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Abstract

Juvenile and mature tilapia {Oreochromis mossambicus) were exposed to a range of sublethal 

copper (Cu) concentrations for 6 days to examine the mechanisms underlying the acclimation 

to the toxic effects of the metal. The study focuses on the gills, the primary target for waterborne 

pollutants. To obtain a comprehensive picture of the branchial acclimation processes operating, 

multiple biochemical and morphological parameters were studied. At all concentrations tested, 

Cu exposure resulted in the accumulation of the metal in mature fish. At 100 and 200 jug Cu I-1 

only, chloride cell proliferation was observed, which was accompanied by an increase in aver

age cell diameter in these groups. Whole body flux measurements in juvenile fish demonstrated 

a decrease in Na influx in fish exposed to 200 jug I'1 Cu, in the absence of an effect on Ca influx. 

Gill N a+/K +-ATPase activity was also decreased in the crude branchial homogenates of the 

mature fish exposed to the highest Cu concentration only, but not in the purified branchial 

vesicle preparations of these fish, which may indicate reactivation of in vivo Cu-inhibited 

ATPase activity during the isolation process. Plasma pH, Na, Cl, K, glucose and ceruloplasmin 

concentrations were also affected in the 200 jug Cu l_l group exclusively. In accordance with the 

gill accumulation data, plasma Cu levels were clearly elevated in all groups exposed to the 

metal. The results underscore the integrated response of the gills to Cu, which, however, does 

not come into play until challenged by relatively high ambient concentrations. These results 

indicate that, in comparison to the Cu-sensitive rainbow trout, tilapia is more Cu-tolerant. The 

most sensitive parameters affected by Cu are gill and plasma metal levels, followed by chloride 

cell number and diameter.
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1. Introduction

Copper (Cu) plays an essential role in cellular metabolism (Prasad, 1984; Cousins, 

1985), but becomes toxic at elevated levels. As in mammals, in most fish the liver is an 

important storage organ for excess Cu (Buck, 1978; Shearer, 1984). However, the 

major difference in Cu toxicity between mammals and fish concerns the uptake from 

the environment, which in fish almost exclusively occurs through the gills (Stagg and 

Shuttleworth, 1982a; Norey et al., 1990; Battaglini et al., 1993). This organ in fish is 

the primary site of toxic insult and considered the key organ when it comes to the 

initiation of compensatory responses (Lauren and McDonald, 1985, 1987). Although 

many studies have been performed into the toxic effects of Cu on gill function 

(McKim et al., 1970; Stagg and Shuttleworth, 1982a,b; Lauren and McDonald, 1985, 

1986, 1987; Reid and McDonald, 1988; Sayer et al., 1991), information regarding 

acclimation of gill function to the metal (the ability to compensate for disturbances of 

the ion homeostasis) is more scarce, and largely limited to one species, Oncorhynchus 

my kiss (reviewed by McDonald and Wood, 1993). Most of the studies cited herein 

investigated one or two parameters of gill function, largely focusing on the chloride 

cells (Stagg and Shuttleworth, 1982a,b; Lauren and McDonald, 1985, 1986; Reid and 

McDonald, 1988). Because acclimation to Cu probably requires an integrated re

sponse involving multiple regulatory mechanisms, we were prompted to investigate 

the effects of Cu in a somewhat broader context, relating data on the accumulation of 

the metal in the gills, clearance of the metal in the blood (plasma Cu and ceruloplas- 

min levels), with biochemical and morphological data on gill function. For this study 

we used Oreochromis mossambicus (tilapia) for several reasons. Firstly, the picture for 

Oncorhynchus my/ciss (McDonald and Wood, 1993) might not be representative for 

other fish species; a possibility underscored by the species differences in adaptive 

strategy to other environmental challenges, such as low pH (Balm and Pottinger, 

1993). Secondly, previous work on tilapia has characterized branchial ion transport 

mechanisms (Flik et al., 1985), and has yielded a variety of in vitro and in vivo 

experimental approaches, which in this species can be applied to small sized speci

mens, thereby allowing the rapid collection of data and the reduction of experimental 

stress factors (Pelgrom et al., 1994). To further limit aspecific experimental influences 

(Pelgrom et al., 1994), fish were exposed to Cu gradually, rather than acutely, and 

were studied after 6 days. It was anticipated that at this time point Cu metabolism will 

have reached a new set point, judged by data from Carbonell and Tarazona (1994). 

Ultimately, the combination of experimental approaches should allow a comprehen

sive discussion into the physiological response of the gills of tilapia to copper.

