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Abstract: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults,
with an incidence of 4–5 cases per million. The prognosis of UM is very poor. In the present study,
our aim was to investigate the expression of mRNA and protein for somatostatin receptor types-1,
-2, -3, -4, -5 (SSTR-1–5) in human UM tissue samples and in OCM-1 and OCM-3 human UM cell
lines by qRT-PCR, western blot and ligand competition assay. The mRNA for SSTR-2 showed
markedly higher expression in UM tissues than SSTR-5. The presence of SSTRs was demonstrated
in 70% of UM specimens using ligand competition assay and both human UM models displayed
specific high affinity SSTRs. Among the five SSTRs, the mRNA investigated for SSTR-2 and SSTR-5
receptors was strongly expressed in both human UM cell lines, SSTR-5 showing the highest expression.
The presence of the SSTR-2 and SSTR-5 receptor proteins was confirmed in both cell lines by western
blot. In summary, the expression of somatostatin receptors in human UM specimens and in OCM-1
and OCM-3 human UM cell lines suggests that they could serve as a potential molecular target for
therapy of UM using modern powerful cytotoxic SST analogs targeting SSTR-2 and SSTR-5 receptors.

Keywords: human uveal melanoma; somatostatin receptors; molecular targets SSTR-1-5;
cancer therapy

1. Introduction

Uveal melanoma is the most common primary intraocular malignancy in adults [1], with a yearly
incidence of 4–5 cases per million [2]. The intraocular uveal tract is comprised of the iris, choroid and
ciliary body. The reason for malignant UM formation is unknown, but various predisposition factors
have been associated with the development of this quite aggressive disease. A few personal features,
such as fair complexion [3], light irides [4,5], uveal naevi [6], dysplastic naevus syndrome [7,8],
oculodermal and ocular melanocytosis [9] and neurofibromatosis type 1 (NF1) [10,11], have been
connected with an increased chance of UM [12]. The mortality due to UM has remained relatively
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unchanged, in spite of earlier detection and consequently smaller primary tumor burdens [13,14].
Approximately half of all patients with UM will eventually develop metastatic disease. It is generally
supposed that the primary reason for treating UM is to avoid metastatic spreading of the tumor from
the eye [13,15]. The liver is the most common site of metastases and once liver metastases are clinically
apparent the prognosis becomes poor. One of the most significant predictors for UM-related death is
loss of chromosome 3 [16–18]. The incidence of UM in whites is eight times higher than in blacks [19].
The leading predictors of survival for UM are histologic cell type, largest tumor diameter, age, gender
and tumor location [20]. More unbiased classification parameters have appeared from comprehensive
cytomorphometrical studies. Life expectancy of UM patients with metastatic disease depends on
the rapidity of the metastatic process. In order to reduce the mortality caused by melanoma, it is
essential to prevent or eliminate metastatic disease. This requires early detection and the improvement
of prognostic factors [20,21]. It is crucial to increase our knowledge of the mechanism of metastasis
and describe reliable progression parameters as prognostic markers in primary UM [20]. These facts
inspire a constant search for new concepts to improve quality of life and extend survival of patients.
For patients with UM there is no effective therapy if metastases have developed. Despite several
therapeutic strategies and successful eradication of the ocular tumor, metastatic disease is almost
always fatal [21].

Uveal melanoma consists of a well-defined population of melanocytes, from which uveal
malignant melanoma originates. As melanocytes originate in the neuroectodermal-neural crest, it
is theorized that melanoma shows characteristics similar to neuroendocrine tumors. Somatostatin
was initially discovered as a hypothalamic neurohormone. It is widely distributed in the central and
peripherial nervous system and has also been found in the endocrine pancreas, gut, thyroid, adrenal
glands, and kidneys [22–24].

Somatostatin receptors (SSTRs) have been shown to be expressed in several different types of
cancer, including uveal melanoma [22,24–26]. There are two different forms of bioactive peptides
which are produced in mammals. Somatostatin-14 is a cyclic peptide including 14 amino acids,
and somatostatin-28 consists of 28 amino acids. Somatostatin (SST) acts mainly as an inhibitory factor
in cell proliferation and hormone secretion with endocrine, paracrine and autocrine activities [23].
At least five subtypes of SSTRs have been characterized in humans (1, 2A, 2B, 3, 4, and 5), and SSTR-2
and SSTR-5 are the ones mostly studied in human cancers including primary UM. The genes for these
subtypes are located on different chromosomes [22,27]. SSTR-2 otherwise splices to generate two
isoforms named SSTR-2A and SSTR-2B, which deviate in their C-terminal sequences. They all bind to
SST-14 and -28, but they have a slightly higher affinity to SST-14 [28].

Somatostatin could be involved in tumor growth suppression, as confirmed by the use of
SST analogs to treat neuroendocrine tumors [24,29,30]. Earlier in vitro and in vivo experimental
studies have already demonstrated the inhibitory effect of various SST analogs and cytotoxic SST
analog AN-162 in breast cancer, lung cancer, glioblastoma, and colon carcinoma, suggesting the
potential application of modern powerful cytotoxic SST analogs in patients suffering from malignant
tumors [23,24,26,30–35]. Even if each tumor expresses more than one subtype of SSTRs, SSTR-2 is the
most regularly observed. The biological effects of SST are mediated by specific G protein-coupled
plasma membrane receptors, which are placed in specific target cells of the gastrointestinal [36] tract,
the peripheral nervous system and various blood vessels.

As a result of the similar origin of SST and UM cells, a possible correlation or interaction can be
found. A connection between eye tissue and neurohormones has already been discovered in several
studies [37–39]. However, there is still limited information about SSTR expression and characterization
in human UM. Therefore, we aimed to widen our research regarding the expression of SSTR types in
human UM, in order to recognize specific membrane receptors as molecular targets for diagnostic and
therapeutic purposes.

In the present study, our goal in the experimental work was to examine the expression of mRNA
for somatostatin receptor types-1, -2, -3, -4 and -5 (SSTR-1–5) in human UM cell lines and tissue samples.
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We also aimed to study the presence and binding characteristics of SSTR protein by Western blot and
ligand competition assays. An additional goal was to compare our results with clinicopathological
data in order to better understand their diagnostic and therapeutic significance.

2. Results

2.1. Expression of SSTRs in Human UM Tissue Samples

In our study 46 human UM tissue samples were investigated. The clinicopathological data of
patients are shown in Table 1. Twenty nine samples were obtained from men and 17 samples from
women. More than half of the patients (24, 52%) were over 66 years of age, while the remaining
samples were equally distributed among the different age groups.

Table 1. Clinicopathological characteristics and SSTR results of uveal melanoma specimens.

