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A bstract

An intracellular A T P -dependen t  C a2' pum ping  m echanism , distinct from mitochondrial C a 2 accum ulation , 
was identified within tilapia gill cells. Cell suspensions treated with 0 .003%  saponin, which selectively 
perm eabilizes  the p lasm a m em brane ,  were used to characterize the C a 2' sequestering m echanism s as 
endoplasm ic  reticulum and m itochondria  and to determ ine the effect o f  Z n 2' on their C a2  ̂ storing activity. O f  
the C a 2  ̂ taken up by the endoplasm ic  reticulum, 80%  was released by IP, ( 10 jimol 1 '). The C a 2' pum p o f  the 
endoplasm ic  reticulum was 2.5 times less sensitive to Z n 2‘ ( IC S() = 0.05 nmol 1 ') than was the mitochondrial 
uptake m echan ism  (IC 50 = 0.20 nmol 1 ’). The results indicate that C a2’ is stored predom inantly  within the 
endoplasm ic reticulum at 0.1 | im ol I-1 and that this storing capacity  is seriously attenuated by nanom olar  
concentra tions  Z n 2".

Introduction

Branchial epithelial cells are involved in both ion 
and gas exchange but are still s im ilar to other cells 
in that they maintain  resting levels o f  intracellular 
C a 2' o f  about 100 nmol 1 1 (95 ± 15 nmol 1 1 ; Li et 
al. 1995). In cells in general a wide variety o f  ac ­
tions are regulated by fluctuations in free C a2’. 
N eurohum oral  substances can induce rapid, tran­
sient increases in cytosolic C a 2* either by s tim ula t­
ing C a2+ influx via receptor operated  C a2* channels  
in the cell m em brane  and/or by releasing C a2' from 
intracellular stores through inos i to l-1,4,5-triphos- 
phate (IP .)  activated channels (Rasm ussen et al.
1986; Berridge 1993).

In addition to serving a role as second m essen ­
ger, C a 2i is also transferred transepithelially  during

branchial calcium absorption associated with the 
ca lc ium  hom eostasis  o f  the freshwater fish (re­
v iewed by Fenwick 1989). It is well established 
that this uptake occurs via the ionocytes -  m ito­
chondria  rich cells -  in the gills and that the up­
take occurs transcellularly  (Perry and Flik 1988; 
M cC orm ick  et al. 1992; Marshall et al. 1995). This 
means that during transepithelial transport the 
transported calcium could affect the cytosolic C a2' 
concentration. The current model for active C a2? 
absorption involves passive entry across the apical 
m em brane , diffusion through the cytosol, and 
ATP- and N a f-driven efflux across the basolateral 
p lasma m em brane (Flik et al. 1993; Verbost et al. 
1994b). And little is known concern ing  the state 
o f  C a2+ on its route through the cytosol. Active 
C a2+ sequestration by intracellular organelles and
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buffering  by calcium  binding proteins occurs in 
rat intestinal ep ithelium  (W asserm an  and Fullmer 
1982; R u b in o ff  and Nellans 1985; Van Corven et 
al 1987; Feher et al 1992) and this m echan ism  may 
be generally  involved in the intracellular handling  
o f  C a2 during  transit.

The current model for m am m alian  epithelial 
cells suggests  that the C a 2' pum ps  in the p lasm a 
m em brane  and endoplasm ic  re ticulum  (ER) are o f  
equal im portance for m ain ta in ing  low intracellular 
C a 2' (Van Os et al. 1988). On the o ther hand, the 
m itochondria  appear  to perform  little if  any role in 
m ain ta in ing  low intracellular C a 2’ concentra tion  
(Nicholls  and A kerm an  1982; Van Os et al. 1988) 
because they do not have a sufficiently high aff in ­
ity for C a 2’. The m itochondria  do have a large ca ­
pacity to store C a 2+, but this can result in activation 
o f  various m itochondrial enzym es  essential for the 
regulation o f  A TP production  (D enton  and M cC o r­
m ack 1985).

