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Is (NH3), hydrogen bonded?
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Abstract

Vibration-rotation~tunneling (VRT) splittings have been computed for the dimer (NHj), by the use of four
different model potentials. The six-dimensional nuclear motion problem is solved variationally in a symmetry
adapted basis consisting of analytic radial functions and rigid rotor functions depending on the five internal angles,
as well as on the three overall rotation angles. Two of the potentials are designed such that they have no barrier for
interchange tunneling and the other two potentials have barriers of 31.1 and 24.4 cm™", respectively. The top of the
barrier corresponds to a cyclic structure and the two equivalent minima on either side of the barrier to nearly linear

hydrogen bonds.

Energy splittings, dipole moments, nuclear quadrupole splittings, and the amount of quenching of the monomer
umbrella inversions are computed and compared with the available experimental numbers. The potential that
gives best agreement with the observed quantities has an equilibrium hydrogen bonded structure close to linear,

but a VRT-averaged ground state structure that is nearly cyclic.

1. Introduction

It is a fact, well-established theoreticaily {1-10]
and experimentally {11-16], that the dimers (HF),
and (H,0), have a hydrogen bonded structure.
Until 1985 it was generally believed that the ammo-
nia dimer, too, had a “classical” hydrogen bonded
structure with a proton of one monomer pointing
to the nitrogen lone pair of the other. In that year
Nelson et al. [17] interpreted their microwave
spectra by assuming that the dimer has a nearly
cyclic structure in which the two umbrellas are
almost anti-parallel. This interpretation was not
supported by most of the ab initio calculations in
existence at the time, and spurred theoreticians to
undertake more elaborate calculations [18-21],
most of which still yield a hydrogen bonded equi-
librium structure. The two most recent — and most
sophisticated — calculations differ in the pre-
diction of the equilibrium structure: Hasset et al.
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[22] found a hydrogen bonded structure, whereas
Tao and Klemperer [23] found a cyclic structure
thanks to the addition of bond functions.

An obvious explanation of the discrepancy
between the outcome of most calculations and the
microwave data may be found in the effect of vibra-
tional averaging: whereas the electronic structure
calculations focus mainly on finding the minimum
of the intermolecular potential, the experiment
gives a vibrationally averaged structure. The poten-
tial energy surface being flat in several directions
[22,23), it is very hard, however, to compute the
vibrationally averaged geometry and to explain
the discrepancy quantitatively. On the one hand
the flatness of the surface indicates that the
difference between equilibrium and vibrationally
averaged structure can indeed be substantial, but
on the other hand it also means that a simple
harmonic model does not suffice. A full six-
dimensional solution of the nuclear Schrédinger
equation is required to make a definite assessment
of the expectation values of the relevant nuclear
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coordinates. Such a4 computation, in turn, requires
a full six-dimensional potential energy surface,
which is not available from ab initio calcu-
lations. Most ab initio work gives only selected
cuts through the surface. This allows only
the fitting of a crude model potential that
subsequently can be used to extrapolate to regions
of the surface not covered by the electronic
structure calculations. In this manner Sagarik
et al. [18] obtained carlier a potential for the
ammonia dimer from coupled pair functional
calculations. We used this potential in a series
of extensive calculations [24] in which we
solved the full six-dimensional nuclear motion
equation.

Although we found that the vibrationally aver-
aged structure was shifted from the equilibrium
hydrogen bonded structure toward the cyclic geo-
metry, we were not able to obtain complete recon-
ciliation with the microwave geometry. Since our
potential was not very reliable, our results were not
conclusive, although they did show that the dimer
is floppy and that accordingly the effect of vibra-
tional averaging is very important, not only for the
geometry, but also for other measured properties
such as the dipole moment and nuclear quadrupole
splittings. Further we obtained indirect evidence
that the “umbrella” inversion of the two mono-
mers is not completely quenched, as was assumed
by Nelson et al. [17].

The latter conclusion was also reached by Loeser
et al, [25], who reported an extensive set of new far-
infrared and microwave measurements and gave a
very detailed analysis of these — as well as pre-
vious [26] — experimental data. They conclude
that the group of feasible operations (permu-
tations, inversion and their products) is of order
144, which means that they observed the tunneling
splittings associated with the two umbrella inver-
sions and the interchange tunneling in which the
role of the two monomers is reversed. In this con-
nection we also want to mention the work of the
Nijmegen/Bonn group [27], who reported tunnel-
ing splittings in the far-infrared, including those
due to umbrella tunneling. Recently they also
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measured the dipole moment in the [Q]=1
state of G-symmetry {28]. We predicted earlier
[24] that the dipole moments of the |Q|=1 states
of Ey and E, symmetry are also non-vanishing;
it will be interesting il this prediction can be veri-
fied experimentally.

In this paper we will study the influence of
the intermolecular potential on the computed
vibration—rotation—tunneling (VRT) states, We
will investigate which different vibrationally
averaged structures are obtained from different
model potentials and how other observed proper-
ties are affected by these potentials.

