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Abstract 

 

The main goal of this paper is to analyse the efficiency of the plantlet production of Virginia 

fanpetals, to make economic calculations for their energetic use and to determine the most 

favourable plant density. According to the experiments, the cost of a healthy Sida plantlet is in 

the range of 38.4 - 60.6 Euro cents, using the nurse-in-tray technology (NIT). This cost range 

is much lower than the market prices of the plantlets and the production method is more 

reliable compared to sowing. In the second year, the dry matter yield originating from Sida 

plantlets was 10.2-11.9 t hectare
-1

 (ha) without fertilization in the different planting densities. 

However, in the longer term, it is recommended to apply organic manure regardless of 

spacing. The theoretical market value of Sida is generally higher than total unit costs (36 - 60 

EUR t
-1

) in the case of all methods used, except for biogas. The production of Sida can be 

economical for farmers farming in marginal conditions, using locally available organic 

manure, producing crops with high heat demand, or involved in beekeeping.  
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1. Introduction 

 

Global population growth coupled with changes in dietary habits will increase food demand, 

resulting in a shift in the utilisation of arable land to direct and indirect (meat and dairy 

production) food production. The production of third generation, i.e., biogeneration crops 

(e.g. algae) is a possible solution due to the energy use of first and second generation energy 

crops (maize, sorghum, etc.), as well as their unfavourable impact on food prices, arable land 

structure, water management and biodiversity [1, 2]. It is one of the main characteristics of 

these crops that the main objective of their genetic improvement with biotechnological tools is 

to be able to provide high biomass yields, even on marginal lands [3]. Theoretically, it would 

be possible to produce 25-30% of the world’s liquid fuel demand in marginal areas [4]. 

Converting conventional crop areas to energy crop production leads to seasonally 

differentiated land use patterns for conventional crops [5], and field level profitability can also 

be improved [6]. As energy crops are new to farmers, and thus have certain risks associated 

with their cultivation, as well with securing both contracts and market prices, for a successful 

uptake it is vital they provide a reasonable income [7]. According to the analyses of Dombi et 

al (2014), the most important elements of sustainability are land demand and social impacts 

(employment, revenue production) [8]. 

 

The primary aim of this research is to examine the production technology of Virginia 

fanpetals based on technical literature sources and the authors’ experimental data, as well as 

an economic analysis of Sida production in Hungary. In the experiments extensive 
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agrotechnical solutions were used – without fertilisation – to analyse the crop nutrition ability 

of calcareous chernozem soil with low nutrient supply (pH: 7.93±0.025; humus content: 

3.14%±0.407, CaCO3: 4.67±0.00, NH4: 0.15 mg kg
-1

, NO3:0.08 mg kg
-1

, Organic N: 0.14 mg 

kg
-1

 K2O: 465.0±7.071, P2O5: 24.76±0.692 mg kg
-1

), for the production of S. hermaphrodita. 

A relatively large spacing was used in small plot experiments in order to try to mitigate the 

soil depletion caused by crops. Furthermore, the profitability of the novel method was 

examined, as well. In addition to the various methods of heat energy production, biogas and 

honey production, as well as CO2 saving are also taken into consideration.  

 

1.1. Production characteristics 

 

Sida has the potential to be a multi-purpose perennial semi-shrub plant of the temperate 

climate zone. This species is indigenous in North America, where it is an endangered species 

[9]. Virginia fanpetals is most effectively propagated vegetatively, as its root section is rich in 

buds, while sexual propagation is difficult due to the low and protracted germination of seeds, 

as well as the slow initial growth of the seedling [10-12]. Flowering begins in early summer 

(early June in Hungary) and it lasts until late October, which is favourable if the crop stand is 

used as bee pasture. Further favourable characteristics of Virginia fanpetals are that it is less 

sensitive to pH [13], and it already provides a significant yield in its second year of 

production [14]. 

 

If sexual propagation is used, it is necessary to increase the germination capacity of Sida, 

which is between 10 and 15% in the case of 1-2-year-old seeds [11, 12, 15]. Germination is 

further complicated by endogenous fungal diseases and the water impermeable coat of the 

seeds [10, 16, 17]. These considerations make two-step seed priming necessary before 

sowing, as this method completely eliminates contaminated seeds and the exogenous 

pathogenic fungal diseases of seeds, resulting in a potential germination percentage above 

70% [18]. 

 

Sowing can be performed with S071/B KRUK, a one-by-one pneumatic seeder used in maize 

sowing, which has an appropriate efficiency and a proportion of skips below 22% [19]. 

However, plant density is not ideal and the percentage of duplicated plants is high. 

Considering the slow and uneven initial development of Sida seedlings, their sensitivity to 

weeds and potentially to chemical weed control [20], seeding is not reliable, while yield can 

only be expected following the third year; furthermore, the crop protection activities which 

need to be performed are quite costly. The required amount of sowing seed is between 2-6 kg 

per hectare [11].  

 

Plantlet production is potentially favourable from many perspectives:  

 The problematic initial increase and the several hundred-fold demand for sowing seed 

can be eliminated [21].   

 Wide row spacing makes it possible to perform inter-row tillage, which is a more 

favourable method of weed control, considering the aspects of soil protection and the 

sensitivity of Virginia fanpetals to chemicals, as herbicides which have proved to be 

effective have an unfavourable impact on the enzyme activity of soils [22, 23]. On the 

other hand, the biomass yield can be increased with higher planting densities under 

normal soil conditions in Central Europe (Austria) by using mineral fertilizer [24]. 

 In addition to using contamination-free propagation material (seed or plantlet) against 

fungal diseases, chemical weed control can also be provided. However, in dense 

populations, the number of spray applications needs to be increased to 2-3 occasions 



in a given growing season. In the case of wide plant density, the number of spray 

applications can be reduced to one per year [11]. 

