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N.—N, interaction potential from ab initio calculations,

Rut M. Berns and Ad van der Avoird

with application to the structure of (N,), ?

Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands
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The short range electrostatic and (first order) exchange contributions to the N,—-N, interaction energy
have been calculated ab initio as a function of the N, orientations and the distance (139 geometries).
Using a numerical integration procedure, the results have been represented analytically in the form of a
spherical expansion. At R = 0.3 nm this expansion is accurate to better than 0.5% if we include the first
18 independent terms, to 2% if we truncate after L, =Ly =4, and to 16% if we truncate after
L, =Lg =2. In combination with the long range multipole expansion results (electrostatic R ~—>, R ~/,
R = terms, dispersion R =% R ~% R ~'° terms) calculated by Mulder et al., this yields an anisotropic
N,-N, interaction potential in the region of the van der Waals minimum, which can be fairly well
represented also by a site-site model. The potential is in good agreement with the available experimental
data for the gas phase and for the ordered (a and ¥) crystal phases of solid N,. The structure of the van
der Waals molecule (N,), is discussed; its energy is lowest for the crossed structure: AE,, = 1.5 kJ/mol,
R, = 0.35 nm (for the isotropic potential the well characteristics are AE,, = 0.75 kJ/mol and R,,=0.417
nm). The (staggered) parallel and the T-shaped structures are slightly higher in energy. The internal N,
rotation barriers vary from 0.2 kJ/mol (17 cm™') to values comparable with the dissociation energy.

. INTRODUCTION

Knowledge of the intermolecular interaction potential
is basic for understanding the properties of molecular
gases, liquids, and solids. In principle, this interac-
tion potential can be derived from experimental sources.
In practice one has to introduce model potentials with a
limited number of parameters and then fit these param-
eters to the experimental data. For nitrogen, much
work has been done in this direction (see Refs. 1 and 2)
using gas phase data (virial coefficients, viscosity data)
as well as solid state properties (from x-ray diffraction,
IR, Raman, and nuclear resonance spectroscopy, neu-
tron scattering). Model potentials which have been
used''? are molecular ones, 1sotropic or elliptical, and
atom-atom potentials, with distance dependent functions
mostly of the Lennard-Jones (12-6) or Buckingham (exp
-6) type. Sometimes, these have been supplemented
with the electrostatic quadrupole —quadrupole interac-
tion. * In spite of all these efforts, there is still no N,—
N, interaction potential available at present that is uni-
versal in the sense that it fits all the different experi-
mental data. Especially, the anisotropy of the potential,
its dependence on the relative N,—N, orientations, has
not been established unequivocally.

Another way to determine the N,—N, interaction poten-
tial is by ab initio calculations. Such calculations, which
yield the anisotropic interactions, have been performed
by Mulder ef al.® in the long range region where the in-
teraction potential can be expanded as a multipole se-
ries, 1. e., inpowers of the distance R. Here, we report
results for shorter distances, including the physically
important region around the van der Waals minimum.
These have been obtained from ab initio calculations
which avoid the multipole expansion of the interaction
operator and which take the intermolecular exchange in-

3)Supported in part by the Netherlands Foundation for Chemical
Research (SON) with financial aid from the Netherlands Or-
ganization for the Advancement of Pure Research (ZWO).
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to account (in first order). The results are given for a
set of intermolecular distances and molecular orienta-
tions, but, we also present two analytical representa-
tions of the interaction potential. The first one is a
spherical expansion in terms of the angles describing
the molecular orientations. Such an expansion is ob-
tained directly in the long range if one substitutes a
spherical multipole expansion into the Rayleigh—Schro-
dinger perturbation expressions for the interaction en-
ergy??; in the short range a fitting or numerical integra-
tion procedure is required, which we describe. Also,
we discuss the convergence of this spherical expansion.
The second approximate representation of the ab initio
results is in the form of an atom—atom potential.

Il. AB /INIT/O CALCULATIONS AND RESULTS |

The Interaction energy between two N, molecules A
and B has been calculated in a general space fixed co-
ordinate system as a function of the orientations, de-
scribed by the polar coordinates w, = (68,4, ¢ 4) and wg
— (65, @ »), and the distance vector R= (R, 2)= (R, ©, ®).
In order to simplify the calculations, we have chosen a
special frame with the z axis along R (6 =% =0) and
molecule B in the xz plane (¢5=0), and we have varied
only the “internal” coordinates, R, 6,, 05, ¢4. The
energy has been calculated up to second order in per-
turbation theory.