2. Model potentials

We have investigated four different model
potentials that all depart from a simple electro-
static model in which each monomer is described as
a point dipole and quadrupole, located at the
monomer center of nuclear mass. See Table 1 for
the structure of ammonia, taken from the work of
Dykstra and Andrews [29], and Table 2 for the
values of the electrostatic moments [30]. Fixing
the distance between the mass centers at
R=3.23A, we find a minimum in the potential
for 8, = 18° and 180° -0z = 100°, where the
angles are defined in Fig. 1. These are the angles
expected in a hydrogen bonded structure. Note,
however, that the energy in this simple model
does not depend on ¢, or ¢g, because the dipole
and the quadrupole tensor are axial, both having
only a non-vanishing component along the three-
fold symmetry axis of the monomer, This freedom
implies that the positions of the protons of mono-
mer B are undetermined with respect to the lone
pair of monomer A.

Next we added a point octupole to both mol-
ecules, which has the effect that monomer B
rotates around its three-fold axis such that one of
its protons is close to the lone pair of A. The mini-
mum structure is at (64, 180° — 8) = (20°,99) and
(¢a, dp) = (60°,0°)(R still fixed at 3.23 A). Thus,
this simple electrostatic model predicts already
the classical hydrogen-bonded structure with its
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Table |
Ammonia structure®

Bond Length (A)
)'HC 0988 5].
FHN 1.012 00
'ne 0.067 66
rLN 0,988 51

# C is the center of mass, L is lone pair force center.

characteristic well-directed bond. We conclude that
the hydrogen bond has a purely electrostatic origin,
no resonances between covalent and ionic struc-
tures [31] are needed to obtain a directed bond.

When we vary simultaneously (f4,180° — 8g)
from the one minimum at (20°, 99°) to the other
equivalent minimum at (81°, 160°), while minimiz-
ing the energy by relaxing the angles v, ¢a, and ¢p,
we walk over the interchange tunnelling path. The
barrier that is herewith crossed has height
126.8cm™ on the dipole—quadrupole—octupole
surface, see Fig. 2, where we exhibit the energy
as a function of 6, and fp. Note that electro-
statics allows interchange tunneling only through a
narrow valley,

Next we introduce the exchange repulsion
and dispersion attraction in the form of an exp-6

Table 2
Potentials [a.u.]*
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site—site potential,
CiC;
Van=_>_ {A,-Aj exp[—(b; + b;) Ryj] — 7’{—61
icA j€EB ij
)]

Following the work of Dykstra and Andrews [29],
we considered in addition to the nitrogen nuclei
and protons also the nitrogen lone pairs as centers
of force. See Table 1 for the locations of these
centers and Table 2 for different sets of force field
parameters used in this work. The parameters ¢;
were simply taken from Dykstra et al. The para-
meters 4; and b; in potential 1 were determined
from the (6-12) Lennard-Jones (LJ) potential of
Dykstra et al. by requiring that the depth and the
position of the minimum in the N-N and H-H
terms of Eq. (1) coincide with the minimum in
the corresponding term of the LJ potential. The
reason why we did not use the LI potential itself
was the following. Our dynamics program requires
the potential as a linear combination of angular
functions, see below, so that we always expand
our model potentials. We experienced conver-
gence problems when we tried to expand the (6—
12) LJ potential. Switching to the exp-6 potential
solved this problem.

Since the Dykstra potential does not contain

Parameter® I

If 111 v
) —0.6106 —~0.6106 —0.6106 -0.6106
3 ~2.1598 ~2.1598 —2.1598 -2,1598
i 0.0 0.0 2.5226 2.5226
3 0.0 0.0 4,1748 4.1748
o 14.0 14.0 14.0 14.0
o 0.0 0.0 0.0 0.0
tn 0.2 0.2 0.2 0.2
by 1.8391 1.8391 1.839] 1.8391
by 1.5549 1.5549 1.5549 1.5549
by 1.5549 1.5549 1.5549 1.5549
A 207. 207. 280. 255.
Ar 9,336(~4) 8.000(—3) 5.000(—4) 2.000(~3)
Ay 1.541(=2) 4.880(-2) 1.000(—2) 1.540(—2)

* Electric moments from Ref. 30, for the other parameters see text. Numbers in parentheses indicate powers of ten.
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Fig. 1. The relevant coordinates of the dimer. The angles are
defined as follows: We take two parallel frames centered on
A and B and let the positive z-axes point from the center of
mass of A to that of B. The plane of the drawing coincides
with the xz-planes with the x-axes pointing upward.
Consider a geometry with two parallel umbrellas, the
symmetry axes on the z-axes and the planc of paper as a
symmetry plane. Each monomer has an NH bond in its
xz-plane with positive x-coordinate and negative z. This is
the geometry with all angles zero. Next we rotate the
symmetry axes such that they have polar angles 0x,~X,
where X = A or B. Then v =y — y4. Finally we rotate
the monomers around their symmetry axes over angles ¢
and ¢p, respectively. A positive rotation is in the direction of
the lone pair.

