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Abstract 

Introduction: Hereditary antithrombin (AT) deficiency is a rare thrombophilic disorder with 

heterogeneous genetic background and various clinical presentations. In this study we 

identified a novel AT mutation. Genotype-phenotype correlations, molecular characteristics 

and thrombotic manifestations of the mutation were investigated. 

Materials and methods: Thirty-one members of a single family were included. Clinical data 

was collected regarding thrombotic history. The mutation was identified by direct sequencing 

of the SERPINC1 gene. HEK293 cells were transfected with wild type and mutant SERPINC1 

plasmids. Western blotting, ELISA and functional amidolytic assay were used to detect wild 

type and mutant AT. After double immunostaining, confocal laser scanning microscopy was 

used to localize mutant AT in the cells. Molecular modeling was carried out to study the 

structural-functional consequences of the mutation.  

Results: Unprovoked venous thrombotic events at early age, fatal first episodes and 

recurrences were observed in the affected individuals. The median AT activity was 59%. 

Genetic analysis revealed heterozygous form of the novel mutation p.Leu205Pro (AT 

Debrecen). The mutant AT was expressed and synthesized in HEK293 cells but only a small 

amount was secreted. The majority was trapped intracellularly in the trans-Golgi and 26S 

proteasome. The mutation is suspected to cause considerable structural distortion of the 

protein. The low specific activity of the mutant AT suggested functional abnormality.  

Conclusions: AT Debrecen was associated with very severe thrombotic tendency. The 

mutation led to misfolded AT, impaired secretion and altered function. Detailed clinical and 

molecular characterization of a pathogenic mutation might provide valuable information for 

individualized management.  

Keywords: antithrombin deficiency, expression study, molecular modeling, missense 

mutation, family study 
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Introduction 

Antithrombin (AT) is a major regulator of the coagulation system (1). It acts as an inhibitor of 

activated factor X (FXa) and thrombin (FIIa) and also inactivates a number of other 

coagulation factors (1,2). Upon binding to heparin or heparan sulfate proteoglycans on the 

vascular endothelium, the rate of inhibition is accelerated by 500 to 1000 fold (1,3). 

Hereditary AT deficiency is a rare thrombophilic disorder with a prevalence of 0.07-

0.16% in the general population and 1-8% in patients with a history of venous 

thromboembolism (VTE) (4). It is classified as type I (quantitative) and type II (qualitative) 

deficiency (5). While in type I both AT activity and antigen levels are reduced due to 

impaired protein synthesis or secretion, type II is associated with a dysfunctional protein 

leading to decreased activity but normal or only slightly decreased antigen level. The latter 

may be further sub-classified based on the location and functional consequences of the defect 

(heparin binding site, reactive site and pleiotropic effect) (1,5).  

In the background of AT deficiency, more than 270 causative mutations have been 

identified so far (5). Type I deficiencies are inherited according to autosomal dominant 

pattern. They are most frequently caused by insertions or deletions leading to frameshift and 

premature stop codon, less frequently by large deletions, missense or nonsense mutations. 

Type II deficiencies are most commonly the results of missense mutations and they are more 

frequent than type I variants (6). In vitro characterization of AT mutations, especially type I 

variants have been performed only in a few studies (7–9). 

AT deficiency is typically associated with VTE but arterial thrombotic events have 

also been reported (1). It is considered as severe thrombophilia with high frequency of 

thrombotic episodes, but the relative risk for VTE is found to vary between 5 and 50 in 

different studies (10,11). This heterogeneity is attributed to the multifactorial background of 
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VTE. The various variants of AT deficiency differ in thrombogenecity (eg. type II heparin 

binding site deficiency has a lower thrombotic risk compared to other types) although other 

factors including environmental and genetic may add to this (12–16). A possible role of 

circulating procoagulant microparticles in promoting the development of VTE in AT 

deficiency has also been suggested (17). Despite the clinical variability, AT deficiency is 

currently recognized as one entity in the clinical practice. 

