
molecules

Article

FSCPX, a Chemical Widely Used as an Irreversible A1
Adenosine Receptor Antagonist, Modifies the Effect
of NBTI, a Nucleoside Transport Inhibitor, by
Reducing the Interstitial Adenosine Level in the
Guinea Pig Atrium

Tamas Erdei 1, Adrienn Monika Szabo 2, Nora Lampe 1, Katalin Szabo 1, Rita Kiss 1 ID ,
Judit Zsuga 3, Csaba Papp 3, Akos Pinter 4, Andras Jozsef Szentmiklosi 1, Zoltan Szilvassy 1,
Bela Juhasz 1 and Rudolf Gesztelyi 1,* ID

1 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen,
Nagyerdei krt. 98, H-4032 Debrecen, Hungary; erdei.tamas@pharm.unideb.hu (T.E.);
lampenori@gmail.com (N.L.); szabo.katalin@pharm.unideb.hu (K.S.); kiss.rita@med.unideb.hu (R.K.);
ajszm948@gmail.com (A.J.S.); szilvassy.zoltan@med.unideb.hu (Z.S.); juhasz.bela@med.unideb.hu (B.J.)

2 Department of Internal Medicine (Building C), Faculty of Medicine, University of Debrecen,
Nagyerdei krt. 98, H-4032 Debrecen, Hungary; szabo.adrienn23@gmail.com

3 Department of Health Systems Management and Quality Management for Health Care,
Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary;
zsuga.judit@med.unideb.hu (J.Z.); dr.papp.csaba@gmail.com (C.P.)

4 Institute of Mathematics, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1,
H-4032 Debrecen, Hungary; apinter@science.unideb.hu

* Correspondence: gesztelyi.rudolf@pharm.unideb.hu; Tel.: +36-52-427-899

Received: 30 July 2018; Accepted: 28 August 2018; Published: 30 August 2018
����������
�������

Abstract: Based on in silico results, recently we have assumed that FSCPX, an irreversible A1

adenosine receptor antagonist, inhibits the action of NBTI that is apparent on E/c curves of adenosine
receptor agonists. As a mechanism for this unexpected effect, we hypothesized that FSCPX might
modify the equilibrative and NBTI-sensitive nucleoside transporter (ENT1) in a way that allows
ENT1 to transport adenosine but impedes NBTI to inhibit this transport. This assumption implies
that our method developed to estimate receptor reserve for agonists with short half-life such as
adenosine, in its original form, overestimates the receptor reserve. In this study, therefore, our
goals were to experimentally test our assumption on this effect of FSCPX, to improve our receptor
reserve-estimating method and then to compare the original and improved forms of this method.
Thus, we improved our method and assessed the receptor reserve for the direct negative inotropic
effect of adenosine with both forms of this method in guinea pig atria. We have found that
FSCPX inhibits the effects of NBTI that are mediated by increasing the interstitial concentration
of adenosine of endogenous (but not exogenous) origin. As a mechanism for this action of FSCPX,
inhibition of enzymes participating in the interstitial adenosine production can be hypothesized,
while modification of ENT1 can be excluded. Furthermore, we have shown that, in comparison with
the improved form, the original version of our method overestimates receptor reserve but only to a
small extent. Nevertheless, use of the improved form is recommended in the future.
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1. Introduction

Irreversible antagonists play a pivotal role in the investigation of receptors, being useful for
differentiating receptor types and subtypes and being essential in the assessment of receptor reserve.
Receptor reserve is an integrative measure of the response-inducing ability of the interaction between
an agonist and receptor system consisting of a receptor and postreceptorial signalling [1,2]. This term
is coined to elucidate the phenomenon, that is, in some cases, the stimulation of a submaximal fraction
of receptors can apparently elicit the maximal effect. Accordingly, detection and quantification of
receptor reserve is based on the comparison of E/c curves generated in the absence and presence
of an irreversible receptor antagonist. As receptor reserve depends on the tissue, agonist and effect,
receptor reserve values should be determined for each tissue, agonist and effect being of practical
importance [1,2].

The A1 adenosine receptor (A1 receptor) is a member of the ancient and ubiquitous adenosine
receptor family that exerts complex regulatory functions in almost all tissues [3–5]. In the heart,
the A1 receptor mediates strong negative tropic effects including negative inotropy on the ventricle
and, even more, on the atrium [6], as a component of the A1 adenosinergic cardioprotection against
ischemic/hypoxic stress [7–9]. Accordingly, in earlier studies, we aimed to assess the guinea pig atrial
A1 receptor reserve for the direct negative inotropic effect of several A1 adenosine receptor agonists (the
term direct means that experiments were conducted on atria lacking prior stimulation of contractility).
For this purpose, concentration-response (E/c) curves were constructed in the absence and presence
of 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine (FSCPX). After its
first appearance in a report from 1994 [10], FSCPX was tested and then utilized as a selective and
irreversible A1 receptor antagonist in numerous investigations [11–19].

In the case of stable, synthetic full agonists (such as N6-cyclopentyladenosine: CPA), the A1

receptor reserve could be successfully determined with the operational model of agonism and
Furchgott’s method, two procedures providing a quantitative result. The A1 receptor reserve proved to
be extremely large for the direct negative inotropic effect [17]. This finding could be well illustrated by
the fact that FSCPX was unable to significantly decrease the maximal effects of these agonists, although,
based on results of Furchgott’s method, about 80–90% of the A1 receptors were inactivated by FSCPX.
Instead, FSCPX only shifted the E/c curves of the stable agonists to the right, as if it were a competitive
antagonist [17]. However, our attempt failed to assess the A1 receptor reserve for the direct negative
inotropic effect of adenosine, the physiological agonist, when naïve and FSCPX-pre-treated adenosine
E/c curves were evaluated with the operational model and Furchgott’s method. This failure was
probably due to the too short half-life of adenosine in our ex vivo experimental system that impeded
adenosine E/c curves to get saturated [17].