 

Based on a comparative analysis, focusing on the biomass yield of 36 different energy crops, 

it can be concluded that Virginia fanpetals belongs to the upper third of energy crops, with its 

15 tons of dry matter yield per hectare [25]. Taking into consideration the fact that it is very 

suitable for soil remediation and the use of extensive production technology, this yield can be 

regarded as favourable. Furthermore, other studies have found that Sida biomass production 

intercropping with legumes and using digestate fertilization under marginal conditions can 

result in higher biomass production and lower environmental pressure in the temperate zone 

(Germany) [26, 27]. Studies from Lithuania have reported the advanced effect of liming with 

N fertilization on the biomass yield of Sida [28, 29]. 

 

In comparison with other similar crops which have a high biomass yield (such as willow or 

miscanthus), Sida extracts nutrients from the soil to a proportionately lower extent, since 

some of these nutrients are returned into the soil by means of the roots and fallen leaves of the 

crop. Harvesting performed in the proper time results in a low ash content and a relatively low 

level of extracted mineral substance content [30].  

 

In the case of proper nutrient replenishment, Sida provides high biomass yield quantity (6.8-

19.6 t absolute dry matter per hectare (DM t ha
-1

)) with a high heating value (17.5-19.9 MJ 

kg
-1

) [11, 31-34] (Table 1). 

 

Table 1. S. hermaphrodita yields at different fertilisation levels. 

Sour-

ce 

Propa-

gation 

materi-

al 

Plant 

density 

crop 

m
-2

 

Dry biomass production 

kg ha
-1 

Heating 

value  

MJ kg
-1 

N  

Kg 

ha
-1 

P  

Kg 

ha
-1 

K 

Kg 

ha
-1 

   
Year 

1 

Year 

2 

Year 

3 

Year 

4 

Ave-

rage  

[33] seeds 
25 

seeds 

2 

790 
8 360 11 080 11 300 8 382 19.8 

100-

200 

39.3-

52.4 
83 

[32] seeds 
25 

seeds
 n.d. 11 240 10 760 15 010 12 337 18.8 100 35 83 

[32] 
root 

cuttings 
4.08 n.d. 15 310 20 750 22 630 19 563 18.7 100 35 83 

[11] seeds 3 kg n.d. 9 440 14 410 11 930 11 927 17.5-19.5 n.d. n.d. n.d. 

[11] seeds 6 kg n.d. 11 680 15 950 13 820 13 817 17.5-19.6 n.d. n.d. n.d. 

[11] seeds 9 kg n.d. 13 160 15 840 14 500 14 500 17.5-19.7 n.d. n.d. n.d. 

[11] 
root 

cuttings 
3.3 n.d. 6 610 10 030 8 320 8 320 17.5-19.8 n.d. n.d. n.d. 

[11] 
root 

cuttings 
5 n.d. 7 820 13 810 10 820 10 817 17.5-19.9 n.d. n.d. n.d. 

[11] 
root 

cuttings 
10 n.d. 11 010 17 770 14 390 14 390 

17.5-

19.10 
n.d. n.d. n.d. 

[35] 
root 

cuttings 
3.5  11 200 12 200 9 300 10 900 16.5 150 43.6 125 

[35] 
root 

cuttings 
3.5  9 300 10 900 6 300 8 800 16.9 100 26.4 66.3 

 

If biomass is intended to be used in its green form, the most appropriate timing is determined 

by the given crop year. Polish examples refer to three harvesting dates [11]. Based on the 

experiments performed at the University of Lublin, fertilisation has a favourable impact on 

the growth of green mass up to the application of 400 kg ha
-1

 N active ingredient, even though 



it reduces the proportion of certain microelements and amino-acids. The yield of the two 

harvests ranged between 7.4.-9.53 t ha
-1

 of green mass, depending on the fertiliser dose (N: 

100-400 kg ha
-1

; K2O: 50-150; P2O5: 80 kg) [11]. Based on the research of Jablonowski et al. 

(2017) conducted in Germany the biomass production method with one harvest yearly for 

solid fuel has the highest energy balance, accounting for 439 288 MJ ha
-1

, compared to the 

more biomass harvesting system used with Sida biomass production [36]. 

 

There are several alternatives available for harvesting Sida. Mechanisation is the preferred 

method in the case of harvesting larger areas, as the cost of manual operations is many times 

higher than the cost of mechanical labour. In addition, harvest of the dried Sida biomass after 

vegetation allows both a maximum energy yield and a reduced negative impact on the 

growing plantation, which results in a sustainable supply of Sida biomass over several years 

[32, 33]. 

 

Harvesting is either performed in a single or double cut regime. The former can be carried out 

with forage harvesters used in maize harvesting [11]. Since the moisture content of the Sida 

stem decreases below 20% by the end of winter [11], the chopped stem can be left on the 

field. 

 

1.2. The effect of Sida on soil reclamation and waste management 

 

Table 2 summarises the results of soil remediation research. The overwhelming majority of 

references are therefore of Polish origin, so it seems to be very important to compare them 

with the experiments of Virginia fanpetals production in Hungary, including results relating to 

land reclamation and waste management. 

 

Table 2. Results of land reclamation experiments. 
Result Experiment details Reference 

Soil reclamation, soil 

remediation, phytoremediation. 