The purpose o f  this study was: a) to test if  in fish 
gill cells regulate intracellular C a 2’ in the sam e 
way as m am m alian  kidney cells and enterocytes 
and b) to determ ine the effects o f  zinc (Zn) on the 
C a 2" sequestration by the m itochondria l and non- 
m itochondrial C a2 stores. There  are two reasons 
for s tudying Z n 2'. O ne is to learn about the m ech a­
nism o f  toxicity o f  this environm enta l  pollutant 
and, more important for this study, Z n :+ can be 
used as a tool for s tudying in tracellu lar C a2  ̂as well 
as C a2' transport. W aterborne  Z n 2' inhibits the 
branchial uptake o f  C a 2, (Spry and W ood 1985; 
H ogstrand et al. 1994, 1995a). There is evidence to 
suggest that the inhibition by Z n 2' is caused by the 
inhibition o f  basolateral C a2’ transport m echan ism  
after entrance o f  Z n 2" into the cytosol. C oncen tra ­
tions o f  Z n 2' > 100 pmol 1 1 reduced the A TP-de- 
pendent C a2* transport in the basolateral m e m ­
branes (H ogstrand  et al. 1995b), the putative dr iv ­
ing force uptake o f  C a 2" (Flik et al. 19 8 5 a . b ). H ow ­
ever, noth ing is know n about the effects o f  Z n 2' on 
the sequestration o f  C a 2’ by intracellular stores. 
W e set out to determ ine these effects with the idea

M aterials and methods

Holding conditions of/is/i

that a d is turbance o f  the intracellular C a- '  h o m eo ­
stasis could also partly explain the reduction in 
C a 2 uptake by Z n 2~.

Male freshw ater  tilapia from laboratory stock, 
w eigh ing  around 150 g, w ere held in 100 1 tanks. 
The aquaria  were supplied  with running  tap w ater 
(0.7 mm ol 1 1 Ca, 25°C) under a pho toperiod  o f  12 
h o f  light a l ternating  with 12 h o f  darkness. A n i­
mals were fed T ro u v i tR fish pellets (T rouw  & Co., 
Putten, The N etherlands) at the rate o f  1.5% body 
w eigh t per day.

Preparation o f  penneabilized gill cells

Gill cells were isolated as described by Verbost et 
al. (1994a). In brief, the branchial ep ithelium  is 
scraped from the underly ing  carti laginous fila­
ments using the edge o f  a glass slide. The scrapings 
w ere  then incubated  for 20 m in  at room tem p era ­
ture in a lysis m ed ium  (9 parts 0.17 M NH^Cl, 1 
part 0.17 M Tris/HCl pH 7.4; Yust et al. 1976) 
w hich  produced both blood cell lysis and tissue 
fractionation. Cells were suspended  at the beg in ­
ning and resuspended  at the end o f  this incubation 
period by passing them  5 times through a 10 ml 
pipet (3 m m  bore diameter). The lysis was optimal 
w hen  2.5 m g tissue scrapings were lysed in 10 ml 
lys is-m edium  (around 3.25 x 10' cells per 10 ml). 
The cells were filtered through 100 p m  mesh nylon 
gauze to rem ove persistent cell clusters. The result­
ing suspension  was centrifuged  at 150 g for 5 min 
at 4°C in a sw ing out rotor (B S4402/A  rotor, 
Heraeus). The cells w ere resuspended  in lysis m e ­
dium ( 1 mg o f  protein per ml) conta in ing  135 m M  
KC1, 1.0 mM  M g C l2, 1.2 K H , P 0 4, 10 mM  Hepes 
pH 7.4, and 30 jug ml 1 saponin and incubated for 5 
min at 37°C. The isolated, penneab il ized  gill cells 
were w ashed  twice in the final uptake m edium  (see 
below). Saponin treatm ent yielded 50 to 60%  leaky 
cells. The degree o f  leakiness was estim ated by 
uptake o f  trypan blue (0.5%). After saponin  treat­
ment cells were pelleted, w ashed  and resuspended 
to a concentra tion  o f  4 m g ml 1 in a C a2+ uptake 
m edium  contain ing  (in mmol 1 ') 120 KC1, 1 
MgCl^, 1.2 K H , P 0 4. 5 succinate, 5 pyruvate, 0.5 
EG TA , 0.5 H E È D T A , 0.5 N TA , 25 H epes/K O H  
(pH 7.1). Cells were used on the day o f  isolation. 
The protein content o f  the cell preparations was
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determ ined  with a com m ercia l  reagent kit (Bio- 
Rad) with BSA as a reference. This preparation 
com prises  a m ixture  o f  gill epithelial cells with 
ionocytes (about 10%) and respiratory cells 
(around 90%).