(a) The first order interaction energy, including ex-
change, is defined as:

AED (w4, wg, R)=(QysYs | HAZ |@ ydvd)
— (| HA| vy — (uB | BB |y ) . (1)

The nitrogen monomer wave functions ¥§ and y? have
been taken as ground state Hartree—-Fock molecular
orbital-linear combination of atomic orbital (MO-
L.CAO) functions (Slater determinants). The N-N dis-
tance was fixed at the experimental value of 0. 1094 nm.
The operators H*?, H” and H? are the dimer and

6
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monomer Hamiltonians, respectively; @ is the nor -
malized antisymmetrizer of the dimer. For the expan-
sion of the MO’s the atomic orbital (AO) basis set D of
Mulder et al. ,® including two d-type polarization func-
tions, has been used. This large basis is necessary

in order to obtain reliable molecular multipole mo-
ments. °

This first order energy AE'" can be separated into an
electrostatic component, AE!!) = defined by (1) with the
operator G replaced by the identity, and anexchange com-

ponent defined as

&E{“h—&E{” 5E(1}

elec *

For large intermolecular distances, one can approxi-
mate A EL}L: by a power series in R by substituting the
multipole expansion for the interaction operator Vs

AR AR A

with n =5, 7, 9, etc. Actually, this expansion is an
asymptotlc series. The deviation AE{) =AEL). —AEL),
is due to the penetration between the charge clouds of
the two nitrogen molecules, which increases exponen-
tially with decreasing distance.

(b) The second order interaction energy, without ex-

change, is defined as:
aE®— Y KUeg IV 19gyy) 1
S S e e (2)

The second order exchange energy has been neglected as
it is rather small in the region around the van der Waals
minimum for those cases where it has been evaluated. '
The excited monomer wave functions, ¥7 and ¥;, are
constructed by exciting one electron to a virtual ground
state Hartree—Fock MO; the energy differences in the
denominator are replaced by orbital energy differences.
This choice is sometimes called the uncoupled Hartree-—
Fock perturbation method. % The same method and some
other perturbation methods have been applied to the long
range N,-N, interaction energy by Mulder ef al. % who
also discussed the quantitative defects of these methods.
The second order energy can be separated into an induc-
tion and a dispersion part:

N TR —Z Z B TR

ﬂlb¢0lu a®(
b#ﬂ b#0

(2) (2 (2 (2 2
— AE{7) 4+ AE{a)p + AEg), = AEY + AEg,

For large intermolecular distances one can again sub-
stitute the multipole expansion for V*® and obtain the
series:

with n=6, 8, 10, etc. The charge penetration effect is
defined by the difference

AED) _ AE@)

mult °

AE:) —

pen'—*

For the calculation of the second order energy the MO’s
have been expanded in the basis G’ of Mulder et al.®
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TABLE I. First order interaction energy contributions.
Geometry? AE (1D AEL AE:1)xb AEM) ¢
eAr eﬂ! ¢'A
R(nm) (kJ mol™}) (kJ mol™!) (kJ mol™") (kJ mol™!)
90°, 90°, 0°
0.331 3. 991 4.481 —0.490 0.375
0.357 1.562 1.564 —0.002 0.259
0.384 0.640 0.531 0.109 0.187
0.410 0.291 0. 176 0.115 0.139
0.437 0. 154 0.056 0.098 0.105
90°, 90°, 90°
0.331 3.519 4.154 —0.635 0.134
0.357 1.331 1.461 —0.130 0.096
0.384 0.505 0.499 0.006 0.071
0.410 0.201 0. 166 0.035 0.053
0.437 0.089 0.054 0.035 0.040
45°--45%102
0.331 15.619 21.689 —6.070 —0.649
0.357 51793 7.985 —-2.232 —0.467
0.384 151970 2.855 —0.880 — 0. 337
0.410 0.588 0.992 —-0.404 — 0. 246
0.437 0.109 0.335 —0.226 —0.182
45°, 135°, 0°
0.331 27. 187 35. 132 — 7.945 1.391
0.357 10. 440 12,508 —2.068 0.889
0.384 4,045 4.340 — 0. 295 0.593
0.410 1.625 1.469 0. 156 0.409
0.437 0.706 0.484 0.222 0.291
0°, 0°, 0°
0.331 104 . 589 142. 630 —38.041 4. 177
0.357 43.925 55.629 —11.704 2.525
0.384 15.959 18. 882 —2.923 1.601
0.410 6.299 6.600 —0.301 1.057
0.437 2.586 2.249 0.337 05721
0.463 1.152
0.489 0.582
0.516 0. 340
0.542 0.224
0°, 90°, 0°
0.331 17.91% 24.113 —6.598 - 0,747
0.357 6.345 8.718 —-2.373 - 0.533
0.384 2133 3.067 —0.934 — 0,384
0.410 0.613 1.050 —0.437 - 0,280
0.437 0.099 0.349 - 0.250 —-0.208

=

aCoordinate system described in text; data for 105 additional
orientations have been calculated at R =0.3 nm (see Table IV).
PMonomer MO’s and integrals calculated with the ATMOL3 pro-
gram. We thank Dr. M. F. Guest, Daresbury Laboratory,
UK, for making this program available to us and Mr. J. van
Lierop for assistance with the implementation. Interaction
energies evaluated with the program couLex written by P. E.
S. Wormer, Nijmegen. GTO basis set 9s, 5p, 2d contracted
to 4s, 3p, 2d. (Basis D of Ref. 3.)

