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Interaction energies Tor the He—Hj system have been computed by a VB method for the intermolecular distances
5.2 < R < 20.0 bohr and two different orientations of the 112 molecule (0 = 0°, 90°). The results, especially for the 
anisotropy, arc in good agreement with experiment. The dispersion constants C(3 and Cg and the corresponding anisotropy 
constants and ag are presented.

1. Introduction

As one of the simplest systems with a multi-dimen­
sional potential surface, the He—H^ complex is of  ex­
perimental as well as theoretical interest. Integral 
total collision cross sections 11 |, spin—lattice relaxa­
tion times 12] and Raman line shapes 13] have yielded 
experimental information on the He—11-, potentia 
surface, and not long ago an analytic intermolecular 
potential has been proposed by Shafer and Gordon 
14 1 (from here on referred to as SG) which accurately 
lits all these experimental data.

Theoretical investigations have concentrated either 
on the short range (repulsive) potential [5—7] or 011 
the long range dispersion forces 18]. Tsapline and 
Kutzelnigg [9] (henceforth referred to as T k )  were 
the first to calculate van der Waals minima for lle-Il-, .  
Their minima are close to the experimental results. 
However, TK predict the linear configuration of the 
He 1I-. system to be favoured by 2.35 X 10  ̂ hartree 
above (he perpendicular geometry, whereas the empiri­
cal results of SG show the linear geometry to be slight­
ly less stable than the perpendicular one (by an amount 
of 0.3 X 10  ̂ hartree). Also the theoretical and ex­
perimental van der Waals radii are not in complete 
agreement.

It could be supposed that this discrepancy is 
caused by the neglect of  intra-monomer correlation 
in the calculations and more specifically by the 
coupling of intra- with inter-monomer correlation

[9,10). However, as it seems hard to accept that this 
correlation effect could be responsible for such a 
relatively large error in the anisotropy, we thought 
it worthwhile to perform some of the calculations as 
well, using another formalism [1 1—13] and another 
basis of atomic orbitals, but also neglecting the effects 
of intra-monomer correlation. Interaction curves for 
two different geometries are presented:

(i) the perpendicular geometry with an angled = 90° 
between the molecular axis of H9 and the vector R 
connecting the midpoint of  11-, with He and

(ii) the linear geometry with 0 = 0°.
The distance R has been varied from 5.2 to 20.0 bohr,  
the H—H distance has been kept constant (1.40 bohr).

2. Method

The method employed in this work is essentially a 
multistructure valence-bond method based on VB 
structures containing AO's on He and MO’s on 11-,.
In this formalism it is possible, by using local sym­
metry, to separate the different terms in the multipole 
expansion of the dispersion energy [ 11], although the 
complete unexpanded form of the interaction operator 
is used in our calculations. To obtain the contribution 
from a certain component of the multipole operator 
the basis must include at least one VB structure rep­
resenting a locally excited state that combines with 
the monomer ground state under this multipole com­
ponent.
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Table 1
A t o m i c  orbi t i l i  bas i s

A^contr a) S V) Optimization method Ref.

He s 6 — SCF calculation He M 71
P 2 1.30 van der Waals int. in llc2 1121
d 1 1.45 c) van der Waals int. in lle2 1131

II s 6 1.2 SCF calculation in Il2 d) this work
p 2A# 2.0 SCF calculation in 112 this work/
p 2 1.1 van der Waals int. in He—II2 this work
d 1 1. 1e) van der Waals int. in He—H2 this work

Number of primitive GTO’s in contracted set. 
Exponent GTO: a = 0.2738 (bolir-2 ).

b) Contracted set represents STO with exponent £ (bolir 1 ).
d) Contraction coefficients optimized. c) Exponent GTO: a = 0.1 576 (bohr 2 )

Within the VB framework one can define two 
quantities and A/:’(“ ) resembling first- and 
second-order perturbation energies, respectively.
A/:'(1) is the expectation value of the total hamiltonian 
over the dimer ground state minus the SCF energies 
of the free monomers. is the difference between 
the VB multi-structure interaction energy and the just 
defined first-order energy. This difference is asymp­
totically equal to London’s well-known second-order 
energy expression [ 1 1