In this study we identified a novel AT gene mutation that was associated with severe 

thrombotic tendency in four generations of a large family. Our objective was to characterize 

the genotype and the consequent molecular phenotype as well as to evaluate the clinical 

manifestation linked to the novel mutation.  

 

 

Materials and methods 

 

Clinical and routine laboratory investigation of antithrombin deficient family 

Clinical data were collected retrospectively from the proband and her first line 

relatives. Information on the type and date of the first thrombotic event, coexisting provoking 

factors (e.g. immobilization, surgical intervention, trauma), acquired conditions (e.g. 

malignancy, congestive heart failure, nephrotic syndrome), recurring arterial and venous 

thrombotic events, obstetric history and anticoagulant treatment were obtained from 

interviews and medical records. Screening for other thrombophilias included the detection of 

FV-Leiden mutation, FII-G20210A allele, protein C, protein S deficiencies, and 

antiphospholipid antibodies (lupus anticoagulant, anticardiolipin and anti-beta 2 glycoprotein 

I antibodies). The study was approved by the regional ethical committee at the University of 

Debrecen: the participants provided written informed consent. 
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Laboratory investigations and mutation analysis of antithrombin in patients 

Blood samples were collected into 3.2% Na-citrate containing vacutainer tubes (Becton 

Dickinson, New Jersey, NJ) and plasma samples were stored at -80°C until analysis. AT anti-

FIIa activity was determined in the presence of heparin by chromogenic assay (Berichrom 

Antithrombin III kit, Siemens, Marburg, Germany). The AT antigen (AT:Ag) concentration 

was measured by immunonephelometry (Siemens).  

Genomic DNA was isolated from peripheral whole blood using QIAamp DNA Blood 

Mini kit (Qiagen GmbH, Hilden, Germany). The entire coding and flanking intron regions of 

the SERPINC1 gene were amplified and directly sequenced for mutation detection (18). 

Briefly, amplification was performed in 40 cycles applying 58 °C annealing temperature in a 

50 μl volume, using 100 ng of genomic DNA, 0.2 μM of each oligonucleotide (Integrated 

DNA Technologies, Munich, Germany), 250 μM dNTP mix (Life Technologies, Foster city, 

CA), 2 mM MgCl2 (Promega, Madison, USA), 1x concentration PCR buffer (Promega), 5% 

DMSO (Dimethyl Sulfoxide, Sigma-Aldrich GmbH, Munich, Germany) and 0.025 U GoTaq 

HotStart polymerase (Promega). DNA sequencing was executed on both strands using 

BigDye Terminator v1.1 Cycle Sequencing kit (Life Technologies). The products were 

purified (DyeEx Spin Kit, Qiagen) and concentrated (Vacuum Concentrator 5301, Eppendorf, 

Hamburg, Germany). Fluorescent direct sequencing was carried out on Avant Genetic 

Analyzer (Life Technologies). Electropherograms were analyzed by Sequencing Analysis 

5.1.1 software. 

 

Recombinant expression of wild-type and mutant antithrombin 

The cDNA clones ORF-NM_000488_pcDNA3.1(+) wild type AT (WT) and L205P 

mutant were purchased from ImaGenes GmbH (Berlin, Germany) and transformed in 
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OneShot® TOP10 Chemically Competent E.coli cells, then purified by the QIAprep Spin 

Miniprep Kit (Qiagen). 

HEK293 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Invitrogen) supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine and 25 μg/mL 

gentamicin antibiotics (Chinoin, Budapest, Hungary). Cells were grown to 60% confluence at 

37°C and 5% CO2 in a humidified incubator, in six-well culture plate, then were transiently 

transfected using X-tremeGENE HP DNA Transfection Reagent (Roche Diagnostics GmbH, 

Mannheim, Germany) with 2 μg WT and P205 mutant plasmid. The co-transfection of LacZ 

gene was also performed with pCMV Sport β-GAL plasmid (Invitrogen). After 48 hours 

incubation, conditioned media were collected, part of the cells were used for immunostaining 

and confocal laser scanning microscopy (CLSM), another part of the cells were lysed in a 

buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 % Nonidet P40, 0.5% sodium 

dodexycholate and a protease inhibitor cocktail (Roche). The transfection efficiency was 

determined by FluoReporterlacZ/Galactosidase Quantitation Kit (Molecular Probes, Life 

Technologies) and the results were corrected accordingly. 