“Obtained from the multipole moments of Ref. 3, calculated in
the same Basis D.

which contains d and f type atomic polarization functions.
The addition of f functions to the first order basis D,
but, also, a somewhat different optimization of the or -
bital exponents, is necessary in order to ensure approx-
imate completeness of the excited state wave functions,

z})f and l.bf Js9

The first order interaction energy and its components
have been calculated, in first instance, for six orienta-
tions and several distances of the N, molecules in the
dimer (34 different geometries). The results are listed
in Table I and plotted for two parallel N, molecules as
a function of distance in Fig. 1. From these results we
observe that the first order penetration and exchange ef-
fects are quite important already at the van der Waals

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980



R. M. Berns and A. van der Avoird: N,—N, interaction potentials

AE (kJ/mol )
2.0

1.0
£§E“1

4_mult.

S
—
l

1)
pen.

oD ==
0.3 0.36 0.38 0.40 0.42 0.4
AEVELS R (nm)

= ——
T — —
T —
T —
——— —
e —
— —

0.0

-1.0

AEM + At

-2.0

=310

~4.0

-5.0

FIG. 1. Different contributions (as defined in the text) to the
interaction energy between two parallel N, molecules; ab initio
results, see Tables I and II.

minimum. (This minimum lies at R=0.417 nm for the
isotropic potential, see below, and at R=0.36 nm for
the parallel dimer, see Fig. 1). This conclusion agrees
with the penetration effect calculations by Ng et al. '°

The second order interaction energy has been calcu-
lated for ten geometries only, see Table II and Fig. 1.
We have found, just as Mulder ef al.,® that the induction
energy can be neglected with respect to the dispersion
energy. The second order penetration energy is much
smaller than the corresponding first order contribution.
Therefore, the second order energy can be well repre-
sented by the dispersion multipole series, &Eﬁfjlt'mp.
Mulder et al.® have pointed out, however, that the dis-
persion multipole coefficients obtained by the uncoupled
Hartree—Fock perturbation method (but also by other
perturbation methods starting from Hartree-Fock mono-

o loah L

AE(w,, wy, R) = (47)%/2 E
LA2LB
(L gvLg,L even)

6109

TABLE II. Second order interaction energy contributions.

T — =

( (

Gec’me—twi &E;:Ecjlh &Etg'.lzu)lt, ind" &Edﬁp - &Enz.l}lt.dlup >
&Al Bﬂr ¢b[
R(nm) (kJ mol™!) (kJ mol™}) (kJ mol™!) (kJ mol™!)
90°, 90°, 0° 5 & T

0.331 —0.070 ~0.015 —5.045 — 5,046

0.357 —0.018 —0.009. —~3.074 —3.009

0.384 —0.007 —0.005 —1.931 —1.877

0.410 —0.003 —0.003 —1.250 =1-216

0.437 —0.002 —0.002 —0.833 —0.813
90°, 90°, 90°

0.331 —~0.066 ~0.019 —4.606 —4.654
45°, 45°, 0°

0.331 —1.462 —0.042 —10. 162 —10. 099
45°, 135°, 0°

0.331 —2.858 —0.076 —~12.528 —11.417
U“, Uu’ 0°

0.331 — 17.996 -0.312 —24.899 —19.314
0°, 90°, 0°

0.331 —1.250 —0.097 —10. 033 -9.629

“Coordinate system defined in text., |

°Monomer MO’s and integrals calculated with the 1BMOL package
written by E. Clementi and co-workers; interaction energies
with a program written by R. M. Berns, Nijmegen, which is

a modification of the program written by T. P. Groen, Utrecht.
GTO basis 9s, 5p, 2d, 1f contracted to 4s, 3p, 2d, 1f (basis
G’ of Ref. 3).

“Obtained from the multipole coefficients in Table IV of Ref. 3,
which have been calculated with the same basis G ’.

mer wave functions) are rather inaccurate for N,-N,.
Using accurate semiempirical data for C; and for the di-
pole polarizability (from dipole oscillator strength dis-
tributions) in combination with their ab initio results,
they have made better estimates for the higher maultipole
coefficients Cg and C,;, and the corresponding anisotropy
factors. From here on, we shall use the latter results
(Ref. 3, Table VI) in order to represent the second or-
der N,-N, interaction energy.

The total, first plus second order, interaction ener-
gies have been plotted in Fig. 2.

IIl. ANALYTICAL REPRESENTATION OF THE
INTERACTION POTENTIAL

A. Spherical expansion

The dependence of the (anisotropic) interaction poten -
tial between two molecules A and B on the orientations
of these. molecules can be explicitly expressed in the
form of a spherical expansion. !!~!® For two identical
homonuclear diatomic molecules this expansion reads:

ZL: VLA.LB:L(R) (2 P 6LA.LB)

x%[ALA.LB.L(wAr Wp,80) +Ap 1, (@a, Wg, )| | (3a)

with the angular functions given by:

AL, g, 0(Wa, W, Q)=

Ma M \pm, M, M

E (LA v L) Y, i, @)Y (W)Y p (82) . (3b)

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980
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AE (kJ/mol)

. . 0.50 0.55 R(nm]
0.0
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-1.0
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=145

FIG. 2. Total interaction
energy at six different orienta-
tions. “Ab initio”: first or-
der energy from Table I,
second order energy from the
dispersion multipole coeffi-
cients of Ref. 3 (Table VI),

3 see our Table V. Spherical

20 ;5in1tio expansion, see Table V.
spherical
expansion

The functions Y, ,(w) are spherical harmonics'® which
are coupled with the aid of a Wigner 3-j symbol

(L TeNl b L)

M, Mg M

to a scalar. That is, the angular functions A, , Lp, L
are invariant under rotations of the total system.

expansion coefficients, V., ;. ;, which are Eunctmns of
the distance only, completely determine the orientational
dependence of the intermolecular interaction potential.