Heavy metal accumulation and 

uptake 

Small plot analysis on acidic fields and areas contaminated 

with zinc and lead 
[37] 

Analysis of Zn, Cu and other heavy metal contamination of 

land (Cu accumulation: foliage, root system; Zn 

accumulation: foliage) 

[38] 

Testing the cleansing effect of Virginia fanpetals based 

biochar (absorbent) 
[39] 

Accumulation of harmful substances in the soil (mainly in the 

root zone) 
[40] 

Biomass production, waste 

management. Nutrient 

utilisation and pollutant 

sequestration: increasing crop 

yield and macroelement 

content, improving uptake 

ability and soil life 

Sewage sludge and sewage sludge compost application and 

their use in agriculture 

[41], [42], 

[43], [44], 

[45], [46], 

[47], [48], 

[49], [50], 

[51], [52], 

[53] 

Increasing yield and waste 

management, micro-, 

macroelements and pollutant 

uptake, increased 

Application of sewage sludge compost and brown coal ash 

from power plants (CaCO3: 1.5 Mg CaO*ha
-1

; High-calcium 

brown coal ash: 1.5 Mg CaO*ha
-1

; municipal sewage sludge 

compost: 250 kg N*ha
-1

; their combination and half-dose 

[54],  

[55], 



bioassimilation, sewage sludge 

application, significantly 

higher P, Mg and S content. 

experiments); content analyses 

Soils saturated with lead and cadmium; application of sewage 

sludge and brown coal mixture 
[56] 

Pollutant uptake: accumulation 

of Co, Fe and N in the stem 
Production on 0.5 m thick sewage sludge [57] 

13.8-17.8 DM t ha
-1

 on good 

quality soil; 6.85-11.3 DM t ha
-

1
 on sewage sludge substrate  

significant heavy metal uptake 

in the stem 

Yield comparison of different production sites: good quality 

soil and sewage sludge substrate. Analysis of the pollutant 

uptake of sludge. 

[58],  

[59], 

Increasing yield and waste 

management, micro-, 

macroelements and pollutant 

uptake, nutrient replenishment 

and cost saving, soil life 

improvement effect; proper 

alternative, optimum dose: 40 t 

ha
-1

 

Application of biogas ferment on less favoured, sandy fields 

(as an alternative of conventional NPK fertilisation);  

[60, 61], 

[62], [63], 

[64], [65], 

[66] 

 

1.3. Sida for energy production  

 

According to the measurements of Szemplinski et al. (2014), the heating value of Virginia 

fanpetals  (18.3 MJ kg
-1

), the energy gained with different technologies (intensive: 1.81 GJ t
-1

, 

semi-intensive: 1.53 GJ t
-1

), as well as their energy efficiency (intensive: 10.2,  semi-

intensive: 12.6 per dry matter unit: HHV) in the years 2009-2011 [35] exceed the respective 

values of silo maize or sorghum. At the same time, the average dry matter yield of Sida per 

hectare was much lower than that of both crops (54% lower than maize yield and 23% lower 

than sorghum yield). With regard to the heating values of Sida, some papers also found an 

HHV of 18.1 MJ kg1- and an LHV of 16.8 MJ kg-1 [33, 34, 36]. Stolarski et al. (2014) 

investigated the higher heating value of Sida hermaphrodita and obtained a value of 18.9 MJ 

kg-1, while Krička et al. (2017) tested an HHV of 17.9 MJ kg-1 [67, 68]. 

 

Virginia fanpetals is either directly combusted, or it can be used as an outstanding 

(supplementary) feedstock for biogas production in accordance with the measurements of 

Oleszek et al. 2013 [69]. The composition of Sida silage fermented for 40 days under 

mesophilic circumstances in 2010 was the following: 

 26 % dry matter, 91% of which was organic matter 

 39 % carbon, 1.7 % nitrogen, (C/N ratio: 22.4 %), 9.5 % ash 

 pH: 5.5 

 

The biogas yield of Sida was quite favourable, both in terms of quantity and quality (Table 3), 

and this yield can be further increased if the proper formula is followed. The C/N ratio is ideal 

in itself, unlike most animal or vegetable feedstock. The estimated optimum range is 15-30 

[70], 20-30 [71, 72] and 25-30 [73]. 

 

Table 3. Biogas and methane yield from Virginia mallow in an anaerobic digestion process 

(2010). 

Biogas yield Methane yield 



Ndm
3
 kg

-1
 

FM 

Ndm
3
 kg

-1
 

DM 

Ndm
3
 kg

-1
 

ODM 

Ndm
3
 kg

-1
 

FM 

Ndm
3
 kg

-1
 

DM 

Ndm
3
 kg

-1
 

ODM 

99 (±3) 395 (±11) 435 (±12) 50 (±1.5) 201 (±5.5) 220 (±6) 

Source: [69] 

 

The biogas yield of Virginia fanpetals was especially high between days 6 and 12, even 

reaching 20-60 Nm
3
 kg

-1
 DM. 

 

It is important to emphasise that biogas production calls for much higher moisture content in 

comparison with combustion. For this reason, Virginia fanpetals for biogas production needs 

to be harvested in July. As no drying costs are incurred it can be regarded as cost saving and 

there is no dry matter loss which usually occurs at low temperatures.  

 

2. Materials and Methods  

 

2.1. Production technological experiments   

 

The University of Debrecen provided a 10 000 m
2
 demonstration garden, half of which was 

used for mallow and other herbaceous biomass crops and/or ornamental plants, as well as 

half-wild and field crops used for various purposes. 5m wide and 45m long cultivated strips 

were established on the plot with similar grass-covered strips in between. According to 

preliminary plans, 7 cultivated and 7 grassy block were established. The mildly alkaline (7.93 

pH±0.025) heavy chernozem soil was rich in humus (3.14%±0.407) and calcium carbonate 

(4.67±0.00). The land quality was not extreme marginal, but we used a low input and very 

extensive agrotechnology with a low soil nutrient content. 

 

During planting, three relatively wide spacings were used: 1m x 1m, 1m x 0.75m and 1m x 

0.5m (Figure 1/A), to demonstrate that crops are able to compensate for the lower plant 

density used in the case of wide spacing by producing greater growth and more shoots per 

stem. Consequently, in this way it is possible to determine the best spacing in areas with 

similar characteristics. 

Harvesting was performed with hand tools. The data for the inner stems were used during the 

biomass yield calculation.  

 

Figure 1. Plants of the Future Demonstration garden at the University of Debrecen (2010-

2015, Hungary) 

Source: authors’ photos and composition 

A: Sida plantation (left to right: 1m x 1m, 1m x 0.75m, 1m x 0.5m (Google Earth); 

B: 3-year-old Sida population;  

C: Sida population in November;  

D: Sida sheaves from a 3-year-old population. 

