this does not solve the general unification problem, but it gives an idea of the power of
redirection and how it might be used to solve this kind of problems.

5 . 5 . 7 COMBINATORY LOGIC

Here we show the Lean equivalent of a well-known TRS using explicit application: combinatory
logic.

Ap (Ap (Ap S a) b) c) → Ap (Ap a c) (Ap b c) |
Ap (Ap K a) b) → a ;

Start → Ap (Ap (Ap S (Ap K K)) (Ap S K)) (Ap (Ap K K) K)) ;

5 . 6 FUTURE WORK

Lean is the result of collaboration between two research groups: the Dutch Parallel Reduction
Machine (DPRM) group at Nijmegen and the Declarative Alvey Compiler Target Language (DACTL)
group at UEA. Recognising the current instability of emerging languages and architectures, both
groups wish to identify a computational model appropriate to a new generation rewriting model of
computing. The DPRM group has developed a subset of Lean, called Clean (Brus et al. (1987)), for
the support of purely functional languages. Dactl0 (Glauert et al. (1987c)) predates Lean, and
includes some concepts not present in Lean. In the future, our groups plan to continue to collaborate
on further developing and refining the computational model and the Lean language based on it. It is
intended that later versions of Lean and Dactl will converge.

Lean: an Intermediate Language based on Graph Rewriting 101

Because rewriting strategies have a critical influence on efficiency and outcome, future versions of
Lean aim to offer the programmer explicit control. Strategies should be based mainly on local
information so that concurrent evaluation is not constrained. One approach is to employ fine grain
control annotations so that a rule may nominate which of the nodes it creates should be considered as
roots for future redexes. Dactl0 adopts this approach. Its main advantage is that a simple execution
model is obtained. Another approach is to have a high level specification of strategies and a
formalism for combining strategies during evaluation. This approach holds out promise for global
reasoning (van Eekelen & Plasmeijer (1986)). We believe that the way forward should involve a
careful combination of these approaches. At the high level formally specified strategy information
should be used, allowing analysis and transformation of programs using abstract interpretation
techniques. Correctness preserving translation tools would then convert such a program into a form
using a small set of well-designed control primitives suitable for efficient parallel implementation.

Besides strategies, there are several other concepts that may be incorporated in Lean in the near
future. These include: more general typing; annotations to allow compiler optimisations; interfacing
with the outside world; modules and separate compilation facilities; support for unification.

5 . 7 CONCLUSIONS

Lean is an experimental language for specifying computations in terms of graph rewriting. It is very
powerful since there are few restrictions on the graph that is transformed and the transformations
that can be performed.

The graph rewriting model underlying Lean is of independent interest as a general model of
computation for parallel architectures. It includes as special cases, more restricted systems, such as
Graph Rewriting Systems which model Term Rewriting Systems. For these GRS's certain
soundness and completeness results are shown in Barendregt et al. (1987a).

Lean is designed to be a useful intermediate language for those language implementations which rely
on graph rewriting. Compilers targeted to Lean are being implemented for functional languages. An
interpreter for Lean is available (Jansen (1987)) which allows mixing of several reduction strategies.
A compiler for a restricted subset of Lean (Clean) is running on a Vax750 (Unix) (Brus et al.
(1987)). The performance is encouraging.

The design of Lean has heavily influenced the design of Dactl1 (Glauert et al. (1987d), Glauert et al.
(1987a)), which the UK Flagship machine (Watson & Watson (1987)) supports. Apart from some
surface syntax differences which reflect local prejudices, Dactl1 is essentially Lean PLUS fine grain
control markings MINUS global terms. The reduction relation is identical: all that Dactl1 control
markings do is to prohibit certain reduction sequences.

102 Lean: an Intermediate Language based on Graph Rewriting

5 . 8 ACKNOWLEDGEMENTS

We would like to thank Jan-Willem Klop of the Centre for Mathematics and Computer Science in
Amsterdam for his explanations and Nic Holt of ICL for his valuable comments.

5 . A APPENDIX: SYNTAX

LeanProgram = {Rule}.
Rule = RuleAlt {'|' RuleAlt} ';'.
RuleAlt = Graph '->' Graph [',' Redirections]

| Graph '->' Redirections.
Graph = [Nodeid ':'] Node {',' NodeDefinition}.
NodeDefinition = Nodeid ':' Node .
Node = Symbol {Term}.
Term = Nodeid

| [Nodeid ':'] Symbol
| [Nodeid ':'] '(' Node ')'.

Redirections = Redirection {',' Redirection}
| Nodeid {',' Redirection}.

Redirection = Nodeid ':=' Nodeid.

For the canonical form of Lean replace the following rules in the syntax above:

RuleAlt = Graph '->' [Graph ','] Redirections.
Graph = NodeDefinition {',' NodeDefinition}.
Term = Nodeid.
Redirections = Redirection {',' Redirection}.