The orbitals on the different monomers do of 
course overlap, but since we have found previously 
that a well-chosen orthogonalization does not influ­
ence the results to a significant extent, we have 
orthogonalizcd the basis, while meeting the following 
requirements:

the ground state VB structure, and with it A/:'(1 \  
is left invariant;

the orbitals remain as localized as possible on the 
respective monomers; consequently they reflect the 
symmetry of the subsystems.
A careful orthogonalization is of the utmost impor­
tance. If, for instance, one allows all orbitals in the 
dual space to mix among each other, as is done in the 
method of bi-orthogonal orbitals [14], one finds 
first-order energies which are very sensitive to the 
basis set and which sometimes are negative in regions 
of the potential surface where strong repulsions arc 
expected 114 1.

3. Basis

The selection of an orbital basis needs special care

in the study of van der Waals interactions, because 
these are usually very small. It has been found [13], 
for instance, that the orbitals constituting the excited 
states must be optimized by maximizing the dispersion 
energy. Good ground state orbitals are also required: 
for a reliable estimate of dispersion energies [13] as 
well as for correct exchange repulsions [ I 5 | .  Thus, we 
have included in the AO basis two p-orbitals on each 
hydrogen: one rather diffuse orbital to obtain the 
corresponding parts of the dispersion energy and anoth 
er more compact orbital necessary for the description 
of the exchange repulsion between He and 11-,. The 
need for at least two p-orbitals in cases such as this has 
sometimes been overlooked 116]. Contrary to the case 
of the p-orbitals, one d-orbital per hydrogen atom ap­
pears to be sufficient, mainly because the orbital ex­
ponent required for getting a good ground state energy 
of 11-, very nearly optimizes the dispersion energy of 
He—II-,. One must realize, in this connection, that the 
dispersion energy is not very sensitive to variations of 
this exponent in the neighbourhood of the optimum.

The inclusion of an optimized p-orbital on He is 
necessary to account for the dipole excitations on this 
atom; one optimized d-orbital on He takes care of the 
quadrupole excitations.

The AO’s used in this work are contracted GTO’s 
with tessera! harmonics as their angular parts. Except 
for the Is-orbitals on II and He, they have been fitted 
to STO’s with exponents f. The f-values have subse­
quently been optimized. See table I for a summary 
of the basis. We have also experimented with larger 
contractions of the He and 11 p-orbitals, but this hardly 
affected the results.

The MO’s of a-symmetry on H2 are obtained from
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Table 2

Present work TK | 9 ] HI limit

SCI energy lie a) -2 .8611163  -2 .8614912  —2.86] 68 c> 
SCT energy 112 a) 1.1330237 -1 .1329092  - 1.1 33629 b >
quadrupole 1I2 d) 0.4931 -  0.4933 k)

11) Hartree. b) Ref. 118J. c) Ref. I 1 7 I
d) I ( 3 (z2) -  (/-2>) in au.

Table 3
First-order, second-order and total interaction energies. Dis­
tance in bolir, energy in 10~5 hartree

Linear
geometry , 0 = 0'

Perpendicular 
geometry, 0 = 90'

an SCF calculation on the free molecule, and those of 
77- and 5 -symmetry are simply symmetric and antisym­
metric combinations of equivalent orbitals on the 
atoms.

As in earlier work [11 — 13] we have found again 
that VB structures representing the coupling o f  triplet 
excited monomers can be omitted. This halves the 
number of VB structures contributing to the disper­
sion energy. In total, about 50 of such singlet—singlet 
structures can be derived from the given orbital basis; 
all of these have been taken into account in this work.

