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Dynamical and optical properties of the ethylene crystal 
Self-consistent phonon calculations using an “ab initio” 
intermolecular potential11

T. Luty,b) A. van der Avoird, R. M. Berns, and T. Wasiutynskic)

Institute o f Theoretical Chemistry, University o f  Nijmegen, Toernooiueld, Nijmegen, The Netherlands 
(Received 10 February 1981; accepted 22 April 1981)

Using an intermolecular potential from ab initio calculations, we have calculated the structure and solved the 

lattice dynamics problem of the ethylene crystal in the self-consistent phonon formalism. The anharmonic 

effects, as included by this formalism, systematically improve the optical mode frequencies, in comparison 

with experiment, but the corrections to the harmonic frequencies are still substantially too small. The crystal 

structure and its pressure dependence are well represented. From the phonon polarization vectors we have 

also evaluated the Raman scattering and infrared absorption intensities of the optical modes, applying a 

scheme which takes into account the mutual polarization of the molecules (the “local field corrections” ). The 

Raman intensities agree quite well with experiment; the infrared intensities are less realistic, probably due to 

the neglect of intermolecular overlap effects in the intensity calculations. Using an empirical atom-atom 

potential for hydrocarbons instead of the ab initio potential, the assignment of the optical lattice modes by 

their calculated frequencies was not fully consistent with the Raman intensity ratios obtained from their 

polarization vectors.

I. INTRODUCTION
As a first step in any lattice dynamical study which 

is not purely phenomenological the potential of the solid 

must be defined. To date, practically all calculations 

on molecular crystals have used simple empirical 

intermolecular potentials, mostly of the atom-atom 

type1-3 (pairwise additive isotropic interactions between 

the atoms in different molecules), with parameters 

fitted to the experimental data. The lattice dynamics 

is usually treated in the harmonic approximation; 

sometimes,3-5 the calculated phonon frequencies are 

included in the optimization of the (atom-atom) potential 

parameters. The danger of such treatments is that 

possible deficiencies in the model potential and in the 

dynamical model are blurred: the fit of the parameters 

to the experimental data may (partly) compensate these 

deficiencies.

In the present study of the ethylene crystal we have 

tried to improve on the usual treatments in three ways. 

In the first place, we have used an intermolecular po­

tential derived from ab initio calculations,6-9 with no 

empirical fit parameters. The crystal lattice structure 

calculated with this potential agrees well with experi­

ment. When used in a harmonic lattice dynamics 

calculation the potential has yielded fairly good phonon 

frequencies also,G although the best empirically fitted 

potentials match the experimental data still somewhat 

better. Part of the remaining discrepancies may orig­

inate from the harmonic model, however, and the sec­

ond characteristic of the present study is that we have
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used the self-consistent phonon method10 in order to 

correct for the effects of anharmonicity. Thus, the 

importance of these effects can be assessed and the 

temperature and pressure dependence of the crystal 

properties can be calculated and compared with exper­

iment. The third point concerns the assignment of the 

phonon modes. The optical modes (wave vector q=0)
9

can be observed by IR and Raman spectroscopy. The 

(symmetry) character of these modes is not usually 

measured, however, except for the distinction between 

g and u modes in centrosymmetric crystals, which 

modes are Raman and IR active, respectively. So, if 

only the frequencies of these modes are obtained from 

lattice dynamics calculations and compared with optical 

spectra, the agreement may seem reasonable but some 

of the modes may be interchanged. Moreover, the fre­

quencies, i. e ., the eigenvalues of the dynamical prob­

lem, may depend less sensitively on the potential than 

the corresponding eigenvectors. Therefore, we have 

provided additional information by calculating also the 

intensities of the optical modes, which depend on the 

phonon eigenvectors. For this purpose, we have ap­
plied a formalism for the Raman and IR intensities in 

molecular crystals11,12 which explicitly includes the 

(electrostatic) long range interactions between the 

molecules.

II. METHODS AND POTENTIAL
A. Intermolecular potential

The ab initio calculations leading to the ethylene - 

ethylene potential used in the present studies have been 

reported in a previous paper,6 as well as the fitting 

procedure which yields the parameters in the analytical 

representation of the results. This analytical represen 

tation has the form of a pairwise additive isotropic 

atom-atom potential with distance dependent functions 

of the exp-6-1 type, just as some of the empirical hy­

drocarbon potentials2,3 (a Buckingham exp-6 potential, 

supplemented with Coulombic interactions between
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TABLE I. Parameters of the atom—atom potentials used for 

ethylene (C2H4)a: V{rij) = - A iJr iJ +BiJ ex^(<- C i j r iJ)+qi qJr^J.