Aliquots of the media and cell lysates were used for AT antigen determination by 

ELISA (AssayMax Human Antithrombin III ELISA Kit, Assaypro, St. Charles, MO) and for 

Western blotting. AT activity from the conditioned and concentrated media of the transfected 

cells was determined by amidolytic assay in microtiter plate using LX Antithrombin Hc+P, 

FXa reagent (Labexpert Ltd., Debrecen, Hungary) with minor modifications. Briefly, this 

assay contained bovine FXa as substrate, BIOPHEN CS-11 [Suc-IIe-Gly-( γ Pip)Gly-Arg-

pNA, HCl] as chromogenic substrate, where we used a final dilution of 1:6 of conditioned 

medium of transfected HEK293 cells in a Tris-HCl buffer pH 8.4 containing 2 U/L heparin. 

Both AT antigen (mg/mL) and AT activity (U/mL) were determined from the media of the 
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WT and P205 mutant AT in three independent experiments and specific activity was 

calculated and expressed as U/mg AT protein. 

 

Western Blotting 

 Cell lysates and media were subjected to SDS-PAGE (10% gel) in non-reducing 

conditions and analyzed by Western blotting. AT was detected by goat anti-human AT 

antibody (Affinity Biologicals, Ancaster, Canada) using biotinylated, rabbit anti-goat IgG as 

secondary antibody. The immunoreaction was developed by Vectastain Elite ABC kit (Vector 

Laboratories, Burlingame, CA), and visualized by 3,3'- diaminobenzidine (DAB) (Invitrogen). 

 

Double Immunostaining, Confocal Laser Scanning Microscopy and Qualitative Co-

localization Analysis 

 Cells were fixed in 96% alcohol, 1% acetic acid for 15 minutes. Before staining, the 

cells were incubated for 15 minutes with phosphate buffer containing 5% normal human 

serum to prevent non-specific IgG binding. AT was labeled with goat anti-human 

antithrombin antibody (Affinity Biologicals, 1:400 dilution, 60 minutes), followed by FITC-

labeled anti-goat IgG (Vector, Burlingame, CA, 1:100 dilution, 45 minutes). Double 

immunostaining was used to localize AT and different cell organelles simultaneously. 

Endoplasmic reticulum (ER) was detected by mouse monoclonal anti-calnexin antibody 

(Abcam Ltd, Cambridge, UK, 1:40 dilution, 60 minutes). The cis-Golgi was labeled with 

mouse anti-Golgi 58K protein (Sigma-Aldrich, 1:200, 60 minutes). Mouse anti-mannose 6-

phosphate receptor antibody (Abcam, 1:10 dilution, 60 minutes) was used to label the trans-

Golgi. The 26S proteasome was detected by mouse monoclonal antibody to 26S Proteasome 

(Abcam, 1:200 dilution, 60 minutes). The mouse monoclonal antibodies were visualized by 

horse anti-mouse IgG conjugated with DyLight594 (Vector, 1:200 dilution for 45 minutes). 
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All steps were carried out at room temperature; PBS was used for antibody dilution and in the 

washing steps. For negative controls identical dilutions of non-immune antisera and idiotypic 

mouse immunoglobulin-preparations were substituted for primary antibodies. 

 Cells were investigated by confocal laser scanning microscope (LSM 700, Zeiss 

Oberkochen, Germany) equipped with Plan-Apochromat 63X/1.40 oil objective and solid 

state lasers. Separation of the fluorescence signals was performed by selective laser excitation 

(405 nm, 488 nm, 555 nm laser lines) coupled to efficient splitting of the emission using 

variable secondary dichroic (VSD) beam-splitter.  