E.H.T. Olthof et al.JJ. Mol. Struct. ( Theochem) 307 (1994) 201-215

octupoles, we obtain too much attraction when
adding octupoles (potential III and IV), which we
compensated by increasing the parameter Ay
somewhat. Since the nitrogen atoms almost coin-
cide with the respective centers of mass, this hardly
affects the anisotropy in the interaction.

Potential I, which by design resembles the
Dykstra potential, has an interchange barrier of
31.1cm™!, By increasing 4; and Ay we obtained
potential II. Since an increase of these parameters
lowers the barrier, we could achieve that a mini-
mum occurs in potential IT at about the position of
the saddle point of I. Thus potential I was
designed to have its minimum for a cyclic
structure. Notice parenthetically that we present
values of 180°—fg in Table 3, rather than of #y,
because whenever 8, =~ 180° — 8y, we have a cyclic
structure. Potential III is the counterpart of I with
an octupole added and IV resembles potential IT in
its interchange behavior, but differs by the presence
of an octupole. See Fig. 3 for an intersection
of potential III; it is seen that the interchange

0 30 60

920 120 150 180

Fig. 2. The electrostatic dipole—quadrupole—octupole energy (cm™') as a function of 8, and 8y, ¢, and ¢y fixed at their
equilibrium values (60°, 0°), v = 180° and R = 3.23 A. Observe that the narrow valley for interchange tunneling is due to
electrostatics. This valley persists when we add exchange and dispersion interactions.
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Table 3

Equilibrium values and barrier heights in different potentials

Parameter® I 11 141 vt
R(A) 3.236 3.296 3.366 3.330
B4 (deg) 29.8 62.6 32.0 49.5
180° —6y (deg) 92.0 62.6 91.5 76.3
b (deg) 0.0 0.0 60.0 60.0
¢p (deg) 60.0 60.0 0.0 0.0
AEsg (em™) 31.1 0.0 24.4 1.0
AE, (em™) 2.16 3271 26.7 80.86
AEg (ecm™) 159.56 32.71 335.4 258.48

* AE,g is the height of the saddle point in the f4,8g-plane (other coordinates relaxed). AEy is the barrier crossed in varying
¢x, X = A or B (other coordinates at their equilibrium values).

5 Although the equilibrium geometry in potential IV does not correspond to a cyclic structure, this potential is flat along the
interchange tunneling path and its shape is almost equal to that of 1I, see Fig. 4.

tunneling path still runs through the valley caused of B in the hydrogen bond tries to avoid the
by the electrostatic part of the potential (cf. Fig. 2). lone pair of A, so that both molecules are
The ¢4 -and ¢p dependence of I vs. IIT and I vs. IV rotated towards a cyclic minimum by a simul-
are completely different, of course, because of the taneous increase of 4, and . In potential I
octupoles. the effect is modest, but in II, with its much
The addition of the exp-6 terms to the more active lone pair, the equilibrium structure is
electrostatic potential influences the equilibrium cyclic.
structure. Due to the repulsive terms the proton The site-site intermolecular potentials are

Fig. 3. Potential I (cm™') as a function of 8, and g, ¢ and ¢p fixed at their equilibrium values (60°, 0°). Observe the same
valley for interchange tunneling as in the purely electrostatic case of Fig. 2.
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expanded in a complete set of angular functions

Vi (R, a3 0a, 04, 78, O, 0p) = Z va(R)
A

XAA(ﬁAlgAvaarYB)gBi LPB) (2)

We do this because our dynamics program calcu-
lates the angular parts of the matrix elements
analytically by the techniques of angular momen-
tum theory. The electrostatic, multipole expanded,
potential can be written analytically in terms of
these angular functions, with the coefficient 4 (R)
being proportional to R™%4~s~! {imes the product
of the monomer multipole moments Qﬁ'; and ng
The angular functions are rotational invariants
An(va:6a, 0,18 Op, 08) = D

defined by
( -M 0)
M

L) *
XD (74, 0a, 0a) D55 (8,05, 05) 3)

Here A stands for the set of quantum numbers
(LasKa,Lg, Kg, L), D denotes a Wigner rotation
function and the quantity in large brackets is
the Wigner 3j symbol [32]. The potential depends
only on internal angles, see Fig. 1, and — due to
the definition of the D-matrices — only on
the difference angle ~ =y, — . Because the
time for the computation of the VRT states
scales quadratically with LE™ and L™, expan-
sions to high order in L are very time consuming
and therefore the expansions are usually trun-
cated at LY* = L™ = §,

One of the most important characteristics
of the potentials being the interchange barrier,
we tested in one case whether the barrier height
changes under an increase of L™. We took
the site—site potential of Sagarik et al. [18] and
found that L§** = L§®* =5 gave virtually the
same barrier (73.5cm™') as LT = [§* =,
which again was not far from the barrier
(83.5cm™!) in the original site-site potential.
(This is in contrast to what we stated in our
earlier paper [24], where the grid on which we
relaxed the coordinates was taken too coarse, &

La
M
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—’7507
—B800+
-850~

—9004

V(em™)

—950~

-10004

—-1050 T T T y
0

Fig. 4. The energy on the interchange path for four different
model potentials, (cf. Table 3), indicated by full lines. The
dashed line is the potential of Sagarik et al. [18]. Varied are
@, and @y, the other coordinates are relaxed, so as to mini-
mize the interaction energy.

finer grid gave a good agreement in barrier
heights.)