For a given potential AE(w,, wg, R) they can be ex-

pressed as:
-3 /2
VL L (R)=(4m) fdefdef das?
XALA.LB,L(“’A: wﬂs Q)QE(MAi wB: R) . (4)

Here, we have used the orthonormality of the angular
functions Ay ,, Lg, L° Since A o o= (47)3/2 and [dw,

x [dwg [dS2 = (47)°, it is obvious that V, , ((R) is just the
isotropic potential. ;

In the long range, where the multipole expansion for
V4% can be used, the first and second order interaction
energies, AE'Y  and AE!%),, , are easily obtained in
form (3). All one has to do is use an expansion of VA°
in terms of spherical multipoles“; in first order this
leads directly to the result (3), in second order some
angular momentum recoupling has to be done. **® In both
cases, the expansmn coefficients V, , ;. (R) are simply
powers of R~ then multiplied by constant coefficients
cia.Ie:L  which contain the properties of the systems A
and B (multipole moments in first order, multipole tran-
sition moments and excitation energies in second order).
These multipole coefficients have been calculated for
N,—-N, by Mulder et al. 9 So, the present paper only
deals with the spherical expansion of the (ab initio) cal-

culated short range interactions, AE%LL and aEﬁ}éh.

At first we have tried a procedure which has been used
for Hy—He (Refs. 15 and 16) and H,—H,. " From the in-
teraction energy calculated for five different orienta-
tions (at a given distance R) we have computed the first
five spherical expansion coefficients: Vg0, V2,0,2
Visa0, Va.2,9, Vg,2,4- This simply involves the solution
of a system of five simultaneous linear equations. The
results for the sixth orientation have been used as a
check on the accuracy of the expansion coefficients.

This procedure has been repeated for different choices
of orientations, but the results were always poor. So

we concluded that, either the spherical expansion is far
from having converged with these first five terms, or the
applied procedure is not numerically stable (if the re-
maining terms in the expansion are small but not neg-
ligible), or both. In order to investigate these questions

we have proceeded as follows.

B. Atom-atom representation of the ab /n/tio potential

The interaction energy between the two N, molecules
has been approximated by an atom-atom potential:

with V,; being dependent only on the distance 7;; between
the atoms:

VU(Tu) 99 iVy; -C”r“+A”exp( Byyryy) -

The electrostatic interaction potential, which is added to
the Buckingham (exp-6) potential, depends on the
charges g,, g, of the atoms. It is obvious that this
model as such cannot represent the electrostatic inter-
action between N, molecules, since the atomic charges
should be zero. Therefore, we have chosen for a gen-
eralized atom—-atom (site—site) model with two positive
and two negative charges (of equal magnitude) placed
symmetrically on the N-N axis. Also the force centers

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980
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TABLE III. Atom—atom potential fitted to the “ab initio’”’ data.

T =

I IT

Parameters fit for 0.33=R=0.44 nm fit for 0.30=R =0.44 nm
Electrostatic: charges® g=q,=—-q. 0.373e" 0. 3'?’9.-';:'.b
positions®* z,, z. (nm) +0.0847, +0.1044 +0.0848, +£0.1041
Short range A (kJ mol™) 770 000 559 000
repulsion: B (nm™) 40. 37 39.49
(exchange force centers® zgp(nm) +0. 0547 +0.0547
+ penetration)
Dispersion: C (kJmol™ nm®) 0.001511(0.001407)¢
force centers z, (nm) +0,0471

“Molecular l:nultl.pole moments calculated Wlth thle pmnt charge model: Q; (=—4.449 10"40 C m? » Q4.0
=—8.046 1070 C m , Qg.0=—11.063 107°°C m ab initio (Ref. 3): Q. 0=—4.487 10740 C m?, Q4 0
=—19.233 1078 C m* QE 0=—6.129 10780 C "

be=1.602 107 C.

‘Optimized force centers zgp=+0.0554 nm practically coincide with the nuclear positions zy=+0.0547 nm.
%n parentheses: optimized parameter C if the force centers are fixed on the nuclei, z p=%*0.0547 nm.

of the exponential and the »® site —site potentials have additive (isotropic) atom-atom interaction is caused, of

been allowed to shift (independently) along the N-N axes. course, by the chemical bonding. | Also for a much

The (three parameter) point charge model could in prin-

ciple represent the first three nonzero multipole mo-

ments of N,; in fact, it can do this only if they satisfy AE (k J/mol)

the relation: @, (&g 0= (@4.0)°=%®Q, ¢®s 0, Which does 10 |

not hold for the calculated multipole moments of N,. ° ' 11

We have fitted the site -site potential parameters to the ',

ab initio results, calculated for six orientations and 2.5 'I‘

six distances 0. 30=R=0.44 nm. The fits have been ‘1
1
\
\
|
\
I

!
|
‘R Uhnm]:

performed in three separate steps, just as for ethyl-

T 2.0

ene, "~ in order to avoid correlation between the fit pa-
rameters.

|
|
|
|
|
|
!
|

15 ﬁEmer!:hanghpenetratmn .