To address this challenge, an alternative receptor reserve-estimating method had to be developed
for adenosine [18]. The essence of this method is the use of S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine
(NBTI), a selective inhibitor of the equilibrative and NBTI-sensitive nucleoside transporter
(ENT1; SLC29A1) [20]. As the physiological adenosine transport is directed into the cells (e.g.,
cardiomyocytes) [21,22], NBTI prevents adenosine, administered for the E/c curve, from the
intracellular degradation and reutilization, allowing enough time for the exogenous adenosine to exert
its effect. However, NBTI also prevents endogenous adenosine from the intracellular elimination that
leads to a rise of the interstitial adenosine concentration. Importantly, this latter phenomenon occurs
already before the generation of the adenosine E/c curve (and it exists throughout the experiment,
till NBTI is present). As the surplus endogenous adenosine accumulated by NBTI consumes in part
the response capacity of A1 receptors (and their postreceptorial signalling) before constructing the
adenosine E/c curve, the response to adenosine (detected by the given adenosine E/c curve) will show
an apparent diminution. Thus, effect values of adenosine E/c curves generated in the presence of
NBTI should be corrected for the distortion caused by the increased endogenous adenosine level in
the interstitium. For this correction, we apply a procedure based on the receptorial responsiveness
method (RRM) [23,24]. Finally, the corrected FSCPX-naïve and FSCPX-pre-treated adenosine E/c
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curves (generated in the presence of NBTI) are compared. Information on the receptor reserve in
question can be obtained from the distance of the final (saturated) parts of the corrected curves: small
distance means great receptor reserve, while large distance indicates a small one. Although our
receptor reserve-estimating method provides only qualitative results, the A1 receptor reserve for the
direct negative inotropic effect of adenosine could be assessed and has been found similarly large as
that for the synthetic agonists, in both eu- [18] and hyperthyroid states [19].

However, during the process of determining receptor reserve with our qualitative method,
we encountered an astonishing phenomenon that, in the presence of NBTI, FSCPX pre-treatment
apparently increased the response to adenosine (when the FSCPX-NBTI co-treated adenosine E/c
curve was compared to the solely NBTI-treated one) [18,19]. Starting from this pharmacological
paradox, a recent in silico study from our laboratory has raised the possibility that FSCPX pre-treatment
may modify the effect of NBTI through a mechanism other than blocking the A1 receptor [25]. To the
best of our knowledge, no other paper has reported any effect of FSCPX other than permanent A1

receptor inactivation (even as a hypothesis).
Our assumption about an interference between effects of FSCPX and NBTI implies that our

receptor reserve-estimating method should be revisited. In the present study, therefore, our primary
goal was to justify or refute our assumption about this interference. Furthermore, our goal was to
improve our receptor reserve-estimating method to eliminate the distorting effect resulted from this
unexpected interference. Finally, we aimed to compare results obtained from the original and improved
forms of our method. For these purposes, we have included a new protocol to the old ones used in
previous studies (i.e., [18,19]) (see: Table 1). This amendment has offered new information on the
mechanism of action of FSCPX, furthermore it has made our receptor reserve-estimating method free
of the disturbing effect stemming from the interference between actions of FSCPX and NBTI.

2. Results

2.1. Naïve Adenosine and CPA E/c Curves (Serving as a Control)

Adenosine concentration-dependently decreased the contractile force of all atria (Figure 1A).
Empirical parameters of the first adenosine E/c curves, provided by fitting of the Hill equation
(Equation (1)), did not show any significant differences among the experimental groups (data not
shown). This observation indicates the homogeneity of atria used for this investigation.

CPA also reduced the atrial contractile force in a concentration-dependent manner (Figure 1B).
Empirical parameters of CPA E/c curves of groups P1a and P2a did not differ significantly from each
other (Table 2), indicating that differences between their protocols (especially in duration, see: Table 1)
did not affect the response to CPA.

2.2. CPA E/c Curves in Groups P1 and P2

Consistent with our earlier observations [18,19,26,27], NBTI treatment markedly pushed down
the CPA E/c curve (decreasing Emax) and shifted it to the right (increasing logEC50), as compared to
its control CPA curve. Also in agreement with our previous findings [17–19], FSCPX pre-treatment
caused a moderate rightward shift of the CPA E/c curve (only increasing logEC50 in comparison with
its control CPA curve). However, combination of FSCPX and NBTI made the CPA E/c curve almost
the same as the solely FSCPX-pre-treated one, aside from a slight, non-significant reduction of Emax

and Hill coefficient. Thus, FSCPX pre-treatment almost entirely abolished all effects of NBTI on the
response to CPA (Figure 2A, Table 2).
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Figure 1. The direct negative inotropic effect of adenosine (panel A) and CPA (panel B) in the absence
of any chemicals modifying the adenosinergic homeostasis in the isolated guinea pig atrium. In the
(panel A), the first concentration-response (E/c) curve, generated with adenosine, is shown in all the
seven groups (P1a, P1b, P2a, P2b, P2c, P3 and P4). In the (panel B), the second E/c curve, constructed
with CPA, is presented in groups P1a and P2a. The term “Control” refers to the role of these curves
and also indicates their treatment status (naïve). The x-axis denotes the common logarithm of the
molar concentration of the agonists (in the bathing medium) and the y-axis indicates the effect (as a
percentage decrease in the initial contractile force). The symbols show the responses to the agonists
averaged within the groups (±SEM) and the curves illustrate the fitted Hill equation (Equation (1)).
Ado: adenosine; CPA: N6-cyclopentyladenosine.

Figure 2. The direct negative inotropic effect of CPA (panel A) and adenosine (panel B) without and
with a previous FSCPX pre-treatment, combined with the absence and presence of NBTI. The applied
(pre)treatments and experimental groups (latter ones in italics) are indicated. For simplicity, the
P1a (Control) curve and P3 Control curve (not differing significantly from the P2a (Control) curve
and P4 Control curve, respectively) are omitted. The x-axis denotes the common logarithm of the
molar concentration of the agonists (in the bathing medium) and the y-axis indicates the effect (as a
percentage decrease in the initial contractile force). The symbols show the responses to the agonists
averaged within the groups (±SEM) and the curves denote the fitted Hill equation (Equation (1)). Ado:
Adenosine; CPA: N6-cyclopentyladenosine; NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; FSCPX:
8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine.
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The surplus interstitial adenosine accumulated by NBTI was found to be equieffective with
100.2 nM and 6.73 nM CPA in the P1b and P2c groups, respectively. These outcomes came from best-fit
values provided by RRM as log(cx) values being −6.99 and −8.17 (with a 95% confidence interval
from −7.18 to −6.84 and from −∞ to −7.72), respectively (Figure 3). Thus, FSCPX pre-treatment
reduced the concentration of the extra interstitial adenosine produced by NBTI to less than a tenth in
the isolated guinea pig atrium.