 Co-localization of fluorescence signals was analyzed in image pairs using Protein 

Proximity Analyzer (PPA) software (http://www.anes.ucla.edu/~wuyong/PPI/index.html) 

(19,20). After background reduction by median filter technique, co-localization was 

characterized by protein proximity index (PPI1, PPI2), the numerical value of which is equal 

to the amount of co-localized molecules in each channel for ideal images free from 

background and noises. According to our settings PPI1 describes the percentage of AT co-

localizing with different cell organelles and PPI2 describes the percentage of cell organelle 

co-localizing with AT. Pearson’s correlation coefficient was also used to describe co-

localization. 

 

Molecular Modeling 

In order to reveal the structural-functional consequences of p.Leu205Pro mutation, 

molecular dynamics simulations on both the wild-type and the corresponding mutant protein 

were carried out. The starting structure of the wild type protein was derived from the native, 

pentasaccharide-free AT X-ray structure deposited in the protein data bank (PDB ID number: 

1E04) (21). The geometry of those regions (the short N-terminal- and the extended loop 

sequences preceding the α helix A as well as the single C-terminal Lys residue) which could 
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not be resolved from the diffraction pattern were built and refined by the Prime module of 

Schrödinger package (22). The quality of the completed structure was checked by the 

Procheck software (23). The structure of the Pro205 AT protein was derived from the WT 

one, deleting first the Leu205 side chain manually then rebuilding it as Pro205 residue by 

means of the YASARA software.  

The WT and Pro205 AT proteins were put in a virtual dodecahedral box in that way 

that the distance of any protein atom and the closest point of the box surface was at least 15 

Å. The boxes were filled with explicit solvent molecules using the TIP3P water model (24), 

then the systems were neutralized and the ionic strength was set to 0.15M with Na
+
 and Cl

-
 

ions. Afterwards they were minimized (5000 conjugate gradient steps) and pre-equilibrated  

using the simulated annealing protocol to heat up the systems to 310K during 400 ps and 

keeping there in an additional 400 ps. The constant particle number (N), constant pressure 

(P=10
5 

Pa) and constant temperature (T=310K) molecular dynamics simulations were carried 

out for 4 μs by means of the Gromacs 4.5.4 package (25). The OPLS-AA/L force field was 

used throughout these simulations. For the short range electrostatic and van der Waals energy 

terms 10 Å cut-off distances were used while the particle mesh Ewald (PME) method was 

applied for long-range electrostatic energy corrections (26). For both the temperature and 

pressure couplings the Berendsen algorithms were used (27). In order to be able to apply 

longer time step (4fs) during simulations virtual sites protocol was used. The auxiliary 

GROMACS software packages were used for the analysis of trajectories. Protein structure 

visualizations were done by the VMD 1.9.1 (28) software tool. 

  

 

Results 
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Clinical and laboratory characteristics of the antithrombin deficient family 

A total of 31 members of four generations from a single family were included in the 

study. Twelve family members were diagnosed with AT deficiency. Clinical and routine 

laboratory characteristics of the family are demonstrated in Table 1, the family tree with the 

genotype and the clinical phenotype is shown in Figure 1A and 1B, respectively. The proband 

(II/8) of the family was a 74-year-old woman with significant thrombotic history. Her first 

thrombotic event was unprovoked and occurred at the age of 35. Afterwards she had multiple 

recurrences and developed postthrombotic syndrome as late complication. Thrombophilia 

testing at the age of 46 proved AT deficiency after which she was put on lifelong oral 

anticoagulant prophylaxis. Family investigation revealed positive thrombotic history for her 

father (I/1) who suffered from multiple VTEs and died of PE at the age of 62. Anticoagulation 

was never initiated for him, and thrombophilia testing was not available at that time. Out of 

the seven siblings of the proband, six also suffered from VTEs. In two cases, the first event 

appeared to be fatal at the age of 15 (II/4) and 36 (II/13), respectively. One sibling (II/5) 

suffered from both venous and arterial events, and died of acute myocardial infarction at the 

age of 51. Including the proband, four affected family members from this generation are still 

alive while on adequate anticoagulation. In the third generation, two family members (III/4 

and III/11) presented premature DVTs. Both of them were put on vitamin K antagonist 

treatment, and no recurrent events have occurred since then. In the youngest generation, two 

young men (IV/1 and IV/3) were identified as asymptomatic carriers aging 18 and 21, 

respectively. 