Number
of Case

Age
(Years) Sex Histology mRNA for

SSTR-2
mRNA for

SSTR-5

SSTR Binding

Kd (nM) Bmax
(fmol/mg Protein)

1 30 female Spindle − N/A N/A N/A
2 33 female Spindle + N/A N/A N/A
3 35 male Spindle − N/A N/A N/A
4 38 male Spindle + N/A 6.42 304
5 39 male N/A + N/A N/A N/A
6 39 male Epithelioid − + 9.19 527
7 43 male Spindle + N/A N/A N/A
8 45 male Spindle and Epithelioid + N/A N/A N/A
9 47 male Epithelioid − − − −

10 47 male Epithelioid + + 8.53 1052
11 50 female Spindle + N/A N/A N/A
12 50 female Spindle + N/A N/A N/A
13 52 male Spindle + N/A N/A N/A
14 53 male Epithelioid + N/A 6.24 260
15 53 male N/A − N/A N/A N/A
17 60 male Epithelioid + N/A N/A N/A
18 61 male Spindle + N/A N/A N/A
19 62 female Epithelioid + N/A 5.58 583
20 64 male N/A + N/A N/A N/A
21 64 male Spindle − + 4.75 482
22 65 male Spindle − + 3.18 467
23 66 male Epithelioid + N/A N/A N/A
24 67 male Epithelioid + N/A 5.04 509
25 68 female Spindle − N/A − −
26 68 male Spindle + N/A N/A N/A
27 68 female Epithelioid + N/A N/A N/A
28 69 male Spindle and Epithelioid + N/A 9.48 774
29 70 male Spindle and Epithelioid + N/A N/A N/A
30 70 male Spindle + N/A 4.37 985
31 70 male Spindle − − − −
32 72 female Epithelioid + N/A N/A N/A
33 72 male Epithelioid + N/A 11.8 473
34 72 male Epithelioid − N/A N/A N/A
35 75 female Spindle − N/A − −
36 75 female Epithelioid + N/A N/A N/A
37 75 female Spindle + N/A 11.1 668
38 75 female Spindle − + 3.57 392
39 76 male Spindle − N/A − −
40 76 male Spindle + N/A N/A N/A
41 76 male Spindle − + 10.7 980
42 79 female Epithelioid + N/A N/A N/A
43 79 female N/A + N/A N/A N/A
44 79 female N/A + N/A N/A N/A
45 80 female Epithelioid − − − −
46 84 female Spindle + N/A N/A N/A

Abbrevations: N/A: not analyzed. “−”: negative. “+”: expression was observed. Kd: dissociation constant. Bmax:
maximal binding capacity.

Histopathological classification of these samples revealed that 10 of them belonged to spindle
type. Seven samples were determined to be epithelioid type and 2 samples were mixed of spindle and
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epithelioid types. Two samples were not classified histologically. Due to the limited amount of good
quality RNA isolated from UM tissue samples. 46 specimens were studied for the expression of mRNA
for SSTR-2 and nine specimens for SSTR-5.

The expression of mRNA for SSTR-2 was detected in 30 of the 46 human UM specimens (65.2%)
(Table 1, Figure 1). Nine human UM tissue samples were tested for SSTR-5 expression and we found
that 66.6% (6 specimens) of these samples were positive for SSTR-5 (Table 1, Figure 2). Among
the positive cases for SSTR-2, 60.0% were men and 40.0% women (Table 1). The distribution of
SSTR-2-positive samples by age group, showed the following findings: age 30–45 years: 62.5%;
age 46–55: 75.0%; age 56–65: 66.7%; age above 66 years: 66.7%. There was no correlation between
the expression of different SSTR-types and age groups. 40% of the samples positive for SSTR-2 were
spindle, 36.7% were epithelioid and 10% were mixed histological type. Four SSTR-5-positive samples
were spindle (66.7%) and two specimens were epithelioid (33.3%).

Figure 1. A representative figure of the expression of SSTR-2 in human uveal melanoma. L: 100 bp
DNA Ladder; “−”: negative control; “+”: positive control (UM pool); 1–5: representative human uveal
melanoma tissue samples; 6: CACO-2 cell line; 7: OCM-1 human uveal melanoma cell line; 8: OCM-3
human uveal melanoma cell line.

Figure 2. A representative figure of the expression of SSTR-5 in human uveal melanoma. L: 100 bp
DNA Ladder; 1–6: representative human uveal melanoma tissue samples; 7: CACO-2 cell line; 8:
OCM-1 human UM cell line; 9: OCM-3 human UM cell line. “+”: positive control (UM pool); “−”:
negative control.

The presence of SSTRs, characteristics of these SST-binding sites and specific binding of
radioiodinated RC-160 to membrane receptors on human UM samples were determined using ligand
competition assays. Of the 20 specimens examined, 14 (70%) showed SSTR binding (Table 1). Receptor
binding affinity and concentration of SSTRs in tumor membranes were measured in displacement
experiments. Analyses of the typical displacement curves of [125I]RC-160 by the same unlabeled
peptide (RC-160) showed that the one-site model could provide the best fit. Based on these results
the presence of one class of high affinity SSTR in crude membranes derived from human UM samples
was indicated. The computerized non-linear curve-fitting program and the Scatchard plot analyses
of the SST receptor binding data in 14 receptor positive tumor samples showed that the single class
of binding sites had a mean dissociation constant (Kd) of 7.14 nM (range 3.18–11.8 nM), with a mean
maximal binding capacity (Bmax) of 604.0 fmol/mg membrane protein (range 260–1052 fmol/mg
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protein). Biochemical specifications and parameters crucial for characterizing specific binding sites
were also defined. Thus, the binding of [125I]RC-160 was detected to be reversible, temperature-
and time-dependent, and linear with protein concentration in the human UM specimens examined
(data not shown). Competitive binding studies also demonstrated the specificity of SST binding sites
using numerous peptides structurally related or unrelated to SST. The binding of radiolabeled RC-160
was displaced completely by increasing concentrations (10−12–10−6 M) of SST-14, whereas none
of the structurally and functionally different and unrelated peptides analyzed, such as luteinizing
hormone-releasing hormone (LHRH), growth hormone-releasing hormone (GHRH), epidermal growth
factor (EGF), [Tyr4]bombesin, and insulin-like growth factor I inhibited the binding of radioiodinated
RC-160 at concentrations as high as 1 µM (data not shown).

2.2. Expression of SSTRs in Human UM Cell Lines

Our RT-PCR and qRT-PCR results clearly show that SSTR-1-5 were expressed in both human
UM cell lines examined. CACO-2 cell line as a positive control also showed the expression of all five
SSTRs examined. The highest expression of all the investigated SSTRs was observed in OCM-3 cell
line. However, in both cell lines, the expression of SSTR-2 and -5 was stronger than those of SSTR-1,
-3 and -4. All five SSTRs examined displayed significantly (p < 0.0001) higher expression in OCM-3
UM cell line than in OCM-1 (Figure 3). Western blot analysis also confirmed the presence of SSTR-2
and SSTR-5 receptor protein in OCM-1 and OCM-3 human UM cell lines. Similarly to our findings
on receptor mRNA, higher expression levels of SSTR-2 and SSTR-5 receptor protein were found in
OCM-3 tumor cell line, than in OCM-1 cell line detected by western blot (Figure 4).

