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Serum obestatin level strongly correlates
with lipoprotein subfractions in non-
diabetic obese patients
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Abstract

Background: Obestatin is a ghrelin-associated peptide, derived from preproghrelin. Although many of its effects
are unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. To
date, level of obestatin and its correlations to the lipid subfractions in non-diabetic obese (NDO) patients have not
been investigated.

Methods: Fifty NDO patients (BMI: 41.96 ± 8.6 kg/m2) and thirty-two normal-weight, age- and gender-matched
healthy controls (BMI: 24.16 ± 3.3 kg/m2) were enrolled into our study. Obestatin level was measured by ELISA. Low-
density lipoprotein (LDL) and high-density lipoprotein (HDL) subfractions, intermediate density lipoprotein (IDL) and
very low-density lipoprotein (VLDL) levels and mean LDL size were detected by nongradient polyacrylamide gel
electrophoresis (Lipoprint).

Results: Serum level of obestatin was significantly lower in NDO patients compared to controls (3.01 ± 0.5 vs. 3.29
± 0.6 μg/ml, p < 0.05). We found significant negative correlations between the level of obestatin and BMI (r = − 0.33;
p < 0.001), level of serum glucose (r = − 0.27, p < 0.05), HbA1c (r = − 0.38; p < 0.001) and insulin (r = − 0.34; p < 0.05).
Significant positive correlation was found between obestatin level and the levels of ApoA1 (r = 0.25; p < 0.05), large
HDL subfraction ratio and level (r = 0.23; p < 0.05 and r = 0.24; p < 0.05), IDL (r = 0.25 p < 0.05) and mean LDL size (r
= 0.25; p < 0.05). Serum VLDL ratio and level negatively correlated with obestatin (r = − 0.32; p < 0.01 and r = − 0.21;
p = 0.05). In multiple regression analysis obestatin was predicted only by VLDL level.

Conclusions: Based on our data, measurement of obestatin level in obesity may contribute to understand the
interplay between gastrointestinal hormone secretion and metabolic alterations in obesity.
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Background
Obesity is one of the leading causes of morbidity and mor-
tality in the world. Globally, the prevalence of obesity has
risen at an alarming rate over the past two decades [1].
Numerous studies have shown a clear relationship
between obesity and risk of developing cardiovascular dis-
ease (CVD). A follow-up analysis from the Framingham
study demonstrated high body mass index (BMI) as an in-
dependent risk factor for coronary artery disease (CAD),

stroke, and overall CVD death [2]. Dyslipidemia is fre-
quently associated to obesity and a well-known risk factor
of CVD. The typical dyslipidemia associated with obesity
consists of increased triglycerides (TG) and free fatty acid
(FFA), decreased high-density lipoprotein-cholesterol
(HDL-C) with HDL dysfunction and normal or slightly in-
creased low-density lipoprotein-cholesterol (LDL-C) with
increased small dense LDL. The concentration of plasma
apolipoprotein (apo) B is also often increased [3, 4].
In the last few decades, it has been recognized that

adipose tissue is a highly active metabolic and endocrine
organ, and that secreted hormon-like proteins
(adipokines) are important for metabolic homeostasis
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including lipid metabolism [5, 6]. However, the regula-
tory effect of further proteins secreted by other tissues
such as gastrointestinal tract has not been clarified.
Obestatin, a recently identified anorexigenic gut hor-

mone, is a 23 amino acid peptide derived from the C ter-
minal portion of the preproghrelin precursor [7]. There
have been many contradicting reports regarding the role
of obestatin in humans. Obestatin has opposite action to
ghrelin on food intake and plays a role in energy balance
[8]. Studies on the obestatin/ghrelin ratio in the gastro-
intestinal tract and plasma are associated with some dis-
eases such as irritable bowel syndrome [9], obesity [10]
and type 2 diabetes mellitus [11]. Plasma obestatin con-
centrations were negatively correlated with body mass
index, insulin resistance index, and plasma leptin con-
centrations in obesity [12]. Fasting plasma concentration
of obestatin, but not of ghrelin, was found to be reduced
in insulin resistance and is positively associated with
whole body insulin sensitivity in nondiabetic humans
[13]. Therefore, obestatin may be a nutritional marker
reflecting body adiposity and insulin resistance.
Although a previous study reported that it may also

regulate lipid metabolism by inhibiting lipolysis [14], to
date, the association of serum obestatin levels with the
lipid subfractions has not been studied. Therefore, we
aimed to measure the level of serum obestatin and evalu-
ate its correlations to the lipid fractions and subfractions
in non-diabetic obese (NDO) patients. We also investi-
gated the possible associations between the concentration
of obestatin and the HDL function characterized by HDL-
linked anti- and pro-atherogenic enzymes: human
paraoxonase-1 (PON1) and myeloperoxidase (MPO).

