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Abstract
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1 Introduction
First, we recall the well-known Bahr-Esseen inequality. Let  ≤ p ≤ , and let Xn, n =
, , . . . , be a sequence of independent random variables (r.v.s) with finite pth moment and
mean zero (E|Xn|p < ∞, EXn =  for all n = , , . . . ). Then
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n
∑
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Xk

∣
∣
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∣

p

≤ cp,n

n
∑

k=

E|Xk|p (.)

for all n = , , . . . , where cp,n ≤  – n– (von Bahr and Esseen []). Inequality (.) is the pth
von Bahr-Esseen moment inequality.

We remark that the pth von Bahr-Esseen moment inequality is obviously true for  <
p ≤ , that is, E|∑n

k= Xk|p ≤ ∑n
k= E|Xk|p for  < p ≤  and any sequence Xn, n = , , . . . ,

of random variables with finite pth moment.
Dharmadhikari and Jogdeo [] proved the following inequality, which can be considered

as an extension of the Bahr-Esseen inequality to the case p > . Let p ≥ , and let Xn,
n = , , . . . , be a sequence of independent random variables with finite pth moment and
mean zero. Then (.) is satisfied with

cp,n = np/– p(p – )


max
{

, p–}[ + p–D(p–)/m
m

]

,
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where the integer m satisfies m ≤ p < m + , and

Dm =
m

∑

k=

km–/(k – )! .

In [] the pth von Bahr-Esseen moment inequality was obtained for pairwise independent
random variables and  < p < . The nd von Bahr-Esseen moment inequality is obvious
for pairwise independent zero-mean random variables, and in [] this fact is applied to
prove the pth ( < p < ) von Bahr-Esseen moment inequality. Analyzing the proof in [],
we can obtain the following result. Let  < p < , and let Xn, n = , , . . . , be a sequence of
arbitrary random variables with finite pth moment and mean zero such that the nd von
Bahr-Esseen moment inequality holds for the truncated and centered variables XkI(|Xk| ≤
x) – EXkI(|Xk| ≤ x), k = , , . . . , n, x > , where I denotes the indicator function of a set.
Then then the pth von Bahr-Esseen moment inequality is true for the random variables
Xn, n = , , . . . , themselves.

Moreover, we can generalize the previous result using q instead of . That is, if  < p < q
and the qth von Bahr-Esseen moment inequality holds for the truncated and centered
variables, then the pth von Bahr-Esseen moment inequality holds true for the original
random variables themselves.

However, there is another version of truncation. Given a r.v. X and a positive number t,
we can use the following truncated r.v.:

(–t)X(t) = –tI{X < –t} + XI
{|X| ≤ t

}

+ tI{X > t}. (.)

The advantage of this truncation is that (–t)X(t) = h(X) with an increasing real function h.
We know that certain dependence conditions are inherited if the random variables are
inserted into increasing functions. Therefore it is more important to know that the qth von
Bahr-Esseen moment inequality for the truncated and centered variables (–x)X(x)

k –E
(–x)X(x)

k
implies the pth von Bahr-Esseen moment inequality for the original random variables Xk

themselves ( < p < q). This fact is proved in our Theorem .. We underline that in our
Theorem . we do not assume any weak dependence condition for the random variables.
We also emphasize that throughout the paper we use versions of truncation (.).

It is well known that certain exponential relations play a fundamental role in the proofs
of asymptotic results for independent and weakly dependent random variables. A general
form of such relations is included in the definition of acceptability. The r.v.’s X, X, . . . , Xn

are called acceptable if

Ee
∑n

i= λXi ≤
n

∏

i=

EeλXi (.)