Figure 3. Expression of SSTR-1-5 in OCM-1, OCM-3 human uveal melanoma cell lines and in CACO-2
human Caucasian colon adenocarcinoma cell lines. qRT-PCR results show that SSTR-1, -2, -3, -4, -5 are
expressed in both human UM cell lines examined. CACO-2 cell line was used as a positive control. The p
value obtained by GraphPad Prism—one-way ANOVA test was considered to be significant (* p < 0.0001).

Figure 4. Western blot analysis of SSTR-2 and SSTR-5 protein in human cell lines.

In cell membranes of OCM-1 and OCM-3 human UM cell lines, ligand competition studies
also revealed a single class of high affinity binding sites for SST with a mean dissociation constant
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(Kd) of 5.34 and 6.72 nM, respectively. The concentration of SSTRs was 433 fmol/mg membrane
protein in OCM-1 cells, while OCM-3 cells showed a markedly higher receptor level (981 fmol/mg
membrane protein).

Western blot analysis confirmed the presence of SSTR-2 and SSTR-5 receptor proteins in OCM-1
and OCM-3 human UM cell lines. CACO-2 human Caucasian colon adenocarcinoma cell line was used
as a positive control. Anti-HPRT (1:1000 dilution) was used as a housekeeping gene. A description of
experimental conditions is found in the Materials and Methods section.

3. Discussion

Uveal melanoma is the most frequently diagnosed primary malignant intraocular tumor in adults,
and the second most common form of melanoma after cutaneous melanoma [20,40]. Over the past
50 years, despite advances in diagnosis and effective local therapies, stage-specific UM mortality
rates have remained essentially unchanged and continue to be associated with significant mortality.
The liver is the most common and important target of metastasis, and liver failure due to metastasis is
the immediate cause of death in most patients [15,36].

Patients with UM face a gloomy prognosis, as about 45% die due to metastasis, irrespective of
the fact that the tumor is most frequently diagnosed and locally cured before any signs of clinical
distributed disease appear [41]. This led to the theory that micrometastases are already present
early in the disease process, but they remain inactive for many years before a clinically noticeable
macrometastasis develops [1].

Tumors of the ciliary body and choroid pose a severe threat to life. Treatment of primary uveal
melanoma is still disputed. It is still mostly agreed that enucleation is unavoidable for many large
ciliary body and choroidal melanomas. It seems justified to subject clinically relatively small, “active”
melanomas to some type of treatment. Many large melanomas and most medium-sized melanomas
are being treated nowadays by irradiation with or without thermotherapy, or by enucleation. It has
been suggested that modifications of local treatment will not result in any remarkable improvement in
survival, and that research must be directed towards treatment of metastatic disease [36].

The systemic treatment of UM is very limited. Adjuvant systemic therapy is primarily used
in patients at high risk of metastasis or developed metastatic patients, but the response rates for
classic chemotherapeutic agents remain between 7% and 25% [42]. Systemic chemotherapy for the
treatment of UM is ineffective. In spite of new insights into the genetic and molecular background
of metastatic UM, satisfactory systemic treatment approaches are currently lacking [43]. There are
currently no effective systemic therapies available that could be used for the primary tumor. Despite
the improvement in the diagnosis and therapy of primary UM, the number of metastatic deaths has
not been significantly reduced over the past 20 to 30 years [44,45]. Therefore, innovative therapeutic
methods are urgently awaited [24,25,46–48].

Both forms of the hypothalamic neuropeptide somatostatin (somatostatin-14 and -28), also exist
in the gastrointestinal tract and their function is to inhibit the secretion of many hormones including
growth hormone, insulin and gastrin, glucagon, secretin and cholecystokinin. In addition to its general
endocrine effects, SST can function as an autocrine/paracrine regulator and is also present in the
gastric mucosa, pancreas, and duodenum, where it suppresses exocrine secretions including gastric
acid and pancreatic enzymes, respectively [49].

Because of the short plasma half-life of SST-14 (3 min), more stable and more potent synthetic SST
analogs have been developed, including octreotide (Sandostatin®) [50], vapreotide (RC-160, Octastatin®),
and lanreotide (Somatulin®) [26,51]. The plasma half-life of SST analogs is 120 min, and these peptide
analogs are about 50 times more potent than SST in inhibiting growth hormone release from the pituitary.
It has been well published that SST and its octapeptide analogs exert their effects through specific
G-protein coupled membrane receptors [26,52]. While native SST shows similar high affinity to SSTR-1-5,
the synthetic octapeptides such as octreotide, RC-160, and RC-121 bind especially to SSTR-2 and SSTR-5,
present a moderate affinity to SSTR-3, and a low affinity to SSTR-1 and SSTR4 [49]. Somatostatin analogs,
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including RC-160, have been shown to function as effective tumor growth suppressors in experimental
models of various cancers. To increase therapeutic efficacy, new analogs have been prepared which
contain the cyclohexapeptide, designated SOM230 (pasireotide), which binds with high affinity to
SSTR-1, -2, -3 and SSTR-5 [53]. The presence of somatostatin receptors, mainly SSTR-2 on tumors,
allows the localization of certain primary tumors and their metastases using scintigraphic techniques.
Radiolabeled analogs of SST, such as [111In-DTPA-D-Phe1]-octreotide (OctreoScan®) are used clinically
for the localization of tumors expressing receptors for somatostatin. Targeted radiotherapy, in which
somatostatin analogs are linked to numerous radionuclides such as 68Gallium or 90Yttrium, is also
advancing clinically [30,54–56].

In this study, the expression of mRNA for SSTR-2 was studied in 46 UM specimens, and SSTR-5
in 9 UM tumor samples. Primary tumors were also tested at the protein level. In addition to detecting
SSTRs, OCM-1 and OCM-3 UM cell lines were also analyzed for receptor mRNA with quantitative
real-time RT-PCR. Thirty-one (65.2%) samples showed SSTR-2 positivity and 6 of nine samples (66.6%)
were SSTR-5 positive. Conversely, Ardjomand et al. [22] identified SSTR-2 expression in almost all of
the 25 tested UM samples. Furthermore, using ligand competition assay we investigated the binding of
radioiodinated RC-160 to membrane fractions of 20 UM specimens. We found that 70% of the human
UM samples studied displayed specific SSTRs with a mean Kd of 7.14 nM and with a mean Bmax of
604 fmol/mg membrane protein. It is also important to note that all receptor-positive tumor samples
expressed a well-detectable amount of the SSTR-2 or SSTR-5 receptor gene.