In Fig. 4 the energy on the interchange path for
four different potentials is shown together with the
potential of Sagarik et al. [18] that we used in our
earlier VRT calculations. Note that this potential
has the highest barrier (83.5cm™'), whereas poten-
tial T has only a barrier of 31.1cm™" which is in
close agreement with the ab initio barrier of
Hassett et al. [22] (29.3 cm™"). Potential III has the
even lower barrier of height of 24.4cm™!. Hassett
et al. found their minimum at (¢4, ¢g) = (60°,0%).
Note from Table 3 that our potentials without
octupoles yield minima for (¢,,¢s) = (0° 60°),
and that potential III and IV agree with Hassett
et al. in the minimum ¢ values. The recent poten-
tial by Tao and Klemperer [23] resembles in its
f-dependence potentials Il and IV, which favor a
cyclic structure.

3. Vibration-rotation—tunneling states

If we use the coordinate system defined in Fig. 1,
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the Van der Waals Hamiltonian describing the
motions in the ammonia dimer is [24,33]

2 3 2 1 3 ¢ 2y
Hvdwzzz‘i,\[j,i,\+j]§)\]+2 %7 F2+/2~27-0
A H
2uR IRZ int\7A» VA1 PA, VB, VB, ¥R ).

(4)
The first term in this Hamiltonian contains both
rigid rotor Hamiltonians of the monomers, where
fA and fB are the usual body-fixed angular
momenta, and f:fA +fB. The rotational con-
stants are taken as A, = A, = 9.945 em™! and
A, =6229cm™", which are the mean values of
the rotational constants for the 0% and 0~
umbrella states given in Ref. 24. The second term
describes the overall rotation of the dimer and the
Coriolis interaction. The operator f appearing in
this term is the space-fixed variant of fA + fg and
the total angular momentum Jisa pseudo-angular
momentum operator [33]. In the present work we
have neglected the small off-diagonal Coriolis con-
tribution contained in the term f-.}/uRz. This
implies that Q, the cdmponent of j as well as J on
the dimer z-axis, becomes a good quantum num-
ber, The third term is the kinetic energy belonging
to the radial coordinate R, with p denoting the
reduced mass of the complex. With the values [34]
my = 1.0078 amu and my = 14.0031 amu for the
masses of hydrogen and "N, respectively, we get
i = 8.5133 amu. The last term is the intermolecular
potential introduced in Section 2.
In order to find a convenient basis for the diago-
nalization of Hq.,, we first diagonalized the Hamil-
tonian H,,q defined by

N w5

Hyg = "R W‘R + Viad(R)- (5)

The radial potential V,,4(R) is found by fixing all
angles to the values at the minimum of the
expanded potential and varying R. The radial
Hamiltonian H,q is diagonalized by taking a
Morse-type basis, see Ref. 35 for more details.
We calculate the bound states by diagonalizing

"

H,w in a symmetry adapted basis obtained from
the following functions [24]

[./.Ai kA)ij kB)j$ Q, J) MI I’l)

_ {(2JA+ D)2/ + (27 + 1)]'/?
- 256w

= Z Df(zj,:\k),\(’)'AagAa‘PA)Ds(]j,fk)B('YBa9B>‘PB)
Qa0

% (JaQainali) Dyig (e, ,0)8,(R).  (6)
The quantity in pointed brackets is an SO(3)-
Clebsch—Gordan coefficient [{32]. The radial func-
tions ¢,(R)(n = 1,2,3) are the lowest three eigen-
functions of the radial Hamiltonian in Eq. (5). In
most cases jy and jp were restricted to jpa.x =95,
because of limited computer resources. Although
the energy levels are not fully converged at
Jmax = 3, the energy differences have converged
much better and we expect the ordering of the
levels to be correct for the intermolecular potential
used.

The molecular symmetry group, which by defini-
tion consists of feasible permutations and inver-
sion, is of order 36, provided we assume the
umbrella inversions to be frozen. Otherwise it is
of order 144. These groups are denoted G4 and
G144, respectively. In this work we will mainly
focus on Gsg, which has four one-dimensional irre-

ducible representations (irreps), designated
A; i=1,...,4, four two-dimensional irreps
(E;, i=1,...,4) and one four-dimensional irrep

G. The kets of A; symmetry are states of two
ortho monomers, those of E; symmetry belong to
two para monomers and G kets describe a mixed
ortho—para dimer. For more details on the symme-
try adaption of our basis we refer to the Appendix
of Ref. 24.