(i) The charges g=¢g,= —¢. and the position param- “
eters z, and z_ have been found by fitting 3 ,5,,9,9 77; to \
AEL) . calculated up to R™ terms inclusive, using the 1.0
multipole moments of Ref. 3 (mean deviation 6. 5% for

36 points). 05

(ii) The parameter C = Cy_y and the positional param -
eter of the ¥~ force centers have been found by fitting
2123 C7 °to AE'?) . calculated up to B! terms inclusive
from the multipole coefficients of Ref. 3, Table VI,
(mean deviation 6.3%, or 9.7% if the force centers were 05 .
fixed on the nuclei).

0.0

spherical expansion
————— atom -atom fit

(iii) The sum of the short range contributions AE!!) and -10 | | |
AE) ~ emerging from the present ab initio calculations,
has been fitted by the exponential site-site potential 15 . 1IN
2123 Aexp(—Br,;). Both short range components indeed ' | . BN
appear to behave as an exponential. This has yielded (2) I . R
the parameters A=Ay_y and B= By_y (mean deviation -20 BE nutt (dispersion) |

9.2%); the optimum positions of the force centers prac- ' .

tically coincide with the nuclear positions, in this case. 9 ¢

The results have been listed in Table III. We conclude
: : : 30 60 30 60 60 30 60 30
that for N,—N, the generalized atom-atom (site-—site) 0,=04 P,-9g “0p N

potential forms a rather good representation of the ab ]
initio results (see also Figs. 3 and 4). Especially for
the short range interactions, the fit is much better than

070°0° 90°90°0° 90790790° | | 90°00° 00°

18 - e
for the ethylene case. ® Possibly this is due to the ef- FIG. 3. Orientational dependence of different long range

fect of the nitrogen lone pair electrons balancing the ef- (multipole) and short range (penetration plus exchange) con-
tects of chemical bonding on the charge distribution. tributions to the interaction energy, at R=0.4 nm. Spherical
|The fact that the intermolecular interaction is not an expansion, see Table V. Atom-—atom potential I of Table III.

J. Chem. Phys., Vol. 72, No. 11, 1 June 1980
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0,0,0° 90790;0°

=
90°90°90° 907070’ 0,0,0

ﬂEmin o
(kI/MU” \\1

-0.5

F1G. 4. Orientational dependence of the van der Waals mini-
mum. The well depth AE_;, and equilibrium distance Rp;,
have been obtained by varying R for each orientation 6,4, 0p,
ba. “Ab initio,” spherical expansion, and atom—atom poten-
tials defined as in Figs. 2 and 3.

larger set of orientations where the N,—N, interaction
potential has been calculated ab initio (see below), the
site —site potential yields a rather good description of the
anisotropy (see Sec. IV, Table IV).

C. Spherical expansion of the ab /nitio potential by
numerical integration

Since the site—site potential yields a rather good de-
scription of the ab initio calculated N,—N, potential, we
can now use the first in order to obtain a reliable spheri-
cal expansion of the latter. First, we have made a
spherical expansion of the site-site potential. For this
known potential the expansion coefficients can be ob-
tained from formula (4), by performing the angular in-
tegration. This integration can be considerably simpli-
fied. (1) Using the invariance of AE and Ay, ; ,, under
rotations of the total system reduces the integration to
the three “internal” angles 64, 65, ¢4 (©=2=¢pz=0).
The angular functions can be written as:

(2L s+ 1) (2L, + 1) (2L + 1))”2 e
A ( = (2 -6
L #XB LT 647 H;U “A'“)
X((_L..A"MA)!(_;’H_MA)!)IH(LA Lg L)
(Ly+ My (Lg+My,)! i

:»(F’Lﬂ(ccns94,,1L PM"tl (cosfg)cosM ¢4 ,

where the P4 are associated Legendre functions. 231(2)
Using the symmetry properties of the system reduces
the integration intervals. Since the angular functions

R. M. Berns and A. van der Avoird: N,—N, interaction potentials

depend only on cosf,, cosfg, and cos¢, (the function
cosM 4¢ 4 can easily be expanded as a function of cos¢ 4)
and the volume element is d(cos8,)d(cosfz)dd , one can
substitute 7, =cosf8,, Ng=cosfg, and {4 =cos¢p, and
obtain the integral

1 i 1
aw‘”fu dnﬁf dNg fldzﬂ(l—ci)"”
{] -

XALA,LB,L(HA! nB! gA) 5E(arCCOSnA J

VLA.LB,L(R) —

arccostg, arccos;R) .