Figure 3. The direct negative inotropic effect of CPA in the presence of NBTI, without and
with a previous FSCPX pre-treatment. The applied (pre)treatments and experimental groups
(latter ones in italics) are indicated. The x-axis denotes the common logarithm of the molar
CPA concentration (in the bathing medium) and the y-axis indicates the effect (as a percentage
decrease in the initial contractile force). The symbols show the responses to CPA averaged
within the groups (±SEM) and the dotted curves illustrate the fitted model of RRM (Equation
(2)). CPA: N6-cyclopentyladenosine; NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; FSCPX:
8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine.
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Table 1. The seven protocols forming seven groups /and the role of the concentration-response (E/c) curves/.

First Incubation First E/c Curve Second Incubation Second E/c Curve Third Incubation Third E/c Curve

P1a

Krebs solution for 25 min;
100 µM adenosine for 2 min;

Krebs solution for 20 min

adenosine (1 nM–3 mM)/
for comparison with the

first adenosine E/c
curves of groups P3 and

P4/

Krebs solution for 20 min;
10 µL DMSO for 15 min

CPA
(0.1 nM–0.1 mM)

/NBTI-treated and its
control/P1b Krebs solution for 20 min;

10 µM NBTI for 15 min

P2a

Krebs solution for 20 min;
10 µL DMSO for 45 min;

Krebs solution for 60 min;
10 µL DMSO for 15 min

CPA
(0.1 nM–0.1 mM)

/FSCPX-pre-treated,
FSCPX-NBTI

co-treated and their
control/

P2b

Krebs solution for 20 min;
10 µM FSCPX for 45 min;
Krebs solution for 60 min;
10 µL DMSO for 15 min

P2c

Krebs solution for 20 min;
10 µM FSCPX for 45 min;
Krebs solution for 60 min;
10 µM NBTI for 15 min

P3

adenosine (1 nM–3 mM)
/control/

Krebs solution for 20 min;
10 µM FSCPX for 45 min;
Krebs solution for 75 min

adenosine
(1 nM–3 mM)

/FSCPX-pre-treated/

P4 Krebs solution for 20 min;
10 µM NBTI for 15 min

adenosine
(1 nM–3 mM)

/NBTI-treated/

Krebs solution for 20 min;
10 µM FSCPX for 45 min;
Krebs solution for 60 min;
10 µM NBTI for 15 min

adenosine
(1 nM–3 mM)

/FSCPX-NBTI
co-treated/

The first, second and third incubation periods with the subsequent E/c curves, respectively. P1a, P1b, P2a, P2b, P2c, P3 and P4: protocol (and group) identifiers; CPA:
N6-cyclopentyladenosine; NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; FSCPX: 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine.
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Table 2. The Hill parameters of concentration-response (E/c) curves generated with adenosine and
CPA in the different groups under different conditions.

CPA P1a (Co) P2a (Co) P2b (X) P1b (NB) P2c (X+NB)

Emax 88.42 ± 0.84 89.21 ± 1.46 87.49 ± 1.75 71.68 ± 5.24 ###; 6= 6= 6= 84.6 ± 1.64 **
logEC50 −7.51 ± 0.09 −7.47 ± 0.074 −6.85 ± 0.05 ++ −6.53 ± 0.32 ### −6.86 ± 0.06 §§

n 0.9 ± 0.06 0.98 ± 0.03 0.93 ± 0.04 0.84 ± 0.09 0.86 ± 0.02
Ado P3 Co P4 Co P3 X P4 NB P4 X + NB
Emax 93 ± 0.85 91.04 ± 1 93.85 ± 1.78 71.23 ± 4.9 ####; 6= 6= 6= 6= 90.22 ± 1 ****

logEC50 −4.58 ± 0.08 −4.74 ± 0.13 −3.88 ± 0.07 +++ −5.92 ± 0.25 ####; 6= 6= 6= 6= −6.08 ± 0.07 §§§§; ♦♦♦♦
n 0.73 ± 0.03 0.85 ± 0.03 0.83 ± 0.07 0.81 ± 0.13 0.83 ± 0.1

Emax, logEC50 and n (mean ± SEM) are best-fit values of the Hill equation (Equation (1)) fitted to the individual
E/c curves. The following comparisons were made: P1a vs. P2a (CPA E/c curves); P3 vs. P4 (the first adenosine
E/c curves); within the pooled P1 + P2 group (all CPA E/c curves); and within the pooled P3 + P4 group (all
adenosine E/c curves in it). All significant differences are indicated (+: Co vs. X; #: Co vs. NB; §: Co vs. X + NB; 6=:
X vs. NB; ♦: X vs. X + NB; *: NB vs. X + NB). Co: control (naïve); X: FSCPX pre-treatment; NB: NBTI treatment;
X + NB: FSCPX-NBTI co-treatment; P1a, P1b, P2a, P2b, P2c, P3 and P4: group identifiers; Ado: adenosine; CPA:
N6-cyclopentyladenosine; FSCPX: 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine;
NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; the number of marks refers to the level of statistical significance:
one mark: p < 0.05; two marks: p < 0.01; three marks: p < 0.001; four marks: p < 0.0001.

2.3. Adenosine E/c Curves in Groups P3 and P4

As expected (based on References [18,19]), NBTI caused a significant depression and substantial
sinistral displacement in the adenosine E/c curve, as compared to its control adenosine curve (although
the decrease of Emax was greater than previously observed). Also in line with expectations (based
on [17–19]), FSCPX pre-treatment shifted the adenosine E/c curve to the right as compared to its
control adenosine curve, approximately to an extent as it did with the CPA E/c curve. At the same
time, the FSCPX-NBTI co-treatment produced an adenosine E/c curve, whose Emax practically equalled
Emax of the control as well as solely FSCPX-pre-treated adenosine E/c curves, while logEC50 of which
was similar to logEC50 of the exclusively NBTI-treated adenosine E/c curve. So, FSCPX pre-treatment
appeared to inhibit some but not all the effects of NBTI on the response to adenosine (Figure 2B,
Table 2).