The median age at the time of the first VTE was 36.7 years (total range 15-65) in the 

family. The first thrombotic event was unprovoked in all cases. In all the affected family 

members who were available for testing, hereditary AT deficiency was diagnosed. No 

additional thrombophilia was identified in the affected subjects. The median AT activity was 
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59% (total range 38-65) and the median of AT antigen was 0.185 g/L (total range 0.15-0.22) 

(Table 1). These results suggested quantitative AT deficiency, however in the case of two 

individuals (II/8 and II/9) the AT antigen concentration was slightly above the lower limit of 

reference interval. Molecular genetic investigation of SERPINC1 revealed a novel missense 

mutation (c.614T>C) within exon 3 that resulted in a single amino acid exchange 

(p.Leu205Pro) in the protein. All affected family members were heterozygous for this 

mutation. Molecular genetic analysis was carried out in all available family members 

regardless to clinical symptoms.   

Detection of wild type and Pro205 antithrombin in the cell lysates and in the media of 

transfected HEK cells 

WT AT appeared as a clear band in the conditioned media of HEK cells at 58 kDa, 

however, only a faint band of Pro205 AT could be visualized (Figure 2A). Both WT and 

mutant AT were demonstrated as equally intense bands in the lysates of transfected HEK cells 

around 58 kDa. As it was expected no signal from mock transfection could be detected. The 

positive control band represented AT from the pooled plasma of 5 healthy individuals and 

appeared as a single band. 

AT antigen concentration was determined by ELISA in four independent experiments 

(i.e. four independent transfection of HEK cells, AT was measured 48 hours after each 

transfection in duplicates) and corrected for transfection efficiency. AT concentration was 

2.33±0.76 μg/mL in the media of the WT cells, while it was only 0.56±0.43 μg/mL in the 

media of cells containing Pro205 mutant plasmid (Figure 2B). In the cell lysates – in 

accordance with the results of the Western blotting - AT concentration was 2.83±1.40 μg/mg 

and 2.86±1.10 μg/mg protein for cells transfected with WT and mutant plasmids, respectively. 

For determining the specific activity of recombinant AT both AT activity and antigen levels 

were measured in the conditioned and concentrated media of cells expressed WT and Pro205; 
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all measurements were executed in samples obtained from three independent transfections. 

AT antigen concentration in the WT media was 0.21±0.06 mg/mL and it was 0.06±0.01 

mg/mL in the Pro205 media. By performing the amidolytic assay AT activity values were 

1.576±0.001 U/mL and 0.221±0.058 U/mL in the WT and mutant media, respectively. The 

average specific activity (ie. the activity related to one mg AT protein) obtained in the three 

independent experiments of Pro205 was 3.94±0.95 U/mg, while it was 7.79±2.10 U/mg in the 

case of the WT AT. 

Double immunofluorescent staining of wild type and Pro205 antithrombin 

We examined the intracellular localization of the mutant protein by double 

immunofluorescent staining and confocal laser scanning microscopy. Figure 3A demonstrates 

the intracellular localization of AT where the yellow color in the merged pictures suggests co-

localization of Pro205 AT with trans-Golgi and 26S proteasome. As it was expected, in the 

case of WT AT no strong co-localization was observed with any cell organelles. More 

detailed information is provided by the supplementary figures 1 and 2, which demonstrates 

the staining for AT and for the different cell organelles separately with their merged pictures. 