The quality of the atomic orbital basis may be 
judged from the values in table 2. Another criterion 
for the adequacy of the basis is the “saturation test"
119], which is a computation of the SCF energy of 
each of the single subsystems in the dimer basis. We 
have found the following small energy improvements 
at R = 6.5 bolir, expressed in 10 5 hartree: 0.34 and

AE (l0‘5hartree) 
100

50 
CO
30 - 

20 -

10 -

5
L
3

R ¿¿ 'to t A/:’( 1) Al:(2) tot 2 r

5.2 56.50 28.32 28.18 38.87 -2 2 .1 3 16.74
5.6 24.40 -18.71 5.69 16.79 -14 .91 1.88 1 ■
6.0 10.41 -12 .59 -2 .1 8 7.15 -1 0 .1 6 -3 .01
6.3
6.5

5.45
3.52

-9 .4 9
-7 .91

- 4  04 3.73
2.41

-7 .6 8
-6 .41

- 3  9S 0r # V/ I

-4 .39 - 4 .0 0
6.6 2.83 -7 .2 3 -4 .4 0 1.93 -5 .8 5 -3 .9 2 -1
7.0 1.16 -5 .1 0 -3 .9 4 0.78 -4 .1  1 -3 .3 3
8.0 0.1 1 -2 .2 6 -2 .1 5 0.07 -1 .81 -1 .7 4 -2 .
9.0 0 . 0 0 -1 .0 8 -1 .0 8 0 . 0 0 -0 .8 7 -0 .87

10.0 0 . 0 0 —0.56 -0 .5 6 0 . 0 0 - 0 .4 6 -0 .4 6 -3
1 1.0 0 . 0 0 - 0 .3 2 -0 .3 2 0 . 0 0 -0 .2 6 -0 .2 6
12.0 0 . 0 0 -0 .1 8 -0 .1 8 0 . 0 0 -0 .1 5 -0 .15

- i ,
20.0 0 . 0 0 - 0.01 - 0.01 0 . 0 0 - 0.02 - 0.02

A E(°K ) 
- 300

-  200

-  100

50 
I* 0

- 30

-  20

-  10

5
L
3
2
1
0

- -5

AE total 

AE total (T 8 K)

AE experiment ^ & G)

-  -10

-5 - • • • 0
- -15

-6 -

-  - 2 0

-7 -

Fig. 1. Perpendicular geometry. Total interaction energy
of TK [ 9 1, SG [4 | and this work. First-order energy 

A/f 1) of this work, SCF-interaction energy of TK
[9J. From 1 X 10~5 hartree upwards the energy scale is 
logarithmic.

0.26 for He, 0.16 and 0.08 for H^ in the case of the 
linear and the perpendicular geometry, respectively.
If we had obtained the first-order interaction from 
SCF calculations on the dimer, we would have had 
to correct for these small effects, but because we cal­
culate directly from the monomer orbitals, the 
fact that the basis set is not completely saturated does 
not concern us.
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AE (lO'shartree)

experiment ' 

AE total ( t8l<)

Fig. 2. Linear geometry. Total interaction energy of
TK [9], SG [4 j and this work. First-order energy A/T ■ of 
this work, SCF-interaction energy of TK 19 J. From
1 X 10-5 hartree upwards the energy scale is logarithmic.

4. Results and discussions

In table 3 the first-order, second-order and total 
interaction energies are given for the two configura­
tions considered in this work. Figs. 1 and 2 give some 
of these results graphically, showing also a comparison 
with the total interaction energies of SG [4 ] and the 
SCF and total interaction energies of TK [9].

4.1. First-order energy

For the perpendicular geometry one notes that our 
first-order energies are very similar to the SCF ener­
gies of TK; the hardly significant difference can prob­
ably be explained by the differences in the basis sets.
In the case of the linear geometry, our first-order 
results differ a little more from the SCF curve of TK, 
which is lying lower. The induction part (mainly per­
manent quadrupole on U->, induced dipole on lie) of 
the interaction energy could be a source of this dis­
crepancy, because it is contained in the dimer SCF 
energy but not in our first-order energy. We have 
therefore computed the induction energy explicitly, 
by the VB method, as well as classically using the 
quadrupole moment of from table 2 and the po- 
larizability a  = 1.393 (bohr)3 of He [13]. We find 
that the two methods agree in all significant figures, 
which are not many in this case because the effect is 
very small indeed: 0.05 X 10  ̂ hartree at 6.5 bohr 
(linear geometry). In any event this value is too small 
to explain the difference between TK's and our results. 
Possibly TK have improved the SCF energies of the 
subsystems somewhat in the dimer basis, due to a 
non-saturated monomer basis, and have not subse­
quently corrected for this effect. This allegation is 
supported by the occurrence of a minimum in their 
curve which, although very weak, is still too deep to 
be caused by induction. Also, our first-order energy 
at 5.2 bohr compares quite well with the best SCF 
value of ref. [5| after correction for the induction 
energy: 56.5 X 10 5 hartree versus 56.3 X 10 5 
hartree [5], whereas TK find about 5 1 X 1 0  5 hartree 
(interpolated) for the same value. (For the perpendic­
ular case with the same distance these values are 38.9 
(this work), 39.6 [5] and about 37 (TK).)