2. Materials and methods

Fish

Tilapia, Oreochromis mossambicus, were obtained from our laboratory stock. Fish 

were grown and held under artificial freshwater conditions with undetectable Cu 

concentrations (detection level 0.1 fjg I"1). Artificial freshwater consisted of deminer
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alized water supplemented with 1.3 mM N aHC03, 0.5 mM CaCl2, 0.06 mM KC1 and 

0.2 mM MgCl2, at pH 7.8. Composition and preparation of the water was based on 

the EEC instructions for artificial water for use in toxicity studies in fish (EEC Direc

tives 84/449/EEC Annex 5 method cl : Acute toxicity for fish). Water was continuous

ly aerated, filtered and refreshed by means of flow-through. The light/dark regime 

was 12/12 h and the water temperature 26°C. Fish were fed commercial tropical 

fishfood Tetramin™, 2% (dw/ww) of their body weight per day. The Cu content of 

the food was 9.86 ±0.16 //g Cu g“1 (means ± s.e.; n = 10).

Whole body Na and Ca Jinxes
Pilot experiments were performed to determine optimal experimental conditions: 

Cu exposure regime, conditions of the fish (density, size, acclimation period), water 

quality during the flux periods (pH, temperature, nitrate and ammonium concentra

tions), anaesthetic concentration, tracer injection volume, interaction between CaCU 

and Na2C 0 3, peroxide digestion and rinsing of the fish after radiotracer exposure 

(data not shown).

Three days before the start of the experiment, 12 groups of 9 tilapia (weighing 1-2 

g, about 2 months old) were placed randomly in 3.2-1 flux chambers filled with artifi

cial freshwater. Fish were fed daily (2% dw/ww Tetramin™). The food was eaten 

within 1 min. During the acclimation period, the water in the flux chambers was 

continuously aerated and refreshed by means of a flow-through system (flow rate 0.24 

1 h~‘; 16-channel peristaltic pump, Watson Marlow). The exposure period started 

with the connection of each flux chamber to reservoirs filled with artificial freshwater 

each with a well-defined Cu concentration (added as nitrate, Spectrosol, BDH, UK). 

During the first 4 h of the exposure, the flow rate was 0.90 1 h"1, followed by a flow 

rate of 0.24 1 h_l during the rest of the exposure period. Cu concentrations in the 

reservoirs were monitored daily. The Cu concentrations in the flux chambers were 

monitored every hour during the first 6 h of exposure, and at least once a day during 

the rest of the exposure period. The Cu concentrations in the flux chambers were: 

0 (control), 50 (50Cu) and 200 (200Cu) jug Cu I-1. The actual Cu concentrations 

measured did not deviate more than 5% from the nominal Cu concentrations. After 

6 days of Cu exposure, Na+ and Ca2+ influx and efflux were determined by means of 

radiotracers.

For measurement of Na+ and Ca2+ influx, 1.0 MBq l_l 24Na2C 0 3 (IRI, Delft, Neth

erlands) and 0.75 MBq I"14:>CaCl2 (Amersham, UK) were added to the flux chambers. 

24Na2C 0 3 was neutralized to pH 7.5 with equimolar concentrations of hydrochloric 

acid. After 5, 20 and 45 min, water samples for tracer measurement were taken. After 

45 min of tracer exposure, fish were quickly (within 1 min) anaesthetized with phe- 

noxy-ethanol in a final dilution of 1:400. Of each flux chamber, all 9 fish were briefly 

(2 seconds) rinsed in artificial freshwater containing 5mM Ca and 10 mM Na, fol

lowed by a rinse in artificial freshwater. Subsequently, 4 fish were immediately killed 

in dry ice/acetone for determination of whole body Na+ and Ca2+ influx.

To investigate Na+ and Ca2+ efflux, the remaining 5 fish of each flux chamber were 

injected (i.p.) with 0.17 MBq 24Na2C 0 3 (neutralized with HC1 to pH 7.5) and 0.12 

MBq 45CaCl2. Fish were allowed to recover from anaesthesia in freshwater with the
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same Cu concentrations as they were exposed to, and put back in their flux chambers 

containing radiotracer-free artificial freshwater with Cu. Fish recovered from anaes

thesia within 1 min after injection as indicated by a feeding response. The whole 

procedure took less than 5 min per flux chamber. Overnight, the flux chambers were 

continuously refreshed (0.24 1 h"1). During efflux measurement, the water-fiow was 

stopped, and tracer appearance in the water was monitored for 4 h. After this period, 

fish were anaesthetized (phenoxy-ethanol 1:400) and rinsed in artificial freshwater. 

Blood from the caudal vessels was taken by means of heparinized mini-capillaries 

(Hirschmann). After centrifugation (3 min 18 000 g), plasma radiotracer concentra

tion was determined in triplicate for each fish.

24Na in whole fish, plasma and water was immediately determined in a /-counter 

(LKB). After one week (11 times the half-life of 24Na), no 24Na could be detected in 

the samples. Then, scintillation fluid was added to the water and blood samples for 

45Ca determination. The fish were digested with peroxide (35%; 4 times 100 //l) at 

40°C for 3 days, and 1 day at 60°C, and the digests were dissolved in scintillation 

fluid. 4>Ca was determined in water, blood and fish samples by means of a liquid 

scintillation counter (Pharmacia Wallac 1410).