Isolation o f  miciéosomes

M icrosom es (the cell m em brane  fraction mainly 
consis ting  o f  endoplasm ic  reticulum m em branes)  
were isolated as described by Vercesi et al. ( 1978). 
First, gill cells were isolated followed by ery thro­
cyte lysis as described above (preparation o f  
penneab il ized  gill cells). The following steps were 
all perform ed at 4°C. The cells were collected by 
centrifugation (5 min, 220 x g), resuspended in su­
crose m edium  conta in ing  (in mmol 1 ') 250 su ­
crose, 0.55 EG TA , 3 Hepes/Tris  (pH 7.4) and sub ­
sequently  hom ogen ized  in a douncer  with loose fit­
ting pestle (Braun M elsungen) and the hom ogenate  
was centrifuged (5 min, 600 x g). The resulting 
supernatant was centrifuged at 10,000 x g ( i o  
min). The pellet was resuspended in sucrose m e­
dium (as above) and centrifuged at 12,000 x g ( 10 
min). This final pellet was resuspended in C a 2 up­
take m edium  (sam e as given under preparation o f  
penneab il ized  gill cells) to which mitochondrial 
inhibitors w ere added (1 mmol I-1 N aN , and 5 |ig  
m l-1 o ligom ycin-B). M icrosom es were used for the 
C a 2‘ uptake studies on the day o f  isolation.

Ca2 uptake in penneabilized cells and micro- 
some s

A T P-dependen t 45C a2 uptake was m easured  as d e ­
scribed by Van Corven et al. ( 1987) and Van de Put 
et al. ( 1991 ). The assay was p e rfonned  at 28°C in 
the C a 2 uptake m edium  (described above) but 
which also contained 10 units ml-1 creatine kinase, 
10 m m ol I-1) creatine phosphate , 1 mmol 1 1 ATP 
and 185 KBq ml 1 4:>C a2'. The free M g 2* concentra­
tion (0.8 mmol I-1) and the free C a2' concentration 
(as indicated) were calculated according to 
Schoenmakers et al. (1992). ^ C a 2' uptake was 
started by adding penneab il ized  cells or m icro ­
som es to p rew arm ed uptake medium. At certain 
time intervals 100 \á\ aliquots (40 jig protein) were 
quenched  in 1 ml o f  ice-cold stop solution con ta in ­
ing (in m m ol I"1) 150 KC1, 1 M gC l,,  1 EG TA , 20

H epes/K O H  (pH 7.1) and the suspension was fil­
tered im m ediate ly  (Schle icher  and Schiill, GF92). 
The filters were then w ashed  twice with 2 ml o f  
stop solution, d issolved in scintillation fluid and 
counted  for radioactivity. Total C a2* uptake was 
calculated from the radioactivity retained by the 
filter and is expressed as nmol mg 1 protein.

Ruthenium  red, an inhibitor o f  m itochondrial 
C a 2 uptake (M oore  1971 ), was used (20 |dmol 1 '). 
With other mitochondrial inhibitors as o ligom ycin- 
B (5 jimol 1 ’) and sodium  azide (5 mmol 1 ') very 
s im ilar  results were obtained (results not shown). 
Thapsigargin (1 j j i u o I 1 ') was used to inhibit the 
C a2* uptake by the endoplasm ic  reticulum (Thas- 
trup et al. 1990; H ovem adsen  and Bers 1993). The 
inhibitors wrere added to the penneab il ized  cells 10 
to 20 min before the start o f  the assay.

Data presentation

Data are expressed as the mean ± SEM. For statisti­
cal analysis  o f  the results a repeated measures 
A N O V A  was applied (3 way; Zn*Ca*time). To 
com pare  individual m eans a two way A N O V A  on 
the data from the 2 Ca concentra tions was used. 
Differences were considered to be significant at p
< 0 .0 5 .