2.4. Interference of FSCPX Pre-Treatment with NBTI

Previously, we observed that, in the presence of NBTI, FSCPX pre-treatment slightly (but clearly)
enhanced the response to adenosine [18,19]. In the present investigation, the extent of this interference
was unexpectedly large. FSCPX pre-treatment significantly augmented the response to both CPA
and adenosine not only at high concentrations but also at medium ones, when contrasted the
FSCPX-NBTI co-treated E/c curves with the solely NBTI-treated ones (Figure 2A,B). Nevertheless,
FSCPX pre-treatment did not significantly affect the extensive leftward shift of the adenosine E/c curve
caused by NBTI. As a result, the FSCPX-NBTI co-treated CPA E/c curve and the FSCPX-pre-treated one
almost coincide, whereas the FSCPX-NBTI co-treated adenosine E/c curve and the FSCPX-pre-treated
one are furthest apart (Figure 2A,B, Table 2).

Another way to show this interference, if we contrast the differences between the NBTI-treated
E/c curves and the corresponding control E/c curves with the differences between the FSCPX-NBTI
co-treated E/c curves and the corresponding FSCPX-pre-treated E/c curves. In this manner, atria
possessing similar operable A1 receptor population can be compared. Regarding the CPA E/c curves,
NBTI alone decreased Emax by about 16.7% and produced a 10-fold shift of the E/c curve to the right.
In contrast, after FSCPX pre-treatment, NBTI decreased Emax only by 2.9% and did not shift the E/c
curve (Table 2). In the case of the adenosine E/c curves, NBTI alone reduced Emax by 19.8% and caused
a 15-fold shift of the E/c curve to the left. After FSCPX pre-treatment, however, NBTI decreased Emax

by 3.6% (similarly to results with CPA), while produced a huge, about 158-fold shift to the left (Table 2).
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2.5. Corrected Effects of Adenosine E/c Curves Generated in the Presence of NBTI

The averaged, solely NBTI-treated adenosine E/c curve of the P4 group containing effect values
corrected for the bias caused by the extra interstitial adenosine accumulated by the NBTI, shortly the
corrected NBTI-treated adenosine E/c curve, substantially exceeded its uncorrected (conventionally
evaluated) counterpart. The maximum of the corrected NBTI-treated adenosine E/c curve reached
that of its control (the naïve adenosine E/c curve of the P4 group). The starting point of the corrected
NBTI-treated adenosine E/c curve was the effect evoked by the surplus interstitial adenosine produced
by NBTI in the absence of FSCPX (Ex belonging to cx = 100.2 nM CPA) (Figure 4).

Figure 4. The corrected effect values of the adenosine concentration-response (E/c) curves
in the P4 group constructed in the presence of NBTI (without and with a previous FSCPX
pre-treatment), furthermore the original effect values of the averaged, control adenosine E/c
curve in the P4 group (considered to be inherently correct). The applied (pre)treatments and
the experimental group (latter one in italics) are indicated. The x-axis shows the adenosine
concentrations (in the bathing medium) on a logarithmic scale and the y-axis indicates the effect
(as a percentage decrease of the initial contractile force). The symbols represent the responses to
adenosine averaged within the groups. Nota bene: While effect values of E/c curves generated
in the presence of NBTI (no matter with or without FSCPX) were evoked by adenosine of both
(exogenous and endogenous) origins, they could be plotted only versus the exogenous adenosine
levels in the bathing medium of atria. New method: our receptor reserve-estimating method
used in its improved form; old method: our receptor reserve-estimating method applied in
its original form [18]; Ado: Adenosine; NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; FSCPX:
8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine.

The averaged, FSCPX-NBTI co-treated adenosine E/c curve of the P4 group was corrected two
ways: With an improved method based on findings of our recent in silico study [25] and with our
original method reported earlier [18].

When computed using the improved method, the corrected FSCPX-NBTI co-treated adenosine
E/c curve started deep beneath the corrected NBTI-treated adenosine E/c curve but reached practically
the same maximum as its control curve and the corrected NBTI-treated adenosine E/c curve did.
In agreement with our previous finding [18,19], this indicates the existence of a great receptor reserve
for the direct negative inotropic effect of adenosine in the guinea pig atrium. The starting point
of the corrected FSCPX-NBTI co-treated adenosine E/c curve was the effect elicited by the surplus
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interstitial adenosine produced by the NBTI in the presence of FSCPX (Ex belonging to cx = 6.73 nM
CPA) (Figure 4).

The FSCPX-NBTI co-treated adenosine E/c curve that was corrected with the original method ran
noticeably above its counterpart corrected with the improved method at low and medium (exogenous)
adenosine concentrations, while it exceeded its improved counterpart to a small extent at high
(exogenous) adenosine concentrations (Figure 4). This finding shows that results obtained from
the original method overestimate the receptor reserve in question but only in a small compass.

It should be noted that, as exact values of the endogenous (and thereby the total) interstitial
adenosine concentrations at the A1 receptors remained unknown throughout the investigation, the
corrected effect values could only be plotted versus the concentrations of exogenous adenosine in the
bathing medium (that could be easily calculated). Nevertheless, within the P4 group, the inherently
correct (i.e., NBTI-free) effect values and the corrected ones (of course belonging to the same exogenous
adenosine concentration) can be meaningfully compared to one another (Figure 4).

3. Discussion

The main experimental finding of the present study is that a pre-treatment with FSCPX, a chemical
widely considered to be a selective and irreversible A1 receptor antagonist, selectively influences the
different effect components of NBTI, a selective nucleoside transport inhibitor, that are apparent on
E/c curves of adenosine and CPA, two A1 receptor agonists, in the isolated guinea pig atrium. While
FSCPX pre-treatment considerably counteracts the depressive (Emax-decreasing) effect of NBTI on E/c
curves of both adenosine and CPA, it does not significantly affect the extensive action of NBTI on EC50

of the adenosine E/c curve. Thus, our recent proposal, that is, FSCPX blunts the effect of NBTI [25],
should be refined in light of the new results. It seems that FSCPX pre-treatment inhibits the effects of
NBTI that are mediated by elevating the interstitial level of endogenous but not exogenous adenosine.
Consequently, the target of FSCPX (other than the A1 receptor) cannot be the ENT1 transporter or
any other molecules that participate in the mediation of the effect of NBTI on the level of exogenous
adenosine. Conversely, the target in question may be a (or some) molecule(s) that is (are) associated
exclusively with the effect of NBTI exerted on the level of endogenous adenosine, for example, enzymes
contributing to the interstitial adenosine formation.