Histological distribution of the analyzed samples showed that more than half of the samples
(56.1%) were spindle cells, 36.6% were epithelioid, and the remaining 7.3% were mixed histologically.
Our findings suggest that the patient’s gender and age are not predicting factors. Our results demonstrate
that SSTR-2 and SSTR-5 are expressed in human UM specimens. qRT-PCR results show that SSTR-2 and
SSTR-5 are also highly expressed in both UM cell lines investigated. In this study, we provide evidence
for the existence of SSTRs in two human UM cell lines and demonstrate that OCM-3 cells express SSTRs
at a significantly higher level than OCM-1 cells (p < 0.0001). The receptor protein encoded by mRNA for
SSTR-2 or SSTR-5 was also demonstrated by western blot in both UM cell lines.

Targeted therapy of cytotoxic peptide analogs consisting of a cytotoxic group, such as a
doxorubicin, conjugated to peptide carriers should be more effective and less toxic than conventional
systemic chemotherapy. The only major side effect of these analogs is myelosuppression caused by
the infrequent chemical cleavage of the cytotoxic radical doxorubicin [57,58]. The high incidence of
SST receptors in UM suggests that this type of tumor might be a good candidate for therapy with
SST analogs including the targeted cytotoxic peptide AN-162 [24,26]. Since therapy for UM is not
effective, our work helps to identify specific molecular targets for the prevention of metastasis or
further proliferation of disseminated metastases.

4. Materials and Methods

4.1. Cell Lines and Culture Conditions

OCM-1 and OCM-3 human primary UM cell lines were kindly provided by the Department
of Biophysics and Cell Biology, University of Debrecen, Hungary. In all our in vitro experiments
as a positive control CACO-2 (human Caucasian colon adenocarcinoma) cell line was used, which
was kindly provided by the Department of Pharmaceutical Technology, University of Debrecen,
Hungary. OCM-1 and OCM-3 cell lines were cultured in RPMI 1640 medium supplemented with
L-glutamine, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin in a humidified chamber in
5% CO2 at 37 ◦C. CACO-2 cell line was grown in Dulbecco’s Modified Eagle’s Medium, supplemented
with 3.7 g/L NaHCO3, 10% (v/v) heat-inactivated fetal bovine serum (FBS), 1% (v/v) non-essential
amino acids solution, 1% (v/v) L-glutamine, and 100 IU/mL penicillin/streptomycin in a saturated
humidified chamber in an atmosphere of 5% CO2 at 37 ◦C. Cells were subcultured every 3 days using
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a standard trypsinization procedure. This research received approval from the Institutional Ethics
Committee of the University of Debrecen.

4.2. Preparation of Uveal Melanoma Tissue Samples from Patients

Specimens of primary human UM were obtained from 46 patients at the time of initial surgical
treatment at the Department of Ophthalmology, University of Debrecen, Debrecen, Hungary. The local
Institutional Ethics Committee approved the collection and use of these specimens for the current
study and informed consent was obtained from these patients. Tumor tissues were immediately frozen
in liquid nitrogen and stored at −80 ◦C until further processing. Histopathological examination of
each specimen was undertaken to confirm the presence of cancer with minimal mixed non-malignant
tissue. All cancer samples were primary tumors and without metastases. Clinicopathological data of
the UM specimens are shown in Table 1.

4.3. RNA Isolation and Reverse Transcription PCR

Homogenization of the UM tissue samples were performed with Tissue Ruptor (IKA®-WERKE
GmbH, Staufen im Breisgau, Germany). Total RNA from tumor tissues and OCM-1 and OCM-3 cells
was isolated with NucleoSpin DNA/RNA/Protein Kit (Macherey-Nagel, Düren, Germany) according
to manufacturer’s protocol. Quantitative and qualitative assays for RNA were performed using a
NanoDrop spectrophotometer (ND-1000, Bioscience, Budapest, Hungary).

Two hundred fifty nanograms of RNA from each sample were reverse-transcribed into cDNA
using Tetro cDNA Synthesis Kit (Bioline Reagents, London, UK). Reaction was performed according to
the manufacturer’s instructions. RT-PCR reaction was performed in 25 µL reaction volume with gene
specific primers. The primer sequences are shown in Table 2. The reaction consisted of 35 cycles (95 ◦C
for 15 s, 60 ◦C for 30 s, 72 ◦C for 10 s) and lasted for 2 min extension at 72 ◦C. PCR was performed
with gene-specific primers for SSTR-1, SSTR-2, SSTR-3, SSTR-4 and SSTR-5 using PCR MyTaq Master
Mix (Bioline Reagents). PCR reaction was performed in a C1000 TM Thermal Cycler RT-PCR system
(Bio-Rad, Hercules, CA, USA). For SSTR-1, -2, -3, -4, -5 and β-actin an initial denaturing step at 94 ◦C
for 30 s was followed by 30 PCR cycles consisting of denaturation at 94 ◦C for 15 s, annealing at 60 ◦C
for 30 s and extension at 72 ◦C for 15 s. β-actin was used as a positive internal control. PCR product
was separated in a 1.5% agarose gel containing GelRed and detected in UV light, digitalized with
AlphaDigiDoc™ RT (Alpha Innotech, Santa Clara, CA, USA). To determine the size of DNA, 50 bp
DNA marker (Bioline Reagents) was used.

Table 2. The sequences of SSTR-1, -2, -3, -4, -5 and β-actin primers used for qRT-PCR assay.

Target Forward Sequence Reverse Sequence

SSTR-1 tgagtcagctgtcggtcatc ggaaagagcgcttgaagttg
SSTR-2 ctttgtggtggtcctcacct gcagaggacattctggaagc
SSTR-3 ttcctctcctaccgcttcaa ctcctcctcatcctcctcct
SSTR-4 tctttgtgctctgctggatg ggataagggacacgtggttg
SSTR-5 tctttgtgctctgctggatg gttggcgtaggagaggatga
β-actin ggcatcctcaccctgaagta ggggtgttgaaggtctcaaa

4.4. Quantitative Real-Time PCR

Total RNA (1000 ng) was reverse transcribed into cDNA using Tetro cDNA Synthesis Kit
(Bioline Reagents) according to the manufacturer’s instruction. To quantity mRNA for SSTR-1, -2, -3, -4
and SSTR-5 real-time RT-PCR method was performed with iTaq™ Universal SYBR® Green Supermix
(Bio-Rad) in CFX96 Touch TM Real-Time PCR detection System (Bio-Rad) with a 20 µL final reaction
mixture. The reaction was carried out at 95 ◦C for 10 min, followed by 45 cycles at 95 ◦C for 15 s and
60 ◦C for 60 s. β-actin was used as an endogenous reference gene. All real-time amplifications were
measured in triplicates. Relative mRNA expression for SSTRs was measured by ∆∆Ct method with
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threshold cycle times of each target SSTR and β-actin. Template-free and reverse transcription-free
controls excluded non-specific amplification and DNA contamination.