Results

Ca: uptake in penneabilized cells

The time dependence  o f  C a2 uptake by permea- 
bilized gill cells at 0.1 (¿mol 1 1 is shown in Figure
1. C a2' uptake is s timulated by ATP, reaching a 
steady state level between 6 and 8 min. The uptake 
was not affected by a blocker o f  mitochondrial up­
take (ruthenium red or o ligom ycin-B  and sodium 
azide). Thapsigargin , a specific inhibitor o f  ER 
C a2'-A T Pases ,  inhibited almost all A TP-dependent 
C a2+ uptake. A TP-independent binding com prises  
about 30%  o f  the total uptake.

The time dependence o f  C a2 uptake at 1.0 jimol
1 1 C a2' is shown in Figure 2. For the duration o f  the 
experim ent (8 min) the uptake was linear with time 
and was almost com plete ly  inhibited by the m ito ­
chondrial inhibitor ru thenium  red. The uptake in 
the presence o f  mitochondrial inhibitors was fur-



302

0.1 ¿¿mol.!-1 C a2*

— • —  co n tro l 

- - V - -  - A T P  

- - B - -  E R -inh ib . 

- - A —  M R — inhib.

O 1 2 3 4 5 6 7 8 9

tim e  (m in)

Fig. I. T im e-dependent  C a 2* uptake by penneabil ized  tilapia 
gill cells at a free C a 2* concentration o f  O.l jimol I '. Solid 
circles represent uptake in the presence o f  A TP (control); this 
was com pared  with C a 2’ uptake in the presence o f  thapsigargin 
( I | im ol I 1 ) or ruthenium red (20 j imol 1 ') and that the absence 
o f  A TP (-ATP). The inset show s the A TP-dependen t  C a 2* 
uptake (same curves after subtraction o f  the -A TP values). 
Mean values o f  4 experim ents  ± SEM  are shown.

tlier reduced by the “ ER inhibitor" thapsigargin  to 
the level when A TP is om itted  (this line is exactly 
the same as that for the -A T P  condition in Fig. 2, 
and w as left out for clarify).

Effects o f  IP ? on the uptake o f  Ca2* in permea- 
bilized cells and microsomes

From the C a 2< taken up A T P-dependen tly  during a 
10 min period by penneab il ized  cells, about 80%  is 
released within 1 m in  following addition o f  IP, (10 
jimol 1 '): from 2.85 ± 0.36 to 0.57 ± 0.22 nmol 
C a : ‘ per mg protein in penneab il ized  cells (Fig. 
3A). Heparin (10 jimol 1 ') com plete ly  prevented 
the IP3 effect (control); this w as done by adding a 
mixture  o f  IP, and heparin. With the m icrosom es a 
similar result was obtained. There  was an im m ed i­
ate release o f  C a 2* following addition o f  IP, (64%, 
from 2.8 ± 0.2 to 1.0 ± 0.1 nmol C a : * per m g p ro ­
tein m icrosom es) which could be b locked by 
heparin (by adding IP, and heparin together  =  con ­
trol; Fig. 3B).

c
<D
O
i _Cl
OD
E
(0
O

o
E
c

1.0 ¿xmol.r1 Ca2
90  
80

® 70
o
fc. 60  
c? 50

« 40  
O

30
o
E 20
c

10 

0

0 1 2 3 4 5 6 7 8 9

tim e (min)

Fig. 2. T im e-dependen t  C a 2’ uptake by penneab i l ized  tilapia 
gill cclls at a free C a 2+ concentration o f  I.O fimol I"1. Solid 
circles represent uptake in the presence o f  A TP (control);  this 
was com pared  with C a 2* uptake in the presence o f  thapsigargin 
(1 (imol I '1) or ruthenium red (20 fimol I*1) and that in the 
absence o f  A TP (-ATP). The  inset shows the A TP-dependen t  
C a 2+ uptake (sam e c u n  es after subtraction o f  the -A TP values). 
Mean values o f  5 experim ents  ± SEM  are shown.

Effects o f  Zn2 on Ca2' uptake in penneabilized 
cells at 0.1 pM  Ca2+

There was not significant d ifference betw een  the 
A T P-dependen t  uptake in the presence o f  0.1 and 
0.5 nmol l"1 Z n 2* com pared  to the control (Fig. 4). 
With 1 nmol I-1 Z n 2' in the m edium , uptake was 
inhibited significantly  at all time points. The up­
take w as linear with time for up to 2 min and app ly ­
ing the initial A T P-dependen t  uptake rates from 1 
min time points an IC .() value o f  0.50 nmol I"1 Z n 2! 
was calculated.