Influx of Ca2+ and Na+ was calculated on the basis of the total body radioactivity 

after 1 h of exposure to 24Na and 4XTa, and the respective mean tracer specific activi

ties in the water. For this calculation we assumed that during the influx period 

no significant backflux from the fish to the water occurred. Efflux of Ca2+ and 

Na+ was calculated from the tracer activities in the water and the specific Ca 

and Na activities in the plasma. In the exposed fish, the plasma concentrations of Ca 

and Na were determined to calculate the specific Ca and Na activities in the plasma. 

The net flux is given as the difference between average influx and efflux in each flux 

chamber.

Experimental design of experiments with mature fish

Six weeks before the start of the experiment four groups of 14 mature (mean weight 

20 g) female tilapia were kept in 80-1 aquaria with continuously filtered and refreshed 

artificial freshwater. The experiment started by connecting (by means of a 16 channel 

peristaltic pump; Watson Marlow) each aquarium to its own reservoir filled with 

artificial freshwater with or without (controls) a well-defined Cu concentration (add

ed as nitrate; spectrosol, BDH, UK). During the first 6 h the flow rate was 4.5 1 h"1, 

followed by a flow rate of 1.5 1 h"1. In this way, the Cu concentrations in the aquaria 

were gradually raised, reaching a plateau after 18 h. Cu concentrations in both stock 

solutions and aquaria were monitored every hour during the first 6 h, and at least 

once a day during the rest of the exposure period. The nominal Cu concentrations in 

the aquaria were 0, 50, 100 and 200 //g I"1, with the actual concentrations deviating 

maximally 5% from nominal concentrations. The exposure period lasted 6 days, and 

feeding was ended one day before sacrifice. At the end of the exposure period, blood 

samples were taken from the caudal blood vessels by means of heparinized capillaries, 

and fish were killed by spinal dissection. Blood cells and plasma were separated by 

centrifugation (3 min 18 000 g). The left opercula were prepared for chloride cell 

counting with DASPEI vital staining (Wendelaar Bonga et al., 1990), and the gill
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arches were prepared for either Cu measurement or plasma membrane isolation. 

Dissection instruments were systematically cleaned with 0.1% H N 03 and alcohol to 

prevent contamination.

Cu measurement
After determination of wet and dry weights, gills, blood cells and plasma were 

destructed with nitric acid (65% H N 0 3 ultrapur, Merck), and stored in 0.2% H N 0 3 

at 4°C until analysis. Water samples were acidified with H N 0 3 to a final concentra

tion of 0.2%. Cu concentrations were determined with a flameless Atomic Absorption 

Spectrometer (AAS, Philips PU 9200) connected to an electrothermal atomizer (Phil

ips PU 9390X).

Isolation of plasma membranes
Plasma membranes of the branchial epithelia were isolated at 4°C as described by 

Flik et al. (1985), with some adjustments. This procedure leads to a good enrichment 

of the Na+/K+-ATPase and Ca2+-ATPase: the vesicles are leaky and the degree of 

mitochondrial contamination is low.

Briefly, the soft tissue of the gills was scraped off with a glass microscope slide, and 

carefully homogenized with a glass-to-glass Dounce homogenizer (10 strokes) in an 

isotonic buffer containing 250 mM sucrose, 12.5 mM NaCl, 5 mM HEPES/TRIS pH 

7.5, 0.1 mM EDTA, 100 U m l"1 aprotinin (Sigma) and 50 U ml-1 heparin. Nuclei and 

cellular debris (pellet Pn) were separated from membrane fractions (supernatant H0) 

by centrifugation for 10 min at 550g(Hereus). After centrifugation of the supernatant 

H0 (50 000 rpm, 30 min; Beckmann Ultracentrifuge, Ti 70 rotor), membranes were 

collected in a fluffy pellet (P,). This pellet was resuspended with a glass-to-glass 

Dounce homogenizer (100 strokes) in an isotonic sucrose buffer containing 250 mM 

sucrose, 5 mM HEPES/TRIS pH 7.5 and 5 mM MgCU. The membrane suspension 

was centrifuged differentially: 10 min at 1000 g followed by 10 min at 9500 g (Sorval 

RC-5B). Finally, the supernatant was centrifuged for 15 min at 20 000 g, resulting in 

the final membrane fraction, pellet P3. These pellets P3 were resuspended by passage 

through a 23-G needle (10 times) in a buffer containing 20 mM HEPES/TRIS pH 7.4, 

1.5 mM MgCl2 and 150 mM KC1 (for Ca2+ transport studies) or 150 mM NaCl (for 

Na+/K+- ATPase studies). Membrane preparations P3 and crude membrane homoge- 

nates H0 were quickly frozen in cold C 0 2/acetone, and used the next day for determi

nation of protein content, protein recovery in the P3 fraction relative to the protein 

content in the H0 fraction, enzyme activity and transport activity.