 

2.2. Plantlet production experiments 

 

The technology of plantlet production is described in detail in previously published papers by 

the authors of this study [18, 74]; therefore, it is not covered in this research. The nurse-in-

tray technology consists of using single-space units (595x300x65 mm (Figure 2/A)) instead of 

applying the cell-tray method (previous experiments) for plantlet production in unused 

production units. Following the short plantlet production period, plants are overwintered in 



so-called planting trenches which were established in accordance with field conditions (Figure 

2/C). Later, these plants can be easily removed from the planting trenches (Figure 2/B-E).  

 

Figure 2. Production of Sida plantlets with the nurse-in-tray method.  

Source: authors’ photos and composition 

A: establishment of the propagation tray,  

B: medium interwoven with roots at the time of plant relocation,  

C: trays placed in the planting trench (August 2014),  

D: the ultra-dense population in late autumn (November 2014),  

E: removing the wintered plants from the planting trench (May 2015), 

F: whole overwintered plantlet and cut back plantlet with roots. 

 

The nurse-in-tray plantlet production experiment was carried out on two occasions with seed 

densities of 30-40, and 50–64 per tray (0.18 m
2
) in the spring of 2014 and 2015, respectively 

(between July 2014 and May 2015). Two seeds were placed in the previously established 

planting holes (Figure 2/A). Since this latter spacing (64 seeds per tray) was shown to be the 

most favourable, plantlet costs were calculated in accordance with the results of this 

experiment (Table 4). The efficiency of each work phase of the nurse-in-tray method and the 

distribution of costs are shown in Table 4. In this experiment, plantlet production was 

performed with rented equipment, the cost of which is optional. 

 

Table 4. Calculated costs of the nurse-in-tray method, based on the authors’ own data. 

Work 

phase 

Personnel 

costs per 

1000 

plantlets 

(EUR) 

Material 

costs per 

1000 

plantlets 

(EUR) 

Polytunnel 

rental costs per 

1000 plantlets 

(EUR) 

Total cost per 

1000 plants 

with planting 

(EUR) 

Total cost per 

1000 plants 

without 

planting 

(EUR ) 

sowing 7.95 26.17 4.32 38.45 
 

 UD 

planting 
22.11 

 
22.11 

Total 30.06 26.17 4.32 60.56 38.45 

UD: ultra-dense planting (252 plantlets per m
2
) 

Source: authors’ own data and calculations 

 

2.3. Economic calculations 

 

The economic calculations focused on the efficiency of each production technology element, 

as well as the profitability of Sida production with a comparative method. 

 

In the analysis of the production technology, planting was compared to seeding, and fertiliser 

doses were examined in the light of the extra yield obtained. In the calculations the authors’ 

own results deriving from the extensive plantlet technology were used, while other data were 

provided by the literature source [27]. Hungarian technical literature sources and databases 

were used to retrieve the economic data related to the cost of fertilisation, mechanical and 

manual labour, while sowing seed and plantlet prices were obtained from international 

technical literature sources/databases. Rental fees (as actual or opportunity costs) were 

calculated using the Hungarian average (Hungarian Statistical Office, 2016), overhead costs 

(9% of direct costs) are based on sector-level data collection and processing from the Farm 



Accountancy Data Network (FADN), Research Institute of Agricultural Economics, Hungary 

(2016). 

 

In the case of 10,000 and 20,000 plant densities, the yields are the average of the results of the 

second to the fourth years of the authors’ own tests, since the yield of the first year is not 

relevant in our view, due to the partly balanced population. Costs of planting/sowing were 

calculated for a 20-year-long life cycle which could be reduced when extensive technology is 

used. Taxes were not considered as their levels may change significantly depending on the 

scale and type of operation. Profits from substituted branches as opportunity costs are 

excluded from our calculations, since they are not accounting costs, and so are not suitable for 

the calculation of either production costs, nor unit costs, and also because they are hard to 

predict and depend on plant, year, soil type and technology.  

 

The laboratory heating value was compared to the theoretically expected heating values 

(which can be estimated with formulas) and the actual heating value was calculated by taking 

into account the moisture content of the authors’ own material sample used in this research. 

The expected economic value of Sida combusted in a stove was obtained by a calculation 

based on the price of the most frequently used fuels, their typical heating value and stove 

efficiency. This can be considered as a theoretical market price of Sida. Given the fact that 

Sida is a brand new crop it does not have a market price, and so we had no real-world 

statistics available. 

 

Sida was taken into consideration just as a feedstock for biogas production, as it has become a 

potential feedstock of biogas plants in operation. The value of natural gas saving was 

calculated from the expected methane yield, based on literature sources. The stock exchange 

value of CO2 saving was also considered. The following basic data were used for the 

calculations:  

 biogas yield of Sida: 395 Nm
3
 t

-1
 Sida DM, of which the quantity of biomethane is 201 

Nm
3
  t

-1
 Sida DM [69],  

 moisture content of Sida: 14 % (average value of authors’ own measurements) 

 CO2 content of Sida: 175 Nm
3
 t

-1
 (own estimation) 

 CO2 density: 1.965 kg dm
-3

 [75] 

 Stock exchange price of CO2 saving: 5 EUR t
-1

 CO2 [76] 

For pelletizing and briquetting, Virginia fanpetals was accounted as a supplementary 

feedstock by using the technical and economic parameters of small-scale equipment in 

operation (capacity: 100 kg h
-1

). The extra costs of production were compared to the expected 

extra revenue. For this reason, the following parameters were used:  

 Electricity demand and price: 16.9 kW and 22.2 kW, 0.1 EUR kWh
-1

 [77, 78]  

 Personnel costs: 3 people employed for 9 months per year for a monthly salary of 500 

EUR  

 Other costs: expert evaluation 

 

Sida silage is also suitable for microalgae biomass production based on the work of Dębowski 

et al. (2017). Microalgae biomass consisting of Chlorella sp. and of Scenedesmus sp. was co-

digested with the silage of Sida in semi-continuous experiments under mesophilic anaerobic 

conditions. The results showed that mixing of silage of Sida with microalgae biomass ensured 

a more balanced C/N ratio with less inhibition and digester imbalance [79]. 