for any real number λ []. In Section ., we show that a version of inequality (.) im-
plies an exponential inequality; see Proposition .. Then, using the exponential inequal-
ity, we obtain the Rosenthal inequality (Proposition .). Finally, we will see that a version
of inequality (.) implies the pth von Bahr-Esseen moment inequality; see Theorem ..
Applying Theorem ., we obtain the von Bahr-Esseen’s moment inequality for WOD se-
quences (Theorem .).
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Important applications of moment inequalities are convergence theorems. In Sec-
tion ., we shall present laws of large numbers and complete convergence as conse-
quences of our inequalities. According to the well-known Etemadi strong law of large
numbers (SLLN), if X, X, . . . are pairwise independent and identically distributed ran-
dom variables with finite first moment, then

lim
n→∞

X + · · · + Xn

n
= EX

almost surely []. Our Theorem . is an Etemadi style SLLN. In our theorem, instead of
pairwise independence, we assume either (.) or (.) for the truncated r.v.s. Also, a well-
known SLLN is the result of Csörgő, Tandori, and Totik []. There pairwise independent,
but not identically distributed, r.v.s were considered. Our Theorem . is a new version
of the Csörgő-Tandori-Totik SLLN. In our theorem, we replace pairwise independence
with appropriate versions of (.) or (.). We also present a weak law of large numbers
(WLLN); see Theorem ..

The rate of convergence in laws of large numbers can be described by so-called complete
convergence theorems. Classical complete convergence results are due to Hsu, Robbins,
Erdős, Baum, and Katz; see []. First complete convergence results concerned probabil-
ities; later, such results were proved for moments as well. The general form of complete
moment convergence of the random variables Y, Y, . . . is

∞
∑

n
anE

(|Yn|/bn – ε
)q

+ < ∞

for all ε > , where (·)+ denotes the positive part of a number. Here Yn is usually the partial
sum of r.v.s. The classical paper dealing with complete moment convergence for indepen-
dent r.v.s is []. Then several papers were devoted to the topic. In [] it is shown that if
certain moment inequalities are satisfied for the truncated r.v.s, then the complete mo-
ment convergence holds. In our paper, we prove the complete moment convergence if
(.) is true for the truncated r.v.s (Theorem .).

2 Results and discussion
2.1 Methods
In this paper, we apply truncations of random variables and then approximations of prob-
abilities and moments. The combination of these methods enables us to obtain general
versions of moment inequalities and convergence theorems.

2.2 The von Bahr-Esseen moment inequality
In this subsection, we prove the following general theorem. If the von Bahr-Esseen mo-
ment inequality holds for q for the truncated and centered random variables, then it holds
for the random variables themselves for any p with  < p < q. We emphasize that there is no
additional assumption on the dependence structure of the random variables. We mention
that Theorem . in [] is the Bahr-Esseens inequality for pairwise independent random
variables. In our paper, we apply the method of the proof presented in []. However, as we
use truncation (.) instead of XkI(|Xk| ≤ x), our proof is shorter than that in [].



Fazekas and Pecsora Journal of Inequalities and Applications  (2017) 2017:191 Page 4 of 16

Theorem . Let  < p < q. Let Xn, n = , , . . . , be a sequence of random variables with
E|Xn|p < ∞ and EXn =  for all n = , , . . . . Assume that, for any x > ,

E

∣
∣
∣
∣
∣

n
∑

k=

((–x)X(x)
k – E

(–x)X(x)
k

)

∣
∣
∣
∣
∣

q

≤ gq(n)
n

∑

k=

E
∣
∣(–x)X(x)

k – E
(–x)X(x)

k
∣
∣
q. (.)

Then
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∣

p

≤ fp,q(n)
n

∑

k=

E|Xk|p, (.)

where fp,q(n) depends only on gq(n), p, and q (a possible choice is fp,q(n) = +cqgq(n)q( q
q–p )

with cq = q–).

Proof Let V =
∑n

k= E|Xk|p. If V = , then Xk =  a.s. for all k = , , . . . , n, so we may
assume that V �= . For simplicity, Zi denotes the truncated random variable, that is,
Zi = (–x/p)X(x/p)

i , where x is an arbitrary positive number. For any ε > ,
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≤ ( + ε)V +
∫ ∞

(+ε)V
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> x/p

}
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≤ ( + ε)V +
∫ ∞

(+ε)V

n
∑

k=

P
{|Xk| > x/p}dx

+
∫ ∞

(+ε)V
P

{∣
∣
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∣

n
∑

k=

Zk

∣
∣
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> x/p

}

dx

= ( + ε)V + I + I. (.)