In a recent investigation dealing with the in silico modelling of our receptor reserve-estimating
method [25], we have found that E/c curves resulted from studies using this method [18,19] could not
be simulated without supposing an interference between effects of FSCPX and NBTI. Based on this
finding, we hypothesized that FSCPX might modify ENT1 in a way that it allows ENT1 to transport
adenosine but impedes NBTI to inhibit this transport [25]. In the present study, in order to explore
the interference between effects of FSCPX and NBTI, we have amended the protocols of our receptor
reserve-estimating method to enable detecting the influence of FSCPX and NBTI co-treatment on the
CPA E/c curve.

The effects of FSCPX and NBTI on the E/c curves of adenosine receptor agonists can be divided
into three components: Effects mediated by influencing the interstitial level of endogenous adenosine
(that were earlier attributed exclusively to NBTI [26,27]), effects mediated via affecting the interstitial
level of exogenous adenosine (also ascribed to NBTI [28]) and effects resulted from the permanent
inactivation of a fraction of the A1 receptor population (attributed to FSCPX [11]).

In terms of the shape of our E/c curves, differentiation of effects of “endogenous” and “exogenous”
adenosine originates in the features of our experimental model. The “effects mediated by influencing
the interstitial level of endogenous adenosine” refers to consequences of a rise in the interstitial
adenosine concentration developed before the construction of the E/c curve of an adenosine receptor
agonist. This occurs when NBTI, administered to the atria before the generation of the E/c curve,
reduces the elimination of adenosine produced interstitially in the course of the tissue adenosine
turnover. In contrast, the “effects mediated via affecting the interstitial level of exogenous adenosine”
means outcomes of an attenuated decrease (so a relative increase) in the interstitial adenosine
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concentration during the construction of an adenosine E/c curve. This is the case when NBTI decreases
the elimination of adenosine administered as E/c curve doses. The point is that, if receptors (with their
signalling) respond to a stimulus before the generation of an E/c curve, this response will be reflected
in the subsequent E/c curve as a deficit in the responsiveness of the receptors (and their signalling).
This is the motif of RRM [23,24] and that is why RRM can be used to correct E/c curves distorted by
a response evoked before the construction of the E/c curve [18]. As a result, increase in interstitial
concentrations of endogenous and exogenous adenosine (upon our experimental conditions) exert the
opposite effect on the main parameters (Emax, EC50) of an adenosine E/c curve (Table 3).

Table 3. Influence of FSCPX and NBTI on the main empirical parameters of CPA and adenosine
concentration-response (E/c) curves describing the adenosinergic control of atrial contractility.

FSCPX NBTI FSCPX + NBTI

1 Effect on endogenous
Ado level

interstitial Ado level ↓
(by interstitial Ado

production ↓):
insignificant Emax ↑ *
insignificant EC50 ↓ *

interstitial Ado level ↑
(by inward Ado transport ↓):

moderate to strong Emax ↓
moderate to strong EC50 ↑

slight interstitial Ado level ↑
(by interstitial Ado production ↓
and inward Ado transport ↓):

slight Emax ↓
slight EC50 ↑

2 Effect on exogenous
Ado level -

interstitial Ado level ↑
(by inward Ado transport ↓):

slight Emax ↑
very strong EC50 ↓

interstitial Ado level ↑
(by inward Ado transport ↓):

slight Emax ↑
very strong EC50 ↓

3 Other adenosinergic
effect

operating A1 Ado
receptors ↓:

insignificant Emax ↓ **
moderate EC50 ↑

-

operating A1 Ado
receptors ↓:

insignificant Emax ↓ **
moderate EC50 ↑

1+
3

Resulting effect on
the CPA E/c curve moderate EC50 ↑

moderate to strong Emax ↓
moderate to strong EC50 ↑

slight Emax ↓
moderate EC50 ↑

1+
2+
3

Resulting effect on
the Ado E/c curve moderate EC50 ↑

slight to strong Emax ↓
strong EC50 ↓

strong EC50 ↓

The CPA and adenosine E/c curves were characterized with their two main Hill parameters (Emax and EC50),
alterations of which were compared to the naïve state. Nota bene: Increase in (interstitial level of) endogenous
adenosine exerts the opposite effect on the parameters of an adenosine E/c curve as an increase in (interstitial
level of) exogenous adenosine (in our experimental setup). Numbers in the first column of the table: Different
kinds of effects (and their combinations); bold: results of the present and previous studies of our team; bold and
italic: new results of the present study; italic: new suppositions made in the present study; simple formatting:
established results of others and moderate conclusions drawn from results of others and our team; ↑: increase;
↓: decrease; Ado: adenosine; CPA: N6-cyclopentyladenosine; NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine;
FSCPX: 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine. *: The magnitude of this
effect depends on how high the level of interstitial endogenous adenosine is (herein, the resting interstitial level
of endogenous adenosine is too low to elicit significant inotropic effect in the guinea pig atrium [29], thus its
diminution has insignificant consequences). **: Because of the great A1 adenosine receptor reserve for the direct
negative inotropy evoked by full agonists in the guinea pig atrial myocardium [17,18].

In the case of an NBTI-treated CPA E/c curve, the situation is relatively simple: The surplus
endogenous adenosine produced by NBTI will consumes the response capacity of the cell-surface A1

receptors (and their postreceptorial pathways) before the construction of the E/c curve, therefore NBTI
decreases Emax and increases EC50 of the CPA E/c curve [26]. In the case of an NBTI-treated adenosine
E/c curve, the situation is more complex: Consequences of the elevated endogenous adenosine level
will combine with effects stemming from the preservation of adenosine administered for the E/c
curve, which latter effects tend to increase Emax and to decrease EC50 of the adenosine E/c curve. As a
resultant, NBTI reduces both Emax and EC50 of the adenosine E/c curve [28] (Table 3).