We performed quantitative co-localization analysis of confocal images by the PPA software 

and demonstrated that in the case of WT AT the co-localization values were similar for every 

cell organelles (Figure 3B and supplementary Table 1). Similarly to the WT protein, low 

fraction of Pro205 AT mutant was detectable in the ER and cis-Golgi apparatus (Figure 3B). 

The situation was different in the case of trans-Golgi and 26S proteasome, where Pro205 AT 

occupied a relatively high fraction of these cell organelles as it was demonstrated by the 

significantly higher PPI1 values and Pearson’s correlation coefficients. The median of 

correlation coefficient was 0.48 for Pro205 AT and trans-Golgi suggesting moderate degree of 

co-localization, while it was even higher, 0.71 for Pro205AT and 26S proteasome suggesting 

strong degree of co-localization according to the classification of Zinchuk et al. (29). 
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Molecular dynamics simulations 

Figure 4A shows that the position of the mutation is located at the end of the string 1 

of the β-sheet A, which connects the helices E and F. In order to estimate how the mutation 

influences the structural elements at its neighborhood, the first and the last frames of 4 μs 

simulation trajectory were selected for both WT and Pro205 proteins and were compared to 

each other. Contrary to the WT protein, in case of Pro205 AT significant difference was 

demonstrated between the first and last frames of simulations in the N- and C-terminal end of 

helix F as well as close to the 205 residue (Figure 4B and 4C). These results suggest 

considerable structural distortion in Pro205 AT e.g. considerably impaired helicity at the C-

terminus of the helix F. It was further confirmed by the comparison of the root-mean-square 

deviation of the corresponding 167-257 residue region from the starting structures in case of 

both the wild type and the mutant proteins. The structural deviation was much larger in the 

case of Pro205 AT (Figure 4D). Moreover, the root-mean-square fluctuation was also much 

larger for this region in case of Pro205 AT (Figure 4E).  

 

 

Discussion 

In this study, clinical and molecular characterization of a novel AT mutation is 

presented. Heterozygous form of the mutation p.Leu205Pro (AT Debrecen) was found in 

three consecutive generations of a large pedigree. Family investigation revealed autosomal 

dominant inheritance and severe clinical phenotype. The thrombotic tendency associated with 

AT Debrecen was the primary factor for morbidity and mortality in the family. Given the high 

risk of VTE in the family, lifelong anticoagulant therapy was initiated for secondary 

prophylaxis in all the family members with DVTs.  
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Screening of asymptomatic family members identified two young men as carriers of 

the mutation. In general, mechanical or pharmacological thromboprophylaxis is not 

recommended in persons with asymptomatic thrombophilia regardless of the severity (30,31). 

In their case proper patient education, clinical vigilance and initiation of LMWH prophylaxis 

in high risk situations are applied.  

The laboratory results, as AT activity was decreased and AT antigen concentration 

was borderline in the majority of our patients, suggested quantitative AT deficiency combined 

with a functional alteration. The fact that no thrombotic symptoms were registered in WT 

family members strongly suggested the pathogenic nature of the p.Leu205Pro mutation. AT is 

a highly conserved protein; its amino acid sequence is very similar in different mammals 

(Supplementary Figure 3). The Leu residue at position 205 is identical in orangutan, mouse, 

sheep and cow and the surrounding region of AT is also highly conserved. A mutation in this 

region very likely leads to abnormal AT. Hereby in vitro expression studies were carried out 

to collect direct pieces of evidence concerning the pathogenic nature of the mutation. The 

Pro205 AT was detected in the lysates of HEK cells in the same amount as WT AT indicating 

unaffected protein synthesis. However, only a considerably less amount of mutant AT was 

detected in the media of the transfected cells suggesting secretion defect. To confirm 

presumption, double immunofluorescent staining and CLSM experiments were carried out, 

where a moderate and strong co-localization was demonstrated with the trans-Golgi and 26S 

proteasome, respectively. The mutant protein distorts from the normal secretory pathway and 

accumulates in the organelles responsible for the degradation of abnormal proteins (32,33). 