Methods
Study population
We enrolled fifty non-diabetic obese patients that were re-
ferred to our obesity outpatient clinic at Department of
Internal Medicine, Faculty of Medicine, University of
Debrecen, Hungary, and thirty-two healthy volunteers
matched in sex and age. All participants provided written
informed consent. The study protocol was approved by
the Ethical Committee of University of Debrecen and the
study was carried out in accordance with the Declaration
of Helsinki. Obesity was defined as BMI ≥ 30 kg/m2. Par-
ticipants with active liver or endocrine disease (including
any types of diabetes mellitus), cardiovascular disease,
renal impairment or malignancy were excluded. Further
exclusion criteria were pregnancy, lactation, current
smoking, and alcoholism or drug dependence. Neither
obese subjects nor lean healthy controls were taking lipid
lowering, hyperglycemic, anti-inflammatory, antithrom-
botic medications or dietary supplements. None of partici-
pants were on antihypertensive treatment with exception

of ten obese patients, who were on diuretics (indapamide)
because of mild hypertension.

Sample collection and laboratory measurements
All venous blood samples were collected after 12-h of
fasting. The routine laboratory parameters including
fasting glucose, fructose amine, high sensitive C-reactive
protein (hsCRP), total-cholesterol, triglyceride, HDL-C,
LDL-C, apoAI, apoB and lipoprotein(a) levels were de-
termined from fresh sera with Cobas c501 analyzer
(Roche Ltd., Mannheim, Germany) according to the
manufacturer’s instruction. To check non-diabetic status
in study participants, we applied a routine 75 g oral glu-
cose tolerance test (OGTT) after an overnight fast. At
the same time, hemoglobin A1c (HbA1c) and fasting in-
sulin were also performed according to the standard la-
boratory techniques. Homeostasis model assessment –
insulin resistance (HOMA-IR) was calculated with the
formula of Matthews et al. [15]. Sera were kept frozen at
− 70 °C for subsequent lipoprotein subfraction analysis
and for enzyme-linked immunosorbent assay (ELISA)
measurements.

Lipoprotein subfraction analyses
HDL subfractions were detected by an electrophoretic
method on polyacrylamide gel with the Lipoprint System
(Quantimetrix Corp., CA, USA) according to the manufac-
turer’s instructions.Concisely, 25 μl sera were added to the
polyacrylamide gel tubes along with 300 μl loading gel solu-
tion. The tubes contained Sudan Black as a lipophilic dye
and were photopolimerized at room temperature for
30 min. Electrophoresis with tubes containing sera samples
or the manufacturer’s quality controls were performed at a
constant of 3 mA/tube for 50 min. Each electrophoresis
chamber contained a quality control provided by the manu-
facturer (Liposure Serum Lipoprotein Control, Quantime-
trix Corp., CA, USA). Subfraction bands were scanned with
an ArtixScan M1 digital scanner (Microtek International
Inc., CA, USA) and were identified by their mobility (Rf)
using VLDL+LDL as the starting (Rf 0.0) and albumin as
the ending (Rf 1.0) reference point.
Ten HDL subfractions were differentiated between

VLDL+LDL and albumin peaks, and were grouped into
three major classes: large (from HDL1 to HDL3), inter-
mediate (from HDL4 to HDL7) and small (HDL8 to
HDL10) HDL subfractions. Cholesterol concentrations of
the HDL particle subsets were calculated with Lipoware
software (Quantimetrix Corp., CA, USA) by multiplying
the total HDL-C concentration of the samples by the rela-
tive area under the curve (AUC) of the subfraction bands.
LDL subfractions were also determined using Lipo-