 

Beekeeping may also potentially result in significant revenue (if biogas is produced, the 

revenue is lower as a result of the previous harvest), mainly for small-scale producers. The 



honey yield was also calculated on the basis of technical literature sources, while for the price 

Hungarian premium honey prices were considered: 

 honey yield:  120 kg ha
-1

 [80] 

 price of honey: 10.8 EUR kg
-1

 [81] 

 

3. Theory  

 

Since there is very scarce literature available for Sida, limited mainly to Polish sources 

reporting production-related experiments, the authors of this paper consider it important to 

communicate the results of the Hungarian field experiments including economic calculations 

of production costs and the profit attainable in the case of energy utilization. The purpose of 

this study is to investigate the production technology of Virginia fanpetals based on technical 

literature sources, evaluate the efficiency of the plantlet production of Virginia fanpetals by 

using the authors’ experimental data and make economic calculations for Sida production. 
 

The plant health background of the vegetative plantation of Virginia fanpetals is not entirely 

known, making it a rather risky process. Cuttings cannot be properly maintained either, as 

they need to be preserved from drying, fungal infections, early emergence and heat damage at 

the same time [11]. Consequently, propagation from seed is the safest method of establishing 

the population. The prime cost of the propagation material is of crucial importance for an 

economical evaluation of the plant.  

 

Based on the calculations of Balezentiene et al. (2013), Sida is one of the most promising crop 

species in terms of its multi-criteria framework, and as a sustainable choice for energy 

production [82]. 
 

The reason for its high heating value is that its carbon and hydrogen content (47% and 6%, 

respectively) are basically the same as that of Miscanthus ssp. and energy willow, but the 

nitrogen and ash content (0.2% and 1.8%, respectively), which reduce heating value, are 

much lower than their respective values [83]. Sida is very suitable for biogas production even 

with its greater moisture content, because its biogas yield is very high (cca. 435 Ndm
3
 kg

-1
 

ODM) and its C/N ratio is very favourable [83]. 
 

The value of Sida is greatly dependent on the quality of biomass to be used, the purpose of 

use and the type of fossil energy source it substitutes. These factors were evaluated with the 

help of the typical technical parameters and Hungarian economic data for 2015. Our 

hypothesis is that the high yield and good composition probably make Sida a cheap raw 

material for heat and biogas production and also of potential interest to bee-keepers. 

 

4. Results 

 

4.1. Efficiency of plantlet production methods 

 

197-506 plantlets per m
2
 can be produced with the nurse-in-tray method, which corresponds 

to large-scale plantlet production (427 plantlets per m
2
). Based on the land rent, the rental rate 

for a polytunnel for the production of 1000 plantlets is between 4.30 and 17.00 EUR, 

depending on the plant density per m
2
. A higher density did not reduce germination; on the 

contrary, the most favourable germination rate was achieved in the case of the highest plant 

density (Table 5). 

 



Table 5. The efficiency of the NIT method and the rental rate of covered production 

equipment for the production of 1000 plants using various plant densities per tray. 

Number of 

sowed 

seeds /tray 

Germina-

tion rate 

Seedling 

per m
2
 

Polytunnel 

rent 

€ per m
2
 per 

month 

Plantlet 

growing time 

(day) 

Rental cost for 

the production 

of 1000 

plantlets, € 

30.00 
1
 59.00 196.67 

2.19 
32.00 

16.70 

40.00 
1
 64.50 286.67 11.45 

50.00 
1
 51.80 287.78 11.41 

64.00 
2
 71.20 506.31 20.00 4.32 

1
: plantlet production in August 2014. 

2
:
:
 plantlet production in May 2015 

Source: authors’ own tests and calculations 

 

Based on the calculated data, one person is able to produce 177.0-314.5 viable plantlets per 

hour, depending on the plant density, which amounts to a labour cost of 7.90-14.12 EUR for 

the production of 1000 plantlets (Table 6). These calculations are based on the most efficient 

spacing (64 plantlets per tray). In the experiments the total costs of the nursing of a single, 

healthy, well developed S. hermaphrodita plantlet fluctuated between 38.4 and 60.6 Euro 

cents.  

 

 Table 6. Efficiency of labour, calculated for the NIT method. 

Number 

of sown 

seeds 

per tray 

Labour 

efficiency 

tray h
-1 

Labour 

efficiency 

seed h
-1 

Loss 

(%) 

Labour 

efficiency 

(plantlet h
-1

) 

Cost of labour 

needed for the 

production of 1000 

plantlets, € 

30 5.00 300 41.0
a
 177.0 14.12 

40 3.75 300 35.5
ab

 193.5 12.92 

50 3.00 300 49.2
a
 152.4 16.40 

64* 3.50 448.00 29.8
b
 314.5 7.95 

Wage: 2.5 € h
-1

. Different letters mean that there are significant differences between the 

characteristics measured at the level of α = 0.05 based on the TUKEY test. 

Source: authors’ own data and calculations 

 

4.2. Estimated yield of Sida hermaphrodita  

 

The non-fertilised Sida population is expected to give a dry biomass yield ranging between 10 

228 kg ha
-1

 (13 300 plants per hectare) and 11 871 kg ha
-1

 (20 000 plants per hectare). It was 

observed that the soil exhaustion effect of higher plant density (20 000 plants per hectare) 

became increasingly intensive over time. For double plant density, the average yield was 

nearly identical in the second and third years, while wide spacing resulted in a more balanced 

population in subsequent years. In the fourth year, wider spacing resulted in a 9 384 kg ha
-1

 

yield, on average (Table 7).  