This integral is very suitable for numerical integra-
tion. The best method for our purpose (which is to ap-
ply it to ab initio results) is one of the Gaussian integra-
tion techniques, since these give the highest accuracy
with the smallest number of integration points. 9 For
Legendre functions it is best to choose the Gauss -
Legendre modification. (Parker et al.?’ have used this
technique in a one-dimensional integration required to
obtain the Ar—-CO potential. ) We have used formulas
(25. 4. 30) and (25. 4. 38) of Ref. 21. Since we only have
to find the spherical expansion of the short range con-
tributions AE!L) and AEY)), (see Sec. IIIA), we have ap-
plied this integration method to the exponential part of
the site-site potential, Sec. IIIB, term (iii). Some
experimentation with the grid and with the expansion
length has led to the following conclusions. (1) The
first 18 terms in the spherical expansion are necessary
to represent the short range potential to an accuracy
better than one percent in each point. (2) The required
number of integration points for (74, Mg, £4) is (6, 6, 5).

TABLE IV. Spherical expansion coefficients Eq. (4)
of the short range (penetration and exchange) in-
teraction energy.

Vf,::, Ly, L (kKJ mol™) at R=0.3 nm

L Egy L ab initio® atom—atom”
0, 0, 0 44 . 258 49.769
2101 2 23.871 26.936
2.2 0 9.947 3. 674
2. 22 _4.734 —5.794
2. 2, 4 13. 154 14.667
4, 0, 4 4.309 3.551
4. 1950 0.314 0.380
495y —0.732 —0.701
4. 2. 6 3.151 2.520
4, 4, 0 0.005 0.010
R —0.006 —0.015
4, 4, 4 0.026 0.033
4, 4, 6 —~0.131 —0.107
4, 4, 8 1.035 0.573
6, 0, 6 0.389 0.264
6, 2, 4 0.011 0.018
6, 2, 6 —0.057 —0.049

6. 2. 8 0.399 0.250

?

— —

4Calculated by numerical integration from the ab
initio data for a grid of 180 (105 independent) orien-
tations (AO basis, see Table I).

bSame as Ref. a, for the repulsive part of the atom-
atom potential IT (Table III, exponential term).
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TABLE V. Spherical expansion of the compléte interaction potential [Eq. (3)].

VLA'LB L(R) VLA Lg,L (0 3) exp[—ﬁ 00153 — 35: 6&-0.3)*20 S(R 0. 3)2]
+CEA LB L p-(L 4+Lg4) +CLArLBrLR-6+CgArLBrLR-B +CLA:LB-L Rallis

La*ig*l
R innm; Viy 1p.r (0.3) from Table IV, ab initio.

| ———— —— e e — e — e ———— e ———

Long range (multipole) coefficients®

Electrostatic Dispersion
cfj:fg;f‘ CENED ey icA el  chartal
L i Blp il (kJ mol™! nm™“A**8™ (kJ mol™! nm°®) (kJ mol™! nm?) (kJ mol™! nm!9)
0, 001 0T i ]  —4.231 107 —2.946 10%  —2.239 107
2. 1042 —1.815 10™ —5.277 107 —5.974 107
2. 12474 1.849 1073 —3.638 107 — 4,932 107 ~1.219 1078
2441279 —4.505 107 1.026 107 3.692 1077
2219540 —3.764 107° —6.098 1077 —2.256 1077
4.:2:,6 7.655 107
4, 4, 8 6.078 107 X
2, 8 8.465 107" .

| &

“Note that the long range multipole coefficients C";“""‘l:'B

the C FA' LB

formatwn ;

Next we have performed ab initio calculations of
AE'Y [Eq. (1)] at these grid points. 2! (Using the full
symmetry their number can be further reduced from
180 to 105). The intermolecular distance for which we
have chosen to do this is R=0. 3 .nm, since this dis-
tance 1s relevant both for beam scattering experiments
and for solid state properties.® The expansion coeffi-
cients which result from the numerical integration of the
ab initio points are given in Table IV.

We observe that the short range coefficients V3%, ;. ;

indeed decrease with increasing L, and Ly; the expansion
is convergent. Most of the terms with L,, Lg=4, 4 and
6, 2 are less than 1% of the isotropic coefficient Vi Satos
For fixed L,, Ly the coefficients increase with increas-
ing L. The 18 term expansion deviates less than 0. 5%
from the ab initio results; truncation of the series after
L,, Lg=4, 4 leads to an error of 2%; truncation after

L,u, Lg=2,2 to 16% error.

If one wants to determine the distance dependence of
the expansion coefficients V', ;  ;(R) this procedure
should be repeated for a set of distances R. The ab
initio calculations are rather expensive, however,

(about 3 h of IBM 370/158 CPU time per point) and so

we have instead used a different, more approximate
method. We have assumed that all expansion coefficients
VLA rg,r Of the short range energy have the same expo-
nential distance dependence:

VLAtLBt (R)NVLAILBfL(R)
=V, La.0(Ro) exp[A - B,(R - Ry) — By(R - Ry)?]

with Rj=0. 3 nm. The parameters A, By, and B, have
been optimized by fitting the sphencally expanded AE'D
with the coefficients given by V* ASA r(R) to the ab initio
values of AE'L) + AE{, calculated for six orientations
and six distances 0. 3=R=0.44 nm. The accuracy of
the fit is 7%; the results (see Table V), in combination

defined in this paper are different from
of Ref. 3; the two definitions are, of course, related by a simple linear trans-

with the long range results, ® yield a fairly good repre-
sentation of the ad initio calculations for the N,-N, in-
teraction potential (see Figs. 2 and 4).