Effects o f  Zn2 ' on Ca2 uptake in penneabilized 
cells at 1.0 pM  Ca2~

The (m itochondria l)  uptake in the presence o f  0.1 
nmol I"1 Z n 2* was not s ignificantly  different from 
the control (Fig. 5). H ow ever, at 0.5 or 1.0 nmol 1 1 
Z n 2* uptake was inhibited at all time points (Fig. 5). 
The uptake w as linear with time for the com plete  
time period in this experim ent (8 min) and c o n ­
firms the classic characteristic  o f  the m itochondria  
as functioning as a calcium sink. From the initial 
A T P-dependen t uptake rates at the 2 min time

A T P - d O C w n c t o o t

T.

contro l

--A  M R— inhib.

__S—  ER-inhib.

--V-- -ATP
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Fig. 3. A. Effccts o f  IP, (added at 10 min, indicated by arrow) or 
a mixture o f  heparin and IP (control) on the release o f  ATP- 
depcndently  stored C a 2* in penneab i l ized  tilapia gill cells. B. 
Effects o f  IP, (added at 10 min, indicated by a n o w )  or a mixture 
o f  heparin and IP (control) on the release o f  ATP-dependently  
stored C a 2* in m icrosom es  from tilapia gill cells.

tim e (min)

Fig. 4. Effects o f  Z n 2' on the A TP-dependent  C a 2' uptake in 
penneabil ized  tilapia gill cells at a free C a 2, concentration o f  
0.1 | imol I representing the uptake by ER. Mean values o f  4 
experiments  ± SEM  are shown.

points an IC .() value o f  0.20 jimol 1 1 Z n 2' was ca l­
culated.

Discussion

O ur results show that in gill cells the ER is o f  m ajor 
im portance for C a2+-sequestration at physiological 
intracellular levels (0.1 jiM). M itochondria  only 
function as C a 2' buffer at high intracellular C a 2* 
levels (around 1 |iM ). This is congruent with the 
current m odels  for C a2+ buffering that are know for 
various cells in higher vertebrates (Joseph et al. 
1983; ICreutter and Rasm ussen  1984). A lthough 
the com plete  kinetics o f  the C a 2 uptake were not 
determ ined, the results dem onstra te  that the aff in­
ity for C a2' o f  the m itochondria  is lower than that 
o f  the ER, but that the capacity o f  the m ito ­
chondrial C a2+ uptake is much higher than that o f  
the ER. Thus, the ER will be more important for 
buffering intracellular C a 2' at normal ce ll-physi­
ological C a 2' levels, com parable ,  in this respect, to 
the function o f  the C a 2+ pum p in the p lasm a m e m ­
brane.

The m ax im um  C a2+ release from the intra­
cellular, inositol 1,4 ,5-tr iphosphate(IP3)-sensitive 
C a 2' pool am ounts  to about 80%  o f  the A TP-de- 
pendent, intracellularly stored 45C a2+. The rem ain­
ing 20%  o f  the accum ula ted  4>C a2' is insensitive to 
IP3 and appears to be stored in an IP3-insensitive 
part o f  the ER. The rem aining  activity was not

stored by m itochondria  as the results clearly show 
the absence o f  m itochondrial uptake under these 
test conditions. The fact that the s im ultaneous ad ­
dition o f  the IP, receptor antagonist heparin c o m ­
pletely blocked C a2' release by IP, indicates that 
this release is not an artifact o f  the addition, but is 
really m ediated  by the IP, receptor. In m icrosom es, 
a rough ER m em brane  fraction, the sam e induction 
o f  C a 2+ release by IP, was observed and confirm s 
the ER origin o f  the C a2+. Zinc (Z n 2 ) exerted a 
strong inhibition o f  the Ca-^-uptake by both the ER 
and mitochondria , the mitochondrial uptake being 
2.5 times more sensitive than the uptake by ER. But 
this does not mean that the m itochondria  form an 
earlier target for Z n 2' than the ER because the low 
prevailing C a2' concentration in the cytosol would 
dictate negligible mitochondrial C a 2' uptake under 
these conditions. The situation in which m ito­
chondrial C a2+ uptake exceeds that o f  the ER will 
be close to one w here the cell is dying. This is per­
haps not a very interesting condition from a physi­
ological point o f  view, although the high sensitivity 
o f  the m itochondria  to Z n 2' may be very de tr im en­
tal when cytosolic C a2* is high in the presence of, 
and perhaps because o f  the presence of, Z n 2+.