Na+IK*-ATPase activity
Na+/K+-ATPase activity in the H0 and P3 gill membrane fractions was determined 

by the method described by Flik et al. (1985). Routinely, 0.20 mg ml-1 saponin was 

added to optimize substrate accessibility. Membrane protein content was determined 

with a reagent kit (Biorad), using Bovine Serum Albumin (BSA, Sigma) as reference. 

Vesicles were incubated for 10 min at 37°C with medium containing 100 mM NaCl, 

30 mM Imidazole, 0.1 mM EDTA, 5 mM MgCl2 and either 15 mM KC1 or 1 mM 

ouabain. Na^ATP was added in a final concentration of 3 mM. The reaction was
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stopped by adding ice-cold TCA solution. Inorganic phosphate (P,) production, liber

ated from ATP, was measured by the colorimetric Fiske-Subbarow technique using 

a commercial (Sigma) phosphate standard (Flik et al., 1985). Total Na+/K+-ATPase 

activities (Vlol) are expressed as //mol P, h_l and specific activities (Vspcc) ¿ire expressed 

as //mol P¡ h_l mg“1 protein.

Ccr + transpon

ATP-dependent Ca2+ transport was determined by means of a rapid filtration tech

nique as described by Van Heeswijk et al. (1984). Ca2+ and Mg2+ concentrations were 

calculated according to Schoenmakers et al. (1992) using the computer program 

CHELATOR. Ca2+ transport was measured at a Ca2" concentration of 10~(1 M (Vmax). 

Uptake of 45Ca into membrane vesicles (P3 fraction) was determined during 1-min 

incubations without or in the presence of 3 mM ATP (Tris-ATP). The reaction was 

stopped in ice-cold isotonic medium containing 0.1 mM LaCl3, and the suspension 

was filtered (Schleicher & Schi'ill ME 25, pore size 0.45 //m). Filters were rinsed twice 

with ice-cold medium and transferred to counting vials and dissolved in Aqualuma'10. 

4"Ca was determined in a Pharmacia Wallac 1410 liquid scintillation counter.

Plasma
Plasma protein concentrations were determined by means of a reagent kit (Biorad) 

with BSA as reference. Plasma glucose was determined spectrophotometrically using 

a D-glucose kit (Boehringer Mannheim, UV method). Concentrations of plasma Na 

and K were measured with a fiame-photometric Auto Analyzer (Model IV, Techni- 

con), while the Cl concentration was determined spectrophotometrically by the form

ing of ferrothiocyanate. The cresolphthalein complexone method (Sigma Diagnos

tics) was used for the determination of total plasma Ca concentration. Ca2+ and pH 

were measured by means of an Ionic Calcium analyzer (Radiometer) as described by 

Fogh-Anderson (1981).

Plasma ceruloplasmin concentration was measured as /7-phenylenediamine (PPD) 

oxidase activity, an assay based on the methods described by Houchin (1958) and 

Rice (1961). To validate the method of ceruloplasmin detection in plasma of tilapia, 

several parameters of the assay were tested: (a) substrates PPD and N-N-dimethyl- 

PPD; (b) incubation time (between 0 and 75 min); (c) the pH of the buffer (between 

pH 4 and 10); (d) incubation temperatures (4°, 20°, 26°, 37°C); (e) the plasma volume 

(between 0 and 100 ¿/l).

From the results of these tests, ceruloplasmin concentrations in plasma of tilapia 

were measured by the following method. Plasma (15 //l) was mixed with 1 ml 1.2 M 

acetate/acetic acid buffer (pH 6.4) containing 0.1% PPD (Sigma) as substrate. To 

avoid non-specific substrate oxidation, incubation was carried out in the presence of 

0.02 mM EDTA. Each plasma sample was incubated in duplicate. Concomitantly, 

each plasma sample was incubated in the presence of 1 ml 0.5% NaN3 (azide blank). 

The mixtures w’ere incubated for 30 min at 37°C. The reaction was stopped by the 

addition of 1 ml 0.5% NaN3. Within 1 h, the absorption was measured at 550 nm 

(LKB spectrophotometer). Ceruloplasmin concentration was expressed as the differ

ence in absorbance between the sample and its azide blank.
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Statistics

Data are presented as means ± s.e. The Mann-Whitney U test was applied for 

statistical evaluation. Significant differences between control and Cu-exposed groups 

are indicated by asterisks with *: P<0.05; **: P<0.02; ***: P<0.01 and ****;

P<0.001.
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Pig. 1. Cu concentrations in the gills (A), plasma ceruloplasmin levels (B) and Cu concentrations in the 

blood cells (C) and in the plasma (D) of mature fish exposed for 6 days to 0, 50, 100 or 200 /jg l_l Cu. The 

number offish per group is indicated in the bars. Significant differences are indicated by asterisks.
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Fig. 2. Chloride ccll number in the opercula (A) and diameter of the chloride cells (B) of mature fish 

exposed for 6 days to 0, 50, 100 or 200 /.ig I-1 Cu. The number of lish per group is indicated in the bars. 