Before the emergence of our recent results [25], action of FSCPX appeared the simplest: similar
increase in EC50 of the CPA and adenosine E/c curves, consistent with the irreversible A1 receptor
antagonist property of FSCPX and the large A1 receptor reserve for the direct negative inotropy in the
guinea pig atrium [17–19]. In the present study, however, when we applied an FSCPX pre-treatment
before the construction of the CPA E/c curve in the presence of NBTI, the resulting effect was an almost
complete cancelling of NBTI’s effects with the preservation of the action of FSCPX (Figure 2A, Table 2).
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This curve constellation cannot be explained with the irreversible A1 receptor antagonist property of
FSCPX. If FSCPX were a simple irreversible antagonist, it would have only shifted the NBTI-treated
CPA E/c curve to the right (increasing its EC50). In turn, when an FSCPX-NBTI co-treatment was
applied in the case of an adenosine E/c curve, the Emax-decreasing effect of NBTI was only cancelled,
while the EC50-decreasing effect of NBTI remained practically intact (Figure 2B, Table 2). This curve
constellation further contradicts the prevailing concept being FSCPX only an irreversible A1 receptor
antagonist, moreover it also shows that the additional effect of FSCPX cannot be an equal inhibition of
all effects of NBTI.

Based on in silico results, recently we hypothesized that FSCPX might impede the inhibitory
action of NBTI on ENT1 [25]. It should be reminded that all effects of NBTI stem from the
inhibition of ENT1 [20], by which NBTI reduces the physiologically inward transmembranous
adenosine transport and thus increases the interstitial concentration of adenosine of any origin [21,22].
The above-mentioned hypothesis would agree with the present results obtained from CPA E/c curves
(Figure 2A, Table 2) but it contrasts with the current results yielded from adenosine E/c curves
(Figure 2B, Table 2). Such a great increase in Emax together with the preservation of EC50, seen in the
case of the FSCPX-NBTI co-treated adenosine E/c curve as compared to the only NBTI-treated one, can
hardly be imagined if we suppose the inhibition of all effects of NBTI (and inhibition of ENT1 would
decrease all NBTI-evoked effects). Interestingly, earlier studies [18,19] yielded results, for which this
previous hypothesis appeared to work. However, depression of the solely NBTI-treated adenosine E/c
curve in those studies was considerably smaller than that in the present investigation, although relative
positions of the control, FSCPX-pre-treated, NBTI-treated and FSCPX-NBTI co-treated adenosine E/c
curves were the same in all above-mentioned studies.

Taking all together, the target of FSCPX, to exert its effect other than A1 receptor inactivation,
should be a molecule that is related to the effect of NBTI that is mediated by increasing the interstitial
level of endogenous adenosine. Enzymes contributing (exclusively or at least predominantly) to
the interstitial adenosine formation are possible candidates. It can be speculated that FSCPX, which
ruins the binding site for adenosine in the A1 receptor, can do the same with the binding site of
one (or some) enzyme(s) participating in the interstitial adenosine production. If it were so, FSCPX
pre-treatment would decrease the interstitial adenosine level. As the resting interstitial adenosine
concentration elicits undetectably small inotropic effect in the guinea pig atrium [29], the supposed
diminution of it by FSCPX would be also undetectable. However, under conditions with reduced
interstitial adenosine producing capacity resulted from an FSCPX pre-treatment, NBTI could elevate
the interstitial level of endogenous adenosine to a smaller extent than otherwise. This reduced increase
in the interstitial adenosine level (before generating an E/c curve) would cause easily detectable
alterations in E/c curves of both adenosine and CPA: Tendency to a smaller decrease in Emax and to a
smaller increase in EC50 (Table 3). It is also important that, supposing the above-mentioned additional
mechanism of action for FSCPX, the protective effect of NBTI on the exogenous adenosine would
freely prevail. Regarding the shape of our CPA and adenosine E/c curves (Figure 2A,B, Table 2), this
is exactly the case in the present investigation. The only concern might be the fact that, after FSCPX
pre-treatment, NBTI did not cause a significantly greater decrease in EC50 of the adenosine E/c curve
as compared to the control state than NBTI alone. However, this phenomenon can be ascribed to the
irreversible antagonist property of FSCPX. When comparing the FSCPX-NBTI co-treated adenosine
E/c curve to the solely FSCPX-pre-treated one, the sinistral displacement (decrease in EC50) is much
larger than it is if comparing the NBTI-treated adenosine E/c curve to the control one (Figure 2A,B,
Table 2). Thus, we have improved our hypothesis that is (from the appearance of this writing) as
follows: FSCPX pre-treatment modifies the action of NBTI on E/c curves of adenosine receptor
agonists via limiting the interstitial adenosine producing capacity, perhaps by inhibiting one (or some)
interstitial adenosine forming enzyme(s) (Table 3). (Theoretically, an alternative mechanism for FSCPX
to decrease the interstitial adenosine level could be the enhancement of elimination of interstitial
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adenosine. However, this mechanism is unlikely because it would lower the concentration of both
exogenous and endogenous adenosine, a possibility that is not supported by the present results)

A phenomenon that is also worthwhile to address is the slight increase of the response to CPA
at low concentrations in the case of the FSCPX-NBTI co-treated CPA E/c curve, as compared to its
adequate counterpart, the FSCPX-pre-treated CPA E/c curve (Figure 2A). This may be explained by
supposing that CPA, in agreement with our previous observation [23], undergoes a minor elimination
in the atrial tissue. As in the case of the NBTI-treated and FSCPX-NBTI co-treated adenosine E/c curves
in comparison with the control and FSCPX-pre-treated ones, respectively (Figure 2B), the increased
response to the given adenosine receptor agonist shows the protective effect of NBTI that manifests
predominantly at low concentrations (Figure 2A,B). Thus, for further studies in this topic, use of
N6-cyclohexyladenosine (CHA), a selective A1 receptor full agonist showing higher resistance against
adenosine-handling enzymes [30], should be considered.

Further observation of the present study is that the scatter of E/c curve data is the biggest for the
solely NBTI-treated curves. Interestingly, this big scatter caused by NBTI has been largely prevented
by the FSCPX-pre-treatment (Figure 2A,B, Figure 3). It may be speculated that the cause of the
exceptionally big scatter in the presence of NBTI is due to the considerable individual variability of
enzyme activities contributing to the interstitial adenosine production that, if inhibited by FSCPX,
makes the response to adenosine receptor agonists more homogenous.