The first-order repulsion can be fitted quite satis­
factorily by the following potential, valid for R >  5.2 
bohr. (The 0 -dependency is given by a second-order 
Legendre polynomial.)

V<]) (R, 0) = A [1 + y P 1 (cosfl)] .

The optimal parameters are:

A = 34.5 hartree, ft = 2.16 (bohr)^ 1, 7 = 0.267.

The |3-value is somewhat larger than any of the values 
proposed in ref. [5] for 3.8 < <  5.2 (bohr), a 
range which is different from ours, though. Since a
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Table 4

Linear geometry Perpendicular geometry

this work TK |9J SO f4 J this work TK SG

Z?m (bohr) 6.58 6.25 6.58 6.42 6.29 6.30
Em OO"5 hartree) 4.40 6.75 4.77 4.02 4.40 5.06

small deviation in p gives a considerable effect on A,  
it is not surprising that our A -value differs by a 
factor of about 3 from the values of ref. |5 | .

4.2. Total energy*

With regard to the total energy, we see from table 
4 that for the perpendicular geometry TK's calcula­
tions agree better with the experimental results than 
ours, although our values do not deviate too much 
either. We have observed before that our method has 
a tendency to underestimate the dispersion energy 
to some extent. Using a comparable basis we have 
found for He—He [ 13] a dispersion energy A/:’*“* 
which is 90% of the value computed in a much lar­
ger basis including f-orbitals [2 0 1.

As to the linear geometry, the results of this 
work arc in full agreement with the experimental 
R m-value and, again, underestimate the experimen­
tal well depth somewhat, whereas TK find too deep

t

a minimum at too short a distance (table 4)*.
So, although the anisotropy found in this work 

is much less pronounced than that of TK [9], we 
still predict the wrong geometry to be more stable, 
that is, comparing with SG [4]. To explain this dis­
crepancy one may point out several inaccuracies in 
this work, such as the neglect of intra-monomer 
correlation or a possible geometry-dependent under­
estimate of the dispersion, but it must also be noted 
that SG’s potential lacks some flexibility in the 
long range part. The following discussion may clarify

* When informed about our results Professor Kutzelnigg has 
communicated that their potential curves become very 
similar to ours when they extended their formalism in 
order to account for the coupling between inter- and in­
tra-monomer correlations. In comparing these results it 
must be remembered, though, that the relative contribu­
tions from inter-and intra-monomer terms depend on the 
degree of localization of the orbitals on the subsystems.

this remark. Within the VB formalism one can cal­
culate the dispersion coefficients C6 , Cx , etc., direct­
ly. Thus computing C6 and C8 for the linear and per­
pendicular geometry, one may extract averaged C6- 
and Cx-values plus the corresponding anisotropy con­
stants c*̂  and Q'fl. In this manner we have computed 
the following long range potential:

lA2) ( R ,0) = - C b R - 6 |1 + a 6 Pj (cos0 ) |

- C 8 /?~8 |1 + a 8 P2 (cos 0) | , 

with

C6 = 4 .3 4 au ,  C g = 4 9 a u ,  ct6 =0.149, a 8 = 0.23 .

The values of C^, C8 and are in fair agreement 
with the values C6 = 4.01 au, = 41 au, =0 .105  
quoted by SG. This potential gives an excellent fit 
to the second-order energies of table 3 for R >  7.0 
bohr. Now, SG assume a 6 and a 8 to be identical, thus 
overestimating for the perpendicular geometry, 
while underestimating C8 for the linear case. So, by 
this lack of flexibility in their long range anisotropy 
they favour the perpendicular geometry somewhat 
above the linear one, but because of the way they fit 
the potential, it is difficult to see how this affects the 
minima.