4.5. Western Blot Analysis

For western blot analysis adherent cells were harvested in M-PER lysis buffer (Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with protease inhibitor (Sigma-Aldrich, St. Louis, IL, USA).
Total protein concentration was measured by the Pierce BCA protein assay kit (Thermo Fisher Scientific).
SDS-PAGE gel electrophoresis was performed under reducing conditions using 10% polyacrylamide gels.
Equal amounts of proteins (40 µg) were separated and then transferred to PVDF membrane using wet
transfer. After blocking with 5% TBST-milk, the membranes were incubated (overnight, 4 ◦C) with primary
antibodies SSTR-5: anti-somatostatin-receptor-2-rabbit, 1:1000 dilution (ab134152 rabbit monoclonal;
Abcam, Cambridge, UK) and anti-somatostatin-receptor-5-rabbit, 1:1000 dilution (ab109495 rabbit
monoclonal; Abcam). As a housekeeping gene anti-HPRT was used, 1:1000 dilution (PA-22281 rabbit
polyclonal; Cell Signaling Technology, Danvers, MA, USA). After the washing steps, the membrane was
incubated with alkaline phosphatase conjugated polyclonal rabbit-anti-mouse secondary antibody, 1:3000
dilution (sc-2771; Santa Cruz Biotechnology Inc., Dallas, TX, USA). Proteins were detected with Alkaline
Phosphatase Conjugate Substrate Kit (Bio-Rad).

4.6. Radioligand Binding Studies

Radioiodinated derivatives of SST analog RC-160 were prepared using the chloramine-T method
and purified using reverse phase high performance liquid chromatography (RP-HPLC) as described
earlier [59]. Somatostatin receptor binding studies were performed as previously reported [59] with
some minor modifications using in vitro ligand competition assays based on binding of [125I]RC-160
as radioligand to uveal melanoma membrane fractions. This radioiodinated ligand was well
characterized as reported earlier and demonstrated high affinity binding to SSTR-2 and SSTR-5 [59].
Tumor membrane homogenates were incubated with 50,000–70,000 cpm of radioiodinated RC-160
and 10−12–10−6 M of nonradioactive peptides as competitors. After 2 h of incubation the binding
reactions were terminated, and the bound ligand was separated then counted in a gamma-counter.
The LIGAND-PC computerized curve-fitting software of Munson and Rodbard was used to identify
the type of receptor binding, dissociation constant (Kd), and the maximal binding capacity of the
receptors (Bmax) [59].

4.7. Statistical Analysis

Correlation analysis was carried out among the expression of mRNA for SSTR-1, -2, -3, -4, -5
receptors in OCM-1 and OCM-3 cell lines with the use of GraphPad Prism 7—one way ANOVA test
to assess the significance of the expression of SSTR-1–SSTR-5 genes of OCM-1 and OCM-3 cell lines
(GraphPad Software Inc., La Jolla, CA, USA).

5. Conclusions

Our findings, that a high percentage of human UM samples express SST receptors, support the
view that targeted cytotoxic SST analogs such as AN-162 could be used to effectively treat UM. Future
investigations are needed to prove the therapeutical and clinical significance of our findings and
provide better understanding of the development of human UM. Our studies should help in the early
diagnosis of metastasis and in the use of SST analogs in subsequent improved targeted therapies.

Author Contributions: Conceptualization, K.H., Z.S. and G.H.; Methodology, K.H., Z.S., E.S., G.O., K.F., C.S.,
G.M. and G.H.; Software, K.H., Z.S.; Validation, Z.S., G.M., A.V.S. and G.H.; Formal Analysis, K.H., Z.S., and C.S.;
Investigation, K.H., Z.S., E.S., G.O., K.F. and G.H.; Resources, G.M. and G.H.; Data Curation, K.H., K.F., G.M,
A.V.S. and G.H.; Writing-Original Draft Preparation, K.H., Z.S., E.S., A.V.S. and G.H.; Writing-Review & Editing,
K.H., Z.S., E.S., G.H., A.V.S. and G.H.; Visualization, K.H., Z.S. and G.H.; Supervision, A.V.S. and G.H. Project
Administration, G.H.; Funding Acquisition, G.H.



Molecules 2018, 23, 1535 10 of 13

Funding: The work was financed by the GINOP-2.3.2-15-2016-00043 (G.H.) project. The project is co-financed by
the European Union and the European Regional Development Fund and EFOP-3.6.1-16-2016-00022 (K.H., G.O.).
The research was also financed by the Higher Education Institutional Excellence Programme of the Ministry of
Human Capacities in Hungary, within the framework of the Biotechnology Thematic Programme of the University
of Debrecen (G.H.).

Acknowledgments: This work is in memory of the late Andrea Treszl, who died of metastatic breast cancer.
Her intellectual and personal contributions gave us great motivation. We also are thankful for the help of Zita
Steiber for the collection of clinical specimens.

Conflicts of Interest: The authors declare no conflicts of interests in this work. The founding sponsors had no role
in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript,
and in the decision to publish the results.

References

1. Eskelin, S.; Pyrhonen, S.; Summanen, P.; Hahka-Kemppinen, M.; Kivela, T. Tumor doubling times in
metastatic malignant melanoma of the uvea: Tumor progression before and after treatment. Ophthalmology
2000, 107, 1443–1449. [CrossRef]

2. Singh, A.D.; Turell, M.E.; Topham, A.K. Uveal melanoma: Trends in incidence, treatment, and survival.
Ophthalmology 2011, 118, 1881–1885. [CrossRef] [PubMed]

3. Seddon, J.M.; Gragoudas, E.S.; Glynn, R.J.; Egan, K.M.; Albert, D.M.; Blitzer, P.H. Host factors, UV radiation,
and risk of uveal melanoma. A case-control study. Arch. Ophthalmol. 1990, 108, 1274–1280. [CrossRef]
[PubMed]

4. Gallagher, R.P.; Elwood, J.M.; Rootman, J.; Spinelli, J.J.; Hill, G.B.; Threlfall, W.J.; Birdsell, J.M. Risk factors for
ocular melanoma: Western Canada melanoma study. J. Natl. Cancer Inst. 1985, 74, 775–778. [PubMed]

5. Holly, E.A.; Aston, D.A.; Char, D.H.; Kristiansen, J.J.; Ahn, D.K. Uveal melanoma in relation to ultraviolet
light exposure and host factors. Cancer Res. 1990, 50, 5773–5777. [PubMed]

6. Ganley, J.P.; Comstock, G.W. Benign nevi and malignant melanomas of the choroid. Am. J. Ophthalmol. 1973,
76, 19–25. [CrossRef]

7. Hammer, H.; Olah, J.; Toth-Molnar, E. Dysplastic nevi are a risk factor for uveal melanoma. Eur. J. Ophthalmol.
1996, 6, 472–474. [CrossRef] [PubMed]

8. Albert, D.M.; Chang, M.A.; Lamping, K.; Weiter, J.; Sober, A. The dysplastic nevus syndrome. A pedigree
with primary malignant melanomas of the choroid and skin. Ophthalmology 1985, 92, 1728–1734. [CrossRef]