We see that

I ≤
n

∑

k=

∫ ∞


P
{|Xk| > x/p}dx =

n
∑

k=

E|Xk|p = V . (.)

Using that EXk = , we have that EXkI(|Xk| ≤ x/p) = –EXkI(|Xk| > x/p), so we obtain

sup
x≥(+ε)V

x–/p
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P
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∣
∣
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n
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E|Xk|I
(|Xk| > x/p)
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≤  sup
x≥(+ε)V

x–/p · x/p–
n

∑

k=

E|Xk|pI
(|Xk| > x/p)

≤ ( + ε)–V – · V = ( + ε)–. (.)

Now we apply (.), and then, as ε > , using Markov’s inequality, we obtain
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∫ ∞
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q

dx

≤ cqgq(n)
[

 – ( + ε)–]–q
n

∑

k=

∫ ∞

(+ε)V
x–q/p

E|Zk|q dx

= cqgq(n)
[

 – ( + ε)–]–q
n

∑

k=

Ik . (.)

In the last step we applied (.) and the cq-inequality. Then, for a fixed k,  ≤ k ≤ n, we
have

Ik =
∫ ∞

(+ε)V
x–q/p

E|Zk|q dx

=
∫ ∞

(+ε)V
x–q/p

∫ xq/p


P
{|Xk|q > y

}

dy dx

=
∫ ∞

(+ε)V
x–q/p

∫ (+ε)q/pV q/p


P
{|Xk| > y/q}dy dx

+
∫ ∞

(+ε)V
x–q/p

∫ xq/p

(+ε)q/pV q/p
P
{|Xk| > y/q}dy dx

= Ik + Ik . (.)

Again, using Markov’s inequality, we have

Ik =
p

q – p
( + ε)–q/pV –q/p

∫ (+ε)q/pV q/p


P
{|Xk| > y/q}dy

≤ p
q – p

( + ε)–q/pV –q/p
∫ (+ε)q/pV q/p


E|Xk|p · y–p/q dy

=
qp

(q – p) E|Xk|p. (.)
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For Ik , we also get

Ik =
∫ ∞

(+ε)q/pV q/p
P
{|Xk| > y/q}

∫ ∞

yp/q
x–q/p dx dy

=
p

q – p

∫ ∞

(+ε)q/pV q/p
yp/q–

P
{|Xk| > y/q}dy

≤ p
q – p

∫ ∞


yp/q–

P
{|Xk| > y/q}dy

=
q

q – p
E|Xk|p. (.)

Using relations (.)-(.), we get

I ≤ cqgq(n)
[

 – ( + ε)–]–q
[

qp
(q – p) +

q
q – p

]

V

= cqgq(n)
[

 – ( + ε)–]–q
(

q
q – p

)

V . (.)

Summarizing (.), (.), and (.), we obtain
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≤
{

 + ε + cqgq(n)
[

 – ( + ε)–]–q
(

q
q – p

)}

V .

We can see that the function

f (ε) =  + ε + cqgq(n)
[

 – ( + ε)–]–q
(

q
q – p

)

is positive and continuous on the interval (,∞) and limε→+ f (ε) = limε→∞ f (ε) = ∞.
Therefore f (ε) has a minimum on (,∞). Let fp,q(n) = inf<ε<∞ f (ε). We can see that
fp,q(n) > , it depends only on gq(n), p, and q, and so (.) is proved. �

2.3 Exponential inequalities and their consequences
In this subsection, we will see that if we assume that the exponential relation (.) is true
for the truncated random variables, then we obtain an exponential inequality (Proposi-
tion .), which implies Rosenthal’s inequality (Proposition .) and von Bahr-Esseen’s
moment inequality (Theorem .).

Let η,η, . . . ,ηn be a sequence of r.v.s. Consider the condition

Ee
∑n

i= ληi ≤ g(n)
n

∏

i=

Eeληi . (.)