print System (Quantimetrix Corp., CA, USA) according
to the manufacturer’s instructions. 25 μl of serum sam-
ples were added to polyacrylamide gel tubes along with
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200 μl a loading gel solution containing Sudan Black as
a lipophilic dye. The sample loading gel mixture was
photopolymerized for 30 min at room temperature prior
to electrophoresis at a constant of 3 mA/tube for 1 h.
Lipoprotein fractions (bands) were identified after

electrophoresis by their mobility (Rf ) using VLDL as the
reference point (Rf 0.0) and HDL as the ending refer-
ence point (Rf 1.0). In between, up to seven LDL sub-
fractions were distributed. The percentages of the area
under the curve (AUC%) for the VLDL, Midbands (C, B
and A; comprising primarily IDL), LDL and HDL peaks,
as well as mean LDL size (nm) were calculated with
Lipoware computer software (Quantimetrix Corp., CA,
USA). Proportion of large LDL (large LDL %) was de-
fined as the sum of the percentage of LDL1 and LDL2,
whereas proportion of small LDL (small-dense LDL %)
was defined as the sum of LDL3-LDL7. Cholesterol con-
centrations of LDL subfractions were determined by

multiplying the relative AUC of subfractions by total
cholesterol concentration of the sample. Calculated total
LDL-C is comprised of the sum of the cholesterol in
Midbands C through A and LDL subfractions (LDL1-
LDL7); and correlates strongly with the directly mea-
sured LDL-C [16].

Determination of human paraoxonase-1 enzyme activities
PON1 paraoxonase activity was analyzed on a microtiter
plate by a kinetic, semi-automated method using paraoxon
(O,O-diethyl-O-p-nitrophenyl-phosphate, Sigma Aldrich)
as a substrate. PON1 arylesterase activity was assayed with
a phenylacetate substrate (Sigma Aldrich) and the hydroly-
sis of phenylacetate was monitored at 270 nm [17].

ELISA measurements
Plasma human obestatin was determined by EIA kit
(Yanaihara Institute Inc., Shizuoka, Japan). Intra- and

Table 1 Anthropometric and routine laboratory parameters of study participants

Obese (n = 50) Control (n = 32) P

Gender (F/M) 43 / 7 27 / 5 ns

Age (yrs) 44.20 ± 13.50 41.78 ± 5.97 ns

Body mass index (kg/m2) 41.96 ± 8.63 24.47 ± 2.51 < 0.001

Waist circumference (cm) 119.76 ± 16.87 83.62 ± 9.25 < 0.01

hsCRP (mg/l) 8.24 (3.2–13.09) 1.57 (0.6–2.94) < 0.001

Fructose amine (μmol/l) 225.32 ± 27.95 229.0 ± 11.65 ns

Thyroid stimulating hormone (mU/l) 1.98 ± 0.98 1.93 ± 1.15 ns

Lipid parameters

Triglyceride (mmol/l) 1.4 (1.1–2.0) 1.0 (0.75–1.39) < 0.01

Total cholesterol (mmol/l) 5.04 ± 0.83 5.07 ± 0.78 ns

HDL-cholesterol (mmol/l) 1.36 ± 0.33 1.56 ± 0.46 < 0.05

LDL-cholesterol (mmol/l) 3.17 ± 0.74 2.93 ± 0.52 ns

Apolipoprotein A-I (g/l) 1.48 ± 0.24 1.68 ± 0.31 < 0.01

Apolipoprotein B (g/l) 0.86 ± 0.20 0.94 ± 0.18 ns

Lipoprotein (a) (mg/l) 248 (120–586) 70 (30–214) < 0.001

Carbohydrate parameters

Hemoglobin A1c (%) 5.76 ± 0.54 5.07 ± 0.33 < 0.001

Fasting glucose (mmol/l) 4.90 ± 0.75 4.82 ± 0.48 ns

OGTT 120 min 7.00 ± 2.01

Fasting insulin (mU/l) 21.01 ± 15.91

HOMA-IR 3.75 (2.4–6.52)