The in silico experiments also strengthened this hypothesis. The analysis of the trajectories 

obtained from the 4 μs dynamics simulations for the WT and the Pro205 AT mutant showed 

that much larger geometry distortion takes place in the mutant protein than in the WT one at 

the position of the mutation and its proximity. This is especially pronounced for the N- and 
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the C-terminal end of the helix F, which can even lose its helical character. This hypothesis 

was further confirmed by the root-mean-square deviation and root-mean-square fluctuation 

analyses. In conclusion, the results suggest that the p.Leu205Pro mutation leads to misfolded 

AT and as a consequence to impaired secretion. Interestingly, it was found that the helix F 

could play a crucial role in the serpin mechanism as well (34). During the RCL incorporation 

as 4
th

 string in β-sheet-A it should move away from its original position and return to a 

position near to the original one upon incorporation. It is proposed that the returning of the 

helix-F and the distortion of the protease is coupled.  

The specific activity of the Pro205 AT was found to be decreased comparing it to the 

WT protein in the in vitro expression studies suggesting more complex consequences of the 

mutation than being a simple secretion defect. This finding is in agreement with the laboratory 

phenotype of our patients, where the AT activity/antigen ratio is lower than it is usually 

observed in type I deficiency. Our results suggest that the p.Leu205Pro variant is primarily 

associated with a secretion defect, but a functional abnormality is also very likely. 

Only a few missense mutations were described in the close vicinity of Leu205 residue, 

and biochemical characterization was not carried out in those cases (35,36). In papers where 

secretion defect was characterized and intracellular accumulation was demonstrated the ER 

was suggested as the site of accumulation (7,8). Our study is the first in which co-localization 

with the trans-Golgi network and the 26S proteasome was suggested for the structurally 

aberrant AT protein. 

Conclusion 

AT deficiency in general is managed as a homogeneous thrombophilic disorder despite 

heterogeneous genetic background.  Complete characterization of pathogenic AT mutations 

including the underlying molecular mechanisms and the clinical consequences can provide 

valuable information to understand better the nature of AT and its deficiencies.  
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Legends to figures and tables 

 

Figure 1. Pedigree of the family. Squares and circles depict males and females, respectively. 

The proband is indicated by an arrow. Crossed symbols represent deceased family members. 

Roman numerals indicate generations. Arabic numerals indicate individuals in a given 

generation. 

 A, Pedigree based on genotype. Wild type individuals are indicated by open symbols. 

Individuals heterozygous for the mutation are shown by half-empty symbols. Asterisks 

represent the lack of genetic testing. These individuals were either deceased before the 

investigations or they were spouses of family members.  

B, Pedigree based on clinical phenotype. Individuals without and with VTE are 

represented by open and closed symbols, respectively.  

 

Figure 2. Detection of wild type and Pro205 antithrombin by Western blotting (A) and 

ELISA (B) in the media and lysates of transfected HEK293 cells.  

A, SDS-PAGE was performed in non-reducing conditions. 40-fold dilution of plasma 

pooled from 5 healthy persons was used as positive control (C). Media and lysate of mock 

transfected cells served as negative control. Beta actin served as internal control. 

B, AT antigen was determined from the media and cell lysates of transfected HEK cells 

by ELISA. AT antigen concentration was determined in four independent experiments. 

Results were normalized for transfection efficiency and expressed as a percentage of the wild 

type average AT concentration. Error bars represent standard deviations.  
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Figure 3. Double immunofluorescent staining of wild type and Pro205 antithrombin. 

A, Confocal images of WT and Pro205 AT. The yellow color in the merged pictures 

indicates strong co-localization of AT with the respective cell organelle. AT is visualized in 

green, the different cell organelles are stained in red and cell nuclei are shown in blue (please 

see section „Methods” for details).  

B, Quantitative analysis of the co-localization of WT and Pro205 AT with different cell 

organelles using the Protein Proximity Analyzer (PPA) software. The PPI1 values (range 0-1) 

reflect the percentage of AT co-localizing with different cell organelles appear on the vertical 

scale.  On the horizontal scale co-localization of AT with different cell organelles presented 

by wild and Pro205 mutant consequently. The PPI1 median values and minimum-maximum 

values are demonstrated in the figure. 