If condition (.) is satisfied for g(n) =  and for all λ ∈ R, then η,η, . . . ,ηn are called
acceptable. It is easy to see that if (.) is true for η,η, . . . ,ηn, then it is true for η –
a,η – a, . . . ,ηn – an with any real numbers a, . . . , an; in particular, it is true for η –
Eη,η – Eη, . . . ,ηn – Eηn.
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Given a r.v. X and numbers a < b, we define the following (asymmetrically) truncated
r.v.:

(a)X(b) = –aI{X < a} + XI
{

a ≤ |X| ≤ b
}

+ bI{X > b}. (.)

This truncation (a)X(b) is an increasing function of X.

Proposition . Let X, X, . . . , Xn be a sequence of r.v.s. Assume that (.) is satisfied for
any λ ∈ R and for ηi = (ai)X(bi)

i with any ai < bi, i = , , . . . , n. Let d >  be fixed, and let
Yi = (–d)X(d)

i – E
(–d)X(d)

i , i = , , . . . , n, be the truncated and centered r.v.s. Let Sn =
∑n

i= Yi,
and let Bn =

∑n
i= EY 

i be the sum of variances. Then, for any x >  and t > , we have

P
(|Sn| > x

) ≤ P

(

max
≤i≤n

|Yi| > t
)

+ g(n) exp

(
x
t

–
x
t

ln

(

 +
xt
Bn

))

. (.)

Proof We follow the classical ideas of [] (see also [] and []). For a real number t > 
and a r.v. ξ , let

ξ (t) = min{ξ , t}

be the r.v. truncated from above. Let ηi = Y (t)
i , i = , , . . . , n, denote our truncated r.v.s.

Then ηi are of the form (ai)X(bi)
i – mi for some ai < bi and mi, i = , , . . . , n. Therefore (.)

is satisfied for ηi = Y (t)
i . So usual argument (see []) gives

P

( n
∑

i=

Y (t)
i > x

)

≤ g(n) exp

(
x
t

–
x
t

ln

(

 +
xt
Bn

))

. (.)

Inequality (.) is true for ηi = (–Yi)(t), i = , , . . . , n, so (.) is also true for the r.v.s
–Y, –Y, . . . , –Yn. Applying (.) to both r.v.s Y, Y, . . . , Yn and r.v.s –Y, –Y, . . . , –Yn, we
get (.). �

Now we turn to Rosenthal’s inequality.

Proposition . Let X, X, . . . , Xn be a sequence of r.v.s. Assume that (.) is satisfied for
any λ ∈ R and for ηi = (ai)X(bi)

i with any ai < bi, i = , , . . . , n. Let d >  be fixed, and let
Yi = (–d)X(d)

i – E
(–d)X(d)

i , i = , , . . . , n, be the truncated and centered r.v.s. Let Sn =
∑n

i= Yi,
and let Bn =

∑n
i= EY 

i be the sum of variances. Then

E|Sn|p ≤ CE max
≤i≤n

|Yi|p + Cg(n)Bp/
n , (.)

where p >  and C, C depend only on p.

Proof It is known that the exponential inequality implies Rosenthal’s inequality; see, e.g.,
Theorem . in []. Therefore (.) implies (.). �

Now, we obtain the von Bahr-Esseen inequality.
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Theorem . Let  < p ≤ . Let Xn, n = , , . . . , be a sequence of random variables with
E|Xn|p < ∞ and EXn =  for all n = , , . . . . Assume that (.) is satisfied for any λ ∈ R

and for ηi = (ai)X(bi)
i with any ai < bi, i = , , . . . , n. Then

E

∣
∣
∣
∣
∣

n
∑

k=

Xk

∣
∣
∣
∣
∣

p

≤ fp(n)
n

∑

k=

E|Xk|p, (.)

where fp(n) depends only on g(n) and p.

Proof Let d >  be fixed, and let Yi = (–d)X(d)
i –E

(–d)X(d)
i , i = , , . . . , n, be the truncated and

centered r.v.s. Let Sn =
∑n

i= Yi be their sum, and Bn =
∑n

i= EY 
i be the sum of variances.