Inflammatory and oxidative markers

Obestatin (μg/ml) 3.01 ± 0.5 3.29 ± 0.6 < 0.05

Oxidized LDL (U/L) 46.8 ± 9.95 41.1 ± 9.57 < 0.01

Paraoxonase activity (U/L) 64.72 (43.79–149.52) 83.03 (47.9–167.4) ns

Arylesterase activity (U/L) 121.61 ± 23.65 131.1 ± 28.75 ns

Myeloperoxidase (ng/ml) 280 (148.3–386.3) 207.9 (125.8–265.2) < 0.05

Values are presented as mean ± standard deviation or median (lower quartile - upper quartile). Abbreviations: HDL high-density lipoprotein, hsCRP high sensitive
C-reactive protein, LDL low-density-lipoprotein, OGTT oral glucose tolerant test, HOMA-IR homeostasis model assessment insulin resistance, ns non-significant
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inter-assay coefficients of variations (CV) were 3.5–9.9%
and 5.6–9.0%, respectively. MPO and oxidized LDL
(oxLDL) concentrations were determined by a commer-
cially available ELISA kits (R&D Systems, Minneapolis,
MN, USA and Mercodia AB, Sweden, respectively) with
6.6–7.7 CV% intra-, and 6.5–9.4 CV% inter-assay (MPO)
and 5.5–7.3 CV% intra-, and 4–6.2 CV% inter-assay pre-
cision (oxidized LDL). All assays were performed ac-
cording to the recommendation of the manufacturer.

Statistical methods
Statistical analysis was performed by STATISTICA ver-
sion 8.0 (Statsoft Inc., Tulsa, OK, USA). The normality
of data distribution was tested by Kolmogorov-Smirnov
test. Data were presented by descriptive analysis (means
±SD in case of normal distribution, or medians [lower
quartile – upper quartile] in the case of non-normal dis-
tribution). Comparisons between groups were performed
by Student’s unpaired t-test in case of normally distrib-
uted variables and by Mann-Whitney U-test in case of
variables with non-normal distribution. Correlations
between continuous variables were assessed by linear re-
gression analysis using Pearson’s test. Since the distribu-
tion of some variables of interest became normal upon
base-10 logarithm transformation, we used the log
values for correlation analyses. Multiple regression ana-
lysis was performed to determine which variables best
predicted obestatin concentrations. Results were consid-
ered to be significant at the level of p < 0.05.

Results
Anthropometric data and laboratory characteristics of
study participants are summarized in Table 1 The NDO
patients had extremely high BMI and slightly elevated
hsCRP level compared to lean individuals. Although,
there were several other differences in the laboratory pa-
rameters in NDO patients compared to lean controls,
these data were found to be in the physiological range.
Plasma triglyceride and lipoprotein(a) concentrations
were found significantly higher, while the levels of HDL-
C and apoAI were significantly lower in the obese group
compared to normal weight controls. HbA1C level was
significantly higher in the obese individuals compared to
the controls. Fasting glucose was in normal range in
both groups and the blood glucose levels at 120 min of
OGTT were not elevated in the obese group. On the
basis of these laboratory parameters the obese patients
involved into this study have neither diabetes nor im-
paired glucose tolerance.
Significantly higher VLDL, large LDL, small LDL and

small HDL levels, while significantly lower IDL, mean
LDL size, large HDL and intermediate HDL levels were
found in NDO patients compared to the control popula-
tion (Table 2).
Serum level of obestatin was significantly lower in

NDO patients compared to controls (3.01 ± 0.5 vs. 3.29
± 0.6 μg/ml, p < 0.05) (Table 1). We found significant
negative correlations between obestatin levels and BMI
(r = − 0.33; p < 0.001), serum glucose levels (r = − 0.27, p

Table 2 Concentration and ratio of lipoprotein subfractions in non-diabetic obese and lean participants