 

Table 7. Calculated average yield of Virginia fanpetals based on the average weight of inner 

stems. 
Years 2011 2012 

Spacing - thousand plants 

per ha 
10 13.3 20 10 13.3 20 

Average weight of inner 

stems 

299.6 ± 

56.2 

295.2 ± 

53.04 

195.4 

±034.4 

1120.87±93

.3 

769.06± 

94.4 

593.55± 

98.4 



Average yield kg ha
-1 2 996

a,a
 3 926

a,a
 3 909

a,a
 11 208

b,a
 10 229

b,a
 11 871

b,a
 

Moisture content % 14.75 18.23 

Years 2013 2014 

Spacing - thousand plants 

per ha 
10 13.3 20 10 13.3 20 

Average mass of inner stems 
1076.3±110

.8 

678.3±237.

7 

523.1±290.

8 

938.4± 

484.3 

426.57± 

175.6 

358.2± 

214.8 

Average yield kg ha
-1

 10 764
b,a

 9 022
b,a

 10 464
b,a

 9 384
c,a

 5 673
c,a

 7 164
c,a

 

Moisture content % 12.64 10.53 

Different letters on the left side mean that there are significant differences between the years 

analysed at the level of a = 0.05, but no significant differences between the different plant 

density values (right letters) based on the Tukey test. 

Source: authors’ own experimental data 

 

In order to use Sida for combustion purposes, it is necessary to know the higher heating value 

(HHV) of dry matter, for which an average of three literature data sources were used (Table 

8). 

 

Table 8. HHV of Sida hermaphrodita / Virginia fanpetals based on technical literature data 

and theoretical calculations. 

 
C H O S N Ash HHV (GJ/DM) Source 

 
      18.75 [33] 

% 47 6 44 0.03 0.2 1.8 18.30 [83] 

Heating value 16.450 7.080 4.400 0.003 0.004 0.036 19.10* [84] 

Average       18.71  

*: Calculation of HHV based on the content parameters of the latter source and Gaur and 

Reed’s equation (1995) (HHV=0.35XC + 1.18XH - 0.10XO + 0.02XS - 0.10XN - 0.02Xash) 

 

The average moisture content of the samples harvested was 14.04% in the four years 

examined, of which the low heating value at harvesting was calculated as follows: LHV = 

(HHV x (1-M)) - (P x M), where M: moisture content, P: heat of vaporisation of water, LHV: 

low heating value, HHV: high heating value) = 16.1 GJ t
-1

. 

 

Honey also represents added value, the yield of which could even reach 143 kg t
-1

 per hectare 

during flowering between late June and October, if quality parameters are favourable [80]. 

The value of this product is 144 EUR/ha based on an average Hungarian market price for 

acacia honey (10.8 EUR t-1). 

 

 4.3. Economic calculations 

 

The extra cost of planting is quite significant (2-3.5 EUR t-1) at a lower plant density and 

with extensive technology, while its production risk is much lower than that of sowing. In the 

case of very significant plant density (40 000 plants ha
-1

) and intensive technology, the 

difference is negligible in favour of planting (0.6 EUR t-1). The production cost of the more 

safely planted Sida increased to its highest level (3.5 EUR t
-1

) with a lower plant density in 

extensive conditions and with higher plant density in intensive production circumstances as 

regards the length of the production period (20 years) (Table 9). Production and unit costs are 

lowest when using the extensive technology of low plant density with plant sowing; therefore, 

this technology is recommended. This is especially true in the case of purchased sowing 

seeds, as the difference in costs between sowing and planting seems to be insignificant due to 



the much higher price of market seed. The least recommended version is the middle planting 

density using semi-intensive technology. 

 

Table 9. Economic differences between planting and sowing in relation to planting density. 

  10000 pcs/ha* 20000 pcs/ha* 40000 pcs/ha** 

Average yield (t DM ha-1) 9.0 8.4 20 

Cost of planting EUR ha-1 1565 2170 3382 

Cost of sowing EUR ha-1 929 1828 3625 

Fertilization EUR ha-1 0 0 140 

Plant protection EUR ha-1 78 156 156 

Harvesting EUR ha-1 51.6 51.6 51.6 

Rental fee EUR ha-1 145 145 145 

Overhead costs EUR ha-1 30 41 60 

Total cost of planting EUR ha-1 383 502 722 

Total cost of sowing EUR ha-1 351 485 734 

Difference (%) 9 4 -2 

Difference EUR ha-1 yr-1 32 17 -12 

Unit cost of Sida (planting) EUR t-

1 

42.6 59.6 36.1 

Unit cost of Sida (sowing) EUR t-1 39.1 57.6 36.7 

Difference EUR t-1 3.5 2.0 -0.6 

Source: *authors’ own experimental data, ** Borkowska and Molas (2012) [32] production 

data and authors’ own costs 

 

Virginia fanpetals can be combusted or gasified without any further processing if we 

substitute other energy sources for heating. We considered the burning of Sida in a stove 

which is suitable for burning firewood and can be found a typical village household, and we 

used its efficiency value for our calculations. The above example produces a value of 67-146 

EUR t
-1

, where the lowest savings occur as a result of substituting straw and the highest are 

related to pellets (Table 10). 

 

Table 10. Cost of processing the dry biomass of Virginia fanpetals. 