Then, by Proposition . with exponent  we have

E

( n
∑

i=

Yi

)

= E|Sn| ≤ Cg(n)Bn =
n

∑

i=

Cg(n)EY 
i . (.)

So we obtained that the von Bahr-Esseen moment inequality holds for exponent  for
the truncated and centered random variables. Therefore, by Theorem . it holds for the
random variables themselves for any exponent p with  < p < . So (.) is proved for
 < p < . For p = , we use d ↑ ∞ in (.). Then the dominated convergence theorem
implies (.) if p = . �

Now, we apply our results to widely orthant-dependent sequences. A sequence of r.v.s
X, X, . . . is said to be widely orthant-dependent (WOD) if, for any positive integer n, there
exists a finite g(n) such that, for any real numbers x, . . . , xn, we have

P(X > x, X > x, . . . , Xn > xn) ≤ g(n)
n

∏

i=

P(Xi > xi) (.)

and

P(X ≤ x, X ≤ x, . . . , Xn ≤ xn) ≤ g(n)
n

∏

i=

P(Xi ≤ xi); (.)

see []. It is known that extended negatively orthant-dependent sequences, negatively
orthant-dependent sequences, negatively superadditive dependent sequences, negatively
associated and independent sequences are WOD; see []. We list a few known facts on
WOD sequences.

If X, X, . . . is a WOD sequence and the real functions f, f, . . . are either all nondecreas-
ing or all nonincreasing, then the sequence f(X), f(X), . . . is also WOD. In particular, the
truncated sequence (ai)X(bi)

i , i = , , . . . , is WOD. Moreover,

Ee
∑n

i= λXi ≤ g(n)
n

∏

i=

EeλXi (.)

for any real number λ and with g(n) in (.)-(.). Now, we obtain the von Bahr-Esseen
inequality for WOD sequences. We remark that the following theorem was obtained using
a different setup in [] (see Corollary . of []).
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Theorem . Let  < p ≤ . Let Xn, n = , , . . . , be a WOD sequence of random variables
satisfying (.) and (.). Assume that E|Xn|p < ∞ and EXn =  for all n = , , . . . . Then

E

∣
∣
∣
∣
∣

n
∑

k=

Xk

∣
∣
∣
∣
∣

p

≤ fp(n)
n

∑

k=

E|Xk|p, (.)

where fp(n) depends only on p and g(n) from inequalities (.)-(.).

Proof Because of the above-mentioned properties of WOD sequences, we can apply The-
orem .. �

2.4 Convergence theorems
In this subsection, we prove general convergence theorems. We show that when the ac-
ceptability relation (.) is satisfied for the truncated random variables, then weak and
strong laws of large numbers (WLLN, SLLN) and complete convergence hold without any
further weak dependence assumption. As the proofs go through the Bahr-Esseen inequal-
ity, we can see that the validity of (.) for the truncated and centered random variables
implies the above-mentioned asymptotic results.

We start with an Etemadi style SLLN.

Theorem . Let Xn, n = , , . . . , be a sequence of identically distributed r.v.’ satisfying
EX

 < ∞ and EX = .
() Assume that (.) is satisfied with g(n) = C for any λ ∈ R and for ηi = (ai)X(bi)

i with
any ai < bi, i = , , . . . . Then

lim
n→∞


n

n
∑

k=

Xk =  (.)

with probability .
() If, instead of (.), the Bahr-Esseen inequality is satisfied for the truncated and

centered r.v.’, that is, if

E

( n
∑

i=

((ai)X(bi)
i – E

(ai)X(bi)
i

)

)

≤ C
n

∑

i=

E
((ai)X(bi)

i – E
(ai)X(bi)

i
), (.)

then (.) is satisfied.