A godsend for this investigation was that NBTI exerted very strong Emax-decreasing (for both
CPA and adenosine E/c curves: Figure 2A,B) and EC50-increasing (for the CPA E/c curve: Figure 2A)
effects during the experiments presented herein, in comparison with earlier studies [18,19,26,27].
In our interpretation, these effects of NBTI on the E/c curves of adenosine receptor agonists can be
ascribed to the action of NBTI on the interstitial level of endogenous adenosine (Table 3). Thus, it is
reasonable to assume that, in our present experiments, atria possessed exceptionally high interstitial
adenosine forming capacity, allowing both NBTI and FSCPX to exert especially strong effects on the
interstitial level of endogenous adenosine. Consistently, we have found the highest cx value ever in
our praxis that characterizes well the efficiency of NBTI in the present study (Table 4). For the reason
mentioned in the previous paragraph, the efficiency of FSCPX (to elicit its additional effect) could
only manifest in its interaction with NBTI: The FSCPX pre-treatment produced a considerably large
diminution in cx (from 100.2 nM to 6.73 nM). These strong effects observed concerning FSCPX and
NBTI enabled us to improve our previous assumption on the mechanism of action of FSCPX other
than A1 receptor inactivation.

Table 4. CPA concentrations equieffective with the surplus interstitial adenosine accumulated in solely
NBTI-treated eu- and hyperthyroid guinea pig atria, determined with RRM.

Ø +T4 Ref.

20.4 nM - [26]
18.5 nM 37 nM [27]

45.08 nM - [18]
38.19 nM 58.75 nM [19]
100.2 nM - current study

Ø: Measurement on euthyroid atria; +T4: Measurement on hyperthyroid atria; CPA: N6-cyclopentyladenosine;
NBTI: S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine; RRM: Receptorial responsiveness method.

The cx values provided the opportunity to create hypothetical adenosine E/c curves free of
the disturbing effect of the interstitial accumulation of endogenous adenosine in response to NBTI
(Figure 4). These hypothetical adenosine E/c curves allow us to compare our improved receptor
reserve-estimating method with the original one. The FSCPX-NBTI co-treated adenosine E/c curve,
corrected with the original method, ran unequivocally above its counterpart corrected with the
improved method (Figure 4). This phenomenon corroborates the assumption made previously [25]
that the original method, used for two earlier studies [18,19], overestimates and thereby overcorrects
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the distortion caused by NBTI, if previous FSCPX pre-treatment has occurred. Since this inaccuracy
affects responses belonging to the high adenosine concentrations only to a small extent and since these
responses form the basis to estimate receptor reserve (via comparing them with the corresponding
response values of the corrected NBTI-treated adenosine E/c curve [18,19]), the original method over
measures the receptor reserve in question only to a slight extent (Figure 4). Of course, application of
the improved method is recommended in the future.

4. Materials and Methods

4.1. Materials

The following chemicals were used: Adenosine, N6-cyclopentyladenosine (CPA),
8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine (FSCPX) and
S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine (NBTI), purchased from Sigma (St. Louis, MO, USA).

Adenosine was dissolved in 36 ◦C modified Krebs-Henseleit buffer (Krebs solution) containing
(in mM): NaCl: 118, KCl: 4.7, CaCl2: 2.5, NaH2PO4: 1, MgCl2: 1.2, NaHCO3: 24.9, glucose: 11.5,
ascorbic acid: 0.1, dissolved in redistilled water. CPA was dissolved in ethanol:water (1:4) solution
(v/v). Dimethyl-sulfoxide (DMSO) was used as a solvent for FSCPX and NBTI. All stock solutions
were adjusted to a concentration of 10 mM, except for the adenosine stock solution used to achieve 3
mM concentration in the bathing medium (it was 20 mM and was prepared always freshly before each
use). Adenosine and CPA stock solutions were diluted with Krebs solution.

4.2. Animals, Preparations and Protocols

All experiments were carried out between 6–29 March 2018. The animal use protocols were
approved by the Committee of Animal Research, University of Debrecen, Hungary (25/2013/DE
MÁB). Male Hartley guinea pigs, weighing 600–800 g, were guillotined and then left atria were quickly
removed and mounted at 10 mN resting tension in 10 mL vertical organ chambers (Experimetria TSZ-04;
Experimetria Kft, Budapest, Hungary) containing Krebs solution, oxygenated with 95% O2 and 5% CO2

(36 ◦C; pH = 7.4). Atria were paced by platinum electrodes (3 Hz, 1 ms, twice the threshold voltage) by
means of a programmable stimulator (Experimetria ST-02; Experimetria Kft, Budapest, Hungary) and
power amplifier (Experimetria PST-02; Experimetria Kft, Budapest, Hungary). The contractile force
was characterized by the amplitude of the isometric twitches, which were measured by a transducer
(Experimetria SD-01; Experimetria Kft, Budapest, Hungary) and strain gauge (Experimetria SG-01D;
Experimetria Kft, Budapest, Hungary) and recorded by a polygraph (Medicor R-61 6CH Recorder;
Medicor Művek, Budapest, Hungary).

The atria were divided into seven groups (P1a, P1b, P2a, P2b, P2c, P3 and P4; n = 6–10) according
to the seven experimental protocols of the present study. The protocols were the same as those used for
our previous investigations [18,19], except for a rearrangement of protocol numbering and introduction
of a new protocol, P2c that was carried out first in the present study (Table 1).

4.3. Empirical Characterization of the E/c Curves

All E/c curves were fitted to the Hill equation that is a simple and reliable empirical model of
receptor function [31]:

E = Emax ×
cn

cn + EC50n (1)

where: E: The effect (that was defined as a percentage decrease in the initial contractile force of atria);
c: The concentration of the agonist (administered for the given E/c curve); Emax: The maximal effect;
EC50: The agonist concentration producing half-maximal effect; n: The Hill coefficient (slope factor).