9. Singh, A.D.; De Potter, P.; Fijal, B.A.; Shields, C.L.; Shields, J.A.; Elston, R.C. Lifetime prevalence of uveal
melanoma in white patients with oculo(dermal) melanocytosis. Ophthalmology 1998, 105, 195–198. [CrossRef]

10. Duve, S.; Rakoski, J. Cutaneous melanoma in a patient with neurofibromatosis: A case report and review of
the literature. Br. J. Dermatol. 1994, 131, 290–294. [CrossRef] [PubMed]

11. Antle, C.M.; Damji, K.F.; White, V.A.; Rootman, J. Uveal malignant melanoma and optic nerve glioma in von
recklinghausen’s neurofibromatosis. Br. J. Ophthalmol. 1990, 74, 502–504. [CrossRef] [PubMed]

12. Van den Bosch, T.; Kilic, E.; Paridaens, D.; de Klein, A. Genetics of uveal melanoma and cutaneous melanoma:
Two of a kind? Dermatol. Res. Pract. 2010, 2010, 360136. [CrossRef] [PubMed]

13. Amaro, A.; Gangemi, R.; Piaggio, F.; Angelini, G.; Barisione, G.; Ferrini, S.; Pfeffer, U. The biology of uveal
melanoma. Cancer Metastasis Rev. 2017, 36, 109–140. [CrossRef] [PubMed]

14. Donoso, L.A.; Folberg, R.; Naids, R.; Augsburger, J.J.; Shields, J.A.; Atkinson, B. Metastatic uveal melanoma.
Hepatic metastasis identified by hybridoma-secreted monoclonal antibody MAb8-1h. Arch. Ophthalmol.
1985, 103, 799–801. [CrossRef] [PubMed]

15. Kujala, E.; Makitie, T.; Kivela, T. Very long-term prognosis of patients with malignant uveal melanoma.
Investig. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [CrossRef]

16. Prescher, G.; Bornfeld, N.; Hirche, H.; Horsthemke, B.; Jockel, K.H.; Becher, R. Prognostic implications of
monosomy 3 in uveal melanoma. Lancet 1996, 347, 1222–1225. [PubMed]

17. Sisley, K.; Rennie, I.G.; Parsons, M.A.; Jacques, R.; Hammond, D.W.; Bell, S.M.; Potter, A.M.;
Rees, R.C. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis.
Genes Chromosomes Cancer 1997, 19, 22–28. [CrossRef]

http://dx.doi.org/10.1016/S0161-6420(00)00182-2
http://dx.doi.org/10.1016/j.ophtha.2011.01.040
http://www.ncbi.nlm.nih.gov/pubmed/21704381
http://dx.doi.org/10.1001/archopht.1990.01070110090031
http://www.ncbi.nlm.nih.gov/pubmed/2400347
http://www.ncbi.nlm.nih.gov/pubmed/3857374
http://www.ncbi.nlm.nih.gov/pubmed/2393851
http://dx.doi.org/10.1016/0002-9394(73)90003-2
http://dx.doi.org/10.1177/112067219600600423
http://www.ncbi.nlm.nih.gov/pubmed/8997595
http://dx.doi.org/10.1016/S0161-6420(85)34099-X
http://dx.doi.org/10.1016/S0161-6420(98)92205-9
http://dx.doi.org/10.1111/j.1365-2133.1994.tb08508.x
http://www.ncbi.nlm.nih.gov/pubmed/7917998
http://dx.doi.org/10.1136/bjo.74.8.502
http://www.ncbi.nlm.nih.gov/pubmed/2117971
http://dx.doi.org/10.1155/2010/360136
http://www.ncbi.nlm.nih.gov/pubmed/20631901
http://dx.doi.org/10.1007/s10555-017-9663-3
http://www.ncbi.nlm.nih.gov/pubmed/28229253
http://dx.doi.org/10.1001/archopht.1985.01050060059025
http://www.ncbi.nlm.nih.gov/pubmed/4004618
http://dx.doi.org/10.1167/iovs.03-0538
http://www.ncbi.nlm.nih.gov/pubmed/8622452
http://dx.doi.org/10.1002/(SICI)1098-2264(199705)19:1&lt;22::AID-GCC4&gt;3.0.CO;2-2


Molecules 2018, 23, 1535 11 of 13

18. Damato, B.; Duke, C.; Coupland, S.E.; Hiscott, P.; Smith, P.A.; Campbell, I.; Douglas, A.; Howard, P.
Cytogenetics of uveal melanoma: A 7-year clinical experience. Ophthalmology 2007, 114, 1925–1931.
[CrossRef] [PubMed]

19. Dahlenfors, R.; Tornqvist, G.; Wettrell, K.; Mark, J. Cytogenetical observations in nine ocular malignant
melanomas. Anticancer Res. 1993, 13, 1415–1420. [PubMed]

20. Mooy, C.M.; De Jong, P.T. Prognostic parameters in uveal melanoma: A review. Surv. Ophthalmol. 1996, 41,
215–228. [CrossRef]

21. Sato, T.; Han, F.; Yamamoto, A. The biology and management of uveal melanoma. Curr. Oncol. Rep. 2008, 10,
431–438. [CrossRef] [PubMed]

22. Ardjomand, N.; Ardjomand, N.; Schaffler, G.; Radner, H.; El-Shabrawi, Y. Expression of somatostatin
receptors in uveal melanomas. Investig. Ophthalmol. Vis. Sci. 2003, 44, 980–987. [CrossRef]

23. Ruscica, M.; Arvigo, M.; Steffani, L.; Ferone, D.; Magni, P. Somatostatin, somatostatin analogs and
somatostatin receptor dynamics in the biology of cancer progression. Curr. Mol. Med. 2013, 13, 555–571.
[CrossRef] [PubMed]

24. Schally, A.V.; Halmos, G. Targeting to peptide receptors. In Drug Delivery in Oncology; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 1219–1261.

25. Treszl, A.; Steiber, Z.; Schally, A.V.; Block, N.L.; Dezso, B.; Olah, G.; Rozsa, B.; Fodor, K.; Buglyo, A.; Gardi, J.;
et al. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human
uveal melanoma. Oncotarget 2013, 4, 1721–1728. [CrossRef] [PubMed]

26. Schally, A.V.; Comaru-Schally, A.M.; Nagy, A.; Kovacs, M.; Szepeshazi, K.; Plonowski, A.; Varga, J.L.;
Halmos, G. Hypothalamic hormones and cancer. Front. Neuroendocrinol. 2001, 22, 248–291. [CrossRef]
[PubMed]

27. Kouch-el Filali, M.; Kilic, E.; Melis, M.; de Klein, A.; de Jong, M.; Luyten, G.P. Expression of the SST receptor
2 in uveal melanoma is not a prognostic marker. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 1585–1592.
[CrossRef] [PubMed]

28. Benali, N.; Ferjoux, G.; Puente, E.; Buscail, L.; Susini, C. Somatostatin receptors. Digestion 2000, 62 (Suppl. 1),
27–32. [CrossRef] [PubMed]