Proof First, we remark that, by Theorem ., inequality (.) is always satisfied under
the conditions of our theorem. We know that the original Etemadi SLLN is satisfied for
pairwise independent r.v.s. However, analyzing the proof (see [] or []), the only step
where pairwise independence is applied is the use of inequality (.) with ai = , bi = i
and with ai = –i, bi = . �

A well-known WLLN for pairwise independent r.v.s is the result of Csörgő, Tandori, and
Totik []. We show that Theorem  in [] is valid if pairwise independence is replaced by
an acceptability condition. We mention that in our theorem p is arbitrary with  < p < ,
whereas p =  in [].
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Theorem . Let  < p < . Let Xn, n = , , . . . , be a sequence of r.v.’. Assume that

∞
∑

m=

E
|Xm – EXm|p

mp < ∞ (.)

and


n

n
∑

m=

E|Xm – EXm| is bounded. (.)

() Assume that (.) is satisfied with g(n) = C for any λ ∈ R and for ηi = (ai)X(bi)
i with

any ai < bi, i = , , . . . . Then

lim
n→∞


n

n
∑

m=

(Xm – EXm) =  (.)

with probability .
() If, instead of (.), the Bahr-Esseen inequality is satisfied for the truncated and

centered r.v.s, that is, if

E

∣
∣
∣
∣
∣

n
∑

i=

((ai)X(bi)
i – E

(ai)X(bi)
i

)

∣
∣
∣
∣
∣

p

≤ C
n

∑

i=

E
∣
∣(ai)X(bi)

i – E
(ai)X(bi)

i
∣
∣
p, (.)

then (.) is satisfied.

Proof By Theorem . inequality (.) is always satisfied under the conditions of our the-
orem. In the original proof (see []) the only step where pairwise independence is applied
is the use of inequality (.) with with ai = , bi = ∞ and with ai = –∞, bi = . �

It is known that in the case of nonidentically distributed random variables certain reg-
ularity conditions should be imposed for the moments or for the distributions (e.g., con-
ditions (.) and (.)). Such a condition is the weak mean domination.

A sequence of r.v.s Yn, i = , , . . . , is called weakly mean dominated (wmd) by the a r.v.
Y if


n

n
∑

i=

P
(|Yi| > t

) ≤ CP
(|Y | > t

)

(.)

for all t ≥  and n = , , . . . (see Gut []).
We will often use the following lemma (see []).

Lemma . Let the sequence Yn, i = , , . . . , be weakly mean dominated by a r.v. Y . Let t > 
be fixed. Let f : [,∞) → [,∞) be a strictly increasing unbounded function with f () = .
Then

(a)


n

n
∑

i=

E|Yi| ≤ CE|Y |; (.)
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(b) the sequence f (|Yn|), i = , , . . . , is weakly mean dominated by the r.v. f (|Y |);
(c) the truncated sequence (–t)Y (t)

n , i = , , . . . , is weakly mean dominated by the
truncated r.v. (–t)Y (t);

(d)


n

n
∑

i=

E|Yi|I
{|Yi| > t

} ≤ CE|Y |I{|Y | > t
}

. (.)

The following theorem contains a WLLN and Lp-convergence.

Theorem . Let  < p < . Let the sequence Xn, n = , , . . . , be weakly mean dominated
by a r.v. X with E|X|p < ∞. Assume that EXn =  for all n = , , . . . . Assume that (.) is
satisfied with g(n) = C for any λ ∈R and for ηi = (ai)X(bi)

i with any ai < bi, i = , , . . . . Then

lim
n→∞E

∣
∣
∣
∣
∣


n/p

n
∑

k=

Xk

∣
∣
∣
∣
∣

p

= . (.)

Moreover,

lim
n→∞


n/p

n
∑

k=

Xk =  (.)

in probability.

Proof Let t > . Define

(–∞)Z(–t) = min{–t, Z}, (t)Z(∞) = max{t, Z}.