Parameters

Ab initio 

potential8
Empirical

potential2

A C-C 876 449.3

(kcal AG mol"1) C-H 132 134.3

H-H 20 40.15

B

(kcal mol“1) C-C 27116 71461

C-H 6368 14316

H-H 1500 2 868

C C-C 3.16 3.60

(A’1) C-H 3.43 3.67

H-H 3.70 3.74

q C — 0 .5274b -0.24

(unit charges) H + 0. 2637b + 0 . 12

aAtomic coordinates (in molecular frame): C: (±0.6685, 0.0, 

0 . 0) A, H: (±1.2335, ±0.9275, 0 . 0) A.
^ ‘Atomic” charges shifted to positions: C ': (±0.5549, 0.0, 

0 . 0) A, H ': (± 1.0095, ±0.8308, 0 . 0) A.

atomic point charges). The “atomic” point charges 

have been shifted away from the nuclei, however, since 
this yields a much better representation of the ab initio 

calculated (long range) electrostatic interaction be­

tween the molecules. The coefficients of the r~6 attrac­

tive terms have been obtained by fitting r"6 attractions 

between the carbon and hydrogen atoms (C-C, C-H, 

and H-H) to the (long range) anisotropic dispersion in­

teractions between the molecules (from ab initio calcu­

lated multipole expansion coefficients).8 The repulsive 

exponential terms represent the overlap interactions 

obtained from an ab initio calculation of the (first or­

der) interaction energy between two ethylene molecules 

which includes these overlap (charge penetration and 

exchange) effects by retaining the exact intermolecular 

interaction operator, instead of its multipole expan­

sion, and using wave functions antisymmetrized over the 

dimer. The resulting repulsive interactions indeed fall 

off exponentially with the intermolecular distance. The 

induction (multipole-induced multipole) interactions are 

very small8,9 and, since these would yield the dominant 

three-body contributions,13,14 we can expect the ethylene 

crystal potential to have small deviations from pairwise 

(molecule-molecule) additivity15’16 (a few percent of the 

binding energy at the van der Waals minimum).

The ab initio data6 have been calculated for eight 

different orientations of the ethylene molecules and 
several intermolecular distances. For the long range 

r~n interactions the atom-atom model works very well 

(if the atomic charges are shifted); the fit of the over­

lap (exponential) terms is somewhat less good, but the 

orientational and distance dependence of the ab initio 

potential is reasonably well represented. The param­

eters determining the analytical “ab initio” potential 

are collected in Table I, together with the parameters 

in a recent hydrocarbon atom-atom potential2 fitted to 

the experimental data. In Ref. 6 we have seen that the 

most striking difference between the ab initio potential 

and various empirical hydrocarbon potentials2,3 is that

the latter substantially underestimate the electrostatic 
multipole-multipole interactions between the C2H4 mol­

ecules.

B. Self-consistent phonon method; implementation for 
molecular crystals

The self-consistent phonon (SCP) formalism for lat­

tice dynamics calculations has been developed for ap­

plications to the light rare gas crystals (helium, in par­

ticular) which have anharmonic interaction potentials in 

combination with relatively high zero-point vibrational 

energies. 10 The formalism starts from the following 

dynamical eigenvalue equations, just as the harmonic 

model:

D(q)e(q) = w2(q)Me(q) , (1)
where the tensor M contains the masses Ma of the 

atoms in each sublattice a:

7lC; = Ma6aa,6afl (a,l3 = x,y, or z) . (2)

The eigenvalues cj/q) and eigenvectors e/q) are the 

frequencies and polarization vectors of the phonon 

modes with wave vector q. In the harmonic approxima­

tion D is the Fourier transform of the force constant 

matrix 0:

¿ S '(q )= £ * r t(* )ex p [< q . R(Z)] , (3)I
where the force constants are the second derivatives 

of the potential for the equilibrium structure of the 

crystal; R (I) is the direct lattice vector of the unit cell 

I. In the SCP method the force constants are replaced 

by effective force constants which are derived10 by 

minimizing the first order expression for the free en­

ergy F  of the system, i .e . ,  the canonical ensemble 

average of the “exact” anharmonic potential V over the 

harmonic oscillator states:

F  =  i/3"1 ln[2 sinh|/3a)y(q)]
a , J

-  jw j(q) cothf/3a) (q)}

+ |AT £  (F[RTO,(Z) + uOT.(/)]> . (4)
R(ja#( I)