29. Vitale, G.; Dicitore, A.; Sciammarella, C.; Di Molfetta, S.; Rubino, M.; Faggiano, A.; Colao, A. Pasireotide in
the treatment of neuroendocrine tumors: A review of the literature. Endocr.-Relat. Cancer 2018, 25, R351–R364.
[CrossRef] [PubMed]

30. Lamberts, S.W.; de Herder, W.W.; Hofland, L.J. Somatostatin analogs in the diagnosis and treatment of cancer.
Trends Endocrinol. Metab. 2002, 13, 451–457. [CrossRef]

31. Seitz, S.; Schally, A.V.; Treszl, A.; Papadia, A.; Rick, F.; Szalontay, L.; Szepeshazi, K.; Ortmann, O.; Halmos, G.;
Hohla, F.; et al. Preclinical evaluation of properties of a new targeted cytotoxic somatostatin analog, AN-162
(AEZS-124), and its effects on tumor growth inhibition. Anti-Cancer Drugs 2009, 20, 553–558. [CrossRef]
[PubMed]

32. Seitz, S.; Buchholz, S.; Schally, A.V.; Jayakumar, A.R.; Weber, F.; Papadia, A.; Rick, F.G.; Szalontay, L.;
Treszl, A.; Koster, F.; et al. Targeting triple-negative breast cancer through the somatostatin receptor with the
new cytotoxic somatostatin analogue AN-162 [AEZS-124]. Anti-Cancer Drugs 2013, 24, 150–157. [CrossRef]
[PubMed]

33. Treszl, A.; Schally, A.V.; Seitz, S.; Szalontay, L.; Rick, F.G.; Szepeshazi, K.; Halmos, G. Inhibition of human
non-small cell lung cancers with a targeted cytotoxic somatostatin analog, AN-162. Peptides 2009, 30,
1643–1650. [CrossRef] [PubMed]

34. Pozsgai, E.; Schally, A.V.; Halmos, G.; Rick, F.; Bellyei, S. The inhibitory effect of a novel cytotoxic somatostatin
analogue AN-162 on experimental glioblastoma. Hormone Metab. Res. 2010, 42, 781–786. [CrossRef] [PubMed]

35. Hohla, F.; Buchholz, S.; Schally, A.V.; Krishan, A.; Rick, F.G.; Szalontay, L.; Papadia, A.; Halmos, G.; Koster, F.;
Aigner, E.; et al. Targeted cytotoxic somatostatin analog AN-162 inhibits growth of human colon carcinomas
and increases sensitivity of doxorubicin resistant murine leukemia cells. Cancer Lett. 2010, 294, 35–42.
[CrossRef] [PubMed]

36. Gilson, M.M.; Diener-West, M.; Hawkins, B.S. Comparison of survival among eligible patients not enrolled
versus enrolled in the collaborative ocular melanoma study (COMS) randomized trial of pre-enucleation
radiation of large choroidal melanoma. Ophthalmic Epidemiol. 2007, 14, 251–257. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ophtha.2007.06.012
http://www.ncbi.nlm.nih.gov/pubmed/17719643
http://www.ncbi.nlm.nih.gov/pubmed/8239513
http://dx.doi.org/10.1016/S0039-6257(96)80024-5
http://dx.doi.org/10.1007/s11912-008-0066-z
http://www.ncbi.nlm.nih.gov/pubmed/18706273
http://dx.doi.org/10.1167/iovs.02-0481
http://dx.doi.org/10.2174/1566524011313040008
http://www.ncbi.nlm.nih.gov/pubmed/22934849
http://dx.doi.org/10.18632/oncotarget.1379
http://www.ncbi.nlm.nih.gov/pubmed/24077773
http://dx.doi.org/10.1006/frne.2001.0217
http://www.ncbi.nlm.nih.gov/pubmed/11587553
http://dx.doi.org/10.1007/s00417-008-0880-x
http://www.ncbi.nlm.nih.gov/pubmed/18682975
http://dx.doi.org/10.1159/000051852
http://www.ncbi.nlm.nih.gov/pubmed/10940684
http://dx.doi.org/10.1530/ERC-18-0010
http://www.ncbi.nlm.nih.gov/pubmed/29643113
http://dx.doi.org/10.1016/S1043-2760(02)00667-7
http://dx.doi.org/10.1097/CAD.0b013e32832d190b
http://www.ncbi.nlm.nih.gov/pubmed/19491659
http://dx.doi.org/10.1097/CAD.0b013e32835a7e29
http://www.ncbi.nlm.nih.gov/pubmed/23080077
http://dx.doi.org/10.1016/j.peptides.2009.06.007
http://www.ncbi.nlm.nih.gov/pubmed/19524629
http://dx.doi.org/10.1055/s-0030-1261955
http://www.ncbi.nlm.nih.gov/pubmed/20665426
http://dx.doi.org/10.1016/j.canlet.2010.01.018
http://www.ncbi.nlm.nih.gov/pubmed/20156671
http://dx.doi.org/10.1080/01658100701473275
http://www.ncbi.nlm.nih.gov/pubmed/17896305


Molecules 2018, 23, 1535 12 of 13

37. Elbadri, A.A.; Shaw, C.; Johnston, C.F.; Archer, D.B.; Buchanan, K.D. The distribution of neuropeptides in
the ocular tissues of several mammals: A comparative study. Comp. Biochem. Physiol. C 1991, 100, 625–627.
[CrossRef]

38. Helboe, L.; Moller, M. Immunohistochemical localization of somatostatin receptor subtypes SST1 and SST2
in the rat retina. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2376–2382.

39. Troger, J.; Sellemond, S.; Kieselbach, G.; Kralinger, M.; Schmid, E.; Teuchner, B.; Nguyen, Q.A.;
Schretter-Irschick, E.; Gottinger, W. Inhibitory effect of certain neuropeptides on the proliferation of human
retinal pigment epithelial cells. Br. J. Ophthalmol. 2003, 87, 1403–1408. [CrossRef] [PubMed]

40. Singh, A.D.; Topham, A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology 2003,
110, 956–961. [CrossRef]

41. Ossowski, L.; Aguirre-Ghiso, J.A. Dormancy of metastatic melanoma. Pigment Cell Melanoma Res. 2010, 23,
41–56. [CrossRef] [PubMed]

42. Bedikian, A.Y. Metastatic uveal melanoma therapy: Current options. Int. Ophthalmol. Clin. 2006, 46, 151–166.
[CrossRef] [PubMed]

43. Buder, K.; Gesierich, A.; Gelbrich, G.; Goebeler, M. Systemic treatment of metastatic uveal melanoma: Review
of literature and future perspectives. Cancer Med. 2013, 2, 674–686. [CrossRef] [PubMed]

44. Harbour, J.W. Molecular prognostic testing and individualized patient care in uveal melanoma.
Am. J. Ophthalmol. 2009, 148, 823–829. [CrossRef] [PubMed]