As EXk = , we have

E

∣
∣
∣
∣
∣


n/p

n
∑

k=

Xk

∣
∣
∣
∣
∣

p

≤ cE

∣
∣
∣
∣
∣


n/p

n
∑

k=

((–∞)X(–t)
k – E

(–∞)X(–t)
k

)

∣
∣
∣
∣
∣

p

+ cE

∣
∣
∣
∣
∣


n/p

n
∑

k=

((–t)X(t)
k – E

(–t)X(t)
k

)

∣
∣
∣
∣
∣

p

+ cE

∣
∣
∣
∣
∣


n/p

n
∑

k=

((t)X(∞)
k – E

(t)X(∞)
k })

∣
∣
∣
∣
∣

p

= T + T + T, (.)
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say. Applying Theorem ., we obtain

T ≤ c
n

n
∑

k=

E
∣
∣(t)X(∞)

k – E
(t)X(∞)

k
∣
∣
p

≤ c
n

n
∑

k=

E
∣
∣tI{Xk > t} – EtI{Xk > t}∣∣p

+
c
n

n
∑

k=

E
∣
∣XkI{Xk > t} – EXkI{Xk > t}∣∣p

≤ c
n

n
∑

k=

tp
P{Xk > t} +

c
n

n
∑

k=

EXp
k I{Xk > t}

≤ c
n

n
∑

k=

EXp
k I{Xk > t}.

Similarly,

T ≤ c
n

n
∑

k=

E|Xk|pI{Xk < –t}.

Therefore, by (.),

T + T ≤ c
n

n
∑

k=

E|Xk|pI
{|Xk| > t

} ≤ cE|X|pI{|X| > t
} ≤ ε



for any fixed ε >  if t is large enough, that is, t ≥ tε , say. Now, applying Theorem . with
exponent , we obtain

T ≤ c
n

( n
∑

k=

E
((–t)X(t)

k – E
(–t)X(t)

k
)

)p/

≤ c
n

(

n(t))p/ = ctpnp//n. (.)

Let t = tε and choose n large enough so that ctp
ε np//n ≤ ε

 . Then T ≤ ε/. �

Remark . Our Theorem . is similar to Theorem . of [], where pairwise indepen-
dent r.v.s were considered. We can see that in our theorem the weak mean domination
assumption can be replaced by the pth uniform integrability assumption used in Theo-
rem . of [].

In the following theorem, we will see that if the acceptability condition (.) with g(n) =
C holds for the truncated random variables, then complete (moment) convergence results
can be obtained. In particular, if the Bahr-Esseen inequality holds for the truncated and
centered random variables, then complete (moment) convergence holds.

Theorem . Let  < p < ,  ≤ r < , and  < α < . Let the sequence Xn, n = , , . . . , be
weakly mean dominated by a r.v. X. Assume that EXn =  for all n = , , . . . . Assume that
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(.) is satisfied with g(n) = C for any λ ∈R and for ηi = (ai)X(bi)
i with any ai < bi, i = , , . . . .

(i) If r < α, then assume thatE|X|α < ∞. (ii) If r = α, then assume thatE|X|r log(+ |X|) < ∞.
(iii) If r > α, then assume that E|X|r < ∞. Then

∞
∑

n=

nα/p–
E

{∣
∣
∣
∣
∣


n/p

n
∑

k=

Xk

∣
∣
∣
∣
∣

– ε

}r

+

< ∞ (.)

for any ε > .

Proof Let t = n/p. As EXk = , we have

B def=
∞

∑

n=

nα/p–
E

{


n/p

∣
∣
∣
∣
∣

n
∑

k=

Xk

∣
∣
∣
∣
∣

– ε

}r

+

=
∞

∑

n=

nα/p–
E

{∣
∣
∣
∣
∣


n/p

n
∑

k=

((–t)X(t)
k – E

(–t)X(t)
k

)

+
n

∑

k=

((–∞)X(–t)
k – E

(–∞)X(–t)
k

)

+
n

∑

k=

((t)X(∞)
k – E

(t)X(∞)
k

)

∣
∣
∣
∣
∣

– ε

}r

+

≤ c
∞

∑

n=

nα/p–
E

(


n/p

n
∑

k=

((–t)X(t)
k – E

(–t)X(t)
k

)

)

+ c
∞

∑

n=

nα/p–
E

∣
∣
∣
∣
∣


n/p

n
∑

k=

((–∞)X(–t)
k – E

(–∞)X(–t)
k

)

∣
∣
∣
∣
∣

r

+ c
∞

∑

n=

nα/p–
E

∣
∣
∣
∣
∣


n/p

n
∑

k=

((t)X(∞)
k – E

(t)X(∞)
k

)