 

Price 

(1000 

HUF 

per 

unit) 

Heating 

value (GJ 

per unit) 

HUF 

per 

GJ 

EUR 

per 

GJ 

Stove 

efficiency 

compared 

with fossil fuel 

Stove 

efficiency 

Sida 

Sida 

theoretical 

market 

price EUR 

per t 

Natural gas (1) 100 34 2 941 9.3 0.9 0.8 131 

Pellet (2) 71 21 3 381 10.7 0.93 0.8 146 

Briquette (3) 56 19 2 947 9.4 0.85 0.8 139 

Straw (4) 15 12 1 250 4.0 0.75 0.8 67 

Firewood (5) 28 14 2 000 6.3 0.8 0.8 100 

Sources of basic data: 1: [71], 2:[77]:, 3:[76]:, 4:[85], 5:[86], exchange rate: 315 HUF/EUR 

(www.mnb.hu) 

 



The value of biogas produced from Sida was 55 EUR t
-1

 DM, which can be further increased 

by the possible sales of CO2 savings (2 EUR t
-1

 Sida DM). In addition, Sida can be used with 

higher moisture content for biogas production. 

 

The factors analysed can be taken into consideration for local use (with no transport costs). At 

the same time, they are many times higher than the production costs of Sida when considering 

any technology or substituted fuel. Ideally (in the case of combustion by substituting pellets), 

2 400 EUR t
-1

 can be realised with direct combustion and intensive technology per hectare, 

while the respective value of extensive technology was 1 107 EUR t
-1

, which is higher than 

that of most field crops produced on high quality land. 

 

The production of compressed products (pellets and briquettes), for which increasing market 

demand can be observed, calls for significant investment costs of around 12 080-12 400 EUR 

at a production scale of 100 kg h
-1

 (Table 11). 

 

Table 11. Investment costs for the production of compressed Sida products. 

 Pellet Briquette 

 

Price 

(EUR) (1) 

Operation 

time (yr) 

(2) 

Depreciation 

(EUR) 

Price 

(EUR)

(3) 

Operation 

time (yr) 

(2) 

Depreciation 

(EUR)  

(4) 

Press 1 850 3 617 5 500 3 1 833 

Matrix 130 1 130 
   

Cooling 

system 
3 200 20 160 

   

Drier 6 000 20 300 6 000 20 300 

Shredder 900 10 90 900 10 90 

Total cost 

(€) 
12 080 

 
1 297 12 400 

 
2 223 

Source: (1): [77] (2): expert opinion, (3): [87] (4): [85] 

 

The extra processing cost of pelleting in 2015 is around 101 EUR t
-1

, while that of briquetting 

is 111 EUR t
-1

 per year, in addition to the cost of feedstock production (Table 12). The total 

cost of producing pellets and biobriquettes from Sida (including raw material costs) is 137-

161 EUR t-1 and 147-171 EUR t-1, respectively, depending on the production technology 

used. 

 

Considering the market prices of pellets (215 EUR t
-1

) and briquettes (178 EUR t
-1

), profit can 

still be realised, although at much lower level compared to the local use of Virginia fanpetals. 

However, the return on invested capital in an optimal case can still be expected within 2-3 

years. 

 

Table 12. Compression cost of S. hermaphrodita (without feedstock costs). 

 

Pellet Briquette 

Depreciation, EUR per year 1 297 2 223 

Electricity, EUR per year (1) 3 380 4 440 

Personnel, EUR per year (2) 13 500 13 500 

Other costs, EUR per year (3) 2 000 2 000 



Total costs, EUR per year 20 177 22 163 

Production costs (EUR per t) 101 111 

Source (1): 16.9 kW and 22.2 kW, 0.1 EUR/kWh [77, 78] (2): 3 persons, 9 month/year 

employment, 500 EUR/month salary (3): expert opinion 

 

The main characteristics of S. hermaphrodita are summarised in Table 13, based on our own 

tests and experiments. 

 

Table 13. The main advantages and disadvantages of industrial scale production of Sida. 

 Advantage Disadvantage 

Industrial scale, 

cost effective 

propagation 

technology 

Sida plantlet cost was 38.4-60.6 Euro 

cents with the NIT method. This 

technology is also easily acceptable in 

industrial- and small scale production, 

and as a result of this technology the 

plantation can be established safely. 

The plantlet production needs a 

polytunnel or a greenhouse. The 

rental fees or investment costs 

fluctuate depending on the 

conditions prevailing in a given 

country. 

Plantation 

establishment 

The plantation establishment can be 

carried out with a traditional planting 

machine/ transplanter. 

The maintenance of the plantation also 

does not require any special machines. 

The use of seeds needs further 

innovative mechanization. 

Multipurpose 

utilization 

Sida can be used as a biomass plant, a 

fodder crop and for honey production. 

The seeds’ high crude oil- and protein 

content make them suitable for food, 

feed or cosmetic purposes 

Further studies are needed. 

Post-harvest 

(Processing) 

Because of the low moisture content of 

the biomass at the end of the season, 

additional drying is not required if the 

product is used for combustion. The costs of post-harvest 

processing (biogas production, 

pelleting etc.) considerably 

reduce the expected profit.  
Profitability 

Based on our calculations, the expected 

profit was 63-846 € ha
-1

 (7-94 € t
-1

) 

depending on the technology used. 

Additionally, honey production can 

produce a profit of 15.40-20.20 € (144 

€ t
-1

) per hectare. 

Environmental 

impacts 

In addition to the favourable 

environmental impacts of biomass 

plants in general, many literature 

sources report that Sida can recultivate 

polluted land. 

Sida has some polyphagous 

phytopathogen fungi 

(Sclerotinia sp., Fusarium sp, 

Rhizoctonia sp.), which can 

survive in the plant’s vegetative 

remains (stems, roots). 

Source: authors’ composition, based on their own tests and results 



 

5. Discussion 

 

5.1. Efficiency of plantlet production methods 

 

This experiment verified the authors’ previous hypothesis that the nurse-in-tray plantlet 

production and unprotected wintering (Nurse in Tray Method) of Virginia fanpetals with 

properly pre-treated seeds can be developed into an economical and safe new propagation 

method. Plantlet production can be performed near large-scale plots with low investment costs 

(38.4-60.6 Euro cents per plantlet) based on the calculated data. Firstly, there are no heating 

costs, and this phytotechnique can be easily and appropriately mechanized. Secondly, with 

this method, it is possible to produce plantlets with a hardened and strong root system. 