IV. APPLICATIONS OF THE N,-N, INTERACTION
POTENTIAL; COMPARISON WITH EXPERIMENTAL
DATA

A. lIsotropic potential

Our calculated isotropic N,-N, potential, V; o ((R),
can be compared with some empirical isotropic poten-
tials from gas phase virial coefficients, viscosity data,
and from solid state properties. *> Since the latter have
only been determined in the simplified forms of Len-
nard-Jones (12-6) or Buckingham (exp — 6) potentials,
we shall not compare the shape of the potentials but
only their main characteristics: the scattering diam-
eter (o), the equilibrium distance (R,), and the well
depth (AE,). The results listed in Table VI show that
the agreement is good, so that we expect our calculated
potential to explain quantitatively the experimental bulk
data (at least those which have been used to determine
the empirical potential parameters).

B. N, crystal properties

Our site-—site potential fitted to the ab initio data (Sec.
III B) has been used to calculate the equilibrium struc-
ture and the cohesion energy of the ordered (o and y)
phases of solid N,. The results, unit cell dimension
a=0. 561 nm for the cubic @ phase, cohesion energy 6. 43
kJ/mol (corrected for the zero-point lattice vibrations),
and a=0.403 nm, ¢=0.500 nm for the tetragonal ¥
phase, are in good agreement with the experimental
data, h2 5 _0.564 nm, heat of sublimation (at 0°K) 6. 92
kJ/mol for a@-N,, a=0.396 nm, ¢=0.510 nm for y-N,.
Also the phonon frequencies at various wave vectors, ob-
tained from harmonic or self-consistent phonon lattice
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TABLE VI. Characteristics of the isotropic potential.

— —_—— — E—

== == —— T —

o (nm) R, (om) AE, (kJmol™)
Calculated Vg, o o(R) 0.376  0.417  0.748
(Table V)
Lennard—Jones (12-6) 0.370 0.415 0.793
from virial coefficients
(Ref. 22, p. 209)
Lennard—Jones (12-6) 0.368 0.413 0.763
from viscosity data
(Ref. 22, p. 209)
Buckingham (exp—6) 0.363 0.404 0.947
from virial coefficients
and crystal data
(Ref. 22, p. 181)
Buckingham (exp — 6) 0.362 0.401 0.844

from viscosity data
(Ref. 22, p. 181)

— = ——

dynamics calculations using our nonempirical site-—site
potential, agree nicely with the experimental data.
Further details will appear in a forthcoming paper,
which is concerned with the properties of solid N, in the
@ and y phases and their temperature and pressure de-
pendence.

23

C. Stability and structure of (N,),

In the gas phase at 77 °K stable N, dimers, so-called
van der Waals molecules, have been observed and their
infrared spectrum has been measured. 4 1n spite of this
knowledge of the spectrum, the structure of this N, dim-
er has not been established. Mainly on the basis of
favorable quadrupole —quadrupole interactions a T'-shaped
equilibrium structure (6,=90° 6g5=¢,=0°) has been
proposed. 24 Addition of the higher multipole interactions
plus the anisotropic dispersion interactions from ab
initio calculations gives further support for the stability
of this T-shaped complex, but also suggests another pos-
sible structure of equal stability, the staggered parallel
one (0,= 65>245° ¢ 4=0°). 3 A more approximate model
including the short range repulsion® predicts a T-shaped
or a crossed (0,= 05=¢ ,=90°) (N,), structure, but if the
molecular shape parameters are somewhat modified the
outcome is a T-shaped or a staggered parallel struc-
ture. 2 Beam deflection measurements, ' which are
sensitive to the dipole moment of the molecular complex,
have not demonstrated the existence of such a dipole on
(N,),. Several possible (N,), structures must have a
zero dipole, however, because of symmetry (for in-
stance, the staggered parallel one and the crossed one),
and for the remaining structures (such as the T-shaped)
the interaction induced dipole may be too small to be de-
tectable.

With our quantitative knowledge of the anisotropic Ny—
N, interaction potential, including boththe long range and
the short range contributions, we can make somewhat
more definite remarks on the N, dimer structure and

confront these with the available experimental informa-
tion. To this end we have studied the potential surface
of (N,), asafunction of the internal angles 6,, 65, and ¢,