The group (34 contains two interchange genera-
tors, referred to in Ref. 24 by [, and J,. States of 4,
symmetry are symmetric and states of A, are anti-
symmetric under the action of [, and f,. Thus, the
splitting between the energies of the lowest 4, and
Ay states is due to interchange tunneling and is
indicative for the barrier height and width in the
interchange tunneling path. Because of this direct
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dependence of the 4,/A4, energies on the inter-
change, and to gain some insight in the conver-
gence with respect to basis size, we have
computed these energies with different expansion
lengths of the basis. Using potential I, we trun-
cated at jn.c = 5,6 and 7. The respective A,
energies are: —660, —665, and —667 cm” ', and the
A, energies: —640, —649, and —652cm™'. So we
see that, although the energies themselves are not
converged yet, their splittings (20, 16 and 15em™,
respectively) are closer to the basis set limit.
Considering the crudeness of the potentials and the
costs of the dynamic calculations, we decided to
perform all the calculations with j,., = 5.

In Fig. 5 the lowest wavefunction of 4, sym-
metry is presented as a function of 6, and 6p,
the other coordinates fixed at their equilibrium
values. In Fig. 6 we find the lowest wavefunction
of 44 symmetry. Evidently, the symmetry is of
importance for the character of the wavefunction.
Whereas the A, state is symmetric, the 4, state is
antisymmetric under 8, « 180° — 6.

Figure 7 exhibits a cut through the absolute
square of the lowest wavefunction of G sym-

180
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metry. This function was obtained from the
diagonalization of H., containing potential III
defined in Table 3. Nole the localization on the
one side of the interchange barrier, which can be
understood from the inequivalence of ortho and
para monomers. First recall [24] that the G-states
are symmetrized products of ortho (proton spins
coupled to a quartet) and para (proton spins
coupled to a doublet) ammonia wavefunctions.
Monomer A is ortho and monomer B is para.
Recall also that the free ortho ammonia rigid
rotor wavefunctions have a quantum number
k=0 (mod 3) and that para monomers have
k= +1 {mod 3), where k£ is the projection of the
monomer angular momentum on the three-fold
symmetry axis. Since one must mix states starting
with a total angular quantum number equal to 3, it
takes more energy to localize in ¢ an ortho ammo-
nia than a para ammonia. In the complex this
means that a structure is more favorable in which
the rotation around ¢ of the ortho ammonia is less
hindered than the rotation of the para ammonia. In
the structure with 4 = 30° and 6 =90° and
potential I the rotation of monomer A is hardly

150
120
=5 90
80

30

0 30 80

90 120 150 180
Vs

Fig, 5. The lowest wavefunction of A, symmetry, symmetric under 84 < 180° — 8y, obtained from potential III.
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Fig. 6. The lowest wavefunction of 4, symmetry, antisymmetric under 8, < 180° — 85, obtained from potential IIl.
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Fig. 7. The lowest wavefunction (absolute squared) of G symmetry in the 6, — 05 plane obtained from potentiai III.
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hindered, whereas a rotation of B around ¢ is hin-
dered due to the repulsion of its protons with the
lone pair of A. Remember that in potentials III and
IV also the octupoles add to the barriers in the
rotations over ¢, and ¢g.

In Fig. 8 we see the probability amplitude of the
lowest state of G symmetry obtained from potential
IV. This potential was constructed such that it has
practically no barrier at the cyclic structure
By = 180° — 0y and yet the amplitude has a
maximum shifted somewhat toward the hydrogen-
bonded structure. Again, this must be ascribed to
the non-equivalence of the rotation in ¢ of the
ortho and para monomer constituting the dimer
in a G state.

The difference between the lowest energy (Eg)
and the one but lowest (E5) of G symmetry is
partly due to the ortho-para splitting and partly
to the interchange tunneling. To some extent this
splitting is therefore also indicative for the height of
the interchange barrier, see Table 4. The energy
splitting between states of E; and E, symmetry,
too, is mainly due to interchange tunneling; it is

EH.T. Olthof et al.|lJ. Mol. Struct. ( Theochem) 307 (1994) 201-215

535, 825, 603, and 886 GHz for potentials [
through to IV, respectively, see Table 4. This may
be compared with the experimental number [25]
577 GHz. However, the states of E; and E; sym-
metry have more or less the same character with
respect to interchange tunneling, but differ in their
k quantum numbers and hence in their dependence
on ¢, and ¢g. Their computed splitting is an order
of magnitude smaller than the E;/E, splitting, but
still about three orders of magnitude too large in
comparison with experiment, see the row in Table 4
labelled by Eg, ~ Eg,. The same remarks apply to
the Ep — Ej, splitting, where we compute
1457 GHz (in potential III), whereas the experi-
mental value is a hundred times smaller
(1.50 GHz) [25].