∣
∣
∣
∣
∣

r

, (.)

where we applied Lemma . of []. Now, as g(n) = C, by Theorem . we obtain

B ≤ c
∞

∑

n=

nα/p– 
n/p

n
∑

k=

E
((–t)X(t)

k – E
(–t)X(t)

k
)

+ c
∞

∑

n=

nα/p– 
nr/p

n
∑

k=

E
∣
∣(–∞)X(–t)

k – E
(–∞)X(–t)

k
∣
∣
r

+ c
∞

∑

n=

nα/p– 
nr/p

n
∑

k=

E
∣
∣(t)X(∞)

k – E
(t)X(∞)

k
∣
∣
r

= T + T + T, (.)

say.
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First consider T. Applying Lemma . and using that t = n/p, we obtain

T ≤ c
∞

∑

n=

nα/p–/p–
n

∑

k=

E
((–t)X(t)

k
)

≤ c
∞

∑

n=

nα/p–/p–
E

((–t)X(t))

= c
∞

∑

n=

nα/p–/p–
E|X|I{|X| ≤ n/p} + c

∞
∑

n=

nα/p–/p–(n/p)
P
{|X| > n/p}

= T + T.

Now we have

T ≤ c
∞

∑

n=

nα/p–
∞

∑

k=n

P
{

k/p < |X| ≤ (k + )/p}

= c
∞

∑

k=

P
{

k/p < |X| ≤ (k + )/p}
k

∑

n=

nα/p– ≤ cE|X|α .

Furthermore,

T ≤ c
∞

∑

n=

nα/p–/p–
n

∑

k=

E|X|I{(k – )/p < |X| ≤ k/p}

= c
∞

∑

k=

E|X|I{(k – )/p < |X| ≤ k/p}
∞

∑

n=k

nα/p–/p– ≤ cE|X|α .

Therefore we see that T < ∞.

Now, we turn to T and T. Like in the proof of Theorem ., as t = n/p, we obtain

T ≤ c
∞

∑

n=

nα/p–r/p–
n

∑

k=

EXr
kI

{

Xk > n/p}.

Similarly,

T ≤ c
∞

∑

n=

nα/p–r/p–
n

∑

k=

E|Xk|rI
{

Xk < –n/p}.
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Therefore, by Lemma .,

T + T ≤ c
∞

∑

n=

nα/p–r/p–
n

∑

k=

E|Xk|rI
{|Xk| > n/p}

≤ c
∞

∑

n=

nα/p–r/p–
E|X|rI{|X| > n/p}

≤ c
∞

∑

n=

nα/p–r/p–
∞

∑

k=n

E|X|rI{k/p < |X| ≤ (k + )/p}

≤ c
∞

∑

k=

E|X|rI{k/p < |X| ≤ (k + )/p}
k

∑

n=

nα/p–r/p–.

Now, we see the following:
(i) If r < α, then T + T ≤ cE|X|α < ∞.

(ii) If r = α, then T + T ≤ cE|X|r log( + |X|) < ∞.
(iii) If r > α, then T + T ≤ cE|X|r < ∞.
Therefore we see that B < ∞ in all cases. �

Remark . For pairwise independent and identically distributed random variables, The-
orem . in [] states the same assertion as our Theorem .. By our proof we can see that
Theorem . in [] can be extended to weakly mean dominated pairwise independent ran-
dom variables. We also see that our Theorem . implies complete convergence for WOD
random variables if g(n) = C in (.) and (.).

Remark . Under the conditions of Theorem ., we have

∞
∑

n=

nα/p–
P

{∣
∣
∣
∣
∣


n/p

n
∑

k=

Xk

∣
∣
∣
∣
∣

> ε

}

< ∞ (.)

for any ε > , which can be proved by usual calculations; see, e.g., [], Remark ..

3 Conclusions
We have obtained general versions of the von Bahr-Esseen moment inequality, the expo-
nential inequality, and convergence theorems. Our results can be applied to prove new
limit theorems for weakly dependent sequences.
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