Obese (n = 50) Control (n = 32) P

VLDL subfraction (mmol/l) 1.165 ± 0.17 0.868 ± 0.17 < 0.001

Midband (IDL) (mmol/l) 1.207 ± 0.31 1.505 ± 0.38 < 0.001

VLDL subfraction (%) 23.3 ± 2.5 17.1 ± 2.3 < 0.001

Midband (IDL) (%) 23.7 ± 3.6 29.6 ± 5 < 0.001

LDL subfractions

Large LDL (mmol/l) 1.267 (1.06–1.603) 1.047 (0.827–1.344) < 0.01

Small-dense LDL (mmol/l) 0.091 (0.026–0.155) 0.026 (0–0.052) < 0.001

Mean LDL size (nm) 26.98 ± 0.31 27.26 ± 0.37 < 0.001

Large LDL (%) 25.8 ± 4.1 21.1 ± 5.8 < 0.001

Small-dense LDL (%) 1.96 ± 1.57 1.05 ± 2.26 < 0.05

HDL subfractions

Large HDL (mmol/l) 0.284 (0.207–0.388) 0.453 (0.31–0.608) < 0.001

Intermediate HDL (mmol/l) 0.6594 (0.595–0.828) 0.749 (0.659–0.853) < 0.05

Small HDL (mmol/l) 0.336 (0.284–0.388) 0.284 (0.246–0.336) < 0.01

Large HDL (%) 22.5 ± 5.7 29.8 ± 9.0 < 0.001

Intermediate HDL (%) 52.3 ± 3.4 50.8 ± 4.7 ns

Small HDL (%) 25.2 ± 5.9 19.3 ± 5.3 < 0.001

Values are presented as mean ± standard deviation or median (lower-upper quartiles)
Abbreviations: HDL high-density lipoprotein, hsCRP high sensitive C-reactive protein, IDL intermediate density lipoprotein, LDL low-density-lipoprotein, OGTT oral
glucose tolerant test, HOMA-IR homeostasis, VLDL very low-density lipoprotein
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< 0.05), HbA1c (r = − 0.38; p < 0.001) and insulin (r = −
0.34; p < 0.05; data not shown).
Significant positive correlation was found between

obestatin level and the levels of ApoA1 (r = 0.25; p <
0.05), the ratio in % of large HDL subfractions (r =
0.23; p < 0.05) and the level of large HDL subfractions
(0.24; p < 0.05). Small HDL subfraction ratio in %
showed negative, but non-significant correlation with
obestatin level (− 0.21; p = 0.06), while small HDL
level did not show any correlation with obestatin
(Fig. 1.). We detected significant positive correlation
between obestatin level and mean LDL size (r = 0.25;
p < 0.05). Significant negative correlations were found
between obestatin and ratio of VLDL in % (r = − 0.32;
p < 0.01) and VLDL level (r = − 0.21; p = 0.05), while
there were significant positive correlations between
obestatin and ratio of IDL in % (r = 0.25; p < 0.05) and
IDL level (r = 0.23; p < 0.05) (Fig. 2).

Increased oxLDL and MPO levels were found in NDO
patients compared to the control population. PON1 para-
oxonase and arylesterase acivities did not differ significantly
between patients and controls (Table 1). We could not find
significant correlations between obestatin and the levels of
MPO and PON1 paraoxonase and arylesterase activities.
In multiple regression analysis obestatin was predicted

only by VLDL level (Table 3).

Discussion
Obestatin acts as an anorectic hormone that decreases
food intake, slows gastrointestinal motility and therefore
reduces weight gain [12]. Previous studies in humans
showed significantly lower plasma obestatin levels in dia-
betic or non-diabetic obese subjects compared to lean
controls but failed to assess diabetes mellitus or im-
paired glucose tolerance status [18]. We found similar
results in our obese subjects without diabetes.

a

b c

d e

Fig. 1 Correlations between serum obestatin level and (a) apolipoprotein A1 (ApoA1); b large high-density lipoprotein subfraction ratio (large
HDL %); c large HDL subfraction level (large HDL); d small HDL subfraction ratio (small HDL %); and (e) small HDL subfraction level (small HDL) in
non-diabetic obese (●) and normal weight controls (◊)
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The exact role of obestatin in regulation of lipoprotein
levels is not completely clarified.
Some previous studies showed that it may regulate

lipid metabolism by inhibiting lipolysis in 3 T3 and
human subcutaneous and omental adipocytes isolated
from lean and obese individuals and mice on high-fat
diet [19, 20]. Obestatin increases AMP kinase phosphor-
ylation leading to enhanced lipolysis in adipocytes [20].
Moreover, administration of N-terminally PEGylated
obestatin significantly reduced plasma triglyceride levels
in rat [21]. Interestingly obestatin infusion reduced the
key lipid transporter ATP-binding cassette A1 expres-
sion in cow white adipose tissue [22].
Correlations between obestatin levels and lipoprotein

subfraction parameters have to the best of our know-
ledge have not previously been investigated. We found a

a

b c

d e

Fig. 2 Correlations between serum obestatin level and (a) mean low-density lipoprotein size (mean LDL size); b very low-density lipoprotein ratio
(VLDL %); c VLDL level (VLDL); d intermediate-density lipoprotein subfraction level (IDL%) and (e) IDL level (IDL) in non-diabetic obese (●) and
normal weight controls (◊)