It is important to note that the m echanism s o f  
C a2* uptake are com plete ly  different for the two 
C a2+ stores. ER utilise a C a2'-pu m p  whereas m ito­
chondria  take C a2+ up via a uniporter driven by the 
proton gradient across the inner m em brane  (A l­
berts et al. 1994). These differences could be the

B. microsomes 0.1 /xm ol.l"’ Ca**

contro l

2 *—-V— O.InM Zn

- a -  0.5nM Zn2*

— -A— I.OnM Zn 2 *
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1.0 ¿tmol.r1 Ca

time (min)

Fig. 5. Effects o f  Z n 2‘ on the A TP-dependent  C a 2’ uptake in 
penneabil ized  tilapia gill cells at a free C a 2' concentration o f  
1.0 pm ol  1 representing the uptake by mitochondria .  Mean 
values o f  4 experim ents  ± SEM  are shown.

basis for the d issim ilar  sensitivity to Z i r  o f  the ER 
and mitochondria .

How can we fit these data into a com plete  picture 
o f  w hat will happen w hen  a fish is exposed  to w ater 
contain ing  Z r r ' ?  At sublethal concentra tions  in the 
m icrom olar  range, Z n 2' impairs the branchial in­
flux o f  C a2 resulting in hypocalcem ia  (Spry and 
W ood 1985). Z n 2+ has 10 times the affinity for 
C a2 -uptake sites than C a 2’ and clearly outcom - 
petes C a 2' (Spry and W ood 1989; Hogstrand et al. 
1994, 1995a). Recent studies indicated that Z n 2 
enters the gill cells (W icklund et al. 1992; H og­
strand et al. 1995b) and this has resulted in the hy­
pothesis  that Z n 2 inhibits transcellu lar C a2"’ up­
take by inhibiting the C a 2 pum p in the basolateral 
m em brane . A similar m echan ism  was suggested 
for the inhibition o f  C a 2' uptake by C d 2’ (V erbos et 
al. 1988, 1989). The effects o f  Z n 2" (free Zn levels 
in a m etal-buffered  assay media) on the basolateral 
C a2' pum p has, to the best o f  our know ledge, only 
been studied in trout (Hogstrand et al. 1995b). 
There, it caused a m ixed inhibition o f  the C a 2+ 
transporter. At 0.5 nmol 1 1 Z n 2\  the affinity was 
reduced 8-fold and the V was decreased by amax J

factor o f  2. The results in this study show that the 
intracellular sequestration o f  C a2" is a putative tar­
get o f  Z n 2' entering the cell in addition to the 
p lasm a m em brane  C a 2*-pump. Inhibition o f  the 
C a 2, sequestration will result in a rise in cytosolic 
C a2* which will in turn lead to a reduction o f  C a 2* 
uptake (Marshall et al. 1995). In this way, the inhi­

bition o f  ER C a 2' pum ps by Z n 2' could  enhance  the 
inhibition o f  the p lasm a m em brane  C a 2' pum p and 
cause a m ore w idespread  C a 2' signal in the cell. It 
should not be forgotten that in this study we 
w orked  with preparations o f  gill epithelial cells, in 
which respiratory cells will p redom inate  by about 
10-fold over ionocytes (m itochondria  rich cells). 
Since the ionocytes are believed to be responsible
for the transcellu lar uptake o f  C a “' (Fenw ick  1989; 
M cC orm ick  et al. 1992; Marshall et al. 1995), it is 
not possible to say that we are only dealing  with 
events in calcium  transporting  cells. This study 
rather suggests  that w aterborne  Z n 2' m ay lead to an 
increase in intracellular C a 2 in gill epithelial cells 
via inhibition o f  C a 2' sequestration by ER (and 
eventually  mitochondria).  In ionocytes  this could 
result in reduced transport o f  C a 2\  For respiratory 
cells nothing is know n at present about the possible 
effects a rise in cytosolic C a 2 could have on cell 
function.
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