Abbreviations, WT, wild type; P205, Pro205 mutant antithrombin; ER, endoplasmic 

reticulum; CG, Cis-Golgi; TG, Trans-Golgi; 26S P, 26 S Proteasome; PPI1, protein proximity 

index 1 

*p=0.0161; **p<0.0001 

 

 

Figure 4. Graphical representation of the effect of p.Leu205Pro mutation on the 

structure of antithrombin. 

A, Cartoon representation of antithrombin structure. Leu205 residue is shown by sphere 

model. The α-helical and β-string structure elements are depicted in purple and yellow, 

respectively. The location of 167-257 residues which includes the Leu205 residue and whose 

properties are examined in details are inside the red rounded rectangle. The 2
nd

 and 3
rd

 strings 

of β –sheet A are numbered as “2” and “3”. Two helices, E and F can be found in the selected 

region.  
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The superposition of the snapshots from the first and last frame of the 4 μs simulation carried 

out for the wild type (B) and Pro205 (C) proteins. Only residues between 167-257 are shown. 

Cartoons corresponding to the first and the last frame are colored in yellow and blue, 

respectively. The residues Leu205 (B) and Pro205 (C) are shown by a sphere representation 

while their positions are marked by red arrows. D, Root-mean-square deviation from the 

starting structure during the productive dynamics simulations for both the wild type (black 

line) and the Pro205 (red line) mutant proteins. Only the residues between 167-257 were 

considered in the calculations. E, Root-mean-square fluctuations for each residue calculated 

for both the wild type and the Pro205 mutant AT. Black color indicates the wild type AT 

while the corresponding values for the mutant protein are shown in red color.  The region 

demonstrated significantly increased fluctuation compared to the wild type protein is marked 

by brace. The residue numbering on this figure corresponds to the X-ray structure file (i.e. 

signal peptide residues are not counted).   
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Abbreviations: VTE, venous thromboembolism; AT, antithrombin; DVT, deep vein thrombosis; PE, pulmonary embolism; SVT, superficial 

venous thrombosis; AMI, acute myocardial infarction; NA, not available. Values in brackets are normal ranges. 

 

 

 

 

  

Table 1. Clinical and laboratory characteristics of the family    

ID 
Type of 

first VTE 

Age at  

first VTE 

Outcome of 

first VTE 

Secondary 

prophylaxis 

Recurrent 

thrombotic events 

AT activity 

(80-120%) 

AT antigen 

(0.19-0.31 g/L) 

I/1. DVT 34 survived none multiple VTEs NA NA 

II/1. DVT 65 survived VKA DVT  63 NA 

II/4. PE 15 died none - NA NA 

II/5. PE 34 survived VKA DVT+PE, AMI 38 NA 

II/8. DVT 35 survived VKA DVTs, SVTs 58 0.20 

II/9. DVT+PE 42 survived VKA DVTs 65 0.22 

II/11. DVT 40 survived VKA DVTs 55 0.18 

II/13. 
Sinus 

thrombosis 
36 died none - NA NA 

III/4. DVT 34 survived VKA none 59 0.19 

III/11. DVT 32 survived VKA none 63 NA 

IV/1. none - - - - 61 0.16 

IV/4. none - - - - 56 0.15 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Highlights 

Ref.: Ms. No. TR-D-16-00932 

Antithrombin Debrecen (p.Leu205Pro)-clinical and molecular characterization of a novel 

mutation associated with severe thrombotic tendency 

 

 

 A novel p.Leu205Pro mutation was detected in a large antithrombin deficient family 

 It was associated with very severe thrombotic tendency: early age unprovoked 
thrombotic events, fatal first episodes and recurrences appeared in the family 

 Mutant antithrombin may accumulate in trans-Golgi network and 26S proteasome 

 The mutation leads to quantitative AT deficiency combined with functional alteration 
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