Significant differences are indicated by asterisks.

3. Results

Exposure for 6 days to 50, 100 and 200 jug Cu I"1 resulted in significantly increased 

Cu concentrations in the gills (Fig. 1A). The increase in the Cu content was most 

prominent in the fish exposed to 200 //g Cu I"1. Only in this group was the ceruloplas- 

min concentration in the plasma increased over controls (Fig. IB). Cu exposure also 

resulted in an increased Cu concentration in the plasma (Fig. ID), but had no effect 

on the Cu content of blood cells (Fig. 1C).

The number of opercular chloride cells increased in a dose-dependent way, result

ing in significantly more chloride cells in the fish exposed to 100 and 200 //g Cu I-1 

(Fig. 2A). In these groups, also the diameter of the chloride cells increased (Fig. 2B).

Whole body flux measurements showed that exposure to 200//g Cu I-1 inhibited the 

Na influx, while the Na efflux remained unaffected. The net flux was significantly 

lower, albeit still positive, in fish exposed to 200 jug Cu I"1 compared to control fish. 

We did not observe an effect of waterborne Cu on Ca influx or efflux (Fig. 3).

In the crude branchial homogenate (H0) offish exposed to 200 jug Cu I-1, both total 

and specific Na+/K+-ATPase activities were inhibited. These observations were not 

reflected in the total and specific N a7K +-ATPase activities of the purified membrane 

fraction P3. Cu exposure had no effect on the protein recovery during the process of 

membrane purification from H() to P3, while the enzyme purification was doubled in 

fish from the highest Cu concentration when compared to controls (Fig. 4).
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Fig. 3. Na fluxes (left) and calcium fluxes (right) of juvenile fish exposed for 6 days to 0. 50 or 200 //g l_l Cu. 

Net fluxes are indicated by shaded bars. Significant differences are indicated by asterisks. Influx: n = 12; 

efflux: ii = 4; net flux: n - 4.

Cu exposure had no effect on the Ca2+ transport in the purified vesicle preparation 

of gill basolateral membranes (Table 1). Plasma total Ca concentration decreased 

only in the fish exposed to 100 jug Cu I“1. Plasma ionic Ca was not changed (Table 1).

Exposure to 200 jug Cu I-1 resulted in decreased plasma Na and Cl concentrations 

(Table 2). The Na:Cl ratio was unchanged by Cu exposure. Compared to controls, 

the pH of the plasma of the 200 jug Cu I-1 exposed fish decreased. In this Cu-exposed

Table 1

Ca2+-transport in purified branchial membrane preparation (P,) and total and ionic Ca concentration in the 

plasma of mature fish exposed for 6 days to 0, 50, 100 or 200 //g I-1 Cu

Ca2+ transport 

(nmol Ca min"1

Plasma [Ca]lotal 

mg-1 prot) (mM)

Plasma [Ca2*] 

(mM)

Control 4.47 ± 0.40 6.96 ± 0.50 1.61 ±0.05

50Cu 3.94 ± 0.52 7.93 ± 1.27 1.65 ±0.04

lOOCu 4.38 ± 0.59 4.78 ± 0.35*** 1.71 ± 0.04

200Cu 3.91 ±0.51 6.78 ± 0.78 1.70 ±0.05

Significant differences are indicated by asterisks: n = 6.
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Fig. 4. Total (upper panels) and specific (lower panels) Na7K+-ATPase activity in crude branchial homoge- 

nate (H0) and in purified branchial membrane preparation (P3). Protein recovery and enzyme purification 

are also indicated of mature fish exposed for 6 days to 0, 50. I (JO or 200 //g I-1 Cu. Significant differences 

are indicated by asterisks. Control and 50Cu: n = 6; lOOCu and 200Cu: // = 5).

group, also the plasma K concentrations increased. Plasma protein concentrations 

did not change after Cu exposure. Only the glucose concentration in the plasma of the 

fish exposed to 200//g Cu I"1 increased significantly as compared to controls.
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Table 2

Plasma Na, Cl, K, protein and glucose concentration, Na:Cl ratio and pH in the plasma of mature fish 

exposed for 6 days to 0, 50, 100 or 200 fig I-1 Cu

Plasma [Na+]

(mM)

[CP]

(mM)

[Na]: [Cl] pH [K+]

(mM)

Protein 

(mg ml-1)

Glucose

(mg%)

Control 

(// = 7)

154 ± 3 150 ± 1 1.03 ± 0.02 7.72 ± 0.03 2.73 ± 0.22 52.6 ± 2.7 66.4 ± 5.8

50Cu 

(n = 6)

145 ± 4 144 ± 2 1.01 ± 0.02 7.76 ± 0.06 2.47 ± 0.20 52.3 ± 4.7 66.4 ± 15.8

lOOCu 

(n = 7)

150 ±2 147 ± 1 1.02 ± 0.01 7.73 ± 0.03 3.37 ± 0.34 47.5 ± 2.7 50.8 ±11.2

200Cu 

(// = 7)

142 ±2 
* * * *

143 ± 2 
* * * *

1.00 ± 0.01 7.61 ±0.03 
*

4.34 ± 0.39 54.9 ± 1.5 109.4 ± 7.2 
****

Significant differences are indicated by asterisks.