Table 3 Multivariate analysis for obestatin as a dependent
variable on all study participants

Variable Beta p-value

Body mass index (kg/m2) 0.073 0.09

Glucose (mmol/l) −0.22 0.80

Hemoglobin A1c (%) −0.05 0.22

Apolipoprotein A1 (g/l) −0.28 0.054

VLDL (mmol/l) −0.29 < 0.05

IDL (mmol/l) −0.03 0.36

large HDL (mmol/l) 0.413 0.06

small HDL (mmol/l) 0.069 0.69

Mean LDL size (nm) −0.07 0.73

Abbreviations: HDL high-density lipoprotein, IDL intermediate density lipoprotein,
LDL low-density-lipoprotein, OGTT oral glucose tolerant test,
HOMA-IR homeostasis
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significant positive correlation between obestatin level
and the levels of ApoA1 and large HDL subfractions,
which may indicate a possible connection between the
abnormal gastrointestinal response and decreased hep-
atic ApoA1 expression in obesity. Furthermore, serum
VLDL ratio and level negatively correlated with obesta-
tin, which may be explained by the previously described
association between the serum level of obestatin and
carbohydrate metabolism, since insulin resistance and
the higher level of serum glucose result in increased
hepatic free fatty acid production leading to elevated
VLDL level [23]. Moreover, in multiple regression ana-
lysis VLDL level was the only independent predictor of
obestatin level. The negative VLDL correlation likely also
explains the large HDL subfraction positive correlation
to obestatin levels, which was approaching significance
(p = 0.06) on multiple regression analysis. Increased
transport of triglyceride from VLDL to HDL and
cholesterol-esther from HDL to VLDL by cholesterol-
esther transfer protein lead to the formation of smaller
and denser HDL particles with enhanced degradation
and lower half lifespan, which results in low total HDL-
C levels and a shift towards smaller HDL subfractions
[24].
We also investigated the activity of human

paraoxonase-1, an antioxidant enzyme mainly associated
with smaller HDL particles containing apolipoprotein J
(clusterin) [25, 26]. Although both paraoxonase and ary-
lesterase activities of the enzyme tended to be lower in
obese subjects, there were no significant differences in
enzyme activities between the two study groups, despite
the shift towards the smaller HDL subfractions. Further-
more, we found no significant correlation between obes-
tatin levels and PON1 enzyme activity.
The level of another HDL associated, pro-

atherogenic enzyme: myeloperoxidase was also investi-
gated. In line with some previous studies [27, 28] we
found significantly higher myeloperoxidase level in
obese subjects compared to lean controls. Previous
data shows that MPO, PON1, and HDL may bind to
each other, forming a ternary complex, wherein
PON1 partially inhibits MPO activity and MPO inac-
tivates PON1 influencing endogenous oxidative stress
and lipid peroxidation during inflammation [29]. In
our previous study PON1 arylesterase activity was
found to be an independent predictor of MPO levels
in overweight hyperlipidemic, lipid-lowering therapy-
naive patients [30]. In the nondiabetic obese group
there were no significant correlations either between
paraoxonase activity and myeloperoxidase level or be-
tween obestatin and myeloperoxidase level.
A previous study showed obestatin increased oxLDL

binding to macrophages [31]. Although, oxLDL level
was significantly higher in obese patients, we could not

find significant correlation between the levels of oxLDL
and obestatin.
Some limitations of the study can be noted. The power

of the study may be reduced because of the relatively
small number of obese subjects. Obestatin secretion was
found to be pulsatile and displayed an ultradian rhyth-
micity in a previous study [8]. We investigated fasting
serum obestatin levels; however, postprandial levels of
obestatin may show altered correlations with quantita-
tive and qualitative parameters of lipoproteins.

Conclusion
We concluded that decreased level of obestatin may
contribute to the development of metabolic syndrome
and altered lipoprotein metabolism in obese patients
even without disturbed insulin sensitivity. However,
obestatin level does not correlate to HDL function
markers including PON1 and MPO and has no effect on
the level of oxidized LDL. Based on our data, measure-
ment of obestatin level in obesity may contribute to
understand the interplay between gastrointestinal hor-
mone secretion and metabolic alterations in obesity.
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