Furthermore, such plantlets can be planted easily with typical planting equipment. In addition, 

the large-scale transportation of plantlets can be flexibly adjusted and the planting can even be 

carried out over almost the entire year. The maintenance costs of the so-called UD (ultra-

dense) planting are insignificant. The propagation material needed for 1 ha can be produced 

on a very small plot (70 m
2
), while a high plant density prevents weeds from growing. 

  

5.2. Estimated yield of Sida hermaphrodita 

 

In the second year, a yield of 10.2 – 11.8 DM ha
-1

 was achieved without fertilisation by using 

extensive technology. This value falls within the yield range referred to in bibliographical 

sources. The soil exhaustion impact of a higher plant density (20 000 plants per hectare) was 

increasingly noticeable in years following planting. At the same time, the yield obtained with 

a plant density of 10 000 plants per hectare remained basically unchanged in the three 

subsequent years. In addition, the wide spacing can make it easier to control weeds 

mechanically in the early vegetative period of Virginia fanpetals. However, when using 

extensive technology, organic manure application is recommended in order to provide long-

term maintenance. Several studies have highlighted the tolerance of Sida to soils 

contaminated with heavy metals or treated with sewage sludge, so Sida can play a significant 

role in the reclamation of contaminated soils with a high organic matter content. Also, 

Virginia fanpetals plantations are appropriate locations for disposing of sewage sludge 

produced in large volumes. With regard to fertilization, the digested manure was obtained 

from a commercially operating biogas plant using maize silage as feedstock, providing an 

opportunity for sustainable soil management. Instead of using organic substance mineral 

fertilizers digested manure may increase the yields and contribute to carbon sequestration in 

soil, but the high energy consumption for the feedstock production has an overall adverse 

effect. Moreover, Krzyżaniak et al. (2018) suggest that using fertilizers in general at a rate 

equivalent to 170 kg ha
-1

 N may not be justified because of a high impact on freshwater 

eutrophication and acidification [88].  

 

5.3. Economic calculations 

 

The calculated cost of the production of an extra ton of yield with fertilisation is around 13.8 

EUR. For this reason, high quality land fertilisation could also be economically justified in the 

dosage (218 kg ha
-1

 NPK) reported by Borkowska et al. [32], if the other factors of intensive 

technology are also provided. As is shown in the experiments, the use of local organic manure 

(mainly wastewater and sewage sludge) is much more justified on marginal land, in order to 

decrease the pressure on prime cropland for food security reasons. 

 



According to the authors’ economic calculations, the production cost of Sida over a 20-year 

life cycle fluctuated between 36 and 60 EUR t
-1

 DM, depending on the production technology 

used.  

 

For some additional cost, planting made yields much safer with both extensive and semi-

intensive technology. At the same time, revenue exceeded production costs in all scenarios, 

excluding the semi-intensive production of Sida technology for biogas production. The 

expected profits are the following: 

 combustion:   70-94 EUR t
-1

 

 biogas:   (-)6-(+)18 EUR t
-1

 (+2 EUR t
-1

 CO2 value) 

 pelleting:  54-78 EUR t
-1

 

 briquetting:  7-31 EUR t
-1

 

 honey production: 144 EUR t
-1

 (if it is used for any other purpose) 

 

According to this study, the production cost of Virginia fanpetals was between 36 and 60 

EUR t
-1 

in Hungarian economic conditions. Based on Polish data, the structure of the direct 

production cost of Sida can be broken down as follows: seedlings 28.2%; plant protection 1%; 

chemicals 12.4%, mechanized methods 35.7%; human labour 3.7% [89]. Our experiments are 

similar, but labour is included in the related working operations, and we considered the rental 

fee of land – which, at 20-40% is a very significant cost element –  as a direct cost. 

 

The profitability of Sida plantations is moderate compared to other energy crops, due to the 

more unfavourable production conditions. In 2009, the total amount of these potential 

revenues on surveyed plantations of willow amounted to 107 €/ha/year, while for miscanthus 

the figure was 171-202 €/ha/year and for Sida hermaphrodita 79-92 € /ha/year without 

payments and subsidies in Poland [89]. 

 

6. Conclusions 

 

In accordance with the experiments, the cost of nurse-in-tray technology seems to be 

significantly cheaper, (38.4-60.6 Euro cent) compared to market plantlet prices. In addition, 

nurse-in-tray technology proved to be more reliable than sowing.  

 

Based on the calculated biomass production of different dense plantations, the soil depletion 

impact of higher plant densities (13 300 and 20 000 plants per hectare) was increasingly 

evident; consequently, the biomass production decreased considerably (from 10.2 and 11.9 t 

ha-1 to 5.6 and 7.2 t ha-1) in the years following planting. At the same time, the yield 

obtained with a plant density of 10 000 plants per hectare decreased only slightly (11.2 and 

9.4 t ha-1) in the three years studied. Accordingly, with extensive technology, a wide plant 

density is recommended, although land fertilization could also be economically justified at a 

sufficient dosage and in the appropriate form. 

 

Overall, the agrotechnology applied (production method, plant density and inputs used, in 

particular fertilization) basically determines the production cost of Sida, while the substituted 

energy source for heating determines the savings by substituting other energy sources and the 

capital requirement, and thus producing the economic results. These can result in a production 

cost difference of up to 20,000 HUF / tonne.  

 



Based on this study’s economic calculations, the production costs of Sida plantation over a 20 

year life cycle are significantly lower than the revenue they produce under Hungarian 

economic conditions. Planting made the establishment of Virginia fanpetals plantations safer, 

although it incurs some extra costs. Consequently, the production of Virginia fanpetals can be 

highly economical for farmers farming marginal land with the application of organic manure 

and with biogas plants in operation. Another option is crop production with a high heat 

demand, as well as beekeeping activities. 
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