4. Discussion

The results of this study demonstrate that sublethal Cu exposure of tilapia results 

in multiple adaptive processes which allow the fish to counteract the toxic effects of 

Cu in an integrative way.

Cu uptake and transport

After 6 days of exposure to Cu, the accumulation of this metal in the gill tissue was 

most prominent in the 200 jLig I"1 group. In a previous study, we observed no differ

ence in Cu accumulation in the gills of fish exposed for either 6 or 11 days (Pelgrom 

et al., 1995). Therefore, in this study we decided to expose the fish for 6 days. In 

control fish, the Cu concentrations in blood plasma and blood cells are of the same 

magnitude, and comparable to concentrations reported for other fish species (600— 

1300 jjg P 1, Stagg and Shuttleworth, 1982a; Bettger et al., 1987). Our results show 

that during exposure to waterborne Cu only the blood plasma and not the blood cells 

display an elevated Cu concentration. This indicates that most of the Cu that enters 

the gills is transported via the blood plasma. Our results are in line with observations 

in mammals (Task Group on Metal Accumulation, 1973; Frieden, 1979; Cousins, 

1985). Cu treatment of fish blood in vitro also resulted in association of Cu with 

plasma rather than with the blood cell fraction (Buckley et al., 1984). In the blood of 

mammals, Cu immediately binds to albumin and transcuprein, and is transported to 

the liver, where it is bound to ceruloplasmin, released into the blood, and distributed 

to other tissues (Weiss and Linder, 1985; Cousins, 1985). Cu bound to ceruloplasmin 

constitutes the larger part (90-95%) of plasma Cu, which makes ceruloplasmin the 

principal Cu transport protein in mammals (Frieden, 1979; Nederbragt et al., 1984). 

In a variety of vertebrate sera, the presence of this protein, as reflected by its p- 

phenylenediamine oxidase activity, has been reported (Frieden, 1979). In fish, ceru

loplasmin has been demonstrated in plasma of carp (Yamamoto et al., 1977). Our 

results indicate that this protein is also present in the plasma of tilapia. However, we 

did not observe a direct relationship between the plasma ceruloplasmin concentration
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and the water and/or plasma Cu concentration. A direct relationship between plasma 

Cu concentration and ceruloplasmin level was observed in mammals after parenteral 

Cu administration. In fish, however, waterborne Cu enters the general circulation 

primarily via the gills. Probably, only during exposure to high levels of Cu (200 /.ig Cu 

I"1) is ceruloplasmin synthesis induced. Cu exposure had no effect on the protein 

concentration in the plasma. Comparable results are described in studies with brown 

bullhead and brook trout (McKim et al., 1970; Christensen et al., 1972).

Whole body ion-fluxes 
Exposure to 200 //g I"1 Cu reduced the Na+ influx, without affecting the Na+ efflux. 

Consequently, the net Na+ uptake decreased, although the Na balance was still posi

tive. It should be noted that the measured whole body fluxes almost completely 

represent gill fluxes (Flik et al., 1985). The flux experiments were performed under 

conditions which cause minimal additional disturbance, characterized by using an 

acclimation period, gradual Cu exposure, normal feeding regime and housing the fish 

in groups. The advantage of our approach of ion-transport measurement is indicated 

by the high control net fluxes, as is demonstrated by a study of Dharmamba and 

Maetz (1972). In contrast, no positive net fluxes were observed in control rainbow 

trout and brown trout (Lauren and McDonald, 1986; Reader and Morris, 1988; Reid 

and McDonald, 1988). Generally, only influx and net flux are measured, with net 

fluxes determined from chances in the ion concentration in the water, whereas efflux 

is calculated from the difference between net flux and influx (Spry and Wood, 1985; 

Lauren and McDonald, 1986, 1987; Reader and Morris, 1988; Reid and McDonald, 

1988). Branchial Na uptake is the result of Na+/K+-ATPase-dependent Na influx and 

Na efflux via passive diffusional losses (Mayer-Gostan et al., 1987; McDonald et al., 

1989, 1991; Wood, 1992). The inhibitory effect of Cu on the Na influx may be due to 

the high affinity of Cu for -SH groups of transport enzymes such as Na+/K+-ATPase 

(Stagg and Shuttleworth, 1982b; Beckman and Zaugg, 1988). Cu-induced disturbanc

es of the Na influx have also been observed in rainbow trout (Lauren and McDonald, 

1986; McDonald et al., 1989). Exposure to high concentrations of Cu has been shown 

to cause histological alterations in the gills (Baker, 1969; Wilson and Taylor, 1993). 