It could be presumed that the superposition, 
j / ( l ) +  jH2)^ t jie  sju ) r t  ancj t jie long range potential

can yield a reasonable fit for the whole range. This 
is not so, mainly because o f  the inadequacy of 
to represent charge-penetration effects. A better fit 
would require some extra (exponential) terms to ac­
count for charge penetration.

Since scattering experiments are often interpreted 
by the use of Lcnnard-Jones potentials [21], we 
have computed the following analytic form from the 
positions and the depths of the minima:

VL.s (R,0) = - 2 e ( R Q/R )6 [1 + q 2 b P2(cosO)}

+ e(fi0/« ) ‘2 I1 +i/2.l2 /,2(cos0)] >
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with

6 = 4.13 X  10 5 hartree, R$  = 6.48 bohr, (5

^2,6 = 0.164, ^ 2 . 1 2 = 0.271. [6

The L-J potential gives a good description of the com- [7
putcd van der Waals well, but overestimates both the I8
repulsion and the long range attraction in the region 
considered. The anisotropy constants q~> ,  ̂ and q  ̂
are not very different from our corresponding asymp- | jq
to tic values 7 = 0.267 and = 0.149. Furthermore, 
they are in good agreement with experimental results 111
[22] obtained from the scattering of molecular H-> 
beams with several of the noble gases.

Acknowledgement

We thank Dr. J. Reuss for suggesting the problem,

References

14

12

113

|14

15

and him and Drs. L. Zandee, T. van Bcrkel and F. [16
Mulder for valuable discussions. 117

18

[19

20
(1 J R. Gengenbacli and Ch. Hahn, Chem. Phys. Letters 15

(1972) 604. 121
(2) J.W. Riehl, C.J. Fisher, J.D. Baloga and J.L. Kinsey, J.

Chem. Phys 58 (1973) 4571. (22
[ 3 ] B.K. Gupta and A.D. May, Can. J. Phys. 50 (1972)

1747.

R. Shafer and R.G. Gordon, J. Chem. Phys. 58 (1973) 
5422.
M.D. Gordon and D. Secrest, J. Chem. Phys. 52 (1970) 
120.

M. Krauss and F.M. Mies, J. Chem. Phys. 42 (1965) 
2703.
C.S. Roberts, Phys. Rev. 131 (1963) 203.
P. Langhoff, R.G. Gordon and M. Karplus, J. Chem. 
Phys. 55 (1971) 21 26, and references therein.
B. Tsapline and W. Kutzelnigg, Chem. Phys. Fetters 23
(1973) 173.
B. Liu and A.D. McLean, J. Chem. Phys. 59 (1973) 
4557.
P.E.S. Wormer and A. van der Avoird, J. Chem. Phys.
6 2 (1 9 7 5 )3 3 2 6 .
P.E.S. Wormer, T. van Berkel and A. van der Avoird,
Mol. Phys. 29 (1975) 1181.
F. Mulder, P. Geurts and A. van der Avoird, Chem. Phys. 
Letters 33 (1975)215.
F. Kochanski and J.F. Gouyet, Mol. Phys. 29 (1975) 
693.
J.G.C.M. van Duijncveldt-van de Rijdt and F.B. van 
Duijneveldt, Chem. Phys. Letters 17 (1972)425.
E. Kochanski, J. Chem. Phys. 58 (1973) 5823.
S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
W. Kotos and C.C.J. Roothaan, Rev. Mod. Phys. 32 
(1960)219.
W. Kutzelnigg, V. Staemmler and C. Hoheisel, Chem. 
Phys. 1 (1973) 27.
D.R. McLaughlin and 11.F. Schaefer III, Chem. Phys. 
Letters 12 (1971) 244.
II. Moerkerken, L. Zandee and J. Reuss, Chem. Phys.
1 1 (1975), to be published.
L. Zandee and J. Reuss, private communication.

449