The Hill equation was fitted to both individual and averaged E/c curve data.
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4.4. Quantification of the Distortion Produced by NBTI in the CPA E/c Curves

NBTI, via selective inhibition of the inward adenosine transport, increases the interstitial
concentration of endogenous adenosine in the atrium under well-oxygenated conditions [26,27].
Thus, our E/c curves constructed in the presence of NBTI were distorted by a surplus interstitial
adenosine concentration that was developed already before the construction of the E/c curve.
To quantify this extra adenosine concentration, RRM was performed. Specifically, the averaged
CPA E/c curves of P1b (only NBTI-treated) and P2c (FSCPX-NBTI co-treated) groups were fitted to
Equation (2), which contained the empirical parameters of the averaged CPA E/c curve of the P1a
(control) or P2b (solely FSCPX-pre-treated) group, respectively:

E′ = 100−
100×

(
100− Emax × (cx+c)n

(cx+c)n+EC50
n

)
100− Emax × cxn

cxn+EC50
n

(2)

where: E’: The distorted effect (calculated conventionally); Emax, EC50, n: empirical CPA E/c
curve parameters (provided by Equation (1)) that define the basic (i.e., NBTI-free) conditions; c:
The concentration of CPA (administered for the E/c curve); cx: The variable parameter of Equation
(2) that indicates the CPA concentration that is equieffective with the surplus interstitial adenosine
concentration accumulated by NBTI.

Determination of cx belonging to the P1b group (that characterizes the effect of NBTI treatment on
the interstitial concentration of endogenous adenosine) was a part of both the original and improved
forms of our receptor reserve-estimating method, while assessment of cx related to the P2c group
(characterizing the effect of FSCPX-NBTI co-treatment on the interstitial level of endogenous adenosine)
appeared first in the improved version.

4.5. Correction of Effect Values of Adenosine E/c Curves Distorted by NBTI (Improved Method)

The effect values of adenosine E/c curves biased by NBTI were corrected by means of cx values
obtained from CPA E/c curves distorted by NBTI. First, the effect belonging to cx was determined
using the Hill equation:

Ex = Emax ×
cx

n

cxn + EC50n (3)

where: Ex: The effect evoked solely by the extra interstitial adenosine accumulated by NBTI; cx:
The appropriate theoretical CPA concentration provided by Equation (2); Emax, EC50, n: Empirical
parameters of the appropriate CPA E/c curve (provided by Equation (1)).

When Ex was calculated for the correction of the averaged, only NBTI-treated adenosine E/c curve
of the P4 group, cx belonging to the averaged CPA E/c curve of the P1b group (that was also solely
NBTI-treated) and empirical parameters of the averaged CPA E/c curve of the P1a group (control)
were substituted into Equation (3). In turn, when Ex was computed for correcting the averaged,
FSCPX-NBTI co-treated adenosine E/c curve of the P4 group, cx related to the averaged CPA E/c curve
of the P2c group (that was FSCPX-NBTI co-treated as well) and empirical parameters of the averaged
CPA E/c curve of the P2b group (that was only FSCPX-pre-treated) were written into Equation (3).

From the distorted effects and their corresponding Ex values, corrected effects were computed by
means of Equation (4):

E = 100 − (100− E′) · (100− Ex)

100
, (4)

where: E: The corrected effect; E’: The effect distorted by the surplus interstitial adenosine produced by
NBTI; Ex: The effect of the extra interstitial adenosine accumulated by NBTI (yielded by Equation (3)).

These corrected effect values (obtained from the procedure described above) are unique in that
they reflect the action of NBTI on the adenosine E/c curve without the distortion caused by the
interstitially accumulated endogenous adenosine.
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4.6. Correction of Effect Values of Adenosine E/c Curves Distorted by NBTI (Original Method)

For the sake of comparison, the averaged, FSCPX-NBTI co-treated adenosine E/c curve of the
P4 group was corrected with cx belonging to the averaged CPA E/c curve of the P1b group (that
was only NBTI-treated) as well, consistent with the procedure used in our previous studies [18,19].
(The averaged, NBTI-treated adenosine E/c curve of the P4 group was corrected once, because both
methods specified the same cx for this correction)

4.7. Data Analysis

Each atrium was required to meet three criteria in order to qualify for inclusion in the further
evaluation: (i) the resting contractile force had to reach 1 mN before the first E/c curve; (ii) the
mechanical activity of the paced atrium had to be regular; (iii) the response to 10 µM adenosine
obtained from the first E/c curve was required to be within the mean ± 2 SD range (i.e., outliers were
excluded). The mean and SD were computed using atria meeting the first two criteria. All experimental
outcomes conforming to these three criteria were further processed.

According to the recommendation [32], concentrations (c as agonist concentration, EC50 and cx) in
the equations used for curve fitting were expressed as common logarithms.

Normality of data was checked using Shapiro-Wilk normality test. Two data sets, if passed the
normality test, were compared with unpaired t test. If not, Mann-Whitney U test was used. More than
two data sets were compared using one-way ANOVA (with Geisser-Greenhouse correction) followed
by Tukey post-testing (herein, all data sets undergone multiple comparison passed the normality test).
Difference of means (or medians) was considered significant at p < 0.05.

Curve fitting and statistical analysis were performed with GraphPad Prism 7.04 for Windows
(GraphPad Software Inc., La Jolla, CA, USA), while other calculations were made by means of Microsoft
Excel 2016 (Microsoft Co., Redmond, WA, USA).

5. Conclusions

During the present investigation, we have refined our previous hypothesis on how FSCPX
may modify the effect of NBTI on the E/c curves of adenosine receptor agonists. Based on current
results, FSCPX, in addition to the permanent inactivation of the A1 receptor, appears to permanently
inhibit an enzyme contributing to the formation of interstitial adenosine. Through this mechanism,
FSCPX moderates the effects of NBTI that are mediated by increasing the interstitial concentration of
endogenous adenosine before the construction of the given E/c curve.

Furthermore, we have confirmed our previous assumption that our method to assess receptor
reserve for agonists with short half-life such as adenosine, in its original form, overestimates and thus
overcorrects the distortion caused by NBTI, if previous FSCPX pre-treatment has occurred. Fortunately,
receptor reserve estimates provided by the original method are only slightly distorted (manifested in a
small overestimation of the receptor reserve). Nevertheless, use of the improved form of this method,
presented herein, is recommended in the future.
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