Structural damage can explain increase in ionic permeability and reduction in trans

port function commonly seen during the early phase of metal exposure. The absence 

of an effect of Cu on Na+ efflux observed in the present study might therefore indicate 

that the structural integrity of the gills, which determines the permeability to Na, is 

not affected by the Cu concentrations used. Interestingly, only in the fish exposed to 

the highest Cu concentration was the Na+ influx affected, although increased Cu 

concentrations in the gills were observed after exposure to all Cu concentrations used. 

This suggests that fish can cope with a certain increased Cu concentration in the gills 

before dysfunction becomes apparent, which is still present after 6 days of exposure. 

The Cu-induced inhibition of Na+ influx in these fish exposed to the highest Cu 

concentration was reflected in a reduction in plasma Na concentration in mature fish. 

The Na:Cl ratio was unchanged, as a result of the concurrent decrease in plasma Cl 

concentration. Observations in the present study are in line with other reports on 

Cu-exposed fish. In studies with flounder and rainbow trout, Na and Cl concentra
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tions were affected similarly by Cu exposure (Stagg and Shuttleworth, 1982a; Lauren 

and McDonald, 1985; McDonald et al., 1989; Wilson and Taylor, 1993).

In this study, Cu exposure had no effect on whole body Ca exchange with the 

water. This is in line with the unchanged plasma Ca concentration in mature fish 

observed in this study. Similar results have been reported for rainbow trout by Reid 

and McDonald (1988). A small and transient decrease in net Ca uptake was found in 

brown trout by Sayer et al. (1991). Influx rates of Ca2+ are usually substantially lower 

than those of Na+ (Reid and McDonald, 1988). This was also observed in the present 

study with young fish. The branchial mechanisms regulating Na+ and Ca2+ influxes 

are distinctly different from one another in hormonal control, ion-specific channels or 

carriers in the apical membrane and transport ATPases in the basolateral membrane 

of the ion-transporting cells (Flik et al., 1985; McDonald et al., 1989). This is also 

reflected by the present observation that active branchial Ca2+ uptake was, unlike 

Na7 K +-ATPase, not inactivated by Cu.

Chloride cells

In response to waterborne Cu we observed an increase in the number of chloride 

cells in the opercula which reflects the chloride cell density in the gills in tilapia 

(Wendelaar Bonga et al., 1990). Proliferation of chloride cells is a physiological re

sponse to agents affecting branchial ion uptake, such as Cd (Oronsaye and Brafield, 

1984; Pratap and Wendelaar Bonga, 1993), and Cu (Baker, 1969). The increase in the 

number of chloride cells may be a compensatory response, playing a role in recovery 

from and acclimation to, heavy metals (Mallat, 1985; McDonald and Wood, 1993; 

Perry and Laurent, 1993). Because on average, the cells were also larger, we conclude 

that this increase could not be attributed to an increase of immature chloride cells, 

since immature cells are characterized by smaller cell diameters than mature chloride 

cells. The ion transport capacity is related to the fraction of the chloride cells in 

contact with the external environment only (mature chloride cells) rather than to the 

total number of epithelial chloride cells, which includes young or degenerating cell 

stages (Wendelaar Bonga et al., 1990). In a study on fish exposed to acid water 

(Wendelaar Bonga et al., 1990) the rapid increase in chloride cell numbers reflected a 

higher turnover rate of these cells. Most of the cells were degenerating or immature, 

as evidenced by smaller cell diameters, and therefore unlikely to contribute to ion 

transport. In our study, however, the increase in the number of chloride cells was 

unlikely to be the result of more small and immature cells, given the increased diame

ter after Cu exposure. These results therefore are more reminiscent of observations of 

chloride cell proliferation after exposure of trout to ion-deficient water (McDonald 

and Rogano, 1986; Perry and Laurent, 1989, 1993). In these studies, hyperplasia and 

hypertrophy of chloride cells resulted in an extension of the mean chloride cell area 

exposed to the water which coincided with an increased ion-transport activity of the 

gills (McDonald and Rogano, 1986; Perry and Laurent, 1989, 1993). However, our 

results on the effects of Cu demonstrate that an increase in the chloride cell number 

does not automatically imply an increase of the ion-transport capacity. Therefore, the 

increase in cell size and number observed in our experiment does not warrant restora

tion of the Na-transport activity.
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Nci- and Ca-transport mechanisms
The observed Cu-induced inhibition of Na+ influx was not reflected in the specific 