R. M. Berns and A. van der Avoird: N,—N, interaction potentials

and the distance R. It is of course notpossible to present
the complete hypersurface pictorially. In Figs. 2 and 4
we have shown some typical cuts through the surface;
Fig. 3 displays the angular dependence of the different
long range and short range contributions to the poten-
tial. Especially Fig. 4 contains much information since
the distance R has been varied to find the energy mini-
mum AE_,. of (N,), and the equilibrium distance Ry, for
each orientation (0,, 65, ®4). In Fig. 3 we observe that,
indeed, the T-shaped and the staggered parallel struc-
ture have maximum electrostatic attraction. The dis-
persion energy is most favorable, of course, for the
linear structure (6,=6;=¢ 4=0°). For distances in the
neighborhood of the van der Waals minimum the short
range exchange repulsion is the dominant anisotropic
term, however. Since it increases very steeply when
the molecular charge clouds start to overlap (especially
in the linear structure), it determines to a large extent
the distance of closest approach of the molecules. If,
for a given orientation, the long range interactions are
not maximally attractive (when compared with other ori-
entations, for equal distance R), but the molecules can
approach each other closely, the van der Waals well may
still be relatively deep. This is, for instance, what
happens for the crossed (N,), structure. In general,

one can observe this role of the short range repulsion
from Fig. 4, where the well depth AE,;, shows a strong
correlation with the equilibrium distance R.;,. Only
when the short range repulsion is not very sensitive to

a change of orientation (for instance, the rotation over
¢ 4 in the N,dimer with 6,= 65 =90°, see Fig. 3) the long
range interactions (in this case, the electrostatic ones,
even though they are repulsive) can still be important in
determining the equilibrium structure.

This crucial role of the short range interactions for
the dimer structure (leading to closest packing) may
suggest that the structure of nearest neighbor pairs in
the molecular crystal forms a good indication for the
equilibrium structure of the van der Waals dimer. This
has indeed been suggested. 8 Our results (see Table VII)
demanstrate, however, that maximum binding energy
for the N, dimer does not occur for the nearest neigh-
bor orientations from the crystal. In fact, it is not ob-
vious, even if only packing considerations determine the
structure, that the optimum packing in a crystal where
each molecule is surrounded by several neighbors must
correspond with optimally packed dimers. The crystal
neighbors should not have too unfavorable pair energies,
though, but the results in Table VII show that this is not
the case.

The absolute minimum in our N,-N, potential sur-
face (a complete search is made using the site-site po-
tential, a cruder one on the spherically expanded poten-
tial), occurs for the crossed structure at R =0. 35 nm
and AE~1.5 kJ/mol (see Table VII). This minimum
lies considerably closer and deeper than the minimum
of the isotropic potential (R, =0.417 nm, AE=0.75
kJ/mol). The equilibrium distance is close to the value
(R=0.37 nm) inferred from the infrared spectrum, ga
but the T-shaped structure proposed in this paper®*
has not been confirmed, due to the anisotropy of the
short range repulsions. (Actually, our minimum for the
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TABLE VII. (N,), structure and binding energy.
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R (nm) 0, 0g
Most stable
dimer structure? 0.364% (0.346,2 0.350°) 90° 90°
a-N, crystal®
neighbor pair 0.399 (0.404°) 90° 35°
v-N, crystal®
neighbor pair 0.379 (0.398°) 90° 42°

éa  AE (kJ mol™) i
90° 11:355%(1.46, 2 1.525)
552 1.05 (1.05°
90° 0.94 (1.09°)

“Neglecting the energy of the nuclear motions; complete search of the potential energy surface has

been performed with the atom—atom potential I of Table III.
’From the spherical expansion, Table V.

“From the ab initio first order energy (Table I) and the second order energy from the dispersion

multipole coefficients of Ref. 3 (Table VI), see Table V and Fig. 2.

dExperimental crystal structure, see Ref. 1, nearest neighbor pair energy AE calculated with

atom—atom potential I.

"R and AE [, obtained with the atom—atom potential I (Table III) for fixed N, orientations from

Ref. d.

T -shaped structure lies much further outwards, at R
=0.42 nm). The potential surface is rather flat around
the minimum, however; the balance between the attrac-
tive and repulsive contributions is subtle and different
possible structures are near in binding energy. In some
directions the barriers for internal N, rotations are
rather low; for instance, for a complete rotation over

¢ 4 in the dimer with 6, = 65;=90° it is about 0. 2 kJ/mol
(17 em™) with practically no variation of the equilibrium
distance (see Fig. 4). This agrees nicely with the esti-
mate of 15 to 30 cm™ from the IR spectrum. ?* So we ex-
pect the N, molecules in the dimer to make rather wide
angular oscillations (librations) or, maybe, hindered ro-
tations (the rotational constant of free N, is 2. 0 cm™).
This is comparable to the situation in the plastic crys-
tal phase, B-N,. In other directions, rotations of the
molecules are strongly quenched; the éomplex must al-
most dissociate before such a rotation becomes possible
(for instance, rotations through the linear structure, see
Fig. 4). Before we can make a conclusive comparison
with the experimental spectrum, we have to solve the
dynamical problem for the nuclear motions, which may
be not an easy job in this case.

Note added in proof.
script we have received a preprint by Ree and Winter,
also containing ab initio results for the N,—N, potential.
These authors have concentrated on the short range,
strongly repulsive, region of the potential. The smaller
basis set which they have used (overestimating, for in-
stance, the N, quadrupole moment), in combination with
the supermolecule self-consistent field (SCF) method
(leading to some basis set superposition error), is less
adequate for the long range and for the region of the van
der Waals minimum, on which we have concentrated.
Moreover, they have not included the dispersion energy
contribution.

After completion of this manu-
29
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