The final two splittings in Table 4 are owing to
monomer umbrella inversion. An exact calculation
requires the solution of an eight-dimensional
dynamics problem: the six coordinates of Fig. 1
plus the two umbrella angles py and pg. The
group of this system is G4 and the labels Gf
refer to irreps of this group. These irreps correlate

180

150

120

60

30

0 30 60

90 120 150 180
Uy

Fig. 8. The lowest wavefunction (absolute squared) of G symmetry in the 8, — 6 plane obtained from potential IV.
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Table 4
Comparison of computed and measured quantities. All quantities pertain to =0

I 11 11 v Exp.
(Oa)c ™ (deg) 54 60 51 59 -
(180° = p); “(deg) 81 73 86 79 -
DlpOlC‘ (D) —0.69 -0.32 -0.92 —0.53 0.74
(Ba)c* (deg) 46 53 44 51 49
(1/80“ ~6p)g°© (dfg) 63 62 66 64 65
E'¢ — E; (GHz) 1 637 965 680 879 614
P (GHz); 587 1027 509 779 483
Ey, — Ep, (GHz)1 535 825 603 886 577
Eg, — Eg, (GHa)! 43.5 53.7 69.7 46.3 0.167
Ep, — Eg, (GHz) . 40.0 114.1 145.7 150.9 1.50
Es,-: - E‘f:' (GHz) . 2.49 1.19 112 1.89 3.31
E(,v2 -FE G; (GHz) 1.40 0.82 1.21 1.76 2.39

* From (P, (cos 8)); G ground state.

b G ground state, Experimentally the sign is undetermined.
 From (Py(cos 8)); G ground state.

41GHz=0.03336cm ™.

with the irrep G of Gy C Gy A dynamics
problem of this size cannot be handled at present,
so that we had to resort to a simple model which is
an extension of a model we proposed earlier
for Ar-NH; [36]. Briefly, the model entails
the computation of the expectation value of
the inversion parts of the monomer Hamil-
tonians, Hi,,(pa) + Hin( pp). With respect to the
functions  [E — (S6)|LEF (56)"1%yqw (0a)/ (pn):
where (56)" is the operator inverting monomer
A and (56) inverts B. The wavefunction W4,
is the lowest, or the one but lowest, eigenstate
of H,, of G symmetry, f(pa) and f{pg) are
ground umbrella (1,) states of A and B localized
in onc of the wells of their respective monomers.
Assuming that (f{pa)](56)*|f(pa)) =0 and an
equivalent relation on B, we obtain for the splitting

EGZ' - EG'._} = A‘(‘I’vdwi(56)*|\IIVI:IW>

where A =0.793cm™', the tunneling splitting of
the free monomer [37]. This splitting corresponds
to the inversion of the para partner in the dimer. In
a forthcoming paper [38] we will present more
details on this model and its group theoretical
implications.

In two ways we obtained vibrationally averaged

angles: first by computation of the expectation
values of the Legendre polynomial P,(cos fx),
X =A or B and secondly by the expectation
value of P,(cos fy). It is of interest to note that
(Py(cos 8,)) and (P,(cos fg)) follow separately
from measurement of the '“N quadrupole splitting
in a G state. One splitting belongs to the
ortho and the other to the para monomer. The
measured dimer dipole moment, however, gives
only information about the sum (P;(cos 8)+
Py(cos 6g)). In Table 4 we see that the angles
obtained from (P|) and (P,) differ considerably,
indicating that the dimer is indeed floppy in the
angles fy. Further we see that all model potentials
give fairly good agreement with the observed
quadrupole splittings. The dipole overshoots some-
what when we add an octupole to potential I: we go
from 0.69 to 0.92 D with the experimental number
being 0.74 D.

Very recently the absolute value of the dipole
moment of the lowest || = 1 state of G symmetry
was measured [28] and a value of +(0.10 £ 0.01) D
was obtained. We have calculated this dipole by
means of our different potentials, see Table 5.
Notice that potential III gives good agree-
ment: —0.13D. The dipole surface used in this
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Table 5
Energy splittings and dipoles for the lowest G states with |©2] = 1

[ 1l 1 v Exp.
E, - Ey (GHz) 255.7 226.4 186.1 168.5 118.1°
E, ~ Ey (GHz) 582.0 969.5 483.9 740.8 486.4°
E, - E, (GHz) 977.8 1103.3 975.9 1159.8 865.1%
(1) (D) 0.31 0.057 -0.13 -0.046 0.10°
(1) (D) -0.96 —0.44 -0.85 -0.50 -
(18} (D) ~0.29 -0.033 0.12 0.029 < 0.09°

* Ref. 25.
® Ref. 28. Experimentally the sign is undetermined.

calculation was the same as in Ref. 24 and consists
of a permanent dipole and a dipole-induced dipole
on either monomer, Also in Table 5 we compare
the energy splittings of the lowest G || = 1 states
with those found by Loeser et al. Again potential
Il gives the best agreement. We present the
splittings found by the use of potential III graphi-
cally in Fig. 9, together with the corresponding
experimental values. The expectation value of the
dipole in each state is given in this figure as well.
Given the simplicity of all our model potentials,
including potential III, the agreement between
the computed and corresponding experimental
numbers is surprisingly good.