45. Singh, A.D.; Topham, A. Survival rates with uveal melanoma in the United States: 1973–1997. Ophthalmology
2003, 110, 962–965. [CrossRef]

46. Abildgaard, S.K.; Vorum, H. Proteomics of uveal melanoma: A mini review. J. Oncol. 2013, 2013, 820953.
[CrossRef] [PubMed]

47. Nichols, E.E.; Richmond, A.; Daniels, A.B. Tumor characteristics, genetics, management, and the risk of
metastasis in uveal melanoma. Semin. Ophthalmol. 2016, 31, 304–309. [CrossRef] [PubMed]

48. Sipos, E.; Dobos, N.; Rozsa, D.; Fodor, K.; Olah, G.; Szabo, Z.; Szekvolgyi, L.; Schally, A.V.; Halmos, G.
Characterization of luteinizing hormone-releasing hormone receptor type I (LH-RH-I) as a potential
molecular target in OCM-1 and OCM-3 human uveal melanoma cell lines. OncoTargets Ther. 2018, 11,
933–941. [CrossRef] [PubMed]

49. Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999, 20, 157–198. [CrossRef]
[PubMed]

50. Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.; Marbach, P.; Petcher, T.J.; Pless, J. Sms 201-995:
A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982, 31,
1133–1140. [CrossRef]

51. Cai, R.Z.; Szoke, B.; Lu, R.; Fu, D.; Redding, T.W.; Schally, A.V. Synthesis and biological activity of highly
potent octapeptide analogs of somatostatin. Proc. Natl. Acad. Sci. USA 1986, 83, 1896–1900. [CrossRef]
[PubMed]

52. Schally, A.V.; Szepeshazi, K.; Nagy, A.; Comaru-Schally, A.M.; Halmos, G. New approaches to therapy of
cancers of the stomach, colon and pancreas based on peptide analogs. Cell. Mol. Life Sci. 2004, 61, 1042–1068.
[CrossRef] [PubMed]

53. Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. Som230: A novel somatostatin
peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique
antisecretory profile. Eur. J. Endocrinol. 2002, 146, 707–716. [CrossRef] [PubMed]

54. Reubi, J.C.; Laissue, J.A. Multiple actions of somatostatin in neoplastic disease. Trends Pharmacol. Sci. 1995,
16, 110–115. [CrossRef]

55. Krenning, E.P.; Kwekkeboom, D.J.; Bakker, W.H.; Breeman, W.A.; Kooij, P.P.; Oei, H.Y.; van Hagen, M.;
Postema, P.T.; de Jong, M.; Reubi, J.C.; et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-
and [123I-Tyr3]-octreotide: The rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 1993,
20, 716–731. [CrossRef] [PubMed]

56. Kwekkeboom, D.J.; Krenning, E.P.; Bakker, W.H.; Oei, H.Y.; Kooij, P.P.; Lamberts, S.W. Somatostatin analogue
scintigraphy in carcinoid tumours. Eur. J. Nucl. Med. 1993, 20, 283–292. [CrossRef] [PubMed]

57. Schally, A.V.; Engel, J.B.; Emons, G.; Block, N.L.; Pinski, J. Use of analogs of peptide hormones conjugated
to cytotoxic radicals for chemotherapy targeted to receptors on tumors. Curr. Drug Deliv. 2011, 8, 11–25.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0742-8413(91)90051-T
http://dx.doi.org/10.1136/bjo.87.11.1403
http://www.ncbi.nlm.nih.gov/pubmed/14609844
http://dx.doi.org/10.1016/S0161-6420(03)00078-2
http://dx.doi.org/10.1111/j.1755-148X.2009.00647.x
http://www.ncbi.nlm.nih.gov/pubmed/19843243
http://dx.doi.org/10.1097/01.iio.0000195852.08453.de
http://www.ncbi.nlm.nih.gov/pubmed/16365561
http://dx.doi.org/10.1002/cam4.133
http://www.ncbi.nlm.nih.gov/pubmed/24403233
http://dx.doi.org/10.1016/j.ajo.2009.07.004
http://www.ncbi.nlm.nih.gov/pubmed/19800609
http://dx.doi.org/10.1016/S0161-6420(03)00077-0
http://dx.doi.org/10.1155/2013/820953
http://www.ncbi.nlm.nih.gov/pubmed/24078811
http://dx.doi.org/10.3109/08820538.2016.1154175
http://www.ncbi.nlm.nih.gov/pubmed/27128983
http://dx.doi.org/10.2147/OTT.S148174
http://www.ncbi.nlm.nih.gov/pubmed/29503568
http://dx.doi.org/10.1006/frne.1999.0183
http://www.ncbi.nlm.nih.gov/pubmed/10433861
http://dx.doi.org/10.1016/0024-3205(82)90087-X
http://dx.doi.org/10.1073/pnas.83.6.1896
http://www.ncbi.nlm.nih.gov/pubmed/2869490
http://dx.doi.org/10.1007/s00018-004-3434-3
http://www.ncbi.nlm.nih.gov/pubmed/15112052
http://dx.doi.org/10.1530/eje.0.1460707
http://www.ncbi.nlm.nih.gov/pubmed/11980628
http://dx.doi.org/10.1016/S0165-6147(00)88992-0
http://dx.doi.org/10.1007/BF00181765
http://www.ncbi.nlm.nih.gov/pubmed/8404961
http://dx.doi.org/10.1007/BF00169802
http://www.ncbi.nlm.nih.gov/pubmed/8491220
http://dx.doi.org/10.2174/156720111793663598
http://www.ncbi.nlm.nih.gov/pubmed/21034424


Molecules 2018, 23, 1535 13 of 13

58. Schally, A.V.; Nagy, A. Chemotherapy targeted to cancers through tumoral hormone receptors.
Trends Endocrinol. Metab. 2004, 15, 300–310. [CrossRef] [PubMed]

59. Halmos, G.; Schally, A.V.; Sun, B.; Davis, R.; Bostwick, D.G.; Plonowski, A. High expression of somatostatin
receptors and messenger ribonucleic acid for its receptor subtypes in organ-confined and locally advanced
human prostate cancers. J. Clin. Endocrinol. Metab. 2000, 85, 2564–2571. [PubMed]

Sample Availability: Not available.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tem.2004.07.002
http://www.ncbi.nlm.nih.gov/pubmed/15350601
http://www.ncbi.nlm.nih.gov/pubmed/10902809
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Expression of SSTRs in Human UM Tissue Samples 
	Expression of SSTRs in Human UM Cell Lines 

	Discussion 
	Materials and Methods 
	Cell Lines and Culture Conditions 
	Preparation of Uveal Melanoma Tissue Samples from Patients 
	RNA Isolation and Reverse Transcription PCR 
	Quantitative Real-Time PCR 
	Western Blot Analysis 
	Radioligand Binding Studies 
	Statistical Analysis 

	Conclusions 
	References