Na+/K+-ATPase activity in membrane preparations of in vivo Cu-exposed fish. In
• ____

vitro exposure to metals may cause a decrease in ATPase activity in membrane prep

arations (Stagg and Shuttleworth, 1982b). The mechanisms underlying an inhibition 

of ATPase-dependent ion transport in vivo will, however, be more complicated. Sev

eral mechanisms may interfere with the process of membrane purification and in vitro 

determination of active transport mechanisms. Firstly, the N a7K +-ATPase activity 

in the gills may be regulated by changing the number of active enzyme units present, 

as suggested by Stagg and Shuttleworth (1982b). In the present study, the number of 

chloride cells was increased in Cu-exposed fish and this could account for the increase 

in Na+/K+-ATPase enrichment of the P3 fraction in fish exposed to the highest Cu 

concentration. The increase in the number of chloride cells, however, is not reflected 

in the total N a7K +-ATPase activity. In the crude membrane homogenate H0, the 

total enzyme activity was even significantly decreased in these Cu-exposed fish. The 

second branchial mechanism in the process of compensation for Cu-induced ion 

losses might be a change in the activity per enzyme unit (Stagg and Shuttleworth, 

1982b). During exposure, the Cu concentration in the gills increased significantly, 

which may also occur in the chloride cells, which may inactivate the Na+/K+-ATPase 

activity in these cells. Such an effect seems to be reflected only in the specific Na+/K+- 

ATPase activity in the crude homogenate (H0), and not in the P3 fraction. One might 

argue that this might indicate reactivation of in vivo Cu-inhibited ATPase activity 

during the isolation procedure, assuming that most of the accumulated Cu is lost in 

this process. However, the amount of Cu in the P3 fraction relative to the amount of 

Cu in the H0 fraction (recovery of Cu in the P3 fraction) is the same in controls and 

fish exposed to 100 //g I"1 Cu (39% and 35% respectively; Pelgrom et al., in prep.). 

Therefore, differences in total Cu concentration between gills of controls and Cu- 

exposed fish should equally influence the enzyme in H() and P3 fractions. Thus the 

difference observed in Na+/K+- ATPase activity between H0 and P3 fractions cannot 

be attributed to reactivation due to loss of Cu from the membranes of the Cu-exposed 

fish during the in vitro isolation procedure.

Both mechanisms may be involved during in vitro determination of N a7K +-ATP- 

ase activity after in vivo Cu exposure. In addition, in vitro ion-transport mechanisms 

are determined in the absence of hormonal factors, which likely differ between con

trols and fish exposed to Cu (Pelgrom et al., in prep.), and at optimal Na concentra

tions. It should also be noted that in most vertebrate tissues Na+/K+-ATPase is a 

heterogenous population of enzyme units. In a recent study of Middleton et al. (1993) 

it was demonstrated that not all forms of Na+/K+-ATPase in kidney cells were regu

lated by PKC phosphorylation, a mechanism which may be affected by Cu. There

fore, enzyme heterogeneity may contribute to the response diversity.

Few data are available on Cu-induced effects on branchial N a7K +-ATPase activity 

after in vivo exposure. In flounder, Stagg and Shuttleworth (1982b) observed no 

effect after in vivo Cu exposure, whereas Lauren and McDonald (1987) observed in 

trout an inhibition of N a7K +-ATPase specific activity, which was compensated by an



S. M. G.J. Pelgrom et al. I Aquatic Toxicology 32 (1995) 303-320 317

increase in the microsomal protein concentration. In the latter study, however, no Cu 
accumulation in the gills was measured.

To our knowledge, no data are available on the effects of in vivo Cu exposure on 

Ca2+ transport in gill membrane vesicles. In this study, Ca transport was not affected 

by Cu exposure and the increased Cu concentration in the gills. These observations 

are in line with the flux data, and confirm the specific action of Cu on Na.

Plasma ions and glucose

Our results demonstrate that the effects of Cu exposure on plasma are not limited 

to disturbed Na and Cl levels, confirming the complexity of ambient Cu on these fish. 

In the fish exposed to 200 /ug 1" Cu, acid/base regulation was also disturbed, as 

indicated by a pH decrease. It has been suggested by Lauren and McDonald (1985) 

that Cu exposure leads to a general increase in the permeability of cell membranes, 

which partly explain the increase in the plasma K concentrations.

Hyperglycaemia is a common response to stressors in freshwater fish, and has been 

considered as an indicator of sublethal environmental pollutions (Hatting, 1976). In 

the present study, an increased concentration of glucose in the plasma was observed 

only in the fish exposed to the highest Cu level. This observation is in line with results 

from Cu-exposed brown bullhead (Christensen et al., 1972) and rainbow trout 

(Lauren and McDonald, 1985). A rise in the plasma glucose concentration indicates 

an activated carbohydrate metabolism, which in this species is under the control of 

cortisol (Christensen et al., 1972; Balm, 1986).

In conclusion, in tilapia, Cu levels in gills and plasma are primarily affected after 

sublethal waterborne Cu exposure for 6 days. At 100 and 200 jug Cu I“1, chloride cell 

proliferation and an increase in the average cell diameter were observed. Secondarily 

to this response, Cu-induced disturbances of ionic regulation were noticed only in the 

fish exposed to 200 jugCu I-1. These observations demonstrate that the mechanism of 

Cu toxicity in tilapia differs from that in rainbow trout (Lauren and McDonald, 1987) 

where in the absence of Cu accumulation branchial ionoregulatory disturbances were 

observed.
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