4. Discussion and conclusions

First of all, let us mention that the four model
potentials introduced in Section 2, which all have
interchange barriers between 0 and 30cm™', yield
substantially better agreement with the microwave
and far-infrared spectra than the potential that we
used earlier [24], which has a barrier of ~ 80cm™".
Potentials I and III which have barriers of about
30em™! give good interchange tunneling splittings
E4, — Ey,, Eg, — Eg,, and Ef — Eg (see Tables 4
and 5). The splittings obtained from potentials II
and IV, which have practically no barriers, are too
high. The angles 84 and 8y thal correspond to the
nuclear quadrupole splittings are fairly close to the
experimental values [17] for all the model poten-
tials, much closer than the results in our earlier
paper [24], The best dipole moment, measured for

the ground state of G symmetry just as the quad-
rupole splittings, is obtained from potential 1. The
other potential that yields realistic interchange
tunneling splittings, potential III, gives a dipole
moment which is just slightly too large. Remember
that the dipole moment is 2.29D in the nearly
linear hydrogen-bonded structure that corre-
sponds to the equilibrium structure of the poten-
tial in Ref. 24, while the average dipole in that
paper is 1.60D. Even for potential I with its good

-1

cm .. 0.53
-590 L
~600L g4 o1z
e <0.09
-610L
0.85
0.13
-620L 0.10
0.92 0.74
0 =0 lok=1 0 =0 io=t
-830L Cale. Exp.

Fig. 9. Energy splittings and dipoles of the lowest G states.
The computed results on the left-hand side are all obtained
from potential II. The absolute values of the dipole expec-
tation values, given at each level, are in debyes. The experi-
mental values on the right-hand side are from Refs. 25 and
28. The experimental energy levels have been aligned to the
computed energy zero,
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average dipole moment of 0.69 D, the dipole that
corresponds with the equilibrium geometry of the
dimer is still 1.49D. This is characteristic for the
lack of rigidity of (NH;), along the interchange
coordinate, as are the deviations between the
average angles §, and 6y obtained from the quad-
rupole splittings and the average angles that corre-
spond with the dipole moment. Yet another sign of
this non-rigidity is the recent [28] finding that the
dipole moment of the lowest G state with
| =1(g=0.10D) is much smaller than the
dipole (x=0.74D) of the ground state with
1 = 0. This finding is qualitatively reproduced by
all the present model potentials; potential III gives
the best quantitative agreement (|u| = 0.13 D). Our
calculations predict further that the first excited
G state with |Q] =1 has a much larger dipole
moment, which does not differ much from the
ground state 2 = 0 value. It should be possible to
check this prediction experimentally by the mea-
surement of Stark splittings. Furthermore, we
observe in Fig. 9 that the G levels with [Q] =1
are now correctly positioned, relative to the G
levels with 2 = 0. In Ref. 24 we still found the
lowest G level with [ = 1 to be 8cm™' below
the lowest level with Q = 0.

Regarding the level splittings Ej — Ep and
Ey, — Ey, one can make the following obser-
vations. When looking at the quantum numbers
ks and ky that characterize the basis functions of
these symmetries (see Table 4 of Ref. 24), one
observes that these splittings are related to the
barriers in the rotations of the NH; monomers
about their C; axes. Since ks, kg = 1,—1 (mod 3)
for the states of E; and E, symmetry and
ka, kg = 1,1 (mod 3) for the states of F3 and Ey
symmetry, the first states perform anti-geared rota-
tions over ¢, and ¢y and the latter states corre-
spond with geared rotations. Note that the
orientations of the two (3 axes of the NH; mono-
mers themselves (the angles 4, and ) exhibit large
oscillations, however, It is striking that the mea-
sured values [25] for these splittings are extremely
small, given that these splittings are caused by the
potential rather than by weak Coriolis interactions.
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Although our calculated values of 1 to S5cm! for
these splittings are small too, they are still a few
orders of magnitude larger than the measured split-
tings. The fact that these observed splittings are so
minute should give us information about some
characteristics of the intermolecular potentials.
We are presently studying models with two
coupled rotors in order to understand the data.
The interpretation is not easy, however, since in
reality, the different degrees of freedom in the
(NH3), dimer are strongly coupled. Moreover,
there are different extreme cases, either with free
rotations or with rotations completely quenched,
which lead to the limit of zero splittings.