The vector Roa,(l) is defined as RCT0,(Z) = R(Z) + R^ -Ra, 

where Ra is the vector joining the origin of the unit cell 

with the a sublattice. The relative atomic displace­

ments are uffff# (Z) = uff, (Z) -ua(0) and the vectors ua(Z) 

denote the displacements of the a atoms in unit cell Z, 

relative to their equilibrium positions, R(Z) + Ra. The 

temperature enters into the formalism via the quantity 

/3 = H/kT. The minimization of expression (4) with re ­

spect to the effective force constants 0 leads to the 

following expression for these force constants:

K b (I) =  v[RoAD + • (5)

This means that the second derivatives of the potential 

V have now to be averaged over the relative atomic 

displacements u0(J»(Z). The averaging of any quantity 
Q, whether it is the potential in Eq. (4) or its second 

derivatives in Eq. (5), can be expressed by means of 

the displacement-displacement correlation function X:

J. Chem. Phys., Vol. 75, No. 3, 1 August 1981
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( Q[R„„.(I) + U00#(I)]) = (2jt)"3 n  [det(X)]'1 /2

x + . (6)

These functions X are given by

\„s(a, o’ , 0 = ([u„»(Z) -u„(0)]a[uo.(Z) -u„(0)]s) (7)

and they can be calculated from the following expres­

sion:

W <T»cr̂ ¿) = -f;X¡L1-cos(l• R(*)l
CiV Q J
x wj(q)"1 coth-gj3coy(q) ej(q.)«ej(q)|* , (8)

where c is the light velocity, if e/q) is normalized as 

e/q)« M - e / q ^ l .  Since the expression (8 ) contains 

the eigenvalues and eigenvectors of the dynamical Eq.

(1), Eqs. (l)-(8 ) have to be solved self-consistently.

The first application of this formalism to molecular 

crystals was made by Raich et al. 17 for the a phase of 

solid N2. Actually, these authors treated the motions 

of the individual N atoms, which interact via an inter­

molecular atom-atom potential and an intramolecular 

harmonic or Morse type potential describing the N2 

stretch. Wasiutynski18 has extended the formalism 

by considering explicitly the librational motions that 

occur in molecular crystals. In that case, one has 

translational displacements u* = (xf y , z) and rotational 

displacements u.r = (6x, Qy, 6e) of the (rigid) molecules; 

together these are grouped in a six-dimensional d is­

placement vector u = (u*, ur) = {z*a; a = 1 , .. . ,  6}. 

Wasiutynski starts from the same dynamical Eqs. (1), 

but the dimension of the problem is doubled, since the 

eigenvectors e/q) have librational components e /q )a 

for a =4, 5, 6 . The mass tensor (2) must be extended 

as follows:

MQa& — 0 , for a = 4, 5, 6 and /3 = 1, 2, 3

and for a = 1, 2, 3 and ¡3 = 4, 5, 6 , (9)

M°aB= I aa.3,0.3 , for a = 4, 5, 6 and 0 = 4, 5,6 ,

where 1° is the moment of inertia tensor of the mole­

cules in the cr sublattice (in the crystal system of axes). 

The effective force constant matrix (p and its Fourier 
transform D have mixed translational-rotational (tr 

and rt) and pure rotational (rr) elements, in addition 

to the pure translational (tt) elements given by Eq. (5). 

Also, the displacement-displacement correlation func­

tions (7) and (8 ) have such components Xfi, Xir, Xri, 

and Xrr.

For intermolecular potentials which consist of addi­

tive atom-atom contributions (or interactions between 

generalized force centers of the molecules, such as the 

potential described in Sec. HA), Wasiutynski has worked 

out the calculation of the effective force constants (5) in 

terms of the atomic displacement-displacement cor­

relation functions. These can be related to the molecu­

lar functions Xfi, Xir, Xrf, and Xrr by substituting into 

Eq. (7) the following relation between atomic displace­

ments u(m) and the rigid molecule translations u* and 

rotations ur:

u(m) = ui + urxR(ra) , (10)

where R(m) is the position vector of atom m relative 

to the molecular center of mass. It must be realized, 

however, that Eq. (10) and also the harmonic oscilla­

tor kinetic energy expression in terms of ur= (9xf 0y, 6Z) 

are exact only for infinitesimal rotations ur. So the 

SCP method, as generalized to molecular crystals by 

Wasiutynski,18 may be less effective in correcting the 

harmonic model for larger amplitude anharmonic li- 

brations. Numerical calculations which have been 

carried out19 on the ordered (a and y) phases of solid 

N2 (using an ab initio interaction potential20 similar to 

the present one) confirm this observation. The SCP 

corrections for the translational mode frequencies lead 

to almost perfect agreement with experiment; the l i ­

brational frequencies, especially at temperatures near 

the of —/3 phase transition, remain somewhat in error.

Wasiutynski has applied this generalized SCP method 

to the cubic hexamethylene tetramine crystal with one 

molecule in the primitive unit ce ll.18 The application 

of the formalism to the monoclinic ethylene crystal, 

space group P21/n> with two molecules in the primitive 
cell, is rather straightforward. The integrations over 

the atomic displacements (6) which have to be made for 

the potential* in the free energy expression (4), and for 

its second derivatives, in the effective force constant 

matrix (5), have been carried out numerically by Gauss- 

Hermite quadrature,21 using 33 and 53 points, respec­

tively. Nondiagonal terms in the displacement-dis- 

placement correlation functions X appear to be very 

small18; when evaluating expression (6), the off-diagonal 

terms in X"1 have been neglected. The Helmholz free 

energy (4), or the Gibbs free energy G = F  + pv  for 

crystals under constant pressure, has been minimized, 

not only with respect to the effective force constants as 

implied by the SCP method, but also with respect to the 

lattice structure: the unit cell parameters and the posi­

tions and orientations of the molecules in the primitive 

cell (if not determined by the crystal symmetry). This 

structure optimization is repeated in each SCP iteration. 

As a starting point for the SCP iterations we have used 

the eigenvalues and eigenvectors from a harmonic calcu 

lation.

The summations over q in Eqs. (4) and (8) replace 

exact integrations over the first Brillouin zone, and so 

it is important to choose a set of wave vectors q which 

correctly represent these integrals. In principle, we 

have chosen a uniform mesh in reciprocal space. The 

set of q must reflect the complete symmetry of the 

crystal, however, including the point group operations. 

Since the tensor X given by Eq. (8) transforms under 

symmetry operations in the same way as the force con­

stant tensor 0 [Eq. (5)], one can restrict the set of q 

to the fundamental wedge (i of the Brillouin zone) and 

use the appropriate weight factors and transformation 

properties in the summations (4) and (8). In this wedge 

we have taken 312 points.

Finally, it must be mentioned that the lattice sums 

occurring in Eqs. (3) and (4) have been performed over 

42 nearest molecules in the ethylene crystal. The crys 

tal structure is known from x-ray diffraction,22 but the 

monoclinic cell parameters a, b> c, and /3 and the Eulei
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angles £, rjy £ corresponding with the equilibrium ori­

entations of the molecules have been optimized in the 

calculations (by minimizing the free energy as men­

tioned above). This minimization was carried out by the 

program package minuits . 2 3  The calculations have been 

made also for deuterated ethylene, for which the crys­

tal structure under pressure is known.24

C. Raman intensities
In a sample of randomly oriented crystallites as one 

has for the Raman measurements on ethylene,25 the 

polarized Stokes intensity for a nondegenerate lattice 

mode j  with normal coordinate Qj and frequency tos is 

given by2G

L  =
H(jO

2nc* - exp(-/3cjy)] £
a ,0 9 Qj

L
2

(ID

where u)s is the frequency of the scattered light cds = oj0 

-a)j. The tensor \ describes the (high frequency) elec­

tric susceptibility of the crystal. In the simplest (“ori­

ented gas”) model the molecules in the crystal are as­

sumed to be noninteracting and the crystal susceptibil­

ity x is given by the sum of the molecular polarizability 

tensors a a, expressed in the crystal principal axes 

system. Actually, the susceptibility x which is the 

response function of the crystal to external electric 

fields is modified by the interactions between the mole­

cules. The principal correction term to the response 

function is due to the internal field from the induced 

dipoles, which changes the local field and thereby the 

induced dipole moments. Including this term, one ob­

tains27

X
-1
(JCF a (12)

where v is the unit cell volume, a is the 3nx3n tensor 

containing the molecular polarizability tensors a aa*

= 6aaiOi(J, L is the 3nx3n Lorentz tensor which is com­

posed of 3x3 Lorentz tensors Laa*,27 and n is the num­

ber of sublatticeso In principle, other correction terms 

due to higher multipoles, to overlap interactions,, and 

to dispersion forces between the molecules should be 

included as well. We expect the induced dipole field 

correction term to be dominant, however, as it is for 

the collision induced (depolarized) Raman intensities 

in compressed gases28 and therefore we have neglected 

all other interaction terms.

In crystals where the molecules lie on centers of 

symmetry (such as ethylene) the optical (q = 0) modes 

are Raman active. In that case, the susceptibility 

derivative simplifies to11:

9 Qj

9X

a < , a
(ei)a , (13)

where (ep£ are the (rotational) components (a = 4, 5, 6) 

of the eigenvector for the librational mode j  (with q=0) 
which multiply the rotational displacements \ir= (6x, 6yy 

6g) of the molecules o. From Eq. (12), noting that the 

Lorentz tensors L do not change by rotational displace­

ments (they depend only on the molecular positions), one 

finds, after some manipulation, 11

9X
dur ua ,a V £  (1 -a l );!

8a
awa9 9

(1 -L* a)
-1
aa" y

The derivatives d^/du^  ̂of the molecular polarizabil- 

ities (in the crystal axes system) with respect to the ro­

tational displacements of the molecules (about the crys­

tal axes) are completely determined by the rotational 

transformation properties of the molecular tensors a°. 

So, for a given crystal structure the quantities n£ can 

be calculated from the molecular polarizabilities a* and 

their rotational derivatives (both transformed to the 

crystal axes system) and from the Lorentz tensors L. 
From the lattice dynamics calculations (see Sec. IIB) 

we have obtained the eigenvectors er} and thus we can 

compute the intensity of the (unpolarized) Raman band 

for each mode j  by the formula

Ij =
Hoo

2 77 C 3 CÜ j[1 -exp(-puj)]
£  £(np«,(e;)
oct B cjfr

a
r (15)

The molecular polarizability of ethylene has been

measured29’30 and calculated by ab initio methods.8 For 

the present calculations we have used the experimental 

values (which are not very different from the calculated 

ones): a x:c = 36. 4, a yy=26. 1, and a Kt — 22. 9 a. u . , in a 

molecular frame with the x axis along the C-C bond and 

the molecule lying in the xy plane.

D. Infrared intensities
A model for the infrared intensities of lattice vibra­

tions which is consistent with the description of the 

Raman intensities11 (Sec. IIC) has recently been pro­

posed. 12 The integrated absorption intensity for phonon 

mode j  measured with unpolarized radiation is

r  2ir H
J vcoj j l l  -exp(-0wy)] £a

dZ a
dQj

(16)

where dZa/dQj is the dipole moment change induced in 

the unit cell by the (q=0) mode with normal coordinate 

Qj. This normal coordinate is composed of molecular 

displacements; for ethylene only the translational d is­

placements u* (the u modes) are involved. For mole­

cules without intrinsic dipole moments (such as ethyl­

ene) a dipole moment can be induced by the interactions 
with the neighbors according to the following three 

mechanisms: polarization by the electric field of the 

neighbors (and by external fields), dispersion forces, 

and (short range) overlap effects» In compressed (pure) 

gases it has been found31 that the first term yields the 

main contribution to the collision induced IR absorption 

(although the overlap effects are nonnegligible; in gas 

mixtures they are even dominant31“33). Just as in our 

model for the Raman intensities, we have neglected the 

overlap and dispersion interactions. The remaining 

polarization term yields the following (linear response) 

expression12 for the dipole moment induced in a given 

molecule o by the displacements of other molecules
a//

Z °= - £  X«,.- £  B a* a*,U
t

(17)
o' 9 9

The tensor \aa1 is Part °f the electric susceptibility ten­
sor of the crystal including the local field corrections 

[cf. Eq. (12)]

-1
CTcr a (18)

= nOL (14) and contains the derivatives of the electric field
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TABLE n . Crystal structure of C2D4 space group P2i/n (Z= 2).

Structure

parameters

Calculated (harmonic)1

T = 85 K, P =0 T = 99 K, p = l .  9 kbar

Calculated (SCP)b

Experimental24

Calculated (SCP)b

Experimental24

Empirical

potential2

Ab initio 

potential6

Empirical

potential2

Ab initio 

potential6

Empirical

potential2

Ab initio 

potential6

Lattice a(k) 4.726 4.730 4.799 4. 782 4.613 4.716 4.710 4.506
constants b(k) 6.435 6.205 6.610 6.334 6.610 6.546 6.280 6.558

c(h) 4. 135 4. 004 4.212 4. 064 4.037 4. 121 4.000 3. 977
j3(deg) 93.9 88.5 93.4 88.2 94. 5 94.2 89.1 95.2

Molecular £ (deg) -27.0 -31.7 -27.8 -32.2 -27. 0 -28.2 -32.0 -26.8

orientations® Tj(deg) -11.7 -9.3 -11.2 -9.1 - 14.6 -11.6 -9.4 -14.2
f (deg)

00•
r-i
CO1 1 CO • CO -32.0 -31.5 -34.3 -31.9 -31.6 -34.3

aBy m inim izing the internal energy (T = 0). 

hBy m inim izing the free energy.

cEuler angles are defined as follows: Start with the molecule lying in the ac* plane, the C —C axis along the a axis, and rotate by 

£, 77, and £ about the a, b, and c* axes, respectively.

at site o' with respect to the displacements of the mole­

cules a ". In order to calculate the internal electric 
field in the crystal the molecules can be represented by 
continuous charge distributions, by point multipoles, or 

by sets of point charges distributed over the molecules 

(not necessarily on the nuclei). We have chosen the lat­

ter representation, just as for the calculation of the 

electrostatic contribution to the crystal free energy 

and force constants (see Secs. IIA  and IIB). Then, the 

field derivative matrix B takes the form

E  VaV0|Roo,(Z) + R(ra)|-1 , (19)
meo1 I

where qa»{m) are the point charges placed on molecule 

a' at positions R(m) relative to the center of mass and 

the vectors RCT0*(Z) are defined as in Eq. (4). The in­

duced molecular dipole moments (17) can be summed 

over the unit cell and the dipole moment derivatives ap­

pearing in the infrared intensity (16) can be found by us­

ing the relation between the normal coordinates Qj and 

the molecular displacements u«$. Thus, we obtain

9Z az° 8Z- ( t)a‘
* Q t V  dQ j  V  .T i 8*4..* y

= -  E  W - B  ( e » r .  (20)

The susceptibility tensor can be calculated as in Sec. 

IIC  from the molecular polarizabilities and the Lorentz 

tensor for the given crystal structure. For the same 

structure and a given set of molecular point charges (see 

Table I) the field derivatives B can be evaluated using 

EwakTs method26 (which has been used also for the 

calculation of the Lorentz tensor). The eigenvectors 

e* are those from the lattice dynamics calculation again, 

but now for the translational q=0  modes (the u modes).

III. RESULTS AND DISCUSSION
The results of the crystal structure optimization with 

the ab initio potential and with an empirical hydrocarbon 

potential2 (see Sec. IIA) are shown in Table II. In the 

harmonic model calculation we have minimized the in­

ternal energy of the crystal (at T=0), neglecting the 

zero-point vibrations; in the SCP calculations we have

minimized the Gibbs free energy for the temperatures 

and pressures where the experimental structure deter­

minations24 were done. The overall agreement between 

the calculated and experimental data is fairly good, 

which is satisfactory especially for the ab initio poten­

tial since it contains no empirical fit parameters. In 

the SCP calculations (at zero pressure) the lattice ap­

pears to dilate relative to the harmonic calculation; 

this effect is mainly due to the zero-point motions. The 

largest relative increase occurs for the parameter b 

(which is smaller than the experimental value). The 

dilation is smaller for the ab initio potential, which is 

what one would expect since the empirical potential is 

somewhat softer (it yields lower phonon frequencies; 

see below). The lattice contraction which is obtained 

by increasing the pressure to 1. 9 kbar is very well re ­

produced by the SCP calculations.

The phonon frequencies w/q) have been calculated for 

312 wave vectors q in the fundamental wedge of the 

Brillouin zone, which is necessary for calculating the 

free energy (4) and the SCP effective force constants (5) 
via Eqs. (6) and (8). In Table III the results are shown 

just for q=0, since only the optical frequencies have 

been measured so far. 25,34 The agreement between 

calculations and experiment is reasonable, but some­

what less good than we have recently found19 for the N2 

crystal, where especially the translational mode fre­

quencies were reproduced almost perfectly by the SCP 

treatment with an ab initio potential. This is probably 

due to the ab initio potential for C2H4 and, in particular, 

its analytic (atom-atom) representation, which has 

been obtained from fewer ab initio calculated points, 

being somewhat less accurate. (Moreover, the atom- 

atom model appeared to be more realistic for the N2- 

N2 potential than for the C2H4-C2H4 potential, in the 

short range region. )

In all cases, exceptfor the lowestfrequency Bs mode, 

the SCP anharmonic corrections lower the harmonic fre­

quencies ; the effective force constants are smaller than the 

second derivatives at the potential minimum. For the ab 

initio potential all SCP corrections improve the agreement 

with the experimental frequencies, i.e., they point in the 

right direction, but they are still considerably too small.
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T = 30 K, p = 0 T =99 K, ƒ> = 1. 9 kbar

Calculated (harmonic) Calculated (SCP) Calculated (SCP)

Symmetry

Empirical

potential2
Ab initio 

potential6
Empirical

potential2
Ab initio 

potential6 Experimental25,34
Ab initio 

potential8

Bi 31.1 41.6 33.4 42.6 60 44.6

A ' 65. 7s 6 6 . 9 64. 8a 66.6 75 74.1

Librational Ai 76. 3a 87.6 74. 3a 84.6 78 90.2

modes Bg 111.1 134.5 107.2 130.3 95 139.4

At 116.3 139. 5 111.7 136. 0 123 146.5

B. 120.7 176. 3 118.2 172.7 135 181.4

Translational Au 59. 1 69. 9 54.9 66 . 6 • • • 73.1

modes Au 69.9 87.7 65.6 83.2 69. 5b 89.0

Bu 105.2 118.3 99.2 113.4 104.0b 124. 8

aIf these modes were assigned by their Raman intensities, their order would have to be reversed (only for the empiri­

cal potential; see Table V).

Pleasured at 20 K . 34

(If the potential is not completely realistic, they cannot, 

of course, fully remove the discrepancy. ) For the 

empirical potential2 the SCP corrections actually make 
the results worse in some cases. This must probably 

be ascribed to the empirically fitted potentials contain­

ing already some effects of the anharmonic lattice vibra­

tions implicitly. Increasing the pressure to 1. 9 kbar 

raises all the phonon frequencies; changing the tempera­

ture in the range from 0 to 100 K has practically no ef­

fect (less than 1 cm"1). /

A result which is striking is that we have found prac­

tically no difference between the SCP eigenvectors e/q) 

and the harmonic ones, although the frequencies (the 

eigenvalues) do differ. So, for the calculations of the 

Raman and IR intensities we have used the eigenvectors 

from the harmonic calculations. The Raman intensities . 

are shown in Tables IV and V for ethylene and deuterated 

ethylene, respectively. First, we observe from the dif­

ference between the absolute intensities in columns 4 and 

5 of Table IV that the local field corrections to the crys­

tal electric susceptibility11 are quite important. [Note 

that the Raman intensities depend on the fourth power 

of the matrix (1 - a • L)"1; see Eqs. (14) and (15). ] For

the relative intensities, which is what can be reliably 

extracted from the measurements,25 the “oriented gas” 

model yields about the same results as the model which 

includes these corrections.

The relative intensities calculated with the ab initio 

potential agree reasonably well with experiment, except 

for the very low intensities of the two highest frequency 

modes in ethylene. These modes correspond with a l­

most pure rotational oscillations of the C2H4 molecules 

about their C-C axes (in phase, Ae, or out of phase, Bg). 

Since the proton mass is low, the amplitudes of these 

oscillations are relatively large. Apart from possible 

experimental inaccuracies in these low intensities, the 

SCP formalism and the model used for calculating the 

Raman intensities are probably less reliable in this 

case. For the corresponding modes in C2D4 (see Ta­

ble V) the agreement is much better.

The Raman intensities calculated with the empirical 

potential2 show an interesting discrepancy, both for 

C2H4 and for C2D4. If one were to assign the lowest 

two Ag modes by their intensities, rather than by their 

frequencies, then their order would be reversed. Look-

TABLE IV. Raman intensities of optical modes in the C2H4 crystal.

Mode
symmetry

Calculated1
*

Experimental25Empirical potential2

Frequencies

(cm'1)

Ab initio potential6

Absolute

intensities0

Relative

intensities13
Frequencies

(cm’1)

Relative

intensities13

Oriented 

gas model
With local 

field corrections

Frequencies
(cm'1)

Relative
intensities11

Bt 38 0. 66 50 0. 09 0.34 0.35 73 0. 19

79 0. 81 80 0.24 0. 97 1.00 90 1.00

A' 90 1.00 105 0.13 0. 51 0.53 97 0.42

B' 131 0.19 157 0. 04 0. 15 0.15 114 0.20

Ai 163 0.17 196 0. 03 0. 11 0.1-1 167 0.006

B. 170 0. 04 249 0. 005 0. 024 0.025 177 0.002

aFrom the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors). 

^Relative to the most intense mode. 

cIn arbitrary units.
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Mode

symmetry

Calculated1

Experimental25Empirical potential2
t

Ab initio potential6

Frequencies

(cm-1)

Relative

intensities15
Frequencies

(cm"1)

Relative

intensities15
Frequencies

(cm"1)

Relative

intensities15

Be 31 0.64 42 0.43 60 0.17

a £ 66 0.66 67 1 . 00 75 1 . 00
Ae 76 1 .0 0 88 0.52 78 0.50

B 111 0 .2 0 134 0.13 95 0 .2 0
Ae 116 0.14 139 0.08 123 0.08

B i 121 0.014 176 0.015 135 0.013

aFrom the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors). 

Relative to the most intense mode.

ing at the frequencies alone, one could not detect such 

a discrepancy and the danger of trying to improve the 

empirical fit parameters by using the measured phonon 

frequencies3 is clearly demonstrated here. Also, the 

overall agreement with the measured relative Raman 

intensities is less good for the empirical potential than 

it is for the ab initio potential.

Table VI shows that the agreement between the calcu­

lated relative IR intensities and the measured data34 is 

rather bad, both for the ab initio potential and for the 

empirical one; the latter seems to give slightly worse 

results. Maybe the ethylene films on which the IR in­

tensity measurements have been made do not corre­

spond with the model of randomly oriented crystallites 

for which formula (16) has been derived. Due to the 

symmetry, the induced dipole moment must lie along 

the crystal b axis for the Au modes, while it follows 

from the calculations that the Bu mode yields a dipole
|

transition moment nearly parallel to the a axis. A com­

parison with polarized IR spectra would be very informa­

tive. On the other hand, the model used for calculating 

the induced dipole moments is probably too crude. In 
particular, the neglect of overlap effects on the induced 

dipoles may lead to inaccuracies. The reason why the 

calculated IR intensities are worse than the Raman 

intensities could be that the latter appear already in the 

oriented gas model, i. e . , they depend in the first in­

stance just on the molecular polarizability tensors (in 

particular, on their rotational transformation behavior). 

A result which seems to be consistent with experiment 

is that the lowest frequency Au mode, which has not been

observed until now, is indeed calculated to have a low 

relative intensity.

IV. CONCLUSIONS
Summarizing the discussions, we conclude that the in- 

termolecular C2H4 potential from ab initio calculations6-9 

yields a fairly good structure and reasonably good phonon 

frequencies for the ethylene crystal. If the anharmonic 

effects are taken into account by the self-consistent pho­

non method, the frequencies are systematically improved: 

the corrections are substantially too small to yield
/

agreement with experiment, however. The effects of 

pressure on the ethylene crystal structure and on the 

phonon frequencies are well represented by the SCP 

calculations. From the calculation of the (relative) 

intensities of the Raman active optical modes it was 
found that the calculated polarization vectors of these 

modes are fairly realistic, too.

An empirical hydrocarbon atom-atom potential2 also 

yields a fairly good crystal structure and reasonably 

good phonon frequencies, but now the harmonic frequen­

cies are not always improved by the SCP corrections. 

This might be expected since the empirical potential 

probably contains the effects of the (anharmonic) lattice 

vibrations implicitly already; so, the results will not be 

improved by again adding these effects explicitly. The 

polarization vectors obtained from this empirical poten­

tial are less realistic, as shown by the comparison of 

the Raman intensities. In particular, it was found in 

this case that the assignment of two Ag modes by their

TABLE VI. Infrared intensities of optical modes in the C2H4 crystal.

Mode

symmetry

Calculated1

Experimental34Empirical potential2 Ab initio potential6

Frequencies

(cm"1)

Relative

intensities15
Frequencies

(cm"1)

Relative

intensities15
Frequencies

(cm '1)

Relative

intensities15

63 0 .1 0 74 0.16 •  •  • •  •  •

Au 75 0.33 93 0.72 73 1.00

Bu 113 1.00 126 1.00 110 0 .6 6

aFrom the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors). 

bRelative to the most intense mode.
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frequencies is not consistent with their intensity ratio. 

So, this assignment may have to be reversed, but then 

the agreement with the measured frequencies is deter­

iorated.

The model11 which we have used to calculate the 

Raman intensities in the ethylene crystal appeared to 

work quite well; the absolute intensities are strongly 

affected by the local field corrections, but the relative 
intensities practically do not change from the oriented 

gas results. The model for the IR intensities12 has 

still to be improved, probably by taking the overlap 

induced dipole moments into account.
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