All the model potentials of the present paper
yield quite realistic values for the umbrella inver-
sion splittings, Remember that this splitting in the
free NH; monomer amounts to 23 GHz. In the last
two lines of Table 4 we see that in the dimer this
tunneling motion is about 10 times slower, which is
correctly reflected by all the model potentials.
Group theory shows (see Ref. 38) that the
observed G state splittings correspond with the
inversion of the para monomer. Qur calculations
tell us that in the ground state of & symmetry (with
{1 = 0) this is predominantly the proton donor, in
the first excited G state with Q = 0 it is the proton
acceptor. Although, of course, the difference
between the acceptor and the donor vanishes for
the cyclic structure, it is still (slightly) present even
when the potential has a cyclic equilibrium geo-
metry, due to the inequivalence of the ortho
and para monomers in the G states. So, the experi-
mentally observed inversion splittings imply that
the inversion of the proton donor is less hindered
than the inversion of the acceptor, a fact which is
correctly reflected by all the calculated results.
From the wavefunctions obtained in Ref. 24 we
calculate inversions splittings of 1.67 GHz and
0.09 GHz, for the ground and first excited G
state, respectively. Again, we find that the present
potentials, which yield more nearly equivalent
monomers, give far better results than the
potential used in Ref. 24.

We have already considered the ¢, and ¢p
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dependence of the intermolecular potential when
we discussed the small splittings Ep — Eg, and
Eg, — Eg,. We have to make another observation
regarding this ¢4, ¢ dependence. It seems sur-
prising that the potentials I and II, on the one
hand, and the potentials Il and IV, on the other,
yield very similar results for the energy level split-
tings and the other observed properties, whereas
they differ strongly in their ¢,, ¢p dependence. In
particular, owing to the effects of the octupole
moments in potentials Il and IV, the equilibrium
values of ¢, and ¢p are 60° and 0°, respectively,
while for potentials I and II these values are 0° and
60° (see Table 3). It can be proved, however, that a
transformation of the intermolecular potential that
corresponds to a rotation of both ¢4 and ¢y by 60°
(mod 120°) leaves the eigenvalues of the rovibra-
tional Hamiltonian invariant and conserves also
the Gis symmetry. This is related with the fact
that the NH; monomers are symmetric tops, with
kinetic energy operators that are invariant with
respect to any rotation over the angles
#dx (X = A or B). The eigenstates do rotate with
the potential over ¢, ¢g = 60°,60°, but the calcu-
lated dipole moment and quadrupole splittings
which depend only on the 8, and 6y angles, are
not affected. These quanfities are affected, how-
ever, by the fact that potentials I and II and poten-
tials IIT and IV have rather different barriers in the
¢a and ¢g rotations (see Table 3), due to the pre-
sence of the octupole interactions in the latter. We
observe, in particular, that the higher C; rotation
barriers enhance the different behavior of ortho
and para monomers, This, in turn, influences the
difference between the average values of 8, and 6y
in the G states and, thereby, increases the average
dipole moment (see Table 4).

In our final conclusion, we return to the question
in the title of this paper: is (NH;), hydrogen
bonded? We think that the intermolecular poten-
tial in this dimer must be close to our model poten-
tial TII, because this potential yields VRT level
splittings and properties which agree well with the
spectroscopic data. In this potential, as well as in
our other model potentials, the stabilization of this
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dimer is mostly of electrostatic origin. The purely
electrostatic interactions favor a nearly linear
hydrogen bond. Remember that the dipole and
quadrupole moments already provide the angles
8, and @y which are appropriate for a nearly linear
hydrogen bond, but that one needs the non-axial
octupole moments to bring the protons of the NH;
proton donor to the direction of the lone pair of the
acceptor NH3. The electrostatic interactions lead
to a rather deep valley, with a saddle point
between the two equivalent nearly linear hydro-
gen-bonded structures. The barrier at this saddle
point is low in comparison with the energy needed
to climb the slopes of this valley. The electrostatic
valley is so dominant that it stays when the
exchange repulsion and dispersion interactions
are added. The interchange barrier between the
two equivalent minima is lowered especially by
the exchange repulsion between the protons and
the lone pairs. For potential IIl, which gives the
best overall agreement with the experimental
data, the remaining barrier is only 24cm™'. The
fact that this barrier is so low (recall that the bind-
ing energy D, is more than 1000 cm™ 'Y and that the
electrostatic and the exchange repulsion contri-
butions nearly cancel (so that the, smaller, induc-
tion and dispersion terms will be important too),
makes it hard for ab initio calculations to
give an accurate prediction of the barrier height.
The result of this low barrier is that (NH;),
becomes much less rigid than other hydrogen-
bonded dimers, such as (HF);\and (H,0),.
Since the near linearity of A~H .- B is the most
characteristic feature of hydrogen bonding, we
must conclude that (NH;), is not hydrogen
bonded. Some of the features of hydrogen bond-
ing persist, however. Although the average struc-
ture calculated from potential III is nearly cyclic,
the equilibrium structure in this potential is still
close to a linear hydrogen-bonded structure. This
equilibrium structure, and also the height of the
interchange barrier, agree quite well with the ab
initio results of Hassett et al. [22]. Further, we
observe that the attractive electrostatic inter-
actions between the protons and the lone pairs of
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the NH; monomers allow only a specific coupled
internal rotation of both monomers, along
the interchange path. So, the directionality that
characterizes a hydrogen bond is not completely
lost in